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549. The set E consists of 37 two-digit natural numbers, none of them a multiple of 10. Prove that, among
the elements of E, we can find at least five numbers, such that any two of them have different tens digits
and different units digits.

550. The functions f(x) and g(x) are defined by the equations: f(x) = 2x2 + 2x− 4 and g(x) = x2 − x + 2.

(a) Find all real numbers x for which f(x)/g(x) is a natural number.

(b) Find the solutions of the inequality √
f(x) +

√
g(x) ≥ 2 .

551. The numbers 1, 2, 3 and 4 are written on the circumference of a circle, in this order. Alice and Bob
play the following game: On each turn, Alice adds 1 to two adjacent numbers, while Bob switches the
places of two adjacent numbers. Alice wins the game, if after her turn, all numbers on the circle are
equal. Does Bob have a strategy to prevent Alice from winning the game? Justify your answer.

552. Two real nonnegative numbers a and b satisfy the inequality ab ≥ a3 + b3. Prove that a + b ≤ 1.

553. The convex quadrilateral ABCD is concyclic with side lengths |AB| = 4, |BC| = 3, |CD| = 2 and
|DA| = 1. What is the length of the radius of the circumcircle of ABCD? Provide an exact value of
the answer.

554. Determine all real pairs (x, y) that satisfy the system of equations:

3 3
√

x2y5 = 4(y2 − x2)

5 3
√

x4y = y2 + x2 .

555. Let ABC be a triangle, all of whose angles do not exceed 90◦. The points K on side AB, M on side
AC and N on side BC are such that KM ⊥ AC and KN ⊥ BC. Prove that the area [ABC] of triangle
ABC is at least 4 times as great as the area [KMN ] of triangle KMN , i.e., [ABC] ≥ 4[KMN ]. When
does equality hold?
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Solutions

535. Let the triangle ABC be isosceles with AB = AC. Suppose that its circumcentre is O, the D is the
midpoint of side AB and that E is the centroid of triangle ACD. Prove that OE is perpendicular to
CD.

Solution 1. Let F be the midpoint of AC, so that DF is a median of triangle ADC and so contains
the point E. The centroid, G, of triangle ABC lies on the median CD as well as on the right bisector of
BC. Since DE‖BC and the circumcentre O of triangle ABC lies on the right bisector of BC, we have that
DE ⊥ AO.

Let H be the midpoint of CD. Since FH is a midline of triangle ACD, FH‖AD. Since DG = 1
3CD =

2
3DH and DE = 2

3DF , EG‖FH‖AB. Since O lies on the right bisector of AB, DO ⊥ EG. Therefore,
O is the intersection of two altitudes from D and G and so is the orthocentre of triangle DEG. Therefore
OE ⊥ CD.

Solution 2. [N. Gurram] Place the configuration in a complex plane with O at 0 and A, B, C, respectively,
at 2ai, −2b− 2ci, 2b− 2ci. Since |OA| = |OB|, a2 = b2 + c2.

The point D is located at −b + (a− c)i and E at

1
3
[2ai + (−b + (a− c)i) + (2b− 2ci)] =

1
3
[b + 3(a− c)i] .

Note that OE ⊥ CD if and only if 1
3 [b+3(a−c)i] is i times a real multiple of (2b−2ci)−(−b+(a−c)i) =

3b− (a + c)i. Since
b + 3(a− c)i
3b− (a− c)i

=
[b + 3(a− c)i][3b + (a + c)i]

9b2 + (a− c)2

=
3[b2 − (a2 − c2)] + [9b(a− c) + b(a + c)]i

9b2 + (a− c)2

=
2b(5a− 4c)i

9b2 + (a− c)2
,

is pure imaginary, the result follows.

Solution 3. Assign coordinates to the points: A ∼ (2a, 2b), B ∼ (4a, 0), C ∼ (0, 0), and O ∼ (2a, k)
where 4a2 + k2 = (2b − k)2 or k = b − (a2/b). Then D ∼ (3a, b) and E ∼ (5a/3, b). The slope of OE is
(−a2/b)/(a/3) = −3a/b and the slope of CD is b/3a. Therefore OE ⊥ CD.

536. There are 21 cities, and several airlines are responsible for connections between them. Each airline
serves five cities with flights both ways between all pairs of them. Two or more airlines may serve a
given pair of cities. Every pair of cities is serviced by at least one direct return flight. What is the
minimum number of airlines that would meet these conditions?

Solution 1. Since there are 210 pairs of cities and each airline serves 10 pairs, at least 21 airlines are
required. In fact, we can get by with exactly 21 airlines. Label the cities from 0 to 20 inclusive, and let the
kth airline service the set of five cities

{k, k + 2, k + 7, k + 8, k + 11}

where the numbers are taken modulo 21. Observe that the differences between two numbers of such sets for
any airline cover all the numbers from 1 to 10. Given any two cities labelled i and j, the difference between
the two labels (possibly adjusted modulo 21) is equal to some number between 1 and 10, and we can select
a value of k for which the two labels appear in the cities services by the kth airline.

Solution 2. Suppose that there are m airlines, and that each airline maintains an office in each city that
it serves. Then there are 5m offices. Consider any particular city: it is connected to four other cities by each
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airline that serves it, so that there must be at least 20/4 = 5 offices in the city. Therefore, there are at least
5× 21 offices in all the cities. Thus, 5k ≥ 5× 21 and so k ≥ 21.

An example can be given as in the first solution.

537. Consider all 2 × 2 square arrays each of whose entries is either 0 or 1. A pair (A,B) of such arrays is
compatible if there exists a 3× 3 square array in which both A and B appear as 2× 2 subarrays.

For example, the two arrays (
1 0
1 1

)
and

(
1 0
0 0

)
are compatible, as both can be found in the array 1 0 0

1 1 0
1 0 0

 .

Determine all pairs of 2× 2 arrays that are not compatible.

Solution. Let aij and bij be the respective entries in the ith row and jth column of the arrays A and B,
where 1 ≤ i, j ≤ 2. If any of the following hold: a11 = b22, a21 = b12, a12 = b21, a22 = b11, then the arrays
are compatible as they can be inserted into a 3 × 3 array overlapping at a corner. Therefore, if two arrays
are not compatible, we must have that bij = 1− aji for each i and j.

Suppose that two matrices A and B related in this way have two unequal entries. Wolog, we may assume
that a11 = 0 and a12 = 1. Then b22 = 1 and b21 = 0. Then the two matrices can be fitted into a 3× 3 array
with the bottom row of B coinciding with the top row of A. Hence, if A and B are not compatible, then
each must have all of its entries the same. Therefore, the only noncompatible pairs (A,B) have one matrix
containing only 1s and the other only 0s.

538. In the convex quadrilateral ABCD, the diagonals AC and BD are perpendicular and the opposite sides
AB and DC are not parallel. Suppose that the point P , where the right bisectors of AB and DC meet,
is inside ABCD. Prove that ABCD is a cyclic quadrilateral if and only if the triangles ABP and CDP
have the same area.

Solution 1. [N. Gurram] Let AC and BD intersect at E. Let R and S be the respective feet of the
perpendiculars from P to AC and BD. Observe that PRES is a rectangle, so that |RE| = |PS| and
|SE| = |PR|. T here are essentially two cases to consider, according as P lies in triangle AEB or triangle
AED.

First, suppose that P lies in triangle AEB. Then

[ABP ] = [ABE]− [AEP ]− [BEP ]

=
1
2
[|AE||BE| − |AE||ES| − |BE||ER|]

=
1
2
[(|AE| − |ER|)(|BE| − |ES|)− |ER||ES|]

=
1
2
[|AR||BS| − |ER||ES|] .

Likewise,
[CDP ] = [CDE] + [CEP ] + [DEP ]

=
1
2
[|CE||DE|+ |CE||ES|+ |DE||ER|]

=
1
2
[(|CE|+ |ER|)(|DE|+ |ES|)− |ER||ES|]

=
1
2
[|CR||DS| − |ER||ES|] .
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Secondly, suppose that P lies in triangle AED. Then

[ABP ] = [ABE] + [AEP ]− [BEP ]

=
1
2
[|AE||BE|+ |AE||ES| − |BE||ER|]

=
1
2
[(|AE| − |ER|)(|BE|+ |ES|) + |ER||ES|]

=
1
2
[|AR||BS|+ |ER||ES|] .

Likewise,
[CDP ] = [CDE]− [CEP ] + [DEP ]

=
1
2
[|CE||DE| − |CE||ES|+ |DE||ER|]

=
1
2
[(|CE|+ |ER|)(|DE| − |ES|) + |ER||ES|]

=
1
2
[|CR||DS|+ |ER||ES|] .

In either case, we find that

[ABP ]− [CDP ] =
1
2
(|AR||BS| − |CR||DS| .

Suppose that ABCD is concyclic. Then P is the centre of the circumcircle of ABCD, and hence of each
of the triangle ABC and ABD. Therefore, R is the midpoint of AC and S the midpoint of BD/ Therefore,
|AR| = |CR| and |BS| = |DS|, so that [ABP ] = [CDP ].

On the other hand, suppose that ABCD is not concyclic. Then, wolog, we may suppose that |AP | =
|BP | > |CP | = |DP |. By looking at right triangles, we see that |AR| > |CR| and |BS| > |DS|, so that
[ABP ] > [CDP ]. The result follows.

Solution 2. [J. Zung] We first establish Brahmagupta’s theorem: Suppose that ABCD is a concyclic
quadrilateral and that AC and BD intersect at right angles at E. Let Q be the point on CD for which
EQ ⊥ CD, and let QE produced meet AB at M . Then M is the midpoint of AB.

To prove this, note that

∠MEB = ∠DEQ = 90◦ − ∠EDQ = 90◦ − ∠EDC

= ∠DCA = ∠DBA = ∠EBM ,

whence MB = ME. Similarly, MA = ME. ♠

In the problem, let ABCD be concyclic with circumcentre P , and M and N be the respective midpoints
of AB and CD. Since P is the circumcentre of ABCD, we have that PN ⊥ CD, so that PN‖ME by
Brahmagupta’s theorem. Similarly, PM‖NE so that PMNE is a paralleloram.

Therefore,

[CDP ] = |ND||PN | = |NE||PN | = |PM ||ME| = |PM ||AM | = [ABP ] .

[Z.Q. Liu] Suppose that the respective midpoints of AB and CD are M and N , that AC and BD
intersect at E, that the right bisectors of AB and CD meet at P , and that AB and DC produced meet at
K. Observe that, because of the right triangle ABE and CDE, MA = MB = ME and NC = ND = NE.

Suppose that [ABP ] = [CDP ]. Then

|AM ||MP | = |DN ||NP | =⇒ |ME||MP | = |NE|NP | =⇒ ME : NE = NP : MP .
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Also
∠MEN = ∠MEA + ∠NED + 90◦ = ∠MAE + ∠NDE + 90◦

= ∠KAD + ∠KDA = 180◦ − ∠MKN = ∠MPN ,

since ∠KMP = ∠KNP = 90◦. Therefore triangles MEN and MPN are similar. But as their common
side MN corresponds in the similarity, the two triangles are congruent and so MENP is a parallelogram.

Suppose that ME produced meets CD at R. Then MR ⊥ CD and

∠BDC = ∠EDR = ∠NER = ∠AEM = ∠MAE = ∠BAC ,

from which we conclude that ABCD is concyclic.

Solution 3. (part) [T. Tang] As before, let the diagonals intersect at E, the right bisectors of AB and
CD intersect at P and M and N be the respective midpoints of AB and CD. Suppose that ABCD is
concyclic. Then P is the circumcentre,

∠NCP = 90◦ − ∠NPC = 90◦ − 1
2
∠DPC

= 90◦ − ∠DBC = 90◦ − ∠EBC

= ∠BCE = ∠BCA =
1
2
∠APB = ∠MPB ,

and
∠PCD = 90◦ − ∠NCP = 90◦ − ∠MPB = ∠MBP .

As PB = PC, triangle PMB and CNP are congruent, so that [APB] = 2[PMB] = 2[CNP ] = [CPD].

539. Determine the maximum value of the expression

xy + 2yz + zw

x2 + y2 + z2 + w2

over all quartuple of real numbers not all zero.

Solution 1. Observe that

0 ≤ [x− (
√

2− 1)y]2 = x2 + (3− 2
√

2)y2 − 2(
√

2− 1)xy ,

0 ≤ [w − (
√

2− 1)z]2 = w2 + (3− 2
√

2)w2 − 2(
√

2− 1)zw ,

and
0 ≤ 2(

√
2− 1)(y − z)2 = 2(

√
2− 1)y2 + 2(

√
2− 1)z2 − 4(

√
2− 1)yz ,

with equality if and only if x = (
√

2− 1)y = (
√

2− 1)z = w. Adding the inequalities yields

2(
√

2− 1)(xy + 2yz + zw) ≤ x2 + y2 + z2 + w2 .

Therefore, the maximum value of the expression is [2(
√

2−1)]−1 = 1
2 (
√

2+1), and this maximum is assumed,
for example, when (x, y, z, w) = (

√
2− 1, 1, 1,

√
2− 1).

Solution 2. Since the expression is homogeneous of degree 0, we may wolog assume that x2+y2+w2+z2 =
1. Select θ so that 0 ≤ θ ≤ π/2 and y2 + z2 = sin2 θ and x2 + w2 = cos2 θ. Then 2yz ≤ sin2 θ and, by the
Cauchy-Schwarz Inequality, xy + zw ≤ sin θ cos θ. Therefore

xy + 2yz + zw ≤ sin2 θ + sin θ cos θ

=
1
2
[1− cos 2θ + sin 2θ]

=
1
2

[
1 +

√
2 sin

(
2θ − π

4

)]
≤ 1

2
[1 +

√
2] ,
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with equality if and only if θ = 3π
8 .

Solution 3. [H. Spink] Let u and v be nonnegative real numbers for which 2u2 = x2+w2 and 2v2 = y2+z2.
Then 2yz ≤ 2v2, xy + zw ≤ 2uv (by the Cauchy-Schwarz Inequality) and x2 + y2 + z2 + w2 = 2(u2 + v2).
The given expression is not greater than (v2 + uv)/(u2 + v2). Equality occurs when x = w and y = z. This
vanishes when v = 0, When v 6= 0, we can write it as

f(w) ≡ 1 + w

1 + w2

where w = u/v. Thus, it suffices to determine the maximum of this last expression over positive values of w.

f(w) assumes the positive real value λ if and only if the equation f(w) = λ is solvable. This equation
can be rewritten as

0 = λw2 − w + (λ− 1)

=
1
4λ

[4λ2w2 − 4λw + 4λ(λ− 1)]

=
1
4λ

[(2λw − 1)2 + (2λ− 1)2 − 2] .

The equation is solvable if and only if

(2λ− 1)2 ≤ 2 ⇐⇒ λ ≤
√

2+)
2

.

The value of w that yields this value of λ is

1
2λ

=
1√

2 + 1
=
√

2− 1 .

The expression takes its maximum value of 1
2 (
√

2 + 1) when (x, y, z, w) = (
√

2− 1, 1, 1,
√

2− 1).

Solution 4. [J. Zung] Let the expression to be maximized by u and set x = a + b, y = a− b, z = c + d,
w = c− d. Then

u =
ac + c2 + bd− d2

a2 + b2 + c2 + d2
.

When q and s are positive, then (p+r)/(q+s) lies between p/q and r/s, with equality if and only if p/q = r/s.
Applying this to u, we see that it lies between

bd− d2

b2 + d2
and

ac + c2

a2 + c2
.

The term on the left, being no greater than, (bd + d2)/(b2 + d2) is less than the maximum value over all
(a, c) of the term on the right. So we maximize the function of a and c. Since it vanishes when c = 0 and
clearly takes positive values, we may assume c 6= 0 and that w = a/c. Thus, we maximize (1 + w)/(1 + w2).
This can be done as in Solution 3 to obtain the maximum value 1

2 (
√

2 + 1).

However, we are not quite done. To ensure that u can assume this value, it seems that we need to find
(b, d) so that (bd− d2)/(b2 + d2) equals this maximum value of (ac + c2)/(a2 + c2). But there is a way out:
u is equal to the maximum when b = d = 0, and this occurs when x = w and y = z, leading to the solution
given previously.

Solution 5. [P. Wen] We are looking for the smallest value of u for which

xy + 2yz + zw

x2 + y2 + z2 + w2
≤ u
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for all reals x, y, z, w, not all vanishing. Since |xy + 2yz + zw| ≤ |x||y| + 2|y||z| + |z||w|, it is enough to
consider only nonnegative values of the variables. Since the left side takes the value 1 when x = y = z = w,
and eligible u satisfies u ≥ 1.

The inequality can be rewritten

0 ≤ u(x2 + y2 + z2 + w2)− (xy + 2yz + zw)

= (y − z)2 + (u− 1)(y2 + z2) + u(x2 + w2)− xy − zw

= (y − z)2 + [
√

u− 1y −
√

ux]2 + [
√

u− 1z −
√

ww]2 + (
√

(u− 1)u− 1)(xy + zw) .

This is to hold for all x, y, z, w ≥ 0. When y = z and
√

ux =
√

u− 1y, the first three terms on the right
vanish; for the fourth to be nonnegative, we require that

2
√

(u− 1)u− 1 ≥ 0 ⇐⇒ 1 ≤ 4(u− 1)u ⇐⇒ 2 ≤ (2u− 1)2 2u− 1 ≥
√

2 .

Thus u ≥ 1
2 (
√

2 + 1).

When u = 1
2 (
√

2 + 1),
√

(u− 1)/u =
√

2 − 1, and we find that the expression in the problem assumes
the value 1

2 (
√

2 + 1) when (x, y, z, w) = (
√

2− 1, 1, 1,
√

2− 1). Thus, the maximum value is 1
2 (
√

2 + 1).

540. Suppose that, if all planar cross-sections of a bounded solid figure are circles, then the solid figure must
be a sphere.

Solution. Since the solid figure is bounded, there exists two point A and B whose distance, r, apart is
maximum. Let σ be any plane that passes through the segment AB. It intersects the solid figure in a circle,
and no two points on this circle can be further than r apart. Therefore, AB is a diameter of this circle, and
the solid figure is the solid of revolution of this circle about the segment AB.

541. Prove that the equation
xx1

1 + xx2
2 + · · ·+ xxk

k = x
xk+1
k+1

has no solution for which x1, x2, · · ·, xk, xk+1 are all distinct nonzero integers.

Solution. Consider a sum of the following type:

∞∑
r=2

εrr
−r = ε2

1
22

+ ε3
1
33

+ ε4
1
44

+ ε5
1
55

+ · · · ,

where each εr is one of the numbers −1, 0, 1 and at most finitely many εr are nonzero. Since

1
22

+
1
33

+
1
44

+ · · · < 1
22

+
1
23

+
1
24

+ · · · ≤ 1
2

,

it follows that each sum must exceed −1/2 and be less than 1/2. Furthermore, since, for each index s ≥ 2,

1
(s + 1)(s+1)

+
1

(s + 2)(s+2)
+

1
(s + 3)(s+3)

+
1

(s + 4)(s+4)
+ · · ·

<
1

(s + 1)(s+1)
+

1
(s + 1)(s+2)

+
1

(s + 1)(s+3)
+

1
(s + 1)(s+4)

+ · · · ≤ 1
s(s + 1)s

<
1
ss

,

it follows that for each sum, the absolute value of the first nonzero term exceeds the absolute value of the
sum of the remaining terms, so that no sum can vanish. Therefore, all sums of the prescribed type are
nonintegral rationals between −1/2 and 1/2.

Suppose that there is a solution in integers to the equation of the problem; wolog, we may take x1 <
x2 < x3 < · · · < xk. If x1 ≤ −2, then by the result of the previous paragraph, the sum of the terms of the
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left side is not an integer. Therefore xk+1
k+1 is not an integer, so that xk+1 ≤ −2. Shifting this term to the left

side, we get a sum equal to zero consisting of two parts, a sum of the type
∑∞

r=2 εrr
−r which is a noninteger

and a sum of integer terms xxi
i corresponding to any terms xi ≥ −1. This is impossible. Therefore, for all

i, xi ≥ −1.

There is no solution in the case that k = 1. When k ≥ 2, we must have that x1 ≥ −1, xk ≥ 2 and
xk ≥ k − 1. Therefore xk+1

k+1 ≥ xxk

k − 1, whence xk+1 > xk. Also

xx1
1 + xx2

2 + · · ·+ xxk

k < kxxk

k ≤ (xk + 1)xxk

k < (xk + 1)(xk+1) ≤ x
xk+1
k+1 .

It follows that the equation is not solvable for distinct integers values of the xi.
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