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535. Let the triangle ABC be isosceles with AB = AC. Suppose that its circumcentre is O, the D is the
midpoint of side AB and that E is the centroid of triangle ACD. Prove that OE is perpendicular to
CD.

536. There are 21 cities, and several airlines are responsible for connections between them. Each airline
serves five cities with flights both ways between all pairs of them. Two or more airlines may serve a
given pair of cities. Every pair of cities is serviced by at least one direct return flight. What is the
minimum number of airlines that would meet these conditions?

537. Consider all 2 × 2 square arrays each of whose entries is either 0 or 1. A pair (A,B) of such arrays is
compatible if there exists a 3× 3 square array in which both A and B appear as 2× 2 subarrays.

For example, the two matrices (
1 0
1 1

)
and

(
1 0
0 0

)
are compatible, as both can be found in the array 1 0 0

1 1 0
1 0 0

 .

Determine all pairs of 2× 2 arrays that are not compatible.

538. In the convex quadrilateral ABCD, the diagonals AC and BD are perpendicular and the opposite sides
AB and DC are not parallel. Suppose that the point P , where the right bisectors of AB and DC meet,
is inside ABCD. Prove that ABCD is a cyclic quadrilateral if and only if the triangles ABP and CDP
have the same area.

539. Determine the maximum value of the expression

xy + 2yz + zw

x2 + y2 + z2 + w2

over all quartuple of real numbers not all zero.
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540. Suppose that, if all planar cross-sections of a bounded solid figure are circles, then the solid figure must
be a sphere.

541. Prove that the equation
xx1

1 + xx2
2 + · · ·+ xxk

k = x
xk+1
k+1

has no solution for which x1, x2, · · ·, xk, xk+1 are all distinct nonzero integers.

Solutions

528. Let the sequence {xn : n = 0, 1, 2, · · ·} be defined by x0 = a and x1 = b, where a and b are real numbers,
and by

7xn = 5xn−1 + 2xn−2

for n ≥ 2. Derive a formula for xn as a function of a, b and n.

Solution. This can be done by the standard theory of solving linear recursions. The auxiliary equation
is 7t2 − 5t − 2 = 0, with roots 1 and −2/7. Trying a solution of the form xn = A · 1n + B(−2/7)n and
plugging in the initial conditions leads to A + B = a and A− (2/7)B = b and the solution

xn =
2a + 7b

9
+

7(a− b)
9

·
(
− 2

7

)n

.

529. Let k, n be positive integers. Define pn,1 = 1 for all n and pn,k = 0 for k ≥ n + 1. For 2 ≤ k ≤ n, we
define inductively

pn,k = k(pn−1,k−1 + pn−1,k) .

Prove, by mathematical induction, that

pn,k =
k−1∑
r=0

(
k

r

)
(−1)r(k − r)n .

Solution. Let

qn,k =
k−1∑
r=0

(
k

r

)
(−1)r(k − r)n .

When n = 1, we have that q1,1 =
(
1
0

)
1 = 1 and, for k ≥ 2,

q1,k =
k−1∑
r=0

(
k

r

)
(−1)rk −

k−1∑
r=0

(
k

r

)
(−1)rr = k[(1− 1)k − (−1)k] + k[(1− 1)k−1 − (−1)k−1] = 0 .

Also qn,1 =
(
1
0

)
1n = 1 for n ≥ 1. When (n, k) = (2, 2), we have that q2,2 =

(
2
0

)
22 −

(
2
1

)
1 = 2 and

p2,2 = 2(1 + 0) = 2. When n = 2 and k ≥ 3, then

q2,k =
k−1∑
r=0

(
k

r

)
(−1)r(k − r)2

=
k−1∑
r=0

(
k

r

)
(−1)r[k2 − (2k − 1)r + r(r − 1)]

= k2
k−1∑
r=0

(
k

r

)
(−1)r + (2k − 1)k

k−1∑
r=0

(
k − 1
r − 1

)
(−1)r−1 + k(k − 1)

k−1∑
r=0

(
k − 2
r − 2

)
(−1)r−2

= (−1)k−1k2 + (2k − 1)k(−1)k−2 + k(k − 1)(−1)k−3

= (−1)k−3[k2 − 2k2 + k + k2 − k] = 0 .
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Thus, we have that pn,k = qn,k for all n and k = 1 as well as for n = 1, 2 and all k.

The remainder of the argument can be done by induction. Suppose that n ≥ 2 and that k ≥ 2 and that
it has been shown that pn,k = qn,k and pn,k−1 = qn,k−1. Then

pn+1,k = k(pn,k + pn,k−1)

= k

[ k−1∑
r=0

(
k

r

)
(−1)r(k − r)n +

k−2∑
r=0

(
k − 1

r

)
(−1)r(k − 1− r)n

]

= k

[
kn +

k−1∑
r=1

(
k

r

)
(−1)r(k − r)n +

k−1∑
r=1

(
k − 1
r − 1

)
(−1)r−1(k − r)n

]

= k

[
kn +

k−1∑
r=1

[(
k

r

)
−

(
k − 1
r − 1

)]
(−1)r(k − r)n

]

= kn+1 + k

k−1∑
r=1

(
k − 1

r

)
(−1)r(k − r)n

= kn+1 +
k−1∑
r=1

(
k

r

)
(−1)r(k − r)n+1

=
k−1∑
r=0

(
k

r

)
(−1)r(k − r)n+1 = qn+1,k ,

as desired.

530. Let {x1, x2, x3, · · · , xn, · · ·} be a sequence is distinct positive real numbers. Prove that this sequence is
a geometric progression if and only if

x1

x2

n−1∑
k=1

x2
n

xkxk+1
=

x2
n − x2

1

x2
2 − x2

1

for all n ≥ 2.

Solution. Necessity. Suppose that xk = ark−1 for some numbers a and r. Then

x1

x2

n−1∑
k=1

x2
n

xkxk+1
=

r2(n−1)

r

n−1∑
k=1

1
r2k−1

= (r2n−3)
(

1
r

+
1
r3

+ · · ·+ 1
r2n−3

)
= 1 + r2 + · · ·+ r2(n−2) =

r2(n−1) − 1
r2 − 1

=
x2

n − x2
1

x2
2 − x2

1

.

Sufficiency. Suppose that the equations of the problem holds. When n = 2, both sides of the equation
are equal to 1 regardless of the sequence. When n = 3, the equation is equivalent to

x1x
2
3

x1x2
2x3

(x3 + x1) =
(x3 − x1)(x3 + x1)

x2
3 − x2

1

.

Since x3+x1 6= 0 [why?], we can divide out this factor and multiply up the denominators to get the equivalent

x3(x2
2 − x2

1) = x2
2(x3 − x1) ⇐⇒ x3x

2
1 = x2

2x1 ⇐⇒ x1x3 = x2
2 ,
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whence x1, x2, x3 are in geometric progression.

Suppose, as an induction hypothesis, for n ≥ 4 we know that xk = ark−1 for suitable a and r and
k = 1, 2, · · · , n− 1. Let xn = aun for some number un.

Then
u2

n

r

(
1
r

+
1
r3

+ · · ·+ 1
r2n−5

+
1

rn−2un

)
=

u2
n − 1

r2 − 1

⇐⇒ [u2
n(1 + r2 + r4 + · · ·+ r2n−6) + rn−3un](r2 − 1) = (u2

n − 1)(r2n−4)

⇐⇒ (r2n−4 − 1)u2
n + (rn−3r2 − rn−3)un = (r2n−4)u2

n − r2n−4

⇐⇒ 0 = u2
n − (rn−1 − rn−3)un − r2n−4 = (un − rn−1)(un + rn−3) .

The case un = −rn−3 is rejected because of the condition that the sequence consists of positive terms. Hence
un = rn−1, as desired. The result follows.

Comment. In the absence of the positivity contiion, the second root of the quadratic can be used. For
example, the finite sequences {1, r, r2,−r, 1} and {1, r, r2,−r,−r2} both satisfies the equations for 2 ≤ n ≤ 5.
It would be interesting to investigate the situation further.

531. Show that the remainder of the polynomial

p(x) = x2007 + 2x2006 + 3x2005 + 4x2004 + · · ·+ 2005x3 + 2006x2 + 2007x + 2008

is the same upon division by x(x + 1) as upon division by x(x + 1)2.

Solution 1. We have that

p(x) = (x2007 + 2x2006 + x2005) + 2(x2005 + 2x2004 + x2003) + 3(x2003+

2x2002 + x2001) + · · ·+ 1003(x3 + 2x2 + x) + 1004x + 2008

= x(x + 1)2(x2004 + 2x2002 + 3x2000 + · · ·+ 1003) + (1004x + 2008) ,

from which the result follows with remainder 1004x + 2008.

532. The angle bisectors BD and CE of triangle ABC meet AC and AB at D and E respectively and meet
at I. If [ABD] = [ACE], prove that AI ⊥ ED. Is the converse true?

Solution. Observe that
[ADB] : [CBD] = AD : DC = AB : BC

and that
[ACE] : [BCE] = AE : EB = AC : BC .

Now
[ABD] = [ACE] ⇐⇒ [DBC] = [ABC]− [ABD] = [ABC]− [ACE] = [EBC]

⇐⇒ ED‖BC ⇐⇒ AE : EB = AD : DC

⇐⇒ AB : BC = AC : BC ⇐⇒ AB = BC

⇐⇒ AI ⊥ BC .

Both the result and the converse is true. If [ABD] = [ACE], the foregoing chain of implications can
be read in the forward direction to deduce that AI ⊥ ED. Note that AI bisects angle A in triangle AED.
Thus, if AI ⊥ ED, then it follows that triangle AED is isosceles with AE = AD. Then AE : DC =
AD : DC = AB : BC and AE : EB = AC : BC, whence DC · AB = AE · BC = EB · AC. Therefore
DC · (AE + EB) = EB · (AD + CD), so that DC · AE = EB · AD and DC = EB. Therefore AB = AC
and, following the foregoing implication in the backwards direction, we find that [ABD] = [ACE].

4



533. Prove that the number
1 + b(5 +

√
17))2008c

is divisible by 22008.

Solution. Let a = 5 +
√

17 and b = 5−
√

17, so that a + b = 10 and ab = 8. Define xn = an + bn. Then
x1 = 10, x2 = (a + b)2 − 2ab = 96 and

xn+2 = an+2 + bn+2 = (a + b)(an+1 + bn+1)− ab(an + bn)
= 10xn+1 − 8xn ,

for n ≥ 0. Note that x1 is divisible by 2 and x2 by 4. Suppose, as an induction hypothesis, that xn = 2nu
and xn+1 = 2n+1v, for some k ≥ 0 and integers u and v. Then

xn+2 = 5 · 2n+2 − 2n+3 = 3 · 2n+2 .

Hence, for all positive integers n, 2n divides xn.

Observe that (5 −
√

17)n = bn < 1 for each positive integer n and that an + bn is a positive integer.
Therefore xn = an + bn > an > an + bn − 1 = xn − 1, whence xn = 1 + banc and the result follows.

534. Let {xn : n = 1, 2, · · ·} be a sequence of distinct positive integers, with x1 = a. Suppose that

2
n∑

k=1

√
xi = (n + 1)

√
xn

for n ≥ 2. Determine
∑n

k=1 xk.

Solution. When n = 2, 2(
√

x1 +
√

x2) = 3
√

x2, whence
√

x2 = 2
√

x1 and x2 = 4x1 = 4a. When n = 3,

2(
√

x1 +
√

x2 +
√

x3) = 4
√

x3 =⇒ 2
√

x3 = 2(
√

x1 +
√

x2) = 6
√

x1 =⇒ x3 = 9x1 = 9a .

We conjecture that xk = k2a for each positive integer k.

Let m ≥ 2 and suppose that xk = k2a for 1 ≤ k ≤ m− 1.

(m− 1)
√

xm = (m + 1)
√

xm − 2
√

xm = 2(
√

x1 + · · ·+√
xm−1)

= 2
√

x1(1 + 2 + · · ·+ (m− 1)) = m(m− 1)
√

a ,

whence
√

xm = m
√

a and xm = m2a.

Thus, xk = k2a for all k ≥ 1. Therefore

n∑
k=1

xk = (1 + 4 + · · ·+ n2)a =
n(n + 1)(2n + 1)a

6
.
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