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Notes: The absolute value |x| is equal to x when x is nonnegative and −x when x is negative; always
|x| ≥ 0. The floor of x, denoted by bxc is equal to the greatest integer that does not exceed x. For example,
b5.34c = 5, b−2.3c −−3 and b5c = 5. A geometric figure is said to be convex if the segment joining any two
points inside the figure also lies inside the figure.

353. The two shortest sides of a right-angled triangle, a and b, satisfy the inequality:√
a2 − 6a

√
2 + 19 +

√
b2 − 4b

√
3 + 16 ≤ 3 .

Find the perimeter of this triangle.

354. Let ABC be an isosceles triangle with AC = BC for which |AB| = 4
√

2 and the length of the median
to one of the other two sides is 5. Calculate the area of this triangle.

355. (a) Find all natural numbers k for which 3k − 1 is a multiple of 13.

(b) Prove that for any natural number k, 3k + 1 is not a multiple of 13.

356. Let a and b be real parameters. One of the roots of the equation x12 − abx + a2 = 0 is greater than 2.
Prove that |b| > 64.

357. Consider the circumference of a circle as a set of points. Let each of these points be coloured red or
blue. Prove that, regardless of the choice of colouring, it is always possible to inscribe in this circle an
isosceles triangle whose three vertices are of the same colour.

358. Find all integers x which satisfy the equation

cos
(

π

8
(3x−

√
9x2 + 160x + 800)

)
= 1 .

359. Let ABC be an acute triangle with angle bisectors AA1 and BB1, with A1 and B1 on BC and AC,
respectively. Let J be the intersection of AA1 and BB1 (the incentre), H be the orthocentre and O the
circumcentre of the triangle ABC. The line OH intersects AC at P and BC at Q. Given that C, A1,
J and B1 are vertices of a concyclic quadrilateral, prove that PQ = AP + BQ.

360. Eliminate θ from the two equations
x = cot θ + tan θ

y = sec θ − cos θ ,

to get a polynomial equation satisfied by x and y.
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361. Let ABCD be a square, M a point on the side BC, and N a point on the side CD for which BM = CN .
Suppose that AM and AN intersect BD and P and Q respectively. Prove that a triangle can be
constructed with sides of length |BP |, |PQ|, |QD|, one of whose angles is equal to 60◦.

362. The triangle ABC is inscribed in a circle. The interior bisectors of the angles A, B, C meet the circle
again at U , V , W , respectively. Prove that the area of triangle UV W is not less than the area of triangle
ABC.

363. Suppose that x and y are positive real numbers. Find all real solutions of the equation

2xy

x + y
+

√
x2 + y2

2
=
√

xy +
x + y

2
.

364. Determine necessary and sufficient conditions on the positive integers a and b such that the vulgar
fraction a/b has the following property: Suppose that one successively tosses a coin and finds at one
time, the fraction of heads is less than a/b and that at a later time, the fraction of heads is greater than
a/b; then at some intermediate time, the fraction of heads must be exactly a/b.

365. Let p(z) be a polynomial of degree greater than 4 with complex coefficients. Prove that p(z) must have
a pair u, v of roots, not necessarily distinct, for which the real parts of both u/v and v/u are positive.
Show that this does not necessarily hold for polynomials of degree 4.

366. What is the largest real number r for which

x2 + y2 + z2 + xy + yz + zx√
x +
√

y +
√

z
≥ r

holds for all positive real values of x, y, z for which xyz = 1.

367. Let a and c be fixed real numbers satisfying a ≤ 1 ≤ c. Determine the largest value of b that is consistent
with the condition

a + bc ≤ b + ac ≤ c + ab .

368. Let A,B, C be three distinct points of the plane for which AB = AC. Describe the locus of the point
P for which ∠APB = ∠APC.

369. ABCD is a rectangle and APQ is an inscribed equilateral triangle for which P lies on BC and Q lies
on CD.
(a) For which rectangles is the configuration possible?
(b) Prove that, when the configuration is possible, then the area of triangle CPQ is equal to the sum
of the areas of the triangles ABP and ADQ.

370. A deck of cards has nk cards, n cards of each of the colours C1, C2, · · ·, Ck. The deck is thoroughly
shuffled and dealt into k piles of n cards each, P1, P2, · · ·, Pk. A game of solitaire proceeds as follows:
The top card is drawn from pile P1. If it has colour Ci, it is discarded and the top card is drawn from
pile Pi. If it has colour Cj , it is discarded and the top card is drawn from pile Pj . The game continues
in this way, and will terminate when the nth card of colour C1 is drawn and discarded, as at this point,
there are no further cards left in pile P1. What is the probability that every card is discarded when the
game terminates?

371. Let X be a point on the side BC of triangle ABC and Y the point where the line AX meets the
circumcircle of triangle ABC. Prove or disprove: if the length of XY is maximum, then AX lies
between the median from A and the bisector of angle BAC.

372. Let bn be the number of integers whose digits are all 1, 3, 4 and whose digits sum to n. Prove that bn

is a perfect square when n is even.
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373. For each positive integer n, define

an = 1 + 22 + 33 + · · ·+ nn .

Prove that there are infinitely many values of n for which an is an odd composite number.

374. What is the maximum number of numbers that can be selected from {1, 2, 3, · · · , 2005} such that the
difference between any pair of them is not equal to 5?

375. Prove or disprove: there is a set of concentric circles in the plane for which both of the following hold:
(i) each point with integer coordinates lies on one of the circles;
(ii) no two points with integer coefficients lie on the same circle.

376. A soldier has to find whether there are mines buried within or on the boundary of a region in the shape
of an equilateral triangle. The effective range of his detector is one half of the height of the triangle. If
he starts at a vertex, explain how he can select the shortest path for checking that the region is clear of
mines.

377. Each side of an equilateral triangle is divided into 7 equal parts. Lines through the division points
parallel to the sides divide the triangle into 49 smaller equilateral triangles whose vertices consist of a
set of 36 points. These 36 points are assigned numbers satisfying both the following conditions:
(a) the number at the vertices of the original triangle are 9, 36 and 121;
(b) for each rhombus composed of two small adjacent triangles, the sum of the numbers placed on one
pair of opposite vertices is equal to the sum of the numbers placed on the other pair of opposite vertices.

Determine the sum of all the numbers. Is such a choice of numbers in fact possible?

378. Let f(x) be a nonconstant polynomial that takes only integer values when x is an integer, and let P be
the set of all primes that divide f(m) for at least one integer m. Prove that P is an infinite set.

379. Let n be a positive integer exceeding 1. Prove that, if a graph with 2n + 1 vertices has at least 3n + 1
edges, then the graph contains a circuit (i.e., a closed non-self-intersecting chain of edges whose terminal
point is its initial point) with an even number of edges. Prove that this statement does not hold if the
number of edges is only 3n.

380. Factor each of the following polynomials as a product of polynomials of lower degree with integer
coefficients:

(a) (x + y + z)4 − (y + z)4 − (z + x)4 − (x + y)4 + x4 + y4 + z4 ;

(b) x2(y3 − z3) + y2(z3 − x3) + z2(x3 − y3) ;

(c) x4 + y4 − z4 − 2x2y2 + 4xyz2 ;

(d) (yz + zx + xy)3 − y3z3 − z3x3 − x3y3 ;

(e) x3y3 + y3z3 + z3x3 − x4yz − xy4z − xyz4 ;

(f) 2(x4 + y4 + z4 + w4)− (x2 + y2 + z2 + w2)2 + 8xyzw ;

(g) 6(x5 + y5 + z5)− 5(x2 + y2 + z2)(x3 + y3 + z3) .

381. Determine all polynomials f(x) such that, for some positive integer k,

f(xk)− x3f(x) = 2(x3 − 1)

for all values of x.

382. Given an odd number of intervals, each of unit length, on the real line, let S be the set of numbers that
are in an odd number of these intervals. Show that S is a finite union of disjoint intervals of total length
not less than 1.
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383. Place the numbers 1, 2, · · · , 9 in a 3× 3 unit square so that
(a) the sums of numbers in each of the first two rows are equal;
(b) the sum of the numbers in the third row is as large as possible;
(c) the column sums are equal;
(d) the numbers in the last row are in descending order.

Prove that the solution is unique.

384. Prove that, for each positive integer n,

(3− 2
√

2)(17 + 12
√

2)n + (3 + 2
√

2)(17− 12
√

2)n − 2

is the square of an integer.

385. Determine the minimum value of the product (a + 1)(b + 1)(c + 1)(d + 1), given that a, b, c, d ≥ 0 and

1
a + 1

+
1

b + 1
+

1
c + 1

+
1

d + 1
= 1 .

386. In a round-robin tournament with at least three players, each player plays one game against each other
player. The tournament is said to be competitive if it is impossible to partition the players into two sets,
such that each player in one set beat each player in the second set. Prove that, if a tournament is not
competitive, it can be made so by reversing the result of a single game.

387. Suppose that a, b, u, v are real numbers for which av − bu = 1. Prove that

a2 + u2 + b2 + v2 + au + bv ≥
√

3 .

Give an example to show that equality is possible. (Part marks will be awarded for a result that is
proven with a smaller bound on the right side.)

388. A class with at least 35 students goes on a cruise. Seven small boats are hired, each capable of carrying
300 kilograms. The combined weight of the class is 1800 kilograms. It is determined that any group of
35 students can fit into the boats without exceeding the capacity of any one of them. Prove that it is
unnecessary to leave any student off the cruise.

389. Let each of m distinct points on the positive part of the x−axis be joined by line segments to n distinct
points on the positive part of the y−axis. Obtain a formula for the number of intersections of these
segments (exclusive of endpoints), assuming that no three of the segments are concurrent.

390. Suppose that n ≥ 2 and that x1, x2, · · · , xn are positive integers for which x1 +x2 + · · ·+xn = 2(n+1).
Show that there exists an index r with 0 ≤ r ≤ n− 1 for which the following n− 1 inequalities hold:

xr+1 ≤ 3

xr+1 + xr+2 ≤ 5

· · ·

xr+1 + xr+2 + · · ·+ rr+i ≤ 2i + 1

· · ·

xr+1 + xr+2 + · · ·+ xn ≤ 2(n− r) + 1

· · ·

xr+1 + · · ·+ xn + x1 + · · ·+ xj ≤ 2(n + j − r) + 1
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· · ·

xr+1 + xr+2 + · · ·+ xn + x1 + · · ·+ xr−1 ≤ 2n− 1

where 1 ≤ i ≤ n − r and 1 ≤ j ≤ r − 1. Prove that, if all the inequalities are strict, then r is unique,
and that, otherwise, there are exactly two such r.

391. Show that there are infinitely many nonsimilar ways that a square with integer side lengths can be
partitioned into three nonoverlapping polygons with integer side lengths which are similar, but no two
of which are congruent.

392. Determine necessary and sufficient conditions on the real parameter a, b, c that

b

cx + a
+

c

ax + b
+

a

bx + c
= 0

has exactly one real solution.

393. Determine three positive rational numbers x, y, z whose sum s is rational and for which x− s3, y − s3,
z − s3 are all cubes of rational numbers.

394. The average age of the students in Ms. Ruler’s class is 17.3 years, while the average age of the boys is
17.5 years. Give a cogent argument to prove that the average age of the girls cannot also exceed 17.3
years.

395. None of the nine participants at a meeting speaks more than three languages. Two of any three speakers
speak a common language. Show that there is a language spoken by at least three participants.

396. Place 32 white and 32 black checkers on a 8×8 square chessboard. Two checkers of different colours form
a related pair if they are placed in either the same row or the same column. Determine the maximum
and the minimum number of related pairs over all possible arrangements of the 64 checkers.

397. The altitude from A of triangle ABC intersects BC in D. A circle touches BC at D, intersectes AB at
M and N , and intersects AC at P and Q. Prove that

(AM + AN) : AC = (AP + AQ) : AB .

398. Given three disjoint circles in the plane, construct a point in the plane so that all three circles subtend
the same angle at that point.

399. Let n and k be positive integers for which k < n. Determine the number of ways of choosing k numbers
from {1, 2, · · · , n} so that no three consecutive numbers appear in any choice.

400. Let ar and br (1 ≤ r ≤ n) be real numbers for which a1 ≥ a2 ≥ · · · ≥ an ≥ 0 and

b1 ≥ a1 , b1b2 ≥ a1a2 , b1b2b3 ≥ a1a2a3 , · · · , b1b2 · · · bn ≥ a1a2 · · · an .

Show that
b1 + b2 + · · ·+ bn ≥ a1 + a2 + · · ·+ an .

401. Five integers are arranged in a circle. The sum of the five integers is positive, but at least one of them
is negative. The configuration is changed by the following moves: at any stage, a negative integer is
selected and its sign is changed; this negative integer is added to each of its neighbours (i.e., its absolute
value is subtracted from each of its neighbours).

Prove that, regardless of the negative number selected for each move, the process will eventually termi-
nate with all integers nonnegative in exactly the same number of moves with exactly the same configu-
ration.
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402. Let the sequences {xn} and {yn} be defined, for n ≥ 1, by x1 = x2 = 10, xn+2 = xn+1(xn + 1) + 1
(n ≥ 1) and y1 = y2 = −10, yn+2 = yn+1(yn + 1) + 1 (n ≥ 1). Prove that there is no number that is a
term of both sequences.

403. Let f(x) = |1− 2x| − 3|x + 1| for real values of x.

(a) Determine all values of the real parameter a for which the equation f(x) = a has two different roots
u and v that satisfy 2 ≤ |u− v| ≤ 10.

(b) Solve the equation f(x) = bx/2c.

404. Several points in the plane are said to be in general position if no three are collinear.

(a) Prove that, given 5 points in general position, there are always four of them that are vertices of a
convex quadrilateral.

(b) Prove that, given 400 points in general position, there are at least 80 nonintersecting convex quadri-
laterals, whose vertices are chosen from the given points. (Two quadrilaterals are nonintersecting if they
do not have a common point, either in the interior or on the perimeter.)

(c) Prove that, given 20 points in general position, there are at least 969 convex quadrilaterals whose
vertices are chosen from these points. (Bonus: Derive a formula for the number of these quadrilaterals
given n points in general position.)

405. Suppose that a permutation of the numbers from 1 to 100, inclusive, is given. Consider the sums of all
triples of consecutive numbers in the permutation. At most how many of these sums can be odd?

406. Let a, b. c be natural numbers such that the expression

a + 1
b

+
b + 1

c
+

c + 1
a

is also equal to a natural number. Prove that the greatest common divisor of a, b and c, gcd(a, b, c),
does not exceed 3

√
ab + bc + ca, i.e.,

gcd(a, b, c) ≤ 3
√

ab + bc + ca .

407. Is there a pair of natural numbers, x and y, for which

(a) x3 + y4 = 22003?

(b) x3 + y4 = 22005?

Provide reasoning for your answers to (a) and (b).

408. Prove that a number of the form a000 · · · 0009 (with n + 2 digits for which the first digit a is followed
by n zeros and the units digit is 9) cannot be the square of another integer.

409. Find the number of ways of dealing n cards to two persons (n ≥ 2), where the persons may receive
unequal (positive) numbers of cards. Disregard the order in which the cards are received.

410. Prove that log n ≥ k log 2, where n is a natural number and k the number of distinct primes that divide
n.

411. Let b be a positive integer. How many integers are there, each of which, when expressed to base b, is
equal to the sum of the squares of its digits?

412. Let A and B be the midpoints of the sides, EF and ED, of an equilateral triangle DEF . Extend AB to
meet the circumcircle of triangle DEF at C. Show that B divides AC according to the golden section.
(That is, show that BC : AB = AB : AC.)
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413. Let I be the incentre of triangle ABC. Let A′, B′ and C ′ denote the intersections of AI, BI and CI,
respectively, with the incircle of triangle ABC. Continue the process by defining I ′ (the incentre of
triangle A′B′C ′), then A′′B′′C ′′, etc.. Prove that the angles of triangle A(n)B(n)C(n) get closer and
closer to π/3 as n increases.

414. Let f(n) be the greatest common divisor of the set of numbers of the form kn − k, where 2 ≤ k, for
n ≥ 2. Evaluate f(n). In particular, show that f(2n) = 2 for each integer n.

415. Prove that

cos
π

7
=

1
6

+
√

7
6

(
cos

(
1
3

arccos
1

2
√

7

)
+
√

3 sin
(

1
3

arccos
1

2
√

7

))
.

416. Let P be a point in the plane.

(a) Prove that there are three points A,B, C for which AB = BC, ∠ABC = 90◦, |PA| = 1, |PB| = 2
and |PC| = 3.

(b) Determine |AB| for the configuration in (a).

(c) A rotation of 90◦ about B takes C to A and P to Q. Determine ∠APQ.

417. Show that for each positive integer n, at least one of the five numbers 17n, 17n+1, 17n+2, 17n+3, 17n+4

begins with 1 (at the left) when written to base 10.

418. (a) Show that, for each pair m,n of positive integers, the minimum of m1/n and n1/m does not exceed
31/2.

(b) Show that, for each positive integer n,

(
1 +

1√
n

)2

≥ n1/n ≥ 1 .

(c) Determine an integer N for which
n1/n ≤ 1.00002005

whenever n ≥ N . Justify your answer.

419. Solve the system of equations

x +
1
y

= y +
1
z

= z +
1
x

= t

for x, y, z not all equal. Determine xyz.

420. Two circle intersect at A and B. Let P be a point on one of the circles. Suppose that PA meets the
second circle again at C and PB meets the second circle again at D. For what position of P is the
length of the segment CD maximum?

421. Let ABCD be a tetrahedron. Prove that

|AB| · |CD|+ |AC| · |BD| ≥ |AD| · |BC| .

422. Determine the smallest two positive integers n for which the numbers in the set {1, 2, · · · , 3n − 1, 3n}
can be partitioned into n disjoint triples {x, y, z} for which x + y = 3z.

Solutions.
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353. The two shortest sides of a right-angled triangle, a and b, satisfy the inequality:√
a2 − 6a

√
2 + 19 +

√
b2 − 4b

√
3 + 16 ≤ 3 .

Find the perimeter of this triangle.

Solution. The equation can be rewritten as√
(a− 3

√
2)2 + 1 +

√
(b− 2

√
3)2 + 4 ≤ 3 .

Since the left side is at least equal to 1 + 2 = 3, we must have equality and so a = 3
√

2 and b = 2
√

3. The
hypotenuse of the triangle equal to

√
a2 + b2 =

√
30, and so the perimeter is equal to 3

√
2 + 2

√
3 +
√

30. ♠

354. Let ABC be an isosceles triangle with AC = BC for which |AB| = 4
√

2 and the length of the median
to one of the other two sides is 5. Calculate the area of this triangle.

Solution. Let M be the midpoint of BC, θ = ∠AMB and x = |BM | = |MC|. Then |AC| = 2x. By the
Law of Cosines, 4x2 = x2 + 25 + 10x cos θ and 32 = x2 + 25− 10x cos θ. Adding these two equations yields
that x2 = 9, so that x = 3. The height of the triangle from C is

√
4x2 − 8 =

√
28 = 2

√
7. Hence the area of

the triangle is 4
√

14. ♠

355. (a) Find all natural numbers k for which 3k − 1 is a multiple of 13.

(b) Prove that for any natural number k, 3k + 1 is not a multiple of 13.

Solution 1. Let k = 3q + r. Since 33 ≡ 1 (mod 13), 3k − 1 ≡ 3r − 1 (mod 13) and 3k + 1 ≡ 3r + 1 (mod
13). Since 30 = 1, 32 = 9, we see that only 3k − 1 is a multiple of 13 when k is a multiple of 3. ♠

Solution 2. Let p be a prime and N = d0 + d1p + · · ·+ drp
r = (drdr−1 · · · d1d0)p be an integer written

to base p. Then pk = (100 · · · 00)p, pk + 1 = (1000 · · · 01)p and pk − 1 = (p− 1, p− 1, · · · p− 1)p where the
first two have k + 1 digits and the last has k digits. Let p = 3, we see that 3k − 1 = (222 · · · 22)3 and
3k +1 = (100 · · · 01)3. Since 13 = (111)3, we see that 3k +1 is never a multiple of 13 and 3k− 1 is a multiple
of 13 if and only if k is a multiple of 3. ♠

356. Let a and b be real parameters. One of the roots of the equation x12 − abx + a2 = 0 is greater than 2.
Prove that |b| > 64.

Solution 1. Clearly, a 6= 0. The equation can be rewritten b = (x12 + a2)/(ax). If x > 2, then

|b| = x12 + a2

|a|x
≥ 2|a|x6

|a|x
= 2x5 > 64 ,

by the arithmetic-geometric means inequality. ♠

Solution 2. [V. Krakovna] The equation can be rewritten

x12 +
(

bx

2
− a

)2

=
b2x2

4
,

whence b2x2 = 4x12 + (bx− 2a)2 ≥ 4x12 and b2 ≥ 4x10. If |x| > 2, then b2 ≥ 212 and so |b| ≥ 26. ♠

357. Consider the circumference of a circle as a set of points. Let each of these points be coloured red or
blue. Prove that, regardless of the choice of colouring, it is always possible to inscribe in this circle an
isosceles triangle whose three vertices are of the same colour.
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Solution 1. Consider any regular pentagon inscribed in the given circle. Since there are five vertices and
only two options for their colours. the must be three vertices of the same colour. If they are adjacent, then
two of the sides of the triangle they determine are sides of the pentagon, and so equal. If two are adjacent
and the third opposite to the side formed by the first two, then once again they determine an isosceles
triangle. As this covers all the possibilities, the result follows.

Solution 2. If at most finitely many points on the circumference are red, then it is possible to find
an isosceles triangle with green vertices. (Why?) Suppose that there are infinitely many red points. Then
there are two red points, P and Q, that are neither at the end of a diagonal nor two vertices of an inscribed
equilateral triangle. Let U , V , W be three distinct points on the circumference of the circle unequal to P
and Q for which |UP | = |PQ| = |QV | and |PW | = |QW |. Then the triangles PQU , PQV , PQW and UV W
are isoceles. Either one of the first three has red vertices, or the last one has green vertices. ♠

Rider. Can one always find both a red and a green isosceles triangle if there are infinitely many points
of each colour?

358. Find all integers x which satisfy the equation

cos
(

π

8
(3x−

√
9x2 + 160x + 800)

)
= 1 .

Solution. We must have that

π

8
(3x−

√
9x2 + 160x + 800) = 2kπ

for some integer k, whence
3x−

√
9x2 + 160x + 800 = 16k .

Multiplying by the surd conjugate of the left side yields

−160x− 800 = 16k(3x +
√

9x2 + 160x + 800)

so that

3x +
√

9x2 + 160x + 800 =
1
k

(−10x− 50) .

Therefore, 6x = 16k − (1/k)(10x + 50), whereupon (3k + 5)x = 8k2 − 25. Multiplying by 9 yields that

9x(3k + 5) = 8(9k2 − 25)− 25 = 8(3k − 5)(3k + 5)− 25 ,

whereupon 3k + 5 is a divisor of 25, i.e., one of the six numbers ±1,±5,±25. This leads to the three
possibilities (k, x) = (−2,−7), (0,−5), (−10,−31). The solution x = −5 is extraneous, so the given equation
has only two integers solutions, x = −31,−7. ♠

359. Let ABC be an acute triangle with angle bisectors AA1 and BB1, with A1 and B1 on BC and AC,
respectively. Let J be the intersection of AA1 and BB1 (the incentre), H be the orthocentre and O the
circumcentre of the triangle ABC. The line OH intersects AC at P and BC at Q. Given that C, A1,
J and B1 are vertices of a concyclic quadrilateral, prove that PQ = AP + BQ.

Solution. [Y. Zhao] Since CA1JB1 is concyclic, we have that

∠C = 180◦ − ∠AJB = ∠JAB + ∠JBA =
1
2
∠A +

1
2
∠B = 90◦ − 1

2
∠C

9



so that ∠C = 60◦. (Here we used the fact that the sum of opposite angles of a concyclic quadrilateral is 180◦

and the sum-of-interior-angles theorem for triangle AJB.) Now, applying the same reasoning to ∠AHB and
using the fact that H is the orthocentre of triangle ABC, we find that

∠AHB = 180◦ − ∠HAB − ∠HBA == 180◦ − ∠HAB − ∠HCA

= 180◦ − (90◦ − ∠ABC)− (90◦ − ∠BAC)
= ∠ABC + ∠BAC = 180◦ − ∠ACB = 120◦ .

On the other hand, since O is the circumcentre of triangle ABC, ∠AOB = 2∠ACB = 120◦. Therefore,
AOHB is concyclic. Now, ∠PHA + ∠AHO = 180◦ (supplementary angles) and ∠OBA + ∠AHO = 180◦

(opposite angles of concyclic quadrilateral), so that ∠PHA = ∠OBA. Next, in triangle AOB with AO =
OB,

∠OBA =
1
2
(180◦ − ∠AOB) = 90◦ − 1

2
∠AOB = 90◦ − ∠C = ∠PAH .

So, ∠PHA = ∠PAH; thus, triangle APH is isosceles and AP = PH. Similarly, QB = QH. Therefore
PQ = PH + QH = AP + BQ as desired. ♠

360. Eliminate θ from the two equations
x = cot θ + tan θ

y = sec θ − cos θ ,

to get a polynomial equation satisfied by x and y.

Solution 1. We have that

x =
cos θ

sin θ
+

sin θ

cos θ
=

1
sin θ cos θ

=⇒ sin θ cos θ =
1
x

.

y =
1

cos θ
− cos θ =

sin2 θ

cos θ
.

Hence
sin3 θ =

y

x
and cos3 θ =

1
x2y

so that (
y

x

) 2
3

+
(

1
x2y

) 2
3

= 1 =⇒ (xy2)
2
3 + 1 = (x2y)

2
3

=⇒ (x2y)2 = 1 + (xy2)2 + 3(xy2)
2
3 (x2y)

2
3 = 1 + x2y4 + 3x2y2 .

Hence
x4y2 = 1 + x2y4 + 3x2y2 .♠

Solution 2. [D. Dziabenko] Since sin3 θ = y/x and cos3 θ = 1/(x2y),

y2

x2
+

1
x4y2

= sin6 θ + cos6 θ

= (sin2 θ + cos2 θ)3 − 3(sin2 θ + cos2 θ) sin2 θ cos2 θ

= 1− 3
x2

.

Hence x2y4 + 1 = x4y2 − 3x2y2. ♠

10



Solution 3. [P. Shi] Using the fact that cos3 θ = 1/(x2y) in the expression for y, we find that

y3 = x2y − 3y − 1
x2y

=⇒ x2y4 = x4y2 − 3x2y2 − 1 .♠

Solution 4. [Y. Zhao] Since sin3 θ = y/x and cos3 θ = 1/(x2y), we have that

3

√
y2

x2
+ 3

√
1

x4y2
− 1 = 0 .

Using the identity a3+b3+c3−3abc = (a+b+c)(a2+b2+c2−ab−bc−ca) with the substitution a = 3
√

y2/x2,
b = 3

√
1/(x4y2), c = −1, we obtain that

y2

x2
+

1
x4y2

− 1 +
3
x2

= 0

or
x2y4 + 1− x4y2 + 3x2y2 = 0 .♠

Comment. In a question like this, it is very easy to make a mechanical slip. Accordingly, it is prudent
to make a convenient substitution of values to see if your identity works. For example, when θ = π/4, x = 2
and y = 1/

√
2, and we find that the identity checks out.

361. Let ABCD be a square, M a point on the side BC, and N a point on the side CD for which BM = CN .
Suppose that AM and AN intersect BD and P and Q respectively. Prove that a triangle can be
constructed with sides of length |BP |, |PQ|, |QD|, one of whose angles is equal to 60◦.

Solution 1. Let the sides of the square have length 1 and let |BM | = u. Then |NC| = u and |MC| =
|ND| = 1 − u. Let |BP | = a, |PQ| = b and |QD| = c. Since triangles APD and MPB are similar,
(a/u) = b + c. Since triangle DQN and BQA are similar, (c/(1− u))) = a + b. Hence

(1− u + u2)a = (2u− u2)b and (1− u + u2)c = (1− u2)b

so that
a : b : c = (2u− u2) : (1− u + u2) : (1− u2) .

Now
(2u− u2)2 + (1− u2)2 − 2(2u− u2)(1− u2) cos 60◦

= (4u2 − 4u3 + u4) + (1− 2u2 + u4)− (2u− 2u3 − u2 + u4)

= u4 − 2u3 + 3u2 − 2u + 1 = (1− u + u2)2 .

Thus b2 = a2 + c2 − ac. Note that this implies that (a − c)2 < b2 < (a + c)2, whence a < b + c, b < a + c
and c < a + b. Accordingly, a, b, c are the sides of a triangle and b2 = a2 + c2 − 1

2ac cos 60◦. From the law of
cosines, the result follows. ♠

Solution 2. [F. Barekat] Lemma. Let PQR be a right triangle with ∠R = 90◦, |QR| = p and |PR| = q.
Then the length m of the bisector RT of angle R (with T on PQ) is equal to (

√
2pq)/(p + q).

Proof. [PQR] = [QRT ]+ [PRT ] =⇒ 1
2pq = 1

2pm sin 45◦+ 1
2qm sin 45◦, from which the result follows. ♣

Using the same notation as in Solution 1, the above lemma and the fact that BD bisects the right angles
at B and D, we find that

a =
√

2u

1 + u
, c =

√
2(1− u)
2− u

, b =
√

2− a− c .

11



Hence
(a2 + c2 − 2ac cos 60◦)− b2 = (a2 + c2 − ac)− (2 + a2 + c2) + 2

√
2(a + c)− 2ac

= 2
√

2(a + c)− 3ac− 2

=
2

(1 + u)(2− u)
[2u(2− u) + 2(1 + u)(1− u)− 3u(1− u)− (1 + u)(2− u)]

=
2

(1 + u)(2− u)
[4u− 2u2 + 2− 2u2 − 3u + 3u2 − 2− u + u2] = 0 .

Hence b2 = a2 + c2 − 2ac cos 60◦ and the result follows from the law of cosines. ♠

Solution 3. [V. Krakovna; R. Shapiro] Let a, b, c, u be as in Solution 1. Then u = a/(b + c) and
1− u = c/(a + b). Hence

1 =
a

b + c
+

c

a + b
=

a2 + c2 + b(a + c)
b2 + b(a + c) + ac

,

which is equivalent to b2 = a2 + c2 − ac. As in Solution 1, we find that a, b, c are sides of a triangle and
b2 = a2 + c2 − 1

2ac cos 60◦. ♠

Comment. P. Shi used Menelaus’ Theorem with triangle BOC and transversal APM and with triangle
COD and transversal AQN to get

|BP |
|PO|

· |OA|
|AC|

· |CM |
|MB|

=
|DQ|
|QO|

· |OA|
|AC|

· |CN |
|ND|

= 1 ,

where O is the centre of the square. Noting that |PO| = (1/
√

2)− |BP | and |QO| = (1/
√

2)− |DQ|, we can
determine the lengths of BP and DQ.

362. The triangle ABC is inscribed in a circle. The interior bisectors of the angles A, B, C meet the circle
again at U , V , W , respectively. Prove that the area of triangle UV W is not less than the area of triangle
ABC.

Solution 1. Let R be the common circumradius of the triangles ABC and UV W . Observe that ∠WUA =
∠WCA = 1

2∠ACB and ∠V UA = ∠V BA = 1
2∠ABC, whence

U = ∠WUV =
1
2
(∠ACB + ∠ABC) =

1
2
(B + C) ,

et cetera. Now
[ABC] =

abc

4R
= 2R2 sinA sinB sinC

and
[UV W ] =

uvw

4R
= 2R2 sinU sinV sinW .

Since by the arithmetic-geometric means inequality,

√
sinA sinB = 2

√
(sin

A

2
cos

B

2
)(cos

A

2
sin

B

2
)

≤ sin
A

2
cos

B

2
+ cos

A

2
sin

B

2

= sin
A + B

2
= sinW ,

et cetera, it follows that [ABC] ≤ [UV W ] with equality if and only if ABC is an equilateral triangle. ♠

Second solution. Since 1
2 (A + B) = 90◦ − C

2 , we find that

[ABC] = 2R2 sinA sinB sinC = 16R2 sin
A

2
cos

A

2
sin

B

2
cos

B

2
sin

C

2
cos

C

2
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and
[UV W ] = 2R2 sinU sinV sinW = 2R2 cos

A

2
cos

B

2
cos

C

2
,

so that
[ABC]
[UV W ]

= 8 sin
A

2
sin

B

2
sin

C

2

= 8

√
(s− b)(s− c)

bc

√
(s− c)(s− a)

ac

√
(s− a)(s− b)

ab

=
8(s− a)(s− b)(s− c)

abc
=

8[ABC]2

sabc
=

2r

R
≤ 1

bu Euler’s inequality for the inradius and the circumradius. The result follows. ♠

Third solution. Let I be the incentre and H the orthocentre of triangle ABC. Suppose the respective
altitudes from A, B, C meet the circumcircle at P , Q, R. We have that

∠BHP = ∠AHQ = 90◦ − ∠HAC = 90◦ − ∠PAC = 90◦ − ∠PBC = ∠BPH

so that BH = BP . Similarly, CH = CP . Hence ∆HBC ≡ ∆PBC (SSS). Similarly ∆HAC ≡ ∆QAC and
∆HAB ≡ ∆RAB, whence [ARBPCQ] = 2[ABC].

Let AU intersect V W at X. Then

∠V XA = ∠XWA + ∠XAW = ∠V WA + ∠UAB + ∠WAB

= ∠V BA + ∠UAB + ∠WCB =
1
2
(∠B + ∠A + ∠C) = 90◦ ,

so that UA is an altitude of triangle UV W , as similarly are V B and WC (so that I is the orthocentre of
triangle UV W ). Therefore, we have, as above, that [UCV AWB] = 2[UV W ].

But U is the midpoint of the arc BC, V the midpoint of the arc CA and W the modpoint of the orc AB.
Thus, [CPB] ≤ [CUB], [AQC] ≤ [AV C] and [BRA] ≤ [BWA]. Therefore, [ARBPCQ] ≤ [UCV AWB] and
so [ABC] ≤ [UV W ]. ♠

Comment. F. Barekat noted that for 0 < x < π, the function log sin x is concave so that
√

sinu sin v ≤
sin( 1

2 (u + v)) for 0 ≤ u, v ≤ π. (This can be seen by noting that the second derivative of log sinx is
− csc2 x < 0.) Then the solution can be completed as in Solution 1.

363. Suppose that x and y are positive real numbers. Find all real solutions of the equation

2xy

x + y
+

√
x2 + y2

2
=
√

xy +
x + y

2
.

Preliminaries. It is clear that if one of x and y vanishes, then so must the other. Otherwise, there are
two possibilities, according as x and y are both negative or both positive (

√
xy needs to make sense). If x

and y are both negative, then the only solution is x = y as the equation asserts that the sum of the harmonic
and geometric means of −x and −y is equal to the sum of the arithmetic mean and root-mean-square of these
quantities. For unequal positive reals, each of the first two is less than each of the second two. Henceforth,

we assume that x and y are positive. Let h = 2xy/(x + y), g =
√

xy, a = 1
2 (x + y) and r =

√
1
2 (x2 + y2).

Solution 1. It is straightforward to check that 2a2 = r2+g2 and that g2 = ah. Suppose that h+r = a+g.
Then

r = a + g − h

=⇒ 2a2 − g2 = r2 = a2 + g2 + h2 − 2ah− 2gh + 2ag

=⇒ (a + h)(a− h) = a2 − h2 = 2(g2 − ah) + 2g(a− h) = 0 + 2g(a− h)
=⇒ a = h or a + h = 2g .
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In the latter case, g = 1
2 (a + h) =

√
ah, so that both possibilities entail a = g = h. But equality of these

means occur if and only if x = y. ♠

Solution 2. [A. Cornuneanu] Observe that

r2 − g2 =
1
2
(x− y)2 = 2a(a− h) .

Since, from the given equation,

r2 − g2 = (r − g)(r + g) = (a− h)(r + g) ,

it follows that a = 1
2 (r + g). However, it can be checked that, in general,

a =

√
r2 + g2

2
,

so that a is at once the arithmetic mean and the root-mean-square of r and g. But this can occur if and
only if r = g = a if and only if x = y. ♠

Solution 3. [R. O’Donnell] From the homogeneity of the given equation, we can assume without loss of
generality that g = 1 so that y = 1/x. Then h = 1/a and r =

√
2a2 − 1. The equation becomes

r +
1
a

= a + 1 or
√

2a2 − 1 = 1 + a− 1
a

.

Squaring and manipulating leads to

0 = a4 − 2a3 + 2a− 1 = (a− 1)3(a + 1)

whence a = 1 = g and so x = y = 1. The main result follows from this. ♠

Solution 4. [D. Dziabenko] Let 2a = x + y and 2b = x− y, so that x = a + b and y = a− b, Then a 6= 0,
a ≥ b and the equation becomes

a2 − b2

a
+

√
a2 + b2 =

√
a2 − b2 + a⇐⇒

√
a2 + b2 −

√
a2 − b2 =

b2

a
.

Multiplying by
√

a2 + b2 +
√

a2 − b2 yields that

2b2 = (a2 + b2)− (a2 − b2) =
b2

a
(
√

a2 + b2 +
√

a2 − b2) ,

from which √
a2 + b2 +

√
a2 − b2

2
= a =

√
(a2 + b2) + (a2 − b2)

2
.

The left side is the arithmetic mean and the right the root-mean-square of
√

a2 + b2 and
√

a2 − b2. These
are equal if and only if a2 + b2 = a2 − b2 ⇔ b = 0↔ x = y. ♠

Solution 5. [M. Elqars] With 2a = x + y and 2b = x − y, we have that x2 + y2 = 2(a2 + b2) and
xy = a2 − b2. The equation becomes

a2 − b2

a
+

√
a2 + b2 =

√
a2 − b2 + a

⇐⇒
√

a2 + b2 −
√

a2 − b2 = a− a2 − b2

a
=

b2

a

14



⇐⇒ 2a2 − 2
√

a4 − b4 =
b4

a2

⇐⇒
√

a4 − b4 = a2 − b4

2a2
=

2a4 − b4

2a2
=

a4 − b4

2a2
+

a2

2

⇐⇒ 0 = (a4 − b4)− 2a2
√

a4 − b4 + a4 = [
√

a4 − b4 − a2]2

⇐⇒ b = 0←→ x = y .♠

364. Determine necessary and sufficient conditions on the positive integers a and b such that the vulgar
fraction a/b has the following property: Suppose that one successively tosses a coin and finds at one
time, the fraction of heads is less than a/b and that at a later time, the fraction of heads is greater than
a/b; then at some intermediate time, the fraction of heads must be exactly a/b.

Solution. Consider the situation in which a tail is tossed first, and then a head is tossed thereafter.
Then the fraction of heads after n tosses is (n − 1)/n. Since any positive fraction a/b less than 1 exceeds
this for n = 1 and is less than this for n sufficiently large, a/b can be realized as a fraction of head tosses
only if it is of this form (i.e. a = b− 1).

On the other hand, suppose that a/b = (n−1)/n for some positive integer n. There must exist numbers
p and q for which the fraction p/q of heads at one toss is less than a/b and the fraction (p + 1)/(q + 1) at
the next toss is not less than a/b. Thus

p

q
<

n− 1
n
≤ p + 1

q + 1
.

Hence np < nq − q and nq − q + n− 1 ≤ np + n, so that

np < nq − q ≤ np + 1 .

Since the three members of this inequality are integers and the outer two are consecutive, we must have
nq − q = np + 1, whence

n− 1
n

=
p + 1
q + 1

.

Hence the necessary and sufficient condition is that a/b = (n− 1)/n for some positive integer n. ♠

Rider. What is the situation when the fraction of heads moves from a number greater than a/b to a
number less than a/b?

365. Let p(z) be a polynomial of degree greater than 4 with complex coefficients. Prove that p(z) must have
a pair u, v of roots, not necessarily distinct, for which the real parts of both u/v and v/u are positive.
Show that this does not necessarily hold for polynomials of degree 4.

Solution. Since the degree of the polynomial exceeds 4, there must be two roots u, v in one of the
four quadrants containing a ray from the origin along either the real or the imaginary axis along with all
the points within the region bounded by this ray and the next such ray in the counterclockwise direction.
The difference in the arguments between two such numbers must be strictly between −π

2 and π
2 . Since

arg(u/v) = argu− argv and arg(v/u) = argv− argu both lie in this range, both u/v and v/u lie to the right
of the imaginary axis, and so have positive real parts.

This result does not necessarily hold for a polynomial of degree 4, as witnessed by z4 − 1 whose roots
are 1,−1, i,−i.

366. What is the largest real number r for which

x2 + y2 + z2 + xy + yz + zx√
x +
√

y +
√

z
≥ r
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holds for all positive real values of x, y, z for which xyz = 1.

Solution 1. Let u, v, w be positive reals for which u2 = yz, v2 = zx and w2 = xy. Then
√

x = x
√

yz =
xu,
√

y = yv and
√

z = zw, so that

(x2 + y2 + z2) + (xy + yz + zx) = (x2 + y2 + z2) + (u2 + v2 + w2)

≥ 2
√

x2 + y2 + z2
√

u2 + v2 + w2 ≥ 2(xu + yv + zw) ,

from the arithmetic-geometric means and the Cauchy-Schwarz inequalities. Hence, the inequality is always
valid when r ≤ 2. When (x, y, z) = (1, 1, 1), the left side is equal to 2, so the inequality does not always hold
when r > 2. Hence the largest value of r is 2. ♠

Solution 2. Applying the arithmetic-geometric means inequality to the left side yields

(x2 + yz) + (y2 + zx) + (z2 + xy)√
x +
√

y +
√

z
≥ 2(

√
x2yz +

√
y2zx +

√
z2xy√

x +
√

y +
√

z

=
2
√

xyz(
√

x +
√

y +
√

z)
√

x +
√

y +
√

z
= 2 .

Equality occurs when (x, y, z) = (1, 1, 1). Hence the largest value of r for which the inequality always holds
is 2. ♠

Solution 3. [V. Krakovna]

x2 + y2 + z2 + xy + yz + zx√
x +
√

y +
√

z
=

1
2 (x2 + y2) + 1

2 (y2 + z2) + 1
2 (z2 + x2) + xy + yz + zx

x
√

yz + y
√

xz + z
√

xy

≥ (xy + yz + zx) + (xy + yz + zx)
x(y + z)/2 + y(x + z)/2 + z(x + y)/2

=
2(xy + yz + zx)
xy + yz + zx

= 2 .

Equality occurs if and only if x = y = z.

Solution 4. [R. Shapiro] Applying the arithmetic-geometric means and Cauchy-Schwarz inequalities, we
have that

x2 + y2 + z2 + xy + yz + zx = (x2 + y2 + z2) + (xy + yz + zx)

≥ 2
√

(x2 + y2 + z2)(xy + yz + zx)
≥ 2(x

√
yz + y

√
zx + z

√
xy) = 2(

√
x +
√

y +
√

z) ,

with equality if and only if x =
√

yz, y =
√

zx, z =
√

xy, if and only if x = y = z = 1. ♠

367. Let a and c be fixed real numbers satisfying a ≤ 1 ≤ c. Determine the largest value of b that is consistent
with the condition

a + bc ≤ b + ac ≤ c + ab .

Solution. Since (b + ac) − (a + bc) = (a − b)(c − 1) and (c + ab) − (b + ac) = (c − b)(1 − a), the given
inequalities are equivalent to (a− b)(c− 1) ≥ 0 and (c− b)(1− a) ≥ 0.

If a = c = 1, then the inequalites hold for any value of b, and there is no maximum value. If a < 1 = c,
then the first inequality is automatic and the inequalities hold if and only if b ≤ c = 1. If 1 < c, then
a ≤ 1 < c and the two inequalities are equivalent to a ≥ b and c ≥ b, which both hold if and only if a ≥ b.
Thus, when 1 < c, the maximum value of b for which the inequalities hold is a. ♠
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368. Let A,B, C be three distinct points of the plane for which AB = AC. Describe the locus of the point
P for which ∠APB = ∠APC.

Solution 1. We observe that P cannot be any of A, B, C, as the angles become degenerate, so that
A, B and C must be excluded from the locus. Suppose first that A, B, C are collinear, so that A is the
midpoint of BC. For a point P on the locus for which the triangle PBC is nondegenerate, the median PA
of the triangle PBC bisects the angle BPC. Therefore PB = PC (note that PB : PC = AB : AC = 1 : 1)
and so P must lie on the right bisector of BC. Conversely, any point on the righ bisector save B is on the
locus. If the triangle PBC is degenerate, then P must lie on the line BC outside of the closed interval BC
(in which case ∠APB = ∠APC).

Henceforth, assume that the points ABC are not collinear. The locus does not contain any of the points
A, B and C. If P is a point on the open arc BC of the circumcircle of ABC that does not contain A, then
ABPC is concyclic and

∠APB = ∠ACB = ∠ABC = ∠APC .

(More briefly, the angles subtended at P be the equal chords AB and AC are equal. Why are they not
supplementary?) If P is any point, except A, on the right bisector of BC, then, by a reflection in this
bisector, we see that ∠APB = ∠APC. Finally, if P is any point on the BC outside of the closed segment
BC, then ∠APB = ∠APC since P,B,C are collinear. Thus, the locus must contain the following three sets:
(1) all points on the open arc BC of the circumcircle of ABC that does not contain A; (2) all points on the
right bisector of BC except for A; (3) all points on the line BC than do not lie between B and C inclusive.

We show that there are no further points in the locus. Suppose that P lies in the angle formed by AB
and AC that includes the right bisector of BC, but that P does not lie on this bisector. Let Q (distinct
from P ) be the reflection of P in the right bisector. Then ∠APB = ∠AQC and ∠APC = ∠AQB. Suppose
that ∠APB = ∠APC. Then ∠APC = ∠AQC and ∠APB = ∠AQB, so that A,B, P, Q, C are concyclic
and we must have situation (i). If P lies in the angle exterior to triangle ABC determined by AB and AC
produced, then it can be checked that one of the angles APB and APC properly contains the other. The
result follows.

Solution 2. If A,B, C are collinear, wolog suppose that P is a point of the locus not on BC for which
PB < PC and D is the reflected image of B with respect to PA. Then AD = BA = AC and D lies on the
segment PC. Hence ∠PBA + ∠PCB = ∠PDA + ∠DCA = ∠PDA + ∠ADC = 180◦, so that ∠BPC = 0◦,
a contradiction. Hence P must lie on BC or the right bisector of BC, We can eliminate from the locus all
points on the closed segment BC as well as the point A.

Suppose A, B and C are not collinear. Let P be a point on the locus. Consider triangle ABP and
ACP . Since AB = AC, AP is common and the (noncontained) corresponding angles APB and APC are
equal, we have the ambiguous (SSA) case and so either triangles APB and APC are congruent, or else
∠ABP + ∠ACP = 180◦. If the triangles are conguent, then PB = PC and P lies on the right bisector of
BC,

If ∠ABP +∠ACP = 180◦, then there are two possibilities. Either B and C lie on the same side of AP ,
in which case P,B,C are collinear or B and C lie on opposite sides of AP , in which case ABPC is concyclic.

Hence the locus is contained in the union of the right bisector of BC, that part of the line BC not
between B and C and the arc BC of the circumcircle of triangle ABC not containing A. Conversely, it is
straightforward to verify that every point in this union, except for A, B and C is on the locus.

Comment. Another way in is to apply the law of sines on triangles ABP and ACP and note that

sinABP

|AP |
=

sin∠APB

|AB|
=

sin∠APC

|AC|
=

sin∠ACP

|AP |
,

so that sin∠ABP = sin∠ACP . Thus, either ∠ABP = ∠ACP or ∠ABP + ∠ACP = 180◦.

369. ABCD is a rectangle and APQ is an inscribed equilateral triangle for which P lies on BC and Q lies
on CD.
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(a) For which rectangles is the configuration possible?
(b) Prove that, when the configuration is possible, then the area of triangle CPQ is equal to the sum
of the areas of the triangles ABP and ADQ.

Solution 1. (a) Let the configuration be given and let the length of the side of the equilateral triangle
be 1. Suppose that ∠BAP = θ. Then |AB| = cos θ and |AD| = cos(30◦ − θ). Observe that 0 ≤ θ ≤ 30◦.
Then

|AD|
|AB|

=
cos 30◦ cos θ + sin 30◦ sin θ

cos θ
=
√

3 + tan θ

2
.

Since 0 ≤ tan θ ≤ 1/
√

3, it follows that √
3

2
≤ |AD|
|AB|

≤ 2√
3

.

(Alternatively, note that cos(30◦ − θ) increases and cos θ decreases with θ, so that

cos 30◦

cos 0◦
≤ |AD|
|AB|

≤ cos 0◦

cos 30◦
.)

Conversely, supposing that this condition is satisfied, we can solve |AD|/|AB| = 1
2 (
√

3 + tan θ) for a
value of θ ∈ [0, 30◦] and determine a configuration for which ∠BAP = θ and ∠DAQ = 30◦ − θ. It can be
checked that AP = AQ (do this!).

(b) Suppose that the configuration is given, and that L, M and N are the respective midpoints of AP ,
PQ and QA. Wolog, let the lengths of these three segments be 2. Then BL, CM and DN all have length
1 (why?). Since ∠BLP = 2θ, ∠CMQ = 60◦ + 2θ and ∠DNQ = 60◦ − 2θ, we find that (from the areas of
triangles like BLP ),

[CPQ]− [ADQ]− [ABP ] = sin(60◦ + 2θ)− sin(60◦ − 2θ)− sin 2θ

= 2 cos 60◦ sin 2θ − sin 2θ = 0 ,

so that the result holds.

Comment. One can also get the areas of the corner right triangles by taking half the product of their
arms. For example,

[BAP ] =
1
2
(2 sin θ)(2 cos θ) = 2 sin θ cos θ = sin 2θ .

370. A deck of cards has nk cards, n cards of each of the colours C1, C2, · · ·, Ck. The deck is thoroughly
shuffled and dealt into k piles of n cards each, P1, P2, · · ·, Pk. A game of solitaire proceeds as follows:
The top card is drawn from pile P1. If it has colour Ci, it is discarded and the top card is drawn from
pile Pi. If it has colour Cj , it is discarded and the top card is drawn from pile Pj . The game continues
in this way, and will terminate when the nth card of colour C1 is drawn and discarded, as at this point,
there are no further cards left in pile P1. What is the probability that every card is discarded when the
game terminates?

Solution. We begin by determining a one-one correspondence between plays of the game and the (nk)!
arrangements of the nk cards. For each play of the game, we set the cards aside in the order than they
appear. If the game is finishes with the last card, we go through the whole deck and obtain an arrangement
in which the last card has colour C1. If the game finishes early, then we have exhausted the pile P1, but not
all of the remaining pile; all the colours C1’s will have appeared among the first nk − 1 cards. We continue
the arrangement by dealing out in order all the cards in the pile P2, then all the cards in the pile P3 and so
on.
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Conversely, suppose that we have an arrangement of the nk cards. We reconstruct a game. Look at
all the cards up to the last card of colour C1. Suppose that it contains xi cards of colour Ci; then that
means that there are n − xi cards that should not be turned over in pile Pi. Take the last n − xk cards
of the arrangement and place them in pile Pk, and then the next last n − xk−1 cards and place them in
pile Pk−1, and so on until we come down to pile P2. We have backed up in the arrangement to the last
card of colour C1, and its predecessor determines from which pile it was drawn; restore it to that pile. For
2 ≤ i ≤ x1 + x2 + · · · + xk, place the ith card in the arrangement on the pile of the colour of the (i − 1)th
card. Finally, when we get to the first card of the arrangement, all the piles except P1 have been restored
to n cards; place this card on P1.

Thus, each game determines an arrangement, and each arrangement a game. Therefore, the desired
probability is the probability that in an arbitrary arrangement, the last card has colour C1. As the probability
is the same for each of the colours, the desired probability is 1/k.

371. Let X be a point on the side BC of triangle ABC and Y the point where the line AX meets the
circumcircle of triangle ABC. Prove or disprove: if the length of XY is maximum, then AX lies
between the median from A and the bisector of angle BAC.

Solution. [F. Barekat] Wolog, suppose that AB ≥ AC. Let M be the midpoint of BC and N where
AM intersect the circumcircle. Let P on BC be the foot of the angle bisector of ∠BAC and let AP intersect
the circumcircle at Q. Then BC is partitioned into three segments: BM , MP , PC.

Suppose that X is on the segment BM and that AX meets the circumcircle in Y . Let U on the segment
MC satisfy XM = MU and let AU meet the circumcircle in V then

AX ·XY = BX ·XC = CU · UB = AU · UV .

Now AX ≥ AU (one way to see this is to drop a perpendicular from A to XU and use Pythagoras’ theorem).
Hence XY ≤ UV , so the maximizing point must lie between M and C.

Now let X lie between P and C. Construct R so that PXY R is a parallelogram. Since Q is the
midpoint of the arc BC, the tangent at Q to the circumcircle is parallel to BC and so R lies within the
circle, ∠PQR ≤ ∠AQY and ∠QPR = ∠QAY . Therefore

∠PRQ = 180◦ − ∠QPR− ∠PQR ≥ 180◦ − ∠QAY − ∠AQY

= ∠AY Q = ∠ACQ = ∠ACB + ∠BCQ

= ∠ACB + ∠BAQ = ∠ACB +
1
2
∠BAC

=
1
2
(2∠ACB + ∠BAC) ≥ 1

2
(∠ACB + ∠ABC + ∠BAC) = 90◦ .

Therefore PQ ≥ PR = XY . It follows that XY assumes its maximum value when X is between M and P ,
as desired.

372. Let bn be the number of integers whose digits are all 1, 3, 4 and whose digits sum to n. Prove that bn

is a perfect square when n is even.

Solution 1. It is readily checked that b1 = b2 = 1, b3 = 2 and b4 = 4. Consider numbers whose digits
sum to n ≥ 5. There are bn−1 of them ending in 1, bn−3 of them ending in 3, and bn−4 of them ending in 4.
We prove by induction, that for each positive integer m,

b2m = f2
m+1 and b2m−1 = fm+1fm ,

where {fn} is the Fibonacci sequences defined by f0 = 0, f1 = 1 and fn+1 = fn + fn−1 for n ≥ 1.
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The result holds for m = 1. Suppose that it holds up to m = k. Then

b2k+1 = b2k + b2k−2 + b2k−3 = f2
k+1 + f2

k + fkfk−1

= f2
k+1 + fk(fk + fk−1) = f2

k+1 + fkfk+1

= fk+1(fk+1 + fk) = fk+1fk+2 ,

and
b2(k+1) = b2k+1 + b2k−1 + b2k−2 = fk+2fk+1 + fk+1fk + f2

k

= fk+2fk+1 + (fk+1 + fk)fk

= fk+2fk+1 + fk+2fk = fk+2(fk+1 + fk) = f2
k+2 .

The result follows.

Solution 2. As before, bn = bn−1 + bn−3 + bn−4. From this, we see that

bn = (bn−2 + bn−4 + bn−5) + (bn−2 − bn−5 − bn−6) + bn−4 = 2bn−2 + 2bn−4 − bn−6 ,

for n ≥ 7. Also, for n ≥ 4,

f2
n = (fn−1 + fn−2)2 = 2f2

n−1 + 2f2
n−2 − (fn−1 − fn−2)2 = 2f2

n−1 + 2f2
n−2 − f2

n−3 .

By induction, it can be shown that b2m = f2
m+1 for each positive integer m (do it!).

373. For each positive integer n, define

an = 1 + 22 + 33 + · · ·+ nn .

Prove that there are infinitely many values of n for which an is an odd composite number.

Solution. Modulo 3, it can be verified that nn ≡ 0 for n ≡ 0 (mod 3), nn ≡ 1 for n ≡ 1, 2, 4 (mod
6), and nn ≡ 2 for n ≡ 5 (mod 6). It follows from this that the sum of any six consecutive values of nn is
congruent to 2 (mod 3), and so the sum of any eighteen consecutive values of nn is congruent to 0 (mod 3).
Since such a sum contains nine odd summands, it must be odd. The sum of any thirty-six consecutive values
of nn contains eighteen odd summands and so is even. It follows that the sum of any thirty-six consecutive
values of nn is a multiple of 6.

It is readily checked that an ≡ 0 (mod 3) when n = 4, 7, 14, 15, 17, 18. Observe that a4, a7, a15 are even
and a14, a17, a18 are odd. Hence an is an odd multiple of 3 whenever n ≡ 14, 17, 18, 22, 25, 33 (mod 36).
These numbers are all odd and composite.

Comment. A similar argument can be had for any odd prime p. What is the period of nn?

374. What is the maximum number of numbers that can be selected from {1, 2, 3, · · · , 2005} such that the
difference between any pair of them is not equal to 5?

Solution 1. The maximum number is 1005. For 1 ≤ k ≤ 5, let Sk = {x : 1 ≤ x ≤ 2005, x ≡ k(mod 5)}.
Each set Sk has 401 numbers, and no number is any of the Sk differs from a number in a different Sk by 5
(or even a multiple of 5). Each Sk can be partitioned into 200 pairs and a singleton:

Sk = {k, 5 + k} ∪ {10 + k, 15 + k} ∪ · · · ∪ {1990 + k, 1995 + k} ∪ {2000 + k} .

By the Pigeonhole Principle, each choice of 202 numbers from Sk must contain two numbers in one of the
pairs and so which differ by 5. At most 201 numbers can be selected from each Sk with no two differing
by 5. For example {k, 10 + k, 20 + k, · · · , 2000 + k} will do. Overall, we can select at most 5 × 201 = 1005
numbers, no two differing by 5.
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Solution 2. [F. Barekat] The subset {1, 2, 3, 4, 5, 11, 12, 13, 14, 15, · · · , 2001, 2002, 2003, 2004, 2005} con-
tains 1005 numbers, no two differing by 5. Suppose that 1006 numbers are chosen from {1, 2, · · · , 2005}.
Then, at least 1001 of them must come from the following union of 200 sets:

{1, · · · , 10} ∪ {11, · · · , 20} ∪ · · · ∪ {1991, · · · , 2001} .

By the Pigeonhole Principle, at least one of these must contain 6 numbers, two of which must be congruent
modulo 5, and so differ by 5. The result follows.

375. Prove or disprove: there is a set of concentric circles in the plane for which both of the following hold:
(i) each point with integer coordinates lies on one of the circles;
(ii) no two points with integer coefficients lie on the same circle.

Solution. There is such a set of concentric circles satisfying (a) and (b), namely the set of all concentric
circles centred at ( 1

3 ,
√

2). Every point with integer coordinates lies in exactly one of the circles, whose radius
is equal to the distance from the point to the common centre. Suppose that the points (a, b), (c, d) with
integer coordinates both lie on the same circle. Then

(a− (1/3))2 + (b−
√

2)2 = (c− (1/3))2 + (d−
√

2)2

⇐⇒ 9a2 − 6a + 1 + 9b2 − 18
√

2b + 18 = 9c2 − 6c + 1 + 9d2 − 18
√

2d + 18

⇐⇒ 9(a2 + b2 − c2 − d2)− 6(a− c) =
√

2(18d− 18b) .

The left member of the last equation and the coefficient of
√

2 in the right member are both integers. Since√
2 is irrational, both must vanish, so that b = d and

0 = 3(a2 − c2)− 2(a− c) = (a− c)(3(a + c)− 2) .

Since a and c are integers, a + c 6= 2
3 , so that a = c and b = d. Hence, two points with integer coordinates

on the same circle must coincide.

Comment. Since you need a simple example to prove the affirmative, it is cleaner to provide a specific
case rather than describe a general case. Some selected the common centre (

√
2,
√

3), which left them with
a more complicated result to prove, that u+ v

√
2+w

√
3 = 0 for integers u, v, w implies that u = v = w = 0.

The argument for this should be provided, since it is possible to determine irrational α, β and nonzero
integers p, q, r for which p + qα + rβ = 0 (do it!). An efficient way to do it is to start with

u + v
√

2 + w
√

3 = 0 =⇒ u2 = 2v2 + 3w2 + 2
√

6vw .

376. A soldier has to find whether there are mines buried within or on the boundary of a region in the shape
of an equilateral triangle. The effective range of his detector is one half of the height of the triangle. If
he starts at a vertex, explain how he can select the shortest path for checking that the region is clear of
mines.

Solution. Wolog, suppose the equilateral triangle has sides of length 1, so that the range of his detector
is
√

3/4. Let the triangle be ABC with A the starting vertex. Since the points B and C must be covered,
the soldier must reach the circles of centres B and C and radius

√
3/4. Since 2(

√
3/4) =

√
3/2 < 1, the line

of centres is longer than the sum of the two radii and the circles do not intersect. Suppose that the soldier
crosses the circumference of the circle with centre B at X and of the circle with centre C at Y . Wolog, let
the soldier reach X before Y . Then the total distance travelled by the soldier is not less that

|AX|+ |XY | ≥ |AX|+ |XC| − |Y C| = |AX|+ |XC| − (
√

3/4) .
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(Use the triangle inequality.)

Let Z be the midpoint of the arc of the circle with centre B that lies within triangle ABC and W be
the point of intersection of the circle with centre C and the segment CZ. The ellipse with foci A and C that
passes through Z is tangent to the circle with centre B, so that |AX| + |XC| ≥ |AZ| + |ZC|. Hence the
distance travelled by the soldier is at least

|AZ|+ |ZC| − (
√

3/4) = 2(
√

7/4)− (
√

3/4) =
2
√

7−
√

3
4

.

(Use the law of cosines in triangle AZB.) This distance is exactly ( 1
4 )(2
√

7−
√

3) when X = Z and X, Y,C
are collinear. We show that this corresponds to a suitable path.

Let the soldier start at A, proceed to Z and thence walk directly towards C, stopping at the point W .
From the point Z, the soldier covers the points B and M , the midpoint of AC. Let U be any point on AZ
and draw the segment parallel to BM through U joining points on AB and AC. From U , the soldier covers
every point on the segment. It follows that the soldier covers every point in the triangle ABM .

Suppose the line through W perpendicular to AC meets AC at P and BC at Q. As in the foregoing
paragraph, we see that the soldier covers the trapezoid MBQP . Note that the lengths of WP , WC and
WQ all do not exceed

√
3/4. It follows that every point of the segments CP and CQ are no further from

W than
√

3/4. Hence the soldier covers triangle CPQ. Thus, we have a path of minimum length covering
all of triangle ABC.

377. Each side of an equilateral triangle is divided into 7 equal parts. Lines through the division points
parallel to the sides divide the triangle into 49 smaller equilateral triangles whose vertices consist of a
set of 36 points. These 36 points are assigned numbers satisfying both the following conditions:
(a) the number at the vertices of the original triangle are 9, 36 and 121;
(b) for each rhombus composed of two small adjacent triangles, the sum of the numbers placed on one
pair of opposite vertices is equal to the sum of the numbers placed on the other pair of opposite vertices.

Determine the sum of all the numbers. Is such a choice of numbers in fact possible?

Solution 1. The answer is 12(9 + 36 + 121) = 1992.

More generally, let the equilateral triangle be ABC with the numbers a, b, c at the respective vertices
A,B, C. Let the lines of division points parallel to BC, AC and AB be called, respectively, α−lines, β−lines
and γ−lines.

Suppose that u and v are two consecutive entries on, say, an α−line and p, q, r are the adjacent entries
on the next α−line. Then p + v = u + q and q + v = u + r, whence p − q = u − v = q − r. It follows that
any two adjacent points on any α−line have the same difference, so that the numbers along any α−line are
in arithmetic progression. The same applies to β− and γ−lines.

In this way, we can uniquely determine the points along the sides AB, BC and AC, and then along
each α−line, β−line and γ−line. However, we need to check that such an assignment is consistent, i.e., does
not yield different results for a given entry gained by working along lines from the three different directions.
We do this by describing an assignment, and then showing that it satisfies the condition of the problem.

Let an entry be position i α−lines from BC, j β−lines from AC and k γ−lines from AB. Thus,
any entry on BC corresponds to i = 0 and the points A, B, C, respectively, correspond to (i, j, k) =
(7, 0, 0), (0, 7, 0), (0, 0, 7). Assign to such a point the value 1

7 (ia+jb+kc). It can be checked that these satisfy
the rhombus condition. For example, the points (i, j, k), (i, j−1, k+1), (i+1, j−1, k) and (i+1, j−2, k+1)
are four vertices of a rhombus, and the sum of the numbers assigned to the first and last is equal to the sum
of the numbers assigned to the middle two.

We sum the entries componentwise. Along the ith α−line, there are 8− i entries whose sum is 1
7 [i(8−
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i)a + · · ·]. Hence the sum of all entries is

[
1
7

7∑
i=0

i(8− i)a
]

+ · · · = 1
7
[1 · 7 + 2 · 6 + 3 · 5 + 4 · 4 + 5 · 3 + 6 · 2 + 7 · 1]a + · · · = 12a + · · · .

Summing along β−lines and γ−lines, we find that the sum of all entries is 12(a + b + c). In the present
situation, this number is 1992.

Solution 2. [F. Barekat] Let a, b, c be the entries at A, B, C. As in Solution 1, we show that the entries
along each of AB, BC and CA are in arithmetic progression. The sum of the entries along each of these lines
are, respectively, 4(a + b), 4(b + c), 4(c + a) (why?), whence the sum of all the entries along the perimeter
of triangle ABC is equal to

4(a + b) + 4(b + c) + 4(c + a)− (a + b + c) = 7(a + b + c) .

Let p, q, r, respectively, on AB, BC, CA be adjacent to A, B, C and u, v, w, respectively, on AC, BA, CB
be adjacent to A, B, C. When the perimeter of triangle ABC is removed, there remains a triangle XY Z
with sides divided into four equal parts and entries x, y, z, respectively, at vertices X, Y, Z. Since

a + b = p + v , b + c = q + w , c + a = r + u ,

x + y + z = [(p + u)− a] + [(q + v)− b] + [(r + w)− c]
= (p + v) + (q + w) + (r + u)− (a + b + c) = a + b + c .

The sum of the entries along the sides of XY Z is equal to

5
2
(x + y) +

5
2
(y + z) +

5
2
(z + x)− (x + y + z) = 4(a + b + c) .

When the perimeter of triangle XY Z is removed from triangle XY Z, there remains a single small
triangle with three vertices. The sum of the entries at these vertices is x + y + z = a + b + c. Therefore, the
sum of all the entries in the triangular array is 12(a + b + c). In the present situation, the answer is 1992.

378. Let f(x) be a nonconstant polynomial that takes only integer values when x is an integer, and let P be
the set of all primes that divide f(m) for at least one integer m. Prove that P is an infinite set.

Solution 1. Suppose that pk(x) is a polynomial of degree k assuming integer values at x = n, n +
1, · · · , n + k. Then, there are integers ck,i for which

pk(x) = ck,0

(
x

k

)
+ ck,1

(
x

k − 1

)
+ · · ·+ ck,k

(
x

0

)
.

To see this, first observe that
(
x
k

)
,

(
x

k−1

)
, · · ·,

(
x
0

)
constitute a basis for the vector space of polynomials of

degree not exceeding k. So there exist real ck,i as specified. We prove by induction on k that the ck,i must
in fact be integers. The result is trivial when k = 0. Assume its truth for k ≥ 0. Suppose that

pk+1(x) = ck+1,0

(
x

k + 1

)
+ · · ·+ ck+1,k+1

takes integer values at x = n, n + 1, · · · , n + k + 1. Then

pk+1(x + 1)− pk+1(x) = ck+1,0

(
x

k

)
+ · · ·+ ck+1,k
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is a polynomial of degree k which taken integer values at n, n + 1, · · · , n + k, and so ck+1,0, · · · , ck+1,k are all
integers. Hence,

ck+1,k+1 = pk+1(n)− ck+1,0

(
n

k + 1

)
− · · · ck+1,k

(
n

1

)
is also an integer. (This is more than we need; we just need to know that the coefficients of f(x) are all
rational.)

Let f(x) be multiplied by a suitable factorial to obtain a polynomial g(x) with integer coefficients. The
set of primes dividing values of g(m) at integers m is the union of the set of primes for f and a finite set, so
it is enough to obtain the result for g. Note that g assumes the values 0 and 1 only finitely often. Suppose
that g(a) = b 6= 0 and let P = {p1, p2, · · · , pr} be a finite set of primes. Define

h(x) =
g(a + bp1p2 · · · prx)

b
.

Then h(x) has integer coefficients and h(x) ≡ 1 (mod p1p2 · · · pr). There exists an integer u for which h(u)
is divisible by a prime p, and this prime must be distinct from p1, p2, · · · , pr. The result follows.

Solution 2. Let f(x) =
∑n

k akxn. The number a0 = f(0) is rational. Indeed, each of the numbers f(0),
f(1), · · ·, f(n) is an integer; writing these conditions out yields a system of n+1 linear equations with integer
coefficients for the coefficients a0, a1, · · ·, an whose determinant is nonzero. The solution of this equation
consists of rational values. Hence all the coefficients of f(x) are rational. Multiply f(x) by the least common
multiple of its denominators to get a polynomial g(x) which takes integer values whenever x is an integer.
Suppose, if possible, that values of f(x) for integral x are divisible only by primes p from a finite set Q.
Then the same is true of g(x) for primes from a finite set P consisting of the primes in Q along with the
prime divisors of the least common multiple. For each prime p ∈ P , select a positive integer ap such that
pap does not divide g(0). Let N =

∏
{pap : p ∈ P}. Then, for each integer u, g(Nu) 6≡ 0 (mod N). However,

for all u, g(Nu) =
∏

pbp , where 0 ≤ bp ≤ ap. Since there are only finitely many numbers of this type, some
number must be assumed by g infinitely often, yielding a contradiction. (Alternatively: one could deduce
that g(Nu) ≤ N for all u and get a contradition of the fact that |g(Nu)| tends to infinity with u.)

Solution 3. [R. Barrington Leigh] Let n be the degree of f . Lemma. Let p be a prime and k a positive
integer. Then f(x) ≡ f(x + pnk) (mod pk). Proof by induction on the degree. The result holds for
n = 0. Assume that it holds for n = m− 1 and f(x) have degree m. Let g(x) = f(x)− f(x− 1), so that the
degree of g(x) is m− 1. Then

f(x + pnk)− f(x) =
pnk∑
i=1

g(x + i)

=
p(n−1)k∑

i=1

(g(x + i) + g(x + i + p(n−1)k) + . . . + g(x + i + (pk − 1)p(n−1)k)

≡
p(n−1)k∑

i=1

pkg(x + i) ≡ 0 ,

(mod pk). [Note that this does not require the coefficients to be integers.]

Suppose, if possible, that the set P of primes p that divide at least one value of f(x) for integer x
is finite, and that, for each p ∈ P , the positive integer a is chosen so that pa does not divide f(0). Let
q =

∏
{pa : p ∈ P}. Then pa does not divide f(0), nor any of the values f(qn) for positive integer n, as

these are all congruent modulo pa. Since any prime divisor of f(qn) belongs to P , it must be that f(qn) is
a divisor of q. But this contradicts the fact that |f(qn)| becomes arbitrarily large with n.

Solution 4. [F. Barekat] Let f(x) = anxn + · · · + a0 where n ≥ 1. Substituting n + 1 integers for x
yields a system of n + 1 linear equations for a0, a1, · · ·, an which has integer coefficients. Such a system has
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rational solutions, so that the coefficients of the polynomial are rational numbers. (This can also be seen by
forming the Lagrange polynomial for the n + 1 values.) Let g(x) be the product of f(x) and c, a common
multiple of all the denominators of the ai. Then g(x) has integer coefficients and takes integer values when
x is an integer.

If a0 = 0, then n|g(n) for each integer n, and there are infinitely many primes among the divisors of
the g(n) and therefore among the divisor of the f(n) (since only finitely many primes divide c), when n is
integral. Suppose that a0 6= 0, and, if possible, that g(n) is divisible only by the primes p1, p2, · · · , pk for
integer n. Let ca0 = pr1

1 pr2
2 · · · p

rk

k and let

M = {ps1
1 ps2

2 · · · p
sk

k : si > ri∀i} .

The set M has infinitely many elements.

Suppose that h(x) = (1/ca0)g(x), so that the constant coefficient of h(x) is 1. The polynomial h(x)
takes rational values when x is an integer, but only the primes p1, p2, · · · , pk are involved in the numerator
and denominator of these values written in lowest terms. In particular, for m ∈ M , h(m) is an integer
congruent to 1 modulo each pi, so that h(m) = ±1. However, this would imply that either h(x) = 1 or
h(x) = −1 infinitely often, which cannot occur for an nontrivial polynomail. Hence, there must be infinitely
many primes divisors of the values of g(n) for integral n.

Solution 5. [P. Shi] Let t be the largest positive integer for which f(n) is a multiple of t for every positive
integer n. Define g(x) = (1/t)f(x). Then g(n) takes integer values for every integer n, the greatest common
divisor of all the g(n) (n an integer) is 1, and the set of primes dividing at least one g(n) is a subset of P .

Suppose if possible that P ≡ {p1, p2, · · · , pk} is a finite set. Let 1 ≤ i ≤ k. There exists an integer mi

such that g(mi) is not a multiple of pi; since g(mi + jpi) ≡ g(mi) (mod pi), g(n) is not a multiple of pi when
n ≡ mi (mod pi).

By the Chinese Remainder Theorem, there exists infinitely many numbers n for which n ≡ mi (mod
pi) for each i. For such n, g(n) is not divisible by pi for any i. At most finitely many such g(n) are equal to
±1. Each remaining one of the g(n) must have a prime divisor distinct from the pi, yielding a contradiction.
The result follows.

379. Let n be a positive integer exceeding 1. Prove that, if a graph with 2n + 1 vertices has at least 3n + 1
edges, then the graph contains a circuit (i.e., a closed non-self-intersecting chain of edges whose terminal
point is its initial point) with an even number of edges. Prove that this statement does not hold if the
number of edges is only 3n.

Solution 1. If there are two vertices joined by two separate edges, then the two edges together constitute
a chain with two edges. If there are two vertices joined by three distinct chains of edges, then the number
of edges in two of the chains have the same parity, and these two chains together constitute a circuit with
evenly many edges. We establish the general result by induction.

When n = 2, the graph has 5 vertices at at least 7 edges. Since a graph lacking circuits has fewer edges
than vertices, there must be at least one circuit. If there is a circuit of length 5, then any additional edge
produces circuit of length 3 and 4. If there is a circuit of length 3, then one of the remaining vertices must be
joined to two of the vertices in the cicuit, creating two circuits of length 3 with a common edge. Suppressing
this edge gives a circuit of length 4. Accordingly, one can see that there must be a circuit with an even
number of edges.

Suppose that the result holds for 2 ≤ n ≤ m− 1. We may assume that we have a graph G with 2m + 1
edges and at least 3m + 1 vertices that contains no instances where two separate edges join the same pair
of vertices and no two vertices are connected by more than two chains. Since 3m + 1 > 2m, the graph is
not a tree or union of disjoint trees, and therefore must contain at least one circuit. Consider one of these
circuits, L. If it has evenly many edges, the result holds. Suppose that it has oddly many edges, say 2k + 1
with k ≥ 1. Since any two vertices in the circuit are joined by at most two chains (the two chains that make

25



up the circuit), there are exactly 2k + 1 edges joining pairs of vertices in the circuit. Apart from the circuit,
there are (2m + 1)− (2k + 1) = 2(m− k) vertices and (3m + 1)− (2k + 1) = 3(m− k) + k ≥ 3(m− k) + 1
edges.

We now create a new graph G′, by coalescing all the vertices and edges of L into a single vertex v and
retaining all the other edges and vertices of G. This graph G′ contains 2(m − k) + 1 vertices and at least
3(m − k) + 1 edges, and so by the induction hypothesis, it contains a circuit M with an even number of
edges. If this circuit does not contain v, then it is a circuit in the original graph G, which thus has a circuit
with evenly many edges. If the circuit does contain v, it can be lifted to a chain in G joining two vertices of
L by a chain of edges in G′. But these two vertices of L must coincide, for otherwise there would be three
chains joining these vertices. Hence we get a circuit, all of whose edges lie in G′; this circuit has evenly many
edges. The result now follows by induction.

Here is a counterexample with 3n edges. Consider 2n + 1 vertices partitioned into a singleton and n
pairs. Join each pair with an edge and join the singleton to each of the other vertices with a single edge to
obtain a graph with 2n + 1 vertices, 3n edges whose only circuits are triangles.

Solution 2. [J. Tsimerman] For any graph H, let k(H) be the number or circuits minus the number
of components (two vertices being in the same component if and only if they are connected by a chain of
edges). Let G0 be the graph with 2n + 1 vertices and no edges. Then k(G0) = −(2n + 1). Suppose that
edges are added one at a time to obtain a succession Gi of graphs culminating in the graph G with 2n + 1
vertices and at least 3n + 1 edges. Since adding an edge either reduces the number of components (when
it connects two vertices of separate components) or increases the number of circuits (when it connects two
vertices in the same component), k(Gi+1) ≥ k(Gi)+1. Hence k(G) ≥ k(G3n+1) ≥ −(2n+1)+(3n+1) = n.
Thus, the number of circuits in G is at least equal to the number of components in G plus n, which is at
least n + 1. Thus, G has at least n + 1 circuits.

If a circuit has two edges, the result is known. If all circuits have at least three edges, then the total
number of edges of all circuits is at least 3(n + 1). Since 3(n + 1) > 3n + 1, there must be two circuits
that share an edge. Let the circuits be A and B and the endpoints of the common edge be u and v. Follow
circuit A along from u in the direction away from the adjacent vertex v, and suppose it first meets circuit
B and w (which could coincide with v). Then there are three chains connecting u and w, namely the two
complementary parts of B and a portion of A. The number of edges of two of these chains have the same
parity, and can be used to constitute a circuit with an even number of edges.

A counterexample can be obtained by taking a graph with vertices a1, · · ·, an, b0, b1, · · ·, bn, with edges
joining the vertex pairs (ai, bi−1), (ai, bi) and (bi−1, bi) for 1 ≤ i ≤ n.

380. Factor each of the following polynomials as a product of polynomials of lower degree with integer
coefficients:

(a) (x + y + z)4 − (y + z)4 − (z + x)4 − (x + y)4 + x4 + y4 + z4 ;

(b) x2(y3 − z3) + y2(z3 − x3) + z2(x3 − y3) ;

(c) x4 + y4 − z4 − 2x2y2 + 4xyz2 ;

(d) (yz + zx + xy)3 − y3z3 − z3x3 − x3y3 ;

(e) x3y3 + y3z3 + z3x3 − x4yz − xy4z − xyz4 ;

(f) 2(x4 + y4 + z4 + w4)− (x2 + y2 + z2 + w2)2 + 8xyzw ;

(g) 6(x5 + y5 + z5)− 5(x2 + y2 + z2)(x3 + y3 + z3) .

Solution. (a) Let P1(x, y, z) be the expression to be factored. Since P1(0, y, z) = P1(x, 0, y) =
P1(x, y, 0) = 0, three factors of P1(x, y, z) are x, y and z. Hence, P1(x, y, z) = xyzQ1(x, y, z), where
Q1(x, y, z) must be linear and symmetric. Hence Q1(x, y, z) = k(x + y + z) for some constant k. Since

26



3k = P1(1, 1, 1) = 81− 48 + 3 = 36,

P1(x, y, z) = 12xyz(x + y + z) .

Comment. The factor x + y + z can be picked up from the Factor Theorem using the substitution
x + y + z = 0 (i.e., x + y = −z, y + z = −x, z + x = −y).

(b)

x2(y3 − z3) + y2(z3 − x3) + z2(x3 − y3)

= x2(y3 − z3) + y2(z3 − x3)− z2(z3 − x3)− z2(y3 − z3)

= (x2 − z2)(y3 − z3) + (y2 − z2)(z3 − x3)

= (x− z)(y − z)[(x + z)(y2 + yz + z2)− (y + z)(z2 + zx + x2)]

= (x− z)(y − z)[xy(y − x) + z2(x− y) + z(y2 − x2) + z2(y − x)]
= (x− z)(y − z)(y − x)[xy + z(y + x)] = (x− y)(y − z)(z − x)(xy + yz + zx) .

(c)

x4 + y4 − z4 − 2x2y2 + 4xyz2 = (x4 + 2x2y2 + y4)− (z4 + 4x2y2 − 4xyz2)

= (x2 + y2)2 − (z2 − 2xy)2 = (x2 + y2 + z2 − 2xy)(x2 + y2 − z2 + 2xy)

= (x2 + y2 + z2 − 2xy)[(x + y)2 − z2] = (x2 + y2 + z2 − 2xy)(x + y + z)(x + y − z) .

(d) Solution 1.

(yz + zx + xy)3 − y3z3 − z3x3 − x3y3

= 3(xy2z3 + xy3z2 + x2yz3 + x2y3z + x3yz2 + x3y2z + 2x2y2z2)

= 3xyz(yz2 + y2z + xz2 + xy2 + x2z + x2y + 2xyz)
= 3xyz(x + y)(y + z)(z + x) .

Solution 2. Let the polynomial be P4(x, y, z). Since P4(0, y, z) = P4(x, 0, z) = P4(x, y, 0) = P4(x,−x, 0)
= P4(0, y,−y) = P4(−z, 0, z) = 0, P4(x, y, z) contains the factors x, y, z, x + y, y + z, z + x. Hence

P4(x, y, z) = kxyz(x + y)(y + z)(z + x) .

Since 8k = P4(1, 1, 1) = 24, k = 3 and we obtain the factorization.

Solution 3. [D. Rhee]

P4(x, y, z) = [z(x + y) + xy]3 − x3y3 − y3z3 − z3x3

= z3(x + y)3 + 3z2(x + y)2xy + 3z(x + y)(xy)2 − z3(x + y)(x2 − xy + y2)

= (x + y)z[z2(x + y)2 + 3z(x + y)xy + 3(xy)2 − z2(x + y)2 + 3z2(xy)]

= 3(x + y)xyz[z(x + y) + xy + z2] = 3(x + y)xyz(x + z)(y + z) .

(e) Let P5(x, y, z) be the polynomial to be factored. Since

x3y3 − x4yz = x3y(y2 − xz) = x2(xy)(y2 − xz) ,

y3z3 − xyz4 = yz3(y2 − xz) ,
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and
z3x3 − xy4z = z3x3 − x2y2z2 + x2y2z2 − xy4z = z2x2(zx− y2) + xy2z(zx− y2) ,

it follows that

P5(x, y, z) = (y2 − zx)[x3y + yz3 − z2x2 − xy2z]

= −(y2 − zx)(z2 − xy)(x2 − yz) = (zx− y2)(xy − z2)(yz − x2) ,

(f) Let P6(x, y, z, w) be the polynomial to be factored. Any factorization of P6(x, y, z, w) will reduce to
a factorization of P6(x, y, 0, 0) when z = w = 0, so we begin by factoring this reduced polynomial:

P6(x, y, 0, 0) = 2(x4 + y4)− (x2 + y2)2 = (x2 − y2)2 = (x + y)2(x− y)2 .

Similar factorizations occur upon suppressing other pairs of variables. So we look for linear factors that
reduce to x + y and x − y when z = w = 0, etc.. Also the factors must either be symmetrical in x, y, z or
come in symmetrical groups. The possibilities, up to sign, are {x + y + z + w}, {x + y + z − w, x + y − z +
w, x− y + z + w,−x + y + z + w} and {x + y− z −w, x− y + z −w, x− y− z + w}. Since P6(x, y, z, w) has
degree 4, there are two possible factorizations:

(1) (x + y + z + w)(x + y − z − w)(x− y + z − w)(x− y − z + w)

(2) − (x + y + z − w)(x + y − z + w)(x− y + z + w)(−x + y + z + w)

Checking (1) yields

(x + y + z + w)(x + y − z − w)(x− y + z − w)(x− y − z + w)

= [(x + y)2 − (z + w)2][(x− y)2 − (z − w)2]

= [(x2 + y2 − z2 − w2) + 2(xy − zw)][(x2 + y2 − z2 − w2)− 2(xy − zw)]

= (x2 + y2 − z2 − w2)2 − 4(xy − zw)2

= x4 + y4 + z4 + w4 + 2x2y2 + 2z2w2 − 2x2z2 − 2x2w2 − 2y2z2 − 2y2w2

− 4x2y2 − 4z2w2 + 8xyzw

= x4 + y4 + z4 + w4 − 2(x2y2 + x2z2 + x2w2 + y2z2 + y2w2 + z2w2) + 8xyzw

= 2(x4 + y2 + z4 + w4)− (x2 + y2 + z2 + w2)2 + 8xyzw .

Thus, we have found the required factorization. ((2), of course, is not correct.)

(g) Let P7(x, y, z) be the polynomial to be factored.

Solution 1. Note that

P7(x, y, 0) = 6(x5 + y5)− 5(x2 + y2)(x3 + y3)

= (x + y)[6x4 − 6x3y + 6x2y2 − 6xy3 + 6y4 − 5(x2 + y2)(x2 − xy + y2)

= (x + y)(x4 − x3y − 4x2y2 − xy3 + y4)

= (x + y)[x4 − 2x2y2 + y4 − xy(x2 + 2xy + y2)]

= (x + y)[(x + y)2(x− y)2 − xy(x + y)2] = (x + y)3(x2 − 3xy + y2) .

Similarly, (y + z)3 divides P7(0, y, z) and (x + z)3 divides Py(x, 0, z). This suggests that we try the
factorization

Q7(x, y, z) ≡ (x + y + z)3(z2 + y2 + z2 − 3xy − 3yz − 3zx) .
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Since P7(1, 0, 0) = 1 = Qy(1, 0, 0) and P7(1, 1, 1) = 18 − 45 = −27 6= Q7(1, 1, 1) = 27(−6), this does not
work. So we need to look at the above factorizations differently:

P7(x, y, 0) = (x + y)2(x3 + y3 − 2x2y − 2xy2) ;

P7(x, 0, z) = (x + z)2(x3 + z3 − 2x2z − 2xz2) ;

P7(0, y, z) = (y + z)2(y3 + z3 − 2y2z − 2yz2) .

This suggests the trial:

R7(x, y, z) ≡ (x + y + z)2(x3 + y3 + z3 − 2x2y − 2xy2 − 2y2z − 2yz2 − 2z2x− 2zx2 + kxyz) .

Now P7(1, 1, 1) = −27 and R7(1, 1, 1) = 9(−9 + k), so this will not work unless k = 6. Checking, we find
that

P7(x, y, z) ≡ (x + y + z)2(x3 + y3 + z3 − 2x2y − 2xy2 − 2y2z − 2yz2 − 2z2x− 2zx2 + 6xyz) .

Solution 2. [Y. Zhao] For k = 1, 2, 3, let Sk = xk + yk + zk; let σ1 = x + y + z, σ2 = xy + yz + zx
and σ3 = xyx. Then S1 = σ1, S2 = σ1S1 − 2σ2, S3 = σ1S2 − σ2S1 + 3σ3, S4 = σ1S3 − σ2S2 + σ3S1 and
S5 = σ1S4 − σ2S3 + σ3S2, so that S2 = σ2

1 − 2σ2, S3 = σ3
1 − 3σ1σ2 + 3σ3, S4 = σ4

1 − 4σ2
1σ2 + 4σ1σ3 + 2σ2

2

and S5 = σ5
1 − 5σ3

1σ2 + 5σ2
1σ3 + 5σ1σ

2
2 − 5σ2σ3 .

P7(x, y, z) = 6S5 − 5S2S3

= 6(σ5
1 − 5σ3

1σ2 + 5σ2
1σ3 + 5σ1σ

2
2 − 5σ2σ3)− 5(σ2

1 − 2σ2)(σ3
1 − 3σ1σ2 + 3σ3)

= σ5
1 − 5σ3

1σ2 + 15σ2
1σ3 = σ2

1(σ3
1 − 5σ1σ2 + 15σ3) .

381. Determine all polynomials f(x) such that, for some positive integer k,

f(xk)− x3f(x) = 2(x3 − 1)

for all values of x.

Solution. If f(x) is constant, then f(x) ≡ −2. Suppose that f(x) is a nonconstant polynomial of positive
degree d. Then the degree of the terms of the left side must be greater than 3, so that f(xk) and x3f(x)
must have the same leading term. Therefore degf(xk) = degx3f(x), so that kd = 3 + d or 3 = (k − 1)d.
Therefore, (k, d) = (4, 1), (2, 3).

Suppose that (k, d) = (4, 1). Since f(0) = −2, we must have f(x) = ax − 2 for some constant a. It is
readily checked that this solution is valid for all values of a.

Suppose that (k, d) = (2, 3). Then x3[f(x) + 2] = f(x2) + 2. From this equation, we see that its two
sides must have terms of degree at least 3 and only terms of even degree; thus, its two sides involve terms in
x4 and x6. It follows that f(x) must have constant term −2, no term in x and x2 and a term in x3. Thus,
f(x) = bx3 − 2. Again, it can be checked that any function of this form is valid.

Comment. Many solvers forgot to deal with the possibility of a constant function. Also, having gotten
the forms ax− 2 and bx3 − 2, one should check that they actually work.

382. Given an odd number of intervals, each of unit length, on the real line, let S be the set of numbers that
are in an odd number of these intervals. Show that S is a finite union of disjoint intervals of total length
not less than 1.

Solution 1. The proof is by induction on the odd number of intervals. The result is obvious if the set
contains only one interval. Suppose that it holds when there are 2k − 1 ≥ 1 intervals. Let a set of 2k + 1
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intervals satisfying the condition be given. Let I and J be the two intervals whose left endpoints are least.
Suppose that I ∩ J = K. Note that the lengths of I\J and J\I are the same.

Suppose that the intervals I and J are removed from the set. Then, by the induction hypothesis, there
is a finite union T of disjoint intervals of total length consisting of all points that lie in oddly many intervals
apart from I and J . Restore the intervals I and J to form the set S. Outside of the union of I and J , the
sets S and T agree. If I is the leftmost interval, then S includes I\J along with K ∩ T . The only part of
T that might not belong to S must lie within the set J\I; but this is compensated by the inclusion of I\J .
The result follows.

Solution 2. [Y. Zhao] That S is a union of disjoint intervals can be established. Let 2n + 1 intervals
I0, I1, · · · , I2n of unit length be given in increasing order of left endpoint. Define

fi(x) =
{

1, if x ∈ Ii ;
0, if x 6∈ Ii .

for 0 ≤ i ≤ 2n. Let

F (x) =
2n∑
i=0

(−1)ifi(x) .

Suppose that x is a real number in I0 ∪ I1 ∪ · · · ∪ In. Let j be the minimum index and k the maximum
index of the intervals that contain x. Then x ∈ Ii if and only if j ≤ i ≤ k, and so F (x) =

∑k
i=j(−1)i. The

value of |F (x)| is 0 if and only if there are an even number of summands, i.e. k − j + 1 is even and 1 if and
only if there are an odd number of summands. If x belongs to none of the intervals, then F (x) = 0. Hence
the length of S is equal to ∫ ∞

−∞
|F (x)|dx ≥

∫ ∞

−∞
F (x)dx =

2n∑
i=0

(−1)i

∫ ∞

−∞
fi(x)dx

=
2n∑
i=0

(−1)i = 1

as desired.

383. Place the numbers 1, 2, · · · , 9 in a 3× 3 unit square so that
(a) the sums of numbers in each of the first two rows are equal;
(b) the sum of the numbers in the third row is as large as possible;
(c) the column sums are equal;
(d) the numbers in the last row are in descending order.

Prove that the solution is unique.

Comment. The problem is not quite correct. The solution is unique up to the order of the first two
rows. Most students picked this up.

Solution. The first two rows should contain six numbers whose sum S is as small as possible and is
even. This sum is at least 1 + 2 + 3 + 4 + 5 + 6 = 21, so the sum is at least 22.

If the sum of the first two rows is 22, then the entries must be 1, 2, 3, 4, 5, 7. The row that contains 1
must contain 3 and 7. The column sums are each 15, so the column that contains 7 cannot contain 8 or 9,
so must contain in its third row the number 6. Hence one of the columns consists of 7, 2, 6. The column that
contains 5 cannot contain 8, as the 2 has already been used in another column.

Taking the last row as (9, 8, 6), we obtain the top two rows (5, 4, 2) and (1, 3, 7). This satisfies the
conditions. Thus, we have a solution that minimizes the sum of the first two rows and maximizes the sum
of the last row.
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Comment. The last row sum cannot be more that 9 + 8 + 7, and must be odd (45 minus the sum of the
first two rows). So we can start with the last row as (9, 8, 6) and work from there.

384. Prove that, for each positive integer n,

(3− 2
√

2)(17 + 12
√

2)n + (3 + 2
√

2)(17− 12
√

2)n − 2

is the square of an integer.

Solution. Oberve that
(1±

√
2)2 = 3± 2

√
2

(1±
√

2)4 = (3± 2
√

2)2 = 17± 12
√

2

and
−1 = (1 +

√
2)(1−

√
2) .

The given expression is equal to

(1 +
√

2)4n−2 + (1−
√

2)4n−2 + 2[(1 +
√

2)(1−
√

2)]2n−1 = [(1 +
√

2)2n−1 + (1−
√

2)2n−1]2 .

Since

(1±
√

2)2n−1 =
n−1∑
k=0

(
2n− 1

2k

)
2k ±

√
2

n−1∑
k=0

(
2n− 1
2k + 1

)
2k ,

the quantity in square brackets is the integer

n−1∑
k=0

(
2n− 1

2k

)
2k+1 .

The result follows.

385. Determine the minimum value of the product (a + 1)(b + 1)(c + 1)(d + 1), given that a, b, c, d ≥ 0 and

1
a + 1

+
1

b + 1
+

1
c + 1

+
1

d + 1
= 1 .

Solution 1. By the inequality of the harmonic and geometric means of the four quantities, we have that

[(a + 1)(b + 1)(c + 1)(d + 1)]1/4 ≥
[
1
4

(
1

a + 1
+

1
b + 1

+
1

c + 1
+

1
d + 1

)]−1

= 4 ,

whence the product must be at least 44 = 256. This bound is achieved when a = b = c = d = 3.

Solution 2. Let u4 = (a + 1)(b + 1), v4 = (c + 1)(d + 1). Then, by the Arithmetic-Geometric Means
Inequality,

1 =
a + b + 2

u4
+

c + d + 2
v4

≥
2
√

(a + 1)(b + 1)
u4

+
2
√

(c + 1)(d + 1)
v4

=
2
u2

+
2
v2

=
2(u2 + v2)

u2v2

≥ 4uv

u2v2
=

4
uv

,

so that uv ≥ 4. The result follows with equality when a = b = c = d = 3.
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386. In a round-robin tournament with at least three players, each player plays one game against each other
player. The tournament is said to be competitive if it is impossible to partition the players into two sets,
such that each player in one set beat each player in the second set. Prove that, if a tournament is not
competitive, it can be made so by reversing the result of a single game.

Solution. In the following solutions, let a > b denote that player a beats (wins over) player b. Note that
this relation is not transitive, i.e. a > b and b > c does not necessarily imply that a > c.

Solution 1. [A. Wice] Suppose there are n players. We establish two preliminary results:

(1) The players can be labelled so that a1 > a2 > · · · > an;

(2) If the players can be labelled to form a loop or circuit, thus a1 > a2 > · · · > an > a1, then the
tournament is competitive.

Statement (1) can be established by induction. (If it holds for all tournaments with fewer than n players,
then consider any player z in the tournament with n players. The players that beat z can be formed into a
line as can those whom z beats. Now insert the player between the two lines to get a line of players each
beating the next.) For statement (2), suppose if possible there are two nonvoid sets A and B partitioning
all the players such that each player in A beats each player in B. Any player beaten by a player in B must
also lie in B. Suppose we have a loop as in Statement (2). If, say, ai belongs to B, then so does ai+1 and so
on all around the loop to ai−1, yielding a contradiction.

Suppose that we have a non-competitive tournament with sets A and B as above. Let a1 > a2 > · · · > ak

and b1 > b2 > · · · > bm be labellings of the players in A and B as permitted in result (1). We also have
ak > b1 and a1 > bm. Reverse the game involving a1 and bm to make bm > a1. By result (2), we now have
a tournament that is competitive.

Solution 2. Suppose that we are given a noncompetitive tournament T , and that the players are
partitioned into two sets A and B for which each player in A beats each player in B. Suppose a is a player
in A who loses to the smallest number of competitors in A; let A1 be the subset of those in A who beat a.
Suppose that b is a player in B who wins against the smallest number of players in B; let B1 be the subset
of B who loses to b.

In T , a > b. Form a new tournament T ′ from T by switching the result of the game between a and b, so
that b > a and otherwise the results in T and T ′ are the same. Suppose, if possible, that T ′ is noncompetitive.
Then we can partition the set of players into two subsets U and V , for which each player in U beats each
player in V .

Suppose that a ∈ V . Since a beat every player in B besides B, we must have that U ∩B ⊆ {b}, so that
U ⊆ A ∪ {b}. Indeed, U ⊆ A1 ∪ {b}, so that A\A1 ⊆ V . Consider a player x in U . This player lies in A1

and must beat every player in A\A1 as well as a, and lose only to other players in A1, i.e., to fewer players
in A than a loses to. But this contradicts the definition of a. Therefore, a ∈ U , so that b ∈ U as well, since
b > a in T ′.

Since b is beaten by every player in A in T , V ∩A ⊆ {a}, so that V ⊆ B ∪ {a}. Indeed, V ⊆ B1 ∪ {a},
so that B\B1 ⊆ U . Any player in B1 can win only against other competitors in B1, ı.e.. to fewer players in
B than b beats, giving a contradiction.

Hence U ∪ V = {a, b}, contradicting the fact that the tournament has at least three players.

Comment. Several solvers were too loose in determining the pair that ought to be switched. Not just
any pair of players from A and B will do; they have to be carefully delineated. A good thing to do in
such a problem is to have an example that you can test your argument against. For example, consider the
following tournament with four players a, b, c, d for which a > c, a > d, b > a, b > c, b > d, c > d. This is a
noncompetitive tournament for which we can take

(A,B) = ({a, b, c}, {d}) or ({a.b}, {c, d}) or ({b}, {a, c, d},
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The only game whose results can be reversed to give a noncompetitive tournament is that between b and d,
which will result in the cycle a > c > d > b > a. The other reversals result in competitive tournaments: (1)
c > a, (A,B) = ({b, c}, {a, d}); (2) a > b, (A,B) = ({a}, {b, c, d}); (3) d > a; (A,B) = ({b}, {a, c, d}); (4)
c > b; (A,B) = ({a, b, c}, {d}): (5) d > c; (A,B) = ({a, b, d}, {c}).

387. Suppose that a, b, u, v are real numbers for which av − bu = 1. Prove that

a2 + u2 + b2 + v2 + au + bv ≥
√

3 .

Give an example to show that equality is possible. (Part marks will be awarded for a result that is
proven with a smaller bound on the right side.)

Solution 1. [C. Sun] Let x = a2 + b2, y = u2 + v2, z = au + bv. Then xy = z2 + 1.

Observe that
(t
√

3 + 1)2 ≥ 0 =⇒ 3t2 + 1 ≥ −2t
√

3 =⇒ 4t2 + 4 ≥ (
√

3− t)2 .

From this, we find that
(x + y)2 ≥ 4xy = 4(z2 + 1) = 4z2 + 4 ≥ (

√
3− z)2

=⇒ x + y ≥
√

3− z

=⇒ x + y + z ≥
√

3

as desired.

Solution 2. [Y. Zhao] Note that

a2 + u2 + b2 + v2 + au + bv =
(

u +
a

2

)2

+
(

v +
b

2

)2

+
3
4

(
a2 + b2

)
.

For each fixed a and b, the function is minimized when (u, v) is closest to (a
2 , b

2 ). But (u, v) lies on the line
bx− ay +1 = 0, so the distance between (u, v) and (−a

2 ,− b
2 ) is at least equal to the distance from (−a

2 ,− b
2 )

to the line of equation bx− ay + 1, namely (a2 + b2)−1/2. Hence(
u +

a

2

)2

+
(

v +
b

2

)2

+
3
4

(
a2 + b2

)
≥ 1

a2 + b2
+

3
4
(a2 + b2) ≥

√
3

by the Arithmetic-Geometric Means Inequality. Equality occurs, for example, when

(a, b, u, v) =
(

21/2

31/4
, 0,

−1
21/231/4

,
31/4

21/2

)
.

Solution 3. [G. Ghosn] We use a vector argument, with boldface characters denoting vectors. Let
a = (a, b), u = (u, v) and v = (v,−u). It is given that a · v = 1. Since u and v form a basis for which
u · v = 0, {u,v} is an orthogonal basis for two-dimensional Euclidean space. Hence there are scalars α and
β for which a = αu+βv. Taking the inner (dot) product of this equation with v yields β = |v|−2 = u2 +v2.

We have that a2 + b2 = a · a = (α2 + β2)(u2 + v2) and αu + βv = a · u = α(u2 + v2). Hence

a2 + u2 + b2 + v2 + au + bv = (α2 + β2 + 1 + α)(u2 + v2)

=
1
4
[(2α + 1)2 + 3 + 4β2](u2 + v2)

≥ 3
4
(u2 + v2) +

1
u2 + v2

≥ 2
(√

3
2

)
(u2 + v2)

(
1

u2 + v2

)
=
√

3 ,
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by the Arithmetic-Geometric Means Inequality, with equality if and only if α = −1/2 and u2 + v2 = 2/
√

3.
We can achieve equality with

(a, b, u, v) =
(

31/4

21/2
,
−1

21/231/4
, 0,

21/2

31/4

)
.

Solution 4. [A. Wice] Let a = (a, b) and u = (u, v), and let θ be the angle between the vectors a and u.
The area of the parallelogram with sides a and u is equal to

|a× u| = |a||u| sin θ = |av − bu| = 1 .

Observe that 0 < θ < 180◦. We have that

a2 + u2 + b2 + v2 + au + bv = |a|2 + |u|2 + a · u
= |a|2 + |u|2 + |a||u| cos θ

≥ |a||u|(2 + cos θ) =
2 + cos θ

sin θ
,

by the Arithmetic-Geometric Means Inequality.

Now

1 ≥ − cos(θ + 60◦) = −1
2

cos θ +
√

3
2

sin θ

=⇒ 2 + cos θ ≥
√

3 sin θ

=⇒ 2 + cos θ

sin θ
≥
√

3 ,

with equality if and only if θ = 120◦. Hence

a2 + u2 + b2 + v2 + au + bv ≥
√

3

with equality if and only if |a| = |u| = 21/2/31/4.

Hence we select

(a, b, u, v) = (k cos α, k sinα, k cos(α + 120◦), k sin(α + 120◦)

with k = 21/2/31/4 and some angle α. Taking α = 30◦ yields the example

(a, b, u, v) =
(

31/4

21/2
,

1
31/4 · 21/2

,
−31/4

21/2
,

1
31/4 · 21/2

)
.

Solution 5. Let a = p cos φ, b = p sinφ, u = q cos θ and v = q sin θ, where p and q are positive reals.
Then 1 = av−bu = pq sin(θ−φ), from which we deduce that pq ≥ 1 and that cos2(θ−φ) = (p2q2−1)/(p2q2).
Therefore

a2 + u2 + b2 + v2 + au + bv = p2 + q2 + pq cos(θ − φ)

≥ p2 + q2 − pq
√

(p2q2 − 1)/(p2q2) = p2 + q2 −
√

p2q2 − 1

≥ 2pq −
√

p2q2 − 1 ,

by the Arithmetic-Geometric Means Inequality.

We need to show that 2t− (t2 − 1)1/2 ≥ 31/2 for t ≥ 1, or equivalently,

4t2 + t2 − 1− 4t
√

t2 − 1 ≥ 3⇐⇒ 5t2 − 4 ≥ 4t
√

t2 − 1 .

This in turn is equivalent to 25t4−40t2 +16 ≥ 16t4−16t2 which reduces to the true inequality (3t2−4)2 ≥ 0.
The minimum of the left member of the inequality occurs when t = 2/

√
3 and cos2(θ−φ) = (t2−1)/t2 = 1/4.
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Taking p = q = 21/23−1/4. φ = 150◦ and θ = 30◦ yields the example in Solution 4.

Solution 6. [C. Bao] This solution uses Lagrange Multipliers. Let

F (a, b, u, v, λ) = a2 + u2 + b2 + v2 + au + bv − λ(av − bu− 1) .

Then, the Lagrange conditions become

0 =
∂F

∂a
= 2a + u− λv

0 =
∂F

∂b
= 2b + v + λu

0 =
∂F

∂u
= 2u + a + λb

0 =
∂F

∂v
= 2v + b− λa

from which we obtain that

3(a + u) + λ(b− v) = 0 = (b− v) + λ(a + u) .

Therefore 3(a + u) = λ2(a + u), so that, either λ = ±±
√

3 or a + u = b− v = 0 at a critical point.

Suppose, first, that λ2 = 3. Then

2a2 + au + au + 2u2 = λ(av − bu) =⇒ λ = 2(a2 + u2 + au) ,

and
2v2 + bv + vb + 2b2 = λ(av − bu) =⇒ λ = 2(b2 + v2 + bv) .

Therefore, at a critical point,
a2 + u2 + b2 + v2 + au + bv = λ .

Since, double the left side is equal to (a + u)2 + (b + v)2 + a2 + u2 + b2 + v2, we must have that λ =
√

3.

At this point in the argument, a technical difficulty arises, as it must be argued somehow that the
critical point is a minimum, rather than a maximum or a saddle point. One way to do this is to establish
that the objective function becomes infinite when we move towards infinity on the constraint surface, that
it must attain a minimum value on the constraint surface (which requires a compactness argument) and use
the fact that a single value of λ is turned up for a critical point.

The second possibility is that a + u = b− v = 0. Since av − bu = 1, this leads to uv = −1/2 and

a2 + u2 + b2 + v2 + au + bv = u2 + 3v2 ≥ 2
√

3|uv| =
√

3

at the critical points.

Comment. This was not an easy problem and I garnered a larger collection of nice solutions than I
expected. The lower bound of 2 is easily obtained by noting that

2[a2 + u2 + b2 + v2 + au + bv]

= [a2 + u2 + b2 + v2 + 2au + 2bv] + [a2 + u2 + b2 + v2 + 2bu− 2av] + 2

= (a + u)2 + (b + v)2 + (b + u)2 + (a− v)2 + 2 ≥ 2 .

Equality would require that a = v = −u and b = −u = −v, which cannot be realized simultaneously.

35



388. A class with at least 35 students goes on a cruise. Seven small boats are hired, each capable of carrying
300 kilograms. The combined weight of the class is 1800 kilograms. It is determined that any group of
35 students can fit into the boats without exceeding the capacity of any one of them. Prove that it is
unnecessary to leave any student off the cruise.

Solution. We prove the result by induction on the number of students. By hypothesis, if there are only
35 students, then all can be accommodated. Suppose that there are n students, where n ≥ 35. Let the
weights of these students be w1, w2, · · · , wn kg in decreasing order.

Suppose that we have accommodated the k heaviest of these students for some k ≥ 35. If k < n, then
the weight wk+1 of the (k + 1)th heaviest student satisfies

36wk+1 ≤ w1 + · · ·+ w35 + w36 + · · ·+ wk+1 ≤ 1800 ,

whence wk+1 ≤ 50. The amount of capacity available in the boats is

2100− (w1 + · · ·+ wk) ≥ 2100− (1800− wk+1) = 300 + wk+1

≥ 6wk+1 + wk+1 = 7wk+1 .

Since all seven boats can accommodate at least 7wk+1 kg, at least one of them can accomodate at least wk+1

kg, and so the (k + 1)th heaviest student can get into this boat. We can continue on in this way until all
students are loaded.

389. Let each of m distinct points on the positive part of the x−axis be joined by line segments to n distinct
points on the positive part of the y−axis. Obtain a formula for the number of intersections of these
segments (exclusive of endpoints), assuming that no three of the segments are concurrent.

Solution 1. An intersection is determined by a choice of two points on each axis, and to each such choice
there is exactly one intersection in which the segments are formed by taking the outer point on one axis and
joining it to the inner point on the other. Thus there are

(
m
2

)(
n
2

)
intersections.

Solution 2. [J. Park] Let the points on the x−axis be in order X1, · · · , Xm and the points on the y−axis
be in order Y1, · · · , Yn. We draw the segments one at a time, starting with the segments [Xi, Yn] (1 ≤ i ≤ m).
This produces no interesection points. Now, for 1 ≤ i ≤ m, draw [Xi, Yn−1], which produces i−1 intersection
points with [Xj , Yn] when 1 ≤ j ≤ i−1. All these segments ending in Yn−1 produce 1+2+· · ·+(m−1) =

(
m
2

)
intersections with segments ending in Yn.

The segments ending in Yn−2 produce
(
m
2

)
intersections with segments ending in Yn−1 and

(
m
2

)
inter-

sections with segments ending in Yn. Continuing on, we find that the segments ending in Yn−j make j
(
m
2

)
intersections altogether with segments ending in Yk for k > n− j for 1 ≤ j ≤ n− 1. Hence the total number
of intersections is

(1 + 2 + · · ·+ n− 1)
(

m

2

)
=

(
n

2

)(
m

2

)
.

390. Suppose that n ≥ 2 and that x1, x2, · · · , xn are positive integers for which x1 +x2 + · · ·+xn = 2(n+1).
Show that there exists an index r with 0 ≤ r ≤ n− 1 for which the following n− 1 inequalities hold:

xr+1 ≤ 3

xr+1 + xr+2 ≤ 5

· · ·

xr+1 + xr+2 + · · ·+ rr+i ≤ 2i + 1

· · ·
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xr+1 + xr+2 + · · ·+ xn ≤ 2(n− r) + 1

· · ·

xr+1 + · · ·+ xn + x1 + · · ·+ xj ≤ 2(n + j − r) + 1

· · ·

xr+1 + xr+2 + · · ·+ xn + x1 + · · ·+ xr−1 ≤ 2n− 1

where 1 ≤ i ≤ n − r and 1 ≤ j ≤ r − 1. Prove that, if all the inequalities are strict, then r is unique,
and that, otherwise, there are exactly two such r.

Solution 1. First, consider the case that n = 2. Then x1 + x2 = 6. When x1 = 1, 2, take r = 0; when
x1 = 4, 5, take r = 1, and when x1 = x3 = 3, take r = 0 or r = 1. Thus the result holds.

We prove the result by induction. Suppose that the result holds for n = m ≥ 2. Let x1 +x2 +x3 + · · ·+
xm+1 = 2(m + 2). Observe that at least one xi does not exceeds 2, since 3(m + 1) > 2(m + 2).

Case (i): Suppose that xk = 2 for some k, which we may suppose exceeds 1. (Note that the conditions
are cyclic in the indices.) Consider the set {x1, x2, · · · , xk−1, xk+1, · · · , xm+1}. This satisfies the hypotheses
for the case n = m. We may suppose that r = 0, as the argument is essentially the same for any index.
Then

s∑
i=1

xi ≤ 2s + 1 (1 ≤ s ≤ k − 1)

k−1∑
i=1

xi +
s∑

i=k+1

xi ≤ 2(s− 1) + 1 (k + 1 ≤ s ≤ m) .

Restoring xk, we find that
∑s

i=1 xi ≤ 2s + 1 for 1 ≤ s ≤ m. Thus, a solution for n = m yields a solution for
n = m + 1. Conversely, any solution for n = m + 1 yields a solution for n = m. If r 6= k, the same value of
r works in both cases. If r = k, then taking out xk will give a solution for the n = m case with r = k + 1.
Equality will occur in the solution for n = m if and only if it occurs in the solutions for n = m + 1.

Case (ii): Suppose xk = 1 and xk+1 ≥ 2 (when k = m + 1, interpret this as x1 ≥ 2). The set
{x1, x2, · · · , xk−1, xk+1 − 1, · · · , xm+1} satisfies the hypothesis for the n = m case. We may suppose that
r = 0. When k ≥ 2,

s∑
i=1

xi ≤ 2s + 1 (1 ≤ s ≤ k − 1)

k−1∑
i=1

xi +
( s∑

i=k+1

xi

)
− 1 ≤ 2(s− 1) + 1 (k + 1 ≤ s ≤ m + 1) .

Restoring xk, we find that
∑

i=1 xi ≤ 2s+1. Thus r = 0 continues to work for the n = m+1 case. However,
when k = 1 and r = 0, we have that, when 2 ≤ s ≤ m − 1, (

∑s
i=2 xi) − 1 ≤ 2s − 1 so that

∑s
i=2 xi ≤ 2s.

Hence
∑s

i=1 xi ≤ 2s + 1 for 1 ≤ i ≤ m − 1. Equality will occur in the solution for n = m if and only if it
occurs in the solutions for n = m + 1. The results follows.

Solution 2. [B.H. Deng] We establish the existence of the requisite value of r. If the inequalities hold
for r = 1, Suppose that at least one inequality fails for r = 1. Then we can select m ≥ 2 so that

(1) x2 + · · ·+ xm = 2(m− 1) + w, where w ≥ 2;
(2) for 2 ≤ i < m, x2 + · · ·+ xi = 2(i− 1) + u and u < w;
(3) for m < j ≤ n, x2 + · · ·+ xj = 2(j − 1) + v and v ≤ w.

Thus, m is the first index where the discrepancy between x2 + · · ·+ xm and 2(m− 1) achieves its maximum
value.
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We show that r = m. If m < j ≤ n, then

xm+1 + · · ·+ xj = [2(j − 1) + v]− [2(m− 1) + w] = 2(j −m) + (v − w)
≤ 2(j −m) < 2(j −m) + 1 .

In particular,

xm+1 + · · ·+ xn = (x1 + · · ·+ xn)− (x1 + · · ·+ xm)
= 2(n + 1)− x1 − [2(m− 1) + w] = 2(n−m) + 4− x1 − w

from which
xm+1 + · · ·+ xn + x1 = 2(n−m + 1) + (2− w) ≤ 2(n−m + 1) .

If 2 ≤ i < m, then

xm+1 + · · ·+ xn + x1 + · · ·+ xi = 2(n−m) + 4− w + 2(i− 1) + u

= 2(n−m + i) + 2 + (u− w) < 2(n−m + i) + 2 ,

from which
xm+1 + · · ·+ xn + x1 + · · ·+ xi ≤ 2(n−m + i) + 1 .

We deal with the question of uniqueness. Wolog, we may suppose that the inequalities hold when r = 1.
Suppose that k ≥ 2 is such that x2 + · · ·+ xi ≤ 2(i− 1) for 2 ≤ i < k and x2 + · · ·+ xk = 2(k − 1) + 1. For
k < j ≤ n, we have that

xk+1 + · · ·+ xj = (x2 + · · ·+ xj)− (x2 + · · ·+ xk)
≤ 2(j − 1) + 1− 2(k − 1)− 1 = 2(j − k).

Also,
xk+1 + · · ·+ xn = 2(n + 1)− x1 − 2(k − 1)− 1 = 2(n− k + 1) + 1− x1

so that
xk+1 + · · ·+ xn + x1 ≤ 2(n− k + 1) + 1 .

For 2 ≤ i ≤ k − 1,

xk+1 + · · ·+ xn + x1 + · · ·+ xi ≤ 2(n− k + 1) + 1 + 2(i− 1) = 2(n− k + i) + 1 ,

so that the inequalities hold for r = k.

Comment. When n > 2 and all the xi exceed 1, then there is a direct argument. Since 3n > 2(n + 1)
and x1 + · · ·+ xn = 2(n + 1), we must have xi ≤ 2 for at least one index i. Since xi ≥ 2 for each i, there are
two possibilities. Either, all the xi but one are equal to 2 and the remaining one is equal to 4; or, all the xi

but two are equal to 2 and the remaining two are equal to 3. If xk = 4, then we must take r = k and we get
strict inequality throughout.

In the second case, suppose, wolog, that x1 = 3. If x2 = 3 as well, then we can take r = 1 or r = 2;
in the first case, xr+1 = 3, while in the second, x3 + · · · + xn + x1 = 2(n − 1) + 1 = 2n − 1. If xk = 3 for
3 ≤ k ≤ n − 1, then we can take r = 1 (in which case, for example, x2 + x3 + · · · + xk = 2(k − 1) + 1) or
r = k (in which case, for example, xk+1 + · · ·+ x1 = 2(n + 1− k) + 1.

391. Show that there are infinitely many nonsimilar ways that a square with integer side lengths can be
partitioned into three nonoverlapping polygons with integer side lengths which are similar, but no two
of which are congruent.

Comment. Unfortunately, there was an error in the formulation of the problem, and it is not known
whether nonsimilar partitions can be made with integer side lengths as requested. However, full credit was
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given to any students who achieved infinitely many nonsimilar partitions, without satisfying the numerical
condition.

Let ABCD be the square. Let w be any integer and suppose that u = 1+w and v = 1+w +w2. Thus,
u(1 + w + w2) = v(1 + w), and this will be the side length of the square. Select points E on AB, F on CD,
G on DA and H on EF so that |AE| = u, |EB| = uw(1 + w), |CF | = u(1 + w), |FD| = uw2, |DG| = vw,
|GA| = v. Then the three trapezoids AEHG, GHFD and CFEB are similar and |GH| = uw. Different
values of w give nonsimilar partitions, and the sides of the trapezoids parallel to the sides of the square will
have integer lengths. For the slant sides to have integer lengths, it is necessary to make

u2(w − 1)2 + v2 = (w + 1)2(w − 1)2 + (w2 + w + 1)2 = 2w4 + 2w3 + w2 + 2w + 2

a perfect square. The only possibility discovered so far is the case w = 1. We might achieve others if we can
find values of m and n for which w2 − 1 = 2mn and w2 + w + 1 = m2 − n2. It is unlikely that there are
infinitely many possibilities. Can these by found using some other strategy?

392. Determine necessary and sufficient conditions on the real parameter a, b, c that

b

cx + a
+

c

ax + b
+

a

bx + c
= 0

has exactly one real solution.

Solution 1. We look at a number of cases.

Case 1. abc = 0. If at least two of a, b, c vanish, then the equation is undefined. If, say, a = 0, bc 6= 0,
then the equation becomes

b

cx
+

c

b
= 0 ,

which, for x 6= 0 is equivalent to c2x + b2 = 0; this has the unique real solution x = −b2/c2.

Case 2. abc 6= 0, (a2 − bc)(b2 − ca)(c2 − ab) = 0. Suppose, first, say, a2 − bc = b2 − ca = 0. Then,
also, c2 − ab = 0. It follows that b/a = a/c = c/b = k for some nonzero value of k. Wew have that
k = c/b = (c/a)(a/b) = 1/k2, whence k3 = 1 and k = 1. The equation becomes 0 = 3/(x + 1) with no real
solution.

Suppose, on the other hand, say, that a2 − bc = 0 and (b2 − ca)(c2 − ab) 6= 0. Then b/a = a/c = k for
some real k 6= 1. Then b/c = k2 and the equation becomes

0 =
(

b

c
+

c

a

)(
1

x + k

)
+

(
a

c

)(
1

k2x + 1

)
=

g(x)
k(x + k)(k2x + 1)

where g(x) = (k5 + 2k2)x + (2k3 + 1). Now g(−k) = −(k3 − 1)(k3 + 1) and g(−1/k2) = k3 − 1. If k 6= −1,
then g(x) is divisible by neither (x + k) nor (k2x + 1) and the equation has a single real solution. If k = −1,
then b = c = −a and the equation reduces to 1/(x + 1) = 0 with no real solution.

Case 3. abc(a2− bc)(b2− ca)(c2−ab)(ab2 + bc2 + ca2) 6= 0. For x such that (cx+a)(ax+ b)(bx+ c) 6= 0,
the equation is equivalent to the quadratic equation f(x) = 0, where

f(x) = b(ax + b)(bx + c) + c(cx + a)(bx + c) + a(cx + a)(ax + b)

= (ab2 + bc2 + ca2)x2 + (a3 + b3 + c3 + 3abc)x + (b2c + c2a + a2b) .

The discriminant of this quadratic is given by

D ≡ (a3 + b3 + c3 + 3abc)2 − 4(ab2 + bc2 + ca2)(b2c + c2a + a2b)

= a6 + b6 + c6 − 3a2b2c2 − 2(a3b3 + b3c3 + c3a3) + 2abc(a3 + b3 + c3) .
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Since f(−a/c) = bc−2(a2 − bc)(b2 − ac) 6= 0, f(−b/a) 6= 0 and f(−c/b) 6= 0, the equation f(x) = 0 has
exactly the same solutions as the given equation. When D = 0, the equation has exactly one real solution.
When D 6= 0, it has either no real solutions or exactly two real solutions.

Case 4. abc(a2 − bc)(b2 − ca)(c2 − ab)(a3 + b3 + c3 + 3abc) 6= 0; ab2 + bc2 + ca2 = 0. In this case,

f(x) = (a3 + b3 + c3 + 3abc)x + (b2c + c2a + a2b)

and f(x) = 0 has exactly one real solution in the domain of the given equation.

Case 5. abc(a2− bc)(b2− ca)(c2− ab) 6= 0; a3 + b3 + c3 +3abc = ab2 + bc2 + ca2 = 0. In this case, there
is no real solution.

To sum up, we see that there is exactly one real solution if and only if one of the following conditions
holds:

(a) exactly one of a, b, c vanishes;
(b) exactly two of b/a, a/c, c/b are equal to a real number distinct from −1 and +1;
(c) none of a, b, c, a2 − bc, b2 − ac, c2 − ab, ab2 + bc2 + ca2 vanishes and D = 0;
(d) none of a, b, c, a2 − bc, b2 − ac, c2 − ab, a3 + b3 + c33abc vanishes and ab2 + bc2 + ca2 = 0.

Comment. The difficulty of this problems lies in sorting out the different possibilities in order to make
a comprehensive analysis. Most solvers simply put the left side of the equation over a common denominator
and analyzed the quadratic equation with realizing what might happen with the coefficients. For example,
one should be wary of the possibility that a/b = b/c, which means that ax + b is a constant multiple of
bx + c. In this case, putting the left side over a common cubic denominator introduces a spurious factor
proportional to ax + b; the least common denominator is in fact no more than a quadratic.

Another take on the problem is to look at the graph of the left side. If the three linear denominators
are not proportional, then there will be three vertical asymptotes, and one can analyze what the graph does
between these asymptotes. This is a nice exercise for you to work on and show that the results are consistent
with those obtained in the foregoing solution.

393. Determine three positive rational numbers x, y, z whose sum s is rational and for which x− s3, y − s3,
z − s3 are all cubes of rational numbers.

Solution 1. [A. Kong] Let x = a/k, y = b/k, z = c/k where a, b, c, k are all integers. Suppose that
b = ma and c = na. Then

x− s3 =
1
k3

[ak2 − (a + b + c)3] =
a

k3
[k2 − a2(1 + m + n)3]

y − s3 =
1
k3

[bk2 − (a + b + c)3] =
a

k3
[mk2 − a2(1 + m + n)3]

z − s3 =
1
k3

[ck2 − (a + b + c)3] =
a

k3
[nk2 − a2(1 + m + n)3] .

We try to make x = s3, so that k2 = a2(1 + m + n)3; for example, let a = 1 and 1 + m + n be a square.
When (a, k, m, n) = (1, 8, 1, 2), we obtain the successful example (x, y, z) = ( 1

8 , 1
8 , 1

4 ).

Solution 2. [C. Sun] Let x − s3 = a3, y − s3 = b3 and z − s3 = c3, so that s − 3s3 = a3 + b3 + c3. We
try to make a + b + c = x + y + z = s; then we would have

s(2s− 1)(2s + 1) = 4s3 − s = s3 − (s− 3s3)

= (a + b + c)3 − (a3 + b3 + c3) = 3(a + b)(b + c)(c + a) .

Try a+b = s, 3(b+c) = 2s+1 and c+a = 2s−1. Putting this with a+b+c = s yields c = (a+b+c)−(a+b) = 0,
a = (c + a)− c = 2s− 1 and b = 1

3 (2s + 1). Then

s = a + b + c =
8s− 2

3
=⇒ s =

2
5

.
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This yields (a, b, c) = (− 1
5 , 3

5 , 0) whence

(x, y, z) = (a3 + s3, b3 + s3, c3 + s3) =
(

7
125

,
35
125

,
8

125

)
.

It can be checked that this works.

Solution 3. [F. Barekat] An example is

(x, y, z) =
(

49
256

,
49
256

,
62
256

)
.

To get this, let x = p/u, y = q/v and z = r/w and write s in the form m/uvw. Then

m3 − pu2v3w3 = α3 , m3 − qv2u3w3 = β3 , m3 − rw2u3v3 = γ3

which leads to m(3m2−(uvw)2) = α3 +β3 +γ3. Playing around, we arrive at the possibility m = 5, uvw = 8
and α = β = 3, γ = 1.

Solution 4. We try to make

x− s3 =
u3s3

t3
, y − s3 =

v3s3

t3
, z − s3 =

w3s3

t3
,

which leads to

s− 3s3 = s3

(
u3 + v3 + w3

t3

)
and

1 = s2

(
u3 + v3 + w3

t3
+ 3

)
.

We select u, v, w to make the quantity in parentheses square (for example, we can try u3 + v3 + w3 = t3).

For example, (u, v, w, t, s) = (3, 4, 5, 6, 1/2) yields

(8x, 8y, 8z) =
(

243
216

,
280
216

,
341
216

)
and (u, v, w, t, s) = (3, 5, 6, 2, 1/7) yields

(343x, 343y, 343z) =
(

35
8

.
133
8

.
224
8

)
.

These check out.

394. The average age of the students in Ms. Ruler’s class is 17.3 years, while the average age of the boys is
17.5 years. Give a cogent argument to prove that the average age of the girls cannot also exceed 17.3
years.

Solution. Suppose that there are b boys and g girls and that the average age of the girls is a. Then the
sum of all the ages of the students in the class is

17.3(b + g) = 17.5b + ag

whence (17.3 − a)g = 0.2b. Since the right side as well as g are positive, 17.3 − a must also be positive.
Hence a < 17.3.
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395. None of the nine participants at a meeting speaks more than three languages. Two of any three speakers
speak a common language. Show that there is a language spoken by at least three participants.

Solution 1. Case (i). Each pair has a common language. There are
(
9
2

)
= 36 pairs with at most

3× 9 = 27 languages. By the Pigeonhole Principle, there exists a language spoken by at least two different
pairs, which includes either three or four participants.

Case (ii). There exists a pair consisting of, say, A and B, who have no language in common. These
two know k languages between them, where 2 ≤ k ≤ 6. Let the other participants be P1, · · · , P7. Consider
each triplet {A,B, Pi}, we see that each participant Pi knows at least one of the k languages. By the
Pigeonhole Principle, one of the k languages is known by at least two of the Pi along with either A or B.
The result follows.

Solution 2. [F. Barekat] If every speaker speaks a language shared by two other participants, then the
result holds. On the other hand, suppose that there is a participant P each of whose languages is shared
by at most one other person. Then at most three people speak one of P ’s languages and there are five
participants, A,B, C, D, E, who have no language in common with P . Considering each pair of these five
with P , we see that each pair of the five participants speaks a common language. Thus, A shares a language
with each of B,C,D,E, and, speaking at most three languages, must share the same language with two of
them. The result follows.

Solution 3. [A. Kong] We prove the result by contradiction. Suppose if possible that no language is
spoken by more than two participants. Form a graph with 9 vertices corresponding to the participants and
connect two vertices by an edge if and only if the corresponding participants have a common language. The
number of edges does not exceed the number of languages. There are

(
9
3

)
= 84 triplets of vertices, each

of which involves at least one edge. Any edge can be involved in at most 7 triplets. As two edges can be
involved in 14 distinct triplets only if the edges have no common vertex, we can find at most four edges that
can be involved in seven triplets each with no two triplets having an edge in common. Since each vertex
can be an endpoint of at most three edges and each edge involves two vertices, the number of edges is at
most b 12 (3 × 9)c = 13 = 7 + 6. Hence, the number of triplets that are involved with these edges is at most
4× 7 + 9× 6 = 82, a contradiction.

Comment. The hypothesis allows for the possibility that some participant may know fewer that three
languages, so you should not base your argument on everyone knowing exactly three languages. This is a
situation where a contradiction argument can be avoided, and you should try to do so.

396. Place 32 white and 32 black checkers on a 8×8 square chessboard. Two checkers of different colours form
a related pair if they are placed in either the same row or the same column. Determine the maximum
and the minimum number of related pairs over all possible arrangements of the 64 checkers.

Solution. The maximum number of related pairs is 256, achieved by putting 4×4 blocks of black checkers
in diagonally opposite corners of the board and 4×4 blocks of white checkers in the other diagonally opposite
corner, or else by alternating the colours as on a standard chessboard. The minimum number of related
pairs is 128, achieved by filling four columns entirely with black checkers and the other four columns with
white checkers. We now prove that these bounds hold.

Suppose that in a given row or column, there are x black and 8 − x white checkers. Then the number
of related pairs is

x(8− x) = 16− (x− 4)2 ≤ 16

with equality if and only if x = 4. Hence the total number of related pairs cannot exceed 16× 16 = 256.

The number of related pairs is independent of the order in which the rows or columns of checkers appear,
so, wolog, we may suppose that the number of white checkers in the columns decreases as we go from left
to right. Suppose that there is a white checker to the right of a black checker in some row, so that the
white checker appears in a column with r white checkers and the black checker appears in a column with s
white checkers, where r ≤ s. Suppose now that we interchange the positions of just these two checkers. The
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number of related pairs in the rows remains unchanged, while the number of related pairs in the columns
gets reduced by

[r(8− r) + s(8− s)]− [(r − 1)(9− r) + (s + 1)(7− s)] = 2(s + 1− r) > 0 .

We can continue this sort of exchange, reducing the number of related pairs each time, until every white
checker is to the left of all the black checkers in the same row. Thus, we need consider only configurations
in which no black checker is to the left of or above white checker.

Suppose that the ith row has xi white checkers and the jth column has yj white checkers, where
8 ≥ x1 ≥ x2 ≥ · · · ≥ x8 ≥ 0 and 8 ≥ y1 ≥ y2 ≥ · · · ≥ y8 ≥ 0. We have that a1 + · · ·+x8 = y1 + · · ·+y8 = 32.
Setting x9 = 0, we see that for each i, xi − xi+1 is equal to the number of indices j for which yj = i.

The total number of related pairs is

8∑
i=1

xi(8− xi) +
8∑

j=1

yj(8− yj) = 8×
∑

xi + 8×
∑

yj −
∑

x2
i −

∑
y2

j

= 8× 32 + 8× 32− (x2
1 + · · ·+ x2

8)−
8∑

i=1

(xi − xi+1)i2

= 512− [(x2
1 + · · ·+ x2

8) + (x1 − x2) + 4(x2 − x3) + 9(x3 − x4) + · · ·]
= 512− [(x1 + x2

2 + 2x2 + x2
3 + 4x3 + · · ·) + (x1 + · · ·+ x8)]

= 512− [x2
1 + (x2 + 1)2 + · · ·+ (x8 + 7)2 − 140 + 32]

= 620− [x2
1 + (x2 + 1)2 + · · ·+ (x8 + 7)2] .

Thus, we require the maximum of x2
1 + (x2 + 1)2 + · · · + (x8 + 7)2 when x1 + · · · + x8 = 32 and 8 ≥ x1 ≥

· · · ≥ x8 ≥ 0.

At this point, the argument becomes tedious and a simpler one is sought. Let zi = xi + (i − 1) with
1 ≤ i ≤ 8. It is straightforward to check that x5 ≤ 6, x6 ≤ 5, x7 ≤ 4 and x8 ≤ 4, so that z1 ≤ 8, z2 ≤ 9,
z3 ≤ 10, z4 ≤ 11, z5 ≤ 10, z6 ≤ 10, z7 ≤ 10 and z8 ≤ 11. The value 11 is possible for zi only when i = 4 and
we must have (x1, · · · , x8) = (8, 8, 8, 8, 0, 0, 0, 0) or i = 8 and we must have (x1, · · · , x8) = (4, 4, 4, 4, 4, 4, 4, 4).
In both cases, the square sum is 492. In a similar way, we find that x1 ≥ 4, x2 ≥ 4, x3 ≥ 3, x4 ≥ 2
and so z1 ≥ 4, z2 ≥ 5, z3 ≥ 5, z4 ≥ 5, z5 ≥ 4, z6 ≥ 5, z7 ≥ 6, z8 ≥ 7. The value 4 is possible for
zi only when i = 1 or i = 5 and we have (x1, · · · , x8) = (8, 8, 8, 8, 0, 0, 0, 0) or i = 8 and we must have
(x1, · · · , x8) = (4, 4, 4, 4, 4, 4, 4, 4). Otherwise, we must have 5 ≤ zi ≤ 10 for each i, and checking out the
possibilities leads to square sums less than 492.

397. The altitude from A of triangle ABC intersects BC in D. A circle touches BC at D, intersects AB at
M and N , and intersects AC at P and Q. Prove that

(AM + AN) : AC = (AP + AQ) : AB .

Solution 1. Let the circle intersect AD again at E.

(AE + AD) ·AD = AE ·AD + AD2 = AM ·AN + AB2 −BD2

= AM ·AN + AB2 −BN ·BM = AM ·AN + (AN + NB) · (AM + MB)−BN ·BM

= AM ·AN + AN ·AB + NB ·AM = AM · (AN + NB) + AN ·AB

= (AM + AN) ·AB .

Similarly, (AE + AD) ·AD = (AP + AQ) ·AC. The result follows.
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Solution 2. [F. Barekat] Let O be the centre of the circle, and let S and T be the respective midpoints
of MN and PQ. Then OS ⊥ AB, OT ⊥ AC,

AM + AN = 2AS = 2AO cos ∠BAD = 2AO sin∠ABC

and
AP + AQ = 2AT = 2AO cos ∠CAD = 2AO sin∠ACB .

Hence
AB : AC = sin∠ACB : sin∠ABC = (AP + AQ) : (AM + AN)

as desired.

398. Given three disjoint circles in the plane, construct a point in the plane so that all three circles subtend
the same angle at that point.

Solution. If two circles of radii r and R are given with respective centres O and P , and if Q is a point
at which both circles subtend equal angles, then OQ : OP = r : R. To prove this, draw tangents from Q
to meet the circles of centres O and P at A and B respectively, so that ∠AQO and ∠BQP are half the
subtended angles. Then the proportion is a consequence of the similarity of the triangles QAO and QBP .

Suppose first that r < R. The locus of Q turns out to be a circle (a circle of Apollonius). One way to
see this is to introduce coordinates with O at the origin, P at (p, 0) and Q at (x, y). The equation of the
locus is

√
x2 + y2 = (r/R)

√
(x− p)2 + y2. This simplifies to (R2 − r2)(x2 + y2) + 2pr2x − p2r2 = 0, the

equation of a circle. Let one pair of common tangents to the circles intersect at the point V on the same
side of both circles and the other pair at W between the two circles. V is the centre of a dilation with factor
r/R that takes the larger circle to the smaller, and W is the centre of a dilation with factor −r/R that takes
the larger circle to the smaller. V and W both lie on the locus and form a line of symmetry for the locus;
hence it is a diameter of the locus circle. So to construct the locus, it suffices to determine the points V and
W . This can be done for example by drawing parallel diameters to the two circles and noting that the line
joining pairs of their endpoints must pass through either V or W (since the dilations takes one diameter to
the other).

To solve the problem, for each of two pairs of the three circles, determine circle at which the two circles
subtend equal angles. If these circles intersect, then the intersection points will be points at which all three
circles subtend equal angles.

It remains to consider the case where at least two of the circles have the same radius. In this case, a
reflection about the right bisector of the line of centres takes one circle to the other, and this right bisector
is the locus desired. So the desired point is in this case, either the intersection of a line and a circle or of
two lines.

399. Let n and k be positive integers for which k < n. Determine the number of ways of choosing k numbers
from {1, 2, · · · , n} so that no three consecutive numbers appear in any choice.

Solution 1. An admissible choice of k numbers corresponds to a sequence of k 1’s and n − k 0’s in a
sequence of n terms where 1 appears in the ith position if and only if i is selected as one of the k numbers
and three 1’s do not appear consecutively. We count the number of such sequences.

Suppose that an admissible sequence has a occurrences of 11 and b occurrences of 1, separated by 0’s, so
that k = 2a+b. The patterns of two 1’s can be interpolated among the patterns of one 1 in

(
a+b

a

)
ways. a+b−1

zeros must be placed in that many slots between adjacent patterns of 11 and 1. (If a + b− 1 > n− k, then
a sequence of the type specified cannot occur, but this will automatically come out in the final expression.)

If a + b − 1 ≤ n − k, then (n − k) − (a + b − 1) 0’s remain to be allocated, either at the beginning or
the end of the sequence or in the a + b− 1 slots that already contain one 0. Recall that u identical objects
can be distributed among v distinguishable boxes in

(
u+v−1

v−1

)
ways. (To see this, place u + v − 1 identical
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objects in a line; select v− 1 gaps between adjacent pairs to determine a partition into v boxes each with at
least one object; now, remove the superfluous v objects, one from each box.) Applying this to the present
situation, we deduce that the spare (n− k)− (a + b− 1) 0’s can be distributed in(

n− k − (a + b− 1) + (a + b− 1)− 1
a + b− 1

)
=

(
n− k − 1

k − a

)
ways.

Thus, the total number of ways of selecting an admissible set of k numbers form {1, 2, · · · , n} is

∑
{
(

a + b

b

)(
n− k + 1

a + b

)
: 2a + b = k, a ≥ 0, b ≥ 0} =

∑
a≥0

(
k − a

a

)(
n− k + 1

k − a

)
.

Solution 2. [K. Kim] Reformulate the problem as selecting a sequence of n integers with k ones and
n− k zeros, with 1 being selected if and only if i is selected from among {1, 2, · · · , n}. At most two ones can
appear side by side. Begin with the n−k zeros; there are n−k +1 “slots” separated by the zeros into which
we may insert 0, 1 or 2 ones. Suppose that we have i pairs of ones in the slots, where 0 ≤ 2i ≤ k. We can
pick the slots for these in

(
n−k+1

i

)
ways. There are n− k + 1− i slots left over and we can fit the remaining

singelton ones in them in
(
n−k+1−i

k−2i

)
ways. Hence the total number of ways is

∑ {(
n− k + 1

i

)(
n− k + 1− i

k − 2i

)
: 0 ≤ 2i ≤ k

}
.

Solution 3. [F. Barekat] Recall that

(1− x)−t =
∞∑

i=0

(
t + i− 1

t− 1

)
xi .

We transform the given problem into an equivalent problem. Each choice (b1, · · · , bk) of k distinct numbers
from {1, 2, · · · ,m} given in increasing order corresponds to a choice (c1, · · · , ck) of k not necessarily distinct
numbers from {1, 2, · · · , n− k + 1} given in increasing order with ci = bi − (i− 1) (1 ≤ i ≤ k).

Three of the numbers bi are consecutive if and only if the corresponding three numbers ci are equal.
Hence the answer to the problem is equal to the number of choices of k numbers from {1, 2, · · · , n− k + 1}
for which at most two numbers are equal to any value.

For each i with 1 ≤ i ≤ n− k + 1, construct the quadratic 1 + x + x2 and define the generating function

f(x) = (1 + x + x2)n−k+1 = (1− x3)n−k+1(1− x)−(n−k+1)

=
∞∑

j=0

(−1)j

(
n− k + 1

j

)
x3j

∞∑
i=0

(
n + i− k

n− k

)
xi

=
∞∑

k=0

[ ∞∑
j=0

(−1)j

(
n− k + 1

j

)(
n− 3j

n− k

)]
xk .

For each k, the coefficient counts the number of ways we can form xk in the expression f(x) by selecting 1, x
or x2 from the ith factor. This is the answer to the problem.

Comment. A similar argument to that of the third solution gives
∑∞

j=0(−1)j
(
n−k+1

j

)(
n−rj
n−k

)
for the

number of choices that avoid r consecutive integers.

If f(n, k) represents the number of admissible selections, then, for n ≥ 1, f(n, 1) = n and f(n, 2) =
(
n
2

)
and for n ≥ 3, f(n, 3) =

(
n
3

)
− (n− 2) = 1

6 (n− 2)(n− 3)(n + 2).
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When n ≥ 5. k ≥ 4, we can develop some recursion relations. An admissible set of k numbers can be
selected from {1, 2, · · · , n} not including n in f(n− 1, k) ways. Or we can select n and the remaining k − 1
numbers from {1, 2, · · · , n− 1} provided that both n− 2 and n− 1 are not selected in f(n− 1, k− 1)− f(n−
4, k − 3) ways. Thus,

f(n, k) = f(n− 1, k) + f(n− 1, k − 1)− f(n− 4, k − 3) .

Alternatively, we can look at the three cases where n is not chosen, where n is chosen but n− 1 is not
and where both n and n− 1 are chosen but n− 2 is not. This yields that

f(n, k) = f(n− 1, k) + f(n− 2, k − 1) + f(n− 3, k − 2) .

In particular, we have that f(n, 4) =
(
n
4

)
− (n − 3)2 = 1

24 (n − 3)(n − 4)(n2 + n − 18) and f(n, 5) =(
n
5

)
− 1

2 (n− 3)(n− 4)2 = 1
120 (n− 3)(n− 4)(n− 5)(n− 6)(n + 8).

We have the following table of values

n k → 1 2 3 4 5 6 7
↓
1 1
2 2 1
3 3 3 0
4 4 6 2 0
5 5 10 7 1 0
6 6 15 16 6 0 0
7 7 21 30 19 3 0 0
8 8 28 50 45 16 1 0
9 9 36 77 90 51 10 0

400. Let ar and br (1 ≤ r ≤ n) be real numbers for which a1 ≥ a2 ≥ · · · ≥ an > 0 and

b1 ≥ a1 , b1b2 ≥ a1a2 , b1b2b3 ≥ a1a2a3 , · · · , b1b2 · · · bn ≥ a1a2 · · · an .

Show that
b1 + b2 + · · ·+ bn ≥ a1 + a2 + · · ·+ an .

Solution. Since b1 · · · bs > 0 for all s, each bi is positive. Let c0 = 1 and define

c1 =
b1

a1
, c2 =

b1b2

a1a2
, · · · , cn =

b1b2 · · · bn

a1a2 · · · an
.

Then ci ≥ 1 and
bi =

ci

ci−1
ai

for 1 ≤ i ≤ n. We have that

(b1 + · · ·+ bn)− (a1 + · · ·+ an)

=
(

c1

c0
− 1

)
a1 +

(
c2

c1
− 1

)
a2 + · · ·+

(
cn

cn−1
− 1

)
an

= (c1 − 1)(a1 − a2) +
(

c1 +
c2

c1
− 2

)
(a2 − a3) +

(
c1 +

c2

c1
+

c3

c2
− 3

)
(a3 − a4) + · · ·

+
(

c1 +
c2

c1
+ · · ·+ ci

ci−1
− i

)
(ai − ai−1) + · · ·+

(
c1 +

c2

c1
+ · · ·+ cn

cn−1
− n

)
an .
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By the Arithmetic-Geometric Means Inequality,

1
i

[
c1 +

c2

c1
+ · · ·+ ci

ci−1

]
≥

[
c1

(
c2

c1

)
· · ·

(
ci

ci−1

)]1/i

= c
1/i
i ≥ 1 ,

so that c1 + (c2/c1) + · · ·+ (ci/ci−1) ≥ i and the result follows.

Comments. The transformation of the series
∑

((ci/ci−1− 1)ai is a standard way of dealing with series,
known as summation by parts and analogous to the calculus technique of integration by parts. It is used as
a means of incorporating the hypothesis a1 ≥ a2 ≥ · · · ≥ an > 0.

An interesting argument comes from F. Barekat who claims a stronger result. The proof almost works,
but there is a small fly in the ointment. It is not clear to me that this can be worked around or whether the
claimed result is false and a counterexample can be found. We suppose that an and bn are defined for all n
such that b1b2 · · · bn ≥ a1a2 · · · an > 0. It is claimed that, for all n,

(b1 + b2 + · · ·+ bn)− (a1 + a2 + · · ·+ an) ≥ an

(
1− a1a2 · · · an

b1b2 · · · bn

)
.

When n = 1, we have that

b1 − a1 = b1

(
1− a1

b1

)
≥ a1

(
1− a1

b1

)
.

Suppose that the result holds for n = m. Then

(b1 + · · ·+ bm + bm+1)− (a1 + · · ·+ am + am+1)− am+1

(
1− a1 · · · amam+1

b1 · · · bmbm+1

)
≥ am

(
1− a1 · · · am

b1 · · · bm

)
+ bm+1 +

am+1a1 · · · am+1

b1 · · · bm+1
− 2am+1

=
1

b1 · · · bm+1
[amb1 · · · bmbm+1 − ambm+1a1 · · · am + bm+1b1 · · · bm+1 + am+1a1 · · · am+1

− 2am+1b1 · · · bm+1]

=
1

b1 · · · bm+1
[b1 · · · bm(ambm+1 + b2

m+1 − 2am+1bm+1)− (a1 · · · am)(ambm+1 − a2
m+1)]

=
1

b1 · · · bm+1
[(b1 · · · bm − a1 · · · am)(ambm+1 + b2

m+1 − 2am+1bm+1)

+ (a1 · · · am)(b2
m+1 − 2am+1bm+1 + a2

m+1)]

=
1

b1 · · · bm+1
[bm+1(b1 · · · bm − a1 · · · am)(am + bm+1 − 2am+1) + (a1 · · · am)(bm+1 − am+1)2]

=
1

b1 · · · bm+1
[bm+1(b1 · · · bm − a1 · · · am)((am − am+1)

+ (bm+1 − am+1)) + (a1 · · · am)(bm+1 − am+1)2] .

The argument can be completed if bm+1 ≥ am+1, but seems to be in trouble otherwise.

401. Five integers are arranged in a circle. The sum of the five integers is positive, but at least one of them
is negative. The configuration is changed by the following moves: at any stage, a negative integer is
selected and its sign is changed; this negative integer is added to each of its (immediate) neighbours
(i.e., its absolute value is subtracted from each of its neighbours).

Prove that, regardless of the negative number selected for each move, the process will eventually termi-
nate with all integers nonnegative in exactly the same number of moves with exactly the same configu-
ration.
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Solution. We associate with each arrangement of numbers a doubly infinite sequence, and analyze how
the corresponding sequence alters with each move. Suppose the numbers, given clockwise, are a, b, c, d, e,
and that their positive sum is s. Pick one number, say a, as a starting point and construct the sequence of
running totals as we proceed closkwise: a, a+ b, a+ b+ c, a+ b+ c+ d, s, s+ a, · · ·. This produces a sequence
of blocks of five numbers for which each block of five is obtained from a previous one by adding s to its
entries, Now extend the sequence backwards, preserving this ”quasi-periodic” property.

We make some observations. The (doubly-infinite) sequence is increasing if and only if all entries in the
circle are nonnegative. If the circle has a negative entry, then the sequence decreases at this particular entry.
Given any term in the sequence, there are at most finitely many terms following it that do not exceed it.

Suppose, without loss of generality, that the number c in the circle is negative and that the sum in the
sequence up to a is t. Then we have the consecutive terms: t, t + b, t + b + c, t + b + c + d, · · ·; note that
t+b+c < t+b. Now perform the operation on the five numbers, selecting c as the relevant negative number.
Then, the numbers in the circle become a, b + c, −c, d + c, e and the corresponding terms in the sequence
are t, t + b + c, t + b, t + b + c + d, · · ·. In other words, the effect on the sequence is that, for every pair of
entries corresponding to b and c, the terms get interchanged, and a decreasing pair become increasing.

We define the following isomorphism (mathematically equivalent situation). Each configuration of five
integers of five integers in a circle with a designated starting entry (a) for the sequence corresponds to a
doubly infinite sequence that has the quasiperiodicity defined above, and every such sequence gives rise
to a circle of five integers. The operation of the problem corresponds to the switching of periodic sets of
decreasing pairs to increasing pairs. Note that the entries of the doubly infinite sequence stay the same; they
just get rearranged.

Suppose that we focus on five consecutive positions in the original doubly infinite sequence. Each of
these has a finite number, say p, of terms following it in the sequence that are smaller, and a finite number,
say q, of terms preceding it that are bigger. Each switiching operation on two entries will decrease p for one
and decrease q for the other. Eventually, each of the five terms in the five original positions will end up p− q
positions to the right and we will have an increasing sequence. The result follows.

Comment. We can go part way, showing that the sequence of moves will terminate, by associating with
each configuration a positive quantity that decreases. With the integers a, b, c, d, e with c < 0 and sum s > 0,
we form the quantity (a− c)2 + (b− d)2 + (c− e)2 + (d− a)2 + (e− b)2. If we make a move, pivoting on c, to
get a, b+c,−c, d+c, e, the corresponding quantity is (a+c)2 +(b−d)2 +(c+e)2 +(d+c−a)(e−b−c)2. This
is smaller than the preceding quantity by the positive amount (−2c)s. This difference depends on the size of
|c|, and so we cannot get a fix on how long it will take to achieve a circle whose integers are all nonnegative.

402. Let the sequences {xn} and {yn} be defined, for n ≥ 1, by x1 = x2 = 10, xn+2 = xn+1(xn + 1) + 1
(n ≥ 1) and y1 = y2 = −10, yn+2 = yn+1(yn + 1) + 1 (n ≥ 1). Prove that there is no number that is a
term of both sequences.

Solution 1. We prove by induction that xn ≡ 10 and yn ≡ −10 ≡ 91 modulo 101 for all positive integers
n. The proof is by induction.

The congruences are true for n = 1, 2. Suppose that they are true for all natural numbers less than
k + 2, and in particular that xk ≡ xk+1 ≡ 10. Then

xk+2 ≡ 10(10 + 1) + 1 = 111 ≡ 10

modulo 101. Similarly, yk ≡ yk+1 ≡ −10 implies

yk+2 ≡ (−10)(−10 + 1) + 1 = 91 ≡ −10

modulo 101. Since xn and yn are in different congrence classes modulo 101, the desired result follows.

Comment. How would one hit on this idea? One might get at it by working out the first few terms and
seeing that the congruence modulo 101 remains stable. Of one might ask if there is a modulus for which
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the terms remain in the same modular class as the first two terms. This would require that the modulus m
would satisfy 10 ≡ 10(10 + 1) + 1 = 111 modulo m, whence m should be 101.

Solution 2. [Y. Zhao] Working out the first few terms yields

{xn} = {10, 10, 111, 1222, 136865, 167385896, · · ·}

and
{yn} = {−10,−10, 91,−818,−75255, 61483338, · · ·} .

We prove by induction that, for all n > 2, (1) xn > |yn| and, for all n > 1, (2) |yn+1| > xn + 2. In the proof,
we repeatedly appeal to |xy| = |x||y| and |x + 1| ≥ |x| − 1 for all real x and y. (Establish these.)

Ad (1): This holds for n = 3 and n = 4. Suppose (1) is true for n < k. Then

xk = xk−1(xk−2 + 1) + 1 > |yk−1|(|yk−2|+ 1) + 1
≥ |yk−1| · |yk−2 + 1|+ 1 = |yk−1(yk−2 + 1)|+ 1
≥ |yk−1(yk−2 + 1) + 1| = |yk| .

Thus, (1) follows by an induction argument.

Ad (2): This holds for n = 2 and n = 3. Suppose (2) is true for n < k. Then

|yk+1| = |yk(yk−1 + 1) + 1| ≥ |yk(yk−1 + 1)| − 1
= |yk||yk−1 + 1| − 1 ≥ |yk| · (|yk−1| − 1)− 1 > (xk−1 + 2)(xk−2 + 2− 1)− 1
= xk−1 · xk−2 + 2xk−2 + xk−1 + 1 > xk−1(xk−2 + 1) + 1 + 2 = xk + 2 .

Thus, (2) follows by an induction argument.

Now, we have that x2 < |y3| < x3 < |y4| < x4 < |y5| < · · ·, so that no numbers apart from 10 and −10
can appear twice among the terms of the two sequences. The result follows.

403. Let f(x) = |1− 2x| − 3|x + 1| for real values of x.

(a) Determine all values of the real parameter a for which the equation f(x) = a has two different roots
u and v that satisfy 2 ≤ |u− v| ≤ 10.

(b) Solve the equation f(x) = bx/2c.

Solution 1. [D. Rhee] (a) We have that

f(x) =


x + 4, if x ≤ −1;
−5x− 2, if −1 < x < 1

2 ;
−x− 4, if x ≥ 1

2 .

The graph of f(x) consists of three line segments with nodes at (−1, 3) and (1/2,−9/2). The equation
f(x) = a has

• no solutions if a > 3;
• two solutions determined by the intersection points of the line y = a and the lines y = x + 4 and

y = −5x− 2 when −9/2 ≤ a ≤ 3;
• two solutions determined by the intersection points of the line y = a and the lines y = x + 4 and

y = −x− 4 when a < −9/2.

When −9/2 ≤ a ≤ 3, the intersection points in question are (a−4, a) and (− 1
5 (a+2), a). The inequality

2 ≤ |u− v| ≤ 10 is equivalent to

2 ≤ −1
5
(a + 2)− (a− 4) =

1
5
(18− 6a) ≤ 10
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(subject to the constraint on a). The values of a that satisfy the requirements of the problem are −9/2 ≤
a ≤ 4/3.

When a < −9/2, the intersection points of the graphs are (a− 4, a) and (−a− 4, a) and the inequality
2 ≤ |u− v| ≤ 10 is equivalent to 2 ≤ −2a ≤ 10. The values of a that satisfy the requirements of the problem
are given by −5 ≤ a ≤ −9/2.

To sum up, the equation f(x) = a has two different solutions u, v that satisfy 2 ≤ u − v ≤ 10 if and
only if −5 ≤ a ≤ 4/3.

(b) Consider the graphs of the functions f(x) and g(x) ≡ bx/2c, exploring the possible intersection
points of the second graph with the three “branches” of the first graph.

Where do the graphs of y = g(x) and y = x + 4 intersect? When x < −10, bx/2c > x/2 − 1 =
x/2−5+1 ≥ x/2+x/2+4 = x+4, while, when x > −8, bx/2c < x/2 = x/2+4−4 ≤ x/2+4+x/2 = x+4.
Thus, the solution must satisfy −10 ≤ x ≤ 8, when bx/2c takes one of the two values −5 and −4, We find
that x = −8 or x = −9.

As for the intersection of the graphs of y = g(x) and y = −5x− 2, since we are considering only those
values of x for which −1 ≤ x ≤ 1/2 and g(x) is equal to −1 or 0, we find that x = −1/5. Finally, when
x ≥ 1/2, g(x) is positive while −x− 4 is negative.

Therefore, the only solutions of f(x) = bx/2c are x = −9,−8,−1/5.

Solution 2. [Y. Zhao] (a) Similar to the foregoing.

(b) Let x/2 = n + r, where n is the integer bx/2c and 0 ≤ r < 1. When x < −1, we find that
r = −(n + 4)/2. Since 0 ≤ r < 1, n = −4 or n = −5 so that x = −8 or x = −9. These check out.

When −1 ≤ x ≤ 1/2, r = (−11n − 2)/10 which leads to −2/11 ≥ n ≥ −12/11 and so n = −1 and
r = 9/10. Thus, x = −1/5, which checks out.

When x > 1/2, there are no solutions (as in the first solution). The only solutions are x = −9,−8,−1/5.

Solution 3. [V. Krakovna] (a) Similar to the foregoing.

(b) This solution is based on a lot of information and relationships from the graphs of f(x) and g(x)
and illustrates the geometric approach to solving equations. The equation f(x) = bx/2c has solutions when
the line y = x/2 comes close (within vertical distance 1) of the graph of y = f(x). For any solution, f(x)
must take integer values, as bx/2c always does.

Since f(x) is negative and x/2 positive when x ≥ 0, there are no solutions in this domain. When
−1 ≤ x ≤ 0, x/2 is negative and the only negative integer values assumed by f(x) are −1 and −2, Only the
former yields a solution: x = −1/5. When x < −1, x/2− 1 ≤ f(x) ≤ x/2 only when −10 ≤ x ≤ −8, and so
f(x) must assume one of the values −6,−5,−4. Checking out, we get the solutions x = −9,−8.

404. Several points in the plane are said to be in general position if no three are collinear.

(a) Prove that, given 5 points in general position, there are always four of them that are vertices of a
convex quadrilateral.

(b) Prove that, given 400 points in general position, there are at least 80 nonintersecting convex quadri-
laterals, whose vertices are chosen from the given points. (Two quadrilaterals are nonintersecting if they
do not have a common point, either in the interior or on the perimeter.)

(c) Prove that, given 20 points in general position, there are at least 969 convex quadrilaterals whose
vertices are chosen from these points. (Bonus: Derive a formula for the number of these quadrilaterals
given n points in general position.)

Solution. [V. Krakovna] (a) Among the five points, there are three X, Y, Z that form a triangle with the
other two points M,N outside of the triangle. To see this, select one of the

(
5
3

)
possible triangles that has
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the smallest area. We note that a convex quadrilateral is characterized by the fact that any two adjacent
vertices lie in the same halfplane determined by the side that does not contain these vertices.

Case (i): One of the points M lies outside the triangle on the opposite side of Y Z to X but within the
angular sector formed by, say, XY and XZ produced. Then MY XZ is a convex quadrilateral.

Case (ii): Both points M and N lie on the opposite side of Y Z to X, with M lying in the angle formed
by XY and ZY produced and N lying in the angle formed by XZ and Y Z produced. Then MNZY is a
convex quadrilateral.

Case (iii): Both points M and N lie on the opposite side of Y Z to X and in the angle formed by XY
and ZY produced. If N and X are on the same side of the line MY , then XNMY is a convex quadrilateral;
otherwise, N and Z are on the same side of MY and MNZY is a convex quadrilateral.

(b) Partition the 400 points into groups of five as follows. Choose a line that is not parallel to any of
the lines determined by two of the points. Imagine this line passing over the 400 points; it passes over them
one at a time, so we can use it to separate off points five at a time. Thus, we have a succession of sets of five
points, each included between a pair of lines parallel to the chosen line. From (a), for each group of five, we
can select four that are vertices of a convex quadrilateral, so that there are at least 80 convex quadrilaterals
determined.

(c) For n points in general position, there are at least
(
n
5

)
/(n− 4) convex quadrilaterals. There are

(
n
5

)
possible sets of five points, each of which has a subset of 4 points yielding a convex quadrilateral. However,
for each quadrilateral, there are n − 4 posibilities for the fifth point of the group to which it might belong,
so that each convex quadrilateral could be counted up to n− 4 times. Hence, the number of distinct convex
quadrilaterals is at least

(
n
5

)
/(n− 4). When n = 20, this number is 969.

405. Suppose that a permutation of the numbers from 1 to 100, inclusive, is given. Consider the sums of all
triples of consecutive numbers in the permutation. At most how many of these sums can be odd?

Solution. [V. Krakovna] In the sequence of 100 numbers, there are 98 triples of consecutive numbers.
We will show that it is impossible for all of them to have odd sums.

Let e and o denote an even and an odd number, respectively, in the sequence. A triple has an odd
sum if and only if it is (o, o, o) or (e, e, o) in any order. We can get a succession of odd sums by extended
sequences of the form · · · eeoeeoeeo · · · or · · · oooooo · · ·. However, because there are 50 even numbers, we
cannot maintain either of these patterns for the whole sequence. So there must be some transition point
between the two types; at such a point, there must be a double e followed or preceded by a string of os, and
at least one even triple sum must occur.

However, we can arrange the numbers so that 97 of the 98 triples have odd sums:

(2, 4, 1, 6, 8, 3, 10, 12, 5, · · · , 98, 100, 49, 51, 53, 55, · · · , 97, 99) ,

the only even sum being 100 + 49 + 51.

406. Let a, b. c be natural numbers such that the expression

a + 1
b

+
b + 1

c
+

c + 1
a

is also equal to a natural number. Prove that the greatest common divisor of a, b and c, gcd(a, b, c),
does not exceed 3

√
ab + bc + ca, i.e.,

gcd(a, b, c) ≤ 3
√

ab + bc + ca .

Solution. [A. Guo] Let k be the sum in the problem and let d be the greatest common divisor of a, b, c.
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Then a = du, b = dv, c = dw for some positive integers u, v, w and

k =
a + 1

b
+

b + 1
c

+
c + 1

a

=
a2c + ac + b2a + ab + bc + c2b

abc

if and only if
ab + bc + ca = kabc− (a2c + b2a + c2b)

if and only if
d2(uv + vw + wu) = d3(kuv − (u2w + v2u + w2v)) .

Hence d must divide uv + vw + wu, and so d3 divides, and thus does not exceed, ab + bc + ca. The result
follows.

407. Is there a pair of natural numbers, x and y, for which

(a) x3 + y4 = 22003?

(b) x3 + y4 = 22005?

Provide reasoning for your answers to (a) and (b).

Solution. (a) The answer is “no”. Consider the equation modulo 13. By Fermat’s Little Theorem,
212 ≡ 1, whence 22003 ≡ 211 = 2048 ≡ 7 modulo 13. The only possibilities for the congruence of x3 modulo
13 are 0, 1, 5, 8, 12, and the only possibilities for the congrence of y4 modulo 13 are 0, 1, 3, 9. We cannot
achieve a sum of 7 modulo 13.

(b) The answer is “yes”. Observe that

22005 = 22004 + 22004 = (2668)3 + (2501)4

so that one possible choice is (x, y) = (2668, 2501).

408. Prove that a number of the form a000 · · · 0009 (with n + 2 digits for which the first digit a is followed
by n zeros and the units digit is 9) cannot be the square of another integer.

Solution. (D. Rhee) It is easy to check that n 6= 0. Suppose, if possible, that n ≥ 1 and that a·10n+1+9 =
b2. Then a · 10n+1 = (b − 3)(b + 3). The right side is even and the product of two numbers differing by 6;
these two numbers have different remainders when divided by 5. Since the left side is a multiple of 5n+1,
exactly one of b− 3 and b + 3 is divisible by 5n+1. This implies that b + 3. the greater of the two factors is
at least equal to 2 · 5n+1, while the smaller one is at most equal to a · 2n. Therefore,

6 = (b + 3)− (b− 3) ≥ 2 · 5n+1 − a · 2n ≥ 2 · 5n+1 − 9 · 2n = 2n(5n+1/2n−1 − 9) ≥ 2(25− 9) = 32 > 6 ,

which is false. Hence, our assumption was wrong and there is no integer b for which the given number is
equal to its square.

409. Find the number of ways of dealing n cards to two persons (n ≥ 2), where the persons may receive
unequal (positive) numbers of cards. Disregard the order in which the cards are received.

Solution. If we allow hands with no cards, there are 2n ways in which they may be dealt (each card
may go to one of two people). There are two cases in which a person gets no cards. Subtracting these gives
the result: 2n − 2.

410. Prove that log n ≥ k log 2, where n is a natural number and k the number of distinct primes that divide
n.
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Solution. Let n be a natural number greater than 1 and pa1
1 pa2

2 · · · p
ak

k its prime factorization. Since
pi ≥ 2 and ai ≥ 1 for all i,

n ≥ 2a1+a2+···+ak ≥ 2k .

This is also true for n = 1, for in this case, k = 0 and n = 20. Thus, for any base b exceeding 1,

logb n ≥ logb 2k = k logb 2 .

411. Let b be a positive integer. How many integers are there, each of which, when expressed to base b, is
equal to the sum of the squares of its digits?

Solution. A simple calculation shows that 0 and 1 are the only single-digit solutions. We show that
there are no solutions with three or more digits. Suppose that n = a0 + a1b + · · · + ambm where m ≥ 2,
1 ≤ am ≤ b− 1 and 0 ≤ ai ≤ b− 1 for 0 ≤ i ≤ m− 1. Then

(a0 + a1b + · · ·+ ambm)− (a2
0 + a2

1 + · · ·+ am)2

= a1(b− a1) + a2(b2 − a2) + · · ·+ am(bk − am)− a0(a0 − 1)

≥ am(bm − am)− a0(a0 − 1) ≥ 1 · (b2 − (b− 1))− (b− 1)(b− 2)
= 2b− 1 ≥ 0 .

Thus, there are at most two digits for any example.

Let N(b) denote the total number of solutions, and N2(b) the number of two digit solutions. Thus,
N(n) = N2(b) + 2.

Thus, N2(n) is the number of pairs (a0, a1) satisfying

a0 + a1b = a2
0 + a2

1 , 0 ≤ a0 < b, 1 ≤ a1 < b . (1)

The transformation given by 2a0 = p+1, 2a1 = b+q establishes a one-one correspondence between the pairs
(a0, a1) satisfying (1) and the pairs (p, q) satisfying

p2 + q2 = 1 + b2 , p odd , 3 ≤ p ≤ b, 1 ≤ q ≤ b . (3)

Now we can express the number of solutions of (2) in terms of the number r(k) of solutions to

c2 + d2 = k . (3)

Suppose that b is even. Then 1 + b2 is odd, so that exactly one of p or q is odd. Thus, given a solution
(p, q) to (2) we can generate three others that solve (3) via (c, d) = (−p, q), (q, p), (q − p). We also add the
eight remaining solutions (±1,±b) and (±b,±1). This shows that r(1 + b2) = 4N2(b) + 8 = 4N(b).

Suppose that b is odd. Then 1 + b2 ≡ 2 (mod 4); hence, both p and q must be odd. Thus, from any
solution (p, q) to (2) we can generate another solution to (3) via (c, d) = (−p, q). We also add the remaining
four uncounted solutions, (±1,±b). This shows that r(1 + b2) = 2N2(b) + 4 = 2N(b).

The quantity r(k) can be computed from a formula given, for example, in the book Introduction to the
Theory of Numbers by Hardy and Wright. Using the fact that no prime of the form 4j + 3 can divide 1 + b2,
we find that

r(1 + b2) =
{

4τ(1 + b2) , if b is even,
2τ(1 + b2) , if b is odd,

where τ(n) is the number of positive integer divisors of n. Thus N(b) = τ(1 + b2).
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412. Let A and B be the midpoints of the sides, EF and ED, of an equilateral triangle DEF . Extend AB to
meet the circumcircle of triangle DEF at C. Show that B divides AC according to the golden section.
(That is, show that BC : AB = AB : AC.)

Solution. Consider the chords ED and CC ′. The angles EBC ′ and CBD are equal, since they are
vertically opposite, while angles C ′ED and DCC ′ are equal since they are subtended by the same chord
C ′D. Thus triangles C ′EB and DCB are similar. Therefore EB : C ′B = BC : BD.

Since EB = BD = AB,

BC : AB = BC : BD = EC : C ′B = AB : AC .

413. Let I be the incentre of triangle ABC. Let A′, B′ and C ′ denote the intersections of AI, BI and CI,
respectively, with the incircle of triangle ABC. Continue the process by defining I ′ (the incentre of
triangle A′B′C ′), then A′′B′′C ′′, etc.. Prove that the angles of triangle A(n)B(n)C(n) get closer and
closer to π/3 as n increases.

Solution. From triangle IAC we have that ∠AIC = π − A
2 −

C
2 = π+B

2 , so that B′ = ∠A′B′C ′ =
1
2∠A′IC ′ = 1

2∠AIC = π+B
4 . Similar relations hold for A′ and C ′. Assuming, wolog, A ≤ B ≤ C, then

A′ = 1
4 (π +A) ≤ B′ ≤ 1

4 (π +B) ≤ C ′ = 1
4 (π +C), and C ′−A′ = 1

4 (C −A), so that triangle A′B′C ′ is “four
times closer” to equilateral than triangle ABC is. The result follows.

414. Let f(n) be the greatest common divisor of the set of numbers of the form kn − k, where 2 ≤ k, for
n ≥ 2. Evaluate f(n). In particular, show that f(2n) = 2 for each integer n.

Solution. For any prime p, f(n) cannot contain a factor p2 because p2 6 |k(kn−1 − 1) for k = p. For any
n, 2|f(n).

If p is an odd prime and if a is a primitive root modulo p, then p|a(an−1− 1) only if (p− 1)|(n− 1). On
the other hand, if (p− 1)|(n− 1), then p|(kn − k) for every k. Thus, if Pn is the product of the distinct odd
primes p for which (p− 1)|(n− 1), then f(n) = 2Pn. (In particular, 6|f(n) for every odd n.)

As p− 1 is not a divisor of 2n− 1 for any odd prime p, it follows that f(n)− 2.

Comments. The symbol | means “divides” or “is a divisor of”. For every prime p, there is a number a
(called the primitive root modulo p such that p− 1 is the smallest values of k for which ak ≡ 1 modulo p.

415. Prove that

cos
π

7
=

1
6

+
√

7
6

(
cos

(
1
3

arccos
1

2
√

7

)
+
√

3 sin
(

1
3

arccos
1

2
√

7

))
.

Solution. The identity

cos 7θ = (cos θ + 1)(8 cos3 θ − 4 cos2 θ − 4 cos θ + 1)2 − 1

(derive this using de Moivre’s theorem, or otherwise) implies that the three roots of f(x) = 8x3−4x2−4x+1
are cos π

7 , cos 3π
7 and cos 5π

7 . Observe that cos π
7 > cos 3π

7 > 0 > cos 5π
7 . Thus, cos π

7 is the only root of the
cubic polynomial f(x) greater than cos 3π

7 .

Let

a = cos
(

1
3

arccos
−1
2
√

7

)
,

54



and let

c =
1
6

+
√

7
6

(
cos

(
1
3

arccos
1

2
√

7

)
+
√

3 cos
(

1
3

arccos
1

2
√

7

))
=

1
6

+
√

7
3

cos
(

1
3

(
π − arccos

1
2
√

7

))
=

1
6

+
√

7
3

a .

The function g(x) = cos( 1
3 arccos x) is increasing for −1 ≤ x ≤ 1, so that a > cos( 1

3 arccos(−1)) = 1
2 .

Therefore

x >
1 +
√

7
6

>
1
2

> cos
3π

7
.

Since 6c− 1 = 2
√

7a, the identity 4 cos3 θ − 3 cos θ = cos 3θ gives

1
14
√

7
(6c− 1)3 − 3

2
√

7
(6c− 1) =

−1
2
√

7
.

Hence

f(c) =
14
√

7
27

(
1

14
√

7
(6c− 1)3 − 3

2
√

7
(6c− 1) +

1
2
√

7

)
= 0 ,

and so c = cos π
7 .

416. Let P be a point in the plane.

(a) Prove that there are three points A,B, C for which AB = BC, ∠ABC = 90◦, |PA| = 1, |PB| = 2
and |PC| = 3.

(b) Determine |AB| for the configuration in (a).

(c) A rotation of 90◦ about B takes C to A and P to Q. Determine ∠APQ.

Solution 1. (a) We first show that a figure similar to the desired figure is possible and then get the
lengths correct by a dilatation. Place a triangle in the cartesian plane with A at (0, 1), B at (0, 0) and C at
(1, 0). Let P be at (x, y). The condition that PA : PB = 1 : 2 yields that

x2 + y2 = 4[x2 + (y − 1)2]⇐⇒ 0 = 3x2 + 3y2 − 8y + 4 .

The condition that PB : PC = 2 : 3 yields that

9[x2 + y2] = 4[(x− 1)2 + y2]⇐⇒ 0 = 5x2 + 5y2 + 8x− 4 .

Hence 3x + 5y = 4, so that 9x2 = 16− 40y + 25y2 and

0 = 2(17y2 − 32y + 14) .

Solving these equations yields

(x, y) =
(

5
√

2− 4
17

,
16− 3

√
2

17

)
,

a point that lies within the positive quadrant, and

(x, y) =
(
−5
√

2− 4
17

,
16 + 3

√
2

17

)
,
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a point that lies within the second quadrant..

(b) In the first situation,

|PB|2 =
20− 8

√
2

17
.

Rescaling the figure so that |PB| = 2, we find that the rescaled square has side length equal to the square
root of

(17)/(5− 2
√

2) = 5 + 2
√

2 .

In the second situation,

|PB|2 =
20 + 8

√
2

17
.

Rescaling the figure so that |PB| = 2, we find that the rescaled square has side length equal to the square
root of

(17)/(5 + 2
√

2) = 5− 2
√

2 .

(c) Since triangle BPQ is right isosceles, |PQ| = 2
√

2. Since also |AQ| = |CP | = 3 and |AP | = 1,
∠APQ = 90◦, by the converse of Pythagoras’ theorem.

Comment. Ad (a), P is on the intersection of two Apollonius circles with diameter joining (−2, 0) and
(2/5, 0) passing through the points (0, 2/

√
5) on the y−axis and with diameter joining (0, 2) and (0, 2/3).

These intersect within the triangle and outside of the triangle.

Solution 2. Suppose that the square has side length x. Let the perpendiculat distance from P to AB
be a and from P to BC be b, both distances measured within the right angle. Then we have the three
equations: (1) a2 + b2 = 4; (2) a2 + (x − b)2 = 1 or x2 = 2bx − 3; (3) b2 + (x − a)2 = 9 or x2 = 2ax + 5.
Hence 2x(b− a) = 8, so that x = 4(b− a)−1. Also 4x = x2(b− a) = 5b + 3a, which along with b− a = 4/x
yields

2a = x− 5
x

and 2b =
3
x

+ x .

Thus

16 =
(

x− 5
x

)2

+
(

3
x

+ x

)2

= 2x2 +
34
x2
− 4

=⇒ x4 − 10x2 + 17 = 0

=⇒ x2 = 5± 2
√

2 .

For 2a to be positive, we require that x2 > 5 and so x =
√

5 + 2
√

2 and P is inside triangle ABC. Since

(5− 2
√

2)2 <

(
5− 2× 7

5

)2

=
(

11
5

)2

< 5 ,

the second value of x yields negative a and the point lies on the opposite side of AB to C.

For (c), we consider two cases:

(1) |AB| =
√

5 + 2
√

2 and P lies inside the triangle ABC. Applying the law of cosines to triangle APB
yields cos ∠APB = −1/

√
2 and ∠APB = 135◦. Hence ∠APQ = ∠APB − ∠QPB = 135◦ − 45◦ = 90◦.

(2) |AB| =
√

5− 2
√

2 and P lies outside the triangle ABC. Then the law of cosines applied to triangle
APB yields cos ∠APB = 1/

√
2 and ∠APB = 45◦. Hence ∠APQ = ∠APB + ∠BPQ = 45◦ + 45◦ = 90◦.

Solution 3. [D. Dziabenko] We can juxtapose two right triangles of sides (2, 2, 2
√

2) and (1, 2
√

2, 3) to
obtain a quadrilateral with |XY | = |XW | = 2, |Y Z| = 1, |ZW | = 3 and |Y W | = 2

√
2. Since ∠XY Z = 135◦,

we can use the law of cosines to find that |XZ| =
√

5 + 2
√

2.
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A rotation of 90◦ about X takes W to Y and Z to T , so that |Y Z| = 1, |XY | = 2, |Y T | = |WZ| = 3 and
|XZ| = |XT | =

√
5 + 2

√
2. Relabel Y as P , X as B, Z as A and T as C to get the desired configuration.

For (b), we have that |AB| = |XZ| =
√

5 + 2
√

2, and, for (c), that Q = W and ∠APQ = ∠XY W = 90◦.

Solution 4. [J. Kileel] Let P ∼ (0, 0), B ∼ (0, 2), A ∼ (a, b), C ∼ (c, d). The conditions to be satisfied
are: (1) a2 + b2 = 1; (2) c2 + d2 = 9; (3) a2 + (b− 2)2 = c2 + (d− 2)2 =⇒ d = b + 2;

(4)
b− 2

a
=

c

2− d
=

c

−b
=⇒ −b2 + 2b = ac =⇒ b4 − 4b3 + 4b2 = (1− b2)(5− b2 − 4b) .

Hence
0 = 8b3 − 10b2 − 4b + 5 = (4b− 5)(2b2 − 1) .

Since b = −5/4 is extraneous (why?), either b = 1/
√

2 or b = −1
√

2.

Lat b = 1/
√

2. From symmetry, it suffices to take a = 1/
√

2 and we get

(a, b, c, d) =
(

1√
2
,

1√
2
,
2
√

2− 1√
2

,
2
√

2 + 1√
2

)
,

and
|AB|2 = |BC|2 = 5− 2

√
2 .

Lat b = −1/
√

2. Again we take a = 1/
√

2 and we get

(a, b, c, d) =
(

1√
2
,
−1√

2
,
−2
√

2− 1√
2

,
2
√

2− 1√
2

)
,

and
|AB|2 = |BC|2 = 5 + 2

√
2 .

Thus the configuration is possible and we have the length of |AB|. In the first case, the rotation about B
that takes C to A is clockwise and carries P to Q ∼ (−2, 2). It is straightforward to check that ∠APQ = 90◦.
In the second case, the rotation about B that takes C to A is counterclockwise and carries P to Q ∼ (2, 2).
Again, ∠APQ = 90◦.

Solution 5. Place B at (0, 0), A at (0, a), C at (a, 0) and P at (b, c). Then we have to satisfy the three
equations: (1) (a− c)2 + b2 = 1; (2)b2 + c2 = 4; (3) (b− a)2 + c2 = 9. Taking the differences of the first two
and of the last two lead to the equations

2c = a +
3
a

2b = a− 5
a

from which, through substitution in (2), we get that a4 − 10a2 + 17 = 0. This leads to the possibilities that
a2 = 5± 2

√
2, and we can complete the argument as in the foregoing solutions.

417. Show that for each positive integer n, at least one of the five numbers 17n, 17n+1, 17n+2, 17n+3, 17n+4

begins with 1 (at the left) when written to base 10.

Solution 1. It is equivalent to show that, for each natural number n, one of 1.7n+k (0 ≤ k ≤ 4) begins
with the digit 1. We begin with this observation: if for some positive integers u and r, 1.7u < 10r ≤ 1.7u+1,
then

1.7u+1 = (1.7)(1.7)u < (1.7)10r < 2 · 10r

and the first digit of 1.7u+1 is 1.
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We obtain the desired result by induction. 1.71 = 1.7 begins with 1, so one of the first five powers
of 1.7 begins with 1. Suppose that for some positive integer n exceeding 4, one, at least, of every five
consecutive powers of 1.7 up to 1.7n begins with 1. Let m ≤ n be the largest positive integer for which
10v < 1.7m < 2 · 10v for some integer v. Then 1.7m < 10v+1 and

1.7m+5 = (1.7)m(1.7)5 = (1.7)m(14.19857) > 10v+1

with the result that, for u equal to one of the numbers m, m+1, m+2, m+3, m+4, 1.7u < 10v+1 ≤ 1.7u+1.
Hence, one of the numbers 1.7m+k (1 ≤ k ≤ 5) begins with the digit 1. If it is 1.7m+k, then m + k > n and
we have established the result up to m + k.

Solution 2. For n = 1, 17n begins with 1. Suppose that, for some positive integer k, 17k begins with 1.
Then, either

10a < 17k <
105

174
10a

or
105

174
10a < 17k < 2× 10a

for some positive integer a. In the former case,

10a+5 < 175 × 10a < 17k+5 < 17× 10a+5

so that 17k+5 begins with 1. In the latter case,

10a+5 < 17k+4 < 2× 10a × 174 < 2× 10a × 3002 = 1.8× 10a+5

so that 17k+4 begins with 1. The result follows.

Solution 3. Let 17n = a · 10m + b where 0 ≤ b < 10m. Then

a× 10m < 17n < (a + 1)10m

so that
(1.7a)10m+1 < 17n+1 < (1.7)(a + 1)10m+1 .

Let 6 ≤ a ≤ 9. Then

10m+2 < (1.7)6× 10m+1 < 17n+1 < 1.7× 10m+2

and 17n+1 begins with 1. Let 4 ≤ a ≤ 5. Then

6× 10m+1 < 4(17)10m ≤ (17a)10m < 17n+1 < (1.7)6× 10m+1 < (1.02)10m+1

so that, either 17n+1 begins with 1, or 17n+1 begins with 6, 7, 8 or 9 and 17n+2 begins with 1. When
a = 3, 5 × 10m+1 < 17n+1 < 7 × 10m+1 and either 17n+2 or 17n+3 begins with 1. When a = 2, then
3 × 10m+1 < 17n+1 < 6 × 10m+1 and one of 17n+2, 17n+3, 17n+4 begins with 1. Finally, if a = 1, one
can similarly show that one of 17n+k (1 ≤ k ≤ 5) begins with 1. The argument now can be completed by
induction.

Solution 4. [D. Dziabenko] 17n beginning with 1 is equivalent to 10m < 17n < 2×10m for some positive
integer m, which in turn is equivalent to

m < n log 17 < m + log 2

or
p < n log 1.7 < p + log 2
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for some positive integer p(= m− n).

Suppose that 17n begins with 1. We observe that log 1.7 < log 2 = (1/3) log 8 < 1/3 and that 210 > 103,
whereupon log 2 > 3/10 and

log 1.7 = (log 17)− 1 > (log 16)− 1 = (4 log 2)− 1 >
6
5
− 1 =

1
5

=⇒ 1 < 5 log 1.7 < 5 log 2 < 5/3

and so the integer part of (n + 5) log 17 is exactly one more than the integer part of n log 17.

From the foregoing, each interval of length log 2 must contain a multiple of log 1.7 and in particular the
interval

{x : p + 1 < x < p + 1 + log 2}

must contain at least one of (n + k) ≤ 1.7 (1 ≤ k ≤ 5). We can now complete the argument for the result by
induction.

418. (a) Show that, for each pair m,n of positive integers, the minimum of m1/n and n1/m does not exceed
31/2.

(b) Show that, for each positive integer n,(
1 +

1√
n

)2

≥ n1/n ≥ 1 .

(c) Determine an integer N for which
n1/n ≤ 1.00002005

whenever n ≥ N . Justify your answer.

Solution. (a) Wolog, we may assume that m ≤ n, so that m1/n ≤ n1/n. It suffices to show that,
for each positive integer n, n1/n ≤ 31/3(< 31/2) or that n ≤ 3n/3. Since 3 > 64/27, it follows that
31/3 − 1 > (4/3)− 1 = 1/3 > 0 and the result holds for n = 1. Suppose as an induction hypothesis, that it
holds for n. Then, since 3n/3 ≥ n,

3(n+1)/3 ≥ (3 + n− 3)31/3 > 34/3 + n− 3

= n + 3(31/3 − 1) > n + 1 .

(b) Note that (
1 +

1√
n

)n

≥ 1 + n

(
1√
n

)
= 1 +

√
n >
√

n .

Alternatively, we can note that, by taking a term out of the binomial expansion,

(
√

n + 1)2n >

(
2n

2

)
(
√

n)2n−2 =
2n(2n− 1)

2
nn−1

= (2n− 1)nn ≥ nn+1 ,

from which (
1 +

1√
n

)2n

=
(
√

n + 1)2n

nn
> n .

(c) By (b), it suffices to make sure that (1 + n−1/2)2 ≤ 1.00002005. Let N = 1010. Then, for n ≥ N ,
we have that

√
n ≥ 105, so that

(1 + n−1/2)2 ≤ (1.00001)2 = 1.0000200001 < 1.00002005 .
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419. Solve the system of equations

x +
1
y

= y +
1
z

= z +
1
x

= t

for x, y, z not all equal. Determine xyz.

Solution 1. Taking pairs of the three equations, we obtain that

x− y =
y − z

yz
, y − z =

x− z

xz
, z − x =

x− y

xy
.

Since equality of any two of x, y, z implies equality of all three, x, y, z must be distinct. Multiplying these
three equations together we find that (xyz)2 = 1.

When xyz = 1, then z = 1/xy and we find that solutions are given by

(x, y, z) =
(

x,− 1
x + 1

,−x + 1
x

)
as long as x 6= 0,−1. When xyz = −1, then we obtain the solutions

(x, y, z) =
(

x,
1

1− x
,
x− 1

x

)
.

Thus, xyz = 1 or xyz = −1.

Solution 2. We have that xy + 1 = yt and yz + 1 = zt, so that xyz + z = yzt = zt2 − t, whence
z(t2 − 1) = xyz + t. Similarly, y(t2 − 1) = x(t2 − 1) = xyz + t. If x 6= y, since (x − y)(t2 − 1) = 0,
we must have that t = ±1. We find that (x, y, z, t) = ((1 − z)−1, z−1(z − 1), z, 1) and xyz = −1 or
(x, y, z, t) = (−(z + 1)−1,−z−1(z + 1), z,−1) and xyz = 1. Thus xyz is equal to 1 or −1.

Solution 3. We have that y = 1/(t− x) and z = t− (1/x) = (xt− 1)/x. This leads to

1
t− x

+
x

xt− 1
= t =⇒ 0 = xt3 − (1 + x2)t2 − xt + (1 + x2) = (t2 − 1)[xt− (1 + x2)] = 0 .

Similarly,
0 = (t2 − 1)[yt− (1 + y2)] = (t2 − 1)[zt− (1 + z2)] .

Either t2 = 1 or x, y, z are the roots of the quadratic equation λ2− tλ+1 = 0. Since a quadratic has at most
two roots, two of x and y must be equal, say x = y. But then y = z contrary to hypothesis. Hence t2 = 1.

Multiplying the three equations together yields that

t3 = xyz + 3t +
1

xyz

from which
0 = (xyz)2 + (3t− t3)(xyz) + 1 = (xyz)2 + (3t− t)(xyz) + t2 = (xyz + t)2 .

Hence xyz = t. As in the previous solutions, we check that t = 1 and t = −1 are both possible.

420. Two circle intersect at A and B. Let P be a point on one of the circles. Suppose that PA meets the
second circle again at C and PB meets the second circle again at D. For what position of P is the
length of the segment CD maximum?

Solution 1. The segment CD always has the same length. The strategy is to show that the angle
subtended by CD on its circle is equal to the sum of the angles subtended by AB on the two circles, and so
is constant. There re a number of configurations possible. Note that (i) and (ii) do not occur with the same
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pair of circle. The strategy is to show that the angle subtended by CD on its circle is equal to the sum or
difference of the angles subtended by AB on its two circles, and so CD is constant.

(i) A is between P and C; B is between P and D;
(ii) C is between P and A; D is between P and B;
(iii) A is between P and C; D is between P and B;
(iv) C is between P and A; B is between P and D;
(v) P is between A and C and also between B and D.

Ad (i), ∠CBD = ∠PCB + ∠BPC = ∠ACB + ∠APB. Ad (ii), ∠CBD = ∠ACB − ∠APB. Ad (iii),
by the angle sum of a triangle, ∠CAD = 180◦ − ∠CBD = ∠BCA + ∠BPA. Since ADBC is concyclic,
∠CBD = ∠PAD = 180◦ − ∠APD − ∠ADP = ∠ADB − ∠APB. Case (iv) is similar to (iii). Ad (v),
∠DBC = ∠DPC−∠PCB = ∠APB−∠ACB. The angle subtended by CD on the arc opposite P is 180◦−
∠DBC = ∠ACB +(180◦−∠APB). Also, ∠DBC = ∠APB−∠ADB = (180◦−∠ADB)− (180◦−∠APB).

Solution 2. We have the same set of cases as in the first solution. Let U be the centre of the circle
PAB and V the centre of the circle ABDC. Let UV and AB intersect in O; note that UV ⊥ AB. It is
straightforward to show that triangles PAB and PDC are similar, whence CD : AB = PC : PB and that
triangles PBC and UBV are similar, whence PC : PB = UV : UB. Therefore, CD : AB = UV : UB and
the results follows.

421. Let ABCD be a tetrahedron. Prove that

|AB| · |CD|+ |AC| · |BD| ≥ |AD| · |BC| .

Solution 1. First, we establish a small proposition. Let u and v be any unit vectors in space and p and
q any scalars. Then

|pu + qv| = |pv + qu| .

This is intuitively obvious, but can be formally established as follows:

|pu + qv|2 = (pu + qv) · (pu + qv) = p2 + q2 + 2pqu · v
= (pv + qu) · (pv + qu) = |pv + qu|2 .

Let u, v, w be unit vectors and b, c, d be positive scalars for which −−→AB = bu, −→AC = cv and −−→AD = dw.
Thus −−→BC = cv − bu, −−→CD = dw − cv and −−→BD = dw − bu.

Then
|AB||CD|+ |AC||BD| = b|dw − cv|+ c|dw − bu|

= b|dv − cw|+ c|bw − du| = |bdv − bcw|+ |cbw − cdu|
≥ |bdv − cdu| = d|bv − cu| = d|cv − bu| = |AD||BC| ,

as required.

Solution 2. Consider the planes of ABC and DBC as being hinged along BC. If we flatten the
tetrahedron by spreading the planes apart to a dihedral angle of 180◦, then D moves to a position D′

relative to A and |AD′| ≥ |AD|. The other distances between pairs of points remain the same. It is, thus,
enough to establish the result when A,B, C, D are coplanar. Suppose this to be the case.

Let a, b, c, d be complex numbers representing respectively the four points A,B, C, D. Then

|AB||CD|+ |AC||BD| = |(a− b)(c− d)|+ |(c− a)(b− d)|
≥ |(a− b)(c− d) + (c− a)(b− d)| = |(a− d)(c− b)| = |AD||BC| .
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(The result in the plane is known as Ptolemy’s Inequality.)

Solution 3. [Q. Ho Phu] On the ray AC determine C ′ so that |AC||AC ′| = |AB|2; on the ray AD
determine D′ so that |AD||AD′| = |AB|2. Since AB : AC = AC ′ : AB and angle A is common, triangles
ABC and AC ′B are similar, whence BC ′ : BC = AB : AC and

|BC ′| = |BC||AB|
|AC|

=
|BC||AD||AB|
|AC||AD|

.

Similarly,

|BD′| = |BD||AB|
|AD|

=
|BD||AC||AB|
|AD||AC|

,

and

|C ′D′| = |CD||AD′|
|AC|

=
|CD||AB|2

|AD||AC|
.

In the triangle BC ′D′, we have that |BD′|+ |C ′D′| > |BC ′|, whence

|BD||AC|+ |CD||AB| > |AD||BC|

as desired.

422. Determine the smallest two positive integers n for which the numbers in the set {1, 2, · · · , 3n − 1, 3n}
can be partitioned into n disjoint triples {x, y, z} for which x + y = 3z.

Solution. Suppose that the partition consists of the triples [xk, yk, zk] (1 ≤ k ≤ n). Then

3n∑
i=1

i =
n∑

k=1

(xk + yk + zk) = 4
n∑

k=1

zk

so that 4 must divide 1
23n(3n + 1), or that 3n(3n + 1) is a multiple of 8. Thus, either n ≡ 0 or n ≡ 5 (mod

8).

n = 5 is possible. Here are some examples:

[1, 11, 4], [2, 13, 5], [3, 15, 6], [9, 12, 7], [10, 14, 8]

[1, 14, 5], [2, 10, 4], [3, 15, 6], [9, 12, 7], [11, 13, 8]

[1, 8, 3], [2, 13, 5], [12, 15, 9], [4, 14, 6], [10, 11, 7]

[1, 11, 4], [2, 7, 3], [5, 13, 6], [10, 14, 8], [12, 15, 9]

[1, 8, 3], [2, 13, 5], [4, 14, 6], [10, 11, 7], [12, 15, 9]

Adjoining to any of these solutions the eight triples

[19, 29, 16], [21, 30, 17], [26, 28, 18], [27, 33, 20], [31, 35, 22], [32, 37, 23], [34, 38, 24], [36, 39, 25]

yields a possibility for n = 13.

For n = 8, we have

[1, 5, 2], [3, 9, 4], [6, 18, 8], [7, 23, 10], [14, 19, 11], [16, 20, 12], [17, 22, 13], [21, 24, 15]

There are many other possibilities.
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