
OLYMON

COMPLETE PROBLEM SET

No solutions. See yearly files.

February, 2009-xxx

PART 3

Problems 601-900

601. A convex figure lies inside a given circle. The figure is seen from every point of the circumference of the
circle at right angles (that is, the two rays drawn from the point and supporting the convex figure are
perpendicular). Prove that the centre of the circle is a centre of symmetry of the figure.

602. Prove that, for each pair (m,n) of integers with 1 ≤ m ≤ n,

n∑
i=1

i(i− 1)(i− 2) · · · (i−m + 1) =
(n + 1)n(n− 1) · · · (n−m + 1)

m + 1
.

(b) Suppose that 1 ≤ r ≤ n; consider all subsets with r elements of the set {1, 2, 3, · · · , n}. The elements
of this subset are arranged in ascending order of magnitude. For 1 ≤ i ≤ r, let ti denote the ith smallest
element in the subset, and let T (n, r, i) denote the arithmetic mean of the elements ti. Prove that

T (n, r, i) = i

(
n + 1
r + 1

)
.

603. For each of the following expressions severally, determine as many integer values of x as you can so that
it is a perfect square. Indicate whether your list is complete or not.

(a) 1 + x;
(b) 1 + x + x2;
(c) 1 + x + x2 + x3;
(d) 1 + x + x2 + x3 + x4;
(e) 1 + x + x2 + x3 + x4 + x5.

604. ABCD is a square with incircle Γ. Let l be a tangent to Γ, and let A′, B′, C ′, D′ be points on l such
that AA′, BB′, CC ′, DD′ are all prependicular to l. Prove that AA′ · CC ′ = BB′ ·DD′.

605. Prove that the number 299 · · · 998200 · · · 029 can be written as the sum of three perfect squares of three
consecutive numbers, where there are n− 1 nines between the first 2 and the 8, and n− 1 zeros between
the last pair of twos.

606. Let x1 = 1 and let xn+1 =
√

xn + n2 for each positive integer n. Prove that the sequence {xn : n > 1}
consists solely of irrational numbers and calculate

∑n
k=1bx2

kc, where bxc is the largest integer that does
not exceed x.

607. Solve the equation

sinx

(
1 + tanx tan

x

2

)
= 4− cot x .

608. Find all positive integers n for which n, n2 + 1 and n3 + 3 are simultaneously prime.
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609. The first term of an arithmetic progression is 1 and the sum of the first nine terms is equal to 369. The
first and ninth terms of the arithmetic progression coincide respectively with the first and ninth terms
of a geometric progression. Find the sum of the first twenty terms of the geometric progression.

610. Solve the system of equations
log10(x

3 − x2) = log5 y2

log10(y
3 − y2) = log5 z2

log10(z
3 − z2) = log5 x2

where x, y, z > 1.

611. The triangle ABC is isosceles with AB = AC and I and O are the respective centres of its inscribed
and circumscribed circles. If D is a point on AC for which ID‖AB, prove that CI ⊥ OD.

612. ABCD is a rectangle for which AB > AD. A rotation with centre A takes B to a point B′ on CD; it
takes C to C ′ and D to D′. Let P be the point of intersection of the lines CD and C ′D′. Prove that
CB′ = DP .

613. Let ABC be a triangle and suppose that

tan
A

2
=

p

u
tan

B

2
=

q

v
tan

C

2
=

r

w
,

where p, q, r, u, v, w are positive integers and each fraction is written in lowest terms.

(a) Verify that pqw + pvr + uqr = uvw.

(b) Let f be the greatest common divisor of the pair (vw − qr, qw + vr), g be the greatest common
divisor of the pair (uw−pr, pw+ur), and h be the greatest common divisor of the pair (uv−pq, pv+qu).
Prove that

fp = vw − qr fu = qw + vr

gq = uw − pr gv = pw + ur

hr = uv − pq hw = pv + qu .

(c) Prove that the sides of the triangle ABC are proportional to fpu : gqv : hrw.

614. Determine those values of the parameter a for which there exist at least one line that is tangent to the
graph of the curve y = x3 − ax at one point and normal to the graph at another.

615. The function f(x) is defined for real nonzero x, takes nonzero real values and satisfies the functional
equation

f(x) + f(y) = f(xyf(x + y)) ,

whenever xy(x + y) 6= 0. Determine all possibilities for f .

616. Let T be a triangle in the plane whose vertices are lattice points (i.e., both coordinates are integers),
whose edges contain no lattice points in their interiors and whose interior contains exactly one lattice
point. Must this lattice point in the interior be the centroid of the T?

617. Two circles are externally tangent at A and are internally tangent to a third circle Γ at points B and
C. Suppose that D is the midpoint of the chord of Γ that passses through A and is tangent there to the
two smaller given circles. Suppose, further, that the centres of the three circles are not collinear. Prove
that A is the incentre of triangle BCD.

618. Let a, b, c, m be positive integers for which abcm = 1 + a2 + b2 + c2. Show that m = 4, and that there
are actually possibilities with this value of m.
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619. Suppose that n > 1 and that S is the set of all polynomials of the form

zn + an−1z
n−1 + an−2z

n−2 + · · ·+ a1z + a0 ,

whose coefficients are complex numbers. Determine the minimum value over all such polynomials of the
maximum value of |p(z)| when |z| = 1.

620. Let a1, a2, · · · , an be distinct integers. Prove that the polynomial

p(z) = (z − a1)2(z − a2)2 · · · (z − an)2 + 1

cannot be written as the product of two nonconstant polynomials with integer coefficients.

621. Determine the locus of one focus of an ellipse reflected in a variable tangent to the ellipse.

622. Let I be the centre of the inscribed circle of a triangle ABC and let u, v, w be the respective lengths of
IA, IB, IC. Let P be any point in the plane and p, q, r the respective lengths of PA, PB, PC. Prove
that, with the sidelengths of the triangle given conventionally as a, b, c,

ap2 + bq2 + cr2 = au2 + bv2 + cw2 + (a + b + c)z2 ,

where z is the length of IP .

623. Given the parameters a, b, c, solve the system

x + y + z = a + b + c;

x2 + y2 + x2 = a2 + b2 + c2;
x

a
+

y

b
+

z

c
= 3 .

624. Suppose that xi ≥ 0 and
n∑

i=1

1
1 + xi

≤ 1 .

Prove that
n∑

i=1

2−xi ≤ 1 .

625. Given an odd number of intervals, each of unit length, on the real line, let S be the set of numbers that
are in an odd number of these intervals. Show that S is a finite union of disjoint intervals of total length
not less than 1.

626. Let ABC be an isosceles triangle with AB = AC, and suppose that D is a point on the side BC with
BC > BD > DC. Let BE and CF be diameters of the respective circumcircles of triangles ABD and
ADC, and let P be the foot of the altitude from A to BC. Prove that PD : AP = EF : BC.

627. Let
f(x, y, z) = 2x2 + 2y2 − 2z2 +

7
xy

+
1
z

.

There are three pairwise distinct numbers a, b, c for which

f(a, b, c) = f(b, c, a) = f(c, a, b) .
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Determine f(a, b, c). Determine three such numbers a, b, c.

628. Suppose that AP , BQ and CR are the altitudes of the acute triangle ABC, and that

9−→AP + 4−−→BQ + 7−→CR = −→
O .

Prove that one of the angles of triangle ABC is equal to 60◦.

629. Let a > b > c > d > 0 and a + d = b + c. Show that ad < bc.

(b) Let a, b, p, q, r, s be positive integers for which

p

q
<

a

b
<

r

s

and qr − ps = 1. Prove that b ≥ q + s.

630. (a) Show that, if
cos α

cos β
+

sinα

sinβ
= −1 ,

then
cos3 β

cos α
+

sin3 β

sinα
= 1 .

(b) Give an example of numbers α and β that satisfy the condition in (a) and check that both equations
hold.

631. The sequence of functions {Pn} satisfies the following relations:

P1(x) = x , P2(x) = x3 ,

Pn+1(x) =
P 3

n(x)− Pn−1(x)
1 + Pn(x)Pn−1(x)

, n = 1, 2, 3, · · · .

Prove that all functions Pn are polynomials.

632. Let a, b, c, x, y, z be positive real numbers for which a ≤ b ≤ c, x ≤ y ≤ z, a + b + c = x + y + z,
abc = xyz, and c ≤ z, Prove that a ≤ x.

633. Let ABC be a triangle with BC = 2 · AC − 2 · AB and D be a point on the side BC. Prove that
∠ABD = 2∠ADB if and only if BD = 3CD.

634. Solve the following system for real values of x and y:

2x2+y + 2x+y2
= 8

√
x +

√
y = 2 .

635. Two unequal spheres in contact have a common tangent cone. The three surfaces divide space into
various parts, only one of which is bounded by all three surfaces; it is “ring-shaped”. Being given the
radii r and R of the spheres with r < R, find the volume of the “ring-shaped” region in terms of r and
R.

636. Let ABC be a triangle. Select points D,E, F outside of ∆ABC such that ∆DBC, ∆EAC, ∆FAB are
all isosceles with the equal sides meeting at these outside points and with ∠D = ∠E = ∠F . Prove that
the lines AD, BE and CF all intersect in a common point.
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637. Let n be a positive integer. Determine how many real numbers x with 1 ≤ x < n satisfy

x3 − bx3c = (x− bxc)3 .

638. Let x and y be real numbers. Prove that

max(0,−x) + max(1, x, y) = max(0, x−max(1, y)) + max(1, y, 1− x, y − x)

where max(a, b) is the larger of the two numbers a and b.

639. (a) Let ABCDE be a convex pentagon such that AB = BC and ∠BCD = ∠EAB = 90◦. Let X be a
point inside the pentagon such that AX is perpendicular to BE and CX is perpendicular to BD. Show
that BX is perpendicular to DE.

(b) Let N be a regular nonagon, i.e., a regular polygon with nine edges, having O as the centre of its
circumcircle, and let PQ and QR be adjacent edges of N . The midpoint of PQ is A and the midpoint
of the radius perpendicular to QR is B. Determine the angle between AO and AB.

640. Suppose that n ≥ 2 and that, for 1 ≤ i ≤ n, we have that xi ≥ −2 and all the xi are nonzero with the
same sign. Prove that

(1 + x1)(1 + x2) · · · (1 + xn) > 1 + x1 + x2 + · · ·+ xn ,

641. Observe that x2 +5x+6 = (x+2)(x+3) while x2 +5x− 6 = (x+6)(x− 1). Determine infinitely many
coprime pairs (m,n) of positive integers for which both x2 + mx + n and x2 + mx− n can be factored
as a product of linear polynomials with integer coefficients.

642. In a convex polyhedron, each vertex is the endpoint of exactly three edges and each face is a concyclic
polygon. Prove that the polyhedron can be inscribed in a sphere.

643. Let n2 distinct integers be arranged in an n×n square array (n ≥ 2). Show that it is possible to select n
numbers, one from each row and column, such that if the number selected from any row is greater than
another number in this row, then this latter number is less than the number selected from its column.

644. Given a point P , a line L and a circle C, construct with straightedge and compasses an equilateral
triangle PQR with one vertex at P , another vertex Q on L and the third vertex R on C.

645. Let n ≥ 3 be a positive integer. Are there n positive integers a1, a2, · · · , an not all the same such that
for each i with 3 ≤ i ≤ n we have

ai + Si = (ai, Si) + [ai, Si] .

where Si = a1 + a2 + · · ·+ ai, and where (·, ·) and [·, ·] represent the greatest common divisor and least
common multiple respectively?

646. Let ABC be a triangle with incentre I. Let AI meet BC at L, and let X be the contact point of the
incircle with the line BC. If D is the reflection of L in X on line BC , we construct B′ and C ′ as
the reflections of D with respect to the lines BI and CI, respectively. Show that the quadrailateral
BCC ′B′ is cyclic.

647. Find all continuous functions f : R → R such that

f(x + f(y)) = f(x) + y

for every x, y ∈ R.
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648. Prove that for every positive integer n, the integer 1 + 5n + 52n + 53n + 54n is composite.

649. In the triangle ABC, ∠BAC = 20◦ and ∠ACB = 30◦. The point M is located in the interior of triangle
ABC so that ∠MAC = ∠MCA = 10◦. Determine ∠BMC.

650. Suppose that the nonzero real numbers satisfy

1
x

+
1
y

+
1
z

=
1

xyz
.

Determine the minimum value of

x4

x2 + y2
+

y4

y2 + z2
+

z4

z2 + x2
.

651. Determine polynomials a(t), b(t), c(t) with integer coefficients such that the equation y2+2y = x3−x2−x
is satisfied by (x, y) = (a(t)/c(t), b(t)/c(t)).

652. (a) Let m be any positive integer greater than 2, such that x2 ≡ 1 (mod m) whenever the greatest
common divisor of x and m is equal to 1. An example is m = 12. Suppose that n is a positive integer
for which n + 1 is a multiple of m. Prove that the sum of all of the divisors of n is divisible by m.

(b) Does the result in (a) hold when m = 2?

(c) Find all possible values of m that satisfy the condition in (a).

653. Let f(1) = 1 and f(2) = 3. Suppose that, for n ≥ 3, f(n) = max{f(r) + f(n − r) : 1 ≤ r ≤ n − 1}.
Determine necessary and sufficient conditions on the pair (a, b) that f(a + b) = f(a) + f(b).

654. Let ABC be an arbitrary triangle with the points D,E, F on the sides BC, CA, AB respectively, so
that

BD

DC
≤ BF

FA
≤ 1

and
AE

EC
≤ AF

FB
.

Prove that [DEF ] ≤ 1
4 [ABC], with equality if and only if two at least of the three points D,E, F are

midpoints of the corresponding sides.
(Note: [XY Z] denotes the area of triangle XY Z.)

655. (a) Three ants crawl along the sides of a fixed triangle in such a way that the centroid (intersection
of the medians) of the triangle they form at any moment remains constant. Show that this centroid
coincides with the centroid of the fixed triangle if one of the ants travels along the entire perimeter of
the triangle.

(b) Is it indeed always possible for a given fixed triangle with one ant at any point on the perimeter of
the triangle to place the remaining two ants somewhere on the perimeter so that the centroid of their
triangle coincides with the centroid of the fixed triangle?

656. Let ABC be a triangle and k be a real constant. Determine the locus of a point M in the plane of the
triangle for which

|MA|2 sin 2A + |MB|2 sin 2B + |MC|2 sin 2C = k .

657. Let a, b, c be positive real numbers for which a + b + c = abc. Find the minimum value of√
1 +

1
a2

+

√
1 +

1
b2

+

√
1 +

1
c2

.
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658. Prove that tan 20◦ + 4 sin 20◦ =
√

3.

659. (a) Give an example of a pair a, b of positive integers, not both prime, for which 2a− 1, 2b− 1 and a+ b
are all primes. Determine all possibilities for which a and b are themselves prime.

(b) Suppose a and b are positive integers such that 2a− 1, 2b− 1 and a + b are all primes. Prove that
neither ab + ba nor aa + bb are multiples of a + b.

660. ABC is a triangle and D is a point on AB produced beyond B such that BD = AC, and E is a point
on AC produced beyond C such that CE = AB. The right bisector of BC meets DE at P . Prove that
∠BPC = ∠BAC.

661. Let P be an arbitrary interior point of an equilateral triangle ABC. Prove that

|∠PAB − ∠PAC| ≥ |∠PBC − ∠PCB| .

662. Let n be a positive integer and x > 0. Prove that

(1 + x)n+1 ≥ (n + 1)n+1

nn
x .

663. Find all functions f : R −→ R such that

x2y2(f(x + y)− f(x)− f(y)) = 3(x + y)f(x)f(y)

for all real numbers x and y.

664. The real numbers x, y, and z satisfy the system of equations

x2 − x = yz + 1;

y2 − y = xz + 1;

z2 − z = xy + 1.

Find all solutions (x, y, z) of the system and determine all possible values of xy + yz + zx + x + y + z
where (x, y, z) is a solution of the system.

665. Let f(x) = x3 + ax2 + bx + b. Determine all integer pairs (a, b) for which f(x) is the product of three
linear factors with integer coefficients.

666. Assume that a face S of a convex polyhedron P has a common edge with every other face of P. Show
that there exists a simple (nonintersecting) closed (not necessarily planar) polygon that consists of edges
of P and passes through all the vertices.

667. Let An be the set of mappings f : {1, 2, 3, · · · , n} −→ {1, 2, 3, · · · , n} such that, if f(k) = i for some i, then
f also assumes all the values 1, 2, · · · , i−1. Prove that the number of elements of An is

∑∞
k=0 kn2−(k+1).

668. The nonisosceles right triangle ABC has ∠CAB = 90◦. The inscribed circle with centre T touches the
sides AB and AC at U and V respectively. The tangent through A of the circumscribed circle meets
UV produced in S. Prove that

(a) ST ‖ BC;

(b) |d1 − d2| = r, where r is the radius of the inscribed circle and d1 and d2 are the respective distances
from S to AC and AB.
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669. Let n ≥ 3 be a natural number. Prove that

1989|nnnn

− nnn

,

i.e., the number on the right is a multiple of 1989.

670. Consider the sequence of positive integers {1, 12, 123, 1234, 12345, · · ·} where the next term is constructed
by lengthening the previous term at the right-hand end by appending the next positive integer. Note
that this next integer occupies only one place, with “carrying”occurring as in addition. Thus, the ninth
and tenth terms of the sequence are 123456789 and 1234567900 respectively. Determine which terms of
the sequence are divisible by 7.

671. Each point in the plane is coloured with one of three distinct colours. Prove that there are two points
that are unit distant apart with the same colour.

672. The Fibonacci sequence {Fn} is defined by F1 = F2 = 1 and Fn+2 = Fn+1+Fn for n = 0,±1,±2,±3, · · ·.
The real number τ is the positive solution of the quadratic equation x2 = x + 1.

(a) Prove that, for each positive integer n, F−n = (−1)n+1Fn.

(b) Prove that, for each integer n, τn = Fnτ + Fn−1.

(c) Let Gn be any one of the functions Fn+1Fn, Fn+1Fn−1 and F 2
n . In each case, prove that Gn+3+Gn =

2(Gn+2 + Gn+1).

673. ABC is an isosceles triangle with AB = AC. Let D be the point on the side AC for which CD = 2AD.
Let P be the point on the segment BD such that ∠APC = 90◦. Prove that ∠ABP = ∠PCB.

674. The sides BC, CA, AB of triangle ABC are produced to the poins R, P , Q respectively, so that
CR = AP = BQ. Prove that triangle PQR is equilateral if and only if triangle ABC is equilateral.

675. ABC is a triangle with circumcentre O such that ∠A exceeds 90◦ and AB < AC. Let M and N be
the midpoints of BC and AO, and let D be the intersection of MN and AC. Suppose that AD =
1
2 (AB + AC). Determine ∠A.

676. Determine all functions f from the set of reals to the set of reals which satisfy the functional equation

(x− y)f(x + y)− (x + y)f(x− y) = 4xy(x2 − y2)

for all real x and y.

677. For vectors in three-dimensional real space, establish the identity

[a× (b−c)]2 +[b× (c−a)]2 +[c× (a−b)]2 = (b×c)2 +(c×a)2 +(a×b)2 +(b×c+c×a+a×b)2 .

678. For a, b, c > 0, prove that
1

a(b + 1)
+

1
b(c + 1)

+
1

c(a + 1)
≥ 3

1 + abc
.

679. Let F1 and F2 be the foci of an ellipse and P be a point in the plane of the ellipse. Suppose that
G1 and G2 are points on the ellipse for which PG1 and PG2 are tangents to the ellipse. Prove that
∠F1PG1 = ∠F2PG2.

680. Let u0 = 1, u1 = 2 and un+1 = 2un + un−1 for n ≥ 1. Prove that, for every nonnegative integer n,

un =
∑ {

(i + j + k)!
i!j!k!

: i, j, k ≥ 0, i + j + 2k = n

}
.
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681. Let a and b , the latter nonzero, be vectors in R3. Determine the value of λ for which the vector
equation

a− (x× b) = λb

is solvable, and then solve it.

682. The plane is partitioned into n regions by three families of parallel lines. What is the least number of
lines to ensure that n ≥ 2010?

683. Let f(x) be a quadratic polynomial. Prove that there exist quadratic polynomials g(x) and h(x) for
which

f(x)f(x + 1) = g(h(x)) ,

684. Let x, y, z be positive reals for which xyz = 1. Prove that

x + y

x2 + y2
+

y + z

y2 + z2
+

z + x

z2 + x2
≤
√

x +
√

y +
√

z .

685. Let f : R → R be defined by
f(x) = x− 4bxc+ b2xc ,

where b·c represents the greatest integer that does not exceed the argument. Determine f(f(x)) and
show that f is a surjective (onto) function.

686. Solve the equation √
6 + 3

√
2 +

√
2 + x +

√
2−

√
2 +

√
2 + x = 2x .

687. Prove that
(1 + 2 + 3 + · · ·+ n)!

1!2! . . . n!
is a natural number for any positive integer n.

688. Solve the equation
2010x + 2010−x = 1 + 2x− x2 .

689. Let BC e a diameter of the circle C and let A be an interior point. Suppose that BA and CA intersect
the circle C at D and E respectively. If the tangents to the circle C at E and D intersect at the point
M , prove that AM ⊥ BC.

690. Let ma, mb, mc; ha, hb, hc be the lengths of the medians and the heights of triangle ABC, where the
notation is used conventionally.

(a) If a ≤ b ≤ c, prove that ha ≥ hb ≥ hc and that ma ≥ mb ≥ mc.

(b) If (
h2

a

hb · hc

)ma

·
(

hb)2

hc · ha

)mb

·
(

hc)2

ha · hb

)mc

= 1 ,

prove that triangle ABC is equilateral.

691. Prove that √
3
√

x + 3
√

y + 3
√

z > 3

√√
x +

√
y +

√
z

for positive integers x, y, z.
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