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Problems for April, 2009

612. ABCD is a rectangle for which AB > AD. A rotation with centre A takes B to a point B′ on CD; it
takes C to C ′ and D to D′. Let P be the point of intersection of the lines CD and C ′D′. Prove that
CB′ = DP .

613. Let ABC be a triangle and suppose that

tan
A

2
=

p

u
tan

B

2
=

q

v
tan

C

2
=

r

w
,

where p, q, r, u, v, w are positive integers and each fraction is written in lowest terms.

(a) Verify that pqw + pvr + uqr = uvw.

(b) Let f be the greatest common divisor of the pair (vw − qr, qw + vr), g be the greatest common
divisor of the pair (uw−pr, pw+ur), and h be the greatest common divisor of the pair (uv−pq, pv+qu).
Prove that

fp = vw − qr fu = qw + vr

gq = uw − pr gv = pw + ur

hr = uv − pq hw = pv + qu .

(c) Prove that the sides of the triangle ABC are proportional to fpu : gqv : hrw.

614. Determine those values of the parameter a for which there exist at least one line that is tangent to the
graph of the curve y = x3 − ax at one point and normal to the graph at another.

615. The function f(x) is defined for real nonzero x, takes nonzero real values and satisfies the functional
equation

f(x) + f(y) = f(xyf(x + y)) ,

whenever xy(x + y) 6= 0. Determine all possibilities for f .
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616. Let T be a triangle in the plane whose vertices are lattice points (i.e., both coordinates are integers),
whose edges contain no lattice points in their interiors and whose interior contains exactly one lattice
point. Must this lattice point in the interior be the centroid of the T?

617. Two circles are externally tangent at A and are internally tangent to a third circle Γ at points B and
C. Suppose that D is the midpoint of the chord of Γ that passses through A and is tangent there to the
two smaller given circles. Suppose, further, that the centres of the three circles are not collinear. Prove
that A is the incentre of triangle BCD.

618. Let a, b, c, m be positive integers for which abcm = 1 + a2 + b2 + c2. Show that m = 4, and that there
are actually possibilities with this value of m.

Challenge problems

The following problems are ones for which I do not have a solution. You are invited to solve them and
send in your solution as early as you can. Four of the problems for this month were solved by students,
whose solutions I acknowledge with thanks in order of receipt. Now they are for the rest of you to solve.

615. Hunter Spink (28/1/09); Jonathan Schneider (29/1/09)
616. Hunter Spink (28/1/09); Jonathan Schneider (29/1/09)
617. Hunter Spink (28/1/09); Robin Cheng (30/1/09)
618. Jonathan Schneider (29/1/09)

C5. Solve the equation
x12 − x9 + x4 − x = 1 .

C6. [Solved 2/3/09 by Jonathan Schneider] Suppose that n > 1 and that S is the set of all polynomials of
the form

zn + an−1z
n−1 + an−2z

n−2 + · · ·+ a1z + a0 ,

whose coefficients are complex numbers. Determine the minimum value over all such polynomials of the
maximum value of |p(z)| when |z| = 1.

C7. [Solved 2/3/09 by Jonathan Schneider and 4/3/09 by Cameron Bruggeman] Let a1, a2, · · · , an be distinct
integers. Prove that the polynomial

p(z) = (z − a1)2(z − a2)2 · · · (z − an)2 + 1

cannot be written as the product of two nonconstant polynomials with integer coefficients.

C8. [Solved 2/3/09 by Jonathan Schneider] Determine the locus of one focus of an ellipse reflected in a
variable tangent to the ellipse.

C9. Let I be the centre of the inscribed circle of a triangle ABC and let u, v, w be the respective lengths of
IA, IB, IC. Let P be any point in the plane and p, q, r the respective lengths of PA, PB, PC. Prove
that, with the sidelengths of the triangle given conventionally as a, b, c,

ap2 + bq2 + cr2 = au2 + bv2 + cw2 + (a + b + c)z2 ,

where z is the length of IP .

C10. Given the parameters a, b, c, solve the system

x + y + z = a + b + c;

x2 + y2 + x2 = a2 + b2 + c2;
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x

a
+

y

b
+

z

c
= 3 .

C11. Suppose that xi ≥ 0 and
n∑

i=1

1
1 + xi

≤ 1 .

Prove that
n∑

i=1

2−xi ≤ 1 .

C12. Let ai ≥ 2,

x =
1
a1

+
1

a2
1a2

+
1

a2
1a

2
2a3

+ · · · ,

x =
1
a1

+
1

a3
1a2

+
1

a3
1a

3
2a3

+ · · · .

Prove that either x and y are both rational or x and y are both irrational.

Solutions

585. Calculate the number
b = b(

√
n− 1 +

√
n +
√

n + 1)2c .

Solution. When n = 1, then b = b3 + 2
√

3c = 5. When n = 2, then

4.14 = 1 + 1.41 + 1.73 < 1 +
√

2 +
√

3 < 1 +
17
12

+
7
4

=
25
6

so that 17 < (1 +
√

2 +
√

3)2 < 18 and b(1 +
√

2 +
√

3)2c = 17 = 9× 2− 1.

Let n ≥ 3. Since

√
n + 1−

√
n =

1√
n + 1 +

√
n

<
1

√
n +
√

n− 1
=
√

n−
√

n− 1 ,

it follows that
√

n− 1 +
√

n + 1 < 2
√

n. Also

√
n− 1 +

√
n +
√

n + 1 > 3 3
√

n3 − n >
√

9n− 1 ;

the first inequality follows from that of the arithmetic and geometric means, and the second is evident after
raising to the sixth power. Therefore

√
9n− 1 <

√
n− 1 +

√
n +
√

n + 1 < 3
√

n.

Hence
9n− 1 < (

√
n− 1 +

√
n +
√

n + 1)2 < 9n ,

and so b = 9n− 1, when n ≥ 2.

598. Let a1, a2, · · · , an be a finite sequence of positive integers. If possible, select two indices j, k with
1 ≤ j < k ≤ n for which aj does not divide ak; replace aj by the greatest common divisor of aj and
ak, and replace ak by the least common multiple of aj and ak. Prove that, if the process is repeated, it
must eventually stop, and the final sequence does not depend on the choices made.
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Solution. Let {pi : 1 ≤ i ≤ m} be the set of of all primes, listed in some order, dividing at least one
of the ai. All the terms of any sequence thereafter are divisible by only these primes. For each sequence
obtained and for each prime pi, define a vector with n components whose sth entry is the exponent of the
highest power of pi that divides the sth term of the sequence.

Suppose that aj =
∏m

s=1 pus
s and ak =

∏m
s=1 pvs

s are two terms of one of the sequences. Then gcd
(aj , ak) =

∏m
s=1 pws

s and lcm (aj , ak) =
∏m

s=1 pzs
s , where ws is the minimum and zs is the maximum of us

and vs for each s. The condition that aj divides ak is equivalent to us ≤ vs for each s.

Let us see what the effect of the operation on a sequence has on the m vectors associated with the
sequence. If two elements, the jth and kth for which the jth does not divide the kth, then there is at least
one vector for which the jth term is larger than the kth term. The operation just interchanges these terms.
This reduces the number of pairs of components of the vector for which the earlier one exceeds the second.

Since there are only finitely many vectors (one for each prime) and each vector has only finitely many
component pairs, the process must terminate after a finite number of operations. No moves are possible
only when each vector is increasing. Since each move permutes the entries of each vectors, in the final stage
we must obtain the unique rearrangement of each vector in which the components are increasing. The kth
terms of the vectors give the exponents of the primes ps that constitute the prime factorization of the kth
term of the sequence at the end. The result follows.

599. Determine the number of distinct solutions x with 0 ≤ x ≤ π for each of the following equations. Where
feasible, give an explicit representation of the solution.
(a) 8 cos x cos 2x cos 4x = 1;
(b) 8 cos x cos 4x cos 5x = 1.

Solution 1. (a) It is clear that no multiple of π satisfies the equation. So we must have that sin x 6= 0.
Multiply the equation by sinx to obtain

8 sinx cos x cos 2x cos 4x = 4 sin 2x cos 2x cos 4x = 2 sin 4x cos 4x = sin 8x .

Hence the given equation is equivalent to sin 8x = sinx with sinx 6= 0. Hence, we must have x + 8x =
(2k + 1)π, 8x = (2k)π + x, since 0 ≤ x ≤ π. These lead to x = π/9 (20◦), x = 2π/7, x = π/3 (60◦),
x = 4π/7, x = 5π/9 (100◦), x = 6π/7 (120◦), x = 7π/9. Thus there are seven solutions to the equation.

(b) [Z. Liu] It can be checked that no multiple of π nor any odd multiple of π/4 satisfies the equation.
The truth of the equation implies that

sin 8x cos 5x = 2 sin 4x cos 4x cos 5x = 4 sin 2x cos 2x cos 4x sin 5x

= (sinx cos 2x)(8 cos x cos 4x cos 5x) = sin x cos 2x .

Using the product to sum conversion formula yields

sin 13x + sin 3x = sin 3x− sinx ,

whence sin 13x = sin(−x). Therefore, either 12x = 13x + (−x) is an odd multiple of π or 14x = 13x− (−x)
is an even multiple of π. However, x = 0, π/4, π/2, 3π/4 are extraneous solutions that do not satisfies the
given equation. Therefore, there are ten solutions, namely

x =
π

12
,
5π

12
.
7π

12
,
11π

12
,
π

7
,
2π

7
,
3π

7
,
4π

7
,
5π

7
,
6π

7
.

Solution 2. (a) Let t = cos x. Then cos 2x = 2t2 − 1 and cos 4x = 2(2t2 − 1)− 1 = 8t4 − 8t2 + 1, so that

cos x cos 2x cos 4x = t(2t2 − 1)(8t4 − 8t2 + 1) .
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Let
f(t) = 8t(2t2 − 1)(8t4 − 8t2 + 1)− 1

= 128t7 − 192t5 + 80t3 − 8t− 1

= (2t− 1)(64t6 + 32t5 − 80t4 − 40t3 + 20t2 + 10t + 1)

= (2t− 1)(8t3 + 4t2 − 4t− 1)(8t3 − 6t− 1) .

(The factor (2t− 1) can be found by noting that x = π/3, corresponding to t = 1/2, is an obvious solution
to the equation given in the problem.)

Let g(t) = 8t3+4t2−4t−1 and h(t) = 8t3−6t−1. Since g(−1) = −9, h(−1) = −1, g(− 1
2 ) = h(− 1

2 ) = 1,
g(0) = h(0) = −1, g(1) = 7 and h(1) = 1, both of g(t) and h(t) have a root in each of the intervals (−1,− 1

2 ),
(− 1

2 , 0) and (0, 1).
Since the only roots of g(t)−h(t) = 4t2 +2t = 2t(2t+1) are − 1

2 and 0, g(t) and h(t) do not have a root
in common. Therefore , f(t) has seven roots and these correspond to seven solutions of the given equation.

(b) We have that
1 = 8 cos x cos 4x cos 5x = 4 cos2 4x + 4 cos 4x cos 6x

= (2 cos 8x + 2) + (2 cos 2x + 2 cos 10x) ,

so that
2 cos 2x + 2 cos 8x + 2 cos 10x + 1 = 0 .

Substituting t = cos 2x yields cos 4x = 2t2− 1, cos 8x = 8t2− 4t2 + 1, cos 10x = 16t5− 20t3 + 5t, so that the
equation becomes

0 = (4t2 − 3)(8t3 + 4t2 − 4t− 1) .

The polynomial 4t2 − 3 has two roots in the interval [−1, 1] corresponding to four values of x in the interval
[0, π]. Let f(t) = 8t3 + 4t2 − 4t− 1. Since f(−1) = −1, f(− 1

2 ) = 1, f(0) = −1, f(1) = 7, f(t) has three real
roots, once in each of the intervals (−1,− 1

2 ), (− 1
2 , 0), (0, 1), and each of these corresponds to two solution x

in the interval [0, π]. Therefore, the equation in x has ten solutions in the interval.

Comments. (a) The seven solutions of the equation sin 8x = sinx can be seen from a sketch of the
graphs of the two functions on the same axes.

(b) Since 2 cos x cos 5x = cos 4x + cos 6x, the equation is equivalent to

4(cos2 4x + cos 4x cos 6x) = 1 .

Some solutions can be found by solving cos 6x = 0 and cos2 4x = 1
4 . These are satisfied by x = π/12, 5π/12,

7π/12 and 11π/12.

The trial, taking cos 4x = 1
2 , is also reasonable, as it gives x = π/12. With this substitution, the left

side become 4 cos π/12 sinπ12 = 2 sinπ/6 = 1. The other multiples of π/12 can be handled in the same way.

When t = cos 2x, there is another route to the equation in t to be analyzed. The equation, in the form,
1 = 4(cos 4x)(cos 4x + cos 6x), is transformed to

1 = 4(2t2 − 1)(2t2 − 1 + 4t3 − 3t) = 4(8t5 + 4t4 − 10t2 − 4t2 + 3t + 1) .

This simplifies to
0 = 32t5 + 16t4 − 40t3 − 16t2 + 12t + 3

= (4t2 − 3)(8t3 + 4t2 − 4t− 1) .

Since x = π/12 is a solution, t = cos π/6 =
√

3/2 satisfies the equation in t and accounts for the factor
4t2 − 3 on the right side of the equation.
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600. Let 0 < a < b. Prove that, for any positive integer n,

b + a

2
≤ n

√
bn+1 − an+1

(b− a)(n + 1)
≤ n

√
an + bn

2
.

Solution 1. Dividing the inequality through by (b + a)/2 yields the equivalent inequality

1 ≤ n

√
b′n+1 − a′n+1

(b′ − a′)(n + 1)
≤ n

√
a′n + b′n

2
,

with a′ = (2a)/(b + a) and b′ = (2b)/(b + a). Note that (a′ + b′)/2 = 1. and we can write b′ = 1 + u and
a′ = 1− u with 0 < u < 1. The central term becomes the nth root of

(1 + u)n+1 − (1− u)n+1

2(n + 1)u
=

2[(n + 1)u +
(
n+1

3

)
u3 +

(
n+1

5

)
u5 + · · ·]

2(n + 1)u

= 1 +
1
3

(
n

2

)
u2 +

1
5

(
n

4

)
u4 + · · ·

which clearly exceeds 1 and gives the left inequality. The right term become the nth roots of

1
2
[(1 + u)n + (1− u)n] = 1 +

(
n

2

)
u2 +

(
n

4

)
u4 + · · ·

and the right inequality is true.

Solution 2. The inequality

n

√
bn+1 − an+1

(b− a)(n + 1)
≤ n

√
an + bn

2

is equivalent to

0 ≤ (n + 1)(an + bn)− 2(bn+1 − an+1)
b− a

.

The right side is equal to

(n + 1)(an + bn)− 2(bn + bn−1a + bn−2a2 · · ·+ b2an−2 + ban−1 + an)

= (an − bn) + (an − bn−1a) + (an − bn−2a) + · · ·+ (an − ban−1) + (an − an)

+ (bn − bn) + (bn − bn−1a) + · · ·+ (bn − ban−1) + (bn − an)

= (an − bn) + a(an−1 − bn−1) + a2(an−2 − bn−2) + · · ·+ an−1(a− b) + 0

+ 0 + bn−1(b− a) + · · ·+ b(bn−1 − an−1) + (bn − an)

= 0 + (b− a)(bn−1 − an−1) + (b2 − a2)(bn−2 − an−2) + · · ·+ (bn−1 − an−1)(b− a)
> 0 .

The left inequality
b + a

2
≤ n

√
bn+1 − an+1

(b− a)(n + 1)

is equivalent to (
b + a

2

)n

≤ bn+1 − an+1

(b− a)(n + 1)
.
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Let v = 1
2 (b− a) so that b + a = 2(a + v). Then

bn+1 − an+1

(b− a)(n + 1)
−

(
b + a

2

)n

=
(a + 2v)n+1 − an+1

(b− a)(n + 1)
− (a + v)n

=
1

2v(n + 1)

( n+1∑
k=1

(
n + 1

k

)
an+1−k(2v)k

)
− (a + v)n

=
1

n + 1

( n+1∑
k=1

(
n + 1

k

)
an−(k−1)(2v)k−1

)
− (a + v)n

=
1

n + 1

( n∑
k=0

(
n + 1
k + 1

)
an−k(2v)k

)
−

n∑
k=0

(
n

k

)
an−kvk

=
( n∑

k=0

1
k + 1

(
n

k

)
an−k(2v)k −

n∑
k=0

(
n

k

)
an−kvk

)

=
n∑

k=0

(
2k

k + 1
− 1

)(
n

k

)
an−kvk ≥ 0 ,

since 2k = (1 + 1)k = 1 + k +
(
k
2

)
+ · · · ≥ 1 + k with equality if and only if k = 0 or 1. The result follows.

Solution 3. [D. Nicholson] (partial) Let n ≥ 2i + 1. Then

(bn−iai + bian−i)− (bn−i−1ai+1 + bi+1an−i−1) = (b− a)aibi(bn−2i−1 − an−2i−1) ≥ 0 .

Hence, for 0 ≤ j ≤ 1
2 (n + 1),

bn + an ≥ bn−1a + abn−1 ≥ · · · ≥ bn−jaj + bjan−j .

When n = 2k + 1,

bn + bn−1a + · · ·+ ban−1 + an =
k∑

i=0

(bn−iai + bian−i) ≤ (k + 1)(bn + an) =
n + 1

2
(bn + an)

and when n = 2k, we use the Arithmetic-Geometric Means Inequality to obtain bkak ≤ 1
2 (a2k + b2k), so that

bn + bn−1a + · · ·+ ban−1 + an =
k−1∑
i=0

(bn−iai + bian−i) + bkak ≤ k(bn + an) +
bn + an

2
=

n + 1
2

(bn + an) .

Hence
bn+1 − an+1

(b− a)(n + 1)
≤ bn + an

2
.

Solution 4. [Y. Shen] Let 1 ≤ k ≤ n and 1 ≤ i ≤ k. Then

(bk+1 + ak+1)− (biak+1−i + aibk+1−i) = (bi − ai)(bk+1−i − ak+1−i) ≥ 0 .

Hence

k(bk+1 + ak+1) ≥
k∑

i=1

(biak+1−i + aibk+1−i) = 2
k∑

i=1

biak+1−i .
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This is equivalent to

(2k + 2)
k+1∑
i=0

biak+1−i = (2k + 2)(bk+1 + ak+1) + (2k + 2)
k∑

i=1

biak+1−i

≥ (k + 2)(bk+1 + ak+1) + (2k + 4)
k∑

i=1

biak+1−i

= (k + 2)(bk+1 + 2
k∑

i=1

biak+1−i + ak+1)

= (k + 2)(b + a)
k∑

i=0

biak−i

which in turn is equivalent to ∑k+1
i=0 biak+1−i

k + 2
≥

(b + a)(
∑k

i=0 biak−i)
2(k + 1)

.

We establish by induction that (
b + a

2

)n

≤ 1
n + 1

n∑
i=0

bian−i

which will yield the left inequality. This holds for n = 1. Suppose that it holds for n = k. Then(
b + a

2

)
=

(
b + a

2

)
·
(

b + a

2

)k

≤
(

b + a

2

)
·
(

1
k + 1

) k∑
i=0

biak−i ≤ 1
k + 2

k+1∑
i=0

biak−i .

As above, we have, for k = n− 1,

(n− 1)(bn + an) ≥ 2
n−1∑
i=1

bian−i

so that

(n + 1)(bn + an) ≥ 2
n∑

i=0

bian−i = 2
(

bn+1 − an+1

b− a

)
from which the right inequality follows.

Comment. The inequality

b + a

2
≤ n

√
bn+1 − an+1

(b− a)(n + 1)

is equivalent to

0 ≤ 2n(bn+1 − an+1)
b− a

− (n + 1)(b + a)n .

When n = 1, the right side is equal to 0. When n = 2, it is equal to

4(b2 + ba + a2)− 3(b + a)2 = (b− a)2 > 0 .
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When n = 3, we have

8(b3 + b2a + ba2 + a3)− 4(b + a)3 = 4b3 − 4b2a− 4ba2 + 4a3 = 4(b2 − a2)(b− a) = 4(b + a)(b− a)2 > 0 .

When n = 4, 5 and 6, the right side is, respectively,

(11b2 + 18ab + 11a2)(b− a)2

(26b3 + 54b2a + 54ba2 + 26a3)(b− a)2

(57b4 + 136b3a + 174b2a2 + 136ba3 + 57a4)(b− a)2 .

There is a pattern here; can anyone express it in a general way that will yield the result, or at least show
that the right side is the product of (b− a)2 and a polynomial with positive coefficients?

601. A convex figure lies inside a given circle. The figure is seen from every point of the circumference of the
circle at right angles (that is, the two rays drawn from the point and supporting the convex figure are
perpendicular). Prove that the centre of the circle is a centre of symmetry of the figure.

Solution 1. Let the figure be denoted by F and the circle by C, and let ρ be the central reflection through
the centre of the circle. Suppose that m is any line of support for F and that it intersects the circle in P and
Q. Then there are lines p and q through P and Q respectively, perpendicular to m, which support F. Let p
meet the circle in P and R, and q meet it in Q and S; let t be the line RS. Since PQRS is concyclic with
adjacent right angles, it is a rectangle, and t is a line of support of F. Since PS and RQ are both diameters
of C, it follows that S = ρ(P ), R = ρ(Q) and t = ρ(m).

Hence, every line of support of F is carried by ρ into a line of support of F. We note that F must be on
the same side of its line of support as the centre of the circle.

Suppose that X ∈ F. Let Y = ρ(X). Suppose, if possible that Y 6∈ F. Then there must be a disc
containing Y that does not intersect F, so we can find a line m of support for F such that F is on one side
and Y is strictly on the other side of m. Let n = ρ(m). Then n is a line of support for F which has X = ρ(Y )
on one side and O = ρ(O) on the other. But this is not possible. Hence Y ∈ F and so ρ(F) ⊆ F. Now ρ ◦ ρ
is the identity mapping, so F = ρ(ρ(F)) ⊆ ρ(F). It follows that F = ρ(F) and the result follows.

Solution 2. Let P be any point on the circle C. There are two perpendicular lines of support from P
meeting the circle in Q and S. As in the first solution, we see that P is one vertex of a rectangle PQRS each
of whose sides supports F. Let G be the intersection of all the rectangles as P ranges over the circumference
of the circle C. Since each rectangle has central symmetry about the centre of C, the same is true of G. It
is clear that F ⊆ G. It remains to show that G ⊆ F. Suppose a point X in G does not belong to F. Then
there is a line r of support to F for which X and F are on opposite sides. This line of support intersects C
at the endpoints of a chord which must be a side of a supporting rectangle for F. The point X lies outside
this rectangle, and so must lie outside of G. The result follows.

Solution 3. [D. Arthur] If the result is false, then there is a line through the centre of the circle such
that OP > OQ, where P is where the line meets the boundary of the figure on one side and Q is where it
meets the boundary on the other. Let m be the line of support of the figure through Q. Then, as shown
in Solution 1, its reflection t in the centre of the circle is also a line of support. But then P and O lie on
opposite sides of t and we obtain a contradiction.

602. Prove that, for each pair (m,n) of integers with 1 ≤ m ≤ n,

n∑
i=1

i(i− 1)(i− 2) · · · (i−m + 1) =
(n + 1)n(n− 1) · · · (n−m + 1)

m + 1
.
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(b) Suppose that 1 ≤ r ≤ n; consider all subsets with r elements of the set {1, 2, 3, · · · , n}. The elements
of this subset are arranged in ascending order of magnitude. For 1 ≤ i ≤ r, let ti denote the ith smallest
element in the subset, and let T (n, r, i) denote the arithmetic mean of the elements ti. Prove that

T (n, r, i) = i

(
n + 1
r + 1

)
.

(a) Solution 1. i(i− 1)(i− 2) · · · (i−m + 1) = [(i+1)−(i−m)]
m+1 i(i− 1)(i− 2) · · · (i−m + 1)

=
(i + 1)i(i− 1) · · · (i−m + 1)− i(i− 1)(i− 2) · · · (i−m + 1)(i−m)

m + 1

so that
n∑

i=1

i(i− 1)(i− 2) · · · (i−m + 1) =
n+1∑
i=2

i(i− 1) · · · (i−m)
m + 1

−
n∑

i=1

i(i− 1) · · · (i−m)
m + 1

=
(n + 1)n(n− 1) · · · (n−m + 1)

m + 1
− 0

=
(n + 1)n(n− 1) · · · (n−m + 1)

m + 1
.

(a) Solution 2. [W. Choi] Recall the identity

n∑
i=m

(
i

m

)
=

(
n + 1
m + 1

)
which is obvious for n = m and can be established by induction for n ≥ m + 1. There is an alternative
combinatorial argument. Consider the number

(
n+1
m+1

)
of selecting m+1 numbers from the set {1, 2, 3, · · · , n+

1}. The largest number must be i + 1 where m ≤ i ≤ n, and the number of (m + 1)−sets for which the
largest number is i + 1 is

(
i
m

)
. Summing over all relevant i yields the result.

We have that

m∑
i=1

i(i− 1) · · · (i−m + 1) =
n∑

i=m

i!
(i−m)!

= m!
n∑

i=m

(
i

m

)
= m!

(
n + 1
m + 1

)
=

(n + 1)!
(m + 1)(n−m)!

=
(n + 1)n(n− 1) · · · (n−m + 1)

m + 1
.

(a) Solution 3. [K. Yeats] Let n = m + k. Then

n∑
i=1

i(i− 1)(i− 2) · · · (i−m + 1) = m! +
(m + 1)!

1!
+ · · ·+ n!

(n−m)!

=
1

(m + 1)k!

[
(m + 1)!k! +

(m + 1)!k!(m + 1)
1!

+
(m + 2)!k!(m + 1)

2!
+ · · ·+ n!(m + 1)

]
=

(m + 1)!
(m + 1)k!

[
k! +

k!
1!

(m + 1) +
k!
2!

(m + 2)(m + 1) + · · ·+ n(n− 1) · · · (m + 2)(m + 1)
]

.

The quantity in square brackets has the form (with q = 0)

k!
q!

+
k!

(q + 1)!
(m + 1) +

k!
(q + 2)!

(m + q + 2)(m + 1) +
k!

(q + 3)!
(m + q + 3)(m + q + 2)(m + 1) + · · ·
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+
k!
k!

n(n− 1) · · · (m + q + 2)(m + 1)

= (m + q + 2)
[

k!
(q + 1)!

+
k!

(q + 2)!
(m + 1) +

k!
(q + 3)!

(m + q + 3)(m + 1) + · · ·+ k!
k!

n · · · (m + q + 3)(m + 1)
]
.

Applying this repeatedly with q = 0, 1, 2, · · · , k− 1 leads to the expression for the left sum in the problem of

(m + k + 1)!
(m + 1)k!

[
k!
k!

]
=

(n + 1)!
(m + 1)(n−m)!

=
(n + 1)n(n− 1) · · · (n−m + 1)

m + 1
.

[A variant, due to D. Nicholson, uses an induction on r to prove that, for m ≤ r ≤ n,

r∑
i=m

i(i− 1) · · · (i−m + 1) =
(r + 1)!

(r −m)!(m + 1)
.]

(a) Solution 4. For 1 ≤ i ≤ m−1, i(i−1) · · · (i−m+1) = 0. For m ≤ i ≤ n, i(i−1) · · · (i−m+1) = m!
(

i
m

)
.

Also,
(n + 1)n · · · (n−m + 1)

m + 1
= m!

(
n + 1
m + 1

)
so the statement is equivalent to

n∑
m

(
i

m

)
=

(
n + 1
m + 1

)
.

This is clear for n = m. Suppose it holds for n = k ≥ m. Then

k+1∑
i=m

(
i

m

)
=

(
k + 1
m + 1

)
+

(
k + 1

m

)
=

(
k + 2
m + 1

)
and the result follows by induction.

(a) Solution 5. Use induction on n. If n = 1, then m = 1 and both sides of the equation are equal to 1.
Suppose that the result holds for n = k and 1 ≤ m ≤ k. Then, for 1 ≤ m ≤ k,

k+1∑
i=1

i(i− 1) · · · (i−m + 1) =
(k + 1)k(k − 1) · · · (k −m + 1)

m + 1
+ (k + 1)k(k − 1) · · · (k −m + 2)

=
(k + 1)k(k − 1) · · · (k −m + 2)

m + 1
[(k −m + 1) + (m + 1)]

=
(k + 2)(k + 1)k(k − 1) · · · (k −m + 2)

m + 1

as desired. When m = n = k + 1, all terms on the left have k + 1 terms and so they vanish except for the
one corresponding to i = k + 1. This one is equal to (k + 1)! and so to the right side.

(b) Solution 1. For 1 ≤ i ≤ r ≤ n, let S(n, r, i) be the sum of the elements ti where (t1, t2, · · · , tr) runs
over r-tples with 1 ≤ t1 < t2 < · · · < tr ≤ n. Then S(n, r, i) =

(
n
r

)
T (n, r, i). For 1 ≤ k ≤ n, 1 ≤ i ≤ r, the

number of ordered r−tples (t1, t2, · · · , tr) with ti = k is
(
k−1
i−1

)(
n−k
r−i

)
where

(
0
0

)
= 1 and

(
a
b

)
= 0 when b > a.

Hence (
n

r

)
=

n∑
k=1

(
k − 1
i− 1

)(
n− k

r − i

)
.

Replacing n by n + 1 and r by r + 1 yields a reading(
n + 1
r + 1

)
=

n+1∑
k=1

(
k − 1
i− 1

)(
n + 1− k

r − (i− 1)

)
for 1 ≤ i ≤ r + 1 .
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Replacing i− 1 by i yields(
n + 1
r + 1

)
=

n+1∑
k=1

(
k − 1

i

)(
n + 1− k

r − i

)
for 0 ≤ i ≤ r .

When 1 ≤ i ≤ r, the first term of the sum is 0, so that(
n + 1
r + 1

)
=

n+1∑
k=2

(
k − 1

i

)(
n− (k − 1)

r − i

)
=

n∑
k=1

(
k

i

)(
n− k

r − i

)
.

Thus

S(n, r, i) =
n∑

k=1

k

(
k − 1
i− 1

)(
n− k

r − i

)
= i

n∑
k=1

(
k

i

)(
n− k

r − i

)
= i

(
n + 1
r + 1

)
so

T (n, r, i) = i

(
n + 1
r + 1

)
.

(b) Solution 2. [Z. Liu] Define S(n, r, i) for 1 ≤ i ≤ r ≤ n as in Solution 1. We prove by induction that

S(n, r, i) = i

(
n + 1
r + 1

)
from which

T (n, r, i) = i

(
n + 1
r + 1

)
.

For each positive integer n, we have that S(n, 1, 1) = 1+2+ · · ·+n =
(
n+1

2

)
and S(n, n, i) = i. Suppose

that n ≥ 2, r ≥ 2 and that S(k, r, 1) =
(
k+1
r+1

)
for 1 ≤ k ≤ n−1. Of the

(
n
r

)
r−tples from {1, 2, · · · , n},

(
n−1
r−1

)
of

them have smallest element equal to 1, and
(
n−1

r

)
of them have smallest element exceeding 1. The latter set

of r−tples can be put into one-one corrrespondence with r−tples of {1, 2, · · · , n−1} by subtracting one from
each entry. Therefore the sum of the first (smallest) elements of the latter r−tples is

(
n−1

r

)
+ S(n− 1, r, 1).

Hence

S(n, r, 1) =
(

n− 1
r − 1

)
+

(
n− 1

r

)
+ S(n− 1, r, 1) =

(
n

r

)
+

(
n

r + 1

)
=

(
n + 1
r + 1

)
.

Suppose as an induction hypothesis that

S(m, s, j) = j

(
m + 1
s + 1

)
for 1 ≤ j ≤ s ≤ n − 1. This holds for n = 2. Let r ≥ 2 and 1 ≤ i ≤ r ≤ n − 1. Consider the
ordered r−subsets of {1, 2, · · · , n}. There are

(
n−1
r−1

)
of them that begin with 1; making use of the one-one

correspondence between these and (r − 1)− subsets of {1, 2 · · · , n− 1} obtained by subtracting 1 from each
entry beyond the first, we have that the sum of the ith elements of these is(

n− 1
r − 1

)
+ S(n− 1, r − 1, i− 1) =

(
n− 1
r − 1

)
+ (i− 1)

(
n

r

)
.

There are
(
n−1

r

)
of the ordered subsets that do not begin with 1; making use of the one-one correspondence

between these subsets and the r−subsets of {1, 2, · · · , n− 1} obtained by subtracting 1 from each entry, we
find that the sum of the ith elements is(

n− 1
r

)
+ S(n− 1, r, i) =

(
n− 1

r

)
+ i

(
n

r + 1

)
.
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Hence the sum of the ith elements of all these r−subsets is

S(n, r, i) =
[(

n− 1
r − 1

)
+

(
n− 1

r

)
−

(
n

r

)]
+ i

[(
n

r

)
+

(
n

r + 1

)]
= 0 + i

(
n + 1
r + 1

)
.

Putting all these elements together yields the result.

(b) Solution 3. When r = 1, we have that

T (n, 1, 1) =
1 + 2 + · · ·+ n

n
=

n + 1
2

.

When r = 2, the subsets are {1, 2}, {1, 3}, · · · , {1, n}, {2, 3}, {2, 4}, · · · {2, n}, · · · , {n− 1, n}, so that

T (n, 2, 1) =
1× (n− 1) + 2× (n− 2) + · · ·+ (n− 1)× 1(

n
2

)
=

[(n− 1) + (n− 2) + · · ·+ 1] + [(n− 2) + (n− 3) + · · ·+ 1] + · · ·+ 1(
n
2

)
=

∑n−1
j=1 [1 + 2 + · · ·+ (n− j)]

n(n− 1)/2
=

∑n−1
j=1 (n− j + 1)(n− j)/2

n(n− 1)/2

=
(1/6)(n + 1)n(n− 1)

(1/2)n(n− 1)
=

n + 1
3

,

and

T (n, 2, 2) =
(n− 1)× n + (n− 2)× (n− 1) + · · ·+ 1× 2(

n
2

)
=

(n + 1)n(n− 1)/3
n(n− 1)/2

= 2
(

n + 1
3

)
.

Thus, the result holds for n = 1, 2 and all i, r with 1 ≤ i ≤ r ≤ n, and for all n and 1 ≤ i ≤ r ≤ 2. Suppose
as an induction hypothesis, we have established the result up to n − 1 and all appropriate r and i, and for
n and 1 ≤ i ≤ r − 1. The r−element subsets of {1, 2, · · · , n} have

(
n−1

r

)
instances without n and

(
n−1
r−1

)
instances with n.

Let 1 ≤ i ≤ r − 1. Then

T (n, r, i) =

(
n−1

r

)
T (n− 1, r, i) +

(
n−1
r−1

)
T (n− 1, r − 1, i)(

n
r

)
=

i[
(
n−1

r

)
n

r+1 +
(
n−1
r−1

)
n
r ](

n
r

) =
i[
(

n
r+1

)
+

(
n
r

)
](

n
r

)
= i

(
n+1
r+1

)(
n
r

) = i

(
n + 1
r + 1

)
Also

T (n, r, r) =

(
n−1

r

)
T (n− 1, r, r) +

(
n−1
r−1

)
n(

n
r

)
=

(
n−1

r

)
rn

r+1 +
(
n−1
r−1

)
rn
r(

n
r

) =
r[

(
n

r+1

)
+

(
n
r

)
](

n
r

) = r

(
n + 1
r + 1

)
.

(b) Solution 4. For 1 ≤ i ≤ r ≤ n, let S(n, r, i) be the sum of the elements ti where (t1, t2, · · · , tr) runs
over r-tples with 1 ≤ t1 < t2 < · · · < tr ≤ n. Then S(n, r, i) =

(
n
r

)
T (n, r, i). We observe first that

S(n, r, i) = S(n− 1, r − 1, i) + S(n− 2, r − 1, i) + · · ·+ S(r − 1, r − 1, i)
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for 1 ≤ i ≤ r − 1. This is true, since, for each j with 1 ≤ j ≤ n− r + 1, S(n− j, r − 1, i) adds the ti over all
r−tples for which tr = n− j + 1.

Now S(n, 1, 1) = 1 + 2 + · · ·+ n = 1
2 (n + 1)n and S(n, 2, 1) = 1

2n(n− 1) + · · ·+ 1 = 1
3! (n + 1)n(n− 1).

As an induction hypothesis, suppose that S(n, r − 1, 1) = 1
r! (n + 1)n(n− 1) · · · (n− r + 2). Then

S(n, r, 1) =
n−1∑

k=r−1

S(k, r − 1, 1)

=
1
r!

n−1∑
k=r−1

(k + 1)k(k − 1) · · · (k − r + 2) =
1
r!

n∑
k=1

k(k − 1) · · · (k − r + 1)

=
1

(r + 1)!
(n + 1)n(n− 1) · · · (n− r + 1) =

(
n + 1
r + 1

)
n!

r!(n− r)!
=

(
n + 1
r + 1

)(
n

r

)
.

Thus, for each r with 1 ≤ r ≤ n, S(n, r, 1) =
(
n
r

)
(n + 1)/(r + 1) so that T (n, r, 1) = (n + 1)/(r + 1).

Let n ≥ 2. Suppose that for 1 ≤ k ≤ n − 1 and 1 ≤ i ≤ r ≤ k, it has been established that
S(k, r, i) = iS(k, r, 1). Then for 1 ≤ i ≤ r ≤ n,

S(n, r, i) = S(n− 1, r − 1, i) + S(n− 2, r − 1, i) + · · ·+ S(r − 1, r − 1, i)
= i[S(n− 1, r − 1, 1) + S(n− 2, r − 1, 1) + · · ·+ S(r − 1, r − 1, 1) = iS(n, r, 1) .

Dividing by
(
n
r

)
yields

T (n, r, i) = iT (n, r, 1) = i

(
n + 1
r + 1

)
.

Comments. (1) There is a one-one correspondence

(t1, t2, · · · , tr)←→ (n + 1− tr, n + 1− tr−1, · · · , n + 1− tr)

of the set of suitable r−tples to itself, it follows that

S(n, r, r) =
(

n

r

)
(n + 1)− S(n, r, 1) =

(
n

r

)
(n + 1)

[
1− 1

r + 1

]
=

r(n + 1)
r + 1

(
n

r

)
= rS(n, r, 1)

from which T (n, r, r) = r(n + 1)/(r + 1) = rT (n, r, 1).

(2) To illustrate another method for getting and using the recursion, we prove first that T (n, r, 2) =
2T (n, r, 1) for 2 ≤ r ≤ n. Consider the case r = 2. For 1 ≤ t1 < t2 ≤ n, (t1, t2) ↔ (t2 − t1, t2) defines a
one-one correspondence between suitable pairs. Since t2 = t1 + (t2− t1), it follows from this correspondence
that S(n, 2, 2) = 2S(n, 2, 1). Dividing by

(
n
2

)
yields T (n, 2, 2) = 2T (n, 2, 1).

Suppose that r ≥ 2. For each positive integer j with 1 ≤ j ≤ n−r+1, we define a one-one correspondence
between r−tples (t1, t2, · · · , tr) with 1 ≤ t1 < t2 < · · · < tr ≤ n and t3 − t2 = j and (r − 1)−tples
(s1, s2, s3, · · · , sr) = (t1, t2, t4 − j, · · · , tr − j) with 1 ≤ s1 = t1 < s2 = t2 < s3 = t4 − j < · · · < sr = tr − j ≤
n − j. The sum of the elements t2 over all r−tples with t3 − t2 = j is equal to the sum of t2 over all the
(r − 1)−tples. Hence

S(n, r, 2) = S(n− 1, r − 1, 2) + S(n− 2, r − 1, 2) + · · ·+ S(r − 1, r − 1, 2) .
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More generally, for 1 ≤ j ≤ n− r− 1, there is a one-one correspondence between r−tples (t1, t2, · · · , tr)
with ti+1 − ti = j and (r − 1)−tples (s1, s2, · · · , sr−1) = (t1, · · · , ti, ti+2 − j, · · · , tr − j) with 1 ≤ s1 = t1 <
· · · < si = ti < si+1 = ti+2 − j < · · · < sr−1 = tr − j ≤ n− j. We now use induction on r. We have that

S(n, r, i) = S(n− 1, r − 1, i) + S(n− 2, r − 1, i) + · · ·+ S(r − 1, r − 1, i) .

(b) Solution 5. [Y. Shen] We establish that

i+(n−r)∑
k=i

(
k

i

)(
n− k

r − i

)
=

(
n + 1
r + 1

)
.

Consider the (r + 1)−element sets where ti+1 = k + 1 and tr+1 ≤ n + 1. We must have i ≤ k ≤ n− (r − i)
and there are

(
k
i

)(
n−k
r−i

)
ways of selecting t1, · · · , ti and ti+2, · · · , tr+1. The desired equation follows from a

counting argument over all possibilities for ti+1.

In a similar way, we note that ti = k for
(
k−1
i−1

)(
n−k
r−i

)
sets {t1, · · · , tr} chosen from {1, · · · , n}, where

1 ≤ k ≤ n− r + 1. Observe that (
k − 1
i− 1

)(
n− k

r − i

)
=

i

k

(
k

i

)(
n− k

r − i

)
.

Then

T (n, r, i) =

∑n−r+1
k=i k

(
k−1
i−1

)(
n−k
r−i

)(
n
r

)
=

i
∑n−r+i

k=i

(
k
i

)(
n−k
r−i

)(
n
r

)
=

(
n+1
r+1

)(
n
r

) = i

(
n + 1
r + 1

)
.

(b) Solution 6. [Christopher So] Note that

n−r+i∑
k=i

(
k

i

)(
n− k

r − i

)

is the coefficient of xiyr−i in the polynomial

n−r+i∑
k=i

(1 + x)k(1 + y)n−k

or in
n+1∑
k=0

(1 + x)k(1 + y)n−k =
(1 + y)n+1 − (1 + x)n+1

y − x

=

∑n+1
j=0

(
n+1

j

)
(yj − xj)

y − x
.

Now the only summand which involves terms of degree r corresponds to j = r + 1, so that the coefficient of
xiyr−1 in the sum is the coefficient in the single term(

n + 1
r + 1

)
yr+1 − xr+1

y − x
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namely,
(
n+1
r+1

)
. We can now complete the argument as in the fourth solution.

(b) Comment. Let r and n be fixed values and consider i to be variable. The
(
n
r

)
r−term sets contain

altogether r
(
n
r

)
numbers, each number occurring equally often: r

n

(
n
r

)
times. The sum of all the elements in

the set is

S(n, r, 1) + S(n, r, 2) + · · ·+ S(n, r, r) =
r

n

(
n

r

)
(1 + 2 + · · ·+ n) =

r(n + 1)
2

(
n

r

)
where S(n, r, i) is the sum of the elements ti over the

(
n
r

)
subsets. The ordered r−element subsets (t1, t2, · · · , tr)

can be mapped one-one to themselves by

(t1, t2, · · · , tr)←→ (n + 1− tr, n + 1− tr−1, · · · , n + 1− t1) .

From this, we see that, for 1 ≤ r,

S(n, r, r + 1− i) =
(

n

r

)
(n + 1)− S(n, r, i)

so that

S(n, r, 1) + S(n, r, r) = S(n, r, 2) + S(n, r, r − 1) = · · · = S(n, r, i) + S(n, r, r + 1− i) = · · · =
(

n

r

)
(n + 1) .

This is not enough to imply that S(n, r, i) is an arithmetic progression in i, but along with this fact would
give a quick solution to the problem.

603. For each of the following expressions severally, determine as many integer values of x as you can so that
it is a perfect square. Indicate whether your list is complete or not.

(a) 1 + x;
(b) 1 + x + x2;
(c) 1 + x + x2 + x3;
(d) 1 + x + x2 + x3 + x4;
(e) 1 + x + x2 + x3 + x4 + x5.

Solution. (a) 1 + x is a square when x = u2 − 1 for some integer u (or when x is the product of two
integers u− 1 and u + 1 that differ by 2).

(b) Solution 1. Suppose that x2 +x+1 = u2. Then (2x+1)2 +3 = 4x2 +4x+4 = 4u2 = (2u)2, whence

3 = (2u)2 − (2x + 1)2 = (2u + 2x + 1)(2u− 2x− 1) .

The factors on the right must be ±3 and ±1 in some order, and this leads to the possibilities (x, u) =
(−1,±1), (0,±1).

(b) Solution 2. If x > 0, then x2 < x2 +x+1 < (x+1)2, so that x2 +x+1 cannot be square. If x < −1,
then x2 > x2 +x+1 > (x+1)2 and x2 +x+1 cannot be square. This leaves only the possibilities x = 0,−1.

(b) Solution 3. For given u, consider the quadratic equation

x2 + x + 1 = u2 .

Its discriminant is 1−4(1−u2) = 4u2−3. It will have integer solutions only if 4u2−3 = v2 for some integer
v, i.e., (v + 2u)(v − 2u) = −3. The only possibilities are (u, v) = (±1,±1), (±1,∓1).
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(b) Solution 4. [J. Chui] If f(x) = 1 + x + x2, then f(x) = f(−(x + 1)), so we need deal only
with nonnegative values of x. We have that f(0) = f(−1) = 1 is square. Let x ≥ 1 and suppose that
1 + x + x2 = u2 for some integer u. Then (1 + x)2 − u2 = x > 0 so that 1 + x > u. This implies that x ≥ u,
whence x2 ≥ u2 = x2 + x + 1, a contradiction. Thus the only possibilities are x = 0,−1.

(b) Solution 5. [A. Birka] Suppose that x2 + x + 1 = u2 with u ≥ 0. This is equivalent to x =
(1+x)2−u2 = (1+x+u)(1+x−u), so that 1+x+u and 1+x−u both divide x. If x ≥ 1, then 1+x+u
exceeds x and so cannot divide x. If x ≤ 0, then (−x) + u− 1 divides x, which is impossible unless u = 1 or
u = 0. Only u = 1 is viable, and this leads to x = 0,−1.

(c) Solution. 1 + x + x2 + x3 = (1 + x2)(1 + x). Let d be a common prime divisor of 1 + x and 1 + x2.
Then d must also divide x(x− 1) = (1 + x2)− (1 + x). Since gcd(x, x + 1) = 1, d must divide x− 1 and so
divide 2 = (x + 1)− (x− 1). Hence, the only common prime divisor of 1 + x2 and 1 + x is 2.

Suppose 1 + x + x2 + x3 = (1 + x2)(1 + x) is square. Then there are only two possibilities:

(i) 1 + x2 = u2 and 1 + x = v2 for integers u and v ;

(ii) 1 + x2 = 2r2 and 1 + x = 2s2 for integers r and s .

Ad (i): 1 = u2 − x2 = (u− x)(u + x)⇔ (x, u) = (0,±1).
Ad (ii): We have x2 − 2r2 = −1 which has solutions

(x, r) = (−1, 1), (1, 1), (7, 5), (41, 29), · · · .

The complete set of solutions of x2−2r2 = ±1 in positive integers is given by {(xn, rn) : n = 1, 2, · · ·}, where
xn + rn

√
2 = (1 +

√
2)n, with odd values of n yielding solutions of x2 − 2r2 = −1. We need to select values

of x for which x + 1 = 2s2 for some s. x = −1, 1, 7 work, yielding

1− 1 + (−1)2 + (−1)3 = 0

1 + 1 + 12 + 13 = 22

1 + 7 + 72 + 73 = 8× 50 = 202 .

There may be other solutions.

(d) Solution 1. Let f(x) = x4 + x3 + x2 + x + 1 = (x5 − 1)/(x− 1), with the quotient form for x 6= 1.
We have that f(0) = f(−1) = 12 and f(3) = (243− 1)/2 = 112. Also f(1) = 5 and f(2) = 31. Suppose that
x ≥ 4. Then x(x− 2) > 3, so that x2 > 2x + 3. Hence

(2x2 + x + 1)2 = 4x4 + 4x3 + 5x2 + 2x + 1

> 4x4 + 4x3 + 4x2 + 4x + 4 = 4f(x)

and
4f(x) = (4x4 + 4x3 + x2) + (3x2 + 4x + 4)

= (2x2 + x)2 + (3x2 + 4x + 4) > (2x2 + x)2 .

Thus, 4f(x) lies between the consecutive squares (2x2 + x)2 and (2x2 + x + 1)2 and so cannot be square.
Hence f(x) cannot be square.

Similarly, if x ≤ −2, then x(x− 2) > 3 and 3x2 + 4x + 4 > 0, and we again find that 4f(x) lies between
the consecutive squares (2x2 + x)2 and (2x2 + x + 1)2. Hence f(x) is square if and only if x = −1, 0, 3.

(d) Solution 2. [M. Boase] For x > 3,(
x2 +

x

2

)2

< x4 + x3 + x2 + x + 1 <

(
x2 +

x + 1
2

)2
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so that, lying between two half integers, x4 + x3 + x2 + x + 1 is not square. Suppose x = −y is less than −1.
Since y − 1 < 3

4y2 and y2 + 2y − 3 = (y + 3)(y − 1) > 0,(
y2 − y

2

)2

< 1− y + y2 − y3 + y4 <

(
y2 − y − 1

2

)2

so again the middle term is not square. The cases x = −1, 0, 1, 2, 3 can be checked directly.

(e) Solution 1. Let

g(x) = x5 + x4 + x3 + x2 + x + 1 = (x + 1)(x4 + x2 + 1)

= (x + 1)[(x2 + 1)2 − x2] = (x + 1)(x2 + x + 1)(x2 − x + 1) .

Observe that g(x) < 0 for x ≤ −2, so g(x) cannot be square in this case. Let us analyze common divisors of
the three factors of g(x).

Suppose that p is a prime divisor of x + 1. Then

x2 + x + 1 = x(x + 1) + 1 ≡ 1 mod p

and
x2 − x + 1 = x(x + 1)− 2(x + 1) + 3 ≡ 3 mod p .

Hence gcd(x + 1, x2 + x + 1) = 1 and gcd(x + 1, x2 − x + 1) is either 1 or 3.

Suppose q is prime and x2 + x + 1 ≡ 0 (mod q). Then x(x + 1) ≡ −1 (mod q), and x2 − x + 1 ≡ −2x
(mod q). Since x2 + x + 1 is odd, q 6= 2, then x2− x + 1 6≡ 0 (mod q). Hence gcd(x2 + x + 1, x2− x + 1) = 1.

As we have seen from (b), x2 + x + 1 is square if and only if x = −1 or 0. Indeed g(−1) = 02 and
g(0) = 12. Otherwise, x2 + x + 1 cannot be square. But gcd(x2 + x + 1, (x + 1)(x2 − x + 1)) = 1, so g(x)
cannot be a square either. Hence x5 + x4 + x3 + x2 + x + 1 is square if and only if x = −1 or 0.

(e) Solution 2. [M. Boase] Observe that x5 +x4 + · · ·+1 = (x3 +1)(x2 +x+1). Since x3 +1 = (x2 +x+
1)(x−1)+2, the greatest common divisor of x3+1 and x2+x+1 must divide 2. But x2+x+1 = x(x+1)+1
is always odd, so the greatest common divisor must be 1. Hence x2 + x + 1 and x + 1 must both be square.
Hence x must be either −1 or 0.

604. ABCD is a square with incircle Γ. Let l be a tangent to Γ, and let A′, B′, C ′, D′ be points on l such
that AA′, BB′, CC ′, DD′ are all prependicular to l. Prove that AA′ · CC ′ = BB′ ·DD′.

Solution 1. Let Γ be the circle of equation x2 + y2 = 1 and let l be the line of equation y = −1. The
points of the square must lie on the circle of equation x2 + y2 = 2. Let them be

A ∼ (
√

2 cos θ,
√

2 sin θ)

B ∼ (−
√

2 sin θ,
√

2 cos θ)

C ∼ (−
√

2 cos θ,−
√

2 sin θ)

D ∼ (
√

2 sin θ,−
√

2 cos θ)

for some angle θ with −π/4 ≤ θ ≤ π/4. Observe that 1/
√

2 ≤ cos θ ≤ 1 and that −1/
√

2 ≤ sin θ ≤ 1/
√

2.

Then A′ ∼ (
√

2 cos θ,−1), B′ ∼ (−
√

2 sin θ,−1), C ′ ∼ (−
√

2 cos θ,−1) and D′ ∼ (
√

2 sin θ,−1), so that
AA′ = 1 +

√
2 sin θ, BB′ = 1 +

√
2 cos θ, CC ′ = 1−

√
2 sin θ and DD′ = 1−

√
2 cos θ. Hence

AA′ · CC ′ −BB′ ·DD′ = (1 +
√

2 sin θ)(1−
√

2 sin θ)− (1 +
√

2 cos θ)|1−
√

2 cos θ|
= (1 +

√
2 sin θ)(1−

√
2 sin θ) + (1 +

√
2 cos θ)(1−

√
2 cos θ)

= 1− 2 sin2 θ + 1− 2 cos2 θ = 0 .
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Solution 2. One can proceed as in the first solution, taking the four points on the larger circle at the
intersection with the perpendicular lines y = mx and y = −x/m. The points are

A ∼
( √

2√
m2 + 1

,
m
√

2√
m2 + 1

)
B ∼

(
−m
√

2√
m2 + 1

,

√
2√

m2 + 1

)

C ∼
( √

2√
m2 + 1

,
−m
√

2√
m2 + 1

)
D ∼

(
m
√

2√
m2 + 1

,
−
√

2√
m2 + 1

)
.

In this case, the products turn out to be equal to |(m2 − 1)/(m2 + 1)|.

Solution 3. [A. Birka] Let the circle have equation x2 + y2 = 1 and the square have vertices A ∼ (1, 1),
B ∼ (−1, 1), C ∼ (−1,−1), D ∼ (1,−1). Suppose, wolog, that the line l is tangent to the circle at
P (t,
√

1− t2) with 0 < t < 1 and intersects CB produced in Y and AD in X. The line l has equation
tx +

√
1− t2y = 1 and so the coordinates of X are (1, u) and of Y are (−1, 1/u) where u = (1− t)/

√
1− t2.

Now Y B : Y C = (1− u) : (1 + u) = AX : XD. Since ∆Y BB′ is similar to ∆Y CC ′ and ∆XAA′ is similar
to ∆XDD′.

BB′ : CC ′ = Y B : Y C = AX : XD = AA′ : DD′ ,

and the result follows.

Comment. If the circle has equation x2 + y2 = r2, the square has vertices (±r,±r) and the line through
a point (a, b) on the circle has equation ax + by = r2, then the distance product is 2ab.
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