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570. Let a be an integer. Consider the diophantine equation

1
x

+
1
y

+
1
z

=
a

xyz

where x, y, z are integers for which the greatest common divisor of xyz and a is 1.

(a) Determine all integers a for which there are infinitely many solutions to the equation that satisfy
the condition.

(b) Determine an infinite set of integers a for which there are solutions to the equation for which the
condition is satisfied and x, y, z are all positive. [Optional: Given N ¿ 0, are there infinitely many a for
which there are at least N positive solutions satisfying the condition?]

571. Let ABC be a triangle and U , V , W points, not vertices, on the respective sides BC, CA, AB, for
which the segments AU , BV , CW intersect in a common point O. Prove that

|OU |
|AU |

+
|OV |
|BV |

+
|OW |
|CW |

= 1 ,

and
|AO|
|OU |

· |BO|
|OV |

· |CO|
|OW |

=
|AO|
|OU |

+
|BO|
|OV |

+
|CO|
|OW |

+ 2 .

572. Let ABCD be a convex quadrilateral that is not a parallelogram. On the sides AB, BC, CD, DA,
construct isosceles triangles KAB, MBC, LCD, NDA exterior to the quadrilateral ABCD such that
the angles K, M , L, N are right. Suppose that O is the midpoint of BD. Prove that one of the triangles
MON and LOK is a 90◦ rotation of the other around O.

What happens when ABCD is a parallelogram?

573. A point O inside the hexagon ABCDEF satisfies the conditions ∠AOB = ∠BOC = ∠COD =
∠DOE = ∠EOF = 60◦, OA > OC > OE and OB > OD > OF . Prove that |AB| + |CD| + |EF | <
|BC|+ |DE|+ |FA|.
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574. A fair coin is tossed at most n times. The tossing stops before n tosses if there is a run of an odd
number of heads followed by a tail. Determine the expected number of tosses.

575. A partition of the positive integer n is a set of positive integers (repetitions allowed) whose sum is n.
For example, the partitions of 4 are (4), (3,1), (2,2), (2,1,1), (1,1,1,1); of 5 are (5), (4,1), (3,2), (3,1,1),
(2,2,1), (2,1,1,1), (1,1,1,1,1); and of 6 are (6), (5,1), (4,2), (3,3), (4,1,1), (3,2,1), (2,2,2), (3,1,1,1),
(2,2,1,1), (2,1,1,1), (1,1,1,1,1,1).

Let f(n) be the number of 2’s that occur in all partitions of n and g(n) the number of times a number
occurs exactly once in a partition. For example, f(4) = 3, f(5) = 4, f(6) = 8, g(4) = 4, g(5) = 8 and
g(6) = 11. Prove that, for n ≥ 2, f(n) = g(n− 1).

576. (a) Let a ≥ b > c be the radii of three circles each of which is tangent to a common line and is tangent
externally to the other two circles. Determine c in terms of a and b.

(b) Let a, b, c, d be the radii of four circles each of which is tangent to the other three. Determine a
relationship among a, b, c, d

Solutions

556. Let x, y, z be positive real numbers for which x + y + z = 4. Prove the inequality

1
2xy + xz + yz

+
1

xy + 2xz + yz
+

1
xy + xz + 2yz

≤ 1
xyz

.

Solution. It is straightforward to establish for a, b > 0 that (a + b)−1 ≤ 1
4 (a−1 + b−1). Therefore,

1
2xy + xz + yz

≤ 1
4

(
1

xy + xz
+

1
xy + yz

)
≤ 1

4

[
1
4

(
1
xy

+
1
xz

)
+

1
4

(
1
xy

+
1
yz

)
=

1
16

(
2
xy

+
1
xz

+
1
yz

)
=

1
16

(
2z + y + x

xyz

)
.

Similarly,
1

xy + 2xz + yz
≤ 1

16

(
z + 2y + x

xyz

)
and

1
xy + xz + 2yz

≤ 1
16

(
z + y + 2x

xyz

)
.

Adding the three inequalities yields that

1
2xy + xz + yz

+
1

xy + 2xz + yz
+

1
xy + xz + 2yz

≤ 1
16

(
4x + 4y + 4z

xyz

)
=

1
xyz

.

Equality holds if and only if x = y = z = 4/3.

557. Suppose that the polynomial f(x) = (1+x+x2)1004 has the expansion a0+a1x+a2x
2+ · · ·+a2008x

2008.
Prove that a0 + a2 + · · ·+ a2008 is an odd integer.

Solution. Observe that

a0 + a2 + · · ·+ a2008 =
1
2
(f(1) + f(−1)) =

1
2
(31004 + 1) .

It remains to show that 31004 + 1 is congruent to 2 modulo 4.

2



558. Determine the sum
n−1∑
m=0

m∑
k=0

(
n

k

)
.

Solution. Let Sm =
(
n
0

)
+

(
n
1

)
+ · · · +

(
n
m

)
. Then S0 + Sn−1 = S1 + Sn−2 = · · · = Sn−1 + S0 = 2n, so

that S = n2n−1.

Comment. In more detail,

Sk + Sn−1−k =
[(

n

0

)
+ · · ·+

(
n

k

)]
+

[(
n

0

)
+ · · ·+

(
n

n− 1− k

)]
=

[(
n

0

)
+ · · ·+

(
n

k

)]
+

[(
n

n

)
+ · · ·+

(
n

k + 1

)]
= 2n .

559. Let ε be one of the roots of the equation xn = 1, where n is a positive integer. Prove that, for any
polynomial f(x) = a0 + ax + · · ·+ anxn with real coefficients, the sum

∑n
k=1 f(1/εk) is real.

Solution. If ε = 1, the result is clear. Let ε 6= 1; we have that εn = 1.

n∑
k=1

f(1/εk) =
n∑

k=1

n∑
j=0

aj(1/εk)j =
n∑

k=1

n∑
j=0

aj(1/εjk)

=
n∑

j=0

aj

n∑
k=1

(1/εjk) = na0 +
n−1∑
j=2

aj(1/εj)
(

1− ε−jn

1− ε−j

)
+ nan

= na0 + 0 + nan = n(a0 + an) .

560. Suppose that the numbers x1, x2, · · · , xn all satisfy −1 ≤ xi ≤ 1 (1 ≤ i ≤ n) and x3
1 + x3

2 + · · ·+ x3
n = 0.

Prove that
x1 + x2 + · · ·+ xn ≤

n

3
.

Solution. Since −1 ≤ xi ≤ 1, for 1 ≤ i ≤ n, there exists θi with 0 ≤ θi ≤ π such that xi = cos θi.
Therefore

n∑
i=1

xi =
n∑

i=1

cos θi =
1
3

[
4

n∑
i=1

cos3 θi −
n∑

i=1

cos 3θi

]

= −1
3

n∑
i=1

cos 3θi ≤
n

3
,

as desired.

561. Solve the equation (
1
10

)log(1/4)(
4√x−1)

− 4log10(
4√x+5) = 6 ,

for x ≥ 1.

Solution. Let a = log(1/4)( 4
√

x− 1) and b = log10( 4
√

x + 5). Then (1/4)a = 4
√

x − 1 and 10b = 4
√

x + 5,
whence (1/4)a + 1 = 10b − 5, or (

1
4

)a

− 10b = −6 .
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On the other hand, the given equation is(
1
10

)a

− 4b = 6 .

Therefore (
1
4

)a

− 4b +
(

1
10

)a

− 10b = 0

which is equivalent to
(4−a − 4b) + (10−a − 10b) = 0 .

The left side is less than 0 when −a < b and greater than 0 when −a > b. Therefore −a = b and so
10b − 4b = 6. One solution of this is b = 1.

We show that this solution is unique. Observe that the function f(x) = 6(1/10)x + (4/10)x decreases
as x increases from 0 and takes the value 1 when x = 1. Since f(x) = 1 is equivalent to 6 = 10x− 4x, we see
that x = 1 is the only solution of the latter equation.

562. The circles C and D intersect at the two points A and B. A secant through A intersects C at C and D
at D. On the segments CD, BC, BD, consider the respective points M , N , K for which MN‖BD and
MK‖BC. On the arc BC of the circle C that does not contain A, choose E so that EN ⊥ BC, and
on the arc BD of the circle D that does not contain A, choose F so that FK ⊥ BD. Prove that angle
EMF is right.

Solution. We have that BN : NC = DM : MC = DK : KB. Let G be the point of intersection of FK
and D. Then ∠BGD = ∠BAD = ∠BEC. In triangle BGD and CEB, we have that ∠BGD = ∠CEB.
Compare triangles BGD and CEB: ∠BGD = ∠CEB; GK and EN are respective altitudes; DK : KB =
BN : NC. There is a similarilty transformation with factor |DK|/|BN | that takes B → D, C → B, N → K
and E to a point E′ on the line KG. Since ∠BGD = ∠CEB = ∠BE′D, we must have E′ = G. Thus
triangles BGD and CEB are similar, whence ∠EBC = ∠GDB = ∠GFB. As a result, triangles BNE and
FKB are similar.

Since MNBK is a parallelogram, ∠MNB = ∠MKB. Thus ∠MNE = ∠MKF . Since MN : KF =
BK : KF = EN : NB = EN : MK, triangles ENM and MKF are similar. Therefore ∠NME = ∠KFM .
But MN ⊥ KF . Therefore EM ⊥ FM .
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