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Problems 591-653

591. The point O is arbitrarily selected from the interior of the angle KAM . A line g is constructed through
the point O, intersecting the ray AK at the point B and the ray AM at the point C. Prove that the
value of the expression

1
[AOB]

+
1

[AOC]

does not depend on the choice of the line g. [Note: [MNP ] denotes the area of triangle MNP .]

592. The incircle of the triangle ABC is tangent to the sides BC, CA and AB at the respective points D, E
and F . Points K from the line DF and L from the line EF are such that AK‖BL‖DE. Prove that:

(a) the points A, E, F and K are concyclic, and the points B, D, F and L are concyclic;

(b) the points C, K and L are collinear.

593. Consider all natural numbers M with the following properties:

(i) the four rightmost digits of M are 2008;

(ii) for some natural numbers p > 1 and n > 1, M = pn.

Determine all numbers n for which such numbers M exist.

594. For each natural number N , denote by S(N) the sum of the digits of N . Are there natural numbers N
which satisfy the condition severally:

(a) S(N) + S(N2) = 2008;

(b) S(N) + S(N2) = 2009?

595. What are the dimensions of the greatest n×n square chessboard for which it is possible to arrange 111
coins on its cells so that the numbers of coins on any two adjacent cells (i.e. that share a side) differ by
1?

596. A 12 × 12 square array is composed of unit squares. Three squares are removed from one of its major
diagonals. Is it possible to cover completely the remaining part of the array by 47 rectangular tiles of
size 1× 3 without overlapping any of them?

597. Find all pairs of natural numbers (x, y) that satisfy the equation

2x(xy − 2y − 3) = (x + y)(3x + y) .

598. Let a1, a2, · · · , an be a finite sequence of positive integers. If possible, select two indices j, k with
1 ≤ j < k ≤ n for which aj does not divide ak; replace aj by the greatest common divisor of aj and
ak, and replace ak by the least common multiple of aj and ak. Prove that, if the process is repeated, it
must eventually stop, and the final sequence does not depend on the choices made.

599. Determine the number of distinct solutions x with 0 ≤ x ≤ π for each of the following equations. Where
feasible, give an explicit representation of the solution.
(a) 8 cos x cos 2x cos 4x = 1;
(b) 8 cos x cos 4x cos 5x = 1.
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600. Let 0 < a < b. Prove that, for any positive integer n,

b + a

2
≤ n

√
bn+1 − an+1

(b− a)(n + 1)
≤ n

√
an + bn

2
.

601. A convex figure lies inside a given circle. The figure is seen from every point of the circumference of the
circle at right angles (that is, the two rays drawn from the point and supporting the convex figure are
perpendicular). Prove that the centre of the circle is a centre of symmetry of the figure.

602. Prove that, for each pair (m,n) of integers with 1 ≤ m ≤ n,

n∑
i=1

i(i− 1)(i− 2) · · · (i−m + 1) =
(n + 1)n(n− 1) · · · (n−m + 1)

m + 1
.

(b) Suppose that 1 ≤ r ≤ n; consider all subsets with r elements of the set {1, 2, 3, · · · , n}. The elements
of this subset are arranged in ascending order of magnitude. For 1 ≤ i ≤ r, let ti denote the ith smallest
element in the subset, and let T (n, r, i) denote the arithmetic mean of the elements ti. Prove that

T (n, r, i) = i

(
n + 1
r + 1

)
.

603. For each of the following expressions severally, determine as many integer values of x as you can so that
it is a perfect square. Indicate whether your list is complete or not.

(a) 1 + x;
(b) 1 + x + x2;
(c) 1 + x + x2 + x3;
(d) 1 + x + x2 + x3 + x4;
(e) 1 + x + x2 + x3 + x4 + x5.

604. ABCD is a square with incircle Γ. Let l be a tangent to Γ, and let A′, B′, C ′, D′ be points on l such
that AA′, BB′, CC ′, DD′ are all prependicular to l. Prove that AA′ · CC ′ = BB′ ·DD′.

605. Prove that the number 299 · · · 998200 · · · 029 can be written as the sum of three perfect squares of three
consecutive numbers, where there are n− 1 nines between the first 2 and the 8, and n− 1 zeros between
the last pair of twos.

606. Let x1 = 1 and let xn+1 =
√

xn + n2 for each positive integer n. Prove that the sequence {xn : n > 1}
consists solely of irrational numbers and calculate

∑n
k=1bx2

kc, where bxc is the largest integer that does
not exceed x.

607. Solve the equation

sinx

(
1 + tanx tan

x

2

)
= 4− cot x .

608. Find all positive integers n for which n, n2 + 1 and n3 + 3 are simultaneously prime.

609. The first term of an arithmetic progression is 1 and the sum of the first nine terms is equal to 369. The
first and ninth terms of the arithmetic progression coincide respectively with the first and ninth terms
of a geometric progression. Find the sum of the first twenty terms of the geometric progression.

610. Solve the system of equations
log10(x

3 − x2) = log5 y2
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log10(y
3 − y2) = log5 z2

log10(z
3 − z2) = log5 x2

where x, y, z > 1.

611. The triangle ABC is isosceles with AB = AC and I and O are the respective centres of its inscribed
and circumscribed circles. If D is a point on AC for which ID‖AB, prove that CI ⊥ OD.

612. ABCD is a rectangle for which AB > AD. A rotation with centre A takes B to a point B′ on CD; it
takes C to C ′ and D to D′. Let P be the point of intersection of the lines CD and C ′D′. Prove that
CB′ = DP .

613. Let ABC be a triangle and suppose that

tan
A

2
=

p

u
tan

B

2
=

q

v
tan

C

2
=

r

w
,

where p, q, r, u, v, w are positive integers and each fraction is written in lowest terms.

(a) Verify that pqw + pvr + uqr = uvw.

(b) Let f be the greatest common divisor of the pair (vw − qr, qw + vr), g be the greatest common
divisor of the pair (uw−pr, pw+ur), and h be the greatest common divisor of the pair (uv−pq, pv+qu).
Prove that

fp = vw − qr fu = qw + vr

gq = uw − pr gv = pw + ur

hr = uv − pq hw = pv + qu .

(c) Prove that the sides of the triangle ABC are proportional to fpu : gqv : hrw.

614. Determine those values of the parameter a for which there exist at least one line that is tangent to the
graph of the curve y = x3 − ax at one point and normal to the graph at another.

615. The function f(x) is defined for real nonzero x, takes nonzero real values and satisfies the functional
equation

f(x) + f(y) = f(xyf(x + y)) ,

whenever xy(x + y) 6= 0. Determine all possibilities for f .

616. Let T be a triangle in the plane whose vertices are lattice points (i.e., both coordinates are integers),
whose edges contain no lattice points in their interiors and whose interior contains exactly one lattice
point. Must this lattice point in the interior be the centroid of the T?

617. Two circles are externally tangent at A and are internally tangent to a third circle Γ at points B and
C. Suppose that D is the midpoint of the chord of Γ that passses through A and is tangent there to the
two smaller given circles. Suppose, further, that the centres of the three circles are not collinear. Prove
that A is the incentre of triangle BCD.

618. Let a, b, c, m be positive integers for which abcm = 1 + a2 + b2 + c2. Show that m = 4, and that there
are actually possibilities with this value of m.

619. Suppose that n > 1 and that S is the set of all polynomials of the form

zn + an−1z
n−1 + an−2z

n−2 + · · ·+ a1z + a0 ,

whose coefficients are complex numbers. Determine the minimum value over all such polynomials of the
maximum value of |p(z)| when |z| = 1.
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620. Let a1, a2, · · · , an be distinct integers. Prove that the polynomial

p(z) = (z − a1)2(z − a2)2 · · · (z − an)2 + 1

cannot be written as the product of two nonconstant polynomials with integer coefficients.

621. Determine the locus of one focus of an ellipse reflected in a variable tangent to the ellipse.

622. Let I be the centre of the inscribed circle of a triangle ABC and let u, v, w be the respective lengths of
IA, IB, IC. Let P be any point in the plane and p, q, r the respective lengths of PA, PB, PC. Prove
that, with the sidelengths of the triangle given conventionally as a, b, c,

ap2 + bq2 + cr2 = au2 + bv2 + cw2 + (a + b + c)z2 ,

where z is the length of IP .

623. Given the parameters a, b, c, solve the system

x + y + z = a + b + c;

x2 + y2 + x2 = a2 + b2 + c2;
x

a
+

y

b
+

z

c
= 3 .

624. Suppose that xi ≥ 0 and
n∑

i=1

1
1 + xi

≤ 1 .

Prove that
n∑

i=1

2−xi ≤ 1 .

625. Given an odd number of intervals, each of unit length, on the real line, let S be the set of numbers that
are in an odd number of these intervals. Show that S is a finite union of disjoint intervals of total length
not less than 1.

626. Let ABC be an isosceles triangle with AB = AC, and suppose that D is a point on the side BC with
BC > BD > DC. Let BE and CF be diameters of the respective circumcircles of triangles ABD and
ADC, and let P be the foot of the altitude from A to BC. Prove that PD : AP = EF : BC.

627. Let
f(x, y, z) = 2x2 + 2y2 − 2z2 +

7
xy

+
1
z

.

There are three pairwise distinct numbers a, b, c for which

f(a, b, c) = f(b, c, a) = f(c, a, b) .

Determine f(a, b, c). Determine three such numbers a, b, c.

628. Suppose that AP , BQ and CR are the altitudes of the acute triangle ABC, and that

9−→AP + 4−−→BQ + 7−→CR = −→O .

Prove that one of the angles of triangle ABC is equal to 60◦.
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629. Let a > b > c > d > 0 and a + d = b + c. Show that ad < bc.

(b) Let a, b, p, q, r, s be positive integers for which

p

q
<

a

b
<

r

s

and qr − ps = 1. Prove that b ≥ q + s.

630. (a) Show that, if
cos α

cos β
+

sinα

sinβ
= −1 ,

then
cos3 β

cos α
+

sin3 β

sinα
= 1 .

(b) Give an example of numbers α and β that satisfy the condition in (a) and check that both equations
hold.

631. The sequence of functions {Pn} satisfies the following relations:

P1(x) = x , P2(x) = x3 ,

Pn+1(x) =
P 3

n(x)− Pn−1(x)
1 + Pn(x)Pn−1(x)

, n = 1, 2, 3, · · · .

Prove that all functions Pn are polynomials.

632. Let a, b, c, x, y, z be positive real numbers for which a ≤ b ≤ c, x ≤ y ≤ z, a + b + c = x + y + z,
abc = xyz, and c ≤ z, Prove that a ≤ x.

633. Let ABC be a triangle with BC = 2 · AC − 2 · AB and D be a point on the side BC. Prove that
∠ABD = 2∠ADB if and only if BD = 3CD.

634. Solve the following system for real values of x and y:

2x2+y + 2x+y2
= 8

√
x +
√

y = 2 .

635. Two unequal spheres in contact have a common tangent cone. The three surfaces divide space into
various parts, only one of which is bounded by all three surfaces; it is “ring-shaped”. Being given the
radii r and R of the spheres with r < R, find the volume of the “ring-shaped” region in terms of r and
R.

636. Let ABC be a triangle. Select points D,E, F outside of ∆ABC such that ∆DBC, ∆EAC, ∆FAB are
all isosceles with the equal sides meeting at these outside points and with ∠D = ∠E = ∠F . Prove that
the lines AD, BE and CF all intersect in a common point.

637. Let n be a positive integer. Determine how many real numbers x with 1 ≤ x < n satisfy

x3 − bx3c = (x− bxc)3 .

638. Let x and y be real numbers. Prove that

max(0,−x) + max(1, x, y) = max(0, x−max(1, y)) + max(1, y, 1− x, y − x)
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where max(a, b) is the larger of the two numbers a and b.

639. (a) Let ABCDE be a convex pentagon such that AB = BC and ∠BCD = ∠EAB = 90◦. Let X be a
point inside the pentagon such that AX is perpendicular to BE and CX is perpendicular to BD. Show
that BX is perpendicular to DE.

(b) Let N be a regular nonagon, i.e., a regular polygon with nine edges, having O as the centre of its
circumcircle, and let PQ and QR be adjacent edges of N . The midpoint of PQ is A and the midpoint
of the radius perpendicular to QR is B. Determine the angle between AO and AB.

640. Suppose that n ≥ 2 and that, for 1 ≤ i ≤ n, we have that xi ≥ −2 and all the xi are nonzero with the
same sign. Prove that

(1 + x1)(1 + x2) · · · (1 + xn) > 1 + x1 + x2 + · · ·+ xn ,

641. Observe that x2 +5x+6 = (x+2)(x+3) while x2 +5x− 6 = (x+6)(x− 1). Determine infinitely many
coprime pairs (m,n) of positive integers for which both x2 + mx + n and x2 + mx− n can be factored
as a product of linear polynomials with integer coefficients.

642. In a convex polyhedron, each vertex is the endpoint of exactly three edges and each face is a concyclic
polygon. Prove that the polyhedron can be inscribed in a sphere.

643. Let n2 distinct integers be arranged in an n×n square array (n ≥ 2). Show that it is possible to select n
numbers, one from each row and column, such that if the number selected from any row is greater than
another number in this row, then this latter number is less than the number selected from its column.

644. Given a point P , a line L and a circle C, construct with straightedge and compasses an equilateral
triangle PQR with one vertex at P , another vertex Q on L and the third vertex R on C.

645. Let n ≥ 3 be a positive integer. Are there n positive integers a1, a2, · · · , an not all the same such that
for each i with 3 ≤ i ≤ n we have

ai + Si = (ai, Si) + [ai, Si] .

where Si = a1 + a2 + · · ·+ ai, and where (·, ·) and [·, ·] represent the greatest common divisor and least
common multiple respectively?

646. Let ABC be a triangle with incentre I. Let AI meet BC at L, and let X be the contact point of the
incircle with the line BC. If D is the reflection of L in X on line BC , we construct B′ and C ′ as
the reflections of D with respect to the lines BI and CI, respectively. Show that the quadrailateral
BCC ′B′ is cyclic.

647. Find all continuous functions f : R→ R such that

f(x + f(y)) = f(x) + y

for every x, y ∈ R.

648. Prove that for every positive integer n, the integer 1 + 5n + 52n + 53n + 54n is composite.

649. In the triangle ABC, ∠BAC = 20◦ and ∠ACB = 30◦. The point M is located in the interior of triangle
ABC so that ∠MAC = ∠MCA = 10◦. Determine ∠BMC.

650. Suppose that the nonzero real numbers satisfy

1
x

+
1
y

+
1
z

=
1

xyz
.
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Determine the minimum value of

x4

x2 + y2
+

y4

y2 + z2
+

z4

z2 + x2
.

651. Determine polynomials a(t), b(t), c(t) with integer coefficients such that the equation y2+2y = x3−x2−x
is satisfied by (x, y) = (a(t)/c(t), b(t)/c(t)).

652. (a) Let m be any positive integer greater than 2, such that x2 ≡ 1 (mod m) whenever the greatest
common divisor of x and m is equal to 1. An example is m = 12. Suppose that n is a positive integer
for which n + 1 is a multiple of m. Prove that the sum of all of the divisors of n is divisible by m.

(b) Does the result in (a) hold when m = 2?

(c) Find all possible values of m that satisfy the condition in (a).

653. Let f(1) = 1 and f(2) = 3. Suppose that, for n ≥ 3, f(n) = max{f(r) + f(n − r) : 1 ≤ r ≤ n − 1}.
Determine necessary and sufficient conditions on the pair (a, b) that f(a + b) = f(a) + f(b).

Solutions.

591. The point O is arbitrarily selected from the interior of the angle KAM . A line g is constructed through
the point O, intersecting the ray AK at the point B and the ray AM at the point C. Prove that the
value of the expression

1
[AOB]

+
1

[AOC]

does not depend on the choice of the line g. [Note: [MNP ] denotes the area of triangle MNP .]

Solution 1. Construct a line passing through the point O and parallel to AC. Let this line intersect the
line AB at the point P . Taking note that two triangles having their bases on a line and their third vertex
on a parallel line have areas in proportion to their bases, we obtain that

1
[AOB]

+
1

[AOC]
=

[AOB] + [AOC]
[AOB][AOC]

=
[ABC]

[AOB][AOC]

=
[ABC]

[AOB][AOC]
· [APO]
[APO]

=
[ABC]
[AOC]

· [APO]
[AOB]

· 1
[APO]

=
[ABC]
[AOC]

· |AP |
|AB|

· 1
[APO]

=
[ABC]
[AOC]

· [APC]
[ABC]

· 1
[APO]

=
[APC]
[AOC]

· 1
[APO]

=
1

[APO]
,

Since none of the points A,P, O depend on the position of the line g, the desired result follows.

Solution 2. Let a = |AO|, b = |AB|, c = |AC|, β = ∠BAO, γ = ∠CAO and θ = ∠AOB. The distance
from O to AB is a sinβ and from O to AC is a sin γ. Therefore, [AOB] = 1

2ba tanβ and [AOC] = 1
2ca tan γ.

Note that ∠ABO = 180◦ − (θ + β) and ∠ACO = θ − γ, so that, by the Law of Sines,

b =
a sin θ

sin(θ + β)
and c =

a sin θ

sin(θ − γ)
.
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Therefore

1
[AOB]

+
1

[AOC]
=

2
ba sinβ

+
2

ca sin γ

=
(

2
a2 sin θ sinβ sin γ

)
(sin(θ + β) sin γ + sin(θ − γ) sinβ)

=
(

2
a2 sin θ sinβ sin γ

(sin θ cos β sin γ + cos θsinβ sin γ + sin θ cos γ sinβ − cos θsinγ sinβ)

=
(

2
a2 sinβ sin γ

(cos β sin γ + cos γ sinβ) = 2a−2(cot β + cot γ ,

which does not depend on the variable quantities b, c and θ. The result follows.

592. The incircle of the triangle ABC is tangent to the sides BC, CA and AB at the respective points D, E
and F . Points K from the line DF and L from the line EF are such that AK‖BL‖DE. Prove that:

(a) the points A, E, F and K are concyclic, and the points B, D, F and L are concyclic;

(b) the points C, K and L are collinear.

Solution. (a) Since AE is tanget to the circumcircle of triangle DEF and since AK‖BL,

∠AEF = ∠EDF = ∠AKF ,

whence A,E, F,K are concyclic. Since BC is tangent to the circumcircle of triangle DEF and since DE‖BL,

∠BDF = ∠FED = ∠LED = 180◦ − ∠BLE = 180◦ − ∠BLF ,

whence B,D,F, L are concyclic.

(b) Since DE‖AK, AKEF is a concyclic quadrilateral and AB is tangent to circle DEF , we have that

∠DEK = ∠EKA = ∠EFA = ∠EDK ,

whence KD = KE. Since DE‖BL, BLFD is a concyclic quadrilateral and AB is tangent to circle DEF ,
we have that

∠LDE = ∠BLD = ∠BFD = ∠LED ,

whence LD = LE. Since CD and CE are tangents to circle DEF , CD = CE. Therefore, all three points
C,K, L lie on the right bisector of DE and so are collinear.

593. Consider all natural numbers M with the following properties:

(i) the four rightmost digits of M are 2008;

(ii) for some natural numbers p > 1 and n > 1, M = pn.

Determine all numbers n for which such numbers M exist.

Solution. Since, modulo 10, squares are congruent to one of 0, 1, 4, 6, 9, and pn is square for even values
of n, there are no even values of n for which such a number M exists.

Since pn ≡ 2008 (mod 104) implies that pn ≡ 8 (mod 16), we see that p must be even. When p is
divisible by 4, then pn ≡ 0 (mod 16) for n ≥ 2, and when p is twice an odd number, pn ≡ 0 (mod 16) for
n ≥ 4. Therefore the only possibility for M is that it be the cube of a number congruent to 2 (mod 4).

The condition that p3 ≡ 2008 (mod 104) implies that p3 ≡ 8 (mod 125). Since

p3 − 8 = (p− 2)(p2 + 2p + 4) = (p− 2)[(p + 1)2 + 3] ,
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and since the second factor is never divisible by 5 (the squares, modulo 5, are 0, 1, 4), we must have that
p ≡ 2 (mod 125). Putting this together with p being twice an odd number, we find that the smallest
possibilities are equal to 502 and 1002.

We have that 5023 = 126506008 and 10023 = 1006012008. Thus, such numbers M exist if and only
n = 3.

594. For each natural number N , denote by S(N) the sum of the digits of N . Are there natural numbers N
which satisfy the condition severally:

(a) S(N) + S(N2) = 2008;

(b) S(N) + S(N2) = 2009?

Solution. We have that
S(N) + S(N2) ≡ N + N2 = N(N + 1)

(mod 9). This number is congruent to either 0 or 2, modulo 3. In particular, it can never assume the value
of 2008, which is congruent to 1, modulo 3.

For part (b), we try a number N of the form

N = 1 + 103 + 106 + · · ·+ 103r ,

where 100 ≤ r ≤ 999. Then S(N) = r + 1,

N2 = 1 + 2 · 103 + 3 · 106 + · · ·+ r · 10r−1 + (r + 1) · 10r + r · 10r+1 + · · ·+ 2 · 106r−1 + 106r

and, since each coefficient of a power of 10 has at most three digits and there is no carry to a digit arising
from another power,

S(n2) = 2
r∑

k=1

S(k) + S(r + 1) = 2
99∑

k=1

S(k) + 2
r∑

k=101

S(k) + S(r + 1) .

The numbers less than 100 have 200 digits in all (counting 0 as the first digit of single-digit numbers),
each appearing equally often (20 times), so that

2
99∑

k=1

S(k) = 2[20(1 + 2 + · · ·+ 9)] = 1800 .

Now let r = 108. Then S(100) + S(101) + S(108) = 9 + 36 = 45, so that, when N = 1001001 · · · 1001
with 109 ones interspersed by double zeros,

S(N) + S(N2) = 109 + 1800 + 90 + 10 = 2009 .

Therefore, the equation in (b) is solvable for some natural number N .

595. What are the dimensions of the greatest n×n square chessboard for which it is possible to arrange 111
coins on its cells so that the numbers of coins on any two adjacent cells (i.e. that share a side) differ by
1?

Solution. We begin by establishing some restrictions.The parity of the number of coins in any two
adjacent cells differ, so that at least one of any pair of adjacent cells contains at least one coin. This ensures
that the number of cells cannot exceed 2×111+1 = 2 < 152, so that n ≤ 14. Since there are 111 cells, there
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must be an odd number of cells that contain an odd number of coins. Since in a 14× 14 chessboard, there
must be 98 = 1

2 × 196 cells with an odd number of coins, n = 14 is not possible.

We show that a 13× 13 chessboard admits a suitable placement of coins. Begin by placing a single coin
in every second cell so that each corner cell contains one coin. This uses up 85 coins. Now place two coins
in each of thirteen of the remaining 84 vacant cells. We have placed 85 + 26 = 111 coins in such a ways as
to satisfy the condition.

Hence, a 13× 13 chessboard is the largest that admits the desired placement.

596. A 12 × 12 square array is composed of unit squares. Three squares are removed from one of its major
diagonals. Is it possible to cover completely the remaining part of the array by 47 rectangular tiles of
size 1× 3 without overlapping any of them?

Solution. Let the major diagonal in question go from upper left to lower right. Label the cells by letters
A, B, C with A in the upper left corner, so that ABC appears in this cuyclic order across each row and
ACB appears in this cyclic order down each column. There are thus 48 occurrences of each label, and each
cell of the major diagonal is labelled with an A. Since each horizontal or vertical placement of 1 × 3 tiles
must cover one cell with each label, any placement of any number of such tiles must cover equally many cells
of each label. However, removing three cells down the major diagonal removes three cells of a single label
and leaves of dearth of cells with label A. Therefore, a covering of the remaining 141 cells with 47 tiles is
not possible.

597. Find all pairs of natural numbers (x, y) that satisfy the equation

2x(xy − 2y − 3) = (x + y)(3x + y) .

Solution. The given equation can be rewritten as a quadratic in y:

y2 + (8x− 2x2)y + (3x2 + 6x) = 0 .

Its discriminant is equal to

(64x2 − 32x3 + 4x4)− 4(3x2 + 6x) = 4x(x3 − 8x2 + 13x− 6) = 4x(x− 6)(x− 1)2 .

For there to be a solution in integers, it is necessary that this discriminant be a perfect square. This happens
if and only of

z2 = x(x− 6) = (x− 3)2 − 9 ,

or
9 = (x− 3)2 − z2 = (x + z − 3)(x− z − 3) ,

for some integer z. Checking all the factorizations 9 = (−9)× (−1) = (−3)× (−3) = (−1)× (−9) = 9× 1 =
3× 3 = 1× 9, we find that (x, z) = (−2,±4), (0, 0), (8,±4), (6, 0).

This leads to a complete solutions set in integers:

(x, y) = (−2, 0), (−2,−8), (−, 0), (8, 4), (8, 60), (6, 12) .

Therefore, the only solutions in natural numbers to the equation are

(x, y) = (6, 12), (8, 4), (8, 60) ,

all of which check out.

598. Let a1, a2, · · · , an be a finite sequence of positive integers. If possible, select two indices j, k with
1 ≤ j < k ≤ n for which aj does not divide ak; replace aj by the greatest common divisor of aj and
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ak, and replace ak by the least common multiple of aj and ak. Prove that, if the process is repeated, it
must eventually stop, and the final sequence does not depend on the choices made.

Solution. Let {pi : 1 ≤ i ≤ m} be the set of of all primes, listed in some order, dividing at least one
of the ai. All the terms of any sequence thereafter are divisible by only these primes. For each sequence
obtained and for each prime pi, define a vector with n components whose sth entry is the exponent of the
highest power of pi that divides the sth term of the sequence.

Suppose that aj =
∏m

s=1 pus
s and ak =

∏m
s=1 pvs

s are two terms of one of the sequences. Then gcd
(aj , ak) =

∏m
s=1 pws

s and lcm (aj , ak) =
∏m

s=1 pzs
s , where ws is the minimum and zs is the maximum of us

and vs for each s. The condition that aj divides ak is equivalent to us ≤ vs for each s.

Let us see what the effect of the operation on a sequence has on the m vectors associated with the
sequence. If two elements, the jth and kth for which the jth does not divide the kth, then there is at least
one vector for which the jth term is larger than the kth term. The operation just interchanges these terms.
This reduces the number of pairs of components of the vector for which the earlier one exceeds the second.

Since there are only finitely many vectors (one for each prime) and each vector has only finitely many
component pairs, the process must terminate after a finite number of operations. No moves are possible
only when each vector is increasing. Since each move permutes the entries of each vectors, in the final stage
we must obtain the unique rearrangement of each vector in which the components are increasing. The kth
terms of the vectors give the exponents of the primes ps that constitute the prime factorization of the kth
term of the sequence at the end. The result follows.

599. Determine the number of distinct solutions x with 0 ≤ x ≤ π for each of the following equations. Where
feasible, give an explicit representation of the solution.

(a) 8 cos x cos 2x cos 4x = 1;

(b) 8 cos x cos 4x cos 5x = 1.

Solution 1. (a) It is clear that no multiple of π satisfies the equation. So we must have that sin x 6= 0.
Multiply the equation by sinx to obtain

8 sinx cos x cos 2x cos 4x = 4 sin 2x cos 2x cos 4x = 2 sin 4x cos 4x = sin 8x .

Hence the given equation is equivalent to sin 8x = sinx with sinx 6= 0. Hence, we must have x + 8x =
(2k + 1)π, 8x = (2k)π + x, since 0 ≤ x ≤ π. These lead to x = π/9 (20◦), x = 2π/7, x = π/3 (60◦),
x = 4π/7, x = 5π/9 (100◦), x = 6π/7 (120◦), x = 7π/9. Thus there are seven solutions to the equation.

(b) [Z. Liu] It can be checked that no multiple of π nor any odd multiple of π/4 satisfies the equation.
The truth of the equation implies that

sin 8x cos 5x = 2 sin 4x cos 4x cos 5x = 4 sin 2x cos 2x cos 4x sin 5x

= (sinx cos 2x)(8 cos x cos 4x cos 5x) = sin x cos 2x .

Using the product to sum conversion formula yields

sin 13x + sin 3x = sin 3x− sinx ,

whence sin 13x = sin(−x). Therefore, either 12x = 13x + (−x) is an odd multiple of π or 14x = 13x− (−x)
is an even multiple of π. However, x = 0, π/4, π/2, 3π/4 are extraneous solutions that do not satisfies the
given equation. Therefore, there are ten solutions, namely

x =
π

12
,
5π

12
.
7π

12
,
11π

12
,
π

7
,
2π

7
,
3π

7
,
4π

7
,
5π

7
,
6π

7
.

11



Solution 2. (a) Let t = cos x. Then cos 2x = 2t2 − 1 and cos 4x = 2(2t2 − 1)− 1 = 8t4 − 8t2 + 1, so that

cos x cos 2x cos 4x = t(2t2 − 1)(8t4 − 8t2 + 1) .

Let
f(t) = 8t(2t2 − 1)(8t4 − 8t2 + 1)− 1

= 128t7 − 192t5 + 80t3 − 8t− 1

= (2t− 1)(64t6 + 32t5 − 80t4 − 40t3 + 20t2 + 10t + 1)

= (2t− 1)(8t3 + 4t2 − 4t− 1)(8t3 − 6t− 1) .

(The factor (2t− 1) can be found by noting that x = π/3, corresponding to t = 1/2, is an obvious solution
to the equation given in the problem.)

Let g(t) = 8t3+4t2−4t−1 and h(t) = 8t3−6t−1. Since g(−1) = −9, h(−1) = −1, g(− 1
2 ) = h(− 1

2 ) = 1,
g(0) = h(0) = −1, g(1) = 7 and h(1) = 1, both of g(t) and h(t) have a root in each of the intervals (−1,− 1

2 ),
(− 1

2 , 0) and (0, 1).
Since the only roots of g(t)−h(t) = 4t2 +2t = 2t(2t+1) are − 1

2 and 0, g(t) and h(t) do not have a root
in common. Therefore , f(t) has seven roots and these correspond to seven solutions of the given equation.

(b) We have that
1 = 8 cos x cos 4x cos 5x = 4 cos2 4x + 4 cos 4x cos 6x

= (2 cos 8x + 2) + (2 cos 2x + 2 cos 10x) ,

so that
2 cos 2x + 2 cos 8x + 2 cos 10x + 1 = 0 .

Substituting t = cos 2x yields cos 4x = 2t2− 1, cos 8x = 8t2− 4t2 + 1, cos 10x = 16t5− 20t3 + 5t, so that the
equation becomes

0 = (4t2 − 3)(8t3 + 4t2 − 4t− 1) .

The polynomial 4t2 − 3 has two roots in the interval [−1, 1] corresponding to four values of x in the interval
[0, π]. Let f(t) = 8t3 + 4t2 − 4t− 1. Since f(−1) = −1, f(− 1

2 ) = 1, f(0) = −1, f(1) = 7, f(t) has three real
roots, once in each of the intervals (−1,− 1

2 ), (− 1
2 , 0), (0, 1), and each of these corresponds to two solution x

in the interval [0, π]. Therefore, the equation in x has ten solutions in the interval.

Comments. (a) The seven solutions of the equation sin 8x = sinx can be seen from a sketch of the
graphs of the two functions on the same axes.

(b) Since 2 cos x cos 5x = cos 4x + cos 6x, the equation is equivalent to

4(cos2 4x + cos 4x cos 6x) = 1 .

Some solutions can be found by solving cos 6x = 0 and cos2 4x = 1
4 . These are satisfied by x = π/12, 5π/12,

7π/12 and 11π/12.

The trial, taking cos 4x = 1
2 , is also reasonable, as it gives x = π/12. With this substitution, the left

side become 4 cos π/12 sinπ12 = 2 sinπ/6 = 1. The other multiples of π/12 can be handled in the same way.

When t = cos 2x, there is another route to the equation in t to be analyzed. The equation, in the form,
1 = 4(cos 4x)(cos 4x + cos 6x), is transformed to

1 = 4(2t2 − 1)(2t2 − 1 + 4t3 − 3t) = 4(8t5 + 4t4 − 10t2 − 4t2 + 3t + 1) .

This simplifies to
0 = 32t5 + 16t4 − 40t3 − 16t2 + 12t + 3

= (4t2 − 3)(8t3 + 4t2 − 4t− 1) .

12



Since x = π/12 is a solution, t = cos π/6 =
√

3/2 satisfies the equation in t and accounts for the factor
4t2 − 3 on the right side of the equation.

600. Let 0 < a < b. Prove that, for any positive integer n,

b + a

2
≤ n

√
bn+1 − an+1

(b− a)(n + 1)
≤ n

√
an + bn

2
.

Solution 1. Dividing the inequality through by (b + a)/2 yields the equivalent inequality

1 ≤ n

√
b′n+1 − a′n+1

(b′ − a′)(n + 1)
≤ n

√
a′n + b′n

2
,

with a′ = (2a)/(b + a) and b′ = (2b)/(b + a). Note that (a′ + b′)/2 = 1. and we can write b′ = 1 + u and
a′ = 1− u with 0 < u < 1. The central term becomes the nth root of

(1 + u)n+1 − (1− u)n+1

2(n + 1)u
=

2[(n + 1)u +
(
n+1

3

)
u3 +

(
n+1

5

)
u5 + · · ·]

2(n + 1)u

= 1 +
1
3

(
n

2

)
u2 +

1
5

(
n

4

)
u4 + · · ·

which clearly exceeds 1 and gives the left inequality. The right term become the nth roots of

1
2
[(1 + u)n + (1− u)n] = 1 +

(
n

2

)
u2 +

(
n

4

)
u4 + · · ·

and the right inequality is true.

Solution 2. The inequality

n

√
bn+1 − an+1

(b− a)(n + 1)
≤ n

√
an + bn

2

is equivalent to

0 ≤ (n + 1)(an + bn)− 2(bn+1 − an+1)
b− a

.

The right side is equal to

(n + 1)(an + bn)− 2(bn + bn−1a + bn−2a2 · · ·+ b2an−2 + ban−1 + an)

= (an − bn) + (an − bn−1a) + (an − bn−2a) + · · ·+ (an − ban−1) + (an − an)

+ (bn − bn) + (bn − bn−1a) + · · ·+ (bn − ban−1) + (bn − an)

= (an − bn) + a(an−1 − bn−1) + a2(an−2 − bn−2) + · · ·+ an−1(a− b) + 0

+ 0 + bn−1(b− a) + · · ·+ b(bn−1 − an−1) + (bn − an)

= 0 + (b− a)(bn−1 − an−1) + (b2 − a2)(bn−2 − an−2) + · · ·+ (bn−1 − an−1)(b− a)
> 0 .

The left inequality

b + a

2
≤ n

√
bn+1 − an+1

(b− a)(n + 1)

13



is equivalent to (
b + a

2

)n

≤ bn+1 − an+1

(b− a)(n + 1)
.

Let v = 1
2 (b− a) so that b + a = 2(a + v). Then

bn+1 − an+1

(b− a)(n + 1)
−

(
b + a

2

)n

=
(a + 2v)n+1 − an+1

(b− a)(n + 1)
− (a + v)n

=
1

2v(n + 1)

( n+1∑
k=1

(
n + 1

k

)
an+1−k(2v)k

)
− (a + v)n

=
1

n + 1

( n+1∑
k=1

(
n + 1

k

)
an−(k−1)(2v)k−1

)
− (a + v)n

=
1

n + 1

( n∑
k=0

(
n + 1
k + 1

)
an−k(2v)k

)
−

n∑
k=0

(
n

k

)
an−kvk

=
( n∑

k=0

1
k + 1

(
n

k

)
an−k(2v)k −

n∑
k=0

(
n

k

)
an−kvk

)

=
n∑

k=0

(
2k

k + 1
− 1

)(
n

k

)
an−kvk ≥ 0 ,

since 2k = (1 + 1)k = 1 + k +
(
k
2

)
+ · · · ≥ 1 + k with equality if and only if k = 0 or 1. The result follows.

Solution 3. [D. Nicholson] (partial) Let n ≥ 2i + 1. Then

(bn−iai + bian−i)− (bn−i−1ai+1 + bi+1an−i−1) = (b− a)aibi(bn−2i−1 − an−2i−1) ≥ 0 .

Hence, for 0 ≤ j ≤ 1
2 (n + 1),

bn + an ≥ bn−1a + abn−1 ≥ · · · ≥ bn−jaj + bjan−j .

When n = 2k + 1,

bn + bn−1a + · · ·+ ban−1 + an =
k∑

i=0

(bn−iai + bian−i) ≤ (k + 1)(bn + an) =
n + 1

2
(bn + an)

and when n = 2k, we use the Arithmetic-Geometric Means Inequality to obtain bkak ≤ 1
2 (a2k + b2k), so that

bn + bn−1a + · · ·+ ban−1 + an =
k−1∑
i=0

(bn−iai + bian−i) + bkak ≤ k(bn + an) +
bn + an

2
=

n + 1
2

(bn + an) .

Hence
bn+1 − an+1

(b− a)(n + 1)
≤ bn + an

2
.

Solution 4. [Y. Shen] Let 1 ≤ k ≤ n and 1 ≤ i ≤ k. Then

(bk+1 + ak+1)− (biak+1−i + aibk+1−i) = (bi − ai)(bk+1−i − ak+1−i) ≥ 0 .

Hence

k(bk+1 + ak+1) ≥
k∑

i=1

(biak+1−i + aibk+1−i) = 2
k∑

i=1

biak+1−i .
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This is equivalent to

(2k + 2)
k+1∑
i=0

biak+1−i = (2k + 2)(bk+1 + ak+1) + (2k + 2)
k∑

i=1

biak+1−i

≥ (k + 2)(bk+1 + ak+1) + (2k + 4)
k∑

i=1

biak+1−i

= (k + 2)(bk+1 + 2
k∑

i=1

biak+1−i + ak+1)

= (k + 2)(b + a)
k∑

i=0

biak−i

which in turn is equivalent to ∑k+1
i=0 biak+1−i

k + 2
≥

(b + a)(
∑k

i=0 biak−i)
2(k + 1)

.

We establish by induction that (
b + a

2

)n

≤ 1
n + 1

n∑
i=0

bian−i

which will yield the left inequality. This holds for n = 1. Suppose that it holds for n = k. Then(
b + a

2

)
=

(
b + a

2

)
·
(

b + a

2

)k

≤
(

b + a

2

)
·
(

1
k + 1

) k∑
i=0

biak−i ≤ 1
k + 2

k+1∑
i=0

biak−i .

As above, we have, for k = n− 1,

(n− 1)(bn + an) ≥ 2
n−1∑
i=1

bian−i

so that

(n + 1)(bn + an) ≥ 2
n∑

i=0

bian−i = 2
(

bn+1 − an+1

b− a

)
from which the right inequality follows.

Comment. The inequality

b + a

2
≤ n

√
bn+1 − an+1

(b− a)(n + 1)

is equivalent to

0 ≤ 2n(bn+1 − an+1)
b− a

− (n + 1)(b + a)n .

When n = 1, the right side is equal to 0. When n = 2, it is equal to

4(b2 + ba + a2)− 3(b + a)2 = (b− a)2 > 0 .
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When n = 3, we have

8(b3 + b2a + ba2 + a3)− 4(b + a)3 = 4b3 − 4b2a− 4ba2 + 4a3 = 4(b2 − a2)(b− a) = 4(b + a)(b− a)2 > 0 .

When n = 4, 5 and 6, the right side is, respectively,

(11b2 + 18ab + 11a2)(b− a)2

(26b3 + 54b2a + 54ba2 + 26a3)(b− a)2

(57b4 + 136b3a + 174b2a2 + 136ba3 + 57a4)(b− a)2 .

There is a pattern here; can anyone express it in a general way that will yield the result, or at least show
that the right side is the product of (b− a)2 and a polynomial with positive coefficients?

601. A convex figure lies inside a given circle. The figure is seen from every point of the circumference of the
circle at right angles (that is, the two rays drawn from the point and supporting the convex figure are
perpendicular). Prove that the centre of the circle is a centre of symmetry of the figure.

Solution 1. Let the figure be denoted by F and the circle by C, and let ρ be the central reflection through
the centre of the circle. Suppose that m is any line of support for F and that it intersects the circle in P and
Q. Then there are lines p and q through P and Q respectively, perpendicular to m, which support F. Let p
meet the circle in P and R, and q meet it in Q and S; let t be the line RS. Since PQRS is concyclic with
adjacent right angles, it is a rectangle, and t is a line of support of F. Since PS and RQ are both diameters
of C, it follows that S = ρ(P ), R = ρ(Q) and t = ρ(m).

Hence, every line of support of F is carried by ρ into a line of support of F. We note that F must be on
the same side of its line of support as the centre of the circle.

Suppose that X ∈ F. Let Y = ρ(X). Suppose, if possible that Y 6∈ F. Then there must be a disc
containing Y that does not intersect F, so we can find a line m of support for F such that F is on one side
and Y is strictly on the other side of m. Let n = ρ(m). Then n is a line of support for F which has X = ρ(Y )
on one side and O = ρ(O) on the other. But this is not possible. Hence Y ∈ F and so ρ(F) ⊆ F. Now ρ ◦ ρ
is the identity mapping, so F = ρ(ρ(F)) ⊆ ρ(F). It follows that F = ρ(F) and the result follows.

Solution 2. Let P be any point on the circle C. There are two perpendicular lines of support from P
meeting the circle in Q and S. As in the first solution, we see that P is one vertex of a rectangle PQRS each
of whose sides supports F. Let G be the intersection of all the rectangles as P ranges over the circumference
of the circle C. Since each rectangle has central symmetry about the centre of C, the same is true of G. It
is clear that F ⊆ G. It remains to show that G ⊆ F. Suppose a point X in G does not belong to F. Then
there is a line r of support to F for which X and F are on opposite sides. This line of support intersects C
at the endpoints of a chord which must be a side of a supporting rectangle for F. The point X lies outside
this rectangle, and so must lie outside of G. The result follows.

Solution 3. [D. Arthur] If the result is false, then there is a line through the centre of the circle such
that OP > OQ, where P is where the line meets the boundary of the figure on one side and Q is where it
meets the boundary on the other. Let m be the line of support of the figure through Q. Then, as shown
in Solution 1, its reflection t in the centre of the circle is also a line of support. But then P and O lie on
opposite sides of t and we obtain a contradiction.

602. Prove that, for each pair (m,n) of integers with 1 ≤ m ≤ n,

n∑
i=1

i(i− 1)(i− 2) · · · (i−m + 1) =
(n + 1)n(n− 1) · · · (n−m + 1)

m + 1
.
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(b) Suppose that 1 ≤ r ≤ n; consider all subsets with r elements of the set {1, 2, 3, · · · , n}. The elements
of this subset are arranged in ascending order of magnitude. For 1 ≤ i ≤ r, let ti denote the ith smallest
element in the subset, and let T (n, r, i) denote the arithmetic mean of the elements ti. Prove that

T (n, r, i) = i

(
n + 1
r + 1

)
.

(a) Solution 1. i(i− 1)(i− 2) · · · (i−m + 1) = [(i+1)−(i−m)]
m+1 i(i− 1)(i− 2) · · · (i−m + 1)

=
(i + 1)i(i− 1) · · · (i−m + 1)− i(i− 1)(i− 2) · · · (i−m + 1)(i−m)

m + 1

so that
n∑

i=1

i(i− 1)(i− 2) · · · (i−m + 1) =
n+1∑
i=2

i(i− 1) · · · (i−m)
m + 1

−
n∑

i=1

i(i− 1) · · · (i−m)
m + 1

=
(n + 1)n(n− 1) · · · (n−m + 1)

m + 1
− 0

=
(n + 1)n(n− 1) · · · (n−m + 1)

m + 1
.

(a) Solution 2. [W. Choi] Recall the identity

n∑
i=m

(
i

m

)
=

(
n + 1
m + 1

)
which is obvious for n = m and can be established by induction for n ≥ m + 1. There is an alternative
combinatorial argument. Consider the number

(
n+1
m+1

)
of selecting m+1 numbers from the set {1, 2, 3, · · · , n+

1}. The largest number must be i + 1 where m ≤ i ≤ n, and the number of (m + 1)−sets for which the
largest number is i + 1 is

(
i
m

)
. Summing over all relevant i yields the result.

We have that

m∑
i=1

i(i− 1) · · · (i−m + 1) =
n∑

i=m

i!
(i−m)!

= m!
n∑

i=m

(
i

m

)
= m!

(
n + 1
m + 1

)
=

(n + 1)!
(m + 1)(n−m)!

=
(n + 1)n(n− 1) · · · (n−m + 1)

m + 1
.

(a) Solution 3. [K. Yeats] Let n = m + k. Then

n∑
i=1

i(i− 1)(i− 2) · · · (i−m + 1) = m! +
(m + 1)!

1!
+ · · ·+ n!

(n−m)!

=
1

(m + 1)k!

[
(m + 1)!k! +

(m + 1)!k!(m + 1)
1!

+
(m + 2)!k!(m + 1)

2!
+ · · ·+ n!(m + 1)

]
=

(m + 1)!
(m + 1)k!

[
k! +

k!
1!

(m + 1) +
k!
2!

(m + 2)(m + 1) + · · ·+ n(n− 1) · · · (m + 2)(m + 1)
]

.

The quantity in square brackets has the form (with q = 0)

k!
q!

+
k!

(q + 1)!
(m + 1) +

k!
(q + 2)!

(m + q + 2)(m + 1) +
k!

(q + 3)!
(m + q + 3)(m + q + 2)(m + 1) + · · ·
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+
k!
k!

n(n− 1) · · · (m + q + 2)(m + 1)

= (m + q + 2)
[

k!
(q + 1)!

+
k!

(q + 2)!
(m + 1) +

k!
(q + 3)!

(m + q + 3)(m + 1) + · · ·+ k!
k!

n · · · (m + q + 3)(m + 1)
]
.

Applying this repeatedly with q = 0, 1, 2, · · · , k− 1 leads to the expression for the left sum in the problem of

(m + k + 1)!
(m + 1)k!

[
k!
k!

]
=

(n + 1)!
(m + 1)(n−m)!

=
(n + 1)n(n− 1) · · · (n−m + 1)

m + 1
.

[A variant, due to D. Nicholson, uses an induction on r to prove that, for m ≤ r ≤ n,

r∑
i=m

i(i− 1) · · · (i−m + 1) =
(r + 1)!

(r −m)!(m + 1)
.]

(a) Solution 4. For 1 ≤ i ≤ m−1, i(i−1) · · · (i−m+1) = 0. For m ≤ i ≤ n, i(i−1) · · · (i−m+1) = m!
(

i
m

)
.

Also,
(n + 1)n · · · (n−m + 1)

m + 1
= m!

(
n + 1
m + 1

)
so the statement is equivalent to

n∑
m

(
i

m

)
=

(
n + 1
m + 1

)
.

This is clear for n = m. Suppose it holds for n = k ≥ m. Then

k+1∑
i=m

(
i

m

)
=

(
k + 1
m + 1

)
+

(
k + 1

m

)
=

(
k + 2
m + 1

)
and the result follows by induction.

(a) Solution 5. Use induction on n. If n = 1, then m = 1 and both sides of the equation are equal to 1.
Suppose that the result holds for n = k and 1 ≤ m ≤ k. Then, for 1 ≤ m ≤ k,

k+1∑
i=1

i(i− 1) · · · (i−m + 1) =
(k + 1)k(k − 1) · · · (k −m + 1)

m + 1
+ (k + 1)k(k − 1) · · · (k −m + 2)

=
(k + 1)k(k − 1) · · · (k −m + 2)

m + 1
[(k −m + 1) + (m + 1)]

=
(k + 2)(k + 1)k(k − 1) · · · (k −m + 2)

m + 1

as desired. When m = n = k + 1, all terms on the left have k + 1 terms and so they vanish except for the
one corresponding to i = k + 1. This one is equal to (k + 1)! and so to the right side.

(b) Solution 1. For 1 ≤ i ≤ r ≤ n, let S(n, r, i) be the sum of the elements ti where (t1, t2, · · · , tr) runs
over r-tples with 1 ≤ t1 < t2 < · · · < tr ≤ n. Then S(n, r, i) =

(
n
r

)
T (n, r, i). For 1 ≤ k ≤ n, 1 ≤ i ≤ r, the

number of ordered r−tples (t1, t2, · · · , tr) with ti = k is
(
k−1
i−1

)(
n−k
r−i

)
where

(
0
0

)
= 1 and

(
a
b

)
= 0 when b > a.

Hence (
n

r

)
=

n∑
k=1

(
k − 1
i− 1

)(
n− k

r − i

)
.

Replacing n by n + 1 and r by r + 1 yields a reading(
n + 1
r + 1

)
=

n+1∑
k=1

(
k − 1
i− 1

)(
n + 1− k

r − (i− 1)

)
for 1 ≤ i ≤ r + 1 .
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Replacing i− 1 by i yields(
n + 1
r + 1

)
=

n+1∑
k=1

(
k − 1

i

)(
n + 1− k

r − i

)
for 0 ≤ i ≤ r .

When 1 ≤ i ≤ r, the first term of the sum is 0, so that(
n + 1
r + 1

)
=

n+1∑
k=2

(
k − 1

i

)(
n− (k − 1)

r − i

)
=

n∑
k=1

(
k

i

)(
n− k

r − i

)
.

Thus

S(n, r, i) =
n∑

k=1

k

(
k − 1
i− 1

)(
n− k

r − i

)
= i

n∑
k=1

(
k

i

)(
n− k

r − i

)
= i

(
n + 1
r + 1

)
so

T (n, r, i) = i

(
n + 1
r + 1

)
.

(b) Solution 2. [Z. Liu] Define S(n, r, i) for 1 ≤ i ≤ r ≤ n as in Solution 1. We prove by induction that

S(n, r, i) = i

(
n + 1
r + 1

)
from which

T (n, r, i) = i

(
n + 1
r + 1

)
.

For each positive integer n, we have that S(n, 1, 1) = 1+2+ · · ·+n =
(
n+1

2

)
and S(n, n, i) = i. Suppose

that n ≥ 2, r ≥ 2 and that S(k, r, 1) =
(
k+1
r+1

)
for 1 ≤ k ≤ n−1. Of the

(
n
r

)
r−tples from {1, 2, · · · , n},

(
n−1
r−1

)
of

them have smallest element equal to 1, and
(
n−1

r

)
of them have smallest element exceeding 1. The latter set

of r−tples can be put into one-one corrrespondence with r−tples of {1, 2, · · · , n−1} by subtracting one from
each entry. Therefore the sum of the first (smallest) elements of the latter r−tples is

(
n−1

r

)
+ S(n− 1, r, 1).

Hence

S(n, r, 1) =
(

n− 1
r − 1

)
+

(
n− 1

r

)
+ S(n− 1, r, 1) =

(
n

r

)
+

(
n

r + 1

)
=

(
n + 1
r + 1

)
.

Suppose as an induction hypothesis that

S(m, s, j) = j

(
m + 1
s + 1

)
for 1 ≤ j ≤ s ≤ n − 1. This holds for n = 2. Let r ≥ 2 and 1 ≤ i ≤ r ≤ n − 1. Consider the
ordered r−subsets of {1, 2, · · · , n}. There are

(
n−1
r−1

)
of them that begin with 1; making use of the one-one

correspondence between these and (r − 1)− subsets of {1, 2 · · · , n− 1} obtained by subtracting 1 from each
entry beyond the first, we have that the sum of the ith elements of these is(

n− 1
r − 1

)
+ S(n− 1, r − 1, i− 1) =

(
n− 1
r − 1

)
+ (i− 1)

(
n

r

)
.

There are
(
n−1

r

)
of the ordered subsets that do not begin with 1; making use of the one-one correspondence

between these subsets and the r−subsets of {1, 2, · · · , n− 1} obtained by subtracting 1 from each entry, we
find that the sum of the ith elements is(

n− 1
r

)
+ S(n− 1, r, i) =

(
n− 1

r

)
+ i

(
n

r + 1

)
.
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Hence the sum of the ith elements of all these r−subsets is

S(n, r, i) =
[(

n− 1
r − 1

)
+

(
n− 1

r

)
−

(
n

r

)]
+ i

[(
n

r

)
+

(
n

r + 1

)]
= 0 + i

(
n + 1
r + 1

)
.

Putting all these elements together yields the result.

(b) Solution 3. When r = 1, we have that

T (n, 1, 1) =
1 + 2 + · · ·+ n

n
=

n + 1
2

.

When r = 2, the subsets are {1, 2}, {1, 3}, · · · , {1, n}, {2, 3}, {2, 4}, · · · {2, n}, · · · , {n− 1, n}, so that

T (n, 2, 1) =
1× (n− 1) + 2× (n− 2) + · · ·+ (n− 1)× 1(

n
2

)
=

[(n− 1) + (n− 2) + · · ·+ 1] + [(n− 2) + (n− 3) + · · ·+ 1] + · · ·+ 1(
n
2

)
=

∑n−1
j=1 [1 + 2 + · · ·+ (n− j)]

n(n− 1)/2
=

∑n−1
j=1 (n− j + 1)(n− j)/2

n(n− 1)/2

=
(1/6)(n + 1)n(n− 1)

(1/2)n(n− 1)
=

n + 1
3

,

and

T (n, 2, 2) =
(n− 1)× n + (n− 2)× (n− 1) + · · ·+ 1× 2(

n
2

)
=

(n + 1)n(n− 1)/3
n(n− 1)/2

= 2
(

n + 1
3

)
.

Thus, the result holds for n = 1, 2 and all i, r with 1 ≤ i ≤ r ≤ n, and for all n and 1 ≤ i ≤ r ≤ 2. Suppose
as an induction hypothesis, we have established the result up to n − 1 and all appropriate r and i, and for
n and 1 ≤ i ≤ r − 1. The r−element subsets of {1, 2, · · · , n} have

(
n−1

r

)
instances without n and

(
n−1
r−1

)
instances with n.

Let 1 ≤ i ≤ r − 1. Then

T (n, r, i) =

(
n−1

r

)
T (n− 1, r, i) +

(
n−1
r−1

)
T (n− 1, r − 1, i)(

n
r

)
=

i[
(
n−1

r

)
n

r+1 +
(
n−1
r−1

)
n
r ](

n
r

) =
i[
(

n
r+1

)
+

(
n
r

)
](

n
r

)
= i

(
n+1
r+1

)(
n
r

) = i

(
n + 1
r + 1

)
Also

T (n, r, r) =

(
n−1

r

)
T (n− 1, r, r) +

(
n−1
r−1

)
n(

n
r

)
=

(
n−1

r

)
rn

r+1 +
(
n−1
r−1

)
rn
r(

n
r

) =
r[

(
n

r+1

)
+

(
n
r

)
](

n
r

) = r

(
n + 1
r + 1

)
.

(b) Solution 4. For 1 ≤ i ≤ r ≤ n, let S(n, r, i) be the sum of the elements ti where (t1, t2, · · · , tr) runs
over r-tples with 1 ≤ t1 < t2 < · · · < tr ≤ n. Then S(n, r, i) =

(
n
r

)
T (n, r, i). We observe first that

S(n, r, i) = S(n− 1, r − 1, i) + S(n− 2, r − 1, i) + · · ·+ S(r − 1, r − 1, i)
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for 1 ≤ i ≤ r − 1. This is true, since, for each j with 1 ≤ j ≤ n− r + 1, S(n− j, r − 1, i) adds the ti over all
r−tples for which tr = n− j + 1.

Now S(n, 1, 1) = 1 + 2 + · · ·+ n = 1
2 (n + 1)n and S(n, 2, 1) = 1

2n(n− 1) + · · ·+ 1 = 1
3! (n + 1)n(n− 1).

As an induction hypothesis, suppose that S(n, r − 1, 1) = 1
r! (n + 1)n(n− 1) · · · (n− r + 2). Then

S(n, r, 1) =
n−1∑

k=r−1

S(k, r − 1, 1)

=
1
r!

n−1∑
k=r−1

(k + 1)k(k − 1) · · · (k − r + 2) =
1
r!

n∑
k=1

k(k − 1) · · · (k − r + 1)

=
1

(r + 1)!
(n + 1)n(n− 1) · · · (n− r + 1) =

(
n + 1
r + 1

)
n!

r!(n− r)!
=

(
n + 1
r + 1

)(
n

r

)
.

Thus, for each r with 1 ≤ r ≤ n, S(n, r, 1) =
(
n
r

)
(n + 1)/(r + 1) so that T (n, r, 1) = (n + 1)/(r + 1).

Let n ≥ 2. Suppose that for 1 ≤ k ≤ n − 1 and 1 ≤ i ≤ r ≤ k, it has been established that
S(k, r, i) = iS(k, r, 1). Then for 1 ≤ i ≤ r ≤ n,

S(n, r, i) = S(n− 1, r − 1, i) + S(n− 2, r − 1, i) + · · ·+ S(r − 1, r − 1, i)
= i[S(n− 1, r − 1, 1) + S(n− 2, r − 1, 1) + · · ·+ S(r − 1, r − 1, 1) = iS(n, r, 1) .

Dividing by
(
n
r

)
yields

T (n, r, i) = iT (n, r, 1) = i

(
n + 1
r + 1

)
.

Comments. (1) There is a one-one correspondence

(t1, t2, · · · , tr)←→ (n + 1− tr, n + 1− tr−1, · · · , n + 1− tr)

of the set of suitable r−tples to itself, it follows that

S(n, r, r) =
(

n

r

)
(n + 1)− S(n, r, 1) =

(
n

r

)
(n + 1)

[
1− 1

r + 1

]
=

r(n + 1)
r + 1

(
n

r

)
= rS(n, r, 1)

from which T (n, r, r) = r(n + 1)/(r + 1) = rT (n, r, 1).

(2) To illustrate another method for getting and using the recursion, we prove first that T (n, r, 2) =
2T (n, r, 1) for 2 ≤ r ≤ n. Consider the case r = 2. For 1 ≤ t1 < t2 ≤ n, (t1, t2) ↔ (t2 − t1, t2) defines a
one-one correspondence between suitable pairs. Since t2 = t1 + (t2− t1), it follows from this correspondence
that S(n, 2, 2) = 2S(n, 2, 1). Dividing by

(
n
2

)
yields T (n, 2, 2) = 2T (n, 2, 1).

Suppose that r ≥ 2. For each positive integer j with 1 ≤ j ≤ n−r+1, we define a one-one correspondence
between r−tples (t1, t2, · · · , tr) with 1 ≤ t1 < t2 < · · · < tr ≤ n and t3 − t2 = j and (r − 1)−tples
(s1, s2, s3, · · · , sr) = (t1, t2, t4 − j, · · · , tr − j) with 1 ≤ s1 = t1 < s2 = t2 < s3 = t4 − j < · · · < sr = tr − j ≤
n − j. The sum of the elements t2 over all r−tples with t3 − t2 = j is equal to the sum of t2 over all the
(r − 1)−tples. Hence

S(n, r, 2) = S(n− 1, r − 1, 2) + S(n− 2, r − 1, 2) + · · ·+ S(r − 1, r − 1, 2) .
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More generally, for 1 ≤ j ≤ n− r− 1, there is a one-one correspondence between r−tples (t1, t2, · · · , tr)
with ti+1 − ti = j and (r − 1)−tples (s1, s2, · · · , sr−1) = (t1, · · · , ti, ti+2 − j, · · · , tr − j) with 1 ≤ s1 = t1 <
· · · < si = ti < si+1 = ti+2 − j < · · · < sr−1 = tr − j ≤ n− j. We now use induction on r. We have that

S(n, r, i) = S(n− 1, r − 1, i) + S(n− 2, r − 1, i) + · · ·+ S(r − 1, r − 1, i) .

(b) Solution 5. [Y. Shen] We establish that

i+(n−r)∑
k=i

(
k

i

)(
n− k

r − i

)
=

(
n + 1
r + 1

)
.

Consider the (r + 1)−element sets where ti+1 = k + 1 and tr+1 ≤ n + 1. We must have i ≤ k ≤ n− (r − i)
and there are

(
k
i

)(
n−k
r−i

)
ways of selecting t1, · · · , ti and ti+2, · · · , tr+1. The desired equation follows from a

counting argument over all possibilities for ti+1.

In a similar way, we note that ti = k for
(
k−1
i−1

)(
n−k
r−i

)
sets {t1, · · · , tr} chosen from {1, · · · , n}, where

1 ≤ k ≤ n− r + 1. Observe that (
k − 1
i− 1

)(
n− k

r − i

)
=

i

k

(
k

i

)(
n− k

r − i

)
.

Then

T (n, r, i) =

∑n−r+1
k=i k

(
k−1
i−1

)(
n−k
r−i

)(
n
r

)
=

i
∑n−r+i

k=i

(
k
i

)(
n−k
r−i

)(
n
r

)
=

(
n+1
r+1

)(
n
r

) = i

(
n + 1
r + 1

)
.

(b) Solution 6. [Christopher So] Note that

n−r+i∑
k=i

(
k

i

)(
n− k

r − i

)

is the coefficient of xiyr−i in the polynomial

n−r+i∑
k=i

(1 + x)k(1 + y)n−k

or in
n+1∑
k=0

(1 + x)k(1 + y)n−k =
(1 + y)n+1 − (1 + x)n+1

y − x

=

∑n+1
j=0

(
n+1

j

)
(yj − xj)

y − x
.

Now the only summand which involves terms of degree r corresponds to j = r + 1, so that the coefficient of
xiyr−1 in the sum is the coefficient in the single term(

n + 1
r + 1

)
yr+1 − xr+1

y − x
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namely,
(
n+1
r+1

)
. We can now complete the argument as in the fourth solution.

(b) Comment. Let r and n be fixed values and consider i to be variable. The
(
n
r

)
r−term sets contain

altogether r
(
n
r

)
numbers, each number occurring equally often: r

n

(
n
r

)
times. The sum of all the elements in

the set is

S(n, r, 1) + S(n, r, 2) + · · ·+ S(n, r, r) =
r

n

(
n

r

)
(1 + 2 + · · ·+ n) =

r(n + 1)
2

(
n

r

)
where S(n, r, i) is the sum of the elements ti over the

(
n
r

)
subsets. The ordered r−element subsets (t1, t2, · · · , tr)

can be mapped one-one to themselves by

(t1, t2, · · · , tr)←→ (n + 1− tr, n + 1− tr−1, · · · , n + 1− t1) .

From this, we see that, for 1 ≤ r,

S(n, r, r + 1− i) =
(

n

r

)
(n + 1)− S(n, r, i)

so that

S(n, r, 1) + S(n, r, r) = S(n, r, 2) + S(n, r, r − 1) = · · · = S(n, r, i) + S(n, r, r + 1− i) = · · · =
(

n

r

)
(n + 1) .

This is not enough to imply that S(n, r, i) is an arithmetic progression in i, but along with this fact would
give a quick solution to the problem.

603. For each of the following expressions severally, determine as many integer values of x as you can so that
it is a perfect square. Indicate whether your list is complete or not.

(a) 1 + x;
(b) 1 + x + x2;
(c) 1 + x + x2 + x3;
(d) 1 + x + x2 + x3 + x4;
(e) 1 + x + x2 + x3 + x4 + x5.

Solution. (a) 1 + x is a square when x = u2 − 1 for some integer u (or when x is the product of two
integers u− 1 and u + 1 that differ by 2).

(b) Solution 1. Suppose that x2 +x+1 = u2. Then (2x+1)2 +3 = 4x2 +4x+4 = 4u2 = (2u)2, whence

3 = (2u)2 − (2x + 1)2 = (2u + 2x + 1)(2u− 2x− 1) .

The factors on the right must be ±3 and ±1 in some order, and this leads to the possibilities (x, u) =
(−1,±1), (0,±1).

(b) Solution 2. If x > 0, then x2 < x2 +x+1 < (x+1)2, so that x2 +x+1 cannot be square. If x < −1,
then x2 > x2 +x+1 > (x+1)2 and x2 +x+1 cannot be square. This leaves only the possibilities x = 0,−1.

(b) Solution 3. For given u, consider the quadratic equation

x2 + x + 1 = u2 .

Its discriminant is 1−4(1−u2) = 4u2−3. It will have integer solutions only if 4u2−3 = v2 for some integer
v, i.e., (v + 2u)(v − 2u) = −3. The only possibilities are (u, v) = (±1,±1), (±1,∓1).
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(b) Solution 4. [J. Chui] If f(x) = 1 + x + x2, then f(x) = f(−(x + 1)), so we need deal only
with nonnegative values of x. We have that f(0) = f(−1) = 1 is square. Let x ≥ 1 and suppose that
1 + x + x2 = u2 for some integer u. Then (1 + x)2 − u2 = x > 0 so that 1 + x > u. This implies that x ≥ u,
whence x2 ≥ u2 = x2 + x + 1, a contradiction. Thus the only possibilities are x = 0,−1.

(b) Solution 5. [A. Birka] Suppose that x2 + x + 1 = u2 with u ≥ 0. This is equivalent to x =
(1+x)2−u2 = (1+x+u)(1+x−u), so that 1+x+u and 1+x−u both divide x. If x ≥ 1, then 1+x+u
exceeds x and so cannot divide x. If x ≤ 0, then (−x) + u− 1 divides x, which is impossible unless u = 1 or
u = 0. Only u = 1 is viable, and this leads to x = 0,−1.

(c) Solution. 1 + x + x2 + x3 = (1 + x2)(1 + x). Let d be a common prime divisor of 1 + x and 1 + x2.
Then d must also divide x(x− 1) = (1 + x2)− (1 + x). Since gcd(x, x + 1) = 1, d must divide x− 1 and so
divide 2 = (x + 1)− (x− 1). Hence, the only common prime divisor of 1 + x2 and 1 + x is 2.

Suppose 1 + x + x2 + x3 = (1 + x2)(1 + x) is square. Then there are only two possibilities:

(i) 1 + x2 = u2 and 1 + x = v2 for integers u and v ;

(ii) 1 + x2 = 2r2 and 1 + x = 2s2 for integers r and s .

Ad (i): 1 = u2 − x2 = (u− x)(u + x)⇔ (x, u) = (0,±1).
Ad (ii): We have x2 − 2r2 = −1 which has solutions

(x, r) = (−1, 1), (1, 1), (7, 5), (41, 29), · · · .

The complete set of solutions of x2−2r2 = ±1 in positive integers is given by {(xn, rn) : n = 1, 2, · · ·}, where
xn + rn

√
2 = (1 +

√
2)n, with odd values of n yielding solutions of x2 − 2r2 = −1. We need to select values

of x for which x + 1 = 2s2 for some s. x = −1, 1, 7 work, yielding

1− 1 + (−1)2 + (−1)3 = 0

1 + 1 + 12 + 13 = 22

1 + 7 + 72 + 73 = 8× 50 = 202 .

There may be other solutions.

(d) Solution 1. Let f(x) = x4 + x3 + x2 + x + 1 = (x5 − 1)/(x− 1), with the quotient form for x 6= 1.
We have that f(0) = f(−1) = 12 and f(3) = (243− 1)/2 = 112. Also f(1) = 5 and f(2) = 31. Suppose that
x ≥ 4. Then x(x− 2) > 3, so that x2 > 2x + 3. Hence

(2x2 + x + 1)2 = 4x4 + 4x3 + 5x2 + 2x + 1

> 4x4 + 4x3 + 4x2 + 4x + 4 = 4f(x)

and
4f(x) = (4x4 + 4x3 + x2) + (3x2 + 4x + 4)

= (2x2 + x)2 + (3x2 + 4x + 4) > (2x2 + x)2 .

Thus, 4f(x) lies between the consecutive squares (2x2 + x)2 and (2x2 + x + 1)2 and so cannot be square.
Hence f(x) cannot be square.

Similarly, if x ≤ −2, then x(x− 2) > 3 and 3x2 + 4x + 4 > 0, and we again find that 4f(x) lies between
the consecutive squares (2x2 + x)2 and (2x2 + x + 1)2. Hence f(x) is square if and only if x = −1, 0, 3.

(d) Solution 2. [M. Boase] For x > 3,(
x2 +

x

2

)2

< x4 + x3 + x2 + x + 1 <

(
x2 +

x + 1
2

)2

24



so that, lying between two half integers, x4 + x3 + x2 + x + 1 is not square. Suppose x = −y is less than −1.
Since y − 1 < 3

4y2 and y2 + 2y − 3 = (y + 3)(y − 1) > 0,(
y2 − y

2

)2

< 1− y + y2 − y3 + y4 <

(
y2 − y − 1

2

)2

so again the middle term is not square. The cases x = −1, 0, 1, 2, 3 can be checked directly.

(e) Solution 1. Let

g(x) = x5 + x4 + x3 + x2 + x + 1 = (x + 1)(x4 + x2 + 1)

= (x + 1)[(x2 + 1)2 − x2] = (x + 1)(x2 + x + 1)(x2 − x + 1) .

Observe that g(x) < 0 for x ≤ −2, so g(x) cannot be square in this case. Let us analyze common divisors of
the three factors of g(x).

Suppose that p is a prime divisor of x + 1. Then

x2 + x + 1 = x(x + 1) + 1 ≡ 1 mod p

and
x2 − x + 1 = x(x + 1)− 2(x + 1) + 3 ≡ 3 mod p .

Hence gcd(x + 1, x2 + x + 1) = 1 and gcd(x + 1, x2 − x + 1) is either 1 or 3.

Suppose q is prime and x2 + x + 1 ≡ 0 (mod q). Then x(x + 1) ≡ −1 (mod q), and x2 − x + 1 ≡ −2x
(mod q). Since x2 + x + 1 is odd, q 6= 2, then x2− x + 1 6≡ 0 (mod q). Hence gcd(x2 + x + 1, x2− x + 1) = 1.

As we have seen from (b), x2 + x + 1 is square if and only if x = −1 or 0. Indeed g(−1) = 02 and
g(0) = 12. Otherwise, x2 + x + 1 cannot be square. But gcd(x2 + x + 1, (x + 1)(x2 − x + 1)) = 1, so g(x)
cannot be a square either. Hence x5 + x4 + x3 + x2 + x + 1 is square if and only if x = −1 or 0.

(e) Solution 2. [M. Boase] Observe that x5 +x4 + · · ·+1 = (x3 +1)(x2 +x+1). Since x3 +1 = (x2 +x+
1)(x−1)+2, the greatest common divisor of x3+1 and x2+x+1 must divide 2. But x2+x+1 = x(x+1)+1
is always odd, so the greatest common divisor must be 1. Hence x2 + x + 1 and x + 1 must both be square.
Hence x must be either −1 or 0.

604. ABCD is a square with incircle Γ. Let l be a tangent to Γ, and let A′, B′, C ′, D′ be points on l such
that AA′, BB′, CC ′, DD′ are all prependicular to l. Prove that AA′ · CC ′ = BB′ ·DD′.

Solution 1. Let Γ be the circle of equation x2 + y2 = 1 and let l be the line of equation y = −1. The
points of the square must lie on the circle of equation x2 + y2 = 2. Let them be

A ∼ (
√

2 cos θ,
√

2 sin θ)

B ∼ (−
√

2 sin θ,
√

2 cos θ)

C ∼ (−
√

2 cos θ,−
√

2 sin θ)

D ∼ (
√

2 sin θ,−
√

2 cos θ)

for some angle θ with −π/4 ≤ θ ≤ π/4. Observe that 1/
√

2 ≤ cos θ ≤ 1 and that −1/
√

2 ≤ sin θ ≤ 1/
√

2.

Then A′ ∼ (
√

2 cos θ,−1), B′ ∼ (−
√

2 sin θ,−1), C ′ ∼ (−
√

2 cos θ,−1) and D′ ∼ (
√

2 sin θ,−1), so that
AA′ = 1 +

√
2 sin θ, BB′ = 1 +

√
2 cos θ, CC ′ = 1−

√
2 sin θ and DD′ = 1−

√
2 cos θ. Hence

AA′ · CC ′ −BB′ ·DD′ = (1 +
√

2 sin θ)(1−
√

2 sin θ)− (1 +
√

2 cos θ)|1−
√

2 cos θ|
= (1 +

√
2 sin θ)(1−

√
2 sin θ) + (1 +

√
2 cos θ)(1−

√
2 cos θ)

= 1− 2 sin2 θ + 1− 2 cos2 θ = 0 .
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Solution 2. One can proceed as in the first solution, taking the four points on the larger circle at the
intersection with the perpendicular lines y = mx and y = −x/m. The points are

A ∼
( √

2√
m2 + 1

,
m
√

2√
m2 + 1

)
B ∼

(
−m
√

2√
m2 + 1

,

√
2√

m2 + 1

)

C ∼
( √

2√
m2 + 1

,
−m
√

2√
m2 + 1

)
D ∼

(
m
√

2√
m2 + 1

,
−
√

2√
m2 + 1

)
.

In this case, the products turn out to be equal to |(m2 − 1)/(m2 + 1)|.

Solution 3. [A. Birka] Let the circle have equation x2 + y2 = 1 and the square have vertices A ∼ (1, 1),
B ∼ (−1, 1), C ∼ (−1,−1), D ∼ (1,−1). Suppose, wolog, that the line l is tangent to the circle at
P (t,
√

1− t2) with 0 < t < 1 and intersects CB produced in Y and AD in X. The line l has equation
tx +

√
1− t2y = 1 and so the coordinates of X are (1, u) and of Y are (−1, 1/u) where u = (1− t)/

√
1− t2.

Now Y B : Y C = (1− u) : (1 + u) = AX : XD. Since ∆Y BB′ is similar to ∆Y CC ′ and ∆XAA′ is similar
to ∆XDD′.

BB′ : CC ′ = Y B : Y C = AX : XD = AA′ : DD′ ,

and the result follows.

Comment. If the circle has equation x2 + y2 = r2, the square has vertices (±r,±r) and the line through
a point (a, b) on the circle has equation ax + by = r2, then the distance product is 2ab.

605. Prove that the number 299 · · · 998200 · · · 029 can be written as the sum of three perfect squares of three
consecutive numbers, where there are n− 1 nines between the first 2 and the 8, and n− 1 zeros between
the last pair of twos.

Solution. Let a − 1, a, a + 1 be the three consecutive numbers. The sum of their square is 3a2 + 2;
setting this equal to the given number yields

a2 = 9 · 102n+1 + · · ·+ 9 · 10n+3 + 9 · 10n+2 + 4 · 10n+1 + 9

= (10n − 1)10n+2 + 4 · 10n+1 + 9 = 102n+2 − 6 · 10n+1 + 9

= (10n+1 − 3)2 ,

so that a = 10n+1 − 3.

606. Let x1 = 1 and let xn+1 =
√

xn + n2 for each positive integer n. Prove that the sequence {xn : n > 1}
consists solely of irrational numbers and calculate

∑n
k=1bx2

kc, where bxc is the largest integer that does
not exceed x.

Solution. We prove that xn is nonrational as well as positive for n ≥ 2. Note that x2 is nonrational.
Suppose that n ≥ 2 and that xn+1 were rational; then xn = x2

n+1−n2 would also be rational; repeating this
would lead to x2 being rational and a contradiction.

Observe that, for any positive integer n ≥ 2,

xn =
√

xn−1 + (n− 1)2 > n− 1 .

We prove by induction that xn < n. This is true for n = 2. If xn−1 < n− 1, then

x2
n = xn−1 + (n− 1)2 < (n− 1)n < n2 ,

and the desired result follows. Thus, for each n ≥ 2, bxnc = n− 1,
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For n ≥ 3,

bx2
nc = bxn−1 + (n− 1)2c = (n− 2) + (n− 1)2 = n2 − n− 1 = n(n− 1)− 1 .

Therefore
n∑

k=1

bx2
kc = bx2

1c+ bx2
2c+

n∑
k=3

bx2
kc

= 3 +
[
(

n∑
k=3

k(k − 1)
]
− (n− 2)

= 5− n +
1
3

n∑
k=3

[(k + 1)k(k − 1)− k(k − 1)(k − 2)]

= 5− n +
1
3
[(n + 1)n(n− 1)− 6] = 3− n +

1
3
(n3 − n)

=
1
3
(n3 − 4n + 9) ,

607. Solve the equation

sinx

(
1 + tanx tan

x

2

)
= 4− cot x .

Solution. For the equation to be defined, x cannot be a multiple of π, so that sinx 6= 0. Rearranging
the terms of the equation and manipulating yields that

4 = cotx + sinx

(
cos x cos x

2 + sinx sin x
2

cos x cos x
2

)
= cot x + sinx

(
cos(x− (x/2))
cos x cos(x/2)

)
=

cos x

sinx
+

sinx

cos x

=
cos2 x + sin2 x

sinx cos x
=

2
sin 2x

,

whence sin 2x = 1
2 . Therefore x = (−1)k π

12 + kπ
2 , where k is an integer.

608. Find all positive integers n for which n, n2 + 1 and n3 + 3 are simultaneously prime.

Solution. If n = 2, then the numbers are 2, 5 and 11 and all are prime. Otherwise, n must be odd.
But in this case, the other two numbers are even exceeding 2 and so nonprime. Therefore n = 2 is the only
possibility.

609. The first term of an arithmetic progression is 1 and the sum of the first nine terms is equal to 369. The
first and ninth terms of the arithmetic progression coincide respectively with the first and ninth terms
of a geometric progression. Find the sum of the first twenty terms of the geometric progression.

Solution. The sum of the first nine terms of an arithmetic progression is equal to 9/2 the sum of the
first and ninth terms, from which it is seen that the ninth term is 81. Let r be the common ratio of the
geometric progression whose first term is 1 and whose ninth term is 81. Then r8 = 81, whence r = ±

√
3.

The sum of the first twenty terms of the geometric progression is 1
2 (310 − 1)(±

√
3 + 1).

610. Solve the system of equations
log10(x

3 − x2) = log5 y2
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log10(y
3 − y2) = log5 z2

log10(z
3 − z2) = log5 x2

where x, y, z > 1.

Solution. For x > 1, let
f(x) = 5log10(x

3−x2) .

The three equations are f(x) = y2, f(y) = z2 and f(z) = x2. Since x3−x2 = x2(x− 1) is increasing, f is an
increasing function. If, say, x < y, then y < z and z < x, yielding a contradiction. Thus, we can only have
that x = y = z and so

log10(x
3 − x2) = log5 x2 .

Let 2t = log5 x2 so that t > 0, x2 = 52t and so x = 5t. Therefore

53t − 52t = 102t =⇒ 5t − 1 = 4t =⇒ 5t − 4t = 1 .

Since 5t − 4t = 4t[(5/4)t − 1] is an increasing function of t, we see that the equation for t has a unique
solution, namely t = 1. Therefore x = 5.

611. The triangle ABC is isosceles with AB = AC and I and O are the respective centres of its inscribed
and circumscribed circles. If D is a point on AC for which ID‖AB, prove that CI ⊥ OD.

Solution. Since ABC is isosceles, the points A,O, I lie on the right bisector of BC. Let AO meet BC
at P , DI meet BC at E, DO meet BC at F and CI meet DF at Q.

Suppose that angle A is less than 60◦. Then O lies between I and A, and Q lies within triangle APB.
Since DE‖AB and O is the centre of the circumcircle of ABC, we have that

∠CDI = ∠BAC = ∠COI ,

so that CIOD is concyclic. Therefore

∠CQD = 180◦ − (∠QOI + ∠QIO) = 180◦ − (∠ICD + ∠PIC)
= 180◦ − (∠ICP + ∠PIC) = 90◦ .

Suppose that angle A exceeds 60◦. Then I lies between O and A, and Q lies on the same side of AP as
C. Since

∠IDC + ∠IOC = ∠BAC + ∠AOC = 180◦ ,

the quadrilateral IOCD is concyclic. Therefore

∠CQD = 180◦ − (∠DCQ + ∠QDC) = 180◦ − (∠QCP + ∠ODC)
= 180◦ − (∠QCP + ∠OIC) = 180◦ − (∠ICP + ∠PIC) = 90◦ .

Finally, if ∠A = 60◦, then I and O coincide so that DF = DE‖AB and the result is clear.

612. ABCD is a rectangle for which AB > AD. A rotation with centre A takes B to a point B′ on CD; it
takes C to C ′ and D to D′. Let P be the point of intersection of the lines CD and C ′D′. Prove that
CB′ = DP .

Solution 1. [N. Lvov; K. Zhou] Since ∠CB′P = 90◦ − ∠DB′A = ∠DAB′ and AD = BC = B′C ′,
triangles AB′D and B′PC are congruent (ASA). Therefore

DP = B′P −B′D = AB′ −B′D

= AB −B′D = CD −B′D = CB′ .
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Solution 2. Let the respective lengths of AB and BC be a and b respectively, and suppose that the
rotation about A is through the angle 2α. Then ∠CBB′ = α and we find that

a = b(tanα + cot 2α)

= b

(
sinα

cos α
+

cos 2α

sin 2α

)
= b

(
2 sin2 α + 1− 2 sin2 α

sin 2α

)
= b

(
1

sin 2α

)
.

Since |B′C ′| = b and ∠C ′B′P = 90◦ − 2α, then ∠B′PC ′ = 2α. Thus sin 2α = |B′C ′|/|B′P |, so that
|B′P | = b/ sin 2α = a = |CD|. The result follows.

Solution 3. [A. Dhawan] The circle with centre A and radius |AD| passes though D and D′; the tangent
through P are PD and PD′ and so

∠DAP =
1
2
∠D′AD =

1
2
∠B′AB .

Also, we have that

∠B′BC = 90◦ − ∠B′BA =
1
2
(180◦ − ∠B′BA− ∠BB′A) =

1
2
∠B′AB ,

so that ∠PAD = ∠B′BC. Since also ∠PDA = 90◦ = ∠B′CB and DA = CB, triangles PDA and B′CB
are congruent (ASA). Therefore PD = B′C.

613. Let ABC be a triangle and suppose that

tan
A

2
=

p

u
tan

B

2
=

q

v
tan

C

2
=

r

w
,

where p, q, r, u, v, w are positive integers and each fraction is written in lowest terms.

(a) Verify that pqw + pvr + uqr = uvw.

(b) Let f be the greatest common divisor of the pair (vw − qr, qw + vr), g be the greatest common
divisor of the pair (uw−pr, pw+ur), and h be the greatest common divisor of the pair (uv−pq, pv+qu).
Prove that

fp = vw − qr fu = qw + vr

gq = uw − pr gv = pw + ur

hr = uv − pq hw = pv + qu .

(c) Prove that the sides of the triangle ABC are proportional to fpu : gqv : hrw.

Solution 1. Since A/2 and B/2 + C/2 are complementary, cot(A/2) = tan(B/2 + C/2), whence

u

p
=

qw + vr

vw − qr
.

Parts (a) and (b) follow immediately.

The sides of the triangle are proportional to sinA : sinB : sinC. Now

sinA =
2 tan A

2

sec2 A
2

=
2pu

p2 + u2
=

2fpu

f(p2 + u2)
;
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sinB =
2 tan B

2

sec2 B
2

=
2qv

q2 + v2
=

2gqv

g(q2 + v2)
;

sinC =
2 tan C

2

sec2 C
2

=
2rw

r2 + w2
=

2hrw

h(r2 + w2)
.

From (b), we have that
f2(p2 + u2) = (q2 + v2)(r2 + w2)

so that
f2(p2 + u2)2 = (p2 + u2)(q2 + v2)(r2 + w2) .

Similar equations hold for g and h. We find that

f(p2 + u2) = g(q2 + v2) = h(r2 + w2) .

Hence sin A : sinB : sinC = fpu : gqv : hrw as desired.

Solution 2. (a) and (b) can be obtained as above. For (c), let x, y, z be the respective distances from
A,B, C to the adjacent tangency points of the incircle of triangle ABC. Then tanA/2 = r/x, tan B/2 = r/y
and tan C/2 = r/z. Also a = y + z, b = z + x and c = x + y. It follows that

a : b : c = y + z : z + x : x + y

=
(

1
tanB/2

+
1

tanC/2

)
:
(

1
tanC/2

+
1

tanA/2

)
:
(

1
tanA/2

+
1

tanB/2

)
=

(
v

q
+

w

r

)
:
(

w

r
+

u

p

)
:
(

u

p
+

v

q

)
= p(qw + vr) : q(pw + ru) : r(pv + qu) = fpu : gqv : hrw .

614. Determine those values of the parameter a for which there exist at least one line that is tangent to the
graph of the curve y = x3 − ax at one point and normal to the graph at another.

Solution. The tangent at (u, u3 − au) has equation y = (3u2 − a)x− 2u3. This line intersects the curve
again at the point whose abscissa is −2u and whose tangent has slope 12u2− a. The condition that the first
tangent be normal at the second point is

(12u2 − a)(3u2 − a) = −1

or
36u4 − 15u2a + (a2 + 1) = 0 .

The discriminant of this quadratic in u2 is

225a2 − 144(a2 + 1) = 9(3a− 4)(3a + 4) .

The quadratic has positive real roots for u2 if and only if |a| ≥ 4/3.

615. The function f(x) is defined for real nonzero x, takes nonzero real values and satisfies the functional
equation

f(x) + f(y) = f(xyf(x + y)) ,

whenever xy(x + y) 6= 0. Determine all possibilities for f .

Solution. [J. Rickards] The functional equation is satisfied by f(x) = 1/x. More generally, suppose, if
possible, that there exists a number a for which f(a) = 1/b with b 6= a. Then

f(b) + f(a− b) = f(b(a− b)f(a)) = f(a− b) ,
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whence f(b) = 0. But this contradicts the condition on f . Therefore there is no such a and f(x) = 1/x is
the unique solution.

616. Let T be a triangle in the plane whose vertices are lattice points (i.e., both coordinates are integers),
whose edges contain no lattice points in their interiors and whose interior contains exactly one lattice
point. Must this lattice point in the interior be the centroid of the T?

Solution 1. [M. Valkov] Let ABC be the triangle and let X be the single lattice point within its interior.
Using Pick’s Theorem that the area of a lattice triangle is (1/2)b + i − 1, where b is the number of lattice
points on the boundary and i the number in the interior, we find that [ABC] = 3/2 and [ABX] = [BCX] =
[CAX] = 1/2. Let the line through X parallel to BC meet AB at Y and AC at Z. This is line is one-third
of the distance from BC as A. Let AX meet BC at P . Then Y X : BP = AX : AP = 2 : 3.

Since X is one-third the distance from AB as C, we have that Y X : BC = 1 : 3, whence 2BP = BC
and X is on the median from A. Similarly, X is on the other two medians and so is the centroid of the
triangle.

Solution 2. [J. Schneider; J. Rickards] The answer is “yes”. Without loss of generality, we can assume
that the three points are (0, 0), (a, b) and (u, v). The area of the triangle can be computed in two ways, by
Pick’s Theorem ( 1

2b + i − 1 where b is the number of lattice points on the boundary and i the number of
lattice points in the interior of a polygon whose vertices are at lattice points) and directly using the formula
for the area of a triangle with given vertices. This yields the equation

3
2

=
1
2
|av − bu| ,

whence we deduce that av − bu ≡ 0 (mod 3).

Since there is no lattice point in the interior of the sides of the triangle, it follows that, modulo 3,
a ≡ b ≡ 0, u ≡ v ≡ 0 and a ≡ u&b ≡ v are each individually impossible. If (a, b) ≡ (0,±1), then u ≡ 0 and
v ≡ ∓1; thus, modulo 3, a + u ≡ b + v ≡ 0 and the centroid ( 1

3 (a + u), 1
3 (b + v)) is a lattice point. Since the

centroid lies inside the triangle and there is exactly one lattice point inside the triangle, the interior point
must be the centroid. A similar analysis can be made if none of the coordinates a, b, u, v are divisible by 3.
Thus, in all cases, the interior point is the centroid of the triangle.

617. Two circles are externally tangent at A and are internally tangent to a third circle Γ at points B and
C. Suppose that D is the midpoint of the chord of Γ that passses through A and is tangent there to the
two smaller given circles. Suppose, further, that the centres of the three circles are not collinear. Prove
that A is the incentre of triangle BCD.

Solution 1. Let G denote the centre of the circle with points B and A on the circumference and H the
centre of the circle with the points C and A on the circumference. Wolog, we assume that the former circle
is the larger. Suppose that O is the centre of the circle Γ. The points G, A and H are collinear, as are B, G,
O and C, H, O. Let the chord of Γ tangent to the smaller circles meet the circumference of Γ at J and K.

We have the OD and GH are both perpendicular to JK so that GH‖OD. Let BA and OD intersect
at F . Since BG = GA and triangles BGA and BOF are similar, BO = OF and F lies on Γ. Similarly,
the point E where CA and OD intersect lies on Γ. Since ∠ABE = ∠FBE = 90◦ = ∠ADE, the points
B,E,D, A are concyclic. Therefore ∠CBF = ∠CEF = ∠AED = ∠ABD and so A lies on the bisector of
angle CBD. Similarly, A lies on the bisector of angle DCB. If follows that A is the incentre of triangle
BCD.

Solution 2. Use the same notation as in the previous solution. Wolog, let the circle with centre G be at
least as large as the circle with centre H. Suppose that the tangents to the circle Γ at B and C meet at the
point L, and that LB and LA′ are the tangents from L to the circle with centre G. Then LC = LB = LA′.
There is a unique circle ∆ that is tangent to LC and LA′ at the points C and A′. This circle is tangent also
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to the circle Γ and the circle with centre G. Therefore, this circle must be the same circle with centre H, so
that LA, LB and LC are each tangent to two of the three circles. Therefore, LA = LB = LC.

Observe that, because of subtended right angles, each of the quadrilaterals LBOC, LDOB, LODC is
concyclic. We have that

∠LDC = ∠LOC = ∠LBC = ∠LCB = ∠LOB = ∠LDB ,

with the result that A lies on the bisector of angle BDC.

Let ∠ABO = β and ∠ACO = γ. Then ∠ACL = 90◦− γ, so that ∠DLC = 2γ. Similarly, ∠DLB = 2β.
Therefore

∠BLC = 2(β + γ) =⇒ ∠BCL = 90◦ − β − γ =⇒ ∠BCA = ∠ACL− ∠BCL = β .

Because LODC is concyclic,

∠OCD = ∠OLD = ∠OLC − ∠DLC = (β + γ)− 2γ = β − γ .

Hence
∠ACD = ∠ACO + ∠OCD = γ + (β − γ) = β = ∠BCA

and A lies on the bisector of angle BCA. Therefore A is the incentre of triangle BCD.

618. Let a, b, c, m be positive integers for which abcm = 1 + a2 + b2 + c2. Show that m = 4, and that there
are actually possibilities with this value of m.

Solution. [J. Schneider] If any of a, b, c are even, then so is abcm. If a, b, c are all odd, then the right
side of the equation is even and abcm is even. Thus, abcm must be even and an even number of a, b, c are
even. If two of a, b, c are even, then the left side is congruent to 0 modulo 4 while the right is congruent to
2. Hence, it follows that all of a, b, c are odd. Therefore the right side is congruent to 4 modulo 8, and so m
must be an odd multiple of 8.

If m = 4, then we have infinitely many solutions. One solution is (m,a, b, c) = (4, 1, 1, 1). Suppose that
we are given a solution (m,a, b, c) = (4, 1, u, v). Then the equation is equivalent to v2 − 4uv + (2− u2) = 0,
i.e. v is a root of the quadratic equation

x2 − 4ux + (2− u2) = 0 .

The second root 4u−v of this quadratic equation also yields a solution: (m,a, b, c) = (4, 1, u, 4u−v). In this
way, we can find an infinite sequence of solutions of the form (m,a, b, c) = (4, 1, un, un+1) where u1 = u2 = 1
and un+1 = 4un − un−1.

Now suppose that m ≥ 12. The equation can be rewritten

a

bc
+

b

ac
+

c

ab
+

1
abc

= m .

Wolog, let a ≤ b ≤ c. Then only the term c/ab is not less than 1, and we must have c ≥ 9ab. Since

2 < (81a2 − 1)(81b2 − 1) = 81(81a2b2 − a2 − b2) + 1 ≤ 81(c2 − a2 − b2) + 1 ,

whence c2 > a2 + b2 + 1.

Suppose that the given equation is solvable and that (m,a, b, c) is that solution which minimizes the
sum a + b + c for the given m. Since (m,a, b, x) satisfies the equation if and only if

x2 −mbcx + (a2 + b2 + 1) = 0 ,
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and since c is one root of this equation, the other root yields the solution (m,a, b, (a2 + b2 + 1)/c). However,
the last entry of this is less than c and yields a solution with a smaller sum. Thus, we have a contradiction.
Therefore there are no solutions with m > 4.

619. Suppose that n > 1 and that S is the set of all polynomials of the form

zn + an−1z
n−1 + an−2z

n−2 + · · ·+ a1z + a0 ,

whose coefficients are complex numbers. Determine the minimum value over all such polynomials of the
maximum value of |p(z)| when |z| = 1.

Solution. [J. Schneider] For each value of n, the minimum is equal to 1. This minimum is attained for
the polynomial zn whose absolute value is equal to 1 when |z| = 1.

Let q(z) = a0z
n + a1z

n−1 + · · · + an−1z + 1, so that p(z) = znq(1/z). Hence |p(z)| = |q(1/z)|, when
|z| = 1. Thus, the existence of z with |z| = 1 for which |p(z)| ≥ 1 is equivalent to the existence of z with
|z| = 1 for which |q(z)| ≥ 1.

Let ζ be a primitive (n + 1)th root of unity (i.e., ζ = cos(2π/(n + 1)) + i sin(2π/(n + 1)), say). Then
the set of (n + 1) roots of unity consists of 1 and ζk = ζk (for 1 ≤ a ≤ n). Observe that for 1 ≤ k, i ≤ n,

1 + ζi
1 + ζi

2 + · · ·+ ζi
n = 1 + (ζi)1 + (ζi)2 + · · ·+ (ζi)n =

(ζi)n+1 − 1
ζi − 1

= 0 .

Therefore

q(1) + q(ζ1) + q(ζ2) + · · ·+ q(ζn) = a0(1 + ζn
1 + · · ·+ ζn

n ) + · · ·+ an−1(1 + ζ1 + · · ·+ ζn) + (n + 1) = n + 1 .

However, then
n + 1 = |q(1) + q(ζ1) + · · ·+ q(ζn)| ≤ |q(1)|+ |q(ζ1)|+ · · ·+ |q(ζn)| ,

so that at least one of the values in the right member is not less than 1. The desired result follows.

620. Let a1, a2, · · · , an be distinct integers. Prove that the polynomial

p(z) = (z − a1)2(z − a2)2 · · · (z − an)2 + 1

cannot be written as the product of two nonconstant polynomials with integer coefficients.

Solution. Suppose, if possible that p(z) = q(z)r(z), where q(z) and r(z) are two polynomials of positive
degree with integer coefficients. Then, for each ai, q(ai) and r(ai) are integers whose product is 1; therefore
they can be only 1 or −1. Since the polynomial p(z) is positive for real z, neither of the polynomials q(z)
nor r(z) can vanish for any real value of z; therefore, the sign of each is constant for real z. By multiplying
both by −1 if necessary, we may assume that both polynomials q and r are always positive for real z. Hence
q(ai) = r(ai) = 1 for 1 ≤ i ≤ n. Thus, each of the polynomial q(z)− 1 and r(z)− 1 has n distinct zeros ai

and so have degree not less than n. Since the degree of p(z) is exactly 2n, the degrees of q(z) and r(z) must
be exactly n. Therefore

q(z) = r(z) = 1 + (z − a1)(z − a2)(z − a3) · · · (z − an) .

Therefore
(z − a1)2(z − a2)2(z − a3)2 · · · (z − an)2 + 1 = q(z)2 ,

whence
1 = [q(z)− (z − a1)(z − a2) · · · (z − an)][q(z) + (z − a1)(z − a2) · · · (z − an)] .
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But this is impossible as the second factor on the right has positive degree. The desired result follows.

621. Determine the locus of one focus of an ellipse reflected in a variable tangent to the ellipse.

Solution. Let the foci of the ellipse be F and G, and let P be an arbitrary point on the ellipse. Suppose
that H is the reflected image of F in the tangent through P . We note that

|HP |+ |GP | = |FP |+ |GP

is constant. Also, if X is an arbitrary point on the tangent on the same side of P as FH and Y is a point
on the tangent on the opposite side, then ∠HPX = ∠FPX = ∠GPY = 180◦−∠GPX, so that G, P, H are
collinear. Therefore H lies on the circle with centre G and radius |GP |+ |FP |.

Conversely, let K be any point on this circle. Since the ellipse is contained in the interior of the circle,
the segment GK intersects the ellipse at a point P . We have that

|PK| = |GK| − |GP | = |FP | .

Let XY be the tangent to the ellipse at P with X on the same side of P as KF and Y on the opposite side.
Then

∠KPX = ∠GPY = ∠FPX ,

from which it follows that K is the reflection of F in the tangent XY .

Comment. To show that the locus is the prescribed circle, you need to show, not only that each point
on the locus lies on the circle, but also that each point on the circle satisfies the locus.

622. Let I be the centre of the inscribed circle of a triangle ABC and let u, v, w be the respective lengths of
IA, IB, IC. Let P be any point in the plane and p, q, r the respective lengths of PA, PB, PC. Prove
that, with the sidelengths of the triangle given conventionally as a, b, c,

ap2 + bq2 + cr2 = au2 + bv2 + cw2 + (a + b + c)z2 ,

where z is the length of IP .

Solution 1. [R. Cheng] The equation can be rearranged to read

a(p2 − u2 − z2) + b(q2 − v2 − z2) + c(r2 − w2 − z2) = 0 .

By the Law of Cosines applied to triangle API, we have that

p2 − u2 − z2 = 2uz cos ∠PIA = −→IA · −→IP .

Similar relations can be obtained for triangles PIB and PIC, and so the equation to be derived is

a
−→
IA · −→IP + b

−→
IB · −→IP + c

−→
IC · −→IP = 0 .

Since this has to be derived for all points P , we need to show that

(a−→IA + b
−→
IB + c

−→
IC) = −→O .

We show that a
−→
IA + b

−→
IB is collinear with −→IC. Construct points X and Y on the line CI so that

AX and BY are both perpendicular to CI. We show that a|AX| = b|BY |. Select M on AB so that
IM ⊥ AB. Then, from the Law of Sines, AI : IB = sin(B/2) : sin(A/2) and AX : BY = sin(B/2) cos(B/2) :
sin(A/2) cos(A/2) = sinB : sin A, from which a|AX| = b|BY |. Thus, a

−−→
AX + b

−−→
BY has zero component in
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the direction orthogonal to CI and so a
−→
IA + b

−→
IB is collinear with −→IC. Repeat this for the other two vectors

to find that a
−→
IA + b

−→
IB + c

−→
IC = 0 is collinear with each of its summands, and therefore must be zero.

Solution 2. [N. Lvov] Let p = −→AP , q = −−→BP , r = −−→CP and z = −→IP . Let

u =
bc− cb
a + b + c

.

This is a vector that points into the triangle from vertex A. Suppose that Q is the tip of this vector, so that
u = −→AQ. The distance of Q from side AC is equal to

2[AQC]
b

=
|u× v|

b
=
|b× c|

a + b + c
=

2[ABC]
a + b + c

,

which is the inradius of triangle ABC. Similarly, the distance of Q from side AB is equal to the inradius.
Therefore, Q must be the incentre of the triangle. A similar analysis can be made for the other two vertices
of the triangle and we find that

u =
bc− cb
a + b + c

= −→AI ;

v ≡ ca− ac
a + b + c

= −→BI ;

and
w =

ab− ba
a + b + c

= −→CI .

Since au + bb + cc = 0,

a(p + u) + b(q + v) + c(c + r) = a(p− u) + b(q− v) + c(c− r) .

Taking the dot product of this equation with the vector z = p− u = q− v = r−w leads to

(ap2 + bq2 + cr2)− (au2 + bv2 + cr2) = (a + b + c)z2 ,

as desired.

623. Given the parameters a, b, c, solve the system

x + y + z = a + b + c;

x2 + y2 + x2 = a2 + b2 + c2;
x

a
+

y

b
+

z

c
= 3 .

Solution. [N. Lvov, J. Schneider] The first and third equations represent two planes in space that
intersect in a line; the second represents a sphere, which the line intersects in at most two points. Therefore
there are at most two solutions to the equation. One is (x, y, z) = (a, b, c). The second is equal to

(x, y, z) = (a[1− k(b− c)], b[1− k(c− a)], c[1− k(a− b)])

where

k =
2[a2(b− c) + b2(c− a) + c2(a− b)]
a2(b− c)2 + b2(c− a)2 + c2(a− b)2

=
(a− b)(b− c)(c− a)

a2b2 + b2c2 + c2a2 − abc(a + b + c)
.
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Comment. This satisfies the linear equations regardless of the value of k, and substitution into the
quadratic equation will establish the appropriate value of k.

624. Suppose that xi ≥ 0 and
n∑

i=1

1
1 + xi

≤ 1 .

Prove that
n∑

i=1

2−xi ≤ 1 .

Solution. [J. Schneider] Let f(x) = x21/x. Since f ′(x) = (1 − (log 2/x))21/x < 0 for 0 < x < log 2, it
follows that f(x) decreases on the interval (0, 1

2 ].

The function 2x−1 is convex, so that the graphs of y = x and y = 2x−1 intersect in at most two points.
Since they intersect at x = 1 and x = 2, it follows that x > 2x−1 when 1 < x < 2 and x < 2x−1 when x > 2.

It suffices to prove the problem under the condition that
∑

(1 + xi)−1 = 1, for if
∑

(1 + xi)−1 < 1, then
we can select X > 0 so that (1 + X)−1 +

∑
(1 + xi)−1 = 1 and obtain 2−X +

∑
2−xi ≤ 1, from which the

desired result would follow.

Let yi = (1 + xi)−1 so that
∑

yi = 1. Suppose, to begin with that yi ≤ 1
2 for each i. Then, since

f(yi) ≥ f( 1
2 = 2, it follows that

2−xi = 2(1−(1/yi)) =
2

21/yi
≤ yi

so that
∑n

i=1 2−xi ≤
∑n

i=1 yi = 1 as desired.

The remaining case is that at least one yi exceeds 1
2 . There can be at most one such yi, so we may

suppose that y1, y2, · · · , yn−1 ≤ 1
2 < yn.

Suppose that g(x) = 2(1−(1/x)). We show that

g(y1) + g(y2) + · · ·+ g(yn−1) ≤ g(y1 + y2 + · · ·+ yn−1) .

Suppose that Y = y1 + y2 + · · ·+ yn−1; note that Y < 1
2 . Then

g(y1) + g(y2) + · · ·+ g(yn) = 2
[

y1

f(y1)
+

y2

f(y2)
+ · · ·+ yn−1

f(yn−1)

]
≤ 2

[
y1

f(Y )
+

y2

f(Y )
+ · · ·+ yn−1

f(Y )

]
≤ 2Y

f(Y )
= g(Y ) = g(y1 + y2 + · · ·+ yn−1) .

We need to show that
∑n

i=1 g(yi) ≤ 1 when
∑n

i=1 yi = 1. This can be achieved by showing that
g(Y ) + g(1− Y ) ≤ 1; this amounts to

1

2
1−Y

Y

+
1

2
Y

1−Y

≤≤ 1,

for 0 < Y < 1. Let z = (1− Y )/Y . Then we need to show that

1
2z

+
1

21/z
≤ 1

for z > 0. Since the left side takes the same value at z and 1/z, it is enough to establish this for z ≥ 1.
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When z ≥ 2, we can use the fact that 2z−1 ≥ 2 and Bernoulli’s inequality to obtain(
1− 1

2z

)z

≥ 1− z

2z
≥ 1− 1

2
=

1
2

,

from which 1− 2−z ≥ 2−1/z as desired.

Suppose that 1 ≤ z ≤ 2. Let h(z) = 2−z + 2−1/z. Then h(1) = 1. We show that h(z) decreases for
z ≥ 1.

h′(z) = − log 2 · 2−z + log 2 · z−22−1/z .

Since 1 ≤ z ≤ 2, we have that z ≥ 2z−1, so that z2 ≥ 22z−2. However

(2z − 2)−
(

z − 1
z

)
=

(
z +

1
z

)
− 2 ≥ 0

so that 2z − 2 ≥ z − (1/z). Therefore z2 ≥ 2z− 1
z and so

h′(z) ≤ − log 2 · 2−z + log 2 · 2−1/z · 2 1
z −z = log 2(−2−z + 2−z) = 0 .

Thus, h(z) decreases on [1, 2] and so h(z) ≤ 1 there. This completes the solution.

625. Given an odd number of intervals, each of unit length, on the real line, let S be the set of numbers that
are in an odd number of these intervals. Show that S is a finite union of disjoint intervals of total length
not less than 1.

Solution. The result holds when there is one interval. Suppose that n is an odd number greater than 1
and, as an induction hypothesis, that the result holds for any odd number of intervals fewer than n. Since all
of the intervals have the same length, they can be linearly ordered from left to right. Let Z be the rightmost
interval and Y the next to rightmost interval. Let T be the union of all the intervals but Y and Z, and S′

the set of points that belong to an odd number of the intervals making up T . By the induction hypothesis,
S′ is the union of a finite number of disjoint intervals not less than 1.

S contains the entire interval Z\Y , as points here are contained only in Z; S ∩ (Y ∩Z) = S′ ∩ (Y ∩Z),
as we are adding evenly many intervals to the collection making up T for the points in Y ∩ Z. Thus, the
only points that lie in S′ but not in S must lie within Y \Z. Note that these points deleted from S′ consitute
a union of intervals, since they are obtained by intersecting intervals. Since Y and Z have equal length,
|Y \Z| = |Z\Y | and so we augment S′ by an interval that exceeds the length of the intervals of S′ deleted.
Therefore, the total length of the intervals making up S is at least 1.

626. Let ABC be an isosceles triangle with AB = AC, and suppose that D is a point on the side BC with
BC > BD > DC. Let BE and CF be diameters of the respective circumcircles of triangles ABD and
ADC, and let P be the foot of the altitude from A to BC. Prove that PD : AP = EF : BC.

Solution 1. Since angles BDE and CDF are both right, E and F both lie on the perpendicular to BC
through D. Since ABDE and ADCF are concyclic,

∠AEF = ∠ABD = ∠ABC = ∠ACB = ∠ACD = ∠AFD = ∠AFE .

Therefore triangles AEF and ABC are similar. Thus AEF is isosceles and its altitude through A is
perpendicular to DEF and parallel to BC, so that it is equal to PD. Therefore, from the similarity,
PD : AP = EF : BC, as desired.

Solution 2. Since the chord AD subtends the same angle (∠ABC = ∠ACB) in circles ABD and ACD,
these circles must have equal diameters. The rotation with centre A that takes B to C takes the circle ABD
to a circle with chord AC of equal diameter. The angle subtended at D by AB on the circumcircle of ABD
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is the supplement of the angle subtended at D by AC on the circumcircle of ACD. Therefore, this image
circle must be the circle ACD. Therefore the diameter BE is carried to the diameter CF , and E is carried
to F . Hence AE = AF and ∠BAC = ∠EAF . Thus, triangles ABC and AEF are similar.

Now consider the composite of a rotation about A through a right angle followed by a dilatation of
factor |AE|/|AB|. This transformation take B to E and C to F , and therefore the altitude AP to the
altitude AM of triangle AEF which is therefore parallel to BC. Since D lies on the circumcircle of ABD
with diameter BE, ∠BDE = 90◦. Similarly, ∠CDF = 90◦. Hence AMDP is a rectangle and AM = PD.
The result follows from the similarity of triangles ABC and AEF .

627. Let
f(x, y, z) = 2x2 + 2y2 − 2z2 +

7
xy

+
1
z

.

There are three pairwise distinct numbers a, b, c for which

f(a, b, c) = f(b, c, a) = f(c, a, b) .

Determine f(a, b, c). Determine three such numbers a, b, c.

Solution. Suppose that a, b, c are pairwise distinct and f(a, b, c) = f(b, c, a) = f(c, a, b). Then

2a2 + 2b2 − 2c2 +
7
ab

+
1
c

= 2b2 + 2c2 − 2a2 +
7
bc

+
1
a

so that

4(a2 − c2) =
(

1
a
− 1

c

)(
1− 7

b

)
=

1
abc

(c− a)(b− 7) .

Therefore 4abc(a + c) = 7 − b. Similarly, 4abc(b + a) = 7 − c. Subtracting these equations yields that
4abc(c− b) = c− b so that 4abc = 1. It follows that a + b + c = 7.

Therefore
f(a, b, c) = 2(a2 + b2)− 2c2 + 28c + 4ab

= 2(a + b)2 − 2c2 + 28c = 2(7− c)2 − 2c2 + 28c

= 98− 28c + 2c2 − 2c2 + 28c = 98 .

We can find such triples by picking any nonzero value of c and solving the quadratic equation t2 − (7−
c)t + (1/4c) = 0 for a and b. For example, taking c = 1 yields the triple

(a, b, c) =
(

6 +
√

35
2

,
6−
√

35
2

, 1
)

.

628. Suppose that AP , BQ and CR are the altitudes of the acute triangle ABC, and that

9−→AP + 4−−→BQ + 7−→CR = −→O .

Prove that one of the angles of triangle ABC is equal to 60◦.

Solution 1. [H. Spink] Since the sum of the three vectors 9−→AP , 4−−→BQ, 7−→CR is zero, there is a triangle
whose sides have lengths 9|AP |, 4|BQ|, 7|CR| and are parallel to the corresponding vectors.

Where H is the orthocentre, we have that

∠BHP = 90◦ − ∠QBC = ∠ACB
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so that the angle between the vectors −→AP and −−→BQ is equal to angle ACB. Similarly, the angle between
vectors −−→BQ and −→CR is equal to angle BAC. It follows that the triangle formed by the vectors is similar to
triangle ABC and

|AB| : 7|CR| = |BC| : 9|AP | = |CA| : 4|BQ| .

Since twice the area of the triangle ABC is equal to

|AB| × |CR| = |BC| × |AP | = |CA| × |BQ| ,

we have that (with conventional notation for side lengths)

c2

7
=

a2

9
=

b2

4

so that a : b : c = 3 : 2 :
√

7.

If one angle of the triangle is equal to 60◦ we would expect it to be neither the largest nor the smallest.
Accordingly, we compute the cosine of angle ACB, namely

a2 + b2 − c2

2ab
=

9 + 4− 7
2× 3× 2

=
6
12

=
1
2

.

Therefore ∠ACB = 60◦.

Solution 2. Let the angles of the triangle be α = ∠BAC, β = ∠CBA and γ = ∠ACB; let p, q, r be
the respective magnitudes of vectors −→AP , −−→BQ, −→CR. Taking the dot product of the vector equation with−−→
BC and noting that ∠QBC = 90 − γ and ∠BCR = 90 − β, we find that 4q sin γ = 7r sinβ. Similarly,
9p sin γ = 7r sinα and 9p sinβ = 4q sinα. Using the conventional notation for the sides of the triangle, we
have that

a : b : c = sinα : sinβ : sin γ = 9p : 4q : 7r .

However, we also have that twice the area of triangle ABC is equal to ap = bq = cr, so that a : b : c =
(1/p) : (1/q) : (1/r). Therefore 9p2 = 4q2 = 7r2 = k, for some constant k. Therefore

cos ∠ACB =
a2 + b2 − c2

2ab
=

81p2 + 16q2 − 49r2

72pq

=
9k + 4k − 7k

12k
=

1
2

,

from which it follows that ∠C = 60◦.

Solution 3. [C. Deng] Observe that

|BQ| = |BC| cos ∠QBC = |BC|∠ sinACB ,

|CR| = |BC| cos ∠RCB = |BC| sin∠ABC .

Resolving in the direction of −−→BC, we find from the given equation that

4|BC| cos2 ∠QBC = 4|BQ| cos ∠QBC = 7|CR| cos ∠RCB = 7|BC| cos2 ∠RCB

=⇒ 4 sin2 ∠ACB = 7 sin2 ∠ABC .

By the Law of Sines, AC : AB = sin ∠ABC : sin ∠ACB = 2 :
√

7 . Similarly AC : BC = 2 : 3, so that
CA : AB : BC = 2 :

√
7 : 3. The cosine of angle ACB is equal to (4+9−7)/12 = 1/2, so that ∠ACB = 60◦.

629. (a) Let a > b > c > d > 0 and a + d = b + c. Show that ad < bc.
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(b) Let a, b, p, q, r, s be positive integers for which
p

q
<

a

b
<

r

s

and qr − ps = 1. Prove that b ≥ q + s.

(a) Solution 1. Since c = a + d− b, we have that

bc− ad = b(a + d− b)− ad = (a− b)b− (a− b)d = (a− b)(b− d) > 0 .

Solution 2. Let a + d = b + c = u. Then

bc− ad = b(u− b)− (u− d)d = u(b− d)− (b2 − d2) = (b− d)(u− b− d) .

Now u = b + c > b + d, so that u− b− d > 0 as well as b− d > 0. Hence bc− ad > 0 as desired.

Solution 3. Let x = a− b > 0. Since a− b = c− d, we have that a = b + x and d = c− x. Hence

bc− ad = bc− (b + x)(c− x) = bx− cx + x2 = x2 + x(b− c) > 0 .

Solution 4. Since
√

a >
√

b >
√

c >
√

d,
√

a−
√

d >
√

b−
√

c. Squaring and using a + d = b + c yields
2
√

bc > 2
√

ad, whence the result.

(b) Solution. Since all variables represent integers,

aq − bp > 0, br − as > 0 =⇒ aq − bp ≥ 1, br − as ≥ 1 .

Therefore
b = b(qr − ps) = q(br − as) + s(aq − bp) ≥ q + s .

630. (a) Show that, if
cos α

cos β
+

sinα

sinβ
= −1 ,

then
cos3 β

cos α
+

sin3 β

sinα
= 1 .

(b) Give an example of numbers α and β that satisfy the condition in (a) and check that both equations
hold.

(a) Solution 1. Let

λ =
cos β

cos α
and µ =

sinβ

sinα
.

Since λ−1 + µ−1 = −1, we have that λ + µ = −λµ. Now

1 = cos2 β + sin2 β = λ2 cos2 α + µ2 sin2 α = λ2 + (µ2 − λ2) sin2 α = λ2 − (µ− λ)λµ sin2 α .

Hence
cos3 β

cos α
+

sin3 β

sinα
= λ3 cos2 α + µ3 sin2 α

= λ(λ2 cos2 α + µ2 sin2 α) + (µ− λ)µ2 sin2 α

= λ + (µ− λ)µ2 sin2 α

=
1
λ

[λ2 + (λ2 − 1)µ]

=
1
λ

[λ2 + λ2µ + λ + λµ

= λ + λµ + 1 + µ = 1 .
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Solution 2. [M. Boase]
cos α

cos β
+

sinα

sinβ
= −1 =⇒

sin(α + β) + sin β cos β = 0 . (∗)
Therefore

cos3 β

cos α
+

sin3 β

sinα
=

cos β(1− sin2 β)
cos α

+
sinβ(1− cos2 β)

sinα

=
cos β

cos α
+

sinβ

sinα
− sinβ cos β

(
sinβ

cos α
+

cos β

sinα

)
=

sin(α + β)
cos α sinα

− cos β sinβ(cos(α− β))
cos α sinα

=
−2 sinβ cos β + 2 sin(α + β) cos(α− β)

2 sinα cos α
using (∗)

=
−2 sinβ cos β + [sin 2α + sin 2β]

sin 2α
= 1

since 2 sinβ cos β = sin 2β.

Solution 3. [A. Birka] Let cos α = x and cos β = y. Then

sinα

sinβ
= ±

√
1− x2

1− y2
.

Since
x

y
+ 1 = ∓

√
1− x2

1− y2
.

then
(x2 + 2xy + y2)(1− y2) = y2(1− x2) ,

whence
x2 + 2xy = 2xy3 + y4 .

Thus,
cos3 β

cos α
+

sin3 β

sinα
=

y3

x
± (1− y2)

√
1− y2

1− x2

=
y3

x
− (1− y2)y

x + y
=

y4 + 2xy3 − xy

x(x + y)

=
x2 + xy

x(x + y)
= 1 .

Solution 4. [J. Chui] Note that the given equation implies that sin 2β = −2 sin(α + β) and that the
numerator of

cos α

cos β
+

sinα

sinβ
+

cos3 β

cos α
+

sin3 β

sinα

is one quarter of
4[cos2 α sinα sinβ + sin2 α cos α cos β + cos4 β sinα sinβ + sin4 β cos α cos β]

= 4[cos2 α sinα sinβ + sin2 α cos α cos β + (cos2 β − cos2 β sin2 β) sinα sinβ

+ (sin2 β − sin2 β cos2 β) cos α cos β]

= (4 cos2 α + 4 cos2 β − sin2 2β) sinα sinβ + (4 sin2 α + 4 sin2 β − sin2 2β) cos α cos β

= 2 sin 2α cos α sinβ + 2 sin 2β cos β sinα + 2 sin 2α sinα cos β + 2 sin 2β cos α sinβ

− sin2 2β(cos α cos β + sinα sinβ)

= 2(sin 2α + sin 2β) sin(α + β)− sin2 2β cos(α− β)
= 2 sin(α + β)[sin 2α + sin 2β − 2 sin(α + β) cos(α− β)] = 0 ,
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since
sin 2α + sin 2β = sin(α + β + α− β) + sin(α + β − α− β) .

Solution 5. [A. Tang] From the given equation, we have that

sin(α + β) = − sinβ cos β ,

cos β

cos α
=

− sinβ

sinα + sinβ
,

and
sinβ

sinα
=

− cos β

cos α + cos β
.

Hence
cos3 β

cos α
+

sin3 β

sinα
= cos2 β

[
− sinβ

sinα + sinβ

]
+ sin2 β

[
− cos β

cos α + cos β

]
= − sinβ cos β[cos α cos β + sinα sinβ + 1]

4 sin 1
2 (α + β) cos 1

2 (α− β) cos 1
2 (α + β) cos 1

2 (α− β)

=
sin(α + β)[cos(α− β) + 1]

[2 sin 1
2 (α + β) cos 1

2 (α + β)][2 cos2 1
2 (α− β)]

= 1 .

Solution 6. [D. Arthur] The given equations yield 2 sin(α + β) = − sin 2β, cos α sinβ = − cos β(sinα +
sinβ) and sinα cos β = − sinβ(cos α + cos β). Hence

cos3 β

cos α
+

sin3 β

sinα
=

cos2 β(cos β sinα) + sin2 β(sinβ cos α)
cos α sinα

=
− cos2 β sinβ(cos α + cos β)− sin2 β cos β(sinα + sinβ)

cos α sinα

=
− cos β sinβ(cos α cos β + cos2 β + sinα sinβ + sin2 β)

cos α sinα

=
− sin 2β(1 + cos(α− β))

sin 2α

=
− sin 2β + 2 sin(α + β) cos(α− β)

sin 2α

=
− sin 2β + sin 2α + sin 2β

sin 2α
= 1 .

Solution 7. [C. Deng] Let sinβ = x, cos β = y, and (sinα)/(sinβ) = c. Thus, (cos α)/(cos β) = −1− c.
We have that

x2 + y2 = 1

and
(cx)2 + (−1− c)y)2 = 1 .

Solving the system yields that

x2 =
c2 + 2c

1 + 2c
, y2 =

1− c2

1 + 2c
.

Therefore,
sin3 β

sinα
+

cos3 β

cos α
=

x2

c
+

y2

−1− c
=

c2 + 2c

c(2c + 1)
+

1− c2

(−c− 1)(2c + 1)

=
c + 2
2c + 1

+
c− 1
2c + 1

= 1 .
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(b) Solution. The given equation is equivalent to 2 sin(α + β) + sin 2β = 0. Try β = −45◦ so that
sin(α− 45◦) = 1

2 . We take α = 75◦. Now

sin 75◦ = sin(45◦ + 30◦) =
1√
2

(√
3 + 1
2

)
and

cos 75◦ = cos(45◦ + 30◦) =
1√
2

(√
3− 1
2

)
.

It is straightforward to check that both equations hold.

631. The sequence of functions {Pn} satisfies the following relations:

P1(x) = x , P2(x) = x3 ,

Pn+1(x) =
P 3

n(x)− Pn−1(x)
1 + Pn(x)Pn−1(x)

, n = 1, 2, 3, · · · .

Prove that all functions Pn are polynomials.

Solution 1. Taking x = 1, 2, 3, · · · yields the respective sequences

{1, 1, 0,−1,−1, 0, · · ·} , {2, 8, 30, 112, 418, 1560, · · ·} , {3, 27, 240, 2133, · · ·} .

In each case, we find that
Pn+1(x) = x2Pn(x)− Pn−1(x) (1)

for n = 2, 3, · · ·. If we can establish (1) in general, it will follow that all the functions Pn are polynomials.

From the definition of Pn, we find that

Pn+1 + Pn−1 = Pn(P 2
n − Pn+1Pn−1) .

Therefore, it suffices to establish that P 2
n − Pn+1Pn−1 = x2 for each n. Now, for n ≥ 2,

[P 2
n+1 − Pn+2Pn]− [P 2

n − Pn+1Pn−1] = Pn+1(Pn+1 + Pn−1)− Pn(Pn+2 + Pn)

= Pn+1Pn(P 2
n − Pn+1Pn−1)− PnPn+1(P 2

n+1 − Pn+2Pn)

= −Pn+1Pn[(P 2
n+1 − Pn+2Pn)− (P 2

n − Pn+1Pn−1)] ,

so that either Pn+1(x)Pn(x) + 1 ≡ 0 or P 2
n+1−Pn+2Pn = P 2

n −Pn+1Pn−1. The first identity is precluded by
the case x = 1, where it is false. Hence

P 2
n+1 − Pn+2Pn = P 2

n − Pn+1Pn−1

for n = 2, 3, · · ·. Since P 2
2 (x)− P3(x)P1(x) = x2, the result follows.

Solution 2. [By inspection, we make the conjecture that Pn(x) = x2Pn−1(x)−Pn−2. Rather than prove
this directly from the rather awkward condition on Pn, we go through the back door.] Define the sequence
{Qn} for n = 0, 1, 2, · · · by

Q0(x) = 0 , Q1(x) = x , Qn+1 = x2Qn(x)−Qn−1(x)

for n ≥ 1. It is clear that Qn(x) is a polynomial of degree 2n−1 for n = 1, 2, · · ·. We show that Pn(x) = Qn(x)
for each n.

Lemma: Q2
n(x)−Qn+1Qn−1 = x2 for n ≥ 1.
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Proof: This result holds for n = 1. Assume that it holds for n = k − 1 ≥ 1. Then

Q2
k(x)−Qk+1(x)Qk−1(x) = Q2

k(x)− (x2Qk(x)−Qk−1(x))Qk−1(x)

= Qk(x)(Qk(x)− x2Qk−1(x)) + Q2
k−1(x)

= −Qk(x)Qk−2(x) + Q2
k−1(x) = x2 . ♠

From the lemma, we find that

Qn+1(x) + Qn−1(x) + Qn+1(x)Qn(x)Qn−1(x)

= x2Qn(x) + Qn+1(x)Qn(x)Qn−1(x) = Qn(x)(x2 + Qn+1(x)Qn−1(x)) = Q3
n(x)

=⇒ Qn+1(x) =
Q3

n(x)−Qn−1(x)
1 + Qn(x)Qn−1(x)

(n = 1, 2, · · ·) .

We know that Q1(x) = P1(x) and Q2(x) = P2(x). Suppose that Qn(x) = Pn(x) for n = 1, 2, · · · , k. Then

Qk+1(x) =
Q3

k(x)−Qk−1(x)
1 + Qk(x)Qk−1(x)

=
P 3

k (x)− Pk−1(x)
1 + Pk(x)Pk−1(x)

= Pk+1(x)

from the definition of Pk+1. The result follows.

Comment: It can also be established that P 2
n+1 + P 2

n = (1 + PnPn+1)x2 for each n ≥ 0.

Solution 3. [I. Panayotov] First note that the sequence {Pn(x)} is defined for all values of x, i.e., the
denominator 1+Pn−1(x)Pn(x) never vanishes for n and x. Suppose otherwise, and let n be the least number
for which there exists u for which 1 + Pn−1(u)Pn(u) = 0. Then n ≥ 3 and

−1 = Pn−1(u)Pn(u) =
Pn−1(u)4 − Pn−1(u)Pn−2(u)

1 + Pn−1(u)Pn−2(u)

which implies that Pn−1(u)4 = −1, a contradiction.

We now prove by induction that Pn+1 = x2Pn−Pn−1. Suppose that Pk = x2Pk−1−Pk−2 for 3 ≤ k ≤ n,
so that in particular we know that Pk is a polynomial for 1 ≤ k ≤ n. Substituting for Pk yields

P 3
k−1(x) = Pk−1(x)[x2 + x2Pk−1(x)Pk−2(x)− P 2

k−2(x)]

for all x. If Pk−1(x) 6= 0, then

P 2
k−1(x) = x2 + x2Pk−1(x)Pk−2(x)− P 2

k−2(x) .

Both sides of this equation are polynomials and so continuous functions of x. Since the roots of Pk−1

constitute a finite discreet set, this equation holds when x is one of the roots as well. Now

Pn+1 =
P 3

n − Pn−1

1 + PnPn−1
=

Pn(x2Pn−1 − Pn−2)2 − Pn−1

1 + PnPn−1

=
Pn(x4P 2

n−1 − x2Pn−1Pn−2 + x2 − P 2
n−1)− Pn−1

1 + PnPn−1

=
Pn(x2PnPn−1 + x2 − P 2

n−1)− Pn−1

1 + PnPn−1
since x2Pn−1 − Pn−2 = Pn

=
(x2Pn − Pn−1)(1 + PnPn−1)

1 + PnPn−1
= x2Pn − Pn−1 .

The result follows.
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632. Let a, b, c, x, y, z be positive real numbers for which a ≤ b ≤ c, x ≤ y ≤ z, a + b + c = x + y + z,
abc = xyz, and c ≤ z, Prove that a ≤ x.

Solution. Let

p(t) = (t− a)(t− b)(t− c) = t3 − (a + b + c)t2 + (ab + bc + ca)t− abc

and
q(t) = (t− x)(t− y)(t− z) = t3 − (x + y + z)t2 + (xy + yz + zx)t− xyz .

Then p(t)− q(t) = (ab + bc + ca− xy − yz − zx)t never changes sign for positive values of t. Since p(t) > 0
for t > c, we have that p(z)− q(z) = p(z) ≥ 0, so that p(t) ≥ q(t) for all t > 0.

Hence, for 0 < t < a, we have that q(t) ≤ p(t) < 0, from which it follows that q(t) has no root less than
a. Hence x ≥ a as desired.

633. Let ABC be a triangle with BC = 2 · AC − 2 · AB and D be a point on the side BC. Prove that
∠ABD = 2∠ADB if and only if BD = 3CD.

Solution 1. [A. Murali] Let ∠ADB = θ, |AB| = c, |CA| = b, |AD| = d, |CD| = x, |BD| = y. Assume
that ∠ABD = 2∠ADB. By the Law of Sines applied to triangle ABD,

d

sin 2θ
=

c

sin θ
=⇒ d = 2c cos θ .

By the Law of Cosines in triangle ABD,

4c2 cos2 θ = d2 = c2 + y2 − 2cy cos 2θ ,

from which
0 = y2 − (2c cos 2θ)y + c2(1− 4 cos2 θ)

= y2 − (2c cos 2θ)y − c2(2 cos 2θ + 1)
= [y + c][y − c(2 cos 2θ + 1)] .

Hence y = (2 cos 2θ + 1)c.

By the Law of Cosines in triangle ACD,

b2 = d2 + x2 + 2xd cos θ =⇒ 0 = 4[x2 + (2d cos θ)x + (d2 − b2)] .

Since x + y = 2(b− c), then
2b = x + y + 2c = x + (2 cos 2θ + 3)c .

Now 2d cos θ = 4c cos2 θ = 2c cos 2θ + 2c and

4d2 − 4b2 = 16c2 cos2 θ − x2 − 2c(2 cos 2θ + 3)x− (2 cos 2θ + 3)2c2 ,

whence

0 = 4x2 + (8 cos 2θ + 8)cx + 16c2 cos2 θ − x2 − (4 cos 2θ + 6)cx− (4 cos2 2θ + 12 cos 2θ + 9)c2

= 3x2 + (4 cos 2θ + 2)cx + [(8 cos 2θ + 8)− (4 cos2 2θ + 12 cos 2θ + 9)]c2

= 3x2 + (4 cos 2θ + 2)cx− [4 cos2 2θ + 4 cos 2θ + 1]c2

= 3x2 + (4 cos 2θ + 2)cx− (2 cos 2θ + 1)2c2

= [3x− (2 cos 2θ + 1)c][x + (2 cos 2θ + 1)c] = [3x− y][x + y] = a(3x− y) .

Hence y = 3x.
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For the converse, let y = 3x, ∠ADB = θ and ∠ABD = β. By hypothesis, |BC| = 4x = 2(b − c). By
the Law of Cosines on triangle ABC, b2 = c2 + 16x2 − 8cx cos β, so that

cos β =
16x2 + c2 − b2

8cx
=

4(b− c)2 + (c2 − b2)
4c(b− c)

=
4(b− c)− (c + b)

4c
=

3b− 5c

4c
.

By Stewart’s Theorem, b2(3x) + c2(x) = 4x[d2 + (3x)x], so that

d2 =
3b2 + c2 − 12x2

4
=

3b2 + c2 − 3(b− c)2

4

=
6bc− 2c2

4
=

(3b− c)c
2

.

From triangle ABD, we have that c2 = d2 + 9x2 − 6dx cos θ, so that

cos θ =
9x2 + d2 − c2

6dx
=

(3x− c)(3x + c) + d2

6dx

=
(6x− 2c)(6x + 2c) + 4d2

24dx
=

(3b− 5c)(3b− c) + 2(3b− c)c
12d(b− c)

=
(3b− c)(3b− 3c)

12d(b− c)
=

3b− c

4d
.

Therefore,

cos 2θ = 2 cos2 θ − 1 =
2(3b− c)2

16d2
− 1

=
2(3b− c)2 − 8(3b− c)c

8(3b− c)c
=

2(3b− c)− 8c

8c
=

3b− 5c

4c
= cos β .

Thus, either 2θ = β or 2θ = 2π − β. But the latter case is excluded, since it would imply that β and θ are
two angles of a triangle for which β + θ = 2π − θ = π + β/2 > π.

Solution 2. Case (i): Suppose that ∠B is acute. Let AH ⊥ BC and E lie on CH such that AE = AB.

AC2 − CH2 = AB2 −BH2 implies that

AC2 −AB2 = CH2 −BH2 = (CH −BH)(CH + BH) = (CH −HE)BC = CE ·BC = CE[2(AC −AB)] .

Hence AC + AB = 2CE. Also AC −AB = 1
2BC. Therefore 2AB + 1

2BC = 2CE.

Suppose that ∠ABD = 2∠ADB. Then ∠AEB = 2∠ADB ⇒ ∆ADE is isosceles. Hence

AB = AE = DE ⇒ 2DE +
1
2
BC = 2CE ⇒ BC = 4(CE −DE) = 4CD ⇒ BD = 3CD .

Conversely, suppose that BD = 3CD. Then

BC = 4CD ⇒ 1
4
BC = CE −DE .

From the above,

AB = CE − 1
4
BC = DE ⇒ AE = DE

⇒ ∠ABD = ∠AEB = 2∠ADB .
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Case (ii): Suppose ∠B = 90◦. Then

AC2 −AB2 = BC2 = 2(AC −AB) ·BC ⇒ AC + AB = 2BC

⇒ 1
2
BC + AB + AB = 2BC ⇒ AB =

3
4
BC .

∠ABD = 2∠ADB ⇒ ∠ADB = 45◦ = ∠BAD ⇒ AB = BD

⇒ BD =
3
4
BC ⇒ BD = 3CD .

BD = 3CD ⇒ BD =
3
4
BC = AB ⇒ ∠ADB = ∠BAD = 45◦ =

1
2
∠ABD .

Case (iii): Suppose ∠B exceeds 90◦. Let AH ⊥ BC and E be on CH produced such that AE = AB.
Then

AC2−CH2 = AB2−BH2 ⇒ (AC−AB)(AC +AB) = CH2−BH2 = (CH−BH)(CH +BH) = CB ·CE

⇒ AC + AB = 2CE .

Also
AC −AB =

1
2
BC ⇒ 2AB +

1
2
BC = 2CE ⇒ AB +

1
4
BC = CE .

Let ∠ABD = 2∠ADB. Then

180◦ − ∠ABE = 2∠ADB ⇒ ∠AEB + 2∠ADE = ∠ABE + 2∠ADB = 180◦ .

Also
∠AEB + ∠EAD + ∠ADE = 180◦ ⇒ ∠EAD = ∠ADE ⇒ AE = ED .

Hence
AB = ED ⇒ 2ED +

1
2
BC = 2CE ⇒ BC = 4(CE −DE) = 4CD ⇒ BD = 3CD .

Conversely, suppose that BD = 3CD. Then BC = 4CD and ED = CE −CD = CE − 1
4BC = AB so that

ED = AE and ∠EAD = ∠ADE. Therefore

∠ABD = 180◦ − ∠AED = ∠EAD + ∠ADE = 2∠ADE = 2∠ADB .

Solution 3. [R. Hoshino] Let ∠ABD = 2θ. By the Law of Cosines, with the usual conventions for a, b,
c,

1− 2 sin2 θ = cos 2θ =
c2 + 4(b− c)2 − b2

4c(b− c)

=
b− c

c
− b + c

4c
=

3b− 5c

4c
(since b 6= c)

⇒ 3(b− c) = 6c− 8c sin2 θ

⇒ 3(b− c)
2

sin θ = c(3 sin θ − 4 sin3 θ) = c sin 3θ

⇒ sin θ

c
=

2 sin 3θ

3(b− c)
. (∗)

Suppose now that D is selected so that ∠ADB = θ. Then, by the Law of Sines,

sin θ

c
=

sin(180◦ − 3θ)
x

=
sin 3θ

x
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where x = |BD|. Comparison with (*) yields x = 1
2 (3(b− c)) so 4BD = 3BC ⇒ BD = 3CD as desired.

On the other hand, suppose D is selected so that BD = 3CD. Then BD = 3
2 (b− c). Let ∠ADB = φ.

Then
sinφ

c
=

sin(180◦ − φ− 2θ)
3
2 (b− c)

=
sin(φ + 2θ)

3
2 (b− c)

.

Hence
sin(φ + 2θ)

sinφ
=

sin 3θ

sin θ
⇒ sin θ sin(φ + 2θ) = sin 3θ sinφ

⇒ 1
2
[cos(θ + φ)− cos(3θ + φ)] =

1
2
[cos(3θ − φ)− cos(3θ + φ)]

⇒ cos(θ + φ) = cos(3θ − φ)
⇒ θ + φ = ±(3θ − φ) or θ + φ + 3θ − φ = 360◦ .

The only viable possibility is θ + φ = 3θ − φ⇒ θ = φ as desired.

Solution 4. [J. Chui] First, recall Stewart’s Theorem. Let XY Z be a triangle with sides x, y, z
respectively opposite XY Z. Let W be a point on Y Z so that |XW | = u, |Y W | = v and |ZW | = w. Then
x(u2 + vw) = vy2 + wz2. This is an immediate consequence of the Law of Cosines. Let θ = ∠Y WX. Then
z2 = u2 + v2 − 2uv cos θ and y2 = u2 + w2 + 2uw cos θ. Multiply these equations by u and v respectively,
add and use x = v + w to obtain the result.

Now to the problem. Suppose BD = 3CD. Let |AC| = 2b, |AB| = 2c, so that |BC| = 4(b − c),
|BD| = 3(b−c) and |CD| = b−c. If |AD| = d, then an application of Stewart’s Theorem yields d2 = 2c(3b−c).
Applying the Law of Cosines to ∆ABC and ∆ABD respectively yields

cos ∠ABC =
3b− 5c

4c
and cos ∠ADB =

3b− c

2
√

2c(3b− c)
.

Then cos 2∠ADB = (3b − 5c)/4c. Hence, either 2∠ADB = ∠ABC or ∠ABC + 2∠ADB = 360◦. In the
latter case, ∠ABC + ∠ADB = 360◦ − ∠ADB > 180◦, which is false. Hence ∠ABC = 2∠ADB.

On the other hand, let 2∠ADB = ∠ABC. If D′ is a point on BC with BD′ = 3CD′, the 2∠AD′B =
∠ABC = 2∠ADB, so that D = D′. The result follows.

Solution 5. Let |AB| = a, |AC| = a + 2, |BD| = 3, |CD| = 1, ∠ABD = 2θ, ∠ADB = φ. Then
(a + 2)2 = a2 + 16− 8a cos 2θ, whence a = 3(1 + 2 cos 2θ)−1 (so 0 < θ < 60◦). By the Law of Sines,

sin(2θ + φ)
3

=
(1 + 2 cos 2θ) sinφ

3

so that
0 = sinφ + 2 sinφ cos 2θ − sin(2θ + φ)

= sinφ + sinφ cos 2θ − sin 2θ cos φ

= sinφ + sin(φ− 2θ) = 2 sin(φ− θ) cos θ .

Since 0 ≤ |φ − θ| < 180◦, we find that φ = θ as desired. The converse can be obtained as in the third
solution.

Solution 6. [A. Birka] First, note that, when BD = 3CD, we must have ∠ADB < 90◦, since AC > AB
and D is on the same side of the altitude from A as C. Also, when ∠ABD = 2∠ADB, ∠ADB < 90◦. Thus,
we can assume that ∠ADB is acute throughout.

We can select positive numbers u, v and w so that |BC| = v + w, |AC| = u + w and |AB| = u + v. By
hypothesis, v + w = 2(w − v), so that w = 3v.
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Suppose that BD = 3CD. Then BC = 4CD, whence |CD| = v. Hence |BD| = 3v. By the Law of
Cosines,

(u + 3v)2 = (u + v)2 + (4v)2 − 8v(u + v) cos B

so that

cos B =
8v2 − 4uv

8v(u + v)
=

2v − u

2(u + v)
.

Hence
|AD|2 = (u + v)2 + (3v)2 − 6v(u + v) cos B = u2 + 5uv + 4v2 = (u + 4v)(u + v) .

Since sin2 ∠ABD = 1− cos2 B = [3u(u + 4v)]/[4(u + v)2], and, by the Law of Sines,

sin2 ∠ADB

sin2 ∠ABD
=

u + v

u + 4v
,

we have that
sin2 ∠ADB =

3u

4(u + v)
and cos2 ∠ADB =

u + 4v

4(u + v)
.

Thus sin2 ∠ABD = 4 sin2 ∠ADB cos2 ∠ADB so that either ∠ABD = 2∠ADB or ∠ABD+2∠ADB = 180◦.
The latter case would yield ∠ADB = ∠BAD, so that AB = BD. This would make ∆ABC a 3 − 4 − 5
right triangle and ∆ABD an isosceles right triangle, whence 90◦ = ∠ABD = 2∠ADB. The converse can be
shown as in the previous solutions. The result follows.

634. Solve the following system for real values of x and y:

2x2+y + 2x+y2
= 8

√
x +
√

y = 2 .

Preliminary comments. With the surds in the second equation, we must restrict ourselves to nonnegative
values of x. Because of the complexity of the expressions, it is probably impossible to eliminate one of the
variables and solve for the other. Let us make a few preliminary observations:

(i) (x, y) = (1, 1) is an obvious solution;

(ii) Both equations are symmetric in x and y;

(iii) Taking f(x, y) = 2x2+y + 2x+y2
and g(x, y) =

√
x +
√

y, we have that f(0, y) = 2y + 2y2
and

g(0, y) =
√

y; thus, f(0, y) = 8 ⇒ 1 < y < 2 and g(0, y) = 2 ⇔ y = 4. The graphs of f(x, y) = 8 and
g(x, y) = 2 should be sketched.

This suggests that f(x, y) = 8 ⇒ x + y ≤ 2 and g(x, y) = 2 ⇒ x + y ≥ 2 with equality for both
⇔ (x, y) = (1, 1). Hence we look for a relationship among f(x, y), g(x, y) and x + y.

Solution 1.

(
√

x +
√

y)2 = x + 2
√

xy + y ≤ x + (x + y) + y = 2(x + y)

by the Arithmetic-Geometric Means Inequality. Hence

√
x +
√

y ≤
√

2(x + y) .

Also, by the same AGM inequality,

2x2+y + 2x+y2
≥ 2
√

2x2+y+x+y2 .
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Now, using the inequality again, we find that

x2 + y + x + y2 = (x2 + y2) + (x + y) ≥ 1
2
(x + y)2 + (x + y)

so that
2x2+y + 2x+y2

≥ 21+ 1
4 (x+y)2+ 1

2 (x+y) = 2
1
4 [(x+y+1)2+3] .

Suppose the (x, y) satisfies the system. Then√
2(x + y) ≥ 2⇒ (x + y) ≥ 2

and
1
4
[(x + y + 1)2 + 3] ≤ 3⇒ (x + y + 1)2 ≤ 9⇒ x + y + 1 ≤ 3⇒ x + y ≤ 2 .

Hence x + y = 2 and all inequalities are equalities. Therefore x = y = 1.

Solution 2. [A. Rodriguez] Wolog, we may assume that x ≥ 1. Let
√

x +
√

y = 2; then y = (2−
√

x)2.
Define

g(x) = x + y2 + y + x2 = (2−
√

x)4 + x2 + x + (2−
√

x)2

= 2x2 − 8x
3
2 + 26x− 36x

1
2 + 20 .

Then
g′(x) = 4x− 12x

1
2 + 26− 18x− 1

2 = 2x− 1
2 (2x

3
2 − 6x + 13x

1
2 − 9)

= 2x− 1
2 (x

1
2 − 1)(2x− 4x

1
2 + 9) = 2x− 1

2 (x
1
2 − 1)[2(x

1
2 − 1)2 + 7] > 0

for x > 1. Hence g(x) is strictly increasing for x > 1, so that g(x) ≥ g(1) = 4 for x ≥ 1 with equality if and
only if x = 1. Thus, if the first equation holds, then

8 = 2x2+y + 2x+y2
≥ 2

√
2g(x) ⇒ 16 ≥ 2g(x) ⇒ g(x) ≤ 4 .

Hence g(x) = 4, so that x = 1 and y = 1. Thus, (x, y) = (1, 1) is the only solution.

Solution 3. [S. Yazdani] Set
√

x = 1 + u and
√

y = 1 − u. Then x2 + y = (1 + u)4 + (1 − u)2 and
x + y2 = (1− u)4 + (1 + u)2, so

8 = 2x2+y + 2x+y2
= 2u4+7u2+2

(
24u3+2u +

1
24u3+2u

)
≥ 22(2) = 8

with equality if and only if u = 0. Since the extremes of this inequality are equal, we must have u = 0, so
x = y = 1.

Solution 4. [C. Hsia] With
√

x = 1 + u and
√

y = 1− u, we can write the first equation as

24u3+2u +
1

24u3+2u
= 21−7u2−u4

.

Let z = 24u3+2u. We note that the quadratic z2 − 21−7u2−u4
z + 1 = 0 is solvable, and so has nonnegative

discriminant. Hence
22−14u2−2u4

≥ 4 = 22 ⇒ −14u2 − 2u4 ≥ 0⇒ u = 0 .

Hence x = y = 1.

Solution 5. [M. Boase] 2(x+y) ≥ (x+y)+2
√

xy = (
√

x+
√

y)2 = 4 so that x+y ≥ 2. Let f(t) = t(t+1).
For positive values of t, f(t) is an increasing strictly convex function of t. Hence

f(x) + f(y) ≥ 2f(
1
2
(x + y)) ≥ 2f(1) = 4
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so that x2 + x + y2 + y ≥ 4. Equality occurs if and only if x = y = 1. Applying the Arithmetic-Geometric
Means Inequality, we find that

4 =
1
2
(2x2+y + 2x+y2

) ≥ 2
1
2 (x2+y2+x+y)

so that x2 + x + y2 + y ≤ 4. Hence x2 + x + y2 + y = 4 and so x = y = 1.

Comment. Note that 2(x2 + y2) ≤ (x + y)2 with equality if and only if x = y. Hence

x2 + y2 + x + y ≥ 1
2
(x + y)2 + (x + y) ≥ 4

with equality if and only if x = y = 1. This avoids the use of the convexity of the function f .

Solution 6. [J. Chui] Wolog, let x ≥ y so that
√

x ≥ 1 ≥ √y. Suppose that
√

x = 1 + u and
√

y = 1−u.
Then x + y = 2 + 2u2 ≥ 2 and xy = (1− u2)2 ≤ 1. Thus

8 = 2x2+y + 2x+y2
≥ 2
√

2x2+y+x+y2

= 2
√

2(x+y)(x+y+1)−2xy ≥ 2
√

22·3−2·1 = 23 = 8

with equality if and only if x = y.

Solution 7. [C. Deng] By the Root-Mean-Square, Arithmetic Mean Inequality, we have that

x2 + y2

2
≥

(
x + y

2

)2

≥
(√

x +
√

y

2

)4

= 1 ,

with equality if and only if x = y = 1. By the Arithmetic-Geometric Means Inequality, we have

4 =
2x2+y + 2x+y2

2
≥
√

2x2+y2+x+y

≥
√

22+2 = 4 .

Since equality must hold throughtout, x = y, and thus the only solution to the system is (x, y) = (1, 1).

635. Two unequal spheres in contact have a common tangent cone. The three surfaces divide space into
various parts, only one of which is bounded by all three surfaces; it is “ring-shaped”. Being given the
radii r and R of the spheres with r < R, find the volume of the “ring-shaped” region in terms of r and
R.

Solution. Let P and Q be the centres of the spheres of respective radii r and R, and let O be the apex
of the cone. Consider a vertical slice of the configuration through its axis of rotation. Let A and B be points
in the slice that are the tangent points of the smaller and larger spheres, respectively, with the tangent cone.
Let u and V be the centres of the circles through A and B, respectively, that are perpendicular ot the axis
of rotation.

From a consideration of similar triangles and pythagoras theorem, we find that

|OP | = r
(

R+r
R−r

)
|OU | = 4Rr2

R2−r2

|UP | = r
(

R−r
R+r

)
|AU | = 2r

R+r

√
Rr

|OQ| = R
(

R+r
R−r

)
|OV | = 4R2r

R2−r2

|V Q| = R
(

R−r
R+r

)
|BV | = 2R

R+r

√
Rr
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The volume of the cone obtained by rotating OBV is

1
3
π|BV |2|OV | = 16πR5r2

3(R + r)3(R− r)

and the volume of the cone obtained by rotating OAU is

16πR2r5

3(R + r)3(R− r)

so that the volume of the frustum obtained by rotating AUV B is

16πR2r2(R3 − r3)
3(R + r)3(R− r)

=
16πR2r2

3(R + r)3
(R2 + Rr + r2) .

The volume of a slice of a sphere of radius a and height h from the equatorial plane is

π

∫ h

0

(a2 − t2)dt = π[a2h− h3/3] .

The portion of the larger sphere included within the frustum has volume

2πR3

3
− π

[
R3

(
R− r

R + r

)
− R3

3

(
R− r

R + r

)3]
=

πR3

3

[
2− 3

(
R− r

R + r

)
+

(
R− r

R + r

)3]
=

πR3

3(R + r)3
[4r3 + 12Rr2] =

4πR2r2

3(R + r)3
[Rr + 3R2]

and the portion of the smaller sphere included within the frustum has volume

2πr3

3
+ π

[
r3

(
R− r

R + r

)
− r3

3

(
R− r

R + r

)3]
=

4πR2r2

3(R + r)3
[Rr + 3r2] .

Hence, the portions of the sphere lying within the frustum have total volume

4πR2r2

3(R + r)3
[3R2 + 2Rr + 3r2] .

Subtracting this from the volume of the frustum yields the volume of the ring-shaped region

4πR2r2

3(R + r)3
[(4R2 + 4Rr + 4r2)− (3R2 + 2Rr + 3r2)] =

4πR2r2

3(R + r)3
[R2 + 2Rr + r2] =

4πR2r2

3(R + r)
.

Comment. The volume of a slice of a sphere of radius a and height h from the equatorial plane can be
obtained from the volume of a right circular cone and a cylinder using the method of Cavalieri. The area of
a cross-section of the slice at height t from the equator is π(a2 − t2) = πa2 − πt2. The term πa2 represents
the cross-section of a cylinder of radius a and height h while πt2 represents the area of the cross section of a
cone of base radius h at distance t from the vertex. Thus the area of the each cross-section of the cylinder is
the sum of the areas of the corresponding cross-sections of the spherical slice and cone. Cavalieri’s principle
says that the volumes of the solids bear the same relation. Thus the volume of the spherical slice is

πa2h− 1
3
πh3 .
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636. Let ABC be a triangle. Select points D,E, F outside of ∆ABC such that ∆DBC, ∆EAC, ∆FAB are
all isosceles with the equal sides meeting at these outside points and with ∠D = ∠E = ∠F . Prove that
the lines AD, BE and CF all intersect in a common point.

Solution. Let AD and BC intersect at P , a1 = |CP |, a2 = |BP |, α1 = ∠CDP , α2 = ∠BDP . Let BE
and AC intersect at Q, b1 = |AQ|, b2 = |CQ|, β1 = ∠AEQ, β2 = ∠CEQ. Let CF and AB intersect at R,
c1 = |BR|, c2 = |AR|, γ1 = ∠BFR, γ2 = ∠AFR.

Applying the Law of Sines to ∆BPD and ∆CPD, we find that

a1

sinα1
=

a2

sinα2

and similarly that
b1

sinβ1
=

b2

sinβ2
and

c1

sin γ1
=

c2

sin γ2
.

Let α = ∠BAE. Then α = ∠FAC since ∠FAB = ∠EAC. Similarly, let β = ∠FBC = ∠ABD and
γ = ∠BCE = ∠ACD.

Let |AB| = c, |BC| = a, |AC| = b, |AD| = u, |BE| = v, |CF | = w. By the Law of Sines, we find that

v

sinα
=

c

sinβ1
and

v

sin γ
=

a

sinβ2

so that
c sinα

sinβ1
=

a sin γ

sinβ2
=⇒ sinβ1

sinβ2
=

c

a
· sinα

sin γ
.

Similarly
sinα1

sinα2
=

b

c
· sin γ

sinβ
and

sin γ1

sin γ2
=

a

b
· sinβ

sinα
.

Putting this altogether yields

a1

a2
· b1

b2
· c1

c2
=

sinα1

sinα2
· sinβ1

sinβ2
· sin γ1

sin γ2
=

b

c
· c

a
· a

b
· sin γ

sinβ
· sinα

sin γ
· sinβ

sinα
= 1 .

By the converse of Ceva’s Theorem, the cevians AP , BQ and CR are concurrent and the result follows.

637. Let n be a positive integer. Determine how many real numbers x with 1 ≤ x < n satisfy

x3 − bx3c = (x− bxc)3 .

Solution 1. Let n − 1 ≤ x < n. Then bx3c = (n − 1)3 + r for 0 ≤ r < 3n(n − 1). The equation is
equivalent to

bx3c = bxc3 + 3xbxc(x− bxc) = (n− 1)3 + 3x(n− 1)(x− n + 1) .

The increasing function (n−1)3 +3x(n−1)(x−n+1) takes the value 0 when x = n−1 and 3n(n−1) when
x = n. Therefore, on the interval [n−1, n), it assumes each of the values 0, 1, · · · , 3n(n−1)−1 exactly once.

For 0 ≤ r < 3n(n− 1), consider the equation

r = 3x(n− 1)(x− n + 1) .

This is equivalent to
(n− 1)3 + r = (n− 1)3 − 3x(n− 1)2 + 3x2(n− 1)

= [(n− 1)− x]3 + x3 ,
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When x is a solution of this equation for which n− 1 ≤ x < n, we have that x3 ≤ (n− 1)3 + r and

x3 = (n− 1)3 + r + [x− (n− 1)]3 < (n− 1)3 + r + 1 ,

so that bx3c = (n− 1)3 + r¿ It follows that for each value of these values of r, the given equation is satisfied
and so there are 3n(n− 1) solutions x for which n− 1 ≤ x < n.

Therefore, the total number of solutions not exceeding n is

n∑
k=2

3k(k − 1) =
n∑

k=2

k3 − (k − 1)3 − 1 = n3 − 1− (n− 1) = n3 − n .

Solution 2. Consider the behaviour of the two sides of the equation on the half-open interval defined
by k ≤ x < k + 1 for k a nonnegative integer. The function on the right increases continuously from 0 with
right limit equal to 1. The function on the left increases continuously in the same way on each half-open
interval defined by 3

√
i ≤ x < 3

√
i + 1 for k3 ≤ i ≤ (k + 1)3 − 1 = k3 + 3k(k + 1). By examining the graphs,

we see that they take equal values exactly once in each of the smaller intervals except the rightmost. Thus,
they are equal (k + 1)3− k3− 1 times. Therefore, over the whole of the interval defined by 1 ≤ x < n3, they
are equal exactly

n−1∑
k=1

[(k + 1)3 − k3 − 1] = n3 − 13 − (n− 1) = n3 − n

times, so that the given equation has this many solutions.

Solution 3. Let x = k + r, where k is a nonnegative integer and 0 ≤ r < 1. Then

x3 − bx3c = (k + r)3 − (k3 + b3kr(k + r) + r3c)

so that the equation becomes
3kr(k + r) = b3kr(k + r) + r3c .

This is equivalent to the assertion that 3kr(k + r) is an integer, so there is a solution to the equation for
every x for which 3kr(k + r) is an integer, where 0 ≤ k ≤ n− 1 and 0 ≤ r < 1.

Fix k. As r increases from 0 towards but not equal to 1, 3kr(k + r) increases from 0 up to but not
including 3k(k + 1), so it assumes exactly 3k(k + 1) integer values. Hence the total number of solutions is

n−1∑
k=0

3k(k + 1) = n3 − n .

638. Let x and y be real numbers. Prove that

max(0,−x) + max(1, x, y) = max(0, x−max(1, y)) + max(1, y, 1− x, y − x)

where max(a, b) is the larger of the two numbers a and b.

Solution 1. [C. Deng] First, note that for real a, b, c, d,

max(a, b)− c = max(a− c, b− c) ;

max(max(a, b), c) = max(a, b, c) ;

max(a, b) + max(c, d) = max(a + c, a + d, b + c, b + d) .
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[Establish these equations.] Then

max(0,−x) = max(0,−x) + max(1, y)−max(1, y)
= max(1, y, 1− x, y − x)−max(1, y) ;

and
max(1, x, y) = max(1, x, y)−max(1, y) + max(1, y)

= max(max(1, y), x)−max(1, y) + max(1, y)
= max(max(1, y)−max(1, y), x−max(1, y)) + max(1, y)
= max(0, x−max(1, y)) + max(1, y) .

Adding these equations yields the desired result.

Solution 2. If 0 ≤ x ≤ 1, then −x ≤ 0, x−max(1, y) ≤ x−1 ≤ 0, 1−x ≤ 1, y−x ≤ y, so that both sides
are equal to max(1, y). If x ≤ 0, then max(0,−x) = −x, max(1, x, y) = max(1, y), max(0, x−max(1, y)) = 0
and 1− x ≥ 1, y − x ≥ y, so that

max(1, y, 1− x, y − x) = max(1− x, y − x) = max(1, y)− x

which is the same as the left side.

Suppose that x ≥ 1. Then the left side is equal to 0+max(x, y) = max(x, y). When y ≤ 1, the right side
becomes (x− 1) + 1 = x = max(x, y). When 1 ≤ y ≤ x, the right side becomes x− y + y = x = max(x, y).
When x ≤ y, the right side is 0 + y = max(x, y). Thus, the result holds in all cases.

639. (a) Let ABCDE be a convex pentagon such that AB = BC and ∠BCD = ∠EAB = 90◦. Let X be a
point inside the pentagon such that AX is perpendicular to BE and CX is perpendicular to BD. Show
that BX is perpendicular to DE.

(b) Let N be a regular nonagon, i.e., a regular polygon with nine edges, having O as the centre of its
circumcircle, and let PQ and QR be adjacent edges of N . The midpoint of PQ is A and the midpoint
of the radius perpendicular to QR is B. Determine the angle between AO and AB.

(a) Solution 1. Let AX intersect BE in Y , CE intersect BD in Z and BX intersect DE in P . Assume
X lies inside the triangle BDE; a similar proof holds when X lies outside the triangle BDE. From similar
right triangles and since AB = AC, we have that

BY ·BE = AB2 = AC2 = BZ ·BD .

Hence triangles BY Z and BDE are similar and ∠BY Z = ∠BDE and ∠BZY = ∠BED. Thus the quadri-
lateral DEY Z is concyclic.

The quadrilateral BY XZ is also concyclic, so that ∠BZY = ∠BXY . Therefore ∠BED = ∠BXY ,
with the result that triangles BXY and BEP are similar. Hence ∠EPB = ∠XY B = 90◦.

Solution 2. [K. Zhou, J. Lei] Let T be selected on DE so that BT ⊥ ED. Let AY meet BT at S
and CZ meet BT at R. Because triangles BSY and BET are similar, BY : BR = BT : BE, so that
BR · BT = BY · BE = AB2. Similarly, BS · BT = BZ · BD = AC2 = AB2. Hence BR = BS so that
R = S. So R and S must be the point X where AY and CZ meet and so T is none other than P . The
result follows.

(b) Answer: ∠OAB = 30◦.

Solution 1. [S. Sun] Let C be the point on OR for BC ⊥ OR. Since ∠BOC = ∠QOA = 20◦, the right
triangles BOC and QOA are similar, Since QO = 2OB, it follows that AO = 2OC.
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Consider the triangle AOC. We have AO = 2OC and ∠AOC = 60◦. By splitting an equilateral triangle
along a median, it is possible to construct a triangle UV W for which AO = UV = 2V W and ∠UV W = 60◦.
Since also V W = OC, triangles AOC and UV W are congruent (SAS), so that ∠OCA = ∠V WU = 90◦.
Therefore, A,B, C are collinear, and ∠OAB = ∠OAC = ∠UWV = 30◦.

Solution 2. Let C be the intersection of the radius perpendicular to QR and the circumcircle of N . We
have that ∠POQ = ∠QOR = 40◦. Thus, triangle OPC is equilateral, so that PB and OC are perpendicular.
Since also ∠OAP = 90◦, A and B lie on the circle with diameter OP , Hence ∠OAB = ∠OPB = 30◦.

Solution 3. [D. Brox] OA = r sin 70◦ and OD = r
2 cos 40◦, where r is the circumradius of the nonagon

and D is the foot of the perpendicular from B to OA. Hence

AD = r(sin 70◦ − sin 30◦ cos 40◦) = r sin 40◦ cos 30◦ .

Therefore
tan∠OAB =

BD

AD
=

OD tan 40◦

AD
=

cos 40◦ tan 40◦

2 sin 40◦ cos 30◦
=

1
2 cos 30◦

=
1√
3

,

whence ∠OAB = 30◦.

Solution 4. [H. Dong] Let E be the midpoint of OP so that triangle OEB is equilaterial.

EB = EP =⇒ ∠EPB = ∠EBP = 30◦ =⇒ ∠OBP = 30◦ .

Hence OBAP is concyclic, so that ∠OAB = ∠OPB = 30◦.

Solution 5. [D. Arthur] OB = 1
2OP = OP cos 60◦ = OP cos ∠PQB so that PB ⊥ OC. Thus OPAB is

concyclic. Since ∠OBA = 180◦ − ∠OPA = 180◦ − 70◦ = 110◦, then

∠OAB = 180◦ − (∠AOB + ∠OBA) = 180◦ − (40◦ + 110◦) = 30◦ .

Solution 6. [F. Espinosa] |−−→OB| = r
2 and |−→OA| = r cos 20◦. Then −−→OR · −−→OB = 1

2r2 cos 20◦ and −−→OR · −→OA =
r(r cos 20◦) cos 60◦ = 1

2r2 cos 20◦. Hence −−→OR ·−−→AB = overrightarrowOR ·−−→OB− overrightarrowOR ·−→OA = 0
with the result that ∠ABO = 90◦. As before, it follows that ∠OAB = 30◦.

Solution 7. [T. Costin] Let F be the midpoint of the side ST of the nonagon PQRST · · ·. Then
∠AOF = 120◦, so ∠OAG = 30◦ and ∠OGA = 90◦, where G is the intersection point of AF and OR. Hence
OG = 1

2OA.

Let H be the intersection of AP and OC, with C the midpoint of RS. Then OG = OH cos 20◦. Also
OA = OQ cos 20◦ = OR cos 20◦. Hence

OH =
OG

cos 20◦
=

OA

2 cos 20◦
=

OR

2

so that H = B. Hence ∠OAB = ∠OAH = 30◦.

640. Suppose that n ≥ 2 and that, for 1 ≤ i ≤ n, we have that xi ≥ −2 and all the xi are nonzero with the
same sign. Prove that

(1 + x1)(1 + x2) · · · (1 + xn) > 1 + x1 + x2 + · · ·+ xn ,

Solution 1. When n = 2, we have that

(1 + x1)(1 + x2) = 1 + x1 + x2 + x1x2 > 1 + x1 + x2
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since x1 and x2 are nonzero with the same sign. Suppose, as an induction hypothesis, that the result holds
for n = k ≥ 2. Then

(1 + x1)(x + x2) · · · (1 + xk)(1 + xk+1)− (1 + x1 + x2 + · · ·+ xk + xk+1)
= [(1 + x1)(1 + x2) · · · (1 + xk)− (1 + x1 + x2 + · · ·+ xk)]

+ xk+1[(1 + x1)(1 + x2) · · · (1 + xk)− 1]
> xk+1[(1 + x1)(1 + x2) · · · (1 + xk)− 1] ≡ A .

If xi > 0 (1 ≤ i ≤ k + 1), then 1 + xi > 1 (1 ≤ i ≤ k) and A > 0.

Let −2 ≤ xi < 0. Then, for 1 ≤ i ≤ k,

−1 ≤ 1 + xi < 1 =⇒ −1 ≤ (1 + x1)(1 + x2) · · · (1 + xk) ≤ 1

=⇒ (1 + x1)(1 + x2) · · · (1 + xk)− 1 ≤ 0 .

Since also xk+1 < 0, A ≥ 0. Hence

(1 + x1)(1 + x2) · · · (1 + xk+1) > 1 + x1 + x2 + · · ·+ xk+1 .

The result follows by induction.

Solution 2. The case n = 2 is proved as in the first solution. Suppose that all xi are negative and at
least two, say x1 and x2 lie in [−2,−1]. Then

(1 + x1)(1 + x2) · · · (1 + xn) ≥ −1 ≥ 1− 1− 1 ≥ 1 + x1 + x2 + · · ·+ xn

since −2 ≤ xi < 0 and |1 + xi| ≤ 1 for 1 ≤ i ≤ n.

Henceforth assume that either (i) all xi are positive (1 ≤ i ≤ n) or (ii) all xi are negative with
−2 ≤ x1 < 0 and −1 < xi < 0 for 2 ≤ i ≤ n. As an induction hypothesis, assume that the result holds for
n = k ≥ 2. Then 1 + xk+1 > 0, so that

(1 + x1)(1 + x2) · · · (1 + xk)(1 + xk+1)
> (1 + x1 + x2 + · · ·+ xk)(1 + xk+1) by the induction hypothesis
> 1 + x1 + x2 + · · ·+ xk + xk+1 by the n = 2 case.

The result follows by induction.

641. Observe that x2 +5x+6 = (x+2)(x+3) while x2 +5x− 6 = (x+6)(x− 1). Determine infinitely many
coprime pairs (m,n) of positive integers for which both x2 + mx + n and x2 + mx− n can be factored
as a product of linear polynomials with integer coefficients.

Solution 1. For the factorizations to occur, both discriminants must be squares: m2 − 4n = u2,
m2+4n = v2 for some integers u and v. Suppose m2 can be expressed as the sum of two squares: m2 = p2+q2.
Then 2m2 = (p + q)2 + (p− q)2. Write u = p− q, v = p + q. Then 8n = v2 − u2 = 4pq so that n = 1

2pq.

Now we construct our examples. Let r and s be a coprime pair of integers with opposite parity. Define
p = r2 − s2, q = 2rs, m = r2 + s2 and n = rs(r2 − s2). Then any prime power divisor of m and n must
divide both r2 + s2 and one of r, s and r2 − s2, and hence both 2r2 and 2s2. Hence it must divide 2. But
we have arranged for m to be odd. Hence m and n are coprime. Observe that

x2 + (r2 + s2)x + rs(r2 − s2) = (x + s(r + s))(x + r(r − s))

and
x2 + (r2 + s2)x− rs(r2 − s2) = (x + r(r + s))(x− s(r − s)) .
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Solution 2. With the notation of the first solution, we have that m2−u2 = v2−m2, whence v2−2m2 =
−u2. Let us take u = 1. We show that v2 − 2m2 = −1 has infinitely many solutions with m odd. Let
(v,m) = (vk,mk) where

(v1,m1) = (1, 1) and vk+1 + mk+1

√
2 = (3 + 2

√
2)(vk + mk

√
2)

so
vk+1 = 3vk + 4mk mk+1 = 2vk + 3mk

for k ≥ 1. By induction, it is proved that, for each k, v2
k − 2m2

k = −1. Let (m,n) = (mk, 1
4 (m2

k − 1)). Then
it is readily shown that (m,n) are both integers and satisfy the condition of the problem. For example, we
have

(u, v;m,n) = (1, 1; 1, 0), (1, 7; 5, 6), (1, 41; 29, 210), · · ·

so that, for example, x2 + 29x + 210 = (x + 14)(x + 15) and x2 + 29x− 210 = (x + 35)(x− 6).

Solution 3. [J. Rickards, M. Boase] Let a be even and let (m,n) = (a2 + 1, a3 − a). Then the greatest
common divisor of m and a is 1, as is the greatest common divisor of m and a2 − 1. Then

x2 + (a2 + 1)x + (a3 − a) = (x + a2 − a)(x + a + 1)

and
x2 + (a2 + 1)x− (a3 − a) = (x + a2 + a)(x− a− 1) .

Comment. This is a special case of Solution 1.

Solution 4. [S. Hemmati] Let k be an integer and let

m = 4k2 + 1 = (2k + 1)2 − 4k = (2k − 1)2 + 4k

and n = 2k(2k + 1)(2k − 1). The three factors of n are pairwise coprime, and it follows that the greatest
common divisor of m and n is 1. We have that

x2 + mx− n = [x + 2k(2k + 1)][x− (2k − 1)]

and
x2 + mx + n = [x + 2k(2k − 1)][x + (2k + 1)] .

Solution 5. [C. Deng] Suppose that x2 + mx− n has roots a and −b and that x2 + mx + n has roots r
and s. Then n = ab = rs and m = b− a = −r − s. In terms of a and b, the values of r and s are given by

a− b±
√

a2 − 6ab + b2

2
.

Since a− b and a2− 6ab + b2 have the same parity, these are integers if and only if a2− 6ab + b2 is a square.
Any values of a and b which make this quantity square will yield acceptable values of m and n.

Let (a1, b1) = (1, 6), and for k ≥ 1,

ak+1 = 6ak − bk , bk+1 = ak .

Then
a2

k+1 − 6ak+1bk+1 + b2
k+1 = (6ak − bk)2 − 6(6ak − bk)ak + a2

k = a2
k − 6akbk + b2

k ,

so that, by induction, we see that this quantity is equal to 1 for all k ≥ 1. Thus

(rk, sk) =
(

ak − bk − 1)
2

,
ak − bk + 1

2

)
.
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Observe that the greatest common divisor of ak+1 and bk+1 is equal to that of ak and bk, and so, by
induction, equal to 1, the greatest common divisor of 1 and 6. It follows, for all k, that akbk and ak − bk are
relativeoly prime. Thus, the pair

(x2 + (bk − ak)x− akbk, x2 + (bk − ak)x + akbk)

satisfy the desired conditions for k ≥ 1.

In particular, we find that

x2 + 5x− 6 = (x + 6)(x− 1) , x2 + 5x + 6 = (x + 2)(x + 3) ;

x2 + 29x− 210 = (x + 35)(x− 6) , x2 + 29x + 210 = (x + 14)(x + 15) ;

x2 + 169x− 7140 = (x + 204)(x− 35) , x2 + 169x + 7140 = (x + 84)(x + 85) .

Solution 5. [K. Zhou] Suppose that x2 + mx−n has integer roots −a and −b and that x2 + mx + n has
an integer root c. Then

x2 + mx− n = (x + a)(x + b)

so that m = a + b and n = −ab¿ The two roots of the polynomial x2 + mx + n are −c and c −m, where
−ab = n = c(a + b− c). Therefore a(b + c0 = c2 − bc so that

a = c− 2b +
2b2

b + c
.

Thus, b + c must divide 2b2 as all the other terms in the equation are integers.

To construct our examples, let a, b, c be chosen so that a and b are integers, b+c = 1 and a = c−2b+2b2.
Then c is an integer and

c = 1− b , a = 1− 3b + 2b2 = (1− b)(1− 2b) .

Therefore, let
m = a + b = 1− 2b + 2b2 = (1− b)2 + b2

= (1− b) + b(2b− 1)

and
n = −ab = −b(1− b)(1− 2b) .

Suppose, if possible, that some prime p divides both m and n. From the factorization of n, it follows that
p divides one of b, 1− b and 1− 2b, and from the expressions for m, we see that it must divide all three of
these numbers. But this is impossible, as b and 1− b are coprime. Therefore, for all integers b, m and n are
coprime.

We verify that these values of m and

x2 + (1− 2b + b2)x + b(b− 1)(2b− 1) = (x + b)(x + (b− 1)(2b− 1)) ;

x2 + (1− 2b + b2)x− b(b− 1)(2b− 1) = (x− b + 1)(x + b(2b− 1) .

642. In a convex polyhedron, each vertex is the endpoint of exactly three edges and each face is a concyclic
polygon. Prove that the polyhedron can be inscribed in a sphere.

Solution. Let us begin with a couple of preliminary observations. Since three edges are incident with
each vertex, exactly three faces of the polyhedron meet at each vertex. The centre of the circumscribing
circle of any face is the point common to the right bisectors of the edges. The planes that right bisect the
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edges of a face intersect in a line perpendicular to the face, and this line is the locus of the centres of spheres
which contain all the vertices of the face. Finally, any two vertices of the polyhedron can be joined by a path
of edges of the polyhedron.

Any two adjacent faces of the polyhedron are inscribed in a unique sphere. Let the edge AB be common
to two faces α and β which have respective circumcentres P and Q. The respective lines m and n to these
faces through their circumcentres are non-parallel lines on the plane right-bisecting AB and so intersect in
a unique point. This point is the centre of the only sphere that contains all of the vertices of α and β.

The three faces meeting at any vertex are contained in the same sphere. Suppose that vertex A belongs
to the edges AB, AC and AD. The right bisecting planes of the edges AB and AC meet in a line through
the centre of and perpendicular to the circumcircle of ABC. The right bisecting plane of AD is not parallel
to this line and does not contain it, and so meets it in a single point. This point, lying on the perpendicular
to each of the three faces adjacent to A and passing through their circumcentres is equidistance from all the
vertices of these faces and so is the centre of a sphere containing these faces.

There is a circumscribing sphere for the polyhedron. Suppose this is false. Then there must be two
vertices for which the spheres circumscribing the faces about the vertices differ. Join the two vertices by
a path of edges. For one of the edges, say RS, the sphere circumscribing the faces meeting at R must be
different from the sphere circumscribing the faces meeting at S. But then this means that the two faces
adjacent to RS must be circumscribed by two separate spheres, contrary to what was shown above. Hence
the desired result follows.

643. Let n2 distinct integers be arranged in an n×n square array (n ≥ 2). Show that it is possible to select n
numbers, one from each row and column, such that if the number selected from any row is greater than
another number in this row, then this latter number is less than the number selected from its column.

Solution. We proceed in a number of rounds. In Round 1, select the least element in each row. If each
column has one such number, we stop; otherwise, deselect in any column all but the largest of the selected
numbers. Any row that does not contain a selected number, we call free. In each subsequent round, pick the
least element not yet tried from each free row, and then deselect all but the biggest number in each column.
Since any row can be freed at most n− 1 times, there are at most n(n− 1) + 1 rounds. In the final round,
each column must have exactly one element.

Example:

6 5 11 6 5 11 6 5 11
4 2 3 → 4 2 3 → 4 2 3
7 10 1 7 10 1 7 10 1

Suppose, wolog (by shuffling the columns if necessary), that the entries a11, a22, · · · , ann are selected
from the array (aij). If aik < aii, then this number must have been an earlier possible selection and was
rejected in favour of a larger number in its column. Hence aik < akk.

Comment: There is a dual procedure taking the largest element of each column and rejecting all but
the smallest selected number in each row.

644. Given a point P , a line L and a circle C, construct with straightedge and compasses an equilateral
triangle PQR with one vertex at P , another vertex Q on L and the third vertex R on C.

Solution 1. Analysis. Suppose that we have the required triangle PQR with Q ∈ L and R ∈ C. Then
a 60◦ rotation with centre P takes C to a circle C′ and R to the point lying on the intersection of C′ and L.
Accordingly, we need to construct a rotated image C′ of C and, if this intersects L, then we can construct
the triangle.
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Construction. Let O be the centre of C. Construct an equilateral triangle POO′ and with centre O′

construct a circle C′ with radius equal to that of C. If this circle C′ intersects L at R, then there are two
constructible points which with P and R are the vertices of an equilateral triangle; one of them Q will lie
on C.

Proof. The circle C′ is the image of C under a 60◦ rotation with centre P that carries O to O′. The
point R lies on C′ so its inverse image Q under the rotation lies on C. Since PQ = PR and ∠P = 60◦, PQR
is an equilateral triangle.

Comment. There are two possible images of C yielding up to four possibilities for R. However, it is also
possible that neither images intersects L and the construction is not possible.

645. Let n ≥ 3 be a positive integer. Are there n positive integers a1, a2, · · · , an not all the same such that
for each i with 3 ≤ i ≤ n we have

ai + Si = (ai, Si) + [ai, Si] .

where Si = a1 + a2 + · · ·+ ai, and where (·, ·) and [·, ·] represent the greatest common divisor and least
common multiple respectively?

Solution 1. Letting bi = (ai, Si), we find that

[ai, Si] =
aiSi

(ai, Si)
=

aiSi

bi
.

The given condition is equivalent to ai + Si = bi + (aiSi/bi), which is equivalent to

0 = b2
i − (ai + Si)bi + aiSi = (bi − ai)(bi − Si) .

We can achieve the condition by making ai = (ai, Si) and Si = [ai, Si]. Let a1 = a2 = 1, ai = 2i−2 for i ≥ 3.
Then

Si = 1 +
i∑

j=2

2j−2 = 1 + (2i−1 − 1) = 2i−1

=⇒ (ai, Si) = 2i−2 , [ai, Si] = 2i−1

for i ≥ 3.

Solution 2. Let ai = 1, a2 = 2 and ai = 3 · 2i−3 for i ≥ 3. Then

Si = 1 + 2 + 3
i−3∑
j=0

2j = 1 + 2 + 3(2i−2 − 1) = 3 · 2i−2

=⇒ (ai, Si) = 3 · 2i−3 , [ai, Si] = 3 · 2i−2

for i ≥ 3.

Solution 3. [K. Purbhoo] Choose a1 at will, and let ai = Si−1 for i ≥ 2. Then Si = Si−1 + ai = 2ai,
ai + Si = 3ai, (ai, Si) = ai and [ai, Si] = 2ai for i ≥ 2.

Solution 4. [K. Yeats] Let a1 = 1, a2 = 3 and an = 2n−1 for n ≥ 3. Then Sn = 2n for n ≥ 2 and, for
each i with 3 ≤ i ≤ n, (ai, Si) = 2i−1 and [ai, Si] = 2i.

646. Let ABC be a triangle with incentre I. Let AI meet BC at L, and let X be the contact point of the
incircle with the line BC. If D is the reflection of L on X, we construct B′ and C ′ as the reflections of
D with respect to the lines BI and CI, respectively. Show that the quadrailateral BCC ′B′ is cyclic.
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Solution 1. Without loss of generality, we may assume that AC ≥ AB. Observe that B′ lies on the side
AB and C ′ lies on the side AC. We use the conventional notation for the sides a, b, c of the triangle and
2s = a + b + c for the permimeter. Let Z and Y be the tangent points of the incircle with sides AB and AC
respectively. Observe that IX ⊥ BC, IY ⊥ AC and IZ ⊥ AB.

We have that XL = XD = ZB′ = Y C ′,

|XC| = s− c , |AY | = |AZ| = s− a ;

|LC| = ab

b + c
.

Therefore
|XL| = s− c− ab

b + c
,

|AB′| = |AZ|+ |ZB|

= s− a + s− c− ab

b + c
= b− ab

b + c

= b

(
1− a

b + c

)
;

and
|AC ′| = |AY | − |Y C ′|

= s− a− s + c +
ab

b + c

=
−ab + bc− ac + c2 + ab

b + c

= c

(
b + c− a

b + c

)
= c

(
1− a

b + c

)
.

Therefore
AC ′ : AB′ = c : b = AB : AC

so that triangles ABC and AC ′B′ are similar and ∠ABC = ∠AC ′B′, ∠ACB = ∠AB′C ′. Therefore the
quadrilateral BCC ′B′ is concyclic.

Solution 2. [S. Sun] Suppose that AC ≥ AB. Use the same notation as in Solution 1, and let t = |BL|.
Then |ZB′| = |Y C ′| = |DX| = |XL| = t− (s− b). We have that

|AB′| = (s− a) + t− (s− b) = t + (b− a)

and
|AC ′| = (s− a)− t + (s− b) = c− t ,

whereupon
AB′ : AC ′ = [t + (b− a)] : [c− t] = [b− (a− t)] : [c− t] .

However, as AL is an angle bisector, we have that (a− t) : t = b : c, so that

[b− (a− t) : [c− t] = b : c = AC : AB .

Therefore, triangles AC ′B′ and ABC are similar, and we can conclude, as in Solution 1, that BCC ′B′ is
concyclic.

Comment. Notice that Solutions 1 and 2 follow the same strategy, but the second solution is cleaner as
it avoid the actual computation of t and merely exploited a relationship involving this variable.

62



Solution 3. [A. Murali] We again assume that AC ≥ AB and use the notation of Solution 1. We first
show that AB′IC ′ is concyclic. Observe that ∠ZB′I = ∠LD′I = ∠Y C ′I, so that triangles IB′Z and IC ′Y
are similar and ∠ZIB′ = ∠Y IC ′. Thus ∠B′AC ′ = 180◦−∠ZIY = 180◦−∠B′IC ′ and AB′IC ′ is concyclc.
It follows that ∠B′C ′I = ∠BAI = 1

2∠BAC = ∠LAC.

We have that
∠CC ′I = ∠IDC = ∠ILB = ∠LAC + ∠ACL ,

whence

∠CC ′B′ = ∠CC ′I + ∠B′C ′I = (∠LAC + ∠ACL) + ∠LAC = ∠ACB + ∠BAC = 180◦ − ∠ABC .

Therefore, BCC ′B′ is concyclic.

647. Find all continuous functions f : R→ R such that

f(x + f(y)) = f(x) + y

for every x, y ∈ R.

Solution 1. Setting (x, y) = (t, 0) yields f(t + f(0)) = f(t) for all real t. Setting (x, y) = (0, t) yields
f(f(t)) = f(0) + t for all real t. Hence f(f(f(t))) = f(t) for all real t, i.e., f(f(z)) = z for each z in the
image of f . Let (x, y) = (f(t),−f(0)). Then

f(f(t) + f(−f(0))) = f(f(t))− f(0) = f(0) + t− f(0) = t

so that the image of f contains every real and so f(f(t)) ≡ t for all real t.

Taking (x, y) = (u, f(v)) yields
f(u + v) = f(u) + f(v)

since v = f(f(v)) for all real u and v. In particular, f(0) = 2f(0), so f(0) = 0 and 0 = f(−t + t) = f(−t) +
f(t). By induction, it can be shown that for each integer n and each real t, f(nt) = nf(t). In particular, for
each rational r/s, f(r/s) = rf(1/s) = (r/s)f(1). Since f is continuous, f(t) = f(t · 1) = tf(1) for all real t.
Let c = f(1). Then 1 = f(f(1)) = f(c) = cf(1) = c2 so that c = ±1. Hence f(t) ≡ t or f(t) ≡ −t. Checking
reveals that both these solutions work. (For f(t) ≡ −t, f(x + f(y)) = −x− f(y) = f(x) + y, as required.)

Solution 2. Taking (x, y) = (0, 0) yields f(f(0)) = f(0), whence f(f(f(0))) = f(f(0)) = f(0). Taking
(x, y) = (0, f(0)) yields f(f(f(0))) = 2f(0). Hence 2f(0) = f(0) so that f(0) = 0. Taking x = 0 yields
f(f(y)) = y for each y. We can complete the solution as in the Second Solution.

Solution 3. [J. Rickards] Let (x, y) = (x,−f(x)) to get

f(x + f(−f(x)) = f(x)− f(x) = 0

for all x. Thus, there is at least one element u for which f(u) = 0. But then, taking (x, y) = (0, u), we find
that f(0) = f(0 + f(u)) = f(0) + u, so that u = 0.

Therefore f(f(y)) = y for each y, so that f is a one-one onto function. Also, x + f(−f(x)) = 0, so that
−f(x) = f(f(−f(x)) = f(−x) for each value of x.

Since f(x) is continuous and vanishes only for x = 0, we have either (1) f(x) is positive for x > 0 and
negative for x < 0, or (2) f(x) is negative for x > 0 and positive for x < 0. Suppose that situation (1)
obtains. Then, for every real number x, f(x − f(x)) = f(x + f(−x)) = f(x) − x = −(x − f(x)). Since
f(x − f(x)) and x − f(x) have the same sign, we must have f(x) = x. Suppose that situation (2) obtains.
Then, for every real x, f(x + f(x)) = f(x) + x, from which we deduce that f(x) = −x. Therefore, there are
two functions f(x) = x and f(x) = −x that satisfy the equation and both work.
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648. Prove that for every positive integer n, the integer 1 + 5n + 52n + 53n + 54n is composite.

Solution. Observe the following representations:

x8 + x6 + x4 + x2 + 1 = (x4 + x3 + x2 + x + 1)(x4 − x3 + x2 − x + 1) . (1)

and
x4 + x3 + x2 + x + 1 = (x2 + 3x + 1)2 − 5x(x + 1)2 . (2)

When n = 2k is even, we can substitute x = 5k into equation (1) to get a factorization. When n = 2k− 1 is
odd, we can substitute x = 52k−1 into equation (2) to get a difference of squares, which can then be factored.

649. In the triangle ABC, ∠BAC = 20◦ and ∠ACB = 30◦. The point M is located in the interior of triangle
ABC so that ∠MAC = ∠MCA = 10◦. Determine ∠BMC.

Solution 1. [S. Sun] Construct equilateral triangle MDC with M and D on opposite sides of AC and
equilateral triangle AME with M and Z on opposite sides of AB. Since AM = MC, these equilateral
triangles are congruent. Since AM = MD and

∠AMD = ∠AMC − ∠DMC = 160◦ − 60◦ = 100◦ ,

∠MAD = ∠MDA = 40◦. Since ME = AM = MC, triangle EMC is isosceles. Since

∠EMC = 360◦ − ∠EMA− ∠AMC = 360◦ − 60◦ − 160◦ = 140◦ ,

∠EMC = ∠MCE = 20◦. As ∠MCB = 20◦ = ∠MCE, E,B,C are collinear. Now

∠EBA = ∠BAC + ∠BCA = 20◦ + 30◦ = 50◦

= 60◦ − 10◦ = ∠EAM − ∠BAM = ∠EAB ,

so that BE = AE = ME and triangle BEM is isosceles. Since ∠BEM = ∠BEA− ∠MEA = 80◦ − 60◦ =
20◦, it follows that

∠BMC = 360◦ − ∠EMB − ∠EMA− ∠AMC = 360◦ − 80◦ − 60◦ − 160◦ = 60◦ .

Solution 2. Let O be the circumcentre of the triangle BAC; this lies on the opposite side of AC to B.
Since the angle subtended at the centre by a chord is double that subtended at the circumference, we have
that

∠AOC = 2(180◦ − ∠ABC) = 2(180◦ − 130◦) = 100◦ .

The right bisector of the segment AC passes through the apex of the isosceles triangle MAC and the centre
O of the circumcircle of triangle BAC. We have that ∠AOM = 50◦, ∠AMO = 1

2∠AMC = 80◦, and

∠MAO = 180◦ − 50◦ − 80◦ = 50◦ .

Therefore, triangle MAO is isosceles with MA = MO.

Observe that ∠BAO = ∠BAC + ∠MAO−∠MAC = 60◦ and that AO = BO, so that triangle BAO is
equilateral and so BA = BO. Since B and M are both equidistant from A and O, the line BM must right
bisect the segment AO at N , say. Therefore, ∠MNO = 90◦, so that ∠NMO = 40◦. It follows that

∠BMC = 180◦ − ∠CMO − ∠NMO = 180◦ − 80◦ − 40◦ = 60◦ .

Solution 3. [M. Essafty] Let α = ∠MBA, so that ∠MBC = 130◦ − α. From the trigonometric version
of Ceva’s Theorem, we have that

sinα sin 20◦ sin 10◦ = sin(130◦ − α) sin 10◦ sin 10◦
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⇒ 2 sin alpha sin 10◦ cos 10◦ = sin(130◦ − α) sin 10◦

⇒ 2 sinα cos 10◦ = cos(40◦ − α) = cos 40◦ cos α + sin 40◦ sinα .

Dividing both sides by cos 40◦ cos α yields that

2 cos α

(
2 cos 10◦

cos 40◦
− sin 40◦

cos 40◦

)
= 1 .

Therefore
cot α =

cos 10◦ + cos 10◦ − cos 50◦

cos 40◦

=
cos 10◦ + 2 sin 30◦ sin 20◦

cos 40◦

=
cos 10◦ + sin 20◦

cos 40◦
=

cos 10◦ + cos 70◦

cos 40◦

=
2 cos 40◦ cos 30◦

cos 40◦
= 2 cos 30◦ =

√
3 .

Therefore α = 30◦.

650. Suppose that the nonzero real numbers satisfy

1
x

+
1
y

+
1
z

=
1

xyz
.

Determine the minimum value of

x4

x2 + y2
+

y4

y2 + z2
+

z4

z2 + x2
.

Solution 1. [W. Fu] Let f(x, y, z) denote the expression

x4

x2 + y2
+

y4

y2 + z2
+

z4

z2 + x2
.

Then

f(x, y, z)− f(x, z, y) =
(

x4

x2 + y2
+

y4

y2 + z2
+

z4

z2 + x2

)
−

(
x4

x2 + z2
+

z4

z2 + y2
+

y4

y2 + x2

)
=

x4 − y4

x2 + y2
+

y4 − z4

y2 + z2
+

z4 − x4

z2 + x2

= (x2 − y2) + (y2 − z2) + (z2 − x2) = 0 .

Thus, f(x, y, z) = f(x, z, y) and

f(x, y, z) =
1
2
(f(x, y, z) + f(x, z, y))

=
1
2

[
x4 + y4

x2 + y2
+

y4 + z4

y2 + z2
+

z4 + x4

z2 + x2

]
=

1
2

[(
x2 + y2 − 2x2y2

x2 + y2

)
+

(
y2 + z2 − 2y2z2

y2 + z2

)
+

(
z2 + x2 − 2z2x2

z2 + x2

)]
= (x2 + y2 + z2)− 1

2

(
2x2y2

x2 + y2
+

2y2z2

y2 + z2
+

2z2x2

z2 + x2

)
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Observe that
x2 + y2 + z2 =

1
2
[(x2 + y2) + (y2 + z2) + (z2 + x2)] ≥ xy + yz + zx = 1

and that 2x2y2 ≤ x4 + y4. Hence

f(x, y, z) ≥ 1− 1
2

(
x4 + y4

x2 + y2
+

y4 + z4

y2 + z2
+

x4 + x4

z2 + x2

)
= 1− 1

2
[f(x, y, z) + f(x, z, y)] = 1− f(x, y, z) ,

from which f(x, y, z) ≥ 1
2 . Equality occurs if and only if x = y = z = 1/

√
3.

Solution 2. [S. Sun] From the Arithmetic-Geometric Means Inequality, we have that

x4

x2 + y2
+

1
4
(x2 + y2) ≥ x2

with a similar inequality for the other pairs of variables. Adding the three inequalities obtained, we find that

x4

x2 + y2
+

y4

y2 + z2
+

z4

z2 + x2
+

1
2
(x2 + y2 + z2) ≥ x2 + y2 + z2

from which
x4

x2 + y2
+

y4

y2 + z2
+

z4

z2 + x2
≥ 1

2
(x2 + y2 + z2) ,

with equality if and only if x = y = z. Since (x− y)2 + (y− z)2 + (z−x)2 ≥ 0, it follows that x2 + y2 + z2 ≥
xy + yz + zx = 1. Therefore

x4

x2 + y2
+

y4

y2 + z2
+

z4

z2 + x2
≥ 1

2

with equality if and only if x = y = z = 1/
√

3.

Solution 3. [K. Zhou; G. Ajjanagadde; M. Essafty] Since (x− y)2 ≥ 0, etc., we have that x2 + y2 + z2 ≥
xy + yz + zx. By the Cauchy-Schwarz Inequality, we have that[(

x2√
x2 + y2

)2

+
(

y2√
y2 + z2

)2

+
(

z2

√
z2 + x2

)2]
[(

√
x2 + y2)2 + (

√
y2 + z2)2 + (

√
z2 + x2)2]

≥ (x2 + y2 + z2)2 ,

whence (
x4

x2 + y2
+

y4

y2 + z2
+

z4

z2 + x2

)
[(x2 + y2) + (y2 + z2) + (z2 + x2)] ≥ (x2 + y2 + z2)2 ,

so that
x4

x2 + y2
+

y4

y2 + z2
+

z4

z2 + x2
≥ x2 + y2 + z2

2
≥ xy + yz + zx

2
=

1
2

.

Equality occurs when x = y = z = 1/
√

3.

Solution 4. Observe that the given condition is equivalent to xy + yz + zx = 1. Since the expression
to be minimized is the same when (x, y, z) is replaced by (−x,−y,−z) and since two of the variables must
have the same sign, we may assume that x and y are both positive.

Suppose, first, that z > 0. Since x2 + y2 ≥ 2xy, we have that

x4

x2 + y2
= x2 − x2y2

x2 + y2
≥ x2 − xy

2
,
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with similar inequalities for the other pairs of variables. Therefore, the expression to be minimized is not
less that

(x2 + y2 + z2)− 1
2
(xy + yz + zx) ≥ (xy + yz + zx)− 1

2
(xy + yz + zx) =

1
2

.

Equality occurs if and only if x = y = z = 1/
√

3.

Regardless of the signs of the variables, if the largest of x2, y2, z2 is at least 2, we show that the
expression is not less that 1. For example, if x2 ≥ 2, x2 ≥ y2, we find that

x4

x2 + y2
≥ x4

2x2
=

x2

2
≥ 1 .

Henceforth, assume that x2, y2, z2 are less than 2 and that z < 0. Then xy < 2. Since 0 > z =
(1− xy)/(x + y), then xy > 1, so that x + y ≥ 2

√
xy > 2. Hence

|z| = xy − 1
x + y

≤ 1
2

.

If x > y, then (because xy > 1), x > 1, so that

x4

x2 + y2
>

x4

2x2
>

1
2

.

If y > z, then y > 1 > |z| and
y4

y2 + z2
>

y4

2y2
>

1
2

.

In any case, when z < 0, the quantity to be minimized exceeds 1/2. Therefore, the minimum value is 1/2,
achieved when (x, y, z) = (3−1/2, 3−1/2, 3−1/2).

Solution 5. [B. Wu] We first establish a lemms: if a, b, u, v are positive, then

a2

u
+

b2

v
≥ (a + b)2

u + v

with equality if and only if a : u = b : v. To see this, subtract the right side from the left to get a fraction
whose numerator is (av − bu)2.

Applying this to the given expression yields that

(x2)2

y2 + z2
+

(y2)2

z2 + x2
+

(z2)2

x2 + y2

≥ (x2 + y2 + z2)2

2(x2 + y2 + z2)
=

x2 + y2 + z2

2

≥ xy + yz + zx

2
=

1
2

.

Equality occurs if and only if x = y = z = 1/
√

3.

Solution 6. [M. Essafty] Squaring both sides of the equation 2x2 = (x2 + y2) + (x2 − y2) yields that

4x4 = (x2 + y2)2 + (x2 − y2)2 + 2(x2 + y2)(x2 − y2)

≥ (x2 + y2)2 + 2(x2 + y2)(x2 − y2)

whence
4x4

x2 + y2
≥ 3x2 − y2 .
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Taking account of similar inequalities for other pairs of variables, we obtain that

4x4

x2 + y2
+

4y4

y2 + z2
+

4z4

z2 + x2
≥ 2(x2 + y2 + z2) ≥ 2(xy + yz + zx) = 2 ,

from which we conclude that the minimum value is 1
2 . This is attained when x = y = z = 1/

√
3.

Solution 7. [O. Xia] Recall that, for r > 0, r + (1/r) ≥ 2, so that r ≥ 2− (1/r). It follows that

x4

x2 + y2
=

(
x2

2

)(
2x2

x2 + y2

)
≥

(
x2

2

)(
2− x2 + y2

2x2

)
= x2 − x2 + y2

4

with similar equalities for the other two terms in the problem statement. Equality occurs if and only if
x2 = y2 = z2.

Adding the three equalities yields that Determine the minimum value of

x4

x2 + y2
+

y4

y2 + z2
+

z4

z2 + x2
≥ x2 + y2 + z2

2
.

As before, we see that the right member assumes its minimum value of 1
2 when x = y = z = 1/

√
3.

651. Determine polynomials a(t), b(t), c(t) with integer coefficients such that the equation y2+2y = x3−x2−x
is satisfied by (x, y) = (a(t)/c(t), b(t)/c(t)).

Solution. The equation can be rewritten (y+1)2 = (x−1)2(x+1). Let x+1 = t2 so that y+1 = (t2−2)t.
Thus, we obtain the solution

(x, y) = (t2 − 1, t3 − 2t− 1) .

With these polynomials, both sides of the equation are equal to t6 − 4t4 + 4t2 − 1.

652. (a) Let m be any positive integer greater than 2, such that x2 ≡ 1 (mod m) whenever the greatest
common divisor of x and m is equal to 1. An example is m = 12. Suppose that n is a positive integer
for which n + 1 is a multiple of m. Prove that the sum of all of the divisors of n is divisible by m.

(b) Does the result in (a) hold when m = 2?

(c) Find all possible values of m that satisfy the condition in (a).

(a) Solution 1. Let n + 1 be a multiple of m. Then gcd(m,n) = 1. We observe that n cannot be a
square. Suppose, if possible, that n = r2. Then gcd(r, m) = 1. Hence r2 ≡ 1 (mod m). But r2 +1 ≡ 0 (mod
m) by hypothesis, so that 2 is a multiple of m, a contradiction.

As a result, if d is a divisor of n, then n/d is a distinct divisor of n. Suppose d|n (read “d divides n”).
Since m divides n + 1, therefore gcd(m,n) = gcd(d, m) = 1, so that d2 = 1 + bm for some integer b. Also
n + 1 = cm for some integer c. Hence

d +
n

d
=

d2 + n

d
=

1 + bm + cm− 1
d

=
(b + c)m

d
.

Since gcd(d, m) = 1 and d + n/d is an integer, d divides b + c and so d + n/d ≡ 0 (mod m).

Hence ∑
d|n

d =
∑
{(d + n/d) : d|n, d <

√
n} ≡ 0 (mod m)
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as desired.

Solution 2. Suppose that m > 1 and m divides n + 1. Then gcd (m,n) = 1. Suppose, if possible, that
n = r2 for some r. Then, since gcd (m, r) = 1, r2 ≡ 1 (mod r). Therefore m divides both r2 + 1 and r2 − 1,
so that m = 2. But this gives a contradiction. Hence n is not a perfect square.

Suppose that d is a divisor of n. Then the greatest common divisor of m and d is 1, so that d2 ≡ 1
(mod n). Suppose that de = n. Then e 6= 1d and the greatest common divisor of m and e is 1. Therefore,
there are numbers u and v for which both du and ev are congruent to 1 modulo m. Since n ≡ −1 and d2 ≡ 1
(mod m), it follows that

d + e ≡ d + un ≡ u(d2 + n) ≡ u(1− 1) = 0

mod m), from which it can be deduced that m divides the sum of all the divisors of n.

Solution 3. Suppose that n+1 ≡ 0 (mod m). As in the first solution, it can be established that n is not
a perfect square. Let x be any positive divisor of n and suppose that xy = n; x and y are distinct. Since
gcd (x,m) = 1, x2 ≡ 1 (mod m), so that

y = x2y ≡ xn ≡ −x (mod m)

whence x + y is a multiple of m. Thus, the divisors of n comes in pairs, each of which has sum divisible by
m, and the result follows.

Solution 4. [M. Boase] As in the second solution, if xy = n, then x2 ≡ y2 ≡ 1 (mod m) so that

0 ≡ x2 − y2 ≡ (x− y)(x + y) (mod m).

For any divisor r of m, we have that

x(x− y) ≡ x2 − xy ≡ 2 (mod r)

from which it follows that the greatest common divisor of m and x− y is 1. Therefore, m must divide x + y
and the solution can be completed as before.

(b) Solution. When m = 2, the result does not hold. The hypothesis is true. However, the conclusion
fails when n = 9 since 9 + 1 is a multiple of 2, but 1 + 3 + 9 = 13 is odd.

(c) Solution 1. By inspection, we find that m = 1, 2, 3, 4, 6, 8, 12, 24 all satisfy the condition in (a).

Suppose that m is odd. Then gcd(2,m) = 1⇒ 22 = 4 ≡ 1 (mod m) ⇒ m = 1, 3.

Suppose that m is not divisible by 3. Then gcd(3,m) = 1 ⇒ 9 = 32 ≡ 1 (mod m) ⇒ m = 1, 2, 4, 8.
Hence any further values of m not listed in the above must be even multiples of 3, that is, multiples of 6.

Suppose that m ≥ 30. Then, since 25 = 52 6= 1 (mod m), m must be a multiple of 5.

It remains to show that in fact m cannot be a multiple of 5. We observe that there are infinitely many
primes congruent to 2 or 3 modulo 5. [To see this, let q1, · · · , qs be the s smallest odd primes of this form and
let Q = 5q1 · · · qs + 2. Then Q is odd. Also, Q cannot be a product only of primes congruent to ±1 modulo
5, for then Q itself would be congruent to ±1. Hence Q has an odd prime factor congruent to ±2 modulo
5, which must be distinct from q1, · · ·, qs. Hence, no matter how many primes we have of the desired form,
we can always find one more.] If possible, let m be a multiple of 5 with the stated property and let q be a
prime exceeding m congruent to ±2 modulo 5. Then gcd(q, m) = 1 ⇒ q2 ≡ 1 (mod m) ⇒ q2 ≡ 1 (mod 5)
⇒ q 6≡ ±2 (mod 5), yielding a contradiction. Thus, we have given a complete collection of suitable numbers
m.

Solution 2. [J. Rickards] Suppose that a suitable value of m is equal to a power of 2, Then 32 ≡ 1 (mod
m) implies that m must be equal to 4 or 8. It can be checked that both these values work.
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Suppose that m = paq, where p is an odd prime and p and q are coprime. By the Chinese Remainder
Theorem, there is a value of x for which x ≡ 1 (mod q) and x ≡ 2 (mod pa). Then x2 ≡ 1 (mod m), so that
4 ≡ x2 ≡ 1 (mod pa) and thus p must equal 3. Therefore, m must be divisible by only the primes 2 and
3. Therefore 25 = 52 ≡ 1 (mod m), with the result that m must divide 24. Checking reveals that the only
possibilities are m = 3, 4, 6, 8, 12, 24.

Solution 3. [D. Arthur] Suppose that m = ab satisfies the condition of part (a), where the greatest
common divisor of a and b is 1. Let gcd (x, a) = 1. Since a and b are coprime, there exists a number t such
that at ≡ 1 − x (mod b), so that z = x + at and b are coprime. Hence, the greatest common divisor of z
and ab equals 1, so that z2 ≡ 1 (mod ab), whence x2 ≡ z2 ≡ 1 (mod a). Thus a (and also b) satisfies the
condition of part (a).

When m is odd and exceeds 3, then gcd (2,m) = 1, but 22 = 4 6≡ 1 (mod m), so m does not satisfy the
condition. When m = 2k for k ≥ 4, then gcd (3,m) = 1, but 32 = 9 6≡ 1 (mod m). It follows from the first
paragraph that if m satisfies the condition, it cannot be divisible by a power of 2 exceeding 8 nor by an odd
number exceeding 3. This leaves the possibilities 1, 2, 3, 4, 6, 8, 12, 24, all of which satisfy the condition.

653. Let f(1) = 1 and f(2) = 3. Suppose that, for n ≥ 3, f(n) = max{f(r) + f(n − r) : 1 ≤ r ≤ n − 1}.
Determine necessary and sufficient conditions on the pair (a, b) that f(a + b) = f(a) + f(b).

Solution 1. From the first few values of f(n), we conjecture that f(2k) = 3k and f(2k + 1) = 3k + 1 for
each positive integer k. We establish this by induction. It is easily checked for k = 1. Suppose that it holds
up to k = m.

Suppose that 2m+2 is the sum of two positive even numbers 2x and 2y. Then f(2x)+f(2y) = 3(x+y) =
3(m + 1). If 2m + 2 is the sum of two positive odd numbers 2u + 1 and 2v + 1, then

f(2u + 1) + f(2v + 1) = (3u + 1) + (3v + 1) = 3(u + v) + 2 < 3(u + v + 1) = 3(m + 1) .

Hence f(2(m + 1)) = 3(m + 1).

Suppose 2m + 3 is the sum of 2z and 2w + 1. Then z + w = m + 1 and

f(2z) + f(2w + 1) = 3z + 3w + 1 = 3(z + w) + 1 = 3(m + 1) + 1 .

Hence f(2(m + 1) + 1) = 3(m + 1) + 1. The conjecture is established by induction.

By checking cases on the parity of a and b, one verifies that f(a+ b) = f(a)+ f(b) if and only if at least
one of a and b is even. (If a and b are both odd, the left side is divisible by 3 while the right side is not.)

Solution 2. [K. Yeats] By inspection, we conjecture that f(n + 1) = f(n) + 2 when n is odd, and
f(n+1) = f(n)+1 when n is even. This is true for n = 1, 2. Suppose it holds up to n = 2k. If 2k+1 = i+ j
with i even and j odd, then f(i− 1) + f(j + 1) = f(i)− 2 + f(j) + 2 = f(i) + f(j) and f(i + 1) + f(j − 1) =
f(i)+1+f(j)−1 = f(i)+f(j) (where defined), so in particular f(2k +1) = f(2k)+f(1) = f(2k)+1. Note
that this also tells us that f(2k + 1) = f(i) + f(j) whenever i + j = 2k + 1. Now consider 2k + 2 = i + j. If
i and j are both even, then

f(i + 1) + f(j − 1) = f(i) + 1− f(j)− 2 = f(i) + f(j)− 1

while if i and j are both odd, then

f(i + 1) + f(j − 1) = f(i) + 2− f(j)− 1 = f(i) + f(j) + 1 .

Thus, f(2k + 2) = f(i) + f(j) if and only if i and j are both even. In particular, f(2k + 2) = f(2k) + f(2) =
f(2k + 1)− 1 + 3 = f(2k) + 2. We thus find that f(a + b) = f(a) + f(b) if and only if at least one of a and
b is even.
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