
OLYMON

VOLUME 8

2007

Problems 479-527

479. Let x, y, z be positive integer for which
1
x

+
1
y

=
1
z

and the greatest common divisor of x and z is 1. Prove that x + y, x − z and y − z are all perfect
squares. Give two examples of triples (x, y, z) that satisfy these conditions.

480. Let a and b be positive real numbers for which 60a = 3 and 60b = 5. Without the use of a calculator or
of logarithms, determine the value of

12
1−a−b
2(1−b) .

481. In a certain town of population 2n + 1, one knows those to whom one is known. For any set A of n
citizens, there is some person among the other n+1 who knows everyone on A. Show that some citizen
of the town knows all the others.

[This problem was published as #11262 in the American Mathematical Monthly (113:10 (December,
2006), 940. Solvers of this problem should send their solutions to Prof. Barbeau and are invited to submit
their solutions to the problems editor for the Monthly: Prof. Doug Hensley, Monthly Problems, Department
of Mathematics, Texas A & M University, 3368 TAMU, College Station, TX 77843-3368, USA. A pdf file of
the solution may be sent to monthlyproblems@math.tamu.edu.]

482. A trapezoid whose parallel sides have the lengths a and b is partitioned into two trapezoids of equal
area by a line segment of length c parallel to these sides. Determine c as a function of a and b.

483. Let A and B be two points on the circumference of a circle, and E be the midpoint of arc AB (either
arc will do). Let P be any point on the minor arc EB and N the foot of the perpendicular from E to
AP . Prove that AN = NP + PB.

484. ABC is a triangle with ∠A = 40◦ and ∠B = 60◦. Let D and E be respective points of AB and AC
for which ∠DCB = 70◦ and ∠EBC = 40◦. Furthermore, let F be the point of intersection of DC and
EB. Prove that AF ⊥ BC.

485. From the foot of each altitude of the triangle, perpendiculars are dropped to the other two sides. Prove
that the six feet of these perpendiculars lie on a circle.

486. Determine all quintuplets (a, b, c, d, u) of nonzero integers for which

a

b
=

c

d
=

ab + u

cd + u
.

487. ABC is an isosceles triangle with ∠A = 100◦ and AB = AC. The bisector of angle B meets AC in D.
Show that BD + AD = BC.

488. A host is expecting a number of children, which is either 7 or 11. She has 77 marbles as gifts, and
distributes them into n bags in such a way that whether 7 or 11 children come, each will receive a
number of bags so that all 77 marbles will be shared equally among the children. What is the minimum
value of n?
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489. Suppose n is a positive integer not less than 2 and that x1 ≥ x2 ≥ x3 ≥ · · · ≥ xn ≥ 0,

n∑
i=1

xi ≤ 400 and
n∑

i=1

x2
i ≥ 104 .

Prove that
√

x1 +
√

x2 ≥ 10. is it possible to have equality throughout? [Bonus: Formulate and prove
a generalization.]

490. (a) Let a, b, c be real numbers. Prove that

min [(a− b)2, (b− c)2, (c− a)2] ≤ 1
2
[a2 + b2 + c2] .

(b) Does there exist a number k for which

min [(a− b)2, (a− c)2, (a− d)2, (b− c)2, (b− d)2, (c− d)2] ≤ k[a2 + b2 + c2 + d2]

for any real numbers a, b, c, d? If so, determine the smallest such k.
[Bonus: Determine if there is a generalization.]

491. Given that x and y are positive real numbers for which x+y = 1 and that m and n are positive integers
exceeding 1, prove that

(1− xm)n + (1− yn)m > 1 .

492. The faces of a tetrahedron are formed by four congruent triangles. if α is the angle between a pair of
opposite edges of the tetrahedron, show that

cos α =
sin(B − C)
sin(B + C)

where B and C are the angles adjacent to one of these edges in a face of the tetrahedron.

493. Prove that there is a natural number with the following characteristics: (a) it is a multiple of 2007;
(b) the first four digits in its decimal representation are 2009; (c) the last four digits in its decimal
representation are 2009.

494. (a) Find all real numbers x that satisfy the equation

(8x− 56)
√

3− x = 30x− x2 − 97 .

(b) Find all real numbers x that satisfy the equation

√
x + 3

√
x + 7 = 4

√
x + 80 .

495. Let n ≥ 3. A regular n−gon has area S. Squares are constructed externally on its sides, and the vertices
of adjacent squares that are not vertices of the polygon are connected to form a 2n−sided polygon, whose
area is T . Prove that T ≤ 4(

√
3 + 1)S. For what values of n does equality hold?

496. Is the hundreds digit of N = 22006 + 22007 + 22008 even or odd? Justify your answer.

497. Given n ≥ 4 points in the plane with no three collinear, construct all segments connecting two of these
points. It is known that the length of each of these segments is a positive integer. Prove that the lengths
of at least 1/6 of the segments are multiples of 3.
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498. Let a be a real parameter. Consider the simultaneous sytem of two equations:

1
x + y

+ x = a− 1 ; (1)

x

x + y
= a− 2 . (2)

(a) For what value of the parameter a does the system have exactly one solution?

(b) Let 2 < a < 3. Suppose that (x, y) satisfies the sytem. For which value of a in the stated range does
(x/y) + (y/x) reach its maximum value?

499. The triangle ABC has all acute angles. The bisector of angle ACB intersects AB at L. Segments
LM and LN with M ∈ AC and N ∈ BC are constructed, perpendicular to the sides AC and BC
respectively. Suppose that AN and BM intersect at P . Prove that CP is perpendicular to AB.

500. Find all sets of distinct integers 1 < a < b < c < d for which abcd− 1 is divisible by (a− 1)(b− 1)(c−
1)(d− 1).

501. Given a list of 3n not necessarily distinct elements of a set S, determine necessary and sufficient condi-
tions under which these 3n elements can be divided into n triples, none of which consist of three distinct
elements.

502. A set consisting of n men and n women is partitioned at random into n disjoint pairs of people. What
are the expected value and variance of the number of male-female couples that result? (The expected
value E is the average of the number N of male-female couples over all possibilities, i.e. the sum of the
numbers of male-female couples for the possibilities divided by the number of possibilities. The variance
is the average of the difference (E−N)2 over all possibilities, i.e. the sum of the values of (E−N)2 for
the possibilities divided by the number of possibilities.)

503. A natural number is perfect if it is the sum of its proper positive divisors. Prove that no two consecutive
numbers can both be perfect.

504. Find all functions f taking the real numbers into the real numbers for which the following conditions
hold simultaneously:

(a) f(x + f(y) + yf(x)) = y + f(x) + xf(y) for every real pair (x, y);

(b) {f(x)/x : x 6= 0} is a finite set.

505. What is the largest cubical present that can be completely wrapped (without cutting) by a unit square
of wrapping paper?

506. A two-person game is played as follows. A position consists of a pair (a, b) of positive integers. Playes
move alternately. A move consists of decreasing the larger number in the current position by any positive
multiple of the smaller number, as long as the result remains positive. The first player unable to make
a move loses. (This happens, for example, when a = b.) Determine those positions (a, b) from which
the first player can guarantee a win with optimal play.

507. Prove that, if a, b, c are positive reals, then

log2 ab

c
+ log2 bc

a
+ log2 ca

b
+

3
4
≥ log(abc) .

508. Let a, b, c be integers exceeding 1 for which both loga b + logb a and log2
a b + log2

b a are rational. Prove
that, for every positive integer n, logn

a b + logn
b a is rational.

3



509. Let ABCDA′B′C ′D′ be a cube where the point O is the centre of the face ABCD and |AB| = 2a.
Calculate the distance from the point B to the line of intersection of the planes A′B′O and ADD′A′

and the distance between AB′ and BD. (AA′, BB′, CC ′, DD′ are edges of the cube.)

510. Solve the equation

3
√

x2 + 2 + 3
√

4x2 + 3x− 2 = 3
√

3x2 + x + 5 + 3
√

2x2 + 2x− 5 .

511. Find the sum of the last 100 digits of the number

A = 1 · 2 · 3 · . . . · 2005 · 2006 + 2007 .

512. Prove that (
3n

n

)
=

n∑
k=0

(
2n

k

)(
n

k

)
when n ≥ 1.

513. Solve the equation
21−2 sin2 x = 2 + log2(1− sin2 x) .

514. Prove that there do not exist polynomials f(x) and g(x) with complex coefficients for which

logb x =
f(x)
g(x)

where b is any base exceeding 1.

515. Let n be a fixed positive integer exceeding 1. To any choice of n real numbers xi satisfying 0 ≤ xi ≤ 1,
we can associate the sum ∑

{|xi − xj | : 1 ≤ i < j ≤ n} .

What is the maximum possible value of this sum and for which values of the xi is it assumed?

516. Let n ≥ 1. Is it true that, for any 2n + 1 positive real numbers x1, x2, · · · , x2n+1, we have that

x1x2

x3
+

x2x3

x4
+ · · ·+ x2n+1x1

x2
≥ x1 + x2 + · · ·+ x2n+1 ,

with equality if and only if all the xi are equal?

517. A man bought four items in a Seven-Eleven store. The clerk entered the four prices into a pocket
calculator and multiplied to get a result of 7.11 dollars. When the customer objected to this procedure,
the clerk realized that he should have added and redid the calculation. To his surprise, he again got the
answer 7.11. What did the four items cost?

518. Let I be the incentre of triangle ABC, and let AI, BI, CI, produced, intersect the circumcircle of
triangle ABC at the respective points D, E, F . Prove that EF ⊥ AD.

519. Let AB be a diameter of a circle and X any point other than A and B on the circumference of the
circle. Let tA, tB and tX be the tangents to the circle at the respective points A, B and X. Suppose
that AX meets tB at Z and BX meets tA at Y . Show that the three lines Y Z, tX and AB are either
concurrent (ı.e. passing through a common point) or parallel.

520. The diameter of a plane figure is the largest distance between any pair of points in the figure. Given an
equilateral triangle of side 1, show how, by a stright cut, one can get two pieces that can be rearranged
to form a figure with maximum diameter
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(a) if the resulting figure is convex (i.e. the line segment joining any two of its points must lie inside
the figure);

(b) if the resulting figure is not necessaarily convex, but it is connected (i.e. any two points in the figure
can be connected by a curve lying inside the figure).

521. On a 8 × 8 chessboard, either +1 or −1 is written in each square cell. Let Ak be the product of all
the numbers in the kth row, and Bk the product of all the numbers in the kth column of the board
(k = 1, 2, · · · , 8). Prove that the number

A1 + A2 + · · ·+ A8 + B1 + B2 + · · ·+ B8

is a multiple of 4.

522. (a) Prove that, in each scalene triangle, the angle bisector from one of its vertices is always “between”
the median and the altitude from the same vertex.

(b) Find the measures of the angles of a triangle if the lengths of the median, the angle bisector and the
altitude from one of its vertices are in the ratio

√
5 :
√

2 : 1.

523. Let ABC be an isosceles triangle with AB = AC. The segments BC and AC are used as hypotenuses to
construct three right triangles BCM , BCN and ACP . Prove that, if ∠ACP +∠BCM +∠BCN = 90◦,
then the triangle MPN is isosceles.

524. Solve the irrational equation

7√
x2 − 10x + 26 +

√
x2 − 10x + 29 +

√
x2 − 10x + 41

= x4 − 9x3 + 16x2 + 15x + 26 .

525. The circle inscribed in the triangle ABC divides the median from A into three segments of the same
length. If the area of ABC is 6

√
14, calculate the lengths of its sides.

526. For the non-negative numbers a, b, c, prove the inequality

4(a + b + c) ≥ 3(a +
√

ab + 3
√

abc) .

When does equality hold?

527. Consider the set A of the 2n−digit natural numbers, with 1 and 2 each occurring n times as a digit,
and the set B of the n−digit numbers all of whose digits are 1, 2, 3, 4 with the digits 1 and 2 occurring
with equal frequency. Show that A and B contain the same number of elements (i.e., have the same
cardinality).

Solutions

479. Let x, y, z be positive integer for which
1
x

+
1
y

=
1
z

and the greatest common divisor of x and z is 1. Prove that x + y, x − z and y − z are all perfect
squares. Give two examples of triples (x, y, z) that satisfy these conditions.

Solution 1. [G. Ghosn] Since (1/y) = (x− z)/(xz) and gcd (x, x− z) = gcd (z, x− z) = 1, the fractions
on both sides of the equation are in lowest terms, and so x− z = 1 and xz = y. Hence x+ y = x(1+ z) = x2

and y − z = z(x− 1) = z2.
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Solution 2. Since z(x + y) = xy and the greatest common divisor of x and z is 1, x, being a divisor of
z(x + y) must be a divisor of x + y and so of y. Let y = ux for some positive integer u. Then z(1 + u) = ux.
Since u and 1 + u have greatest common divisor 1, u must divide z and 1 + u must divide x, Hence z = uv
and x = (1 + u)w, for some positive integers v and w. Therefore uv(1 + u) = u(1 + u)w, whence v = w.

Therefore (x, y, z) = ((1 + u)v, u(1 + u)v, uv). Since x and z have greatest common divisor 1, v = 1 and
(x, y, z) = (1 + u, u(1 + u), u). This satisfies the given equation as well as x + y = (1 + u)2 = x2, x− z = 1
and y − z = u2 = z2. Particular examples are (x, y, z) = (2, 2, 1), (3, 6, 2), (4, 12, 3), (5, 20, 4).

Solution 3. We have that z(x + y) = xy and x(y − z) = yz. Since gcd (x, z) = 1, z and x both must
divide y, so that y = vz = wx for some positive integers v and w. Since z(1 + w)x = xvz, 1 + w = v and
gcd (v, w) = 1. Since wx = vz,,we must have that x = v and z = w and y = vw. This satisfies the equation
as well as x + y = v2, x− z = 1 and y − z = w2.

Solution 4. [K. Huynh] Observe that x > y and z > y. From the equation, we obtain that xz + yz = xy
whence (x − z)(y − z) = z2. Since gcd (x, z) = 1, there is no prime that divides x − z and z2, so that gcd
(x− z, z2) = 1. Therefore x− z = 1, y − z = z2, y = z2 + z and x + y = (z + 1)2.

480. Let a and b be positive real numbers for which 60a = 3 and 60b = 5. Without the use of a calculator or
of logarithms, determine the value of

12
1−a−b
2(1−b) .

Solution 1. [V. Zhou]

12
1−a−b
2(1−b) =

(
60
5

) 1−a−b
2(1−b)

= 60(1−b)·( 1−a−b
2(1−b) )

=
(

60
60a+b

) 1
2

=
(

60
60a · 60b

) 1
2

=
(

60
3× 5

) 1
2

= 2 .

Solution 2. Since 60b = 5, 12b = 51−b and 5 = 12b/(1−b). Since 60a = 3, 225a12a = 12. Therefore

22 = 121−a5−a = 121−a12−ab/(1−b) = 12(1−a−b+ab−ab)/(1−b) = 12(1−a−b)/(1−b) .

Therefore 2 = 12(1−a−b)/2(1−b).

Solution 3. [A. Guo; D. Shi] Since a = log60 3 and b = log60 5,

1− (a + b) = 1− log60(15) = log60(60/15) = log60 4 .

Also, 1− b = 1− log60 5 = log60 12, so that

1− a− b

1− b
=

log60 4
log60 12

= log12 4 = 2 log12 2 .

Therefore
12

1−a−b
2(1−b) = 12log12 2 = 2 .

481. In a certain town of population 2n + 1, one knows those to whom one is known. For any set A of n
citizens, there is some person among the other n + 1 who knows everyone in A. Show that some citizen
of the town knows all the others.
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Solution 1. [K. Huynh] We prove that there is a set of n + 1 people in the town, each of whom knows
(and is known by) each of the rest. First, observe that for any set of k people, with k ≤ n, there is a person
not among them who knows them all. This follows by augmenting the set to n people and applying the
condition of the problem.

Let p1 be any person. There is a person, say p2 who knows p1. A person p3 can be found who knows
both p1 and p2, so that {p1, p2, p3} is a triplet each of whom knows the other two. Suppose, as an induction
hypothesis, that 3 ≤ k ≤ n, and {p1, p2, · · · , pk} is a set of k people any pair of whom know each other. By
the foregoing observation, there is another person pk+1 who knows them all. By induction, we can find a set
{p1, p2, · · · , pn+1}, each pair of whom know each other.

Consider the remaining n people. There must be one among the pi who knows all of these remaining
people. This person pi therefore knows everyone.

Solution 2. Let us suppose that the persons are numbered from 0 to 2n inclusive. The notation
(a : a1, a2, · · · , ak) will mean that a is knows and is known by each of a1, a2, · · · , ak. Begin with the set
{1, 2, · · · , n}; some person, say 0, knows everyone in this set, so that

(0 : 1, 2, 3, · · · , n) .

If person 0, knows everyone else, then we are done. Otherwise, there is a person, say, n + 1, not known to
0, so that everyone in the set {n + 1, n + 2, · · · , 2n}, is known by a person in the first set, say 1, so that

(1 : 0, n + 1, n + 2, · · · , 2n) .

Consider the set {0, 2, 3, · · · , n}. If 1 knows everyone in this set, then 1 knows everyone and we are done. If
1 does not know everyone in this set, then there is someone else, say n + 1, who does, so that

(n + 1 : 0, 1, · · · , n) and (0 : 1, 2, · · · , n + 1) .

If 0 knows everyone in the set {1, n + 2, · · · , 2n}, then 0 knows everyone; if n + 1 knows everyone in this
set, then n + 1 knows everyone, and we are done. If not, then there is a person 2, say, who knows everyone
in the set:

(2 : 0, 1, n + 1, n + 2, · · · , 2n) .

Consider the set {0, 3, · · · , n, n + 1}. If 1 or 2 knows everyone in this set, then 1 or 2 knows everybody and
we are done. Otherwise, there is a person, say n + 2 who knows everyone in the set, so that

(n + 2 : 0, 1, 2, · · · , n + 1) and (0 : 1, 2, · · · , n + 1, n + 2) .

We can continue on in this way either until we find someone that knows everyone, or until we reach the
ith stage for which

(i : 0, 1, 2, · · · , i− 1, n + 1, · · · , 2n) and (n + i : 0, 1, 2, · · · , n, n + 1, · · · , n + i− 1) .

If we get to the nth stage, then n and 2n each know everyone.

482. A trapezoid whose parallel sides have the lengths a and b is partitioned into two trapezoids of equal
area by a line segment of length c parallel to these sides. Determine c as a function of a and b.

Solution. Let u be the distance between the segment of length a and that of length c, and v the distance
between the segment of length c and that of length b. Then

u + v

u
=

b− a

c− a
.
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From the area condition, we have that

2
(

c + a

2

)
u =

(
b + a

2

)
(u + v) =

(
b2 − a2

2(c− a)

)
u ,

whence 2(c2 − a2) = b2 − a2 and c2 = 1
2 (a2 + b2). Therefore

c =

√
a2 + b2

2
.

483. Let A and B be two points on the circumference of a circle, and E be the midpoint of arc AB (either
arc will do). Let P be any point on the minor arc EB and N the foot of the perpendicular from E to
AP . Prove that AN = NP + PB.

Solution 1. Produce ANP to M so that AN = NM . Then EM = AE = EB. Hence ∠EBM = ∠EMB,
so that

∠PBM = ∠EBM − ∠EBP = ∠EMB − ∠EAP = ∠EMB − ∠EMA = ∠PMB .

Therefore PB = PM , so that

AN = NM = NP + PM = NP + PB .

Solution 2. [V. Zhou] Determine Q on AN so that AQ = BP . Then, also, ∠EAQ = ∠EAP = ∠EPB
and AE = EB, so that triangles AEQ and BEP are congruent. Hence EQ = EP and so QN = NP .
Therefore AN = QN + AQ = NP + PB.

Solution 3. [Y. Wang] Let O be the centre and r the radius of the circle. Let F and G be the respective
midpoints of AP and AB. Then FG‖BP and, since ∠AFO = ∠AGO = 90◦, the quadrilateral AFGO is
concyclic.

Let α = ∠AOF = ∠AGF and β = ∠AOE = ∠BOE. Then

∠PAB = ∠FAG = ∠FOG = ∠FOE = ∠NEO = β − α .

Also, |FN | = |OE| sin(β − α) = r sin(β − α) and |AF | = r sinα. By the Law of Sines applied to triangle
AFG,

|FG|
sin(β − α)

=
|AF |
sinα

= r,

whence |FG| = r sin(β − α) = |FN |. Hence AN = PF + FN = PN + 2FN = PN + 2FG = NP + PB.

484. ABC is a triangle with ∠A = 40◦ and ∠B = 60◦. Let D and E be respective points of AB and AC
for which ∠DCB = 70◦ and ∠EBC = 40◦. Furthermore, let F be the point of intersection of DC and
EB. Prove that AF ⊥ BC.

Solution 1. [J. Schneider] Let AH be the altitude from A to BC. We apply the converse of Ceva’s
Theorem in the trigonometric form to show that the cevians AH, BE and CD concur.

sin 30◦ sin 40◦ sin 10◦

sin 10◦ sin 20◦ sin 70◦
=

sin 30◦(2 sin 20◦ cos 20◦)
sin 20◦ cos 20◦

= 2 sin 30◦ = 1 .

Hence AH, BE and CD concur, so that AH passes through F and the result follows.

Solution 2. [A. Siddhour] In triangle BCF , since ∠CBF = 40◦ and ∠CBF = 40◦, it follows that
∠BFC = 70◦ = ∠CBF and BF = BC. Hence |BF | = a (using the standard convention for lengths of the
sides of the triangle ABC). Assign coordinates:

B ∼ (0, 0), C ∼ (a, 0), A ∼ (c cos 60◦, c sin 60◦), F ∼ (a cos 40◦, a sin 40◦ .
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By the Law of sines, we have that c sin 40◦ = a sin 80◦, whence c = 2a cos 40◦.

We have that

−→
FA · −−→BC = (c cos 60◦ − a cos 40◦, c sin 60◦ − a sin 60◦) · (a, 0)

= a(2a cos 40◦ cos 60◦ − a cos 40◦ = a cos 40◦ − a cos 40◦ = 0 ,

from which it follows that AF ⊥ BC.

Solution 3. [Y. Wang] The result will follow if one can show that ∠FAC = 10◦. Since ∠FCA =
∠BCA−∠DCB = 80◦ − 70◦ = 10◦, it is enough to show that the perpendicular from F to AC bisects AC,
i.e., 2|CF | cos ∠FCA = |AC|.

Since ∠FBC = 40◦ and ∠BCF = 70◦, it follows that ∠BFC = 70◦ so that |CF | = 2|BC| cos 70◦.
Since BC : AC = sin∠BAC : sin∠ABC = sin 40◦ : sin 60◦,

2|CF | cos ∠FCA = 4|BC| cos 70◦ cos 10◦ = 4|AC| sin 40◦ sin 20◦ sin 80◦/ sin 60◦ .

For each angle θ,

4 sin θ sin(60◦ + θ) sin(60◦ − θ) = 2 sin θ[cos 2θ − cos 120◦]
= 2 sin θ cos 2θ + 2 sin θ sin 30◦

= sin 3θ − sin θ + sin θ = sin 3θ .

When θ = 20◦, this becomes 4 sin 20◦ sin 40◦ sin 80◦ = sin 60◦. so that 2|CF | cos ∠FCA = |AC|, as desired.

Solution 4. Since ∠BFC = 70◦ = ∠BCD, BF = BC. Let |BF | = |BC| = 1, |AF | = u and |CF | = v.
Let ∠BAF = θ, so that ∠CAF = 40◦ − θ. By the Sine law applied to triangles BFC and AFC,

sin 40◦

sin 70◦
= v =

u sin(40◦ − θ)
sin 10◦

.

By the Sine Law applied to triangle ABF, u = sin 20◦/ sin θ. Hence

sin 40◦

sin 70◦
=

sin 20◦ sin(40◦ − θ)
sin 10◦ sin θ

,

so that
sin 10◦ sin 40◦ sin θ = sin 20◦ cos 20◦ sin(40◦ − θ) ,

whence
2 sin 10◦ sin θ = sin(40◦ − θ) = sin 40◦ cos θ − cos 40◦ sin θ

and
sin θ(2 sin 10◦ + cos 40◦) = cos θ sin 40◦ .

Now
2 sin 10◦ + cos 40◦ = sin 10◦ + (sin 10◦ + sin 50◦)

= sin 10◦ + 2 sin 30◦ cos 20◦ = sin 10◦ + sin 70◦

= 2 sin 40◦ cos 30◦ =
√

3 sin 40◦ .

Hence
√

3 sin θ = cos θ, so that cot θ =
√

3. Hence θ = 30◦ and the result follows.

Solution 5. [K. Huynh] Let a, b, c be the sides of triangle ABC according to convention. Since ∠BFC =
∠FCB = 70◦, |BF | = |BC| = a. Let the respective feet of the perpendiculars from A and F to BC be P
and Q. Then |BP | = c cos 60◦ = c/2 and |BQ| = a cos 40◦. From the Law of Sines, a sin 80◦ = c sin 40◦, so
that c = 2a cos 40◦. Hence BP = BQ, and the result follows.
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Solution 6. [G. Ghosn] Applying the Law of Sines to triangles BCE and BEA using their common side
BE, we obtain that

|EC|
|EA|

=
(

sin 40◦

sin 80◦

)(
sin 40◦

sin 20◦

)
=

sin2 40◦

sin 20◦ sin 80◦
=

2 cos 20◦ sin 40◦

sin 80◦
.

Similarly,
|DA|
|DB|

=
sin 10◦ sin 60◦

sin 40◦ sin 70◦
.

By Ceva’s therem

1 =
|EC|
|EA|

|DA|
|DB|

|MB|
|MC|

=
2 cos 20◦ sin 40◦ sin 10◦ sin 60◦

sin 80◦ sin 40◦ sin 70◦
|MB|
|MC|

=
2cos 80◦ sin 60◦

sin 80◦
|MB|
|MC|

,

whence we find that |MB| : |MC| = tan 80◦ : tan 60◦.

Let AN be an altitude of triangle ABC, so that |AN | = |NB| tan 60◦ = |CN | tan 80◦. Then MB :
MC = NB : NC, so that M = N and the desired result follows.

485. From the foot of each altitude of the triangle, perpendiculars are dropped to the other two sides. Prove
that the six feet of these perpendiculars lie on a circle.

Solution 1. Let ABC be the triangle with altitudes AP , BQ and CR; let H be the orthocentre. Let
PU ⊥ AB, QV ⊥ BC, RW ⊥ CA, PX ⊥ CA, QY ⊥ AB and RZ ⊥ BC, where U, Y ∈ AB; V,Z ∈ BC;
and W,X ∈ CA.

Consider triangles AQR and ABC. Since ARHQ is concyclic (right angles at Q and R),

∠ARQ = ∠AHQ = ∠BHP = 90◦ − ∠HBP = 90◦ − ∠QBC = ∠ACB .

Similarly, ∠AQR = ∠ABC. Thus, triangles AQR and ABC are similar, the similarity being implemented
by a dilatation of centre A followed by a reflection about the bisector of angle BAC. Since QY and RW
are altitudes of triangle AQR, triangle AY W is formed from triangle AQR as triangle AQR is formed from
triangle ABC. Hence triangles AY W and AQR are similar by the combination of a dilatation with centre
A and a reflection about the bisector of angle BAC.

Therefore, triangle AY W and ABC are directly similar and Y W‖BC. Similarly triangles BZU and
BCA as well as triangles CXV and CAB are similar and ZU‖CA and XV ‖AB. (We note that this means
that XWY UZV is a hexagon with opposite sides parallel, although this is not needed here.)

Since PX‖HQ and PU‖HR, AU : AR = AP : AH = AX : AQ, so that there is a dilatation taking
U → R, P → H and X → Q. Therefore UX‖RQ and triangle AXU is similar to triangle AQR and to
triangle ABC.

Consider quadrilateral UZV X.

∠UZV + ∠UXV = (180◦ − ∠BZU) + (180◦ − ∠AXU − ∠CXV )
= (180◦ − ∠ACB) + (180◦ − ∠ABC − ∠BAC) = 180◦ .

Hence UZV X is concyclic. Similarly, V XWY and WY UZ are concyclic.

Since triangles AY W and AXU are similar with ∠AWY = ∠AUX and ∠AY W = ∠AXU , XWY U is
concyclic. Similarly, Y UZV and ZV XW are concylclic. Hence XWY UZV is a hexagon, any consecutive
four vertices of which are concylcic, and so is itself concyclic.
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Solution 2. [K. Huynh] Let a, b, c be the lengths of the sides and A, B, C the angles of the triangle ABC
according to convention. Use the notation of Solution 1. We have that |BU | = |BP | cos B = (c cos B) cos B =
c cos2 B. Similarly, |BZ| = a cos2 B, |AY | = c cos2 A and |CV | = a cos2 C. Therefore, |BY | = c(1−cos2 A) =
c sin2 A and |CV | = a(1− cos2 C) = a sin2 C.

Since a sinC = c sinA,

|BU ||BY | = (c cos2 B)(a sin2 A) = cos2 B(c sinA)2

= cos2 B(a sinC)2 = (a cos2 B)(a sin2 C) = |BZ||BV | .

from which, by a power-of-the-point argument [give details!], we deduce that Y UZV is concyclic. Similarly,
ZV XW and XWY U are concyclic.

Suppose that the circumcircle of Y UZV intersects AZ at L and the circumcircle of ZV XW intersects
AZ at M . Since XWY U is concyclic, |AY ||AU | = |AW ||AX|. Therefore,

|AL||AZ| = |AY ||AU | = |AW ||AX| = |AM ||AZ| .

Hence L = M . Thus, the circumcircles of Y UZV and ZV XW share three noncollinear points, Z, V and
L = M , and so must coincide. Similarly, each coincides with the circumcircle of XWY U and the result
follows.

486. Determine all quintuplets (a, b, c, d, u) of nonzero integers for which

a

b
=

c

d
=

ab + u

cd + u
.

Solution 1. If a = b and c = d, then an integer u exists as in the problem if and only if |a| = |c|. Suppose
that none of the fractions is equal to 1.

Let a/b = c/d = r/s where the greatest common divisor of r and s is 1. Then there are integers v and
w for which (a, b) = (vr, vs) and (c, d) = (wr, ws). If there exists a number u satisfying the conditions of the
problem, then

r

s
=

v2rs + u

w2rs + u
⇔ rs(w2r − v2s) = (s− r)u .

Since the greatest common divisor of r and s is 1, it follows that gcd (rs, r− s) = 1 so that s− r must divide

w2r − v2s = (w2 − v2)r − v2(s− r) ,

and so must divide w2 − v2.

For the converse, suppose that r and s are chosen arbitrarily, and that v and w are chosen to satisfy
w2 − v2 = (s− r)n for some integer n. Let (a, b, c, d) = (vr, vs, wr, ws). Then w2r − v2s = (s− r)(rn− v2).
Let u = rs(rn− v2). Thence,

ab + u

cd + v
=

v2rs + rs(rn− v2)
w2rs + rs(rn− v2)

=
v2 + rn− v2

w2 + rn− v2

=
rn

(s− r)n + rn
=

rn

sn
=

r

s
,

as desired.

Hence (a, b, c, d, u) satisfies the given condition if and only if a : c = b : d = v : w, a : b = c : d = r : s
where w2 − v2 ≡ 0 (mod s− r) and u = rs(rn− v2) for some integer n.
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Solution 2. Let a/b = c/d = r/s where gcd (r, s) = 1. Let (a, b) = (vr, vs) and (c, d) = (wr, ws). Then

r

s
=

v2rs + u

w2rs + u
,

so that v2rs + u = pr and w2rs + u = ps for some integer p. Since gcd (r, s) = 1, u = qrs for some integer
q, and

r

s
=

v2 + q

w2 + q
.

Thus, v2 + q = hr and w2 + q = hs for some integer h and w2 − v2 = h(s− r). We can now conclude as in
the first solution.

Solution 3. The equation a/c = (ab + u)/(cd + u) leads to u(a − c) = ac(b − d). Similarly, u(b − d) =
bd(a− c). Multiplying the two equations leads to

u2(a− c)(b− d) = (abcd)(a− c)(b− d) = (ad)2(a− c)(b− d) .

Therefore, either (a, b) = (c, d) or ad = bc = u.

Conversely, pick any positive number u and let a and c be positive divisors of u. Suppose that d = u/a
and b = u/c. Then

ab + u

cd + u
=

(au/c) + u

(cu/a) + u

=
au(a + c)
cu(a + c)

=
a

c
=

b

d
.

Therefore the system of equations is satisfied when (a, b) = (c, d) or a, b, c, d are integers for which ad = bc =
u.

Comment. A. Siddour discovered the particular family

(a, b, c, d, u) = (tr2, trs, trs, ts2, t2r2s2) ,

for parameters r, s, t.

487. ABC is an isosceles triangle with ∠A = 100◦ and AB = AC. The bisector of angle B meets AC in D.
Show that BD + AD = BC.

Solution 1. We have that ∠ACB = ∠ABC = 40◦ and ∠ABD = ∠DBC = 20◦. Locate E on BC so
that ∠BED = 80◦. Then ∠BDE = 80◦ so that BD = BE.

Since ∠DEC = 100◦ and ∠DCE = 40◦, ∠EDC = 40◦, so that DE = EC.

Since ∠BAD + ∠BED = 180◦, the quadrilateral ADEB is concyclic. Because BD bisects angle ABE,
it bisects arc ADE and so AD = DE. It follows that

BD + AD = BE + EC = BC .

Comment. A variant on this argument involves a point F on the segment BE so that BF = BA and
∠DFE = ∠DEF = 80◦. From the congruence of triangles ABD and FBD, we get AD = DF = DE = EC,
from which the result follows.

Solution 2. [A. Siddour] By the Law of Sines, AD : BD = sin 20◦ : sin 100◦ and BC : BD = sin 60◦ :
sin 40◦. Hence

1 +
AD

BD
= 1 +

sin 20◦

sin 100◦
=

sin 100◦ + sin 20◦

sin 80◦

=
2 sin 60◦ cos 40◦

2 sin 40◦ cos 40◦
=

sin 60◦

sin 40◦
=

BC

CD
,
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from which the result follows.

488. A host is expecting a number of children, which is either 7 or 11. She has 77 marbles as gifts, and
distributes them into n bags in such a way that whether 7 or 11 children come, each will receive a
number of bags so that all 77 marbles will be shared equally among the children. What is the minimum
value of n?

Solution: 17 bags will suffice. A systematic way to approach the problem is to number the marbles and
line them up in order. For a distribution to 11 children, place a marker after every seventh one (numbers 7,
14, etc.); for a distribution to 7 children, place a marker after every eleventh one (number 11, 22, etc.). This
will require 6 + 10 = 16 markers. This partitions the marbles into seventeen groups, that can be bagged
accordingly. With a× b representing a bags with b marbles, we have 5× 7, 2× 6, 2× 5, 2× 4, 2× 3, 2× 2
and 2× 1 for a distribution of

7, 4 + 3, 7, 1 + 6, 5 + 2, 7, 2 + 5, 6 + 1, 7, 3 + 4, 7

to eleven children and
7 + 4, 3 + 7 + 1, 6 + 5, 2 + 7 + 2, 5 + 6, 1 + 7 + 3, 4 + 7

to seven children.

Alternative distributions are 6× 7, 5× 4, 4× 3, 1× 2, 1× 1 for distributions of

7, 7, 7, 7, 7, 7, 4 + 3, 4 + 3, 4 + 3, 4 + 3, 4 + 2,+1

and
7 + 4, 7 + 4, 7 + 4, 7 + 4, 7 + 4, 7 + 3 + 1, 3 + 3 + 3 + 2 ,

and
7× 7, 4× 4, 3× 3, 3× 1

for distributions of
7, 7, 7, 7, 7, 7, 7, 4 + 3, 4 + 3, 4 + 3, 4 + 1 + 1 + 1

and
7 + 4, 7 + 4, 7 + 4, 7 + 4, 7 + 3 + 1, 7 + 3 + 1, 7 + 3 + 1 .

Solution 1: Fewer than 17 bags will not suffice. [B. Wu] Construct a graph whose vertices consist of a
set X ∪ Y and edges consist of a set E, where #X = 7, #Y = 11, representing the children if, respectively,
seven and eleven show up, and the only edges join pairs (x, y) with x ∈ X and y ∈ Y when a bag assigned
to x in one distribution goes to y in the other distribution.

This graph is connected (i.e., one can construct a path of edges that is incident with every vertex). If a
connected component contains m vertices of X and n vertices of Y , then the number of marbles represented
by these vertices is 11m = 7n. Since 11 and 7 are coprime, (m,n) = (7, 11) and each connected component
must contain all of the vertices. Since each connected graph with 18 vertices must contain at least 17 edges,
at least 17 bags are necessary.

Solution 2: Fewer than 17 bags will not suffice. Since we must accommodate 11 children, no bag can
contain more than 7 marbles. There cannot be more than seven bags with 7 marbles; otherwise, one of the
seven children must get two bags of 7 and so more than 11 marbles. Let a large bag contain 4 to 6 marbles
and a small bag contain 1 to 3 marbles.

If there are five or fewer bags with 7 marbles, then at least six of eleven children each get two bags, and
we will need at least 5+6× 2 = 17 bags. Suppose that there are six bags with 7 marbles. Then six of eleven
children get 1 bag with 7 marbles and the other five get at least two bags. If any of the five get more than
two bags, then we need at least 17 bags.
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Suppose, if possible, that exactly six of eleven children get 1 bag with seven marbles and the other five
get exactly two bags each. Then each of these five must get a large bag and a small bag. Thus, there are six
bags with 7 marbles, five large and five small bags. Let us consider how they might be distributed among
seven children. Six of the seven get a bag with 7 marbles and the seventh can get no more than two large
bags. Thus, at least three large bags go to children who have a bag of seven marbles. If only three large
bags go to such children, then the other three children with bags of seven marbles must have at least two
small bags each, requiring six small bags. This is not possible. If four large bags go to children with bags of
seven marbles, then the other children must each get three bags requiring at least 4× 2 + 3× 3 = 17 bags.
Finally, if five large bags go to children with a bag of seven marbles, then these five have two bags each, the
sixth has at least three bags and the seventh, with only small bags, needs four bags, for a total of at least
seventeen bags.

Finally, suppose that there are seven bags with 7 marbles. Then each of seven children would get one,
and no remaining bag could hold more than 4 marbles. For a distribution to eleven children, seven children
get a bag with 7 marbles and the remaining four get at most one bag with 4 marbles. Hence, there are at
most four bags with 4 marbles. Thus, at most four of seven children get 2 bags and the remaining three get
at least three bags, for a total of at least seventeen bags.

Solution 3: Fewer than 17 bags will not suffice. If, in the distribution to eleven children, five or fewer
get a 7-marble bag, then we need at least 5 + 6 × 2 = 17 bags. If, in the distribution to seven children,
four or fewer get two bags, then we need at least 4 × 2 + 3 × 3 = 17 bags. So we can, henceforth, restrict
attention to the situations where there are at least six 7-marble bags and at least five of seven children get
two bags. Observe that, for a distribution to eleven children, all the 7-marble and 4-marble bags must go to
distinct children, so that the number of 7-marble plus the number of 4-marble bags cannot exceed 10. Since
there are at least six 7-marble bags and at least five of seven children get two bags, there must be at least
four 4-marble bags. There cannot be seven 7-marble bags, since there would not be enough 4-marble bags
available to give five of seven children two bags. Thus, we have left to consider the following situations:

Case (i): 6 7-marble bags and 5 4-marble bags. In the distribution to eleven children, we need at least
6× 1 + 5× 2 = 16 bags, with equality if and only if we have 5 3-marble bags as well. But then there would
be no combination of bags to go with one of the 7-marble bags to make a presentation of eleven marbles to
one of seven children. Thus, we need at least seventeen bags.

Case(ii): 6 7-marble bags and 4 4-marble bags. Once again we need at least 16 bags to distribute to
eleven children, with equality if and only if six children get one bag and five children get two. The sixteen
bags must include 6 7-marble, 4 4-marble and 4 3-marble bags and, either, a 5-marble and 2-marble bag,
or, a 6-marble and 1-marble bag. In either case, we cannot make a distribution to seven children. Thus, we
need at least seventeen bags.

489. Suppose n is a positive integer not less than 2 and that x1 ≥ x2 ≥ x3 ≥ · · · ≥ xn ≥ 0,

n∑
i=1

xi ≤ 400 and
n∑

i=1

x2
i ≥ 104 .

Prove that
√

x1 +
√

x2 ≥ 10. is it possible to have equality throughout? [Bonus: Formulate and prove
a generalization.]

Solution. If x1 ≥ 100, the result holds trivially. Suppose that x1 < 100. Then

104 ≤ x2
1 +

n∑
j=2

x2
j ≤ x2

1 + x2

n∑
j=2

xj

≤ x2
1 + x2(400− x1) = x1(x1 − x2) + 400x2

< 100(x1 − x2) + 400x2 = 100x1 + 300x2 .

Hence x1 + 3x2 ≥ 100.
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Therefore
(
√

x1 +
√

x2)2 = x1 + x2 + 2
√

x1x2 ≥ x1 + x2 + 2x2

= x1 + 3x2 ≥ 100 ,

so that
√

x1 +
√

x2 ≥ 10. Equality holds, for example, when n = 16 and x1 = x2 = · · · = x16 = 25.

490. (a) Let a, b, c be real numbers. Prove that

min [(a− b)2, (b− c)2, (c− a)2] ≤ 1
2
[a2 + b2 + c2] .

(b) Does there exist a number k for which

min [(a− b)2, (a− c)2, (a− d)2, (b− c)2, (b− d)2, (c− d)2] ≤ k[a2 + b2 + c2 + d2]

for any real numbers a, b, c, d? If so, determine the smallest such k.
[Bonus: Determine if there is a generalization.]

Solution 1. (a) Wolog, a ≤ b ≤ c. Let b− a = x ≥ 0, c− b = y ≥ 0 and m be the minimum of x and y.
Then

1
2
[a2 + b2 + c2] =

1
2
[a2 + (a + x)2 + (a + x + y)2]

=
1
2
[a2 + 2(a + x)2 + 2(a + x)y + y2]

=
1
2
[(a + y)2 + 2(a + x)2 + 2xy] ≥ xy ≥ m2 ,

with equality if and only if x = y = −a. Since m2 is equal to the left member of the inequality, the result
follows.

(b) Suppose that a ≤ b ≤ c ≤ d and let m be the minimum of the nonnegative quantities b − a, c − b,
d− c. The m2 is the value of the left member of the inequality.

Now,
20m2 = 3m2 + 2(2m)2 + (3m)2

≤ [(b− a)2 + (c− b)2 + (d− c)2] + [(c− a)2 + (d− b)2] + [(d− a)2]

= 3(a2 + b2 + c2 + d2)− 2(ab + ac + ad + bc + bd + cd)

= 4(a2 + b2 + c2 + d2)− (a + b + c + d)2 ≤ 4(a2 + b2 + c2 + d2) ,

so that m2 ≤ 1
5 (a2 + b2 + c2 + d2). Equality occurs if and only if b− a = c− b = d− c and a + b + c + d = 0.

This occurs, for example, when (a, b, c, d) = (−3,−1, 1, 3).

Solution 2. (a) Observe that

a2 + b2 + c2 =
1
3
[(a− b)2 + (b− c)2 + (c− a)2 + (a + b + c)2

≥ 1
3
[(a− b)2 + (b− c)2 + (c− a)2] .

Wolog, assume that a ≤ b ≤ c and note that

2 min {(b− a), (c− b)} ≤ (b− a) + (c− b) = (c− a) ,

so that

(a− b)2 + (b− c)2 + (c− a)2 ≥ 2 min {(b− a)2, (c− b)2}+ 4 min {(b− a)2, (c− b)2

= 6 min {(b− a)2, (c− b)2 .
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The desired result follows.

(b) Wolog, let a ≤ b ≤ c ≤ d and supppose that m = min (d− c, c− b, b− a). Then

a2 + b2 + c2 + d2 =
1
4
[(d− c)2 + (c− b)2 + (b− a)2 + (d− b)2 + (c− a)2 + (d− a)2 + (a + b + c + d)2]

≥ 1
4
[3m2 + 2(2m)2 + (3m)2 + 0] = 5m2 ,

from which the result follows. Equality occurs if and only if d− c = c− b = b− a and a + b + c + d = 0.

Generalization. [B. Wu] Let n ≥ 3 and suppose that a1 ≤ a2 ≤ · · · ≤ an. Let

x = a2
1 + a2

2 + · · ·+ a2
n

and
y = min {(ai − aj)2 : 1 ≤ i < j ≤ n} .

If i < j, then
(aj − ai)2 = [(aj − aj−1) + · · ·+ (ai+1 − ai)]2 ≥ (j − i)2y ,

whence ∑
1≤i<j≤n

(j − i)2y ≤
∑

1≤i<j≤n

(aj − ai)2 = n

n∑
i=1

a2
i − (

n∑
i=1

ai)2 ≤ nx .

Therefore,
x

y
≥ 1

n

∑
1≤i<j≤n

(j − i)2 =
1
n

[
n

n∑
i=1

i2 − (
n∑

i=1

i)2
]

=
1
n

[
n2(n + 1)(2n + 1)

6
− n2(n + 1)2

4

]
=

n(n + 1)
12

[2(2n + 1)− 3(n + 1)] =
n(n + 1)

12
(n− 1) =

n(n2 − 1)
12

.

Hence

min {(ai − aj)2 : 1 ≤ i, j ≤ n} ≤ 12
n(n2 − 1)

n∑
i=1

a2
i .

This yields the coefficients 1
2 and 1

5 for n = 3 and n = 4, respectively. For equality, we require that ai+1− ai

are all equal and that a1 + a2 + · · ·+ an = 0. This occurs for example when n is even and

(a1, a2, · · · , an) = (−(n− 1),−(n− 3), · · · , (n− 3), (n− 1))

and when n is odd and

(a1, a2, · · · , an) = (−1
2
(n− 1),

1
2
(n− 3), · · · ,−1, 0, 1, · · · 1

2
(n− 3),

1
2
(n− 1)) .

491. Given that x and y are positive real numbers for which x+y = 1 and that m and n are positive integers
exceeding 1, prove that

(1− xm)n + (1− yn)m > 1 .

Solution 1. (Probability) Suppose that 0’s and 1’s are to be placed at random in the slots of an m× n
rectangular array. Let x be the probability that 1 goes in any given slot and y the probability that 0 goes
into the slot. Then xm is the probability that all the m slots in a given column receive 1 and 1 − xm the
probability that at least one slot in the column receives 0. Thus, (1− xm)n is the probability that at least
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one slot in every column receives 0. Similarly, (1− yn)m is the probability that at least one slot in every row
receives 1.

It is possible for both of these events to occur. [Explain how to do this.] However, also, at least one of
these events must occur. For, suppose there is a column that contains no 0; then all of its entries must be 1
and so each row contains at least one 1.

Since these two events exhaust all possibilities and are not mutually exclusive, the sum of their proba-
bilities exceeds one:

(1− xm)n + (1− yn)m > 1 .

Solution 2. [A. Logan] Observe first that, if f is a convex real function and if p ≤ q ≤ r ≤ s and
p + s = q + r, then

f(q) + f(r) ≤ f(p) + f(s) .

To see this, add the inequalities

f(q) ≤
(

s− q

s− p

)
f(p) +

(
q − p

s− p

)
f(s)

and

f(r) ≤
(

s− r

s− p

)
f(p) +

(
r − p

s− p

)
f(s) .

If f is strictly convex, then the inequalities are strict.

Consider the substitution f(t) = tn (for t ≥ 0), which is strictly convex, p = y(1− xm), q = 1− x = y,
r = 1− xm, s = 1− xm+1. Then, for m,n ≥ 1,

yn + (1− xm)n ≤ yn(1− xm)n + (1− xm+1)n ,

with strict inequality when n ≥ 2.

Fix n ≥ 2. When m = 1, we have that

(1− xm)n + (1− yn)m = yn + 1− yn = 1 .

We prove that the inequality of the problem holds for each m > 1 by induction on m. Assuming it for m,
we have that

(1− yn)m+1 = (1− yn)m(1− yn) ≥ [1− (1− xm)n](1− yn)

= 1− yn − (1− xm)n + yn(1− xm)n > 1− (1− xm+1)n ,

using the induction hypothesis and the result of the previous paragraph.

Solution 3. (Calculus) Let

φ(x) = (1− xm)n + [1− (1− x)n]m − 1 .

Then
φ′(x) = n(1− xm)n−1(−mxm−1) + m[1− (1− xn)]m−1n(1− x)n−1

= −n(1− x)n−1(1 + x + · · ·+ xm−1)n−1mxm−1

+ mxm−1[1 + (1− x) + · · ·+ (1− x)n−1]m−1n(1− x)n−1

= mn(1− x)n−1xm−1[f(x)− g(x)] ,

where
f(x) = [1 + (1− x) + · · ·+ (1− x)n−1]m−1

and
g(x) = [1 + x + · · ·+ xm−1]n−1 .
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The function f(x) decreases from f(0) = nm−1 to f(1) = 1 and g(x) increases from g(0) = 1 to
g(1) = mn−1 for 0 ≤ x ≤ 1. Hence f(x) − g(x) is a decreasing function from f(0) − g(0) = nm−1 − 1 > 0
to f(1) − g(1) = 1 −mn−1 < 0 Therefore, there exists a number c with 0 < c < 1 for which φ′(x) > 0 for
0 < x < c, φ′(c) = 0 and φ′(x) < 0 for c < x < 1. Hence φ(x) increases for 0 < x < c and decreases for
c < x < 1. Since φ(0) = φ(1) = 0, it follows that φ(x) > 0 as desired.

Comment. If m = n > 1 and x = y = 1
2 , the inequality becomes 2(1− 2−n)n > 1, which reduces to the

intriguing
1
2n

+
1

21/n
< 1 .

This can be shown directly by noting that n ≤ 2n−1 for n ≥ 2 and(
1− 1

2n

)n

> 1− n

2n
≥ 1

2
.

492. The faces of a tetrahedron are formed by four congruent triangles. if α is the angle between a pair of
opposite edges of the tetrahedron, show that

cos α =
sin(B − C)
sin(B + C)

where B and C are the angles adjacent to one of these edges in a face of the tetrahedron.

Solution 1. Let the vertices of the tetrahedron by ABCD. We must have |BC| = |AD| = a, ,
|AC = |BD = b, |AB| = |CD| = c. Let the opposite edges in question be BC and AD, both of length a, and
let the angle between −−→BD and −−→BC be B and the angle between −−→CD and −−→CB be C. These are two angles of
each triangular face, the remaining angle being 180◦− (B + C) whose sine is the same as that of B + C. By
the Law of Sines, we have that a sinC = b sin(B + C) and a sinB = c sin(B + C).

Then

a2 cos α = −−→
BC · −−→DA = (−−→DC −−−→DB) · −−→DA

= −−→
DC · −−→DA−−−→DB · −−→DA = ca cos C − cb cos B

= [sin(B + C)]−1[a2 sinB cos C − a2 sinC cos B] = a2[sin(B + C)]−1 sin(B − C) ,

which yields the desired result.

Comment. Note that there is a sign ambiguity in the answer, depending on which ends of the edge are
assigned the angles B and C; in the solution, the choice was made to make the answer come out right.

Solution 2. Complete the parallelogram ABCE in the plane of triangle ABC so that AE‖BC and
EC‖AB. Suppose that AC and BE intersect at F ; then F is the midpoint of both AC and BE. Let
|AC| = |BD| = b, |BC| = |AD| = a, |AB| = |CD| = c, |BF | = |DF | = |EF | = x and |DE| = u.

Then 2(a2 + c2) = b2 + 4x2 and 2(u2 + b2) = 4x2 + 4x2 = 8x2, whence u2 = 2(a2 + c2 − b2). Since
u2 = 2a2(1− cos α),

cos α = 1− u2

2a2
=

b2 − c2

a2
.

Now
sin(B − C) = sin B cos C − sinC cos B

=
b

2R
· a2 + b2 − c2

2ab
− c

2R
· a2 + c2 − b2

2ac

=
2(b2 − c2)

4aR
,
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and, similarly, sin(B + C) = 2a2/4aR. Hence

sin(B − C)
sin(B + C)

=
b2 − c2

a2
= cos α .

493. Prove that there is a natural number with the following characteristics: (a) it is a multiple of 2007;
(b) the first four digits in its decimal representation are 2009; (c) the last four digits in its decimal
representation are 2009.

Solution. First, we show that there is a positive integer n for which n · 104 + 2 is a multiple of 2007.
For otherwise, if none of the numbers of the form n · 104 + 2 with n = 0, 1, 2, · · · , 2006 were a multiple of
2007, then, by the Pigeonhole Principle, there must be two of them congruent modulo 2007. Hence, their
difference, a number of the form (k − m) · 104 with 0 ≤ k, m ≤ 2006 would be a multiple of 2007, an
impossibility.

Now use this number n to compose the number M = 2009007n2009. Since

M = 2009007 · 10k + n · 104 + 2009

= 2007000 · 10k + 2007 · 10k + 2007 + (n · 104 + 2)

for 5 ≤ k ≤ 8, M is a multiple of 2007. Since it has all three of the desired characteristics, the problem is
solved.

494. (a) Find all real numbers x that satisfy the equation

(8x− 56)
√

3− x = 30x− x2 − 97 .

(b) Find all real numbers x that satisfy the equation

√
x + 3

√
x + 7 = 4

√
x + 80 .

Solution. (a) We must have x ≤ 3. The equation can be rewritten

0 = 8(x− 7)
√

3− x + x2 − 30x + 97 .

Let y be positive with y2 = 3− x. Then

0 = −8(y2 + 4)y + (y2 − 3)2 − 30(3− y2) + 97

= y4 − 8y3 + 24y2 − 32y + 16 = (y − 2)4 .

Hence y = 2, so that x = −1. This solution is valid.

(b) The domain of the equation is given by x ≥ 0. One solution is x = 1; we prove that it is the only
solution. The equation is equivalent to

x2 + 4x3/2(x + 7)1/3 + 6x(x + 7)2/3 + 4x1/2(x + 7) + (x + 7)4/3 = x + 80 .

Let
f(x) = 4x3/2(x + 7)1/3 + 6x(x + 7)2/3 + 4x1/2(x + 7) + (x + 7)4/3.

This function f(x) is increasing and f(1) = 80. If x > 1, then also x2 > x and f(x) > 80, so that
x2 + f(x) > x + 80. Similarly, when 0 ≤ x < 1, then x2 < x and f(x) < 80, so that x2 + f(x) < x + 80.
Hence, there is no solution to the equation save 1.
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495. Let n ≥ 3. A regular n−gon has area S. Squares are constructed externally on its sides, and the vertices
of adjacent squares that are not vertices of the polygon are connected to form a 2n−sided polygon, whose
area is T . Prove that T ≤ 4(

√
3 + 1)S. For what values of n does equality hold?

Solution. Wolog, let the sidelength of the given polygon be 1. The 2n−sided polygon is composed of
the regular n−gon, n squares with sidelength 1 and n isosceles triangles with equal sides of length 1 and
angle between these sides equal to

2π −
(

π

2
+

π

2
+

(n− 2)π
n

)
=

2π

n
.

Therefore
T = S + n + n · 1

2
sin

2π

n
.

On the other hand, S is the sum of the areas of n isosceles triangles, each with base 1, apex angle 2π/n and
height (1/2) cot(π/n). Hence S = (n/4) cot(π/n), so that n = 4S tan(π/n). Therefore

T = S + n + n · 1
2

sin
2π

n
= S

(
1 + 4 tan

π

n
+ 2 tan

π

n
sin

2π

n

)
.

Apply sin 2θ = 2 tan θ/(1 + tan2 θ) to sin(2π/n) to obtain that

T = S

(
1 + 4 tan

π

n
+

4 tan2 π
n

1 + tan2 π
n

)
S

(
1 + 4 tan

π

n
+

4 tan2 π
n + 4− 4

1 + tan2 π
n

)
= S

[
5 + 4

(
tan

π

n
− 1

1 + tan2 π
n

)]
.

Since n ≥ 3 and the tangent function is increasing, 0 < tan(π/n) ≤ tan(π/3) =
√

3. so that

tan
π

n
− 1

1 + tan2(π/n)
≤
√

3− 1
1 + (

√
3)2

=
√

3− 1
4

.

Therefore. T ≤ 4S(
√

3+1), as desired. Equality holds when n = 3 and the polygon is an equilateral triangle.

496. Is the hundreds digit of N = 22006 + 22007 + 22008 even or odd? Justify your answer.

Solution. Observe that

N = 22006(1 + 2 + 4) = 7 · 26 · 22000 = 7 · 26 · (220)100 .

However, modulo 100,
220 = 10242 ≡ 242 = 576 ≡ 76

and 76n ≡ 76 for each positive integer n. Hence

N = 7 · 26 · (220)100 ≡ 7 · 64 · 76 ≡ 48

(mod 100). Denote the hundreds digit of N by h. Since N is a multiple of 8, the three digit number h48
must be a multiple of 8 as well. This is possible only if h is even.

Thus, the hundreds digit of the number N is even.
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497. Given n ≥ 4 points in the plane with no three collinear, construct all segments connecting two of these
points. It is known that the length of each of these segments is a positive integer. Prove that the lengths
of at least 1/6 of the segments are multiples of 3.

Solution. First, we prove a lemma: Four points are given in the plane with no three collinear. The length
of each of the segments joining two of these points is an integer. Therefore, at least one of the segments has a
length divisible by 3. Denote the four points by A, B, C, D; wolog, assume that ∠BAD = ∠BAC +∠CAD.
Let ∠BAC = α, ∠CAD = β and ∠BAD = γ, so that γ = α + β. Applying the Law of Cosines to triangles
ABC, ACD and ABD, we find that

BC2 = AB2 + AC2 − 2AB ·AC · cos α

CD2 = AD2 + AC2 − 2AD ·AC · cos β

and
BD2 = AB2 + AD2 − 2AB ·AD · cos γ .

Assume, if possible, that the lengths of all six segments AB, AC, AD, BC, BD, CD are not multiples of 3.
Then

AB2 ≡ AC2 ≡ AD2 ≡ BC2 ≡ BD2 ≡ CD2 ≡ 1

modulo 3, from which it follows that

2AB ·AC · cos α ≡ 2AD ·AC · cos β ≡ 2AB ·AD · cos γ ≡ 1

modulo 3. Therefore

AC2 ·AB ·AD · cos α cos β ≡ (2AB ·AC · cos α)(2AD ·AC · cos β) ≡ 1

modulo 3.

From the foregoing equations, each of cos α, cos β and cos γ are rational. Let cos α = p/q and cos β = r/s,
in lowest terms, where p, q, r, s are integers. None of these four integers can be multiples of 3. The
denominators q and s cannot be multiples of 3 for they must cancel into side lengths, and the numerators
p and r cannot be multiples of 3 since the terms containing the cosines are not divisible by 3. Hence
p2 ≡ q2 ≡ r2 ≡ s2 ≡ 1 (mod 3).

Since cos γ = cos α cos β − sinα sinβ, we have, from 2AB ·AD cos γ ≡ 1 and AC2 ≡ 1, modulo 3, that

2AC2 ·AB ·AD · cos γ ≡ 1 ⇐⇒

2AC2 ·AB ·AD · cos α · cos β − 2AC2 ·AB ·AD ·
√

q2 − p2

q
·
√

s2 − r2

s
≡ 1 .

The second product on the left side is a multiple of 3, so that

2AC2 ·AB ·AD · cos α cos β ≡ 1

. This contradicts an earlier statement and establishes the lemma. ♣

Let n ≥ 4. There are
(
n
4

)
sets of four points, so by the lemma, there are at least this many segments

whose lengths are multiples of 3, counting multiplicity (some counted more than once). Since each of the
segments is counted at most

(
n−2

2

)
times (for the sets of four points containing the endpoints of the segment),

it follows that there are at least
(
n
4

)
/
(
n−2

2

)
distinct segments whose lengths are multiples of 3.

Since (
n
4

)(
n−2

2

) =
2n(n− 1)(n− 2)(n− 3)

4!(n− 2)(n− 3)
=

1
6
· n(n− 1)

2
=

1
6
·
(

n

2

)
,
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there are at least as many segments with lengths divisible by 3 as one-sixths of the number of pairs of
segments, and the result follows.

498. Let a be a real parameter. Consider the simultaneous sytem of two equations:

1
x + y

+ x = a− 1 ; (1)

x

x + y
= a− 2 . (2)

(a) For what value of the parameter a does the system have exactly one solution?

(b) Let 2 < a < 3. Suppose that (x, y) satisfies the sytem. For which value of a in the stated range does
(x/y) + (y/x) reach its maximum value?

Solution. From the identification of the coefficients of a quadratic in terms of the sum and product of
the roots, we see that 1/(x + y) and x are the solutions of the quadratic equation

0 = t2 − (a− 1)t + (a− 2) = (t− a− 2)(t− 1) .

There are two options.

Option 1. 1/(x + y) = a− 2, x = 1, so that

(x, y) =
(

1,
3− a

a− 2

)
with a 6= 2.

Option 2. 1/(x + y) = 1, x = a− 2, so that

(x, y) = (a− 2, 3− a) .

(a) For the system to have exactly one solution, either the two options produce the same pair or only
one of the options is possible. In the first instance, we have a = 3 and the unique solution (x, y) = (1, 0) and
in the second, we have a = 2 and the unique solution is (x, y) = (0, 1).

(b) When 2 < a < 3, both x/y and y/x are positive for either solution of the system. By the Arithmetic-
Geometric Means Inequality,

x

y
+

y

x
≥ 2

with equality if and only if x/y = y/x. The condition for equality is equivalent to (a − 2)/(3 − a) =
(3− a)/(a− 2), or a = 5/2. Thus, (x/y) + (y/x) attains its minimum value of 2 when a = 5/2.

499. The triangle ABC has all acute angles. The bisector of angle ACB intersects AB at L. Segments
LM and LN with M ∈ AC and N ∈ BC are constructed, perpendicular to the sides AC and BC
respectively. Suppose that AN and BM intersect at P . Prove that CP is perpendicular to AB.

Solution 1. Let m be a line through C parallel to AB and let AN and BM intersect m at F and E,
respectively. Let CP and AB intersect at D. Triangles ADP and FCP are similar, as are triangles DBP
and CEP . Hence

AD : CF = PD : PC = DB : CE .

Therefor AD : BD = CF : CE.

On the other hand, triangles ABM and CEM are similar, and triangles ABN and FCN are similar.
Therefore, AM : MC = AB : CE and BN : CN = AB : CF . However, right triangles CLM and CLN are
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congruent and CM = CN , so that AM : BN = CF : CE. Together with AD : BD = CF : CE, this yields
AD : BD = AM : BN and AM : AD = BN : BD.

Let the altitude from C to AB intersects AB at a point H. Since triangles ALM and ACH are similar,
AL : AC = AM : AH. Similarly, from the similarity of triangles BLN and BCH, BL : BC = BN : BH.
By the angle-bisector theorem, AL : AC = BL : BC. It follows that AM : AH = BN : BH.

Since AM : AD = BN : BD and AM : AH = BN : BH, it follows that D and H divide AB internally
in the same ratio, and so D = H. Thus, CP ⊥ AB and the statement is established.

Solution 2. [J. Kileel] Use the same notation as in Solution 1. Let H be the foot of the perpendicular
from C to AB. It suffices to show that AN , BM and CH are concurrent. By Ceva’s Theorem, this is
equivalent to showing that

AM

MC
· CN

NB
· BH

HA
= 1 .

Triangles MCL and NCL are congruent (ASA), so that CM = CN . Triangles ALM and ACH are
similar, so that AM : HA = LM : HC. Likewise, triangles BLN and BCH are similar; therefore,

BH : NB = HC : LN = HC : LM .

It follows that
AM

MC
· CN

NB
· BH

HA
=

AM

HA
· BH

NB
· CN

MC
=

LM

HC
· HC

LM
· CN

MC
= 1 .

500. Find all sets of distinct integers 1 < a < b < c < d for which abcd− 1 is divisible by (a− 1)(b− 1)(c−
1)(d− 1).

Solution. Let x = abcd − 1 and y = (a− 1)(b − 1)(c − 1)(d − 1). Suppose that y divides x. If any one
of a, b, c, d is even, then x is odd and so y must be odd and all of a, b, c, d are even. Thus, a, b, c, d are all of
the same parity. Note that

x

y
<

abcd

(a− 1)(b− 1)(c− 1)(d− 1)
=

(
a

a− 1

)(
b

b− 1

)(
c

c− 1

)(
d

d− 1

)
.

Observe that, if a ≥ 5, then
x

y
<

(
5
4

)(
6
5

)(
7
6

)(
8
7

)
= 2 ,

and there are no possibilities. If a = 4, x is odd, but

x

y
<

(
4
3

)(
6
5

)(
8
7

)(
10
9

)
< 3 ,

and again there are no possibilities. If a = 3, then

x

y
<

(
3
2

)(
5
4

)(
7
6

)(
9
8

)
< 3 ,

and so x/y = 2. Since x = 2y and x is not divisible by 3, then neither is y, so that none of b− 1, c− 1, d− 1
is a multiple of 3. Therefore, if b 6= 5, then b ≥ 9 and

x

y
<

(
3
2

)(
9
8

)(
11
10

)(
15
14

)
< 2 ,

and there are no possibilities. Therefore, when a = 3, b = 5 and we are led to the equation 15cd− 1 = 2y =
16(c− 1)(d− 1), which is equivalent to

(c− 16)(d− 16) = 239 .
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Since 239 is prime, the solution is unique: (c, d) = (17, 255). We obtain the solution

(a, b, c, d) = (3, 5, 17, 255) .

Finally, suppose that a, b, c, d are all even and x/y is odd. Since

x

y
<

(
2
1

)(
4
3

)(
6
5

)(
8
7

)
< 4 ,

and we find that x/y = 3. Thus, none of b, c, d is divisible by 3. If b ≥ 4, then

x

y
<

(
2
1

)(
8
7

)(
10
9

)(
14
13

)
< 3 ,

and there are no possibilities. Then b = 4 and we obtain that 8cd− 1 = 3y = 9(c− 1)(d− 1), or

(c− 9)(d− 9) = 71 .

As 71 is prime, the solution is unique: (c, d) = (10, 80). Thus, we obtain the second and final solution

(a, b, c, d) = (2, 4, 10, 80) .

501. Given a list of 3n not necessarily distinct elements of a set S, determine necessary and sufficient condi-
tions under which these 3n elements can be divided into n triples, none of which consist of three distinct
elements.

Solution. A necessary and sufficient condition is that at most n of the 3n elements in the list occur an
odd number of times.

Suppose that this condition is satisfied. Distribute one of each element appearing an odd number of
times into distinct triples. Then each of the remaining elements in S occurs an even number of times, so
we can sort them into at least n equal pairs (not necessarily all distinct). Sort one of these pairs into each
triple, and then (if necessary) fill up the triples in any way with what is left over. Then each triple contains
a pair of like elements.

On the other hand, suppose that we have distributed the 3n elements as specified. Then there must be
a least n pairs of like elements (again, not necessarily distinct pairs). There are n elements not in these pairs,
and these are the only possibilities for elements that occur an odd number of times. The result follows.

502. A set consisting of n men and n women is partitioned at random into n disjoint pairs of people. What
are the expected value and variance of the number of male-female couples that result? (The expected
value E is the average of the number N of male-female couples over all possibilities, i.e. the sum of the
numbers of male-female couples for the possibilities divided by the number of possibilities. The variance
is the average of the difference (E−N)2 over all possibilities, i.e. the sum of the values of (E−N)2 for
the possibilities divided by the number of possibilities.)

Comment. The answer is

E(X) =
n2

2n− 1
Var (X) =

2n2(n− 1)2

(2n− 1)2(2n− 3)

where X is the number of man-woman matches. The solution relies on some statistical theory and is given
in American Mathematical Monthly 107 (1998), 866-867.
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A direct assault seems difficult. There are

un =

(
2n
2

)(
2n−2

2

)
· · ·

(
4
2

)(
2
2

)
n!

=
(2n)!
2nn

= (2n− 1)(2n− 3) · · · (3)(1)

ways of pairing off the 2n people. The number of men not paired off with women must be even, as they are
paired with each other, and similarly for the women. Suppose that we want n−2k man-woman pairs. There
are

(
n
2k

)
ways of picking the men to be paired off with each other and so

(
n
2k

)
uk of selecting and pairing them

off. Similarly, there are
(

n
2k

)
uk of selecting and pairing off the 2k women not in the couples. As for the n−2k

men to be paired off with women, there are (n − 2k)! ways of pairing them off with the women not paired
with other women. Therefore the number of ways of pairing so that there are exactly n − 2k man-woman
couples is [(

n

2k

)
uk

]2

(n− 2k)!

and the average number of couples over all the pairings is[(
n

2k

)
uk

]2

(n− 2k)!(n− 2k)÷ un .

503. A natural number is perfect if it is the sum of its proper positive divisors. Prove that no two consecutive
numbers can both be perfect.

Solution. We review basic information about the sum of divisors function. For any positive integer
n, the function σ(n) is the sum of all the positive divisors of n, including both 1 and n. For n ≥ 2,
σ(n) ≥ n+1 with equality if and only if n is prime. If m and n have greatest common divisor equal to 1, then
σ(mn) = σ(m)σ(n). For any prime p and positive integer exponent c, we have that σ(pc) = (pc+1−1)/(p−1).
A positive integer n is perfect if and only if σ(n) = 2n.

Lemma. (Euclid-Euler) An even positive integer r is perfect if and only if it is of the form r = 2p−1(2p−1)
where both p and 2p − 1 are prime.

Proof of Lemma. Let n be an even perfect number. Then n = 2km where k ≥ 1 and m is odd, so that

2k+1m = 2n = σ(n) = σ(2k)σ(m) = (2k+1 − 1)σ(m) .

Since the greatest common divisor of 2k+1 and 2k+1 − 1 is 1, there exists a positive integer w for which
m = (2k+1 − 1)w and σ(m) = 2k+1w.

Suppose, if possible, that w > 1. Then the divisors of m include the distinct 1, w, m so that

σ(m) ≥ 1 + w + m = 1 + 2k+1w > σ(m) ,

an impossibility. Therefore w = 1 and σ(m) = 2k+1 = m + 1, so that m = 2k+1 − 1 is prime. This forces
also k + 1 to be prime (why?) and the necessity of the condition follows. It is straightforward to verify that
each number of the given form is perfect. ♣

Since 5 and 7 are not perfect numbers, we need not consider the case where the even number of the pair
is 6 = 2(22 − 1). We obtain the desired result by showing that for any odd prime p, neither of the numbers
u = 2p−1(2p − 1)− 1 and v = 2p−1(2p − 1) + 1 is perfect.

Observe that
2p−1(2p − 1) = 2× 4p−1 − 4(p−1)/2 ≡ 2× 4− 4 = 4

modulo 12, since every positive integer power of 4 is congruent to 4 modulo 12. Hence u ≡ 3 and v ≡ 5 (mod
12), and so neither u nor v are squares. Hence each has an even number of divisors, that can be paired off
as (d, u/d) and (d, v/d) respectively, where d is less than the square root of u and v respectively.
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We have that u ≡ −1 (mod 4), so that, as d(u/d) = u ≡ −1, {d, u/d} ≡ {1,−1} and d + (u/d) ≡ 0
(mod 4). Hence

σ(u) =
∑

{d + (n/d) : d|u, d <
√

u} ≡ 0

modulo 4, while 2u ≡ 6 (mod 4). Hence σ(u) 6= 2u and u is not perfect.

We have that v ≡ −1 (mod 3), so that {d, v/d} ≡ {1,−1} and d + (v/d) ≡ 0 (mod 3), for every divisor
d of v. Hence

σ(v) =
∑

{d + (n/d) : d|v, d <
√

v} ≡ 0

modulo 3, while 2v ≡ 10 (mod 12). Hence σ(v) 6= 2v and v is not perfect.

504. Find all functions f taking the real numbers into the real numbers for which the following conditions
hold simultaneously:

(a) f(x + f(y) + yf(x)) = y + f(x) + xf(y) for every real pair (x, y);

(b) {f(x)/x : x 6= 0} is a finite set.

Solution. The function f must be the identity function f(x) = x for all x.

By (b), there exists a number k such that the set Sk = {x : f(x) = kx} is infinite. From (a), for all
x ∈ Sk,

f(x + kx + kx2) = f(x + f(x) + xf(x)) = x + kx + kx2 .

Hence S1 has infinitely many elements.

Suppose, if possible, that there exists y such that f(y)/y = m 6= 1. Then, for all x ∈ S1,

f(x + my + yx) = f(x + f(y) + yf(x)) = y + f(x) + xf(y) = y + x + mxy .

As x ranges over the infinite set S1, by (b), it is not possible that

f(x + my + yx)
x + my + yx

=
x(1 + my) + y

x(1 + y) + my

takes infinitely many values. Hence, there are x1 and x2 in S for which x1 6= x2 and

f(x1 + my + yx1)
x1 + my + yx1

=
f(x2 + my + yx2)

x2 + my + yx2
.

Then,
[x1(1 + my) + y][x2(1 + y) + my] = [x2(1 + my) + y][x1(1 + y) + my]

so that, since (x1 − x2)y 6= 0,

(x1 − x2)my(1 + my) = (x1 − x2)y(1 + y) ⇔ (m2 − 1)y + (m− 1) = 0 ⇔ (m + 1)y + 1 = 0 .

Thus, m = −(y + 1)/y, so that f(y) = my = −(y + 1). This means that y is uniquely determined by m and
that Sm is a singleton.

For all x ∈ S1, by condition (i), we find that

f((y + 1)(x− 1)) = f(x− (y + 1) + yx) = f(x + f(y) + yf(x)) = y + f(x) + xf(y)

= y + x− x(y + 1) = −y(x− 1) =
−y

y + 1
(y + 1)(x− 1)

=
−1
m

(y + 1)(x− 1) .
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But {(y + 1)(x− 1) : x ∈ S1} is an infinite set, so S−1/m must be infinite.

However, we can go through the foregoing argument with m replaced by −1/m and deduce, either that
f(x)/x takes infinitely many values or that S−1/m is a singleton, both of which yield constradictions. The
result follows.

505. What is the largest cubical present that can be completely wrapped (without cutting) by a unit square
of wrapping paper?

Solution. The side of the largest possible cubical present that can be wrapped is
√

2/4.

Let s be the side length of the cube. For any point on the cube, there is another point whose distance
away is at least 2s, so that for each point on the square, there is a point whose distance away from it is at
least 2s. This is true in particular for the centre of the square, so the diagonal of the square is at least 4s.
Hence

√
2 ≥ 4s, so that s ≤

√
2/4.

On the other hand, if we have a cube of this size, we can place it right in the centre of the wrapping
square with its sides parallel to the diagonals of the square, and fold the corners of the square over the lateral
faces of the cube with them meeting in the middle of the top face of the cube.

506. A two-person game is played as follows. A position consists of a pair (a, b) of positive integers. Playes
move alternately. A move consists of decreasing the larger number in the current position by any positive
multiple of the smaller number, as long as the result remains positive. The first player unable to make
a move loses. (This happens, for example, when a = b.) Determine those positions (a, b) from which
the first player can guarantee a win with optimal play.

Solution. Let φ = 1
2 (1 +

√
5), the larger root of the polynomial x2 − x − 1. Note that φ is irrational,

that 1/φ = φ− 1 and that 0 < 1/φ < 1 < φ < 2. We show that the first player can guarantee a win if and
only if the ratio of the larger to the smaller number exceeds φ.

Let W be the set of pairs {a, b} with a > φb and L the set of pairs with b < a < φb. The result will
follow if we prove that, from any pair in W, the next player can leave a pair in L and that, from any pair in
L, the next player must go to a pair in W.

Suppose that {a, b} ∈ W. Then a/b > φ and there is a (unique) poaitive integer k for which φ − 1 <
(a/b)− k < φ. Choosing this k yields the pair {b, a− bk}. Since

b

a− bk
=

1
(a/b)− k

<
1

φ− 1
= φ ,

the pair {b, a− bk} ∈ L.

On the other hand, if {a, b} ∈ L, then b < a < φb, so that a < 2b. The only legal move leads to the pair
{b, a− b}. But then

b

a− b
=

1
(a/b)− 1

>
1

φ− 1
= φ ,

so that {a, a− b} ∈ W.

Therefore, the first player has a winning strategy if and only if presented with a pair {a, b} with a > φb.

Solutions for July.

507. Prove that, if a, b, c are positive reals, then

log2 ab

c
+ log2 bc

a
+ log2 ca

b
+

3
4
≥ log(abc) .
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Solution 1. [A. Dhawan] By the Cauchy-Schwarz Inequality,(
log2 ab

c
+ log2 bc

a
+ log2 ca

b

)
(12 + 12 + 12) ≥

(
log

ab

c
+ log

bc

a
+ log

ca

b

)2

= log2(abc) ,

whence (
log2 ab

c
+ log2 bc

a
+ log2 ca

b

)
≥ 1

3
log2(abc) .

Also,
1
3

log2(abc) +
3
4
− log(abc) =

1
12

(4 log2(abc)− 12 log(abc) + 9)

=
1
12

(2 log(abc)− 3)2 ≥ 0 .

Hence
log2 ab

c
+ log2 bc

a
+ log2 ca

b
+

3
4
≥ 1

3
log2(abc) +

3
4
≥ log(abc) .

Solution 2. The inequality is equivalent to

(log a + log b− log c)2 + (log b + log c− log a)2 + (log c + log a− log b)2 +
3
4
≥ log a + log b + log c .

Denoting log a + log b − log c = x, log b + log c − log a = y and log c + log a − log b = z, we get that
x + y + z = log a + log b + log c.

Since (x− 1
2 )2 +(y− 1

2 )2 +(z− 1
2 )2 ≥ 0, it follows that x2 + y2 +x2 + 3

4 ≥ x+ y + z, which is the desired
inequality. Equality holds if and only if x = y = z = 1

2 , which requires that a = b = c.

508. Let a, b, c be integers exceeding 1 for which both loga b + logb a and log2
a b + log2

b a are rational. Prove
that, for every positive integer n, logn

a b + logn
b a is rational.

Solution. The result holds for n = 0, 1, 2. Assume, as an induction hypothesis, that logk
a + logk

b is
rational for 0 ≤ k ≤ n.

Taking x = loga b and y = logb a in the identity

xk+1 + yk+1 = (x + y)(xk + yk)− xy(xk−1 + yk−1) ,

and noting that xy = 1, we find that, by induction, logk+1
a b + logk+1

b a is rational. The result follows.

509. Let ABCDA′B′C ′D′ be a cube where the point O is the centre of the face ABCD and |AB| = 2a.
Calculate the distance from the point B to the line of intersection of the planes A′B′O and ADD′A′

and the distance between AB′ and BD. (AA′, BB′, CC ′, DD′ are edges of the cube.)

Solution. Let M be the intersection of the plane A′B′O and the line AD. Then M is the midpoint
of DA. Therefore, the intersection between the planes A′B′O and ADD′A′ is the line A′M . Hence, the
distance from the point B to the line of intersection of the planes A′B′O and ADD′A′ is the height of
the isosceles triangle BA′M from B. Since |MB| = |A′M | = a

√
5 and |BA′| = 2a

√
2, we get the height

2a
√

6/
√

5.

For the distance between AB′ and BD, we note that BD and AB′ are included in the parallel planes
C ′DB and AB′D′, respectively. Therefore, the distance between BD and AB′ is the distance between the
planes C ′DB and AB′D′, namely (1/3)|AC ′| = 2a

√
3/3.

510. Solve the equation

3
√

x2 + 2 + 3
√

4x2 + 3x− 2 = 3
√

3x2 + x + 5 + 3
√

2x2 + 2x− 5 .
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Solution. Let the four members of the equation be denoted by m,n, p, q respectively, so that m+n = p+q.
Also

(m + n)3 − 3mn(m + n) = m3 + n3 = p3 + q3 = (p + q)3 − 3pq(p + q) ,

whence mn(m + n) = pq(p + q).

If m + n = p + q = 0, then 5x2 + 3x = 0, so that x = 0 or x = −3/5. Both of these work.

If m + n = p + q 6= 0, then mn = pq. Thus

0 = (3x2 + x + 5)(2x2 + 2x− 5)− (x2 + 2)(4x2 + 3x− 2)

= 2x4 + 5x3 − 9x2 − x− 21 = (x2 + 2x− 7)(2x2 + x + 3) ,

so that x = −1 ± 2
√

2. The second quadratic factor has nonreal roots. Therefore, the solution set of the
equation is

{−1− 2
√

2,−3/5, 0,−1 + 2
√

2} .

511. Find the sum of the last 100 digits of the number

A = 1 · 2 · 3 · . . . · 2005 · 2006 + 2007 .

Solution. The exponent of the power of 5 that divides 2006! is equal to⌊
2006

5

⌋
+

⌊
2006
52

⌋
+

⌊
2006
53

⌋
+

⌊
2006
54

⌋
= 401 + 80 + 16 + 3 = 500 .

The exponent of the power of 2 that divides 2006! is at least this big, so that the decimal expansion of 2006!
ends in 500 zeros. Hence the sum of the last 100 digits of the given expression is 2 + 0 + 0 + 7 = 9.

512. Prove that (
3n

n

)
=

n∑
k=0

(
2n

k

)(
n

k

)
when n ≥ 1.

Solution. The result is obtained by comparing the coefficients of xn when both sides of the equation

(1 + x)3n = (1 + x)2n(1 + x)n

are explanded binomially.

513. Solve the equation
21−2 sin2 x = 2 + log2(1− sin2 x) .

Solution. Let t = cos 2x. The equation becomes 2t = 1 + log2(1 + t). For 0 < t < 1, we have that

2t < t + 1 < 1 + log2(1 + t) ,

and for −1 ≤ t < 0, we have that
2t > t + 1 > 1 + log2(1 + t) .

(Sketch the graphs of 2t and t + 1.) Therefore t = 0 or t = 1 and so x = 0 or x = π/4.

Solutions for September.
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514. Prove that there do not exist polynomials f(x) and g(x) with complex coefficients for which

logb x =
f(x)
g(x)

where b is any base exceeding 1.

Solution 1. Suppose that the given equation is possible. Then we must have, for each positive integer
n,

f(xn)
g(xn)

= logb xn = n logb x =
nf(x)
g(x)

,

so that f(xn)g(x) = nf(x)g(xn). However, by comparing the leading coefficients of the two sides, we see
that this is impossible.

Solution 2. We presume that the relation is to be an identity for all x for which both sides are defined,
in particular when x is a positive integer. Since logb x = log2 x/ log2 b, logb x is a constant multiple of log2 x.
Thus, it is enough to prove the result with b = 2.

It is easily established by induction that, for each positive integer x, x ≤ 2x−1, so that log2 x ≤ x − 1.
Applying this to x1/2, where x is a square, this yields

log2 x = 2 log2(x
1/2) ≤ 2(x1/2 − 1) < 2x1/2 .

Suppose, if possible, that there exist polynomials f(x) and g(x) such that, for every positive integer x,

log2 x =
f(x)
g(x)

.

We may suppose that the leading coefficient of g(x) is 1 and that the respective degrees of f(x) and g(x) are
the positive integers m and n.

Suppose that

f(x) = amxm + am−1x
m−1 + · · ·+ a1x + a0 = amxm(1 + am−1x

−1 + · · ·+ a0x
−m)

and
f(x) = xn + bn−1x

n−1 + · · ·+ b1x + b0 = xn(1 + bn−1x
−1 + bn−2x

−2 + · · ·+ b0x
−n) .

Since
|x−1(am−1 + · · ·+ a0x

1−m)| ≤ x−1(|am−1|+ · · ·+ |a0|) ≤ Mx−1

and
|x−1(bn−1 + · · ·+ b0x

1−n)| ≤ x−1(|bn−1|+ · · ·+ |a0|) ≤ Mx−1

where M is the maximum of |am−1| + · · · + |a0| and |bn−1| + · · · + |b0|, and we can select N such that
Mx−1 < 1/2, for x > N , we have that

1
2

< 1− |am−1x
−1 + · · ·+ a0x

−m| ≤ 1 + am−1x
−1 + · · ·+ a0x

−m < 1 + |am−1x
−1 · · · aox

−m| < 3
2

and

1
2

< 1− |bn−1x
−1 + · · ·+ b0x

−m| ≤ 1 + bn−1x
−1 + · · ·+ b0x

−m < 1 + |bm−1x
−1 · · · b0x

−m| < 3
2

,

so that
1
3

<
1 + am−1x

−1 + · · ·+ a0x
−m

1 + bn−1x−1 + · · ·+ b0x−
< 3 .

30



Then, for x > 2N , f(x)/g(x) lies between 1
3amxm−n and 3amxm−n, so that am must be positive.

If m ≤ n, then f(x)/g(x) is bounded whereas log2 x is not. Hence m > n. But then for x a large square
integer exceeding 2M ,

1 = (log2 x)−1(f(x)/g(x)) > (1/2x1/2)[(1/3)amxm−n] = (1/6)amxm−(1/2)−n .

This is a contradiction for sufficiently large x and the result follows.

515. Let n be a fixed positive integer exceeding 1. To any choice of n real numbers xi satisfying 0 ≤ xi ≤ 1,
we can associate the sum ∑

{|xi − xj | : 1 ≤ i < j ≤ n} .

What is the maximum possible value of this sum and for which values of the xi is it assumed?

Solution 1. Wolog, we may suppose that 1 ≥ x1 ≥ x2 ≥ · · · ≥ xn ≥ 0. Then the sum in question is
equal to∑

{xi − xj : 1 ≤ i < j ≤ n} = (n− 1)x1 + (n− 3)x2 + · · ·+ (n + 1− 2i)xi + · · · − (n− 1)xn ,

Since 0 ≤ xi ≤ 1 for each i, this sum is dominated by (n − 1) + (n − 3) + · · ·, where the sum is taken over
all the indices yielding positive coefficients and equality occurs when xi = 1 for these indices.

When n = 2m is even, this maximum sum is equal to (2m−1)+(2m−3)+ · · ·+3+1 = m2 = n2/4; we
can achieve it with x1 = · · · = xm = 1 and xm+1 = xm+2 = · · · = x2m = 0. When n = 2m + 1 is odd, this
maximum sum is equal to (2m) + (2m− 2) + · · ·+ 2 = 2(m + (m− 1) + · · ·+ 1) = m(m + 1) = (n2 − 1)/4;
it is achieved with x1 = x2 = · · · = xm = 1 and xm+2 = xm+3 = · · · = x2m+1 = 0 (the value of xm+1 being
immaterial).

In summary, the maximum sum can be rendered as bn2/4c.

Solution 2. We may assume that 1 ≥ x1 ≥ x2 ≥ · · · ≥ xn ≥ 0. For 1 ≤ i ≤ n − 1, let di = xi − xi+1,
so that |xi − xj | = xi − xj = di + di+1 + · · · + dj−1 when i < j. Suppose 1 ≤ p ≤ n is chosen so that
k(n− k) ≤ p(n− p) for each 1 ≤ k ≤ n.

Note that, in the given sum, each dk occurs in the expansion of terms of the form xi−xj where 1 ≤ i ≤ k
and k + 1 ≤ j ≤ n; there are k(n− k) such terms. Therefore

∑
{|xi − xj | : 1 ≤ i < j ≤ n} =

n−1∑
k=1

k(n− k)dk

≤ p(n− p)
n−1∑
k=1

dk ≤ p(n− p) .

with equality occurring if d1 = d2 = · · · = dp−1 = dp+1 = · · · = dn−1 = 0 and dp = xp − xp+1 = 1, i.e.
x1 = · · · = xp = 1 and xp+1 = · · · = xn = 0.

Since p(n−p)−k(n−k) = (p−k)(n−p−k) ≥ 0 for all k if and only if k ≤ p ≤ n−k or (n−k) ≤ p ≤ k
for all k, we see that p = n/2 when n is even and p = (n± 1)/2 when n is odd. This produces the answer in
Solution 1.

516. Let n ≥ 1. Is it true that, for any 2n + 1 positive real numbers x1, x2, · · · , x2n+1, we have that

x1x2

x3
+

x2x3

x4
+ · · ·+ x2n+1x1

x2
≥ x1 + x2 + · · ·+ x2n+1 ,

with equality if and only if all the xi are equal?
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Solution 1. Let n = 1. Then we have that

2
(

x1x2

x3
+

x2x3

x1
+

x3x1

x2

)
=

(
x1x2

x3
+

x2x3

x1

)
+

(
x2x3

x1
+

x3x1

x2

)
+

(
x3x1

x2
+

x1x2

x3

)
≥ 2x1 + 2x2 + 2x3 = 2(x1 + x2 + x3) ,

with equality if and only of x1 = x2 = x3, by the arithmetic-geometric means inequality. Thus, the inequality
holds for n = 1.

The inequality is not generally true for n ≥ 2. For each positive integer n, define the function

Ln(x1, x2, · · · , x2n+1) =
x1x2

x3
+

x2x3

x4
+ · · ·+ x2n+1x1

x2
.

Observe that

Ln+1(x1, x2, · · · , x2n+1, x1, x2) = Ln(x1, x2, · · · , x2n+1) +
x1x2

x1
+

x2x1

x2
= Ln(x1, x2, · · · , x2n+1) + x1 + x2 .

Thus, if we can determine (x1, x2, · · · , x2n+1) to contradict the inequality, then (x1, x2, · · · , x2n+1, x1, x2)
contradicts the inequality at the nest higher level. Accordingly, to prove our assertion, is suffices to find a
counterexample when n = 2.

Since
L2(90, 3, 9, 1, 1) = 30 + 27 + 9 + (1/90) + 30 < 97 < 90 + 3 + 9 + 1 + 1 ,

it follows that the inequality generally fails for n ≥ 2.

Solution 2. By the Cauchy-Schwarz Inequality, we have in the case n = 1,

(
x1x2

x3
+

x2x3

x1
+

x3x1

x2

)(
x1x3

x2
+

x2x1

x3
+

x3x2

x1

)
≥

(√
x2

1x2x3

x3x2
+

√
x2

2x3x1

x1x2
+

√
x2

3x1x2

x2x1

)2

= (x1 +x2 +x3)2 .

from which the desired inequality follows.

Suppose that n ≥ 2. Let x1 = 34, x2 = 3, x3 = 32, x4 = x5 = · · · = x2n+1 = 1, so that x1 + x2 + · · ·+
x2n+1 = 81 + 3 + 9 + (2n− 2) = 91 + 2n. Then

x1x2

x3
=

x2x3

x4
=

x2n+1x1

x2
= 33 ,

x3x4

x1
= 32 ,

x2nx2n+1

x1
=

1
34

,

and
xixi+1

xi+2
= 1 for i = 4, · · · , 2n− 1 .

(The last case is vacuous when n = 2.) The sum of the left side of the purported inequality is 3× 33 + 32 +
(1/34) + (2n − 4) < 81 + 9 + 1 + (2n − 4) = 87 + 2n. Thus, the left side is less than the right side and we
have a counterexample.

Comment. The case n = 1 was proven by W.P. Wen and the general counterexample is adapted from
one given by A. Remorov.

517. A man bought four items in a Seven-Eleven store. The clerk entered the four prices into a pocket
calculator and multiplied to get a result of 7.11 dollars. When the customer objected to this procedure,
the clerk realized that he should have added and redid the calculation. To his surprise, he again got the
answer 7.11. What did the four items cost?
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Solution. Let the cost in cents of the four items be a, b, c, d. Then a, b, c, d are whole numbers with
a + b + c + d = 711 = 32 × 79 and (

a

100

)(
b

100

)(
c

100

)(
d

100

)
=

711
100

.

so that abcd = 711× 106 = 26 × 32 × 56 × 79. Exactly one price (in cents) is a multiple of 79, and at most
three prices (in cents) are even or are a multiple of 5,

It is not possible for three prices to be a multiple of 25. Otherwise, the remaining price would be the
multiple of 79, and the sum of the three remaining prices would also be a multiple of 79 as well as of 25.
But 79× 25 > 711, and this is not possible. Hence, at least one of the prices is a multiple of 53 = 125; this
price is clearly not a multiple of 79.

Case 1: One of the prices is 5× 79 = 395. Suppose that a = 5× 79 = 395. Suppose that b is a multiple
of 53 = 125. Since not all four prices can be a multiple of 5, one price, c, say, must be a multiple of 52 = 25.

If (a, b) = (395, 125), then, modulo 25, a+ b+ c ≡ 20, so that d ≡ 11−20 ≡ 16. Since d can have only 2,
3, 5 as prime divisor, d = 16. But this leads to c = 175 = 7× 52, which is not possible. If (a, b) = (395, 250),
again d = 16 so that c = 50 = 2×2×52. But then abcd is not divisible by 3. Since a+b < 711, this exhausts
the possibilities and Case 1 cannot occur.

Case 2. One of the prices, say a is one of the multiples 79, 158, 231, 316, 474 of 79 and another, say b is
one of the multiples 125, 250, 375, 500, 625 of 125. Examining the cases and conducting an analysis similar
to that of Case 1, we arrive at the unique solution

(a, b, c, d) = (316, 125, 150, 120) = (22 × 79, 53, 2× 3× 52, 23 × 3× 5 .

Therefore the four items cost $1.20, $1.25, $1.50 and $3.16.

Comments. There are a couple of “near misses” where the product is off by a prime factor:
(45, 100, 250, 316) = (32 × 5, 22 × 52, 2× 53, 22 × 79) and (25, 120, 250, 316) = (52, 23 × 3× 5, 2× 53, 22 × 79).

AQ. Zhang had an interesting way to reject some cases. Suppose that a = 395 = 5 × 79. Then
b+c+d = 316 and bcd = 26×32×55. This gives an arithmetic mean for b, c, d less than 108 and a geometric
mean that satisfies

3
√

26 × 32 × 55 = 22 × 5× 3
√

9× 25 = 20× 3
√

225 > 20× 6 = 120 .

This is impossible by the arithmetic-geometric means ineqaulity. Similarly, of a = 375 = 3×53, the arithmetic
mean of b, c, d is 112, while the geometric mean is 20× 3

√
237 which exceeds 120. Again, this is not possible.

In general bcd = 106×711
a exceeds 106, so that the geometric mean of b, c, d is always at least 100. If

a > 411, the geometric mean is less than 100. Thus, we eliminate from consideration all multiples of 79
greater than 316 and all multiples of 125 greater than 250.

518. Let I be the incentre of triangle ABC, and let AI, BI, CI, produced, intersect the circumcircle of
triangle ABC at the respective points D, E, F . Prove that EF ⊥ AD.

Solution 1. Let α = ∠BAD = ∠CAD, β = ∠ABE = ∠CBE and γ = ∠ACF = ∠FCB. Suppose
that AI and EF intersect at G. Since ∠FAB = ∠FCB = γ and ∠AFE = ∠ABE = β, it follows that
∠AGE = ∠FAG + ∠AFG = α + γ + β = 90◦ and EF ⊥ AD.

Solution 2. Use the same notation as in Solution 1.

∠IGE = ∠IFG + ∠FIG = ∠CFE + ∠AIF = ∠CBE + ∠ACF + ∠IAC = β + γ + α = 90◦ .

Solution 3. Use the same notation as in Solution 1. A rotation with centre F and angle β carries ray
FE onto FC. A rotation with centre C and angle γ carries ray CF onto CA. A rotation with centre A and
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angle α carries AC onto AD. Since all of these rotation have the same sense and the sum of their angles is
90◦, it follows that the final position AD of the line EF is perpendicular to EF and the result follows.

Solution 4. Let U be the intersection of AB and CF , P of AB and FE, V of AC and BE and Q of
AC and FE. Since ∠CFE = ∠CBE = ∠EBA and ∠FUA = ∠BUI, triangles BIU and FPU are similar,
so that ∠BIU = ∠FPU . Similarly, triangles CIV and EQV are similar, and ∠CIV = ∠EQV . Hence, in
triangles APG and AQG,

∠APG = ∠FPU = ∠BIU = ∠CIV = ∠EQV = ∠AQG .

Also, ∠PAG = ∠QAG. Therefore, ∠AGP = ∠AGQ, and the result follows since P,G, Q are collinear.

519. Let AB be a diameter of a circle and X any point other than A and B on the circumference of the
circle. Let tA, tB and tX be the tangents to the circle at the respective points A, B and X. Suppose
that AX meets tB at Z and BX meets tA at Y . Show that the three lines Y Z, tX and AB are either
concurrent (ı.e. passing through a common point) or parallel.

Solution. Let tX intersect tA and tB in U and V respectively, and let O be the centre of the circle. If
X is the midpoint of the arc AB, then tX is parallel to AB and the reflection in the diameter of the circle
passing through X interchanges A and B, U and V , as well as Y and Z. Hence AB, UV = tX and Y Z,
being perpendicular to the diameter, are all parallel.

Henceforth, suppose, say, that X is closer to A than to B. Let α = ∠XAB and β = ∠XBA. Then, by
standard results on isoceles triangles and subtended angles, we have that

α = ∠XAB = ∠AXO = ∠AY B = ∠UXY = ∠V BY = ∠V XB

and
β = ∠XBA = ∠OXB = ∠AXU = ∠UAX = ∠BZX = ∠ZXV ;

also Y U = UX = UA and ZV = XV = BV .

Thus, U and V are the respective midpoints of AY and BZ. Let BA and ZY intersect at W . Since
AY ‖BZ, the dilatation with factor |WB|/|WA| and centre W takes A to B, Y to Z, and the midpoint U
of AY to the midpoint V of BZ. Hence W , U and V are collinear and the result follows.

520. The diameter of a plane figure is the largest distance between any pair of points in the figure. Given an
equilateral triangle of side 1, show how, by a stright cut, one can get two pieces that can be rearranged
to form a figure with maximum diameter

(a) if the resulting figure is convex (i.e. the line segment joining any two of its points must lie inside
the figure);

(b) if the resulting figure is not necessarily convex, but it is connected (i.e. any two points in the figure
can be connected by a curve lying inside the figure).

Solution. (a) The maximum diameter is
√

13/2.

We first observe that for a convex polygon, the diameter is realized by joining some two of its vertices.
To see this, let PQ be any segment contained within the figure and draw two lines l and m perpendicular
to PQ through P and Q respectively. Move l in the direction −−→QP to the last position for which it has a
nonvoid intersection with the polygon; this intersection must contain a vertex U (it consists of either a side
or a vertex of the polygon). Similarly, move m in the direction −−→PQ until it contains a vertex V . Then the
distance between U and V must be at least as great as the distance between the lines l and m, which is at
least as great as the distance between P and Q.

In cutting the equilateral triangle ABC, there are two possibilities. Either the cut passes through a
vertex A and an interior point D of the opposite side BC. Or it passes through an interior point E of a side
AB and an interior point F of a side AC.
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Suppose first that the cut is AD, through a vertex. For a convex result, we must place triangle ABD
against triangle ADC so that one side of one triangle lies along an equal side of the other. There are generally
three ways to do this.

(i) Turn ABD over so that A falls on D and D falls on A. Let B fall on U . The diameter of ACDU
is equal to the maximum length of the four sides and two diagonals. The lengths of four sides and of the
diagonal AD do not exceed 1.

|CU | ≤ |CA|+ |AU | = |CA|+ |DB|

and
|CU | ≤ |CD|+ |DU | = |CD|+ |AB| .

Hence
|CU | ≤ 1 + min (|DB|, |CD|) ≤ 3

2
. The diameter of this figure does not exceed 3/2.

(ii) Move triangle ABD so that A stays put, B falls on C and D goes to a point V (this is a rotation
about A). Since |DV | ≤ |DC| + |CV | = |DC| + |BD|, it can be seen that the diameter of this figure does
not exceed 1.

(iii) Move triangle ABD so that A falls on C, B falls on A and D falls on W . Since |DW | does not
exceed the minimum of |AD|+ |AW | = |AD|+ |BD| and |CW |+ |DC| = |AD|+ |DC|, we can deduce that
the diameter does not exceed 3/2.

In the case that D is the midpoint of BC, there are two additional possibilities.

(iv) Place triangle ABD alongside triangle ACD that they have the side CD in common to get an
obtuse isosceles triangle whose longest side has length

√
3.

(v) Finally place triangle ABD alongside triangle ACD so that B falls on D and D falls on C to get
a 150◦, 30◦ parallellogram with side lengths 1 and

√
3/2. By the law of cosines, the length of the longer

diagonal of this parallelogram is the square root of

1 +
3
4
−
√

3 cos 150◦ = 1 +
3
4

+
3
2

=
13
4

,

so that the diameter of this figure turns out to be
√

13/2. Note that this exceeds
√

3.

Consider the second possibility in which the cut EF joins a point E in AB to a point F in AC. A side
of the triangle AFE must be placed against an equal side of the quadrilateral BCFE. No side of triangle
AFE can be placed against BC, since BC is longer than any chord of triangle ABC except sides AB and
AC. The equality of FE with either AE or AF occurs exactly when EF‖BC and E and F are the respective
midpoints of the sides.

We might consider turning triangle AFE over so that E and F are interchanged. If one of the angles,
say ∠AFE, exceeds the other, ∠AEF , then ∠BEF + ∠AFE > ∠BEF + ∠AEF = 180◦ and we would not
get a convex figure. If the two angles ∠AEF and ∠AFE are equal, then we get triangle ABC with diameter
1. Thus, we find that there are essentially six cases.

(i) Suppose that |EF | = |FC| = x and that triangle AEF is moved so that E falls on F , F falls on C
and A falls on P . Let y = |AE| = |FP |. This gives a pentagon BCPFE whose respective side lengths are
1, 1− x, y, x, 1− y, none of which exceeds 1. The three diagonals that lie within triangle ABC have length
less than 1. Since both angles EBP and EPB are less than 60◦, BEP is the largest angle of triangle BEP
and so |EP | < |BP |. Finally,

|BP | < |BE|+ |EF |+ |FP | = (1− y) + x + y = 1 + x

and
|BP | < |BC|+ |CP | = 1 + (1− x) = 2− x ,
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it follows that |BP | is less than the minimum of 1 + x and 2 − x, which cannot exceed 3/2. Thus, the
diameter of BCPFE is less than 3/2.

(ii) Suppose that |EF | = |FC| = x and triangle AEF is moved so that F stays put, E falls on C and A
falls on Q. With y = |AE| = |QC|, we get a pentagon BCQFE with respective side lengths 1, y, 1−x, x, 1−y.
We find that

|BQ| < min (1 + y, (1− y) + x + (1− x)) = min (1 + y, 2− y) < 3/2

and that all other sides and diagonals of the pentagon do not exceed 1. Hence the diameter is less than 3/2.

(iii) Suppose that |AE| = |FC| = x, so that |AF | = 1− x. Let triangle AEF be moved so that A falls
on C, E falls on F and F falls on R. Let y = |EF | = |FR|. The side lengths of pentagon BCRFE are
respectively 1, 1− x, y, y, 1− x. Since |AE| > |AF |, x > 1/2. We have that

|ER| < |BR| < |BC|+ |RC| = 2− x < 3/2

and so the diameter of the pentagon must be less than 3/2.

(iv) Suppose that |AE| = |FC| = x and that triangle AEF is moved so that A falls on F , E falls on C
and F falls on S. Using the Law of Cosines on triangle AEF , we have that y =

√
3x2 − 3x + 1. Then

|BS| ≤ |BE|+ |EF |+ |FS| = 2(1− x) +
√

3x2 − 3x + 1 .

Since x ≥ 1/2, we have that

(4x2 − 2x + (1/4))− (3x2 − 3x + 1) = x2 + x− (3/4) = (1/4)(2x− 1)(2x + 3) > 0 .

Hence √
3x2 − 3x + 1 <

√
4x2 − 2x + (1/4) = 2x− (1/2) = (3/2)− 2(1− x) .

Therefore |BS| < 3/2. Thus, the diameter of the figure obtained is less than 3/2.

(v) Suppose that |AF | = |FC| (so that F is the midpoint of AC) and that triangle AEF is moved so
that F is left in place, A falls on C and E falls on T . Then we get a quadrilateral BCTE and find that

|BT | ≤ |BF |+ |FT | ≤ 2|BF | =
√

3 .

Thus, the diameter does not exceed
√

3.

(vi) Suppose that |AF | = |FC| and that triangle AEF is moved so that A falls on F , F falls on C and
E falls on U . Let H be on FU produced so that HC ⊥ AC. Since |FC| = 1/2 and ∠CFH = 60◦, BCHF is
a 150◦, 30◦ parallelogram with side lengths 1 and

√
3/2, so that |BU | < |BH| =

√
13/2. Thus the diameter

of BCUFE does not exceed
√

13/2.

Therefore, the maximum diameter of the convex figure formed by the two pieces is
√

13/2.

(b) The diameter of the resulting figure cannot exceed the sum of the diameters of the pieces, and so is
at most 2. To get a figure of diameter 2, cut the equilateral triangle into two right triangles by a median,
and line them up to have their hypotenuses collinear with only one point in common.

521. On a 8 × 8 chessboard, either +1 or −1 is written in each square cell. Let Ak be the product of all
the numbers in the kth row, and Bk the product of all the numbers in the kth column of the board
(k = 1, 2, · · · , 8). Prove that the number

A1 + A2 + · · ·+ A8 + B1 + B2 + · · ·+ B8

is a multiple of 4.
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Solution 1. it is clear that the value of each Ak and Bk is +1 or −1. Assume that p of the eight Ak

have the value 1 and 8− p have the value −1. Similarly, suppose that q of the eight Bk have the value 1 and
8 − q have the value −1. The each product is the product of all the entries, the products A1A2 · · ·A8 and
B1B2 · · ·B8 are equal, so that (−1)8−p = (−1)8−q and p and q have the same parity. We have that

A1 + A2 + · · ·+ A8 + B1 + B2 + · · ·+ B8 = p + (8− p)(−1) + q + (8− q)(−1) = 2(p + q)− 16 .

Since p + q is even, both terms on the right are divisible by 4 and the result follows.

Solution 2. The proof is by induction on the number of negative entries in the square array. If all of
the entries are equal to +1, then the sum in the problem is equal to 16, which is divisible by 4. Let n be
a positive integer, and suppose that the result holds when there are n− 1 entries in the array equal to −1.
Let an array U be given for which there are exactly n entries equal to −1. Let V be the array obtained from
U by changing exactly one of the entries −1 to +1, say the entry in the rth row and sth column. Then the
numbers Ai and Bj are the same for both arrays when i 6= r and j 6= s.

If Ak and Bk denote the row and column products for the matrix V , then the sum of the problem for
the array U is obtained from that for the matrix V by the addition of −2Ar − 2Bs = −2(Ar + Bs). Since
(Ar, Bs) has one of the values (+1,+1), (+1,−1), (−1,+1), (−1,−1), it follows that the sum is altered by a
multiple of 4. Since by the induction hypothesis, the sum for U is divisible by 4, then so also must be the
sum for V .

522. (a) Prove that, in each scalene triangle, the angle bisector from one of its vertices is always “between”
the median and the altitude from the same vertex.

(b) Find the measures of the angles of a triangle if the lengths of the median, the angle bisector and the
altitude from one of its vertices are in the ratio

√
5 :
√

2 : 1.

Solution 1. (a) Let ABC be a triangle and let P , K and M be the respective intersections of the altitude,
angle bisector and median from A in the side BC. Suppose, wolog, AB < AC. Then (by Pythagoras’
Theorem, for example), BP < CP , so that ∠BAP < ∠CAP and the bisector AK of angle A falls within
the angle CAP . Hence, BP < BK. Since KB : KC = AB : AC, KB < KC and the midpoint M of BC
must lie in the segment KC. The result follows.

(b) Use the same notation as in (a). We may assume that |AP | = 1, |AK| =
√

2 and |AM | =
√

5. We
first note that the altitude from A must lie outside of the triangle. Suppose, on the contrary, that P lies on
the side BC. By Pythagoras’ Theorem, we have that |PK| = 1, so that ∠PAK = 45◦. Then

∠BAP + 45◦ = ∠BAK = ∠CAK = ∠CAP − 45◦ ,

so that
∠CAP = ∠BAP + 90◦ > 90◦ ,

which is impossible.

Hence P must lie on CB produced and B lies in the segment PK. Let |PB| = x, so that |BK| = 1−x,
|PM | = 2 (by Pythagoras’ Theorem), |KM | = 1, |MC| = 2− x and |PC| = 4− x. We have that

45◦ − ∠PAB = ∠BAK = ∠CAK = ∠PAC − 45◦ ,

so that ∠PAC = 90◦ − ∠PAB and

4− x = tan ∠PAC = cot ∠PAB =
1
x

.

Thus, x2− 4x + 1 = 0 and x = 2−
√

3. We reject the larger root as it would be the reciprocal of the smaller
and so it would be the tangent of ∠PAC which is larger than ∠PAB.
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Therefore, tan∠PAB = 2 −
√

3 and so, from the double angle formula, tan 2∠PAB = 1/
√

3 Thus,
∠PAB = 15◦, ∠PAC = 75◦ and ∠BAC = 60◦. Since ∠PBA = 75◦, it follows that ∠ABC = 105◦ and
∠BCA = 15◦.

(It can also be checked that |AB| = 2
√

2−
√

3, |AC| = 2
√

2 +
√

3 and |BC| = 2
√

3.

Solution 2. (a) can be established as before. For (b), assume wolog that AC > AB. We first establish
that ∠ABC is obtuse. Let ∠BAC = α, ∠ABC = β and ∠ACB = γ. Since β > γ,

∠AKC = β + α/2 > γ + α/2 = ∠AKB ,

so that ∠AKB < 90◦ (which agrees with ∠AKP = 45◦) and ∠AKC > 90◦ (more precisely, ∠AKC = 135◦).
Hence β + α/2 = ∠AKC = 135◦, so that 180◦ − β − γ = α = 270◦ − 2β and β = γ + 90◦ > 90◦.

By Pythagoras’s theorem, |PK| = 1, |PM | = 2 and |KM | = 1. Let |PB| = x (x < 1), so that
|BK| = 1− x, |BM | = 2− x, |BC| = 2|BM | = 4− 2x, and |PC| = 4− x.

The triangles ACP and BAP are similar since both are right and

∠PAB = ∠ABC − 90◦ = β − 90◦ = γ = ∠ACP .

Therefore AP : PC = BP : AP , or, equivalently, 1 : (4− x) = x : 1. Therefore, x is the smaller of the roots
of x2 − 4x + 1 = 0, namely 2−

√
3.

Thus, tan ∠PAB = 2 −
√

3, so that ∠PAB = 15◦. (One way to check this is to use the double angle
formula to find the tangent of 15◦.) Therefore, γ = ∠ACB = ∠PAB = 15◦, β = ∠ABC = γ + 90◦ = 105◦

and α = ∠BAC = 60◦.

Solution 3. [J. Schneider] Wolog, let ∠B > ∠C. we use the notation of the first solution. If B is obtuse,
then B lies between P and K. Since AB < AC, BK : KC = AB : AC, so that BK < KC and M lies
between K and C.

Let the angle at B be acute. Then BP : PC = tanC : tanB, BK : KC = c : b = sinC : sinB and
BM : MC = 1 : 1. Since sin C < sinB and cos C > cos B,

tanC

tanB
=

cos B

cos C
· sinC

sinB
<

sinC

sinB
< 1 ,

and the result follows.

(b) Let x = |MC| and coordinatize the situation by A ∼ (0, 1), B ∼ (0, 0), K ∼ (1, 0), M ∼ (2, 0),
C ∼ (2 + x, 0) and B ∼ (2− x, 0). The proportion AB2 : AC2 = AK2 : KC2 leads to the equation

(x + 1)2

(x− 1)2
=

x2 + 4x + 5
x2 − 4x + 5

,

which simplifies to x(x2 − 3) = 0. Since vertAK| < |AC|, we reject x = −
√

3. Hence x =
√

3. Note that
this places B to the right of the origin and so angle B is obtuse.

Thus |AB| = 2
√

2−
√

3, |AC| = 2
√

2 +
√

3 and |BC| = 2
√

3. Angle A can be identified using the Law
of Cosines and the remaining angles from their tangents.

523. Let ABC be an isosceles triangle with AB = AC. The segments BC and AC are used as hypotenuses to
construct three right triangles BCM , BCN and ACP . Prove that, if ∠ACP +∠BCM +∠BCN = 90◦,
then the triangle MPN is isosceles.

Solution 1. Clearly, M and N are points on a circle whose diameter is BC. Let O be the midpoint of
BC and the centre of this circle, and Q the intersection point of the ray PO and the circle. We have that

∠BCM + ∠BCN =
1
2
arc BM + arc BN) . (1)
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Observe that, as triangle ABC is isosceles with O the midpoint of its base BC, AO ⊥ BC. Therefore,
O and P are on the circle with diameter AC, so that

90◦ − ∠ACP = ∠PAC = ∠POC = ∠BOQ . (2)

We are given that 90◦ − ∠ACP = ∠BCM + ∠BCN , so that (1) and (2) yield

arc BQ = ∠BOQ =
1
2
(arc BM + arc BN)

or
arc BN + arc NQ + arc BQ =

1
2
(arc BN + arc MN + arc BN)

which in turn is equivalent to arc NQ = 1
2 (arc MN). Thus, Q is the midpoint of the arc MN , so that PQ

is the right bisector of the segment MN . The result follows.

Solution 2. [J. Schneider] Note that triangle MPN is isosceles with PM = PN if and only if the right
bisector of MN passes through P .

Let D be the midpoint of BC. Since ABC is isosceles, AD ⊥ BC and D lies on the circle with diameter
AC. Thus, APCD is concyclic and ∠ADP = ∠ACP .

Since D is the centre of the circle with diameter BC that contains M and N , ∠BDN = 2∠BCN and
∠BDM = 2∠BCM . Let X be the midpoint of MN . Then DX right bisects MN and bisects angle MDN .
Hence

∠BDX =
1
2
(∠BDM + ∠BDN) = ∠BCN + ∠BCM .

Suppose that ∠BCN + ∠BCM + ∠ACP = 90◦, as hypothesized. Then

∠PDC = 90◦ − ∠ADP = 90◦ − ∠ACP = ∠BCM + ∠BCN = ∠BDX .

Hence X, D,P are collinear. But DX is the right bisector of MN , and so is DP . Hence triangle MPN is
isosceles.

Comment. The above argument applies when all triangles are external to triangle ABC. It can be
adapted to the other cases.

524. Solve the irrational equation

7√
x2 − 10x + 26 +

√
x2 − 10x + 29 +

√
x2 − 10x + 41

= x4 − 9x3 + 16x2 + 15x + 26 .

Solution. Observe that

x4 − 9x3 + 16x2 + 15x + 26 = (x2 + x + 1)(x− 5)2 + 1 .

Since x2 + x + 1 = (x + 1
2 )2 + 3

4 > 0 for all x, the quartic on the right side of the equation is never less than
1 and is equal to 1 if and only if x = 5.

Since x2− 10x + 25 + k = (x− 5)2 + k for k = 1, 4, 16, the left side of the equation is never greater than
1 and is equal to 1 if and only if x = 5. It follows that x = 5 is the only solution of the equation.

525. The circle inscribed in the triangle ABC divides the median from A into three segments of the same
length. If the area of ABC is 6

√
14, calculate the lengths of its sides.

Solution. Let the median from A meet the side BC at M . Let a, b, c denote the side lengths of ABC as
usual, and let the length of the median AM be 3u. Suppose that the incircle of triangle ABC touches sides
BC, CA, AB at U , V , W , respectively. Suppose, wolog, that AB < AC, so that U lies between B and M .

39



By the power of a point, we have that |AV |2 = 2u2 = |MU |2, so that

(1/2)(b + c− a) = |AV | = |MU | = (1/2)a− (1/2)(a + c− b) = (1/2)(b− c) ,

and 8u2 = b2− 2bc + c2. Hence b + c− a = b− c, whence a = 2c and |BM | = |MC| = |AB| = c. By the Law
of Cosines applied to triangles ABM and AMC, with α = ∠AMB,

c2 = c2 + (3u)2 − 6uc cos α

and
b2 = c2 + (3u)2 + 6uc cos α ,

whence
b2 = c2 + 18u2 = (9/4)(b2 − 2bc + c2) .

This simplifies to
0 = 5b2 − 18bc + 13c2 = (b− c)(5b− 13c) .

Since b 6= c (otherwise, the median from A would be the angle bisector of A and the incircle would touch BC
at M), we must have b = 13c/5. Hence (a, b, c) = (2c, 13c/5, c), the semiperimeter of the triangle is 14c/5
and the square of its area is (1/54)(14c)(4c)c(9c) = (c4/54)(14)(36). Since we are given that the square of
the area is (14)(36), c = 5 and the dimensions of the triangle are (10, 5, 13).

Comment. All triangles described in the first sentence of the problem have a common property, in
that their sides are in the ratio 10 : 5 : 13. This is, in fact, the essence of the problem. There are many
modifications with the same core idea; for example, instead of giving the area of the triangle, we could give
the length of the altitude from B, of the angle bisector from C or of the median from A. Recall that these
last three quantities are given respectively by

hb =
2
b

√
s(s− a)(s− b)(s− c)

lc =
2

a + b

√
abs(s− c)

ma =
1
2

√
2b2 + 2c2 − a2

where s = 1
2 (a + b + c) is the semiperimeter of the triangle.

526. For the non-negative numbers a, b, c, prove the inequality

4(a + b + c) ≥ 3(a +
√

ab + 3
√

abc) .

When does equality hold?

Solution 1. Equality holds when a = b = c = 0. The inequality clearly holds when a = 0 and when
b = 0, so henceforth we will assume that ab 6= 0. Define the nonnegative numbers u and v by

u2 =
b

a
and v3 =

bc

a2
.

Dividing the inequality through by a, we see that it is equivalent to

4
(

1 + u2 +
v3

u2

)
≥ 3(1 + u + v)

or
4(u2 + u4 + v3) ≥ 3(u2 + u3 + u2v) .
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The difference between the two members of the last inequality is

4u4 − 3u3 + u2 + 4v3 − 3u2v = u2(2u− 1)2 + (2v − u)2(v + u) .

Because of the square terms, it is always nonnegative, and it is equal to zero if and only if (u, v) = (1/2, 1/4).
This is achieved when a : b : c = 16 : 4 : 1. Therefore, the inequality always holds and equality occurs when
(a, b, c) = (16t, 4t, t) for some nonnegative value of t.

Comment. Since the genesis of the solution is far from obvious, it might be worth commenting on how it
was arrived at. It is straightforward to dispose of the cases in which any of the variables vanish, so we may as
well suppose that all are positive. We observe that the left and right sides of the inequality are homogeneous
of degree 1, so that any scalar mutiple of a solution vector is also a solution. Thus, we might as well assume
that a = 1. The next step is to get rid of the radicals, which we can do by assuming the quantity under
the square root sign is u2 and under the cube root sign is v3; it is now a matter of backtracking to define
these in terms of a, b and c. Some manipulation gives an equivalent polynomial inequality in terms of u
and v. We now look at the difference between the two sides and investigate the possibility of getting some
representation of this difference in terms of squares and things known to be positive. However, all these
machinations can be avoided by a little insight, as we shall see in the next solution.

4u4 − 3u3 + u2 is almost a square, so we might as well complete it by subtracting u3 and adding it to
the rest of the expression to get (2u2− u)2 + (4v3− 3u2v + u3). We notice that the expression in the second
parentheses vanished when v = −u, which makes v + u a factor of it. The remaining factor turns out to be
(2v − u)2 and we are finished.

Solution 2. [J. Schneider] Let a = u, b = v/4 and c = w/16. The inequality is equivalent to

4
(

u +
v

4
+

w

16

)
≥ 3

(
u +

1
2
√

uv +
1
4

3
√

uvw

)
.

Since 3u ≥ 3u, (3/4)(u + v) ≥ (3/2)
√

uv and (1/4)(u + v + w) ≥ 3 3
√

uvw (the last two by the arithmetic-
geometric means inequality), the desired inequality follows. Equality occurs if and only if u = v = w, or
a = 4b = 16c.

Solution 3. The left side of the inequality can be rewritten

4(a + b + c) = 3a +
3
4
(a + 4b) +

1
4
(a + 4b + 16c) .

Using the arithmetic-geometric means inequality, we have that

a + 4b ≥ 2
√

a(4b) = 4
√

ab

and
a + 4b + 16c ≥ 3 3

√
a(4b)(16c) = 12 3

√
abc ,

from which the desired result follows. Equality occurs if and only if a = 4b = 16c.

527. Consider the set A of the 2n−digit natural numbers, with 1 and 2 each occurring n times as a digit,
and the set B of the n−digit numbers all of whose digits are 1, 2, 3, 4 with the digits 1 and 2 occurring
with equal frequency. Show that A and B contain the same number of elements (i.e., have the same
cardinality).

Solution 1. We show that A and B have the same number of elements by pairing off the elements of
one set with elements of the other. Suppose that a number in A is given; separate it into n consecutive
pairs of digits; these pairs will be one of 11, 12, 21, 22. Observe that, since the digits 1 and 2 occur equally
frequently, the pairs 11 and 22 must occur equally frequently. Moving from left to right, we construct an
n− digit number by replacing each pair 11 by the digit 1, 22 by the digit 2, 12 by the digit 3 and 21 by the

41



digit 4. Thus, for example, the number 1222112112112212 corresponds to 32143123. Because the number
in A has equally many pairs 11 and 22, the corresponding number will have 1 and 2 occurring equally often
and will lie in B.

Conversely, given an n−digits number in B, construct a 2n−digit number by replacing each 1 by 11, 2
by 22, 3 by 12 and 4 by 21. Because 1 and 2 occur equally often, the pairs 11 and 22 will occur equally often
in the resulting number, which will then belong to A. Thus the correspondence is one-one and the result
follows.

Comment. The number of elements in A is
(
2n
n

)
, the number of ways of selecting the places for the n

ones. To select numbers in B with r ≤ n/2 digits equal to 1, we can choose the places for the ones in
(
n
r

)
ways, the places for the twos in

(
n−r

r

)
ways. This leaves n − 2r places left over, which can be filled with

either threes or fours in 22n−r ways. Thus, the number of elements in B is

bn/2c∑
r=0

(
n

r

)(
n− r

r

)
22n−2 .

The current problem provides a combinatorial way of verifying the equality of these two expressions. Can
you find an alegebraic demonstration?
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