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283. (a) Determine all quadruples (a, b, c, d) of positive integers for which the greatest common divisor of its
elements is 1,

a

b
=

c

d

and a + b + c = d.

(b) Of those quadruples found in (a), which also satisfy

1
b

+
1
c

+
1
d

=
1
a

?

(c) For quadruples (a, b, c, d) of positive integers, do the conditions a+b+c = d and (1/b)+(1/c)+(1/d) =
(1/a) together imply that a/b = c/d?

284. Suppose that ABCDEF is a convex hexagon for which ∠A + ∠C + ∠E = 360◦ and

AB

BC
· CD

DE
· EF

FA
= 1 .

Prove that
AB

BF
· FD

DE
· EC

CA
= 1 .

285. (a) Solve the following system of equations:

(1 + 42x−y)(51−2x+y) = 1 + 22x−y+1 ;

y2 + 4x = log2(y
2 + 2x + 1) .

(b) Solve for real values of x:
3x · 8x/(x+2) = 6 .

Express your answers in a simple form.

286. Construct inside a triangle ABC a point P such that, if X, Y , Z are the respective feet of the per-
pendiculars from P to BC, CA, AB, then P is the centroid (intersection of the medians) of triangle
XY Z.

287. Let M and N be the respective midpoints of the sides BC and AC of the triangle ABC. Prove that
the centroid of the triangle ABC lies on the circumscribed circle of the triangle CMN if and only if

4 · |AM | · |BN | = 3 · |AC| · |BC| .
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288. Suppose that a1 < a2 < · · · < an. Prove that

a1a
4
2 + a2a

4
3 + · · ·+ ana4

1 ≥ a2a
4
1 + a3a

4
2 + · · ·+ a1a

4
n .

289. Let n(r) be the number of points with integer coordinates on the circumference of a circle of radius
r > 1 in the cartesian plane. Prove that

n(r) < 6 3
√

πr2 .

290. The School of Architecture in the Olymon University proposed two projects for the new Housing Campus
of the University. In each project, the campus is designed to have several identical dormitory buildings,
with the same number of one-bedroom apartments in each building. In the first project, there are 12096
apartments in total. There are eight more buildings in the second project than in the first, and each
building has more apartments, which raises the total of apartments in the project to 23625. How many
buildings does the second project require?

291. The n-sided polygon A1, A2, · · · , An (n ≥ 4) has the following property: The diagonals from each of its
vertices divide the respective angle of the polygon into n− 2 equal angles. Find all natural numbers n
for which this implies that the polygon A1A2 · · ·An is regular.

292. 1200 different points are randomly chosen on the circumference of a circle with centre O. Prove that it
is possible to find two points on the circumference, M and N , so that:

• M and N are different from the chosen 1200 points;
• ∠MON = 30◦;
• there are exactly 100 of the 1200 points inside the angle MON .

293. Two players, Amanda and Brenda, play the following game: Given a number n, Amanda writes n
different natural numbers. Then, Brenda is allowed to erase several (including none, but not all) of
them, and to write either + or − in front of each of the remaining numbers, making them positive or
negative, respectively, Then they calculate their sum. Brenda wins the game is the sum is a multiple of
2004. Otherwise the winner is Amanda. Determine which one of them has a winning strategy, for the
different choices of n. Indicate your reasoning and describe the strategy.

294. The number N = 10101 · · · 0101 is written using n+1 ones and n zeros. What is the least possible value
of n for which the number N is a multiple of 9999?

295. In a triangle ABC, the angle bisectors AM and CK (with M and K on BC and AB respectively)
intersect at the point O. It is known that

|AO| ÷ |OM | =
√

6 +
√

3 + 1
2

and

|CO| ÷ |OK| =
√

2√
3− 1

.

Find the measures of the angles in triangle ABC.

296. Solve the equation

5 sinx +
5

2 sinx
− 5 = 2 sin2 x +

1
2 sin2 x

.

297. The point P lies on the side BC of triangle ABC so that PC = 2BP , ∠ABC = 45◦ and ∠APC = 60◦.
Determine ∠ACB.
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298. Let O be a point in the interior of a quadrilateral of area S, and suppose that

2S = |OA|2 + |OB|2 + |OC|2 + |OD|2 .

Prove that ABCD is a square with centre O.

299. Let σ(r) denote the sum of all the divisors of r, including r and 1. Prove that there are infinitely many
natural numbers n for which

σ(n)
n

>
σ(k)

k

whenever 1 ≤ k ≤ n.

300. Suppose that ABC is a right triangle with ∠B < ∠C < ∠A = 90◦, and let K be its circumcircle.
Suppose that the tangent to K at A meets BC produced at D and that E is the reflection of A in the
axis BC. Let X be the foot of the perpendicular for A to BE and Y the midpoint of AX. Suppose
that BY meets K again in Z. Prove that BD is tangent to the circumcircle of triangle ADZ.

301. Let d = 1, 2, 3. Suppose that Md consists of the positive integers that cannot be expressed as the sum of
two or more consecutive terms of an arithmetic progression consisting of positive integers with common
difference d. Prove that, if c ∈ M3, then there exist integers a ∈ M1 and b ∈ M2 for which c = ab.

302. In the following, ABCD is an arbitrary convex quadrilateral. The notation [· · ·] refers to the area.

(a) Prove that ABCD is a trapezoid if and only if

[ABC] · [ACD] = [ABD] · [BCD] .

(b) Suppose that F is an interior point of the quadrilateral ABCD such that ABCF is a parallelogram.
Prove that

[ABC] · [ACD] + [AFD] · [FCD] = [ABD] · [BCD] .

303. Solve the equation
tan2 2x = 2 tan 2x tan 3x + 1 .

304. Prove that, for any complex numbers z and w,

(|z|+ |w|)
∣∣∣∣ z

|z|
+

w

|w|

∣∣∣∣ ≤ 2|z + w| .

305. Suppose that u and v are positive integer divisors of the positive integer n and that uv < n. Is it
necessarily so that the greatest common divisor of n/u and n/v exceeds 1?

306. The circumferences of three circles of radius r meet in a common point O. The meet also, pairwise, in
the points P , Q and R. Determine the maximum and minimum values of the circumradius of triangle
PQR.

307. Let p be a prime and m a positive integer for which m < p and the greatest common divisor of m and
p is equal to 1. Suppose that the decimal expansion of m/p has period 2k for some positive integer k,
so that

m

p
= .ABABABAB . . . = (10kA + B)(10−2k + 10−4k + · · ·)

where A and B are two distinct blocks of k digits. Prove that

A + B = 10k − 1 .
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(For example, 3/7 = 0.428571 . . . and 428 + 571 = 999.)

308. Let a be a parameter. Define the sequence {fn(x) : n = 0, 1, 2, · · ·} of polynomials by

f0(x) ≡ 1

fn+1(x) = xfn(x) + fn(ax)

for n ≥ 0.

(a) Prove that, for all n, x,
fn(x) = xnfn(1/x) .

(b) Determine a formula for the coefficient of xk (0 ≤ k ≤ n) in fn(x).

309. Let ABCD be a convex quadrilateral for which all sides and diagonals have rational length and AC and
BD intersect at P . Prove that AP , BP , CP , DP all have rational length.

310. (a) Suppose that n is a positive integer. Prove that

(x + y)n =
n∑

k=0

(
n

k

)
x(x + k)k−1(y − k)n−k .

(b) Prove that

(x + y)n =
n∑

k=0

(
n

k

)
x(x− kz)k−1(y + kz)n−k .

311. Given a square with a side length 1, let P be a point in the plane such that the sum of the distances
from P to the sides of the square (or their extensions) is equal to 4. Determine the set of all such points
P .

312. Given ten arbitrary natural numbers. Consider the sum, the product, and the absolute value of the
difference calculated for any two of these numbers. At most how many of all these calculated numbers
are odd?

313. The three medians of the triangle ABC partition it into six triangles. Given that three of these triangles
have equal perimeters, prove that the triangle ABC is equilateral.

314. For the real numbers a, b and c, it is known that

1
ab

+
1
bc

+
1
ac

= 1 ,

and
a + b + c = 1 .

Find the value of the expression

M =
1

1 + a + ab
+

1
1 + b + bc

+
1

1 + c + ca
.

315. The natural numbers 3945, 4686 and 5598 have the same remainder when divided by a natural number
x. What is the sum of the number x and this remainder?

316. Solve the equation
|x2 − 3x + 2|+ |x2 + 2x− 3| = 11 .
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317. Let P (x) be the polynomial

P (x) = x15 − 2004x14 + 2204x13 − · · · − 2004x2 + 2004x ,

Calculate P (2003).

318. Solve for integers x, y, z the system

1 = x + y + z = x3 + y3 + z2 .

[Note that the exponent of z on the right is 2, not 3.]

319. Suppose that a, b, c, x are real numbers for which abc 6= 0 and

xb + (1− x)c
a

=
xc + (1− x)a

b
=

xa + (1− x)b
c

.

Prove that a = b = c.

320. Let L and M be the respective intersections of the internal and external angle bisectors of the triangle
ABC at C and the side AB produced. Suppose that CL = CM and that R is the circumradius of
triangle ABC. Prove that

|AC|2 + |BC|2 = 4R2 .

321. Determine all positive integers k for which k1/(k−7) is an integer.

322. The real numbers u and v satisfy
u3 − 3u2 + 5u− 17 = 0

and
v3 − 3v2 + 5v + 11 = 0 .

Determine u + v.

323. Alfred, Bertha and Cedric are going from their home to the country fair, a distance of 62 km. They
have a motorcycle with sidecar that together accommodates at most 2 people and that can travel at a
maximum speed of 50 km/hr. Each can walk at a maximum speed of 5 km/hr. Is it possible for all
three to cover the 62 km distance within 3 hours?

324. The base of a pyramid ABCDV is a rectangle ABCD with |AB| = a, |BC| = b and |V A| = |V B| =
|V C| = |V D| = c. Determine the area of the intersection of the pyramid and the plane parallel to the
edge V A that contains the diagonal BD.

325. Solve for positive real values of x, y, t:

(x2 + y2)2 + 2tx(x2 + y2) = t2y2 .

Are there infinitely many solutions for which the values of x, y, t are all positive integers?

Optional rider: What is the smallest value of t for a positive integer solution?

326. In the triangle ABC with semiperimeter s = 1
2 (a+ b+ c), points U, V,W lie on the respective sides BC,

CA, AB. Prove that
s < |AU |+ |BV |+ |CW | < 3s .

Give an example for which the sum in the middle is equal to 2s.

327. Let A be a point on a circle with centre O and let B be the midpoint of OA. Let C and D be points
on the circle on the same side of OA produced for which ∠CBO = ∠DBA. Let E be the midpoint of
CD and let F be the point on EB produced for which BF = BE.
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(a) Prove that F lies on the circle.

(b) What is the range of angle EAO?

328. Let C be a circle with diameter AC and centre D. Suppose that B is a point on the circle for which
BD ⊥ AC. Let E be the midpoint of DC and let Z be a point on the radius AD for which EZ = EB.

Prove that

(a) The length c of BZ is the length of the side of a regular pentagon inscribed in C.

(b) The length b of DZ is the length of the side of a regular decagon (10-gon) inscribed in C.

(c) c2 = a2 + b2 where a is the length of a regular hexagon inscribed in C.

(d) (a + b) : a = a : b.

329. Let x, y, z be positive real numbers. Prove that√
x2 − xy + y2 +

√
y2 − yz + z2 ≥

√
x2 + xz + z2 .

330. At an international conference, there are four official languages. Any two participants can communicate
in at least one of these languages. Show that at least one of the languages is spoken by at least 60% of
the participants.

331. Some checkers are placed on various squares of a 2m × 2n chessboard, where m and n are odd. Any
number (including zero) of checkers are placed on each square. There are an odd number of checkers in
each row and in each column. Suppose that the chessboard squares are coloured alternately black and
white (as usual). Prove that there are an even number of checkers on the black squares.

332. What is the minimum number of points that can be found (a) in the plane, (b) in space, such that each
point in, respectively, (a) the plane, (b) space, must be at an irrational distance from at least one of
them?

333. Suppose that a, b, c are the sides of triangle ABC and that a2, b2, c2 are in arithmetic progression.

(a) Prove that cot A, cot B, cot C are also in arithmetic progression.

(b) Find an example of such a triangle where a, b, c are integers.

334. The vertices of a tetrahedron lie on the surface of a sphere of radius 2. The length of five of the edges
of the tetrahedron is 3. Determine the length of the sixth edge.

335. Does the equation
1
a

+
1
b

+
1
c

+
1

abc
=

12
a + b + c

have infinitely many solutions in positive integers a, b, c?

336. Let ABCD be a parallelogram with centre O. Points M and N are the respective midpoints of BO and
CD. Prove that the triangles ABC and AMN are similar if and only if ABCD is a square.

337. Let a, b, c be three real numbers for which 0 ≤ c ≤ b ≤ a ≤ 1 and let w be a complex root of the
polynomial z3 + az2 + bz + c. Must |w| ≤ 1?

338. A triangular triple (a, b, c) is a set of three positive integers for which T (a) + T (b) = T (c). Determine
the smallest triangular number of the form a + b + c where (a, b, c) is a triangular triple. (Optional
investigations: Are there infinitely many such triangular numbers a + b + c? Is it possible for the three
numbers of a triangular triple to each be triangular?)
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339. Let a, b, c be integers with abc 6= 0, and u, v, w be integers, not all zero, for which

au2 + bv2 + cw2 = 0 .

Let r be any rational number. Prove that the equation

ax2 + by2 + cz2 = r

is solvable.

340. The lock on a safe consists of three wheels, each of which may be set in eight different positions. Because
of a defect in the safe mechanism, the door will open if any two of the three wheels is in the correct
position. What is the smallest number of combinations which must be tried by someone not knowing
the correct combination to guarantee opening the safe?

341. Let s, r, R respectively specify the semiperimeter, inradius and circumradius of a triangle ABC.

(a) Determine a necessary and sufficient condition on s, r, R that the sides a, b, c of the triangle are in
arithmetic progression.

(b) Determine a necessary and sufficient condition on s, r, R that the sides a, b, c of the triangle are in
geometric progression.

342. Prove that there are infinitely many solutions in positive integers of the system

a + b + c = x + y

a3 + b3 + c3 = x3 + y3 .

343. A sequence {an} of integers is defined by

a0 = 0 , a1 = 1 , an = 2an−1 + an−2

for n > 1. Prove that, for each nonnegative integer k, 2k divides an if and only if 2k divides n.

344. A function f defined on the positive integers is given by

f(1) = 1 , f(3) = 3 , f(2n) = f(n) ,

f(4n + 1) = 2f(2n + 1)− f(n)
f(4n + 3) = 3f(2n + 1)− 2f(n) ,

for each positive integer n. Determine, with proof, the number of positive integers no exceeding 2004
for which f(n) = n.

345. Let C be a cube with edges of length 2. Construct a solid figure with fourteen faces by cutting off all
eight corners of C, keeping the new faces perpendicular to the diagonals of the cuhe and keeping the
newly formed faces identical. If the faces so formed all have the same area, determine the common area
of the faces.

346. Let n be a positive integer. Determine the set of all integers that can be written in the form

n∑
k=1

k

ak

where a1, a2, · · · , an are all positive integers.
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347. Let n be a positive integer and {a1, a2, · · · , an} a finite sequence of real numbers which contains at least
one positive term. Let S be the set of indices k for which at least one of the numbers

ak, ak + ak+1, ak + ak+1 + ak+2, · · · , ak + ak+1 + · · ·+ an

is positive. Prove that ∑
{ak : k ∈ S} > 0 .

348. (a) Suppose that f(x) is a real-valued function defined for real values of x. Suppose that f(x) − x3 is
an increasing function. Must f(x)− x− x2 also be increasing?

(b) Suppose that f(x) is a real-valued function defined for real values of x. Suppose that both f(x)−3x
and f(x)−x3 are increasing functions. Must f(x)−x−x2 also be increasing on all of the real numbers,
or on at least the positive reals?

349. Let s be the semiperimeter of triangle ABC. Suppose that L and N are points on AB and CB produced
(i.e., B lies on segments AL and CN) with |AL| = |CN | = s. Let K be the point symmetric to B with
respect to the centre of the circumcircle of triangle ABC. Prove that the perpendicular from K to the
line NL passes through the incentre of triangle ABC.

350. Let ABCDE be a pentagon inscribed in a circle with centre O. Suppose that its angles are given by
∠B = ∠C = 120◦, ∠D = 130◦, ∠E = 100◦. Prove that BD, CE and AO are concurrent.

351. Let {an} be a sequence of real numbers for which a1 = 1/2 and, for n ≥ 1,

an+1 =
a2

n

a2
n − an + 1

.

Prove that, for all n, a1 + a2 + · · ·+ an < 1.

352. Let ABCD be a unit square with points M and N in its interior. Suppose, further, that MN produced
does not pass through any vertex of the square. Find the smallest value of k for which, given any position
of M and N , at least one of the twenty triangles with vertices chosen from the set {A,B,C, D, M, N}
has area not exceeding k.

Solutions

283. (a) Determine all quadruples (a, b, c, d) of positive integers for which the greatest common divisor of its
elements is 1,

a

b
=

c

d

and a + b + c = d.

(b) Of those quadruples found in (a), which also satisfy

1
b

+
1
c

+
1
d

=
1
a

?

(c) For quadruples (a, b, c, d) of positive integers, do the conditions a+b+c = d and (1/b)+(1/c)+(1/d) =
(1/a) together imply that a/b = c/d?

Solution 1. (a) Suppose that the conditions on a, b, c, d are satisfied. Note that b and c have symmetric
roles. Since ad = bc, if b and c were both even, then either a or d would be even, whence both would be
even (since a + b + c = d), contradicting the fact that the greatest common divisor of a, b, c, d is equal to 1.
Hence, at most one of b and c is even.
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Suppose, if possible, b and c were both odd. Then a and d would be odd as well. If b ≡ c (mod 4), then
bc ≡ 1 and b + c ≡ 2 (mod 4), whence ad ≡ a(a + 2) ≡ 3 6≡ bc (mod 4). If b ≡ c + 2 (mod 4), it can similarly
be shown that ad 6≡ bc (mod 4), In either case, we get an untenable conclusion. Hence, exactly one of b and
c is even and the other is odd.

Without loss of generality, we may suppose that a and b have opposite parity. Let g be the greatest
common divisor of a and b, so that a = gu and b = gv for some coprime pair (u, v) of positive integers with
opposite parity. Since d > c, it follows that b > a and v > u. Let w = v − u.

Since
b

a
=

a + b + c

c
=

a + b

c
+ 1 ,

it follows that
b− a

a(b + a)
=

1
c

whence

c =
gu(u + v)

w
and d =

gv(u + v)
w

.

Since the greatest common divisor of u and v is 1, w has no positive divisor in common with either u or v,
save 1. Any common divisor of w and u + v must divide 2u = (u + v)− (v − u) and 2v = (u + v) + (v − u);
such a common divisor equals 1. Since u and v have opposite parity and so w is odd, w must divide g. Since
the greatest common divisor of a, b, c, d is equal to 1, we must have that g = w. Hence

(a, b, c, d) = (u(v − u), v(v − u), u(v + u), v(v + u))

where u and v are coprime with opposite parity. Interchanging, the roles of b and c leads also to

(a, b, c, d) = (u(v − u), u(v + u), v(v − u), v(v + u))

with u, v coprime of opposite parity. On the other hand, any quadruples of this type satisfy the condition.

(b)
1
b

+
1
c

+
1
d

=
1

v(v − u)
+

1
u(v + u)

+
1

v(v + u)

=
1

v(v − u)
+

1
uv

=
u + (v − u)
uv(v − u)

=
1

v − u
=

1
a

.

(c) Note that the conditions imply that d−a and b+c are nonzero. The conditions yield that d−a = b+c
and (1/a)− (1/d) = (1/b) + (1/c). The second of these can be rewritten

ad

d− a
=

bc

b + c

so that ad = bc. Thus, all quadruples imply the required condition.

Solution 2. (a) [M. Lipnowski] Let a/b = c/d = r/s where the greatest common divisor of r and s is
equal to 1. Then a = hr, b = hs, c = kr, d = ks. Since the greatest common divisor of a, b, c, d equals 1, the
greatest common divisor of h and k is 1. From a + b + c = d, we have that (h + k)r = (k − h)s. Observe
that gcd(h + k, k − h) = 1 when h and k have opposite parity and gcd(h + k, k − h) = 2 when h and k are
both odd. (Why?)

Thus, when h and k have oppposite parity, r = k − h, s = k + h and

(a, b, c, d) = (h(k − h), h(k + h), k(k − h), k(k + h))

and, when h and k are both odd, then r = 1
2 (k − h), s = 1

2 (k + h) and

(a, b, c, d) = ((1/2)h(k − h), (1/2)h(k + h), (1/2)k(k − h), (1/2)k(k + h)) .

9



It can be checked that these always work. (Collate these with the result given in Solution 1.)

(b) Since a/b = c/(a + b + c), c = a(a + b)/(b− a) and d = (a + b) + [a(a + b)/(b− a)] = b(a + b)/(b− a).
Hence

1
b

+
1
c

+
1
d

=
1
b

+
b− a

a + b

(
1
a

+
1
b

)
=

1
b

+
b− a

ab
=

1
a

.

(c) [M. Lipnowski]
1
b

+
1
c

+
1

a + b + c
=

1
a

is equivalent to
0 = bc(a + b + c)− a(b + c)(a + b + c)− abc

= (b + c)(bc− a2 − ab− ac) ,

which in turn is equivalent to

0 = bc− a2 − ab− ac ⇐⇒ bc = a(a + b + c) = ad .

284. Suppose that ABCDEF is a convex hexagon for which ∠A + ∠C + ∠E = 360◦ and

AB

BC
· CD

DE
· EF

FA
= 1 .

Prove that
AB

BF
· FD

DE
· EC

CA
= 1 .

Solution 1. [A. Zhang] Since the hexagon is convex, all its angles are less than 180◦. A dilation of
factor |CD|/|DE| followed by a rotation, both with centre D, takes E to C and F to a point G so that
∆DCG ∼ ∆DEF , ∠DEF = ∠DCG and DE : EF : FD = DC : CG : GD. Since DE : DC = FD : GD
and ∠EDC = ∠FDG, ∆EDC ∼ ∆FDC and DE : DC : CE = FD : DG : GF . Now

∠DCG + ∠BCD = ∠DEF + ∠BCD = 360◦ − ∠FAB > 180◦

so that C lies within the triangle BDG and ∠BCG = 360◦ − (∠DCG + ∠BCD) = ∠FAB.

Also,
CG

CD
=

EF

DE
=

AF

AB
· BC

CD

so that CG : BC = AF : AB, with the result that ∆BCG ∼ ∆BAF , AB : BF : FA = CB : BG : GC
and ∠FBG = ∠ABC. From the equality of these angles and AB : CB = BF : BG, we have that
∆ABC ∼ ∆FBG and AB : BC : CA = FB : BG : GF . Hence

AB

BF
· FD

DE
· EC

CA
=

CA

GF
· GF

CE
· CE

CA
= 1

as desired.

Solution 2. [T. Yin] Lemma. Let ABCD be a convex quadrilateral with a, b, c, d, p, q the respective
lengths of AB,BC, CD,DA,AC and BD. Then

p2q2 = (ac + bd)2 − 4abcd cos2 θ

where 2θ = ∠A + ∠C.

10



Proof of Lemma. Locate E within the quadrilateral so that ∠EDC = ∠ADB and ∠ECD = ∠ABD.
Then ∆ABD ∼ ∆ECD whence ac = qx where x is the length of EC. Now ∠ADE = ∠BDC and
AD : DE = BD : CD whence ∆ADE ∼ ∆BDC and bd = qy with y the length of AE.

Hence abcd = q2xy and ac + bd = q(x + y). Therefore,

a2c2 + b2d2 + 2abcd = q2(x2 + 2xy + y2) = q2(x2 + y2) + 2abcd

which reduces to a2c2 + b2d2 = q2(x2 + y2).

Since ∠DEC = ∠BAD and ∠AED = ∠BCD,

∠AEC = ∠AED + ∠DEC = ∠C + ∠A = 2θ .

By the law of cosines,

p2 = x2 + y2 − 2xy cos 2θ = x2 + y2 − 2xy(2cos2θ − 1) =⇒

a2c2 + b2d2 = p2q2 + 4q2xy cos2 θ − 2q2xy

= p2q2 + 4abcd cos2 θ − 2abcd

so that the desired result follows. ♠

Note that, when ∠A+∠C = 180◦, then we get Ptolemy’s Theorem. Consider the hexagon of the problem
with |AB| = a, |BC| = b, |CD| = c, |DE| = d, |EF | = e, |FA| = f , |BF | = g, |CA| = h, |CF | = m,
|DF | = u and |CE| = v. We are given that ace = bdf and need to prove that auv = dgh.

From the lemma applied to ABDF , we obtain that

g2h2 = a2m2 + 2abfm + b2f2 − 4abfm cos2 α

where 2α = ∠BAC + ∠BCF . Applying the lemma to CDEF yields that

u2v2 = d2m2 + 2cdem + c2e2 − 4cdem cos2 β

where 2β = ∠FCD + ∠DEF . Since ∠A + ∠C + ∠E = 360◦, α + β = 180◦ and cos2 α = cos2 β. Finally,

d2g2h2 − a2u2v2 = (a2d2m2 + 2abd2fm + b2d2f2 − 4abd2fm cos2 α)

− (a2d2m2 + 2a2cdem + a2c2e2 − 4a2cdem cos2 β)

= 2adm(bdf − ace) + (b2d2f2 − a2c2e2)− 4adm(bdf − ace) cos2 α = 0 ,

whence auv = dgh as required.

Solution 3. [Y. Zhao] The proof uses inversion in a circle and directed angles. Recall that, if O is the
centre of a circle of radius r, then inversion is that involution X ↔ X ′ for which X ′ is on the ray from O
through X and OX · OX ′ = r2. It is not too hard to check using similar triangles that ∠OPQ = ∠OQ′P ′

and using the law of cosines that P ′Q′ = PQ · (r2/(OP · OQ)). For this problem, we make F the centre of
the inversion. Then

360◦ = ∠FAB + ∠BCD + ∠DEF = ∠FAB + ∠BCF + ∠FCD + ∠DEF

= ∠A′B′F + ∠FB′C ′ + ∠C ′D′F + ∠FD′E′ = ∠A′B′C ′ + ∠C ′D′E′

whence ∠C ′B′A′ = ∠C ′D′E′.

In the following, we suppress the factor r2. We obtain that

A′B′

B′C ′ ·
C ′D′

D′E′ =
(

AB

FA · FB
· FB · FC

BC

)
·
(

CD

FC · FD
· FD · FE

DE

)
=

AB

FA
· CD

BC
· EF

DE
= 1
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so that A′B′ : B′C ′ = D′E′ : C ′D′. This, along with ∠C ′B′A′ = ∠C ′D′E′ implies that ∆C ′B′A′ ∼
∆C ′D′E′, so that A′B′ : A′C ′ = D′E′ : E′C ′ or A′B′ · E′C ′ = A′C ′ · E′D′.

Therefore

AB

BF
· FD

DE
· EC

CA
=

(
A′B′

FA′ · FB′ ·B
′F

)
·
(

1
F ′D′ ·

FD′ · FE′

D′E′

)
·
(

E′C ′

FE′ · FC ′ ·
FC ′ · FA′

C ′A′

)
=

A′B′

A′C ′ ·
E′C ′

E′D′ = 1 ,

as desired.

Solution 4. [M. Abdeh-Kolahchi] Let A,B,C, D, E, F be points in the complex plane with

B −A = a = |a|(cos α + i sinα)

C −B = b = |b|(cos β + i sinβ)

D − C = c = |c|(cos γ + i sin γ)

E −D = d = |d|(cos δ + i sin δ)

F − E = e = |e|(cos ε + i sin ε)

A− F = f = |f |(cos φ + i sinφ) .

Modulo 360◦, we have that
∠A = ∠FAB ≡ 180◦ − (φ− α)

∠C = ∠BCD ≡ 180◦ − (δ − β)

∠E = ∠DEF ≡ 180◦ − (ε− γ) .

Also a + b + c + d + e + f = 0 and

ace

bdf
=
|a||c||e|(cos α + i sinα)(cos γ + i sin γ)(cos ε + i sin ε)
|b||d||f |(cos β + i sinβ)(cos δ + i sin δ)(cos φ + i sinφ)

= 1(cos(α− φ + δ − β + ε− γ))
= cos(∠A− 180◦ + ∠C − 180◦ + ∠E − 180◦) = cos(−180◦) = −1 ,

whence ace + bdf = 0. Therefore,

0 = ad(a + b + c + d + e + f) + (ace + bdf) = a(d + e)(c + d) + d(a + f)(a + b) ,

whence
a(d + e)(c + d)
d(a + f)(a + b)

= −1 =⇒ |a|
|a + f |

· |d + e|
|d|

· |c + d|
|a + b|

= 1

=⇒ AB

BF
· FD

DE
· EC

CA
= 1 .

285. (a) Solve the following system of equations:

(1 + 42x−y)(51−2x+y) = 1 + 22x−y+1 ;

y2 + 4x = log2(y
2 + 2x + 1) .

(b) Solve for real values of x:
3x · 8x/(x+2) = 6 .

12



Express your answers in a simple form.

Solution. Let u = 2x− y. Then

(1 + 4u)(51−u) = 1 + 2u+1

so that

5u−1 =
1 + 22u

1 + 2u+1
= 2u−1 +

1− 2u−1

1 + 2u+1
.

Thus,

5u−1 − 2u−1 =
1− 2u−1

1 + 2u+1
.

When u > 1, the left side of this equation is positive while the right is negative; when u < 1, the reverse is
true. Hence, the only possible solution is u = 1, which checks out.

Substituting for x leads to
y2 + 2y + 2 = log2(y

2 + y + 2) .

Since y2 + y + 2 = (y + 1
2 )2 + 7

4 > 0, the right side is defined and is in fact positive. Let

φ(y) = y2 + 2y + 2− log2(y
2 + y + 2) .

Then

φ′(y) =
2y(y + 1)2 + 4(y + 1)− (log2 e)(2y + 1)

y2 + y + 2
.

φ′(y) = 0 ⇐⇒ (y + 1)2 = −
(

(2− log2 e) +
4− log2 e

2y

)
.

From the graphs of the two sides of the equation, we see that the left side and the right side have opposite
signs when y > 0 and become equal for exactly one value of y. It follows that φ′(y) changes sign exactly once
so that φ(y) decreases and then increases. Thus, φ(y) vanishes at most twice. Indeed, φ(−2) = φ(−1) = 0,
and so (x, y) = (0,−1), (− 1

2 ,−2) are the only solutions of the equation.

(b) The equation can be rewritten

1 = 31−x22(1−x)/(x+2)

whence
0 = (1− x)(log 3 + (2/(x + 2)) log 2) .

Thus, either x = 1 or 0 = log2 3 + 2/(x + 2). The latter leads to

x = −2(1 + log3 2) = −2(log3 6) = − log3 36 .

286. Construct inside a triangle ABC a point P such that, if X, Y , Z are the respective feet of the per-
pendiculars from P to BC, CA, AB, then P is the centroid (intersection of the medians) of triangle
XY Z.

Solution 1. Let AU , BV , CW be the medians of triangle ABC and let AL, BM , CN be their respective
images in the bisectors of angles A, B, C. Since AU , BV , CW intersect in a common point (the centroid of
∆ABC). AL, BM , CN must intersect in a common point P . This follows from the sine version of Ceva’s
theorem and its converse. Let X, Y , Z be the respective feet of the perpendiculars from P to sides BC,
AC, AB.

Let I, J , K be the respective feet of the perpendiculars from the centroid G to the sides BC, AC
and AB. The quadrilateral PY AZ is the image of the quadrilateral GJAK under a reflection in the angle
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bisector of A followed by a dilation with centre A and factor AP/AG. Hence PY : PZ = GK : GI. Since
triangles AGB and AGC have the same area,

AB ·GK = AC ·GJ =⇒ PY : PZ = AC : AB = b : c .

Applying a similar argument involving PX, we find that

PX : PY : PZ = a : b : c .

Let PX = ae, PY = be, PZ = ce. Then, since ∠XPY + ∠ACB = 180◦,

[PXY ] =
1
2
abe2 sin∠XPY = e2

(
1
2
ab sinC

)
= e2[ABC] .

Similarly, [PY Z] = [PZX] = e2[ABC] = [PXY ], whence P must be the centroid of triangle XY Z.

Solution 2. [M. Lipnowski] Erect squares ARSB, BTUC, CV WA externally on the edges of the triangle.
Suppose that RS and V W intersect at A′, RS and TU at B′ and TU and UW at C ′.

We establish that AA′, BB′ and CC ′ are concurrent. They are cevians in the triangle A′B′C ′. We have
that

sin∠RA′A

sin∠WA′A
· sin∠V C ′C

sin∠UC ′C
· sin∠TB′B

sin∠SB′B

=
(AR/AA′)
(AW/AA′)

· (V C/CC ′)
(UC/CC ′)

· (TB/BB′)
(BS/BB′)

=
AR

AW
· V C

UC
· TB

BC
=

c

b
· b

a
· a

c
= 1 .

Hence AA′, BB′, CC ′ intersect in a point P by the converse to Ceva’s Theorem. P is the desired point.

To prove that this works, we first show that PX : PY : PZ = a : b : c, and then that [XPY ] = [Y PZ] =
[ZPX]. Observe that, since ∆PZA ∼ ∆ARA′ and ∆PY A ∼ ∆AWA′,

PY

PZ
=

PY (AA′/PA)
PZ(AA′/PA)

=
AW

AR
=

b

c
,

and similarly that PX : PZ = a : c. Now

∠XPY = 360◦ − ∠PXC − ∠PY C − ∠XCY = 180◦ − ∠XCY = 180◦ − ∠ACB ,

so that [XPY ] = 1
2PX · PY sin∠XPY = 1

2PX · PY sin∠ACB. We find that

[XPY ] : [Y PZ] : [ZPX] =
1
2
PX · PY sin∠ACB :

1
2
PY · PZ sin∠ACB :

1
2
PZ · PX sin∠ABC

=
1
2
ab sinC :

1
2
bc sinA :

1
2
ca sinB = [ABC] : [ABC] : [ABC] = 1 : 1 : 1 .

Hence [XPY ] = [Y PZ] = [ZPX] = 1
3 [XY Z], so that the altitudes of these triangle from P to the sides of

triangle XY Z are each one-third of the corresponding altitudes for triangle XY Z. Hence P must be the
centroid of triangle XY Z.

Comment. A. Zhang and Y. Zhao gave the same construction. Zhang first gave an argument that P ,
being the centroid of triangle XY Z is characterized by PX : PY : PZ = a : b : c. This is a result of the
characterization [XPY ] = [Y PZ] = [ZPX] and the law of sines, with the argument similar to Lipnowski’s.
Zhao used the fact that PX : PY : PZ = BC : CA : AB and that the vectors −−→PX, −−→PY , −→PZ were dilated
versions of −−→BC, −→CA, −−→AB after a 90◦ rotation, so that −−→PX +−−→

PY +−→
PZ = −→

O .
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287. Let M and N be the respective midpoints of the sides BC and AC of the triangle ABC. Prove that
the centroid of the triangle ABC lies on the circumscribed circle of the triangle CMN if and only if

4 · |AM | · |BN | = 3 · |AC| · |BC| .

Solution 1.

4|AM ||BN | = 3|AC||BC| ⇐⇒ 12|AM ||GN | = 12|AN ||MC| ⇐⇒ |AM | : |MC| = |AN | : |GN |

⇐⇒ ∆AMC ∼ ∆ANG ⇐⇒ ∠AMC = ∠ANG

⇐⇒ GMGN is concyclic.

Solution 2. [A. Zhang] Since M and N are respective midpoints of BC and AC, [ABC] = 4[NMC], so
that

[ABMN ] =
3
4
[ABC] =

3
8
|AC||BC| sin∠ACB .

However, [ABMN ] = 1
2 |AM ||BN | sin∠NGM (why?). Hence

4|AM ||BN | sin∠NGM = 3|AC||BC| sin∠ACB .

Observe that G lies inside triangle ABC, and so lies within the circumcircle of this triangle. Hence ∠NGM =
∠AGB > ∠ACB. We deduce that

4|AM ||BN | = 3|AC||BC| ⇐⇒ sin∠NGM = sin∠ACB ⇐⇒ ∠NGM + ∠ACB = 180◦

⇐⇒ CMGN is concyclic.

288. Suppose that a1 < a2 < · · · < an. Prove that

a1a
4
2 + a2a

4
3 + · · ·+ ana4

1 ≥ a2a
4
1 + a3a

4
2 + · · ·+ a1a

4
n .

Solution. The result is trivial for n = 2. To deal with the n = 3 case, observe that, when x < y < z,

(xy4 + yz4 + zx4)− (yx4 + zy4 + xz4) = (1/2)(z − x)(y − x)(z − y)[(x + y)2 + (x + z)2 + (y + z)2] ≥ 0 .

As an induction hypothesis, assume that the result holds for the index n ≥ 3. Then

(a1a
4
2 + a2a

4
3 + · · ·+ ana4

n+1 + an+1a
4
1)− (a2a

4
1 + a3a

4
2 + · · ·+ an+1a

4
n + a1a

4
n+1)

= (a1a
4
2 + a2a

4
3 + · · ·+ ana4

1)− (a2a
4
1 + a3a

4
2 + · · ·+ a1a

4
n)

+ (a1a
4
n + ana4

n+1 + an+1a
4
1)− (ana4

1 + an+1a
4
n + a1a

4
n+1) ≥ 0 ,

as desired.

289. Let n(r) be the number of points with integer coordinates on the circumference of a circle of radius
r > 1 in the cartesian plane. Prove that

n(r) < 6 3
√

πr2 .

Solution. Let A = πr2 be the area of the circle, so that the right side of the inequality is 6A1/3. We
observe that A > 3, π2 < (22/7)2 < 10 < (2.2)3.

6A1/3 − 2π2/3A1/3 = (6− 2π2/3)A1/3 > (6− 2× 101/3)A1/3

> (6− 4.4)× 31/3 > 1.6× 1.25 = 2 ,
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so that there is an even integer k for which

6 = 2× 32/3 × 31/3 < 2π2/3A1/3 < k < 6A1/3 .

In particular, 8π2A < k3.

Let P1P2 · · ·Pk be a regular k−gon inscribed in the circle. Locate the vertices so that none have integer
coordinates. (How?) Identify Pk+1 = P1 and Pk+2 = P2, and let vi = −−−−→

PiPi+1 for 1 ≤ i ≤ k. Observe that
vi has length less than 2πr/k = (2/k)(πA)1/2. Then, for each i, the area of triangle PiPi+1Pi+2 is equal to

1
2
|vi × vi+1| =

1
2
|vi||vi+1| sin(2π/k) <

1
2
× 4

k2
× πA× 2π

k
=

1
2
× 8π2

k3
×A <

1
2

.

Suppose, if possible, that the arc joining Pi and Pi+2 (through Pi+1) contains points U , V , W , each with
integer coordinates. Then, if u, v, w are the corresponding vectors for these points, then |(v−u)× (w−u)|
must be a positive integer, and so the area of triangle UV W must be at least 1/2. But each of the sides of
triangle UV W has length less than the length of PiPi+2 and the shortest altitude of triangle UV W is less
than the altitude of triangle PiPi+1Pi+2 from Pi+1 to side PiPi+2. Thus,

1
2
≤ [UV W ] ≤ [PiPi+1Pi+2] <

1
2

,

a contradiction. Hence, each arc PiPi+2 has at most two points with integer coordinates. The whole
circumference of the circle is the union of k/2 nonoverlapping such arcs, so that there Must be at most k
points with integer coordinates. The result follows.

290. The School of Architecture in the Olymon University proposed two projects for the new Housing Campus
of the University. In each project, the campus is designed to have several identical dormitory buildings,
with the same number of one-bedroom apartments in each building. In the first project, there are 12096
apartments in total. There are eight more buildings in the second project than in the first, and each
building has more apartments, which raises the total of apartments in the project to 23625. How many
buildings does the second project require?

Solution. Let the number of buildings in the first project be n. Then there must be 12096/n apartments
in each of them. The number of buildings in the second project is n + 8 with 23625/(n + 8) apartments
in each of them. Since the number of apartments is an integer, n + 8, and so n, is odd. Furthermore,
12096 = 26 · 33 · 7 and 23625 = 33 · 53 · 7. Since n is an odd factor of 12096, n must take one of the values
1, 3, 7, 9, 21, 27, 63 or 189. Since n + 8 must be a factor of 23625, the only possible values for n are 1, 7 or
27. Taking into account that the number of apartments in each building of the second project is more than
the number of apartments in each building of the first project, n must satisfy the inequality

12096
n

<
23625
n + 8

,

which is equivalent to n > 512/61. Thus, n ≥ 9. Therefore, n = 27 and n + 8 = 35. The second project
requires 35 buildings.

291. The n-sided polygon A1, A2, · · · , An (n ≥ 4) has the following property: The diagonals from each of its
vertices divide the respective angle of the polygon into n− 2 equal angles. Find all natural numbers n
for which this implies that the polygon A1A2 · · ·An is regular.

Solution. Let the measures of the angles of the polygon at each vertex Ai be ai for 1 ≤ i ≤ n. When
n = 4, the polygon need not be regular. Any nonsquare rhombus has the property.

Let n exceed 4. Consider triangle A1A2An. We have that

a1 +
a2

n− 2
+

an

n− 2
= 180◦ .
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Since the sum of the exterior angles of an n−gon is a1 + a2 + · · ·+ an = (n− 2)180◦, we find that

(n− 3)a1 = a3 + a4 + · · ·+ an−1 .

Suppose, wolog, that a1 is a largest angle in the polygon. Then

(n− 3)a1 = a3 + a4 + · · ·+ an−1 ≤ (n− 3)a1

with equality if and only if a1 = a3 = · · · = an−1. Suppose, if possible that one of a2 and an is strictly less
than a1. We have an inequality for a4 analogous to the one given for a1, and find that

(n− 3)a4 = a1 + a2 + a6 + · · ·+ an < (n− 3)a1 = (n− 3)a4 ,

a contradiction. Hence, all the angles ai must be equal and the polygon regular.

292. 1200 different points are randomly chosen on the circumference of a circle with centre O. Prove that it
is possible to find two points on the circumference, M and N , so that:

• M and N are different from the chosen 1200 points;
• ∠MON = 30◦;
• there are exactly 100 of the 1200 points inside the angle MON .

Solution. The existence of the points M and N will be evident when we prove that there is a central
angle of 30◦ which contains exactly 100 of the given points. Construct six diameters of the circle for which
none of their endpoints coincide with any of the given points and they divide its circumference into twelve
equal arcs of 30◦; such a construction is always possible. If one of the angles contains exactly 100 points,
then we have accomplished our task. Assume none of the angles contains 100 points. Then some contain
more and others, less. Wolog, we can choose adjacent angles for which the first contains d1 > 100 points
and the second d2 < 100 points. Define a function d which represents the number of points inside a rotating
angle with respect to its position, and imagine this rotating angle moves from the position of the first of
the adjacent angles to the second. As the angle rotates, one of the following occurs: (i) a new point enters
the rotating angle; (ii) a point leaves the rotating angle; (iii) no point leaves or enters; (iv) one point leaves
while another enters. Thus, the value of d changes by 1 at a time from d1 to d2, as so at some point must
take the value 100. The desired result follows.

293. Two players, Amanda and Brenda, play the following game: Given a number n, Amanda writes n
different natural numbers. Then, Brenda is allowed to erase several (including none, but not all) of
them, and to write either + or − in front of each of the remaining numbers, making them positive or
negative, respectively, Then they calculate their sum. Brenda wins the game is the sum is a multiple of
2004. Otherwise the winner is Amanda. Determine which one of them has a winning strategy, for the
different choices of n. Indicate your reasoning and describe the strategy.

Solution. Amanda has a winning strategy, if n ≤ 10. She writes the numbers 1, 2, 22, 23, · · · , 2n−1.
Recall that, for any natural number k, 2k > 1 + 2 + · · ·+ 2k−1. Since 210 = 1024, it is clear that, regardless
of Brenda’s choice, the result sum but lies between −1023 and 1023, inclusive, and it is not 0, since its sign
coincides with the sign of the largest participating number. Hence, the sum cannot be a multiple of 2004.

Let n ≥ 11. Then it is Brenda that has a winning strategy. The set C of numbers chosen by Amanda
has 2n − 1 > 2003 different non-empty subsets. By the Pigeonhole Principle, two of these sums must leave
the same remainder upon division by 2004. Let A and B be two sets with the same remainder. Brenda
assigns a positive sign to all numbers that lie in A but not in B; she assigns a negative sign to all numbers
that lie in B but not in A; she erases all the remaining numbers of C. The sum of the numbers remaining
is equal to the difference of the sum of the numbers in A and B, which is divisible by 2004. Thus, Brenda
wins.
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Therefore, Amanda has a winning strategy when n ≤ 10 and Brenda has a winning strategy when
n ≥ 11.

294. The number N = 10101 · · · 0101 is written using n+1 ones and n zeros. What is the least possible value
of n for which the number N is a multiple of 9999?

Solution. Observe that N = 1 + 102 + · · ·+ 102n, 9999 = 32 · 11 · 101 and 102 ≡ 1 modulo 9 and modulo
11. Modulo 9 or modulo 11, N ≡ n + 1, so that N is a multiple of 99 if and only if n ≡ 98 (mod 99). N is
a multiple of 101 if and only if n is odd. Hence the smallest value of n for which N is a multiple of 9999 is
197.

295. In a triangle ABC, the angle bisectors AM and CK (with M and K on BC and AB respectively)
intersect at the point O. It is known that

|AO| ÷ |OM | =
√

6 +
√

3 + 1
2

and

|CO| ÷ |OK| =
√

2√
3− 1

.

Find the measures of the angles in triangle ABC.

Solution. Let AB = c, BC = a, AC = b, CM = x, AK = y, ∠ABC = β, ∠ACB = γ and ∠CAB = α.
In triangle AMC, CO is an angle bisector, whence

AC : CM = AO : OM ⇐⇒ b

x
=
√

6 +
√

3 + 1
2

. (1)

In triangle ABC, AM is an angle bisector, whence

AB : AC = BM : CM ⇐⇒ c

b
=

a− x

x
⇐⇒ x

a
=

b

c + b
. (2)

Multiplying (1) and (2), we get

b

a
=

(
√

6 +
√

3 + 1)b
2(c + b)

⇐⇒ a =
2(b + c)√
6 +

√
3 + 1

. (3)

Similarly, in triangle AKC, AO is an angle bisector. Hence

CO : OK = AC : AK ⇐⇒
√

3− 1√
2

=
y

b
. (4)

In triangle ABC, CK is an angle bisector. Hence

BC : AC = BK : AK ⇐⇒ a

b
=

c− y

y
⇐⇒ a + b

b
=

c

y
. (5)

Multiplying (4) and (5), we get

c

b
=

(a + b)(
√

3− 1)
b
√

2
⇐⇒ c =

(a + b)(
√

3− 1)√
2

. (6)

Solve (3) and (6) to get b and c in terms of a. We find that

(b, c) =
((√

3 + 1
2

)
a,

(√
6

2

)
a

)
.
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From the Law of Cosines for triangle ABC,

cos γ =
a2 + b2 − c2

2ab
=

1
2
⇐⇒ γ = 60◦ .

From the Law of Sines, we have that

sinα

sin γ
=

a

c
⇐⇒ sinα =

1√
2
⇐⇒ α = 45◦ .

The remaining angle β = 75◦.

296. Solve the equation

5 sinx +
5

2 sinx
− 5 = 2 sin2 x +

1
2 sin2 x

.

Solution 1. [G. Siu; T. Liu] Let u = sinx. For the equation to be meaningful, we require that u 6= 0
(mod π). The equation is equivalent to

0 = 4u4 − 10u3 + 10u2 − 5u + 1 = (u− 1)(4u3 − 6u2 + 4u− 1)

= (u− 1)[u4 − (1− u)4] = (u− 1)[u2 − (u− 1)2][u2 + (u− 1)]2

= u(u− 1)(2u− 1)[u2 + (u− 1)2] .

We must have that u = 1 or u = 1/2, whence x ≡ π/6, π/2, 5π/6 (mod 2π).

Solution 2. We exclude x ≡ 0 (mod π). Let y = sinx + (2 sinx)−1. The given equation is equivalent to

0 = 2y2 − 5y + 3 = (2y − 3)(y − 1) .

Thus
sinx +

1
2 sinx

= 1

or
sinx +

1
2 sinx

=
3
2

.

The first equation leads to
0 = sin2 x + (sinx− 1)2

with no real solutions, while the second leads to

0 = 2 sin2 x− 3 sinx + 1 = (2 sinx− 1)(sinx− 1) ,

whence it follows that x ≡ π/6, π/2, 5π/6 (mod 2π).

297. The point P lies on the side BC of triangle ABC so that PC = 2BP , ∠ABC = 45◦ and ∠APC = 60◦.
Determine ∠ACB.

Solution 1. Let D be the image of C under a reflection with axis AP . Then ∠APC = ∠APD =
∠DPB = 60◦, PD = PC = 2BP , so that ∠DBP = 90◦. Hence AB bisects the angle DBP , and AP bisects
the angle DPC, whence A is equidistant from BD, PC and PD.

Thus, AD bisects ∠EDP , where E lies on BD produced. Thus

∠ACB = ∠ADP =
1
2
∠EDP

=
1
2
(180◦ − ∠BDP ) =

1
2
(180◦ − 30◦) = 75◦ .
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Solution 2. [Y. Zhao] Let Q be the midpoint of PC and R the intersection of AP and the right bisector
of PQ, so that PR = QR and BR = CR. Then ∠RPQ = ∠RQP = 60◦ and triangle PQR is equilateral.
Hence PB = PQ = PR = RQ = QC and ∠PBR = ∠PRB = ∠QRC = ∠QCR = 30◦.

Also, ∠RBA = 15◦ = ∠PAB = ∠RAB, so AR = BR = CR. Thus, ∠RAC = ∠RCA. Now
∠ARC = 180◦ − ∠PRQ− ∠QRC = 90◦, so that ∠RCA = 45◦ and ∠ACB = 75◦.

Solution 3. [R. Shapiro] Let H be the foot of the perpendicular from C to AP . Then CPH is a
30−60−90 triangle, so that BP = 1

2PC = PH and ∠PBH = ∠PHB = 30◦ = ∠PCH. Hence, BH = HC.
As

∠HAB = ∠PAB = 180◦ − 120◦ − 45◦ = 15◦ = ∠ABP − ∠HBP = ∠ABH ,

AH = BH = HC. Therefore, ∠HAC = ∠HCA = 45◦. Thus, ∠ACB = ∠HCA + ∠PCH = 75◦.

Solution 4. From the equation expressing tan 30◦ in terms of tan 15◦, we find that tan 15◦ = 2−
√

3 and
sin 15◦ =

√
3−1

2
√

2
. Let ∠ACP = θ, so that

∠PAC = 180◦ − 60◦ − θ = 120◦ − θ .

Suppose, wolog, we set |BP | = 1, so that |PC| = 2. Then by the Law of Sines in triangle ABP ,

|AP | = sin 45◦

sin 15◦
=
√

3 + 1.

By the Law of Sines in triangle APC,

sin θ√
3 + 1

=
sin(120◦ − θ)

2
=
√

3 cos θ

4
+

sin θ

4

whence (3−
√

3) sin θ = (3 +
√

3) cos θ. Hence

tan θ = 2 +
√

3 = (2−
√

3)−1 = (tan 15◦)−1 ,

so that θ = 75◦.

298. Let O be a point in the interior of a quadrilateral of area S, and suppose that

2S = |OA|2 + |OB|2 + |OC|2 + |OD|2 .

Prove that ABCD is a square with centre O.

Solution.

|OA|2 + |OB|2 + |OC|2 + |OD|2

=
1
2
(|OA|2 + |OB|2) +

1
2
(|OB|2 + |OC|2) +

1
2
(|OC|2 + |OD|2) +

1
2
(|OD|2 + |OA|2)

≥ |OA||OB|+ |OB||OC|+ |OC||OD|+ |OD||OA|
≥ 2[AOB] + 2[BOC] + 2[COD] + 2[DOA] = 2S

with equality if and only if OA = OB = OC = OD and all the angles AOB, BOC, COD and DOA are
right. The result follows.

299. Let σ(r) denote the sum of all the divisors of r, including r and 1. Prove that there are infinitely many
natural numbers n for which

σ(n)
n

>
σ(k)

k
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whenever 1 ≤ k < n.

Solution 1. Let um = σ(m)/m for each positive integer m. Since d ↔ 2d is a one-one correspondence
between the divisors of m and some even divisor of 2m, σ(2m) ≥ 2σ(m) + 1, so that

u2m =
σ(2m)

2m
≥ 2σ(m) + 1

2m
>

σ(m)
m

= um

for each positive integer m.

Let r be a given positive integer, and select s ≤ 2r such that us ≥ uk for 1 ≤ k ≤ 2r (i.e., us is the
largest value of uk for k up to and including 2r). Then, as u2s > us, it must happen that 2r ≤ 2s ≤ 2r+1

and u2s ≥ uk for 1 ≤ k ≤ 2r.

Suppose that n is the smallest positive integer t for which 2r ≤ t and uk ≤ ut for 1 ≤ k ≤ 2r. Then
2r ≤ n ≤ 2s ≤ 2r+1. Suppose that 1 ≤ k ≤ n. If 1 ≤ k ≤ 2r, then uk ≤ un from the definition of n. If
2r < k < n, then there must be some number k′ not exceeding 2r for which uk < uk′ ≤ un. Thus, n has
the desired property and 2r ≤ n ≤ 2r+1. Since such n can be found for each positive exponent r, the result
follows.

Comment. The sequence selected in this way starts off: {1, 2, 4, 6, 12, · · ·}.

Solution 2. [P. Shi] Define um as in Solution 1. Suppose, if possible, that there are only finitely many
numbers n satisfying the condition of the problem. Let N be the largest of these, and let us be the largest
value of um for 1 ≤ m ≤ N . We prove by induction that un ≤ us for every positive integer n. This holds
for n ≤ N . Suppose that n > N . Then, there exists an integer r < n for which ur > un. By the induction
hypothesis, ur ≤ us, so that un < us. But this contradicts the fact (as established in Solution 1) that
u2s > us.

300. Suppose that ABC is a right triangle with ∠B < ∠C < ∠A = 90◦, and let K be its circumcircle.
Suppose that the tangent to K at A meets BC produced at D and that E is the reflection of A in the
axis BC. Let X be the foot of the perpendicular from A to BE and Y the midpoint of AX. Suppose
that BY meets K again in Z. Prove that BD is tangent to the circumcircle of triangle ADZ.

Solution 1. Let AZ and BD intersect at M , and AE and BC intersect at P . Since PY joints the
midpoints of two sides of triangle AEX, PY ‖EX. Since ∠APY = ∠AEB = ∠AZB = ∠AZY , the
quadrilateral AZPY is concyclic. Since ∠AY P = ∠AXE = 90◦, AP is a diameter of the circumcircle of
AZPY and BD is a tangent to this circle. Hence MP 2 = MZ ·MA. Since

∠PAD = ∠EAD = ∠EBA = ∠XBA,

triangles PAD and XBA are similar. Since

∠MAD = ∠ZAD = ∠ZBA = ∠Y BA,

it follows that
∠PAM = ∠PAD − ∠MAD = ∠XBA− ∠Y BA = ∠XBY

so that triangles PAM and XBY are similar. Thus

PM

AP
=

XY

XB
=

XA

2XB
=

PD

2PA
=⇒ PD = 2PM =⇒ MD = PM .

Hence MD2 = MP 2 = MZ ·MA and the desired result follows.

Solution 2. [Y. Zhao] As in Solution 1, we see that there is a circle through the vertices of AZPY and
that BD is tangent to this circle. Let O be the centre of the circle K. The triangles OPA and OAD are
similar, whereupon OP ·OD = OA2. The inversion in the circle K interchanges P and D, carries the line BD
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to itself and takes the circumcircle of triangle AZP to the circumcircle of triangle AZD. As the inversion
preserves tangency of circles and lines, the desired result follows.

301. Let d = 1, 2, 3. Suppose that Md consists of the positive integers that cannot be expressed as the sum of
two or more consecutive terms of an arithmetic progression consisting of positive integers with common
difference d. Prove that, if c ∈ M3, then there exist integers a ∈ M1 and b ∈ M2 for which c = ab.

Solution. M1 consists of all the powers of 2, and M2 consists of 1 and all the primes. We prove these
assertions.

Since k + (k + 1) = 2k + 1, every odd integer exceeding 1 is the sum of two consecutive terms. Indeed,
for each positive integers m and r,

(m− r) + (m− r + 1) + · · ·+ (m− 1) + m + (m + 1) + · · ·+ (m + r − 1) + (m + r) = (2r + 1)m ,

and,
m + (m + 1) + · · ·+ (m + 2r − 1) = r[2(m + r)− 1] ,

so that it can be deduced that every positive integer with at least one odd positive divisor exceeding 1 is the
sum of consecutives, and no power of 2 can be so expressed. (If m < r in the first sum, the negative terms
in the sum are cancelled by positive ones.) Thus, M1 consists solely of all the powers of 2.

Since 2n = (n + 1) + (n− 1), M2 excludes all even numbers exceeding 2. Let k ≥ 2 and m ≥ 1. Then

m + (m + 2) + · · ·+ (m + 2(k − 1)) = km + k(k − 1) = k(m + k − 1)

so that M2 excludes all multiples of k from k2 on. Since all such numbers are composite, M2 must include
all primes. Since each composite number is at least as large as the square of its smallest nontrivial divisor,
each composite number must be excluded from M2.

We now examine M3. The result will be established if we show that M3 does not contain any number
of the form 2ruv where r is a nonnegative integer and u, v are odd integers with u ≥ v > 1. Suppose first
that r ≥ 1 and let a = 2ru− 3

2 (v − 1). Then

a ≥ 2u− 3
2
(v − 1) ≥ v

2
+ 1 > 1

and
a + (a + 3) + · · ·+ [a + 3(v − 1)] = v[a + (3/2)(v − 1)] = 2ruv .

Since m + (m + 3) = 2m + 3, we see that M3 excludes all odd numbers exceeding 3, and hence all odd
composite numbers. Hence, every number in M3 must be the product of a power of 2 and an odd prime or
1.

Comment. The solution provides more than necessary. It suffices to show only that M1 contains all
powers of 2, M2 contains all primes and M3 excludes all numbers with a composite odd divisor.

302. In the following, ABCD is an arbitrary convex quadrilateral. The notation [· · ·] refers to the area.

(a) Prove that ABCD is a trapezoid if and only if

[ABC] · [ACD] = [ABD] · [BCD] .

(b) Suppose that F is an interior point of the quadrilateral ABCD such that ABCF is a parallelogram.
Prove that

[ABC] · [ACD] + [AFD] · [FCD] = [ABD] · [BCD] .
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Solution 1. (a) Suppose that AB is not parallel to CD. Wolog, let these lines meet at E with A between
E and B, and D between E and C. Let P,Q,R, S be the respective feet of the perpendiculars from A to
CD, B to CD, C to AB, D to AB produced. Then

[ABC] · [ACD] = [ABD][BCD] ⇔ |AB||CR||CD||AP | = |AB||DS||CD||BQ| ⇔ CR : DS = BQ : AP .

By similar triangles, we find that CE : DE = CR : DS = BQ : AP = BE : AE. The dilation with centre
E and factor |AE|/|BE| takes B to A, C to D and so the segment BC to the parallel segment AD. Thus
ABCD is a trapezoid.

(b) Let the quadrilateral be in the horizontal plane of three-dimensional space and let F be at the origin
of vectors. Suppose that u = −→

FA, v = −−→
FC, and −pu − qv = −−→

FD, where p and q are nonnegative scalars.
We have that −−→FB = u + v. Then

2[ABC] = |u× v| ;

2[ACD] =2([FAC] + [FAD] + [FCD])
= |u× v|+ |u× (pu + qv)|+ |v × (pu + qv)|
= (1 + q + p)|u× v| ;

2[FCD] = p|u× v| ;

2[AFD] = q|u× v| ;

2[ABD] = |(pu + qv + u)× v| = (1 + p)|u× v| ;

2[BCD] = |(pu + qv + v)× u| = (1 + q)|u× v|| .

The result follows.

Solution 2. [Y. Zhao] Observe that, since (A + C) + (B + D) = 360◦,

sinA sinC − sinB sinD =
1
2
[cos(A− C)− cos(A + C)− cos(B −D) + cos(B + D)]

=
1
2
[cos(A− C)− cos(B −D)] =

1
2
[cos(B + A−B − C)− cos(B + A + B + C)]

= sin(B + A) sin(B + C) .

(a) Hence

4[ABD][BCD]− 4[ABC][ACD] = (AB ·DA sinA)(BC · CD sinC)− (AB ·BC sinB)(CD ·DA sinD)
= (AB ·BC · CD ·DA)(sinA sinC − sinB sinD)
= (AB ·BC · CD ·DA) sin(B + A) sin(B + C) .

The left side vanishes if and only if A + B = C + D = 180◦ or B + C = A + D = 180◦, i.e., AD‖BC or
AB‖CD.

(b) From (a), we have that

4[ABD][BCD]− 4[ABC][ACD] = (AB ·BC · CD ·DA) sin(A + B) sin(B + C)
= (AB ·BC · CD ·DA) sin(A + B − 180◦) sin(B + C − 180◦)
= (FC ·AF · CD ·DA)(sin(∠BAD − ∠BAF ) sin(∠BCD − ∠BCF ))
= [(DA ·AF ) sin∠DAF ][(DC · CF ) sin∠DCF ]
= 4[AFD][FCD] ,

as desired.
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303. Solve the equation
tan2 2x = 2 tan 2x tan 3x + 1 .

Solution 1. Let u = tan x and v = tan 2x. Then

v2 − 2v

(
u + v

1− uv

)
− 1 = 0

⇐⇒ v2 − uv3 − 2uv − 2v2 − 1 + uv = 0

⇐⇒ 0 = uv + 1 + v2 + uv3 = (uv + 1)(1 + v2)

⇐⇒ uv = −1 .

Now v = 2u(1 − u2)−1, so that 2u = v − u2v = u + v and u = v. But then u2 = −1 which is impossible.
Hence the equation has no solution.

Solution 2.
0 = tan2 2x− 2 tan 3x tan 2x− 1

= tan2 2x− 2 tan 3x tan 2x + tan2 3x− sec2 3x

= (tan 2x− tan 3x)2 − sec2 3x

= (tan 2x− tan 3x− sec 3x)(tan 2x− tan 3x + sec 3x) .

Hence, either tan 2x = tan 3x+sec 3x or tan 2x = tan 3x−sec 3x. Suppose that the former holds. Multiplying
the equation by cos 2x cos 3x yields sin 2x cos 3x = sin 3x cos 2x + cos 2x. Hence

0 = cos 2x + (sin 3x cos 2x− sin 2x cos 3x)

= 1− 2 sin2 x + sinx = (1− sinx)(1 + 2 sinx) ,

whence
x ≡ π

2
,−π

6
,
7π

6

modulo 2π. But tan 3x is not defined at any of these angles, so the equation fails. Similarly, in the second
case, we obtain 0 = (2 sinx− 1)(sinx + 1) so that

x ≡ −π

2
,
π

6
,
5π

6

modulo 2π, and the equation again fails. Thus, there are no solutions.

Solution 3. Let t = tan x, so that tan 2x = 2t(1− t2)−1 and tan 3x = (3t− t3)(1− 3t2)−1. Substituting
for t in the equation and clearing fractions leads to

4t2(1− 3t2) = 4t(3t− t3)(1− t2) + (1− t2)2(1− 3t2)

⇔ 4t2 − 12t4 = (12t2 − 16t4 + 4t6) + (1− 5t2 + 7t4 − 3t6)

⇔ 0 = t6 + 3t4 + 3t2 + 1 = (t2 + 1)3 .

There are no real solutions to the equation.

Solution 4. The equation is undefined if 2x or 3x is an odd multiple of π/2. We exclude this case. Then
the equation is equivalent to

sin2 2x− cos2 2x

cos2 2x
=

2 sin 2x sin 3x

cos 2x cos 3x
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or
0 =

2 sin 2x sin 3x

cos 2x cos 3x
+

cos 4x

cos2 2x

=
sin 4x sin 3x + cos 4x cos 3x

cos2 2x cos 3x

=
cos x

cos2 2x cos 3x
.

Since cos x vanishes only if x is an odd multiple of π, we see that the equation has no solution.

Solution 5. [Y. Zhao] Observe that, when tan(A−B) 6= 0,

1 + tanA tanB =
tanA− tanB

tan(A−B)
.

In particular,

1 + tanx tan 2x =
tan 2x− tanx

tanx
and 1 + tan 2x tan 3x =

tan 3x− tan 2x

tanx
.

There is no solution when x ≡ 0 (mod π), so we exclude this possibility. Thus

0 = (1 + tan 2x tan 3x) + (tan 2x tan 3x− tan2 2x)
= (tan 3x− tan 2x)(cot x + tan 2x) = cotx(tan 3x− tan 2x)(1 + tanx tan 2x)

= cot2 x(tan 3x− tan 2x)(tan 2x− tanx)

= cot2 x

(
sinx

cos 2x cos 3x

)(
sinx

cos x cos 2x

)
.

This has no solution.

Solution 6. For a solution, neither 2x nor 3x can be a multiple of π/2, so we exclude these cases. Since

tan 4x =
2 tan 2x

1− tan2 2x
,

we find that

cot 4x =
1− tan2 2x

2 tan 2x
= − tan 3x ,

whence 1 + tan 3x tan 4x = 0. Now

tan 4x− tan 3x = (1 + tan 3x tan 4x) tan x = 0 ,

so that 4x ≡ 3x (mod π). But we have excluded this. Hence there is no solution to the equation.

304. Prove that, for any complex numbers z and w,

(|z|+ |w|)
∣∣∣∣ z

|z|
+

w

|w|

∣∣∣∣ ≤ 2|z + w| .

Solution 1.

(|z|+ |w|)
∣∣∣∣ z

|z|
+

w

|w|

∣∣∣∣
=

∣∣∣∣z + w +
|z|w
|w|

+
|w|z
|z|

∣∣∣∣
≤ |z + w|+ 1

|z||w|
|z̄zw + w̄zw|

= |z + w|+ |zw|
|z||w|

|z̄ + w̄| = 2|z + w| .
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Solution 2. Let z = aeiα and w = beiβ , with a and b real and positive. Then the left side is equal to

|(a + b)(eiα + eiβ)| = |aeiα + aeiβ + beiα + beiβ |
≤ |aeiα + beiβ |+ |aeiβ + beiα| .

Observe that
|z + w|2 = |(aeiα + beiβ)(ae−iα + be−iβ)|

= a2 + b2 + ab[ei(α−β) + ei(β−α)]

= |(aeiβ + beiα)(ae−iβ + be−iα)|
from which we find that the left side does not exceed

|aeiα + beiβ |+ |aeiβ + beiα| = 2|aeiα + beiβ | = 2|z + w| .

Solution 3. Let z = aeiα and w = beiβ , where a and b are positive reals. Then the inequality is equivalent
to ∣∣∣∣12(eiα + eiβ)

∣∣∣∣ ≤ |λeiα + (1− λ)eiβ |

where λ = a/(a + b). But this simply says that the midpoint of the segment joining eiα and eiβ on the unit
circle in the Argand diagram is at least as close to the origin as another point on the segment.

Solution 4. [G. Goldstein] Observe that, for each µ ∈ C,∣∣∣∣ µz

|µz|
+

µw

|µw|

∣∣∣∣ =
∣∣∣∣ z

|z|
+

w

|w|

∣∣∣∣ ,

|µ|[|z|+ |w|] = |µz + µw| ,

and
|µ||z + w| = |µz + µw| .

So the inequality is equivalent to

(|t|+ 1)
∣∣∣∣ t

|t|
+ 1

∣∣∣∣ ≤ 2|t + 1|

for t ∈ C. (Take µ = 1/w and t = z/w.)

Let t = r(cos θ + i sin θ). Then the inequality becomes

(r + 1)
√

(cos θ + 1)2 + sin2 θ ≤ 2
√

(r cos θ + 1)2 + r2 sin2 θ = 2
√

r2 + 2r cos θ + 1 .

Now,
4(r2 + 2r cos θ + 1)− (r + 1)2(2 + 2 cos θ)

= 2r2(1− cos θ) + 4r(cos θ − 1) + 2(1− cos θ)

= 2(r − 1)2(1− cos θ) ≥ 0 ,

from which the inequality follows.

Solution 5. [R. Mong] Consider complex numbers as vectors in the plane. q = (|z|/|w|)w is a vector of
magnitude z in the direction w and p = (|w|/|z|)z is a vector of magnitude w in the direction z. A reflection
about the angle bisector of vectors z and w interchanges p and w, q and z. Hence |p+q| = |w+z|. Therefore

(|z|+ |w|)
∣∣∣∣ z

|z|
+

w

|w|

∣∣∣∣
= |z + q + p + w| ≤ |z + w|+ |p + q|
= 2|z + w| .
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305. Suppose that u and v are positive integer divisors of the positive integer n and that uv < n. Is it
necessarily so that the greatest common divisor of n/u and n/v exceeds 1?

Solution 1. Let n = ur = vs. Then uv < n ⇒ v < r, u < s, so that n2 = uvrs ⇒ rs > n. Let the greatest
common divisor of r and s be g and the least common multiple of r and s be m. Then m ≤ n < rs = gm,
so that g > 1.

Solution 2. Let g = gcd (u, v), u = gs and v = gt. Then gst ≤ g2st < n so that st < n/g. Now s and
t are a coprime pair of integers, each of which divides n/g. Therefore, n/g = dst for some d > 1. Therefore
n/u = n/(gs) = dt and n/v = n/(gt) = ds, so that n/u and n/v are divisible by d, and so their greatest
common divisor exceeds 1.

Solution 3. uv < n =⇒ nuv < n2 =⇒ n < (n/u)(n/v). Suppose, if possible, that n/u and n/v have
greatest common divisor 1. Then the least common multiple of n/u and n/v must equal (n/u)(n/v). But n
is a common multiple of n/u and n/v, so that (n/u)(n/v) ≤ n, a contradiction. Hence the greatest common
divisor of n/u and n/v exceeds 1.

Solution 4. Let P be the set of prime divisors of n, and for each p ∈ P . Let α(p) be the largest integer k
for which pk divides n. Since u and v are divisors of n, the only prime divisors of either u or v must belong
to P . Suppose that β(p) is the largest value of the integer k for which pk divides uv.

If β(p) ≥ α(p) for each p ∈ P , then n would divide uv, contradicting uv < n. (Note that β(p) > α(p)
may occur for some p.) Hence there is a prime q ∈ P for which β(q) < α(q). Then qα(q) is not a divisor
of either u or v, so that q divides both n/u and n/v. Thus, the greatest common divisor of n/u and n/v
exceeds 1.

Solution 5. [D. Shirokoff] If n/u and n/v be coprime, then there are integers x and y for which
(n/u)x + (n/v)y = 1, whence n(xv + yu) = uv. Since n and uv are positive, then so is the integer xv + yu.
But uv < n =⇒ 0 < xv + yu < 1, an impossibility. Hence the greatest common divisor of n/u and n/v
exceeds 1.

306. The circumferences of three circles of radius r meet in a common point O. They meet also, pairwise, in
the points P , Q and R. Determine the maximum and minimum values of the circumradius of triangle
PQR.

Answer. The circumradius always has the value r.

Solution 1. [M. Lipnowski] ∠QPO = ∠QRO, since OQ is a common chord of two congruent circles,
and so subtends equal angles at the respective circumferences. (Why are angle QPO and QRO not supple-
mentary?) Similarly, ∠OPR = ∠OQR. Let P ′ be the reflected image of P in the line QR so that triangle
P ′QR and PQR are congruent. Then

∠QP ′R + ∠QOR = ∠QPR + ∠QOR = ∠QPO + ∠RPO + ∠QOR

= ∠QRO + ∠OQR + ∠QOR = 180◦ .

Hence P ′ lies on the circle through OQR, and this circle has radius r. Hence the circumradius of PQR
equals the circumradius of P ′QR, namely r.

Solution 2. [P. Shi; A. Wice] Let U, V,W be the centres of the circle. Then OV PW is a rhombus, so that
OP and V W intersect at right angles. Let H,J,K be the respective intersections of the pairs (OP, V W ),
(OQ, UW ), (OP, UV ). Then H (respectively J,K) is the midpoint of OP and V W (respectively OQ and
UW , OP and UV ). Triangle PQR is carried by a dilation with centre O and factor 1

2 onto HJK. Also,
HJK is similar with factor 1

2 to triangle UV W (determined by the midlines of the latter triangle). Hence
triangles PQR and UV W are congruent. But the circumcircle of triangle UV W has centre O and radius r,
so the circumradius of triangle PQR is also r.
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Solution 3. [G. Zheng] Let U, V,W be the respective centres of the circumcircles of OQR, ORP , OPQ.
Place O at the centre of coordinates so that

U ∼ (r cos α, r sinα)

V ∼ (r cos β, r sinβ)

W ∼ (r cos γ, r sin γ)

for some α, β, γ. Since OV PW is a rhombus,

P ∼ (r(cos β + cos γ), r(sinβ + sin γ)) .

Similarly, Q ∼ (r(cos α + cos γ), r(sinα + sin γ), so that

|PQ| = r
√

(cos β − cos α)2 + (sinβ − sinα)2 = |UV | .

Similarly, |PR| = |UW | and |QR| = |V W |. Thus, triangles PQR and UV W are congruent. Since O is the
circumcentre of triangle UV W , the circumradius of triangle PQR equals the circumradius of triangle UV W
which equals r.

Solution 4. Let U , V , W be the respective centres of the circles QOR, ROP , POQ. Suppose that
∠OV R = 2β; then ∠OPR = β. Suppose that ∠OWQ = 2γ; then ∠OPQ = γ. Hence ∠QPR = β + γ. Let
ρ be the circumradius of triangle PQR. Then |QR| = 2ρ sin(β + γ).

Consider triangle QUR. The reflection in the axis OQ takes W to U so that ∠QUO = ∠QWO = 2γ.
Similarly, ∠RUO = 2γ, whence ∠QUR = 2(β + γ). Thus triangle QUR is isosceles with |QU | = |QR| = r
and apex angle QUR equal to 2(β + γ). Hence |QR| = 2r sin(β + γ). It follows that ρ = r.

Comment. This problem was the basis of the logo for the 40th International Mathematical Olympiad
held in 1999 in Romania.

307. Let p be a prime and m a positive integer for which m < p and the greatest common divisor of m and
p is equal to 1. Suppose that the decimal expansion of m/p has period 2k for some positive integer k,
so that

m

p
= .ABABABAB . . . = (10kA + B)(10−2k + 10−4k + · · ·)

where A and B are two distinct blocks of k digits. Prove that

A + B = 10k − 1 .

(For example, 3/7 = 0.428571 . . . and 428 + 571 = 999.)

Solution. We have that
m

p
=

10kA + B

102k − 1
=

10kA + B

(10k − 1)(10k + 1)

whence
m(10k − 1)(10k + 1) = p(10kA + B) = p(10k − 1)A + p(A + B) .

Since the period of m/p is 2k, A 6= B and p does not divide 10k−1. Hence 10k−1 and p are coprime and so
10k − 1 must divide A + B. However, A ≤ 10k − 1 and B ≤ 10k − 1 (since both A and B have k digits), and
equality can occur at most once. Hence A + B < 2× 10k − 2 = 2(10k − 1). It follows that A + B = 10k − 1
as desired.

Comment. This problem appeared in the College Mathematics Journal 35 (2004), 26-30. In writing up
the solution, it is clearer to set up the equation and clear fractions, so that you can argue in terms of factors
of products.
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308. Let a be a parameter. Define the sequence {fn(x) : n = 0, 1, 2, · · ·} of polynomials by

f0(x) ≡ 1

fn+1(x) = xfn(x) + fn(ax)

for n ≥ 0.

(a) Prove that, for all n, x,
fn(x) = xnfn(1/x) .

(b) Determine a formula for the coefficient of xk (0 ≤ k ≤ n) in fn(x).

Solution 1. The polynomial fn(x) has degree n for each n, and we will write

fn(x) =
n∑

k=0

b(n, k)xk .

Then

xnfn(1/x) =
n∑

k=0

b(n, k)xn−k =
n∑

k=0

b(n, n− k)xk .

Thus, (a) is equivalent to b(n, k) = b(n, n− k) for 0 ≤ k ≤ n.

When a = 1, it can be established by induction that fn(x) = (x + 1)n =
∑n

k=0

(
n
k

)
xn. Also, when

a = 0, fn(x) = xn + xn−1 + · · ·+ x + 1 = (xn+1 − 1)(x− 1)−1. Thus, (a) holds in these cases and b(n, k) is
respectively equal to

(
n
k

)
and 1.

Suppose, henceforth, that a 6= 1. For n ≥ 0,

fn+1(k) =
n∑

k=0

b(n, k)xk+1 +
n∑

k=0

akb(n, k)xk

=
n∑

k=1

b(n, k − 1)xk + b(n, n)xn+1 + b(n, 0) +
n∑

k=1

akb(n, k)xk

= b(n, 0) +
n∑

k=1

[b(n, k − 1) + akb(n, k)]xk + b(n, n)xn+1 ,

whence b(n+1, 0) = b(n, 0) = b(1, 0) and b(n+1, n+1) = b(n, n) = b(1, 1) for all n ≥ 1. Since f1(x) = x+1,
b(n, 0) = b(n, n) = 1 for each n. Also

b(n + 1, k) = b(n, k − 1) + akb(n, k) (1)

for 1 ≤ k ≤ n.

We conjecture what the coefficients b(n, k) are from an examination of the first few terms of the sequence:

f0(x) = 1; f1(x) = 1 + x; f2(x) = 1 + (a + 1)x + x2;

f3(x) = 1 + (a2 + a + 1)x + (a2 + a + 1)x2 + x3;

f4(x) = 1 + (a3 + a2 + a + 1)x + (a4 + a3 + 2a2 + a + 1)x2 + (a3 + a2 + a + 1)x3 + x4;

f5(x) = (1 + x5) + (a4 + a3 + a2 + a + 1)(x + x4) + (a6 + a5 + 2a4 + 2a3 + 2a2 + a + 1)(x2 + x3) .

We make the empirical observation that

b(n + 1, k) = an+1−kb(n, k − 1) + b(n, k) (2)
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which, with (1), yields
(an+1−k − 1)b(n, k − 1) = (ak − 1)b(n, k)

so that

b(n + 1, k) =
[

ak − 1
an+1−k − 1

+ ak

]
b(n, k) =

[
an+1 − 1

an+1−k − 1

]
b(n, k)

for n ≥ k. This leads to the conjecture that

b(n, k) =
(

(an − 1)(an−1 − 1) · · · (ak+1 − 1)
(an−k − 1)(an−k−1 − 1) · · · (a− 1)

)
b(k, k) (3)

where b(k, k) = 1.

We establish this conjecture. Let c(n, k) be the right side of (3) for 1 ≤ k ≤ n−1 and c(n, n) = 1. Then
c(n, 0) = b(n, 0) = c(n, n) = b(n, n) = 1 for each n. In particular, c(n, k) = b(n, k) when n = 1.

We show that
c(n + 1, k) = c(n, k − 1) + akc(n, k)

for 1 ≤ k ≤ n, which will, through an induction argument, imply that b(n, k) = c(n, k) for 0 ≤ k ≤ n. The
right side is equal to(

an − 1
an−k − 1

)
· · ·

(
ak+1 − 1

a− 1

)[
ak − 1

an−k+1 − 1
+ ak

]
=

(an+1 − 1)(an − 1) · · · (ak+1 − 1)
(an+1−k − 1)(an−k − 1) · · · (a− 1)

= c(n + 1, k)

as desired. Thus, we now have a formula for b(n, k) as required in (b).

Finally, (a) can be established in a straightforward way, either from the formula (3) or using the pair of
recursions (1) and (2).

Solution 2. (a) Observe that f0(x) = 1, f1(x) = x + 1 and f1(x)− f0(x) = x = a0xf0(x/a). Assume as
an induction hypothesis that fk(x) = xkf(1/x) and

fk(x)− fk−1(x) = ak−1xfk−1(x/a)

for 0 ≤ k ≤ n. This holds for k = 1.

Then
fn+1(x)− fn(x) = x[fn(x)− f(n−1)(x)] + [fn(ax)− fn−1(ax)]

= an−1x2fn−1(x/a) + an−1axfn−1(x)
= anx[fn−1(x) + (x/a)fn−1(x/a) = anxfn(x/a) ,

whence

fn+1(x) = fn(x) + anxfn(x/a) = fn(x) + anx(x/a)nfn(a/x)

= xnfn(1/x) + xn+1fn(a/x) = xn+1[(1/x)fn(1/x) + fn(a/x)] = xn+1fn+1(1/x) .

The desired result follows.

Comment. Because of the appearance of the factor a − 1 in denominators, you should dispose of the
case a = 1 separately. Failure to do so on a competition would likely cost a mark.

309. Let ABCD be a convex quadrilateral for which all sides and diagonals have rational length and AC and
BD intersect at P . Prove that AP , BP , CP , DP all have rational length.
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Solution 1. Because of the symmetry, it is enough to show that the length of AP is rational. The
rationality of the lengths of the remaining segments can be shown similarly. Coordinatize the situation by
taking A ∼ (0, 0), B ∼ (p, q), C ∼ (c, 0), D ∼ (r, s) and P ∼ (u, 0). Then, equating slopes, we find that

s

r − u
=

s− q

r − p

so that
sr − ps

s− q
= r − u

whence u = r − sr−ps
s−q = ps−qr

s−q .

Note that |AB|2 = p2 + q2, |AC|2 = c2, |BC|2 = (p2 − 2pc + c2) + q2, |CD|2 = (c2 − 2cr + r2) + s2 and
|AD|2 = r2 + s2, we have that

2rc = AC2 + AD2 − CD2

so that, since c is rational, r is rational. Hence s2 is rational.
Similarly

2pc = AC2 + AB2 −BC2 .

Thus, p is rational, so that q2 is rational.

2qs = q2 + s2 − (q − s)2 = q2 + s2 − [(p− r)2 + (q − s)2] + p2 − 2pr + r2

is rational, so that both qs and q/s = (qs)/s2 are rational. Hence

u =
p− r(q/s)
1− (q/s)

is rational.

Solution 2. By the cosine law, the cosines of all of the angles of the triangle ACD, BCD, ABC and
ABD are rational. Now

AP

AB
=

sin∠ABP

sin∠APB

and
CP

BC
=

sin∠PBC

sin∠BPC
.

Since ∠APB + ∠BPC = 180◦, therefore sin∠APB = sin∠BPC and

AP

CP
=

AB sin∠ABP

BC sin∠PBC
=

AB sin∠ABP sin∠PBC

BC sin2 ∠PBC

=
AB(cos ∠ABP cos ∠PBC − cos(∠ABP + ∠PBC))

BC(1− cos2 ∠PBC)

=
AB(cos ∠ABD cos ∠DBC − cos ∠ABC)

BC(1− cos2 ∠DBC)

is rational. Also AP +CP is rational, so that (AP/CP )(AP +CP ) = ((AP/CP )+1)AP is rational. Hence
AP is rational.

310. (a) Suppose that n is a positive integer. Prove that

(x + y)n =
n∑

k=0

(
n

k

)
x(x + k)k−1(y − k)n−k .
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(b) Prove that

(x + y)n =
n∑

k=0

(
n

k

)
x(x− kz)k−1(y + kz)n−k .

Comments. (a) and (b) are equivalent. To obtain (b) from (a), replace x by −x/z and y by −y/z. On
the other hand, the substitution z = −1 yields (a) from (b).

The establishment of the identities involves the recognition of a certain sum which arise in the theory
of finite differences. Let f(x) be a function of x and define the following operators that take functions to
functions:

If(x) = f(x)

Ef(x) = f(x + 1) = (I + ∆)f(x)

∆f(x) = f(x + 1)− f(x) = (E − I)f(x) .

For any operator P , Pnf(x) is defined recursively by P 0f(x) = f(x) and P k+1f(x) = P (P k−1)f(x)), for
k ≥ 1. Thus Ekf(x) = f(x + k) and

∆2f(x) = ∆f(x + 1)−∆f(x) = f(x + 2)− 2f(x + 1) + f(x) = (E2 − 2E + I)f(x) = (E − I)2f(x) .

We have an operational calculus in which we can treat polynomials in I, E and ∆ as satisfying the regular
rules of algebra. In particular

Enf(x) = (I + ∆)nf(x) =
∑ (

n

k

)
∆kf(x)

and

∆nf(x) = (E − I)nf(x) =
n∑

k=0

(−1)n−k

(
n

k

)
Ekf(x) =

n∑
k=0

(−1)n−k

(
n

k

)
f(x + k) ,

for each positive integer n, facts than can be verified directly by unpacking the operational notation.

Now let f(x) be a polynomial of degree d ≥ 0. If f(x) is constant (d = 0), then ∆f(x) = 0. If d ≥ 1,
then ∆f(x) is a polynomial of degree d − 1. It follows that ∆df(x) is constant, and ∆nf(x) = 0 whenever
n > d. This yields the identity

n∑
k=0

(−1)k

(
n

k

)
f(x + k) = 0

for all x whenever f(x) is a polynomial of degree strictly less than n.

Solution 1. [G. Zheng]
n∑

k=0

(
n

k

)
x(x + k)k−1(y − k)n−k =

n∑
k=0

(
n

k

)
x(x + k)k−1[(x + y)− (x + k)]n−k

=
n∑

k=0

n−k∑
j=0

(
n

k

)
x(x + k)k−1

(
n− k

j

)
(x + y)j(−1)n−k−j(x + k)n−k−j

=
∑

0≤k≤n−j≤n

(−1)n−k−j

(
n

k

)(
n− k

j

)
x(x + k)n−j−1(x + y)j

=
n∑

j=0

n−j∑
k=0

(−1)n−k−j

(
n

j

)(
n− j

k

)
x(x + k)n−j−1(x + y)j

=
n∑

j=0

(−1)n−j

(
n

j

)
(x + y)j

n−j∑
k=0

(−1)k

(
n− j

k

)
x(x + k)n−j−1

= (x + y)nx(x + 0)−1 + x
n−1∑
j=1

(−1)n−j

(
n

j

)
(x + y)j

n−j∑
k=0

(−1)k

(
n− j

k

)
(x + k)n−j−1 .
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Let m = n− j so that 1 ≤ m ≤ n. Then

n−j∑
k=0

(−1)k

(
n− j

k

)
(x + k)n−j−1 =

m∑
k=0

(−1)k

(
m

k

)
(x + k)m−1

=
m∑

k=0

(−1)k

(
m

k

) m−1∑
l=0

(
m− 1

l

)
xm−lkl

=
m−1∑
l=0

(
m− 1

l

)
xm−l

m∑
k=0

(−1)k

(
m

k

)
kl = 0 .

The desired result now follows.

Solution 2. [M. Lipnowski] We prove that

n∑
k=0

(
n

k

)
x(x− kz)k−1(y + kz)n−k = (x + y)n

by induction. When n = 1, this becomes

1 · x(x)−1y + 1 · x(x− z)0(y + z)0 = y + x = x + y .

Assume that for n ≥ 2,

n−1∑
k=0

(
n− 1

k

)
x(x− kz)k−1(y + zk)n−k−1 = (x + y)n−1 .

Let f(y) = (x+ y)n and g(y) =
∑n

k=0

(
n
k

)
x(x−kz)k−1(y +kz)n−k. We can establish that f(y) = g(y) for all

y by showing that f ′(y) = g′(y) for all y (equality of the derivatives with respect to y) and f(−x) = g(−x)
(equality when y is replaced by −x).

That f ′(y) = g′(y) is a consequence of the induction hypothesis and the identity
(
n
k

)
(n− k) = n

(
n−1

k

)
.

Also

g(−x) =
n∑

k=0

(
n

k

)
x(x− kz)k−1(−x + kz)n−k

= x
n∑

k=0

(−1)n−k

(
n

k

)
(x− kz)n−1 = 0 ,

by appealing to the finite differences result. The desired result now follows.

311. Given a square with a side length 1, let P be a point in the plane such that the sum of the distances
from P to the sides of the square (or their extensions) is equal to 4. Determine the set of all such points
P .

Solution. If the square is bounded by the lines x = 0, x = 1, y = 0 and y = 1 in the Cartesian plane,
then the required locus is equal the octagon whose vertices are (0, 2), (1, 2), (2, 1), (2, 0), (1,−1), (0,−1),
(−1, 0), (−1, 1). Any point on the locus must lie outside of the square, as within the square the sum of the
distances is equal to 2. If, for example, a point on the locus lies between x = 0 and x = 1, the sum of the
distances to the vertical sides is 1, and it must be 1 unit from the nearer horizontal side and 2 units from
the farther horizontal side. If, for example, a point on the locus lies to the left of x = 0 and above y = 1 and
has coordinates (u, v), then

|u|+ (1 + |u|) + v + (v − 1) = 4
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or
−u + 1− u + v + v − 1 = 4 or v − u = 2 .

Thus it can be shown that every point on the locus lies on the octagon, and conversely, it is straightforward
to verify that each point on the octagon lies on the locus.

312. Given ten arbitrary natural numbers. Consider the sum, the product, and the absolute value of the
difference calculated for any two of these numbers. At most how many of all these calculated numbers
are odd?

Solution. Suppose that there are k odd numbers and 10 − k even numbers, where 0 ≤ k ≤ 10. There
are k(10− k) odd sums, k(10− k) odd differences and 1

2k(k− 1) odd products (on the presumption that the
numbers chosen are distinct), giving a total of

1
2
(39k − 3k2) =

3
2

[(
13
2

2)
−

(
13
2
− k

)2]
odd results. This quantity achieves its maximum when k = 13/2, so the maximum number 63 of calculated
numbers occurs when k = 6 or k = 7.

Comment. If we allow a number to be operated with itself, then the maximum occurs when k = 7.

313. The three medians of the triangle ABC partition it into six triangles. Given that three of these triangles
have equal perimeters, prove that the triangle ABC is equilateral.

Solution. [P. Shi] Let a, b, c be the respective lengths of the sides BC, CA, AB, and u, v, w the respective
lengths of the medians AP , BQ, CR (P,Q,R the respective midpoints of BC, CA, AB). If G is the centroid
of the triangle ABC, then

AG : GP = BG : GQ = CG : GR = 2 : 1 .

We need three preliminary lemmata.

Lemma 1. 4u2 = 2b2 + 2c2 − a2; 4v2 = 2c2 + 2a2 − b2; 4w2 = 2a2 + 2b2 − c2.

Proof. This can be established, either by representing the medians vertorially in terms of the sides and
applying the cosine law to the whole triangle, or by applying the cosine law to pairs of inner triangles along
an edge. ♠

Lemma 2. u < v;u = v;u > v according as a > b; a = b; a < b, with analogous results for other pairs of
medians and sides.

Proof. 4(u2 − v2) = 3(b2 − a2). ♠

Lemma 3. If triangle BCR and BCQ have the same perimeter, then b = c.

Proof. Equality of the perimeters is equivalent to BR+RC = BQ+QC, so that Q and R are points on
an ellipse with foci B and C. Since RQ is parallel to the major axis containing BC, R and Q are reflections
of each other in the minor axis, so that RB = QC. Hence b = c. ♠

We now establish conditions under which the triangle must be isosceles.

Lemma 4. Suppose that two adjacent inner triangles along the same side of triangle ABC have the
same perimeter. Then triangle ABC is isosceles.

Solution. For example, the equality of the perimeters of BPG and CPG is equivalent to

1
2
a +

1
3
u +

2
3
v =

1
2
a +

1
3
u +

2
3
w

⇔ v = w ⇔ b = c .♠
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Lemma 5. Suppose that two adjacent inner triangles sharing a vertex of triangle ABC have the same
perimeter. Then triangle ABC is isosceles.

Proof. For example, suppose that triangle BRG and PGB have the same perimeter. Produce CR
to point T so that GR = RT . Thus, BR is a median of triangle BGT . Produce AP to point S so that
GP = PS. Thus, CP is a median of triangle CPS.

Since GP joins midpoints of two sides of triangle CTB, TB‖GP and TB = 2GP = GS. Since triangle
PGB and PSC are congruent (SAS), BG = SC. Also, TG = 2RG = GC. Hence, triangles TBG and GSC
are congruent (SSS).

Let X be the midpoint of GC. A translation that takes T to G takes triangle TBG to triangle GSC
and median BR to median SX. We have that

Perimeter(SXC) = Perimeter(BRG) = Perimeter(PGB) = Perimeter(PSC) .

Applying Lemma 3, we deduce that GS = GC, whence u = w and a = c. ♠

Lemma 6. If two opposite triangles (say, BGP and AQG) have equal perimeters, then triangle ABC is
isosceles.

Proof. The equality of the perimeters of BGP and AQG implies that

1
2
a +

1
3
u +

2
3
v =

1
2
b +

1
3
v +

2
3
u

⇔ 3(a− b) = 2(u− v) .

By Lemma 2, the latter equation holds if and only if a = b. ♠

Let us return to the problem. There are essentially four different cases for the three inner triangles with
equal perimeters.

Case 1. The three are adjacent (say BRG, BPG, CPG). Then by Lemmata 4 and 5, a = b = c.
Case 2. Two are adjacent along a side and the third is opposite (say BPG, CPG, AQG). Then, by

Lemmata 4 and 6, a = b = c.
Case 3. Two are adjacent at a vertex and the third is opposite (say BPG, CQG, AQG.) Then, by

Lemmata 5 and 6, a = b = c.
Case 4. No two are adjacent (say BPG, CQG, ARG). Then we have

1
2
a +

1
3
u +

2
3
v =

1
2
b +

1
3
v +

2
3
w =

1
2
c +

1
3
w +

2
3
v .

Thus
3(a− b) = 2(w − u) + 2(w − v) . (1)

Similarly,
3(b− c) = 2(u− v) + 2(u− w) ; (2)

3(c− a) = 2(v − u) + 2(v − w) . (3)

Suppose, wolog, that a ≥ b ≥ c. Then u ≤ v ≤ w, so that, by (2), 3(b− c) ≤ 0 ⇒ b = c ⇒ v = w. But then,
by (3), 3(c− a) = 2(v − u) ≥ 0 ⇒ c = a.

The result follows.

314. For the real numbers a, b and c, it is known that

1
ab

+
1
bc

+
1
ac

= 1 ,
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and
a + b + c = 1 .

Find the value of the expression

M =
1

1 + a + ab
+

1
1 + b + bc

+
1

1 + c + ca
.

Solution 1. Putting the first equation over a common denominator and using the second equation yields
that

a + b + c = abc = 1

whence
M =

1
1 + a + (1/c)

+
1

1 + b + (1/a)
+

1
1 + c + (1/b)

=
c

1 + c + ac
+

a

1 + a + ab
+

b

1 + b + bc

=
c

1 + c + (1/b)
+

a

1 + a + (1/c)
+

b

1 + b + (1/a)

=
bc

1 + b + bc
+

ac

1 + c + ac
+

ab

1 + a + ab
.

This yields three different expressions for M over denominators of the form 1 + a + ab, which when added
together yield 3M = 3 or M = 1.

Solution 2. [V. Krakovna] It is clear that abc 6= 0 for the expressions to be defined. As before, abc = 1,
and

1
1 + a + ab

=
1

1 + a + (1/c)
=

c

c + ca + 1
.

Hence
M =

1
1 + a + ab

+
1

1 + b + bc
+

1
1 + c + ca

=
c

c + ca + 1
+

1
1 + b + bc

+
1

1 + c + ca

=
c + 1

1 + c + ca
+

1
1 + b + bc

=
b(c + 1)

b + bc + 1
+

1
1 + b + bc

=
bc + b + 1
b + bc + 1

= 1 .

315. The natural numbers 3945, 4686 and 5598 have the same remainder when divided by a natural number
x. What is the sum of the number x and this remainder?

Solution. Observe that 5598 − 4686 = 912 = 16 × 57 and 4686 − 3945 = 741 = 13 × 57, so that if a
divisor leaves equal remainders for the three numbers, the divisor must also divide evenly into 57. Since
5598 = 98 × 57 + 12, 4686 = 82 × 57 + 12 and 3945 = 69 × 57 + 12. the number x must be 1, 3, 19 or 57.
The sums of the number and the remainder are respectively 1, 3, 31 and 69.

316. Solve the equation
|x2 − 3x + 2|+ |x2 + 2x− 3| = 11 .

Solution. The equation can be rewritten

|x− 1|[|x− 2|+ |x + 3|] = 11 .
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When x ≤ −3, the equation is equivalent to

2x2 − x− 12 = 0

neither of whose solutions satisfies x ≤ −3. When −3 ≤ x ≤ 1, the equation is equivalent to −5x + 5 = 11
and we get the solution x = −6/5. When 1 < x < 2, the equation is equivalent to 5x− 5 = 11 which has no
solution with 1 < x < 2. Finally, when 2 ≤ x, the equation is equivalent to 2x2 − x− 12 = 0 and we obtain
the solution x = 1

4 (1 +
√

97).

Thus the solutions are x = −6/5, (1 +
√

97)/4.

317. Let P (x) be the polynomial

P (x) = x15 − 2004x14 + 2004x13 − · · · − 2004x2 + 2004x ,

Calculate P (2003).

Solution 1. For each nonnegative integer n, we have that

xn+2 − 2004xn+1 + 2003xn = xn(x− 1)(x− 2003) .

Therefore,

P (x) = (x15 − 2004x14 + 2003x13) + (x13 − 2004x12 + x11) + · · ·+ (x3 − 2004x2 + 2003x) + x

= (x13 + x11 + · · ·+ x)(x− 1)(x− 2003) + x ,

whereupon P (2003) = 2003.

Solution 2. [R. Tseng]

P (x) = (x15 − 2003x14)− (x14 − 2003x13) + (x13 − 2003x12)− · · · − (x2 − 2003x) + x

whence P (2003) = 0− 0 + 0− · · · − 0 + 2003 = 2003.

318. Solve for integers x, y, z the system

1 = x + y + z = x3 + y3 + z2 .

[Note that the exponent of z on the right is 2, not 3.]

Solution 1. Substituting the first equation into the second yields that

x3 + y3 + [1− (x + y)]2 = 1

which holds if and only if

0 = (x + y)(x2 − xy + y2) + (x + y)2 − 2(x + y)

= (x + y)(x2 − xy + y2 + x + y − 2)

= (1/2)(x + y)[(x− y)2 + (x + 1)2 + (y + 1)2 − 6] .

It is straightforward to check that the only possibilities are that either y = −x or (x, y) = (0,−2), (−2, 0) or
(x, y) = (−3,−2), (−2,−3) or (x, y) = (1, 0), (0, 1). Hence

(x, y, z) = (t,−t, 1), (1, 0, 0), (0, 1, 0), (−2,−3, 6), (−3,−2, 6), (−2, 0, 3), (0,−2, 3)

where t is an arbitrary integer. These all check out.
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Solution 2. As in Solution 1, we find that either x + y = 0, z = 1 or x2 + (1 − y)x + (y2 + y − 2) = 0.
The discriminant of the quadratic in x is

−3y2 − 6y + 9 = −3(y + 1)2 + 12 ,

which is nonnegative when |y + 1| ≤ 4. Checking out the possibilities leads to the solution.

Solution 3.
(1− z)(1 + z) = 1− z2 = x3 + y3

= (x + y)[(x + y)2 − 3xy] = (1− z)[(1− z)2 − 3xy] ,

whence either z = 1 or 3xy = (1− 2z + z2)− (1 + z) = z(z− 3). The former case yields (x, y, z) = (x,−x, 1)
while the latter yields

x + y = 1− z xy =
1
3
z(z − 3) .

Thus, we must have that z ≡ 0 (mod 3) and that x, y are roots of the quadratic equation

t2 − (1− z)t +
z(z − 3)

3
= 0 .

The discriminant of this equation is [12−(z−3)2]/3. Thus, the only possibilities are that z = 0, 3, 6; checking
these gives the solutions.

319. Suppose that a, b, c, x are real numbers for which abc 6= 0 and

xb + (1− x)c
a

=
xc + (1− x)a

b
=

xa + (1− x)b
c

.

Is it true that, necessarily, a = b = c?

Comment. There was an error in the original formulation of this problem, and it turns out that the three
numbers a, b, c are not necessarily equal. Note that in the problem, a, b, c, x all have the same status. Some
solvers, incorrectly, took the given conditions as an identity in x, so that they assumed that the equations
held for some a, b, c and all x.

Solution 1. Suppose first that a+ b+ c 6= 0. Then the three equal fractions are equal to the sum of their
numerators divided by the sum of the denominators [why?]:

x(a + b + c) + (1− x)(a + b + c)
a + b + c

= 1 .

Hence a = xb+(1−x)c, b = xc+(1−x)a, c = xa+(1−x)b, from which x(b−c) = (a−c), x(c−a) = (b−a),
x(a− b) = (c− b). Multiplying these three equations together yields that x3(b− c)(c−a)(a− b) = (a− c)(b−
a)(c− b). Therefore, either x = −1 or at least two of a, b, c are equal.

If x = −1, then a + b = 2c, b + c = 2a and c + a = 2b. This implies for example that a− c = 2(c− a),
whence a = c. Similarly, a = b and b = c. Suppose on the other hand that, say, a = b; then b = c and c = a.

The remaining case is that a + b + c = 0. Then each entry and sum of pairs of entries is nonzero, and

xa + (1− x)b
−(a + b)

=
x(−a− b) + (1− x)a

b

=⇒ xab + (1− x)b2 = x(a + b)2 − (1− x)(a2 + ab)

=⇒ (1− x)(a2 + ab + b2) = x(a2 + ab + b2) .
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Since 2(a2 +ab+ b2) = (a+ b)2 +a2 + b2 > 0, 1−x = x and x = 1/2. But in this case, the equations become

b + c

2a
=

c + a

2b
=

a + b

2c

each member of which takes the value −1/2 for all a, b, c for which a + b + c = 0.

Hence, the equations hold if and only if either a = b = c and x is arbitrary, or x = 1/2 and a+ b+ c = 0.

Comment. On can get the first part another way. If d is the common value of the three fractions, then

xb + (1− x)c = da ; xc + (1− x)a = db ; xa + (1− x)b = dc .

Adding these yeilds that a + b + c = d(a + b + c), whence d = 1 or a + b + c = 0.

Solution 2. The first inequality leads to

xb2 + (1− x)bc = xac + (1− x)a2

or
x(a2 + b2)− x(a + b)c = a2 − bc .

Similarly
x(c2 + a2)− x(c + a)b = b2 − ca ;

x(b2 + c2)− x(b + c)a = c2 − ab .

Adding these three equations together leads to

2x[(a− b)2 + (b− c)2 + (c− a)2] = (a− b)2 + (b− c)2 + (c− a)2 .

Hence, either a = b = c or x = 1/2.

If x = 1/2, then for some constant k,

b + c

a
=

c + a

b
=

a + b

c
= k ,

whence
−ka + b + c = a− kb + c = a + b− kc = 0 .

Add the three left members to get
(2− k)(a + b + c) = 0 .

Therefore, k = 2 or a + b + c = 0. If k = 2, then a = b = c, as in Solution 1. If a + b + c = 0, then k = −1
for any relevant values of a, b, c. Hence, either a = b = c or x = 1/2 and a + b + c = 0.

320. Let L and M be the respective intersections of the internal and external angle bisectors of the triangle
ABC at C and the side AB produced. Suppose that CL = CM and that R is the circumradius of
triangle ABC. Prove that

|AC|2 + |BC|2 = 4R2 .

Solution 1. Since ∠LCM = 90◦ and CL = CM , we have that ∠CLM = ∠CML = 45◦. Let ∠ACB =
2θ. Then ∠CAB = 45◦ − θ and ∠CBA = 45◦ + θ. It follows that

|BC|2 + |AC|2 = (2R sin∠CAB)2 + (2R sin∠CBA)2

= 4R2(sin2(45◦ − θ) + sin2(45◦ + θ))

= 4R2(sin2(45◦ − θ) + cos2(45◦ − θ)) = 4R2 .
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Solution 2. [B. Braverman] ∠ABC is obtuse [why?]. Let AD be a diameter of the circumcircle of
triangle ABC. Then ∠ADC = ∠CBM = 45◦ + ∠LCB (since ABCD is concyclic). Since ∠ACD = 90◦,
∠DAC = 45◦−∠LCB = ∠CAB. Hence, chords DC and CB, subtending equal angles at the circumference
of the circumcircle, are equal. Hence

4R2 = |AC|2 + |CD|2 = |AC|2 + |BC|2 .

321. Determine all positive integers k for which k1/(k−7) is an integer.

Solution. When k = 1, the number is an integer. Suppose that 2 ≤ k ≤ 6. Then k − 7 < 0 and so

0 < k1/(k−7) = 1/(k1/7−k) < 1

and the number is not an integer. When k = 7, the expression is undefined.

When k = 8, the number is equal to 8, while if k = 9, the number is equal to 3. When k = 10, the
number is equal to 101/3, which is not an integer [why?].

Suppose that k ≥ 11. We establish by induction that k < 2k−7. This is clearly true when k = 11.
Suppose it holds for k = m ≥ 11. Then

m + 1 < 2m−7 + 2m−7 = 2(m+1)−7 ;

the desired result follows by induction. Thus, when k ≥ 11, 1 < k1/(k−7) < 2 and the number is not an
integer.

Thus, the number is an integer if and only if k = 1, 8, 9.

322. The real numbers u and v satisfy
u3 − 3u2 + 5u− 17 = 0

and
v3 − 3v2 + 5v + 11 = 0 .

Determine u + v.

Solution 1. The equations can be rewritten

u3 − 3u2 + 5u− 3 = 14 ,

v3 − 3v2 + 5v − 3 = −14 .

These can be rewritten as
(u− 1)3 + 2(u− 1) = 14 ,

(v − 1)3 + 2(v − 1) = −14 .

Adding these equations yields that

0 = (u− 1)3 + (v − 1)3 + 2(u + v − 2)

= (u + v − 2)[(u− 1)2 − (u− 1)(v − 1) + (v − 1)2 + 2] .

Since the quadratic t2 − st + s2 is always positive [why?], we must have that u + v = 2.

Solution 2. Adding the two equations yields

0 = (u3 + v3)− 3(u2 + v2) + 5(u + v)− 6

= (u + v)[(u + v)2 − 3uv]− 3[(u + v)2 − 2uv] + 5(u + v)− 6

= [(u + v)3 − 3(u + v)2 + 5(u + v)− 6]− 3uv(u + v − 2)

=
1
2
(u + v − 2)[(u− v)2 + (u− 1)2 + (v − 1)2 + 4] .
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Since the second factor is positive, we must have that u + v = 2.

Solution 3. [N. Horeczky] Since x3 − 3x2 + 5x = (x − 1)3 + 2(x − 1) + 3 is an increasing function of x
(since x− 1 is increasing), the equation x3 − 3x2 + 5x− 17 = 0 has exactly one real solution, namely x = u.
But

0 = v3 − 3v2 + 5v + 11

= (v − 2)3 + 3(v − 2)2 + 5(v − 2) + 17

= −[(2− v)3 − 3(2− v)2 + 5(2− v)− 17] .

Thus x = 2− v satisfies x3 − 3x2 + 5x− 17 = 0, so that 2− v = u and u + v = 2.

Comment. One can see also that each of the two given equations has a unique real root by noting that
the sum of the squares of the roots, given by the cofficients, is equal to 32 − 2× 5 = −1.

Solution 4. [P. Shi] Let m and n be determined by u + v = 2m and u − v = 2n. Then u = m + n,
v = m − n, u2 + v2 = 2m2 + 2n2, u2 − v2 = 4mn, u2 + uv + v2 = 3m2 + n2, u2 − uv + v2 = m2 + 3n2,
u3 + v3 = 2m(m2 + 3n2) and u3 − v3 = 2n(3m2 + n2). Adding the equations yields that

0 = (u3 + v3)− 3(u2 + v2) + 5(u + v)− 6

= 2m3 + 6mn2 − 6m2 − 6n2 + 10m− 6

= 6(m− 1)n2 + 2(m3 − 3m2 + 5m− 3)

= 6(m− 1)n2 + 2(m− 1)(m2 − 2m + 3)

= 2(m− 1)[3n2 + (m− 1)2 + 2] .

Hence m = 1.

323. Alfred, Bertha and Cedric are going from their home to the country fair, a distance of 62 km. They
have a motorcycle with sidecar that together accommodates at most 2 people and that can travel at a
maximum speed of 50 km/hr. Each can walk at a maximum speed of 5 km/hr. Is it possible for all
three to cover the 62 km distance within 3 hours?

Solution 1. We consider the following regime. A begins by walking while B and C set off on the
motorcycle for a time of t1 hours. Then C dismounts from the motorcycle and continues walking, while B
drives back to pick up A for a time of t2 hours. Finally, B and A drive ahead until they catch up with C,
taking a time of t3 hours. Suppose that all of this takes t = t1 + t2 + t3 hours.

The distance from the starting point to the point where B picks up A is given by

5(t1 + t2) = 50(t1 − t2)

km, and the distance from the point where B drops off C until the point where they all meet again is given
by

5(t2 + t3) = 50(t3 − t2) .

Hence 45t3 = 45t1 = 55t2, so that t1 = t3 = (11/9)t2 and so t = (31/9)t2 and

t1 =
11
31

t , t2 =
9
31

t , t3 =
11
31

t .

The total distance travelled in the t hours is equal to

50t1 + 5(t2 + t3) =
650
31

kilometers. In three hours, they can travel 1950/31 = 60 + (90/31) > 62 kilometers in this way, so that all
will reach the fair before the three hours are up.
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Solution 2. Follow the same regime as in Solution 1. Let d be the distance from the start to the point
where B drops C in kilometers. The total time for for C to go from start to finish, namely

d

50
+

62− d

5

hours, and we wish this to be no greater than 3. The condition is that d ≥ 470/9.

The time for B to return to pick up A after dropping C is 9d/550 hours in which he covers a distance
of 9d/11 km. The total distance travelled by the motorcycle is

d +
9d

11
+ (62− 2d

11
) =

18d + 682
11

km, and this is covered in
18d + 682

550
hours. To get A and B to their destinations on time, we wish this to not exceed 3; the condition for this is
that d ≤ 484/9. Thus, we can get everyone to the fair on time if

470
9
≤ d ≤ 484

9
.

Thus, if d = 53, for example, we can achieve the desired journey.

Solution 3. [D. Dziabenko] Suppose that B and C take the motorcycle for exactly 47/45 hours while A
walks after them. After 47/45 hours, B leaves C to walk the rest of the way, while B drives back to pick up
A. C reaches the destination in exactly

62− (47/45)50
5

+
47
45

= 3

hours. Since B and A start and finish at the same time, it suffices to check that that B reaches the fair on
time. When B drops C off, B and A are 47 km apart. It takes B 47/55 hours to return to pick up A. At
this point, they are now

62− 5
(

47
45

+
47
55

)
= 62− 47

(
20
99

)
=

5198
99

km from the fair, which they will reach in a further

5198
99× 50

=
2599
2475

hours. The total travel time for A and B is

47
45

+
47
55

+
1
50

[
62− 5

(
47
45

+
47
55

)]
=

9× 47
10× 5

[
1
9

+
1
11

]
+

31
25

=
517 + 423 + 682

550
=

811
275

hours. This is less than three hours.

324. The base of a pyramid ABCDV is a rectangle ABCD with |AB| = a, |BC| = b and |V A| = |V B| =
|V C| = |V D| = c. Determine the area of the intersection of the pyramid and the plane parallel to the
edge V A that contains the diagonal BD.

Solution 1. A dilation with centre C and factor 1/2 takes A to S, the centre of the square and V to M , the
midpoint of V C. The plane of intersection is the plane that contains triangle BMD. Since BM is a median
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of triangle BV C with sides c, c, b, its length is equal to 1
2

√
2b2 + c2 [why?]; similarly, |DM | = 1

2

√
2a2 + c2.

Also, |BD| =
√

a2 + b2. Let θ = ∠BMD. Then, by the law of Cosines,

cos θ =
c2 − a2 − b2

√
2b2 + c2

√
2a2 + c2

,

whence

sin θ =

√
4c2(a2 + b2)− (a2 − b2)2√

2b2 + c2
√

2a2 + c2
.

The required area is
1
2
|BM ||DM | sin θ =

1
8

√
4c2(a2 + b2)− (a2 − b2)2 .

Comment. One can also use Heron’s formula to get the area of the triangle, but this is more labourious.
Another method is to calculate (1/2)|BD||MN |, where N is the foot of the perpendicular from M to BD,
Note that, when a 6= b, N is not the same as S [do you see why?]. If d = |BD| and x = |SN | and, say
|MB| ≤ |MD|, then

|MN |2 = |MB|2 −
(

d

2
− x

)2

= |MD|2 −
(

d

2
+ x

)2

whence

x =
|MD|2 − |MB|2

2d
.

If follows that

|MN |2 =
2a2b2 − a4 − b4 + 4a2c2 + 4b2c2

16(a2 + b2)
.

325. Solve for positive real values of x, y, t:

(x2 + y2)2 + 2tx(x2 + y2) = t2y2 .

Are there infinitely many solutions for which the values of x, y, t are all positive integers? What is the
smallest value of t for a positive integer solution?

Solution. Considering the equation as a quadratic in t, we find that the solution is given by

t =
(x2 + y2)[x +

√
x2 + y2]

y2
=

x2 + y2√
x2 + y2 − x

.

where x and y are arbitrary real numbers. The choice of sign before the radical is governed by the condition
that t > 0. Integer solutions are those obtained by selecting (x, y) = (k(m2−n2), 2kmn) for integers m,n, k
where m and n are coprime and k is a multiple of 2n2. Then

t =
k(m2 + n2)2

2n2
.

The smallest solution is found by taking n = 1, m = k = 2 to yield (x, y, t) = (6, 8, 25).

Comment. L. Fei gives the solution set

(x, y, t) = (2n2 + 2n, 2n + 1, (2n2 + 2n + 1)2) .

This set of solutions satisfies in particular y2 = 2x + 1. If, in the above solution, one takes (x, y) =
(2mn, m2 − n2), then t = (m2 + n2)2/(m− n)2; in particular, this gives the solution (x, y, t) = (4, 3, 25).
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326. In the triangle ABC with semiperimeter s = 1
2 (a+ b+ c), points U, V,W lie on the respective sides BC,

CA, AB. Prove that
s < |AU |+ |BV |+ |CW | < 3s .

Give an example for which the sum in the middle is equal to 2s.

Solution. The triangle inequality yields that |AB| + |BU | > |AU | and |AC| + |CU | > |AU |. Adding
these and dividing by 2 gives s > |AU |. Applying the same inequality to BV and CW yields that

3s > |AU |+ |BV |+ |CW | .

Again, by the triangle inequality, |AU |+|BU | > |AB| and |AU |+|CU | > |AC|. Adding these inequalities
gives 2|AU | > |AB|+ |AC| − |BC|. Adding this to analogous inequalities for BV and CW and dividing by
2 yields that |AU |+ |BV |+ |CW | > s.

Comment. For the last part, most students gave a degenerate example in which the points U, V,W
coincided with certain vertices of the triangle. A few gave more interesting examples. However, it was
necessary to make clear that the stated lengths assigned to AU , BV and CW were indeed possible, i.e. they
were at least as great as the altitudes. The nicest example came from D. Dziabenko: |AB| = 6, |BC| = 8,
|CA| = 10, |AU | = 8, |BV | = 7 |CW | = 9.

327. Let A be a point on a circle with centre O and let B be the midpoint of OA. Let C and D be points
on the circle on the same side of OA produced for which ∠CBO = ∠DBA. Let E be the midpoint of
CD and let F be the point on EB produced for which BF = BE.

(a) Prove that F lies on the circle.

(b) What is the range of angle EAO?

Solution 1. [Y. Zhao] When ∠CBO = ∠DBA = 90◦, the result is obvious. Wolog, suppose that
∠CBO = ∠DBA < 90◦. Suppose that the circumcircle of triangle OBD meets the given circle at G. Since
OBDG is concyclic and triangle OGD is isosceles,

∠OBC = ∠ABD = 180◦ − ∠OBD = ∠OGD = ∠ODG = ∠OBG ,

so that G = C and OBDC is concyclic.

Let H lie on OA produced so that OA = AH. Since OB ·OH = OA2, the inversion in the given circle
with centre O interchanges B and H, fixes C and D, and carries the circle OBDC (which passes through
the centre O of inversion) to a straight line passing through H, D, C. Thus C, D, H are collinear.

This means that CD always passes through the point H on OA produced for which OA = AH. Since
E is the midpoint of CD, a chord of the circle with centre O, ∠OEH = ∠OED = 90◦. Hence E lies on the
circle with centre A and radius OA.

Consider the reflection in the point B (the dilation with centre B and factor −1). This takes the circle
with centre O and radius OA to the circle with centre A and the same radius, and also interchanges E and
F . Since E is on the latter circle, F is on the given circle.

Ad (b), E lies on the arc of the circle with centre A and radius OA that joins O to the point R of
intersection of this circle and the given circle. Since RB ⊥ OA, and OA = OR = RA, ∠RAO = 60◦. It can
be seen that ∠EAO ranges from 0◦ (when CD is a diameter) to 60◦ (when C = D = R).

Solution 2. [A. Wice] We first establish a Lemma.

Lemma. Let UZ be an angle bisector of triangle UV W with Z on V W . Then

UZ2 = UV · UW − V Z ·WZ .
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Proof. By the Cosine Law,

UV 2 = UZ2 + V Z2 − 2UZ · V Z cos ∠UZW

and
UW 2 = UZ2 + WZ2 + 2UZ ·WZ cos ∠UZW .

Eliminating the cosine term yields that

UV 2 ·WZ + UW 2 · V Z = (UZ2 + V Z ·WZ)(WZ + V Z) .

Now,
UV : V Z = UW : WZ = (UV + UW ) : (V Z + WZ) ,

so that
UV ·WZ = UW · V Z

and
(UV + UW ) ·WZ = UW · (WZ + V Z) .

Thus
UV 2 ·WZ + UW 2 · V Z = (UV + UW ) ·WZ · UV

= (WZ + V Z) · UW · UV .

It follows that UW · UV = UZ2 + V Z ·WZ. ♠

Let R be a point on the circle with BR ⊥ OA, S be the intersection of CD in OA produced, and D′

be the reflection of D in OA. (Wolog, ∠CBO < 90◦.) Since SB is an angle bisector of triangle SCD′, from
the Lemma, we have that

BS2 = SC · SD′ − CB ·D′B = SC · SD −BR2 = SC · SD − (SR2 −BS2)

whence SC · SD = SR2. Using power of a point, we deduce that SR is tangent to the given circle and
OR ⊥ SR.

Now

(OA + AS)2 −OR2 = RS2 = BR2 + (AB + AS)2 = 3AB2 + AB2 + 2AB ·AS + AS2

from which 4AB ·AS = 4AB2 + 2AB ·AS, whence AS = 2AB = OA. Since OE ⊥ CD, E lies on the circle
with diameter OS.

Consider the reflection in the point B (dilation in B with factor −1). It interchanges E and F , inter-
changes O and A, and switches the circles ADRC and OERS. Since E lies on the latter circle, F must lie
on the former circle, and the desired result (a) follows.

Ad (b), the locus of E is that part of the circle with centre A that lies within the circle with centre O.
Angle EAO is maximum when E coincides with R, and minimum when D coincides with A. Since triangle
ORA is equilateral, the maximum angle is 60◦ and the minimum angle is 0◦.

Solution 3. [M. Elqars] Let the radius of the circle be r. Let ∠CBO = ∠DBA = α, ∠DOB = β and
∠COF = γ. By the Law of Sines, we have that

sinα : sin(γ − α) = OC : OB = OD : OB = sin(180◦ − α) : sin(α− β) = sin α : sin(α− β) ,

whence α− β = γ − α. Thus 2α = β + γ. Therefore,

∠DOC = 180◦ − (β + γ) = 180◦ − 2α = ∠CBD .
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Thus,

∠DOE =
1
2
∠DOC = 90◦ − α ,

whence ∠EDO = α and |OE| = r sinα.

Observe that sin(α− β) : sin α = OB : OD = 1 : 2, so that sin(α− β) = 1
2 sinα.

|AE|2 = |OE|2 + |OA|2 − 2|OE||OA| cos ∠EOA

= r2 sin2 α + r2 − 2r2 sinα cos(90◦ − α + β)

= r2[1 + sin2 α− 2 sinα sin(α− β)]

= r2[1 + sin2 α− sin2 α] = r2 .

The segments EF and OA bisect each other, so they are diagonals of a parallelogram OFAE. Hence
|OF | = |AE| = r, as desired. As before, we see that ∠EAO ranges from 0◦ to 60◦.

Solution 4. Assign coordinates: O ∼ (0, 0), B ∼ ( 1
2 , 0), C ∼ (1, 0), and let the slope of the lines BC and

BD be respectively −m and m. Then C ∼ ( 1
2 + s,−ms) and D ∼ ( 1

2 + t, mt) for some s and t. Using the
fact that the coordinates of C and D satisfy x2 + y2 = 1, we find that

C ∼
(

m2 −
√

3m2 + 4
2(m2 + 1)

,
−m3 + m

√
3m2 + 4

2(m2 + 1)

)

D ∼
(

m2 +
√

3m2 + 4
2(m2 + 1)

,
m3 + m

√
3m2 + 4

2(m2 + 1)

)

E ∼
(

m2

2(m2 + 1)
,
m
√

3m2 + 4
2(m2 + 1)

)

F ∼
(

m2 + 2
2(m2 + 1)

,
−m

√
3m2 + 4

2(m2 + 1)

)
.

It can be checked that the coordinates of F satisfy the equation x2 + y2 = 1 and the result follows.

Solution 5. [P. Shi] Assign the coordinates O ∼ (0,−1), B ∼ (0, 0), A ∼ (0, 1). Taking the coordinates
of C and D to be of the form (x, y) = (r cos θ, r sin θ) and (x, y) = (s cos θ,−s sin θ) and using the fact that
both lie of the circle of equation x2 + (y + 1)2 = 4, we find that

C ∼ ((
√

sin2 θ + 3− sin θ) cos θ, (
√

sin2 θ + 3− sin θ) sin θ)

D ∼ ((
√

sin2θ + 3 + sin θ) cos θ,−(
√

sin2 θ + 3 + sin θ) sin θ)

E ∼ ((
√

sin2 θ + 3) cos θ,− sin2 θ)

F ∼ (−(
√

sin2 θ + 3) cos θ, sin2 θ) .

It is straightforward to verify that |OF |2 = 4, from which the result follows.

328. Let C be a circle with diameter AC and centre D. Suppose that B is a point on the circle for which
BD ⊥ AC. Let E be the midpoint of DC and let Z be a point on the radius AD for which EZ = EB.

Prove that

(a) The length c of BZ is the length of the side of a regular pentagon inscribed in C.

(b) The length b of DZ is the length of the side of a regular decagon (10-gon) inscribed in C.

(c) c2 = a2 + b2 where a is the length of a regular hexagon inscribed in C.
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(d) (a + b) : a = a : b.

Comment. We begin by reviewing the trigonetric functions of certain angles. Since

cos 72◦ = 2 cos2 36◦ − 1 = 2 cos2 144◦ − 1

= 2(2 cos2 72◦ − 1)2 = 8 cos4 72◦ − 8 cos2 72◦ + 1 ,

t = cos 72◦ is a root of the equation

0 = 8t4 − 8t2 − t + 1 = (t− 1)(2t + 1)(4t2 + 2t− 1) .

Since it must be the quadratic factor that vanishes when t = cos 72◦, we find that

sin 18◦ = cos 72◦ =
√

5− 1
4

.

Hence cos 144◦ = −(
√

5 + 1)/4 and cos 36◦ = (
√

5 + 1)/4.

Solution. [J. Park] Wolog, suppose that the radius of the circle is 2.

(a) Select W on the arc of the circle joining A and B such that BW = BZ. We have that |BE| =
|EZ| =

√
5, b = |ZD| =

√
5 − 1, c2 = |BZ|2 + |BW |2 = 10 − 2

√
5 and, by the Law of Cosines applied to

triangle BDW ,

cos ∠BDW =
1
4
(
√

5− 1) .

Hence BW subtends an angle of 72◦ at the centre of the circle and so BW is a side of an inscribed regular
pentagon.

(b) The angle at each vertex of a regular decagon is 144◦. Thus, the triangle formed by the side of an
inscribed regular pentagon and two adjacent sides of an inscribed regular decagon has angles 144◦, 18◦, 18◦.
Conversely, if a triangle with these angles has its longest side equal to that of an inscribed regular pentagon,
then its two equal sides have lengths equal to those of the sides of a regular decagon inscribed in the same
circle.

Now b =
√

5 − 1, c2 = 10 − 2
√

5, so 4b2 − c2 = 14 − 2
√

45 > 0. Thus, c < 2b, and we can construct
an isosceles triangle with sides b, b, c. By the Law of Cosines, the cosine of the angle opposite c is equal to
(2b2− c2)/(2b2) = − 1

4 (
√

5− 1). This angle is equal to 144◦, and so b is the side length of a regular inscribed
decagon.

(c) The side length of a regular inscribed hexagon is equal to the radius of the circle. We have that

a2 = |BD|2 = |BZ|2 − |ZD|2 = c2 − b2 .

(d) Since b2 + 2b− 4 = (b + 1)2 − 5 = 0, a2 = 4 = (2 + b)b = (a + b)b, whence (a + b) : a = a : b.

329. Let x, y, z be positive real numbers. Prove that√
x2 − xy + y2 +

√
y2 − yz + z2 ≥

√
x2 + xz + z2 .

Solution 1. Let ABC be a triangle for which |AB| = x, |AC| = z and ∠BAC = 120◦. Let AD be a ray
through A that bisects angle BAC and has length y. By the law of cosines applied respectively to triangle
ABC, ABD and ACD, we find that

|BC| =
√

x2 + xz + z2 ,

|BD| =
√

x2 − xy + y2 ,
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|CD| =
√

y2 − yz + z2 .

Since |BD|+ |CD| ≥ |BC|, the desired result follows.

Solution 2. [B. Braverman; B.H. Deng] Note that x2−xy + y2, y2− yz + z2 and z2 +xz + z2 are always
positive [why?]. By squaring, we see that the given inequality is equivalent to

x2 + z2 + 2y2 − xy − yz + 2
√

(x2 − xy + y2)(y2 − yz + z2) ≥ x2 + xz + z2

which reduces to
2
√

(x2 − xy + y2)(y2 − yz + z2) ≥ xy + yz + zx− 2y2 .

If the right side is negative, then the inequality holds trivially. If the right side is positive, the inequality is
equivalent (by squaring) to

4(x2 − xy + y2)(y2 − yz + z2) ≥ (xy + yz + zx− 2y2)2 .

Expanding and simplifying gives the equivalent inequality

x2y2 + x2z2 + y2z2 − 2x2yz − 2xyz2 + 2xy2z ≥ 0

or (xy + yz − zx)2 ≥ 0. Since the last always holds, the result follows.

Comment. The above write-up proceeds by a succession of equivalent inequalities to one that is trivial,
a working-backwards from the result. The danger of this approach is that one may come to a step where the
reasoning is not necessarily reversible, so that instead of a chain of equivalent statements, you get to a stage
where the logical implication is in the wrong direction. The possibility that xy + yz + zx < 2y2 complicates
the argument a litle and needs to be dealt with. To be on the safe side, you could frame the solution by
starting with the observation that (xy + yz − zx)2 ≥ 0 and deducing that

(xy + yz + zx− 2y2)2 ≤ 4(x2 − xy + y2)(y2 − yz + z2) .

From this, we get that

xy + yz + zx− 2y2 ≤ |xy + yz + zx− 2y2| ≤
√

(x2 − xy + y2)(y2 − yz + z2) ,

from which the required inequality follows by rearranging the terms between the outside members and taking
the square root.

Solution 3. [L. Fei] Let x = ay and z = by for some positive reals a and b. Then the given inequality is
equivalent to √

a2 − a + 1 +
√

b2 − b + 1 ≥
√

a2 + ab + b2

which in turn (by squaring) is equivalent to

2− a− b + 2
√

a2 − a + 1
√

b2 − b + 1 ≥ ab . (∗)

We have that

0 ≤ 3(ab− a− b)2 = 3a2b2 − 6a2b− 6ab2 + 3a2 + 3b2 + 6ab

= 4(a2b2 − a2b + a2 − ab2 + ab− a + b2 − b + 1)− (a2b2 + a2 + b2 + 4 + 2a2b + 2ab2 − 2ab− 4a− 4b)

= [2
√

a2 − a + 1
√

b2 − b + 1]2 − (ab + a + b− 2)2 .

Hence
2
√

a2 − a + 1
√

b2 − b + 1 ≥ |ab + a + b− 2| ≥ ab + a + b− 2 .

Taking the inequality of the outside members and rearranging the terms yields (∗).
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Comment. The student who produced this solution worked backwards down to the obvious inequality
(ab− a− b)2 ≥ 0, However, for a proper argument, you need to show how by logical steps you can go in the
other direction, i.e. from the obvious inequality to the desired one. You will notice that this has been done
in the write-up above; the price that you pay is that the evolution from (ab− a− b)2 ≥ 0 seems somewhat
artificial. There is a place where care is needed. It is conceivable that ab + a + b − 2 is negative, so that
2
√

a2 − a + 1
√

b2 − b + 1 ≥ ab+a+b−2 is always true, even when 4(a2−a+1)(b2−b+1) ≥ (ab+a+b−1)2

fails. The inequality A2 ≥ B2 is equivalent to A ≥ B only if you know that A and B are both positive.

330. At an international conference, there are four official languages. Any two participants can communicate
in at least one of these languages. Show that at least one of the languages is spoken by at least 60% of
the participants.

Solution 1. Let the four languages be E,F,G, I. If anyone speaks only one language, then everyone
else must speak that language, and the result holds. Suppose there is an individual who speaks exactly two
languages, say E and F . Then everyone else must speak at least one of E and F . If 60% of the participants
speaks a particular one of these languages, then the result holds. Otherwise, at least 40% of the participants,
constituting set A, must speak E and not F , and 40%, constituting set B, must speak F and not E. Since
each person in A must communicate with each person in B, each person in either of these sets must speak
G or I. At least half the members of A must speak a particular one of these latter languages, say G. If any
of them speaks only G (as well as E), then everyone in B must speak G and so at least 20% + 40% = 60%
of the participants speak G. The remaining possibility is that everyone in A speaks both G and I. At least
half the members of B speaks a particular one of these languages, say G, and so 40% + 20% = 60% of the
participants speak G. Thus, if anyone speaks only two languages, the result holds.

Finally, suppose that every participant speaks at least three languages. Let p% speak E, F and G (and
possibly, but not necessarily I), q% speak E,F, I but not G, r% speak E,G, I but not F , s% speak F,G, I
but not E. Then p + q + r + s = 100 and so

(p + q + r) + (p + q + s) + (p + r + s) + (q + r + s) = 300 .

At least one of the four summands on the left is at least 75, Suppose it is p + r + s, say. Then at least 75%
speaks G. The result holds once again.

Solution 2. [D. Rhee] As in Solution 1, we take the languages to be E,F,G, I, and can dispose of the
case where someone speaks exactly one of these. Let (A · · ·C) denote the set of people who speaks the
languages A · · ·C and no other language, and suppose that each person speaks at least two languages.

We first observe that in each of the pairs of sets, {(EF ), (GI)}, {(EG), (FI)}, {(EI), (FG)}, at least one
of the sets in each pair is empty. So either there is one language that is spoken by everyone speaking exactly
two languages, or else there are only three languages spoken among those that speak exactly two languages.
Thus, wolog, we can take the two language sets among the participants to be either {(EF ), (EG), (EI)} or
{(EF ), (FG), (EG)}.

Case 1. Everyone is in exactly one of the language groups

(EF ), (EG), (EI), (EFG), (EFI), (EGI), (FGI), (EFGI) .

If no more than 40% of the participants are in (FGI), then at least 60% of the participants speak E.
Otherwise, more than 40% of the participants are in (FGI). If no more that 40% of the participants are
in (EG) ∪ (EI) ∪ (EGI), then at least 60% of the participants speak F . The remaining case is that more
that 40% of the participants are in each of (FGI) and (EG)∪ (EI)∪ (EGI). It follows that, either at least
20% of the participants are in (EG) ∪ (EGI), in which case at least 60% speak G, or at least 20% of the
participants are in (EI) ∪ (EGI), in which case at least 60% speak I.

Case 2. Everyone is in exactly one of the language groups

(EF ), (EG), (FG), (EFG), (EFI), (EGI), (FGI), (EFGI) .
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Since the three sets (EF )∪ (EFI), (EG)∪ (EGI) amd (FG)∪ (FGI) are disjoint, one of them must include
fewer than 40% of the participants. Suppose, say, it is (EF )∪ (EFI). Then more than 60% must belong to
its complement, and each of these must speak G. The result follows.

331. Some checkers are placed on various squares of a 2m × 2n chessboard, where m and n are odd. Any
number (including zero) of checkers are placed on each square. There are an odd number of checkers in
each row and in each column. Suppose that the chessboard squares are coloured alternately black and
white (as usual). Prove that there are an even number of checkers on the black squares.

Solution 1. Rearrange the rows so that the m odd-numbered rows move into the top m positions and
the m even-numbered rows move into the bottom m positions, while all the columns remain intact except
for order of entries. Now move all the n odd-numbered columns to the left n positions and all the n even-
numbered columns to the right n positions, while the rows remain intact except for order of entries. The
conditions of the problem continue to hold. Now the chessboard consists of two diagonally opposite m × n
arrays of black squares and two diagonally opposite m × n arrays of white squares. Let a and b be the
number of checkers in the top m × n arrays of black and white squares respectively, and c and d be the
number of checkers in the arrays of white and black squares respectively. Since each row has an odd number
of checkers, and m is odd, then a + b is odd. By a similar argument, b + d is odd. Hence

a + d = (a + b) + (b + d)− 2b

must be even. But a + d is the total number of checkers on the black squares, and the result follows.

Solution 2. [F. Barekat] Suppose that the (1, 1) square on the chessboard is black. The set of black
squares is contained in the union U of the odd-numbered columns along with the union V of all the even-
numbered rows. Note that U contains an odd number of columns and V an odd number of rows. Since each
row and each column contains an odd number of checkers, U has an odd number u of checkers and V has an
odd number v of checkers. Thus u + v is even. Note that each white square belongs either to both of U and
V , or to neither of them. Thus, the u + v is equal to the number of black checkers plus twice the number of
checkers on the white squares common to U and V . The result follows.

332. What is the minimum number of points that can be found (a) in the plane, (b) in space, such that each
point in, respectively, (a) the plane, (b) space, must be at an irrational distance from at least one of
them?

Solution 1. We solve the problem in space, as the planar problem is subsumed in the spatial problem.
Two points will never do, as we can select on the right bisector of the segment joining them a point that is
the same rational distance from both of them (why?).

However, we can find three points that will serve. Select three collinear points A, B, C such that
|AB| = |BC| = u where u2 is not rational. Let P be any point in space. If P,A, B, C are collinear and
|PA| = a, |PC| = c, then |PB| is equal to either a− u or c− u. If a and c are rational, then both a− u and
c− u are nonrational. Hence at least one of the three distances is rational.

If P , A, C are not collinear, then PB is a median of triangle PAC. Let b = |PB|. Then a2+c2 = 2b2+2u2

(why?). Since u2 is non rational, at least one of a, b, c is nonrational.

Comment. You can check that a2 + c2 = 2(b2 + u2) holds for the collinear case as well.

Solution 2. [F. Barekat] As in the foregoing, the number has to be at least three. Consider the points
(0, 0, 0), (u, 0, 0) and (v, 0, 0), where v is irrational and u and v2 are rational. Let P ∼ (x, y, z). Then the
distances from P to the three points are the respective square roots of x2 + y2 + z2, x2 − 2ux + u2 + y2 + z2

and x2 − 2vx + v2 + y2 + z2. If the first of these is irrational, then we have one irrational distance. Suppose
that x2 + y2 + z2 is rational. If x is irrational, then

x2 − 2ux + u2 + y2 + z2 = (x2 + y2 + z2 + u2)− 2ux

50



is irrational. If x is rational, then

x2 − 2vx + v2 + y2 + z2 = (x2 + y2 + z2 + v2)− 2vx

is irrational. Hence not all the three distances can be rational.

333. Suppose that a, b, c are the sides of triangle ABC and that a2, b2, c2 are in arithmetic progression.

(a) Prove that cot A, cot B, cot C are also in arithmetic progression.

(b) Find an example of such a triangle where a, b, c are integers.

Solution 1. [F. Barekat] (a) Suppose, without loss of generality that a ≤ b ≤ c. Let AH be an altitude
of the triangle. Then

cot B =
|BH|
|AH|

and cot C =
|CH|
|AH|

.

Therefore,

2[ABC](cot B + cot C) = a|AH|
(
|BH|+ |CH|

|AH|

)
= a2 .

Similar equalities hold for b2 and c2. Therefore

2b2 = a2 + c2 ⇔ 2(cot A + cot C) = (cot B + cot C) + (cot B + cot A) ⇔ cot A + cot C = 2 cotB .

The result follows from this.

(b) Observe that a2 + c2 = 2b2 if and only if (c− a)2 + (c + a)2 = (2b)2. So, if (x, y, z) is a Pythagorean
triple with z even and x and y of the same parity, then

(a, b, c) =
(

y − x

2
,
z

2
,
y + x

2

)
.

Let (x, y, z) = (m2 − n2, 2mn, m2 + n2) where m and n have the same parity and m > n. Then

(a, b, c) =
(

n2 + 2mn−m2

2
,
m2 + n2

2
,
m2 + 2mn− n2

2

)
.

To ensure that these are sides of a triangle, we need to impose the additional conditions that

n2 + 2mn−m2 > 0 ⇔ 2n2 > (m− n)2 ⇔ m < (
√

2 + 1)n

and
m2 + 2mn− n2 < (m2 + n2) + (n2 + 2mn−m2) ⇔ m < n

√
3 .

Thus, we can achieve our goal as long as n2 < m2 < 3n2 and m ≡ n (mod 2).

For example, (m,n) = (5, 3) yields (a, b, c) = (7, 17, 23).

Comment. Take (x, y, z) = (2mn, m2 − n2,m2 + n2) to give the solution

(a, b, c) =
(

m2 − 2mn− n2

2
,
m2 + n2

2
,
m2 + 2mn− n2

2

)
.

For example, (m,n) = (5, 1) yields (a, b, c) = (7, 13, 17). Here are some further numerical examples; note
how they come in chains with the first of each triple equal to the last of the preceding one:

(a, b, c) = [(1, 5, 7), ](7, 13, 17), (17, 25, 31), (31, 41, 49), · · ·
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(a, b, c) = (7, 17, 23), (23, 37, 47), (47, 65, 79), · · ·

Solution 2. Since c2 = a2 + b2 − 2ab cos C, we have that

cot C =
a2 + b2 − c2

2ab sinC
=

a2 + b2 − c2

4[ABC]

with similar equations for cot A and cotB. Hence

cot A + cot C − 2 cot B = (2[ABC])−1(2b2 − a2 − c2) .

Thus, a2, b2, c2 are in arithmetic progression if and only if cot A, cot B, cot C are in arithmetic progression.

(b) We need to solve the Diophantine equation a2+c2 = 2b2 subject to the condition that c < a+b. The
inequality is equivalent to 2b2 − a2 < (a + b)2 which reduces to (b− a)2 < 3a2 or b < (1 +

√
3)a. To ensure

the inequality, let us try b = 2a + k, so that b2 = 4a2 + 4ka + k2 and we have to solve 7a2 + 8ka + 2k2 = c2.
Upon multiplication by 7 and shifting terms, the equation becomes

(7a + 4k)2 − 7c2 = 2k2 .

(Note that b/a = 2 + (k/a) < 1 +
√

3 as long as a > 1
2 (
√

3 + 1)k.)

We solve a Pell’s Equation x2− 7y2 = 2k2 with the condition that x ≡ 4k (mod 7). There is a standard
technique for solving such equations. We find the fundamental solution of x2 − 7y2 = 1; this is the solution
with the smallest positive values of x and y, and in this case is (x, y) = (8, 3). We need a particular solution
of x2 − 7y2 = 2k2; the solution (x, y) = (3k, k) will do. Then we get an infinite set of solutions (xn, yn) for
x2 − 7y2 = 2k2 by defining (x0, y0) = (3k, k) and, for n ≥ 1,

xn + yn

√
7 = (8 + 3

√
7)(xn−1 + yn−1

√
7) .

(Note that the same equation holds when we replace the plus signs in the three terms by minus signs, so we
can see that this works by multiplying this equation by its surd conjugate.) Separating out the terms, we
get the recursion

xn = 8xn−1 + 21yn−1

yn = 3xn−1 + 8yn−1

for n ≥ 1. Observe that xn ≡ xn−1 (mod 7). Thus, to get the solution we want, we need to select k such
that k ≡ 0 (mod 7).

An infinite family of solutions of x2 − 7y2 = 2k2 starts with

(x, y) = (3k, k), (45k, 17k), (717k, 271k), · · · .

All but the first of these will yield a triangle, since we will have 7a = x − 4k ≥ 41k whence a > 5k >
1
2 (
√

3 + 1)k. Let k = 7. Then, we get the triangles (a, b, c) = (41, 89, 119), (713, 1433, 1897), · · ·. We get only
similar triangles to these from other multiples of 7 for k.

334. The vertices of a tetrahedron lie on the surface of a sphere of radius 2. The length of five of the edges
of the tetrahedron is 3. Determine the length of the sixth edge.

Solution 1. Let ABCD be the tetrahedron with the lengths of AB, AC, AD, BC and BD all equal to 3.
The plane that contains the edge AB and passes through the centre of the sphere is a plane of symmetry for
the tetrahedron and is thus orthogonal to CD. This plane meets CD in P , the midpoint of CD. Likewise,
the plane orthogonal to AB passing through the midpoint M of AB is a plane of symmetry of the tetrahedron
that passes through C, D and P , as well as the centre O of the sphere.
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Consider the triangle OCM with altitude CP . Since OM is the altitude of the triangle OAB with
|OA| = |OB| = 2 and |AB| = 3, |OM | = (

√
7)/2. Since MC is an altitude of the equilateral triangle ABC,

|MC| = (3
√

3)/2. Since OC is a radius of the sphere, |OC| = 2.

Let θ = ∠OCM . Then, by the Cosine Law, 7
4 = 4 + 27

4 − 2
√

27 cos θ, so that cos θ = (
√

3)/2 and
sin θ = 1/2. Hence, the area [OCM ] of triangle OCM is equal to 1

2 |OC||MC| sin θ = (3
√

3)/4. But this area
is also equal to 1

2 |CP ||OM | = ((
√

7)/4)|CP |. Therefore,

|CD| = 2|CP | = 2(3
√

3)/(
√

7) = (6
√

3)/(
√

7) = (6
√

21)/7 .

Comment. An alterntive way is to note that CMP is a right triangle with hypotenuse CM with O
a point on PM . Let u = |CP |. We have that |CM | = (3

√
3)/2, |OM | = (

√
7)/2, |CO| = 2. so that

|OP |2 = 4− u2 and |MP | = [(
√

7)/2] +
√

4− u2. Hence, by Pythagoras’ Theorem,

27
4

=
[√

7
2

+
√

4− u2

]2

+ u2

=⇒ 27
4

=
7
4

+
√

7
√

4− u2 + 4

=⇒ u2 = 27/7 =⇒ u = (3
√

3)/
√

7 .

Hence |CD| = 2u = (6
√

3)/
√

7.

Solution 2. [F. Barekat] As in Solution 1, let CD be the odd side, and let O be the centre of the sphere.
Let G be the centroid of the triangle ABC. Since the right bisecting plane of the three sides of triangle
ABC each pass through the centroid G and the centre O, OG ⊥ ABC. Observe that |CG| =

√
3 and

|GM | = (
√

3)/2, where M is the midpoint of AB.

As CGO is a right triangle, |GO|2 = |CO|2 − |CG|2 = 4 − 3 = 1, so that |GO| = 1. Hence, |OM |2 =
|OG|2 + |GM |2 = 1 + 3

4 = 7
4 , so that |OM | = (

√
7)/2. Therefore,

sin∠OMC = sin∠OMG = |OG|/|OM | = 2/(
√

7) .

With P the midpoint of CD, the line MP (being the intersection of the planes right bisecting AB and
CD) passes through O. Since MC and MD are altitudes of equilateral triangles, |MC| = |MD| = 3(

√
3)/2,

so that MCD is isosceles with MP bisecting the apex angle. Hence

|CD| = 2|MC| sin(
1
2
∠CMD) = 2|MC| sin∠OMC = (6

√
3)/(

√
7) .

Solution 3. Let A be at (−3/2, 0, 0) and B be at (3/2, 0, 0) in space. The locus of points equidistant from
A and B is the plane x = 0. Let the centre of the sphere be at the point (0, u, 0), so that u2+9/4 = 4 and u =
(
√

7)/2. Suppose that C is at the point (0, y, z) where 9
4 +y2 +z2 = 9. We have that (y− (

√
7)/2))2 +z2 = 4

whence
(
√

7)y + (9/4) = y2 + z2 = 9− (9/4)

and y = 9/(2
√

7). Therefore z = (3
√

3)/(
√

7).

We find that C ∼ (0, 9/(2
√

7), (3
√

3)/(
√

7)) and D ∼ (0, 9/(2
√

7), (−3
√

3)/(
√

7)), whence |CD| =
(6
√

3)/(
√

7).

Solution 4. [Y. Zhao] Use the notation of Solution 1, and note that the right bisecting plane of AB
and CD intersect in a diameter of the sphere. Let us first determine the volume of the tetrahedron ABDO.
Consider the triangle ABD with centroid X. We have that |AB| = |BD| = |AD| = 3, |AX| =

√
3

and [ABD] = (9
√

3)/4. Since O is equidistant from the vertices of triangle ABD, OX ⊥ ABD. By
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Pythagoras’ Theorem applied to triangle AXO, |OX| = 1, so that the volume of tetrahedron ABDO is
(1/3)|OX|[ABD] = (3

√
3)/4.

Triangle ABO has sides of lengths 2, 2, 3, and (by Heron’s formula) area (3
√

7)/4. Since CD ⊥ ABO,
CD is the production of an altitude of tetrahedron ABDO; the altitude has length 1

2 |CO|. Hence

|CD| = 2[3Volume(ABDO)]
[ABO]

=
2(9
√

3)/4
(3
√

7)/4
=

6
√

3√
7

.

Solution 5. [A. Wice] Let the tetrahedron ABCD have its vertices on the surface of the sphere of
equation x2 + y2 + z2 = 4 with A at (0, 0, 2). The remaining vertices have coordinates (u, v, w) and satisfy
the brace of equations: u2 + v2 + (w − 2)2 = 9 and u2 + v2 + w2 = 4. Hence, w = −1/4. Thus, the
points B,C,D lie on the circle of equations z = −1/4, x2 + y2 = 63/16. The radius R of this circle and the
circumradius of triangle BCD is 3

√
7/4.

Triangle BCD has sides of length (b, c, d) = (b, 3, 3) and area bcd/4R = 1
2b

√
9− (b2/4). Hence

3√
7

=
1
2

√
9− (b2/4) ⇔ 36 = 7(9− (b2/4)) ⇔ 144 = 7(36− b2) ⇔ b =

6
√

3√
7

.

Thus, the length of the remaining side is (6
√

3)/
√

7.

335. Does the equation
1
a

+
1
b

+
1
c

+
1

abc
=

12
a + b + c

have infinitely many solutions in positive integers a, b, c?

Comment. The equation is equivalent to

(a + b + c)(bc + ca + ab + 1) = 12abc .

This is quadratic in each variable, and for any integer solution, has integer coefficients. The general idea
of the solution is to start with a particular solution ((a, b, c) = (1, 1, 1) is an obvious one), fix two of the
variables at these values and regard the equation as a quadratic in the third. Since the sum and the product
of the roots are integers and one root is known, one can find another root and so bootstrap one’s way to
other solutions. Thus, we have the quadratic for a:

(b + c)a2 + [(b + c)2 + (bc + 1)− 12bc]a + (b + c)(bc + 1) = 0 ,

so that if (a, b, c) satisfies the equation, then so also does (a′, b, c) where

a + a′ =
9bc− b2 − c2 − 1

b + c
and aa′ = bc + 1 .

We can start constructing solutions using these relations:

(1, 1, 1), (1, 1, 2), (1, 2, 3), (2, 3, 7), (2, 5, 7), (3, 7, 11), (5, 7, 18), (5, 13, 18), · · · .

However, some triples do not lead to a second solution in integers. For example, (b, c) = (2, 5) leades to
(7, 2, 5) and (11/7, 2, 5), and (b, c) = (3, 11) leads to (7, 3, 11) and (34/7, 3, 11). So we have no guarantee that
this process will not peter out.

Solution 1. [Y. Zhao] Yes, there are infinitely many solutions. Specialize to the case that c = a + b.
Then the equation is equivalent to

2(a + b)[(a + b)2 + ab + 1] = 12ab(a + b) ⇐⇒ a2 − 3ab + b2 + 1 = 0 .
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This has at least one solution (a, b) = (1, 1). Suppose that (a, b) = (p, q) is a solution with p ≤ q. Then
(a, b) = (q, 3q − p) is a solution. (To see this, note that x2 − 3qx + (q2 + 1) = 0 is a quadratic equation with
one root x = p and root sum 3q.) Observe that q < 3q − p.

Define a sequence {xn} for n ≥ 0 by x0 = x1 = 1 and xn = 3xn−1−xn−2 for n ≥ 2. Then (a, b) = (x0, x1)
satisfies the equation, and by induction, so does (a, b) = (xn, xn+1) for n ≥ 1. Since xn+1 − xn = 2xn − xn1 ,
one sees by induction that {xn} is strictly increasing for n ≥ 1. Hence, an infinite set of solutions for the
given equation is given by

(a, b, c) = (xn, xn+1, xn + xn+1)

for n ≥ 0. Some examples are

(a, b, c) = (1, 1, 2), (1, 2, 3), (2, 5, 7), (5, 13, 18), · · ·

Comment. If {fn} is the Fibonacci sequence defined by f0 = 0, f1 = 1 and fn = fn−1 + fn−2 for n ≥ 2,
then the solutions are (a, b, c) = (f2k−1, f2k+1, f2k−1 + f2k+1).

Solution 2. Yes. Let u0 = u1 = 1, v0 = 1, v1 = 2 and

un = 4un−1 − un−2

vn = 4vn−1 − vn−2

for n ≥ 2, so that {un} = {1, 1, 3, 11, 41, · · ·} and {vn} = {1, 2, 7, 26, 97, · · ·}. It can be proven by induction
that both sequences are strictly increasing for n ≥ 1. We prove that the equation of the problem is satisfied
by

(a, b, c) = (un, vn, un+1), (vn, un+1, vn+1)

for n ≥ 0. In other words, the equation holds if (a, b, c) consists of three consecutive terms of the sequence
{1, 1, 1, 2, 3, 7, 11, 26, 41, 97, · · ·}.

Observe that, for n ≥ 2,

unvn − un+1vn−1 = un(4vn−1 − vn−2)− (4un − un−1)vn−1

= un−1vn−1 − unvn−2

so that, by induction, it can be established that unvv − un+1vn−1 = −1. Similarly,

unvn+1 − un+1vn = un(4vn − vn−1)− (4un − un−1)vn

= un−1vn − unvn−1 = 1 .

It can be checked that (a, b, c) = (1, 1, 1) satisfies the equation. Suppose, as an induction hypothesis, that
(a, b, c) = (un, vn, un+1) satisfies the equation. Then un is a root of the quadratic

0 = [x + vn + un+1][x(vn + un+1) + vnun+1 + 1]− 12vnun+1x

= (vn + un+1)x2 + (v2
n + u2

n+1 + 1− 9vnun+1)x + (vn + un+1)(vnun+1 + 1) .

The second root is
vn+1 =

vnun+1 + 1
un

so (a, b, c) = (vn, un+1, vn+1) satisfies the equation. Similarly, vn is a root of a quadratic, the product of
whose roots is un+1vn+1 + 1. The other root of this quadratic is

un+2 =
un+1vn+1 + 1

vn

and so, (a, b, c) = (un+1, vn+1, un+2) satisfies the equation.
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Solution 3. [P. Shi] Yes. Let u0 = v0 = 1, v0 = 1, v1 = 2, and

un =
un−1vn−1 + 1

vn−2
and vn =

unvn−1 + 1
un−1

for n ≥ 2. We establish that, for n ≥ 1,

un = 2vn−1 − un−1 ; (1)

vn = 3un − vn−1 ; (2)

3u2
n + 2v2

n−1 + 1 = 6unvn−1 ; (3)

3u2
n + 2v2

n + 1 = 6unvn . (4)

Note that (3u2
n + 2v2

n + 1− 6unvn)− (3u2
n + 2v2

n−1 + 1− 6unvn−1) = 2(vn− vn−1)(vn + vn−1− 3un), so that
the truth of any two of (2), (3), (4) implies the truth of the third.

The proof is by induction. The result holds for n = 1. Suppose it holds for 1 ≤ n ≤ k − 1. From (3),

3u2
k−1 + 2v2

k−2 + 1 = 6uk−1vk−2 =⇒

(3uk−1 − vk−2)uk−1 + 1 = 2(3uk−1 − vk−2)vk−2 − uk−1vk−2 .

Substituting in (2) gives

uk =
uk−1vk−1 + 1

vk−2
=

uk−1(3uk−1 − vk−2) + 1
vk−2

= 2vk−1 − uk−1

which establishes (1) for n = k. From (4),

(2vk−1 − uk−1)vk−1 + 1 = [3(2vk−1 − uk−1)− vk−1]uk−1

whence

vk =
ukvk−1 + 1

uk−1
=

(2vk−1 − uk−1)vk−1 + 1
uk−1

= 3uk − vk−1

which establishes (2) for n = k. From (4),

3(2vk−1 − uk−1)2 + 2v2
k−1 + 1 = 6(2vk−1 − uk−1)vk−1

=⇒ 3u2
k + 2v2

k−1 + 1 = 6ukvk .♥

Let w2n = un and w2n+1 = vn for n ≥ 0. Then

wn =
wn−1wn−2 + 1

wn−3

for n ≥ 3. It can be checked that (a, b, c) = (1, 1, 1) = (w0, w1, w2) satisfies the equation. Suppose that the
equation is satisfied by (a, b, c) = (wn−1, wn, wn+1). Thus

(x + wn + ww+1)(x(wn + wn+1) + wnwn+1 + 1) = 12xwnwn+1 = 0

is a quadratic equation in x one of whose roots is x = wn−1. The quadratic can be rewritten

x2 + [(wn + wn+1)− (11wnwn+1 − 1)/(wn + wn+1)]x + (wnwn+1 + 1) = 0 .
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Since the product of the roots is equal to wnwn+1 + 1, the second root is equal to

wnwn+1 + 1
wn−1

= wn+2 .

The result follows.

Solution 4. Let c = a + b. Then the equation becomes 2c(ab + c2 + 1) = 12abc, whence ab = (c2 + 1)/5.
Hence, a, b are roots of the quadratic equation

0 = t2 − ct +
(

c2 + 1
5

)
=

1
4

[
(2t− c)2 −

(
5c2 − 20

25

)]
.

For this to have an integer solution, it is necessary that 5c2 − 20 = s2, the square of an integer s. Now
s2−5c2 = −20 is a Pell’s equation, three of whose solutions are (s, c) = (0, 2), (5, 3), (15, 7). Since x2−5y2 = 1
is satisfied by (x, y) = (9, 4), solutions (sn, cn) of s2 − 5c2 = −20 are given by the recursion

sn+1 = 9sn + 20cn

cn+1 = 4sn + 9cn

for n ≥ 0. where (s0, c0) is a starter solution. Taking (s0, c0) = (0, 2), we get the solutions

(s; a, b, c) = (0; 1, 1, 2), (40; 5, 13, 18), (720; 89, 233, 322), · · · .

Taking (s0, c0) = (5, 3), we get the solutions

(s; a, b, c) = (5; 1, 2, 3), (105; 13, 34, 47), (1885; 233, 610, 843), · · · .

Taking (s0, c0) = (15, 7), we get the solutions

(s; a, b, c) = (15; 2, 5, 7), (275; 34, 89, 123), · · · .

Comment. Note that the values of c seem to differ from a perfect square by 2; is this a general
phenomenon?

Solution 5. [Z. Guo] Let r1 = r2 = 1, and, for n ≥ 1,

r2n+1 = 2r2n − r2n−1

r2n+2 = 3r2n+1 − r2n .

Thus, {rn} = {1.1, 1, 2, 3, 7, 11, 26, 41, 87, 133, · · ·}. Observe that (a, b, c) = (rm, rm+1, rm+2) satisfies the
equation for m = 1, 2.

For each positive integer n, let kn = r2n − r2n−1, so that

r2n−1 = r2n − kn ,

r2n+1 = r2n + kn ,

r2n+2 = 2r2n + 3kn .

Suppose that (a, b, c) = (r2m−1, r2m, r2m+1) and (a, b, c) = (r2m, r2m+1, r2m+2) satisfy the equation.
Substituting (a, b, c) = (r2m − km, r2m, r2m + km) into the equation and simplifying yields that r2m =√

3k2
m + 1. (This can be verified by substituting (a, b, c) = (r2m, r2m + km, 2r2m + 3k2m) into the equation.)

In fact, this condition is equivalent to these values of (a, b, c) satisfying the equation.

57



We have that

3k2
m+1 + 1 = 3(r2m+2 − r2m+1)2 + 1

= 3(r2m + 2km)2 + 1

= 3(r2
2m + 4k2

m + 4r2mkm) + 1

= 3(7k2
m + 1) + 12r2mkm + 1 = 21k2

m + 12rrmkm + 4 .

Thus
r2
2m+2 = (2r2m + 3km)2 = 4r2

2m + 9k2
m + 12r2mkm

= 12k2
m + 4 + 9k2

m + 12r2mkm = 3k2
m+1 + 1 .

This is the condition that

(a, b, c) = (r2m+2 − km+1, r2m+2, r2m+2 + km+1) = (r2m+1, r2m+2, r2m+3)

and
(a, b, c) = (r2m+2, r2m+2 + km+1, 2r2m+2 + 3km+1) = (r2m+2, r2m+3, r2m+4)

satisfy the equation. The result follows by induction.

Solution 6. [D. Rhee] Try for solutions of the form

(a, b, c) =
(

x,
1
2
(x + y), y

)
where x and y are postive integers of the same parity. Plugging this into the equation and simplifying yields
the equivalent equation

x2 − 4xy + y2 + 2 = 0 ⇐⇒ x2 − 4yx + (y2 + 2) = 0 .

Suppose that z1 = 1, z2 = 3 and zn+1 = 4zn − zn−1 for n ≥ 1. Then, it can be shown by induction
that zn+1 > zn and zn is odd for n ≥ 1. We prove by induction that (x, y) = (zn, zn+1) is a solution of the
quadratic equation in x and y.

This is true for n = 1. Suppose that it holds for n ≥ 1. Then zn is a root of the quadratic equation
x2−4zn+1x+(z2

n+1 +2) = 0. Since the sum of the roots is the integer 4zn+1, the second root is 4zn+1−zn =
zn+2 and the desired result holds because of the symmetry of the equation in x and y.

Thus, we obtain solutions (a, b, c) = (1, 2, 3), (3, 7, 11), (11, 26, 41), (41, 97, 153), · · · of the given equation.

Solution 7. [J. Park; A. Wice] As before, we note that if (a, b, c) = (u, v, w) satisfies the equation, then
so also does (a, b, c) = (v, w, (vw + 1)/u). Define a sequence {xn} by x1 = x2 = x3 = 1 and

xn+3 =
xn+2xn+1 + 1

xn

for n ≥ 1. We prove by induction, that for each n, the following properties hold:
(a) x1, · · · , xn+3 are integers; in particular, xn divides xn+2xn+1 + 1;
(b) xn+1 divides xn + xn+2;
(c) xn+2 divides xnxn+1 + 1;
(d) x1 = x2 = x3 < x4 < x5 < · · · < xn < xn+1 < xn+2;
(e) (a, b, c) = (xn, xn+1, xn+2) satisfies the equation.

These hold for n = 1. Suppose they hold for n = k. Since

xk+2xk+3 + 1 =
xk+2(xk+1xk+2 + 1)

xk
+ 1 =

x2
k+2xk+1 + (xk + xk+2)

xk
,
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from (b) we find that xk+1 divides the numerator. Since, by (a), xk and xk+1 are coprime, xk+1 must divide
xk+2xk+3 + 1.

Now

xk+1 + xk+3 =
(xkxk+1 + 1) + xk+1xk+2

xk
.

By (a), xk and xk+2 are coprime, and, by (c), xk+2 divides the numerator. Hence xk+2 divides xk+1 +xk+3.

Since xk = (xk+1xk+2 + 1)/xk+3 is an integer, xk+3 divides xk+1xk+2 + 1. Next,

xk+3 =
xk+1xk+2 + 1

xk
>

(
xk+1

xk

)
xk+2 > xk+2 .

Finally, the theory of the quadratic delivers (e) for n = k + 1. The result follows.

336. Let ABCD be a parallelogram with centre O. Points M and N are the respective midpoints of BO and
CD. Prove that the triangles ABC and AMN are similar if and only if ABCD is a square.

Comment. Implicit in the problem, but what should have been stated, is that the similarity intended
is in the order of the vertices as given, i.e., AB : BC : CA = AM : MN : NA. In the first solution, other
possible orderings of the vertices in the similarity are considered (in which case, the result becomes false);
in the remaining solutions, the restricted sense of the similarity is discussed.

Solution 1. Let P be the midpoint of CN . Observe that

[AMD] =
3
4
[ABD] =

3
4
[ABC]

and

[AMC] =
1
2
[ABC] .

As N is the midpoint of CD, the area of triangle AMN is the average of these two (why?), so that

[AMN ] =
5
8
[ABC] .

Thus, in any case, we have the ratio of the areas of the two triangles, so, if they are similar, we know exactly
what the factor of similarity must be.

Let |AB| = |CD| = 2a, |AD| = |BC| = 2b, |AC| = 2c and |BD| = 2d. Recall, that if UV W is a triangle
with sides 2u, 2v, 2w opposite the respective vertices U, V,W and m is the length of the median from U ,
then

m2 = 2v2 + 2w2 − u2 .

Since AN is a median of triangle ACD, with sides 2a, 2b, 2c,

|AN |2 = 2c2 + 2b2 − a2 .

Since AM is a median of triangle ABO, with sides 2a, c, d,

|AM |2 = 2a2 + (c2/2)− (d2/4) .

Since CM is a median of triangle CBO, with sides 2b, c, d,

|CM |2 = 2b2 + (c2/2)− (d2/4) .
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Since MN is a median of triangle MCD with sides |CM |, 3d/2, 2a,

|MN |2 =
|CM |2

2
+

1
2

(
3d

2

)2

− a2

= b2 +
c2

4
− d2

8
+

9d2

8
− a2 = b2 +

c2

4
+ d2 − a2 .

Suppose that triangle ABC and AMN are similar (with any ordering of the vertices). Then

8(|AM |2 + |AN |2 + |MN |2) = 5(|AB|2 + |AC|2 + |BC|2)

⇐⇒ 24b2 + 22c2 + 6d2 = 20a2 + 20b2 + 20c2

⇐⇒ 2b2 + c2 + 3d2 = 10a2 . (1)

Also, for the parallelogram with sides 2a, 2b and diagonals 2c, 2d, we have that

c2 + d2 = 2(a2 + b2) . (2)

Equations (1) and (2) together yield d2 = 4a2 − 2b2 and c2 = 4b2 − 2a2. We now have that

|AN |2

|AC|2
=

2c2 + 2b2 − a2

4c2
=

4c2 + c2

8c2
=

5
8

which is the desired ratio. Thus, when triangles ABC and AMN are similar, the sides AN and AC are in
the correct ratio, and so must correspond in the similarity. (There is a little more to this than meets the
eye. This is obvious when triangle AMN is scalene; if triangle AMN were isosceles or equilateral, then it is
self-congruent and the similarity can be set up to make AN and BC correspond.)

We also have that

|MN |2

|AB|2
=

4b2 + c2 + 4d2 − 4a2

16a2
=

4b2 + 4b2 − 2a2 + 16a2 − 8b2 − 4a2

16a2
=

10a2

16a2
=

5
8

and
|AM |2

|BC|2
=

8a2 + 2c2 − d2

16b2
=

8a2 + 8b2 − 4a2 − 4a2 + 2b2

16b2
=

10b2

16b2
=

5
8

.

Thus, if triangle ABC and AMN are similar, then

AB : BC : AC = MN : AM : AN

and cos ∠ABC = cos ∠ADC = 3(a2 − b2)/(2ab). The condition that the cosine has absolute value not
exceeding 1 yields that (

√
10− 1)b ≤ 3a ≤ (

√
10 + 1)b.

Now we look at the converse. Suppose that ABCD is a parallelogram with sides 2a and 2b as indicated
above and that cos ∠ABC = cos ∠ADC = 3(a2 − b2)/(2ab). Then, the lengths 2c and 2d of the diagonals
are given by

4c2 = |AC|2 = 4a2 + 4b2 − 12a2 + 12b2 = 16b2 − 8a2 = 8(2b2 − a2)

and
4a2 = |BD|2 = 4a2 + 4b2 + 12a2 − 12b2 = 16a2 − 8b2 = 8(2a2 − b2)

so that |AC| = 2
√

4b2 − 2a2 and |BD| = 2
√

4a2 − 2b2. Using the formula for the lengths of the medians, we
have that

|AN |2 = 2(4b2 − 2a2) + 2b2 − a2 = 5(2b2 − a2)
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|AM |2 = 2a2 +
4b2 − 2a2

2
− 4a2 − 2b2

4
=

5b2

2

|MN |2 = b2 +
(

4b2 − 2a2

4

)
+ (4a2 − 2b2)− a2 =

5a2

2
.

Thus
|AN |2

|AC|2
=
|AM |2

|BC|2
=
|MN |2

|AB|2
=

5
8

and triangles ABC and AMN are similar with AB : BC : AC = MN : AM : AN .

If triangles ABC and AMN are similar with AB : BC : AC = AM : MN : AN , then we must have
that AB = BC, i.e. a = b and so ∠ABC = ∠ADC = 90◦, i.e., ABCD is a square.

Comment. A direct geometric argument that triangles ABC and AMN are similar when ABCD is
a square can be executed as follows. By reflection about an axis through M parallel to BC, we see that
MN = MC. By reflection about axis BD, we see that AM = CM and ∠BAM = ∠BCM . Hence
AM = MN and ∠BAM = ∠BCM = ∠CMP = ∠NMP where P is the midpoint of CN .

Consider a rotation with centre A through an angle BAM followed by a dilation of factor |AM |/|AB|.
This transformation takes A −→ A, B −→ M and the line BC to a line through M making an angle ∠BAM
with BC; the image line must be MN . Since AB = BC and AM = MN , C −→ N . Thus, the image of
triangle ABC is triangle AMN and the two triangles are similar.

An alternative argument uses the fact that triangles AOM and ADN are similar, so that ∠AMO =
∠AND and AMND is concyclic. From this follows ∠AMN = 180◦ − ∠ADN = 90◦.

Solution 2. [S. Eastwood; Y. Zhao] If ABCD is a square, we can take B at 1 and D at i, whereupon
M is at (3 + i)/4 and N at (1 + 2i)/2. The vector −−→MN is represented by

1 + 2i

2
− 3 + i

4
=

i(3 + i)
4

.

Since −−→AM is represented by (3 + i)/4, MN is obtained from AM by a 90◦ rotation about M so that
MN = AM and ∠AMN = 90◦. Hence the triangles ABC and AMN are similar.

For the converse, let the parallelogram ABCD be represented in the complex plane with A at 0, B at
z and D at w, Then C is at z + w, M is at (3z + w)/4 and N is at 1

2 (z + w) + 1
2w = (z + 2w)/2. Suppose

that triangles ABC and AMN are similar. Then, since ∠AMN = ∠ABC and AM : AN = AB : AC, we
must have that

1
4 (3z + w)
1
2 (z + 2w)

=
z

z + w
⇐⇒ (3z + w)(z + w) = 2z(z + 2w)

⇐⇒ 3z2 + 4zw + w2 = 2z2 + 4zw ⇐⇒ z2 + w2 = 0 ⇐⇒ z = ±iw .

Thus AD is obtained from AB by a 90◦ rotation and ABCD is a square.

Comment. Strictly speaking, the reasoning in the last paragraph is reversible, so we could use it for the
proof in both directions. However, the particularization may aid in understanding what is going on.

Solution 3. [F. Barekat] Let ABCD be a square. Then ∆ADC ∼ ∆AOB so that AB : AC = OB :
DC = MB : NC. Since also ∠ABM = ∠ACN = 45◦, ∆AMB ∼ ∆ANC. Therefore AM : AB = AN : AC.
Also

∠MAB = ∠NAC =⇒ ∠CAB = ∠CAM + ∠MAB = ∠CAM + ∠NAC = ∠NAM .

Therefore ∆AMN ∼ ∆ABC.

On the other hand, suppose that ∆AMN ∼ ∆ABC. Then AM : AN = AB : AC and

∠NAC = ∠NAM − ∠CAM = ∠CAB − ∠CAM = ∠MAB ,
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whence ∆AMB = ∆ANC.

Therefore, AB : AC = MB : NC = BO : DC. Since also ∠ABO = ∠ACD, ∆ABO ∼ ∆ACD, so that
∠ABO = ∠ACD and ∠AOB = ∠ADC. Because ∠ABO = ∠ACD, ABCD is a concyclic quadrilateral
and ∠DAB + ∠DCB = 180◦. Since ABCD is a parallelogram, ∠DAB = ∠DCB = 90◦ and ABCD is a
rectangle. Thus ∠AOB = ∠ADC = 90◦, from which it can be deduced that ABCD is a square.

Solution 4. [B. Deng] Let ABCD be a square. Since MN = MC = MA, triangles MNC and AMN
are isosceles. We have that

AM2 + MN2 = 2AM2 = 2(AO2 + OM2) = (5/4)AB2

and
AN2 = AD2 + DN2 = (5/4)AB2 = AM2 + MN2 ,

whence ∠AMN = 90◦ and ∆AMN ∼ ∆ABC.

Suppose on the other hand that ∆AMN ∼ ∆ABC. Then AN : AM = AC : AB and ∠NAM = ∠CAB
together imply that

∠NAC = ∠MAB =⇒ ∆NAC ∼ ∆MAB =⇒ ∠NCA = ∠ABM .

But ∠NCA = ∠OAB ⇒ ∠OAB = ∠OBA ⇒ ABCD is a rectangle.

Let H be the foot of the perpendicular from M to CN . Then ON , MH and BC are all parallel and M
is the midpoint of OB. Hence H is the midpoint of CN and ∆HMN ≡ ∆HMC. Therefore MC = MN .
Now, from the median length formula,

AM2 =
1
4
(2BA2 + 2AO2 −BO2) =

1
4
(2BA2 + AO2)

and
CM2 =

1
4
(2BC2 + 2CO2 −BO2) =

1
4
(2BC2 + CO2)

whence
(2BA2 + AO2) : (2BC2 + CO2) = AM2 : CM2 = AM2 : MN2 = BA2 : BC2

so that
2BA2 ·BC2 + AO2 ·BC2 = 2BA2 ·BC2 + BA2 · CO2 ⇒ BC2 = BA2 ⇒ BC = BA

and ABCD is a square.

337. Let a, b, c be three real numbers for which 0 ≤ c ≤ b ≤ a ≤ 1 and let w be a complex root of the
polynomial z3 + az2 + bz + c. Must |w| ≤ 1?

Solution 1. [L. Fei] Let w = u+iv, w = u−iv and r be the three roots. Then a = −2u−r, b = |w|2+2ur
and c = −|w|2r. Substituting for b, ac and c, we find that

|w|6 − b|w|4 + ac|w|2 − c2 = 0

so that |w|2 is a nonnegative real root of the cubic polynomial q(t) = t3−bt2 +act−c2 = (t−b)t2 +c(at−c).
Suppose that t > 1, then t− b and at− c are both positive, so that q(t) > 0. Hence |w| ≤ 1.

Solution 2. [P. Shi; Y.Zhao]

0 = (1− w)(w3 + aw2 + bw + c)

= −w4 + (1− a)w3 + (a− b)w2 + (b− c)w + c

=⇒ w4 = (1− a)w3 + (a− b)w2 + (b− c)w + c

=⇒ |w|4 ≤ (1− a)|w|3 + (a− b)|w|2 + (b− c)|w|+ c .
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Suppose, if possible, that |w| > 1. Then

|w|4 ≤ |w|3[(1− a) + (a− b) + (b− c) + c] = |w|3

which implies that |w| ≤ 1 and yields a contradiction. Hence |w| ≤ 1.

Solution 3. There must be one real solution v. If v = 0, then the remaining roots w and w, the complex
conjugate of w, must satisfy the quadratic equation z2 + az + b = 0. Therefore |w|2 = ww = b ≤ 1 and the
result follows. Henceforth, let v 6= 0.

Observe that
f(−1) = −1 + a− b + c = −(1− a)− (b− c) ≤ 0

and that
f(−c) = −c3 + ac2 − bc + c ≥ −c3 + c3 − bc + c = c(1− b) ≥ 0 ,

so that −1 ≤ v ≤ −c. The polynomial can be factored as

(z − v)(z2 + pz + q)

where c = −qv so that q = c/(−v) ≤ 1. But q = ww, and the result again follows.

338. A triangular triple (a, b, c) is a set of three positive integers for which T (a) + T (b) = T (c). Determine
the smallest triangular number of the form a + b + c where (a, b, c) is a triangular triple. (Optional
investigations: Are there infinitely many such triangular numbers a + b + c? Is it possible for the three
numbers of a triangular triple to each be triangular?)

Solution 1. [F. Barekat] For each nonnegative integer k, the triple

(a, b, c) = (3k + 2, 4k + 2, 5k + 3)

satisfies T (a) + T (b) = T (c). Indeed,

(3k +2)(3k +3)+(4k +2)(4k +3) = (9k2 +15k +6)+(16k2 +20k +6) = 25k2 +35k +12 = (5k +3)(5k +4) .

We have that a+b+c = 12k+7, so we need to determine whether there are triangular numbers congruent to
7 modulo 12. Suppose that T (x) is such. Then x(x + 1) must be congruent to 14 modulo 24. Now, modulo
24,

x2 + x− 14 ≡ x2 + x− 110 = (x− 10)(x + 11) ≡ (x− 10)(x− 13)

so T (x) leaves a remainder 7 upon division by 12 if and only if x = 10 + 24m or x = 13 + 24n for some
nonnegative integers m and n. This yields

k = 4 + 21m + 24m2

and
k = 7 + 27n + 24n2

for nonnegative integers m and n. The smallest triples according to these formula are (a, b, c) = (14, 18, 23)
and (a, b, c) = (23, 30, 38), with the respective values of a + b + c equal to 55 = T (10) and 91 = T (13).
However, it may be that there are others that do not come under this set of formulae.

The equation a(a + 1) + b(b + 1) = c(c + 1) is equivalent to (2a + 1)2 + (2b + 1)2 = (2c + 1)2 + 1. It is
straightforward to check whether numbers of the form n2 + 1 with n odd is the sum of two odd squares. We
get the following triples with sums not exceeding T (10) = 55:

(2, 2, 3), (3, 5, 6), (5, 6, 8), (4, 9, 10), (6, 9, 11), (8, 10, 13), (5, 14, 15),
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(9, 13, 16), (11, 14, 18), (6, 20, 21), (12, 17, 21), (9, 21, 23), (11, 20, 23), (14, 18, 23) .

The entries of none except the last of these sum to a triangular number.

Solution 2. [Y. Zhao] Let (a, b, c) be a triangular triple and let n = a + b + c. Now

2T (a) + 2T (b)− 2T (n− a− b) = a2 + a + b2 + b− (n− a− b)2 − (n− a− b)
= (n + 1)(n + 2)− 2(n + 1− a)(n + 1− b) .

Thus, (a, b, n−a− b) is a triangular triple if and only if (n+1)(n+2) = 2(n+1−a)(n+1− b). In this case,
neither n + 1 nor n + 2 can be prime, as each factor on the right side is strictly less than either of them.
When 1 and 2 are added to each of the first nine triangular numbers, 1, 3, 6, 10, 15, 21, 28, 36, 45, we get
at least one prime. Hence n ≥ 55. It can be checked that (a, b, c) = (14, 18, 23) is a triangular triple.

We claim that, for every nonnegative integer k, T (24k+10) = a+b+c for some triangular triple (a, b, c).
Observe that. with n = T (24k + 10) = 288k2 + 252k + 55,

(n + 1)(n + 2) = (T (24k + 10) + 1)(T (24k + 10) + 2)

= (288k2 + 252k + 56)(288k2 + 252k + 57)

= 12(72k2 + 63k + 14)(96k2 + 84k + 19) .

Select a and b so that
n + 1− a = 3(72k2 + 63k + 14) = 216k2 + 189k + 42

and
n + 1− b = 2(96k2 + 84k + 19) = 192k2 + 168k + 38 .

Let c = n− a− b. Thus,

(a, b, c) = (72k2 + 63k + 14, 96k2 + 84k + 18, 120k2 + 105k + 23) .

From the first part of the solution, we see that (a, b, c) is a triangular triple.

We observe that (a, b, c) = (T (59), T (77), T (83)) = (1770, 3003, 3486) is a triangular triple.
Check:

1770× 1771 + 3003× 3004 = (2× 3× 7× 11)(295× 23 + 13× 1502)
= (2× 3× 7× 11)(26311) = 2× 3× 7× 11× 83× 317
= (2× 3× 7× 83)(11× 317) = 3486× 3487 .

However, the sum of the numbers is 1770 + 3003 + 3486 = 8259, which exceeds 8256 = T (128) by only 3.

Comment. David Rhee observed by drawing diagrams that for any triangular triple (a, b, c), T (a+b−c) =
(c− b)(c−a). This can be verified directly. Checking increasing values of a+ b− c and factoring T (a+ b− c)
led to the smallest triangular triple.

339. Let a, b, c be integers with abc 6= 0, and u, v, w be integers, not all zero, for which

au2 + bv2 + cw2 = 0 .

Let r be any rational number. Prove that the equation

ax2 + by2 + cz2 = r

is solvable for rational values of x, y, z.

Solution 1. Suppose, wolog, that u 6= 0. Try a solution of the form

(x, y, z) = (u(1 + t), vt, wt) .
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Then au2 + 2au2t + au2t2 + b2v2t2 + cw2t2 = r implies that 2au2t = r − au2, from which we find the value
t = (r − au2)/((2au2). Since a, b, c, u, v, w, r, t are all rational, so is the trial solution.

Solution 2. [R. Peng] Suppose that r = p/q. Then the equation with r on the right is satisfied by

(x, y, z) =
(

p

2
+

1
2qa

,

(
p

2
− 1

2qa

)(
v

u

)
,

(
p

2
− 1

2qa

)(
w

u

))
.

Comment. If not all a, b, c are zero, then it is trivial to prove that the equation with r on the right has
a solution; the only rôle that the equation with 0 on the right plays is to ensure that a, b, c do not all have
the same sign. However, some made quite heavy weather of this. The hypothesis that integers are involved
should alert you to the fact that some special character of the solution is needed. It is unreasonable to ask
that the solution be in integers, but one could seek out rational solutions.

340. The lock on a safe consists of three wheels, each of which may be set in eight different positions. Because
of a defect in the safe mechanism, the door will open if any two of the three wheels is in the correct
position. What is the smallest number of combinations which must be tried by someone not knowing
the correct combination to guarantee opening the safe?

Solution. The smallest number of combinations that will guarantee success is 32. Denote the eight
positions of each whell by the digits 0, 1, 2, 3, 4, 5, 6, 7, so that each combination can be represented
by an ordered triple (a, b, c) of three digits. We show that a suitably selected set of 32 combinations will
do the job. Let A = {(a, b, c) : 0 ≤ a, b, c ≤ 3 and a + b + c ≡ 0(mod )4} and B = {(u, v, w) : 4 ≤
u, v, w ≤ 7 and u + v + w ≡ 0(mod )4}. Any entry in the triples of A and B is uniquely determined by
the other two, and any ordered pair is a possibility for these two. Thus, each of A and B contains exactly
16 members. If (p, q, r) is any combination, then either two of p, q, r belong to the set {0, 1, 2, 3} and agree
with corresponding entries in a combination in A, or two belong to {4, 5, 6, 7} and agree with corresponding
entries in a combination in B.

We now show that at least 32 combinations are needed. Suppose, if possible, that a set S of combinations
has three members whose first entry is 0: (0, a, b), (0, c, d), (0, e, f). There will be twenty-five combinations
of the form (0, y, z) with y 6= a, c, e, z 6= b, d, f , that will not match in two entries any of these three. To
cover such combinations, we will need at least 25 distinct combinations of the form (x, y, z) with 1 ≤ x ≤ 7.
None of the 28 combinations identified so far match the 7× 6 = 42 combinations of the form (u, v, w), where
v ∈ {a, c, e}, w ∈ {b, d, f}, (v, w) 6= (a, b), (c, d), (e, f). Any combination of the form (u, v, t) or (u, t, w) can
cover at most three of these and of the form (t, v, w) at most 7. Thus, S will need at least 37 = 3+25+(42/7)
members to cover all the combinations. A similar argument obtains if there are only three members in S
with any other given entry. If there are only one or two members in S with a given entry, say first entry
0, then at least 36 combinations would be needed to cover all the entries with first entry 0 and the other
entries differing from the entries of these two elements of S.

Thus, a set of combinations will work only if there are at least four combinations with a specific digit in
each entry, in particular at least four whose first entry is k for each of k = 0, · · · , 7. Thus, at least 32 entries
are needed.

Comment. Some solvers formulated the problem in terms of the minimum number of rooks (castles)
required to occupy or threaten every cell of a solid 8× 8× 8 chessboard.

341. Let s, r, R respectively specify the semiperimeter, inradius and circumradius of a triangle ABC.

(a) Determine a necessary and sufficient condition on s, r, R that the sides a, b, c of the triangle are in
arithmetic progression.

(b) Determine a necessary and sufficient condition on s, r, R that the sides a, b, c of the triangle are in
geometric progression.
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Comment. In the solutions, we will use the following facts, the establishment of which is left up to the
reader:

a + b + c = 2s

ab + bc + ca = s2 + 4Rr + r2

abc = 4Rrs

An efficient way to get the second of these is to note that the square of the area is given by r2s2 =
s(s− a)(s− b)(s− c) from which

r2s = s3 − (a + b + c)s2 + (ab + bc + ca)s− abc = s3 − 2s3 + (ab + bc + ca)s− 4Rrs .

Solution 1. (a) a, b, c are in arithmetic progression if and only if

0 = (2a− b− c)(2b− c− a)(2c− a− b)
= (2s− 3a)(2s− 3b)(2s− 3c)

= 8s3 − 12s2(a + b + c) + 18s(ab + bc + ca)− 27abc

= 2s3 − 36Rrs + 18r2s .

Since s 6= 0, the necessary and sufficient condition that the three sides be in arithmetic progression is that
s2 + 9r2 = 18Rr.

(b) First, note that

a3 + b3 + c3 = (a + b + c)3 − 3(a + b + c)(ab + bc + ca) + 3abc

= 2s3 − 12Rrs− 6r2s ,

and
a3b3 + b3c3 + c3a3 = (ab + bc + ca)3 − 3abc(a + b + c)(ab + bc + ca) + 3(abc)2

= (s2 + 4Rr + r2)3 − 24Rrs4 − 48R2r2s2 − 24Rr3s2 .

a, b, c are in geometric progression if and only if

0 = (a2 − bc)(b2 − ca)(c2 − ab)

= abc(a3 + b3 + c3)− (a3b3 + b3c3 + c3a3)

= 32Rrs4 − (s2 + 4Rr + r2)3 ,

The necessary and sufficient condition is that

(s2 + 4Rr + r2)3 = 32Rrs4 .

Solution 2. The three sides of the triangle are the three real roots of the cubic equation

x3 − 2sx2 + (s2 + r2 + 4Rr)x− 4Rrs = 0 .

The three sides are in arithmetic progression if and only if one of them is equal to 2s/r and are in geometric
progression if and only if one of them is equal to their geometric mean 3

√
4Rrs.

(a) The condition is that 2s/3 satisfies the cubic equation:

0 = 8s3 − 6s(4s2) + 9(s2 + r2 + 4Rr)(2s)− 108Rrs = 2s(s2 + 9r2 − 18Rr) .

(b) The condition is that 3
√

4Rrs satisfies the cubic equation: 2s(4Rrs)1/3 = s2 +4Rr + r2 or 32Rrs3 =
(s2 + 4Rr + r2)3.
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Solution 3. [B.H. Deng] Assume that b lies between a and c, inclusive. (a) The three sides are in
arithmetic progression if and only if b = 2

3s or a + c = 2b. Since 4Rrs = abc, this is equivalent to 6Rr = ac,
which in turn is equivalent to

r2 + s2 + 4Rr = (a + c)b + ac = 2b2 + ac = (8/9)s2 + 6Rr

or s2 + 9r2 = 18Rr.

(b) The three sides are in geometric progression if and only if b3 = abc = 4Rrs and ac = b2. This holds
if and only if

r2 + s2 + 4Rr = (a + c)b + ac = (2s− b)b + ac = 2s 3
√

4Rrs− b2 + ac = 2s
3
√

4Rrs

or (r2 + s2 + 4Rr)3 = 32Rrs4.

342. Prove that there are infinitely many solutions in positive integers, whose greatest common divisor is
equal to 1, of the system

a + b + c = x + y

a3 + b3 + c3 = x3 + y3 .

Solution 1. Suppose that a, b, c are in arithmetic progression, so that c = 2b− a and x + y = 3b. Then

x2 − xy + y2 =
a3 + b3 + c3

a + b + c
= 3b2 − 4ab + 2a2

so that
3xy = (x + y)2 − (x2 − xy + y2) = 6b2 + 4ab− 2a2

and

xy = 2b2 +
2a(2b− a)

3
.

Therefore

(y − x)2 = (x + y)2 − 4xy = b2 − 8a(2b− a)
3

=
(3b− 8a)2 − 40a2

9
.

Let p = 3b − 8a, q = 2a. We can get solutions by solving p2 − 10q2 = 9. Three solutions are
(p, q) = (3, 0), (7, 2), (13, 4). The fundamental solution of u2 − 10v2 = 1 is (u, v) = (19, 6). So from any
solution (p, q) = (r, s) of p2 − 10q2 = 9, we get another (p, q) = (19r + 60s, 6r + 19s). For these to yield
solutions (a, b, c;x, y) of the original system, we require q to be even and p + 4q to be divisible by 3. Since
19r + 60s ≡ r (mod 3) and 6r + 19s ≡ s (mod 2), if (p, q) = (r, s) has these properties, then so also does
(p, q) = (19r+60s, 6r+19s). Starting with (r, s), we can define integers p and q, and then solve the equations
x + y = 3b, y − x = 1. Since p and so b are odd, these equations have integer solutions. Here are some
examples:

(p, q; a, b, c;x, y) =(3, 0; 0, 1, 2; 1, 2), (57, 18; 9, 43, 77; 64, 65),
(7, 2; 1, 5, 9; 7, 8), (253, 80; 40, 191, 342; 286, 287) .

Solution 2. [D. Dziabenko] Let a = 3d. c = 2b − 3d, so that x + y = 3b and a, b, c are in arithmetic
progression. Then

a3 + b3 + c3 = 27d3 + b3 + 8b3 − 36b2d + 54bd2 − 27d3

= 9b3 − 36b2d + 54bd2 = 9b(b2 − 4b2d + 6d2) ,

whence x2 − xy + y2 = 3b2 − 12bd + 18d2. Therefore

3xy = (x + y)2 − (a2 − xy + y2) = 6b2 + 12bd− 18d2
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so that xy = 2b2 + 4bd− 6d2 and

(x− y)2 = (x + y)2 − 4xy = b2 − 16bd + 24d2 = (b− 8d)2 − 40d2 .

Let b− 8d = p2 + 10q2 and d = pq. Then

x− y =
√

p4 − 20p2q2 + 100q4 = p2 − 10q2 .

Solving this, we find that

(a, b, c;x, y) = (3pq, p2 + 8pq + 10q2, 2p2 + 13pq + 20q2; 2p2 + 12pq + 10q2, p2 + 12pq + 20q2) .

Some numerical examples are

(a, b, c; p, q) = (3, 19, 35; 24, 33), (6, 30, 54; 42, 48), (6, 57, 108; 66, 105) .

Any common divisor of a and b must divide 3pq and p2 + 10q2, and so must divide both p and q. [Justify
this; you need to be a little careful.] We can get the solutions we want by arranging that the p and q are
coprime.

Solution 3. [F. Barekat] Let m = a + b + c = x + y and n = a3 + b3 + c3 = x3 + y3. Then

3xy = m2 − n

m
=

m3 − n

m

and

(x− y)2 =
x3 + y3

x + y
− xy =

4n−m3

3n

=
4(a3 + b3 + c3)− (a + b + c)3

3(a + b + c)

= (c− a− b)2 − 4ab(a + b)
a + b + c

.

Select a, b, c so that
4ab(a + b)
a + b + c

= 2(c− a− b)− 1 .

so that x−y = c−a−b−1. Then we can solve for rational values of x and y. If we can do this x+y = a+b+c
and x − y = c − a − b − 1. Note that, these two numbers have different parity, so we will obtain fractional
values of x and y, whose denominators are 2. However, the equations to be solved are homogeneous, so we
can get integral solutions by doubling: (2a, 2b, 2c; 2x, 2y).

Let c = u(a + b). Then
4ab = 2(u− 1)(u + 1)(a + b)− (u + 1) .

Let u = 4v + 3, Then we get
ab = 4(v + 1)(2v + 1)(a + b)− 4(v + 1) ,

from which

[a− 4(v + 1)(2v + 1)][b− 4(v + 1)(2v + 1)] = (v + 1)[16(v + 1)(2v + 1)2 − 1] .

We use various factorizations of the right side and this equation to determine integer values of a and b, from
which the remaining variables c, x and y can be determined.

For example, v = 0 yields the equation (a− 4)(b− 4) = 15 from which we get the possibilities

(a, b, c) = (5, 19, 72), (7, 9, 48) .
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Doubling to clear fractions, yields the solutions

(a, b, c;x, y) = (10, 38, 144; 49, 143), (14, 18, 96; 33, 95) .

Additional solutions come from v = 1:

(a, b, c;x, y) = (76, 130, 1442; 207, 1441), (50, 1196, 8722; 1247, 8721) .

Solution 4. [D. Rhee] An infinite set of solutions is given by the formula

(a, b, c;x, y) = (2, n2 + 3n, n2 + 5n + 4;n2 + 4n + 2, n2 + 4n + 4)

= (2, n(n + 3), (n + 1)(n + 4); (n + 2)2 − 2, (n + 2)2) .

Examples are (a, b, c;x, y) = (2, 4, 10; 7, 9), (2, 10, 18; 14, 16), (2, 18, 28; 23, 25).

Comment. M. Fatehi gave the solution

(a, b, c;x, y) = (5, 6, 22; 12, 21) .

343. A sequence {an} of integers is defined by

a0 = 0 , a1 = 1 , an = 2an−1 + an−2

for n > 1. Prove that, for each nonnegative integer k, 2k divides an if and only if 2k divides n.

Solution 1. Let m and n be two nonnegative integers. Then am+n = aman+1 + am−1an = am+1an +
aman−1. This can be checked for small values of m and n and established by induction. The induction step
is

am+n+1 = 2am+n + am+n−1 = 2(aman+1 + am−1an) + (aman + am−1an−1

= am(2an+1 + an) + am−1(2an + an−1) = aman+2 + am−1an+1 .

In particular, for each integer n,
a2n = an(an−1 + an+1) .

It is straightforward to show by induction from the recursion that an is odd whenever n is odd and even
whenever n is even. Suppose now that n is even. Then an+1 = 2an + an−1 ≡ an−1 ≡ a1 = 1 (mod 4), so
that an−1 + an+1 = 2bn for some odd number bn. Hence a2n = 2anbn. For k = 0, we have that 2k|an if and
only if 2k|n. Suppose that this has been established for k = r.

Suppose that n = 2r+1m for some integer m. Then n/2 is divisible by 2r, and therefore so is an/2.
Hence an = 2an/2bn/2 is divisible by 2r+1. On the other hand, suppose that n is not divisible by 2r+1. If n is
not divisible by 2r, then an is not so divisible by the induction hypothesis, and so not divisible by 2r+1. On
the other hand, if n = 2rc, with c odd, then an is divisible by 2r. But n/2 = 2r−1c, so an/2 is not divisible
by 2r. Hence an = 2an/2bn/2 is not divisible by 2r+1. The result follows.

Solution 2. For convenience, imagine that the sequence is continued backwards using the recursion
an−2 = an − 2an−1 for all integer values of the index n. We have for every integer n, an+1 = 2an + an−1 ⇒
2an+1 = 4an + 2an−1 ⇒ an+2 − an = 4an + an − an−2 ⇒ an+2 = 6an − an−2. Suppose, for some positive
integer r, we have established that, for every integer n,

an+2r = bran − an−2r

where br ≡ 2 (mod 4). This is true for r = 1 with b1 = 6. Then

bran+2r = b2
ran − bran−2r
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=⇒ an+2r+1 + an = b2
ran − (an + an−2r+1)

=⇒ an+2r = br+1an − an−2r+1 ,

where br+1 = b2
2 − 2 ≡ 2 (mod 4).

Observe that, since an+1 ≡ an−1 (mod 2) and a0 = 0, a1 = 1, an is even if and only if n is even. When
n is even, then an+2 ≡ an−2 (mod 4), so that an is divisible by 4 if and only if n is.

Let m ≥ 2 be a positive integer. Suppose that it has been established for 1 ≤ s ≤ m, that 2s divides an

if and only if 2s divides n. Then 2s+1 will divide an only if n = 2sp for some integer p. Now

a2s = bs−1a2s−1 − a0 = bs−1a2s−1 ;

since 2‖bs−1 and 2s−1‖a2s−1
, it follows that 2s‖a2s . (The notation 2k‖q means that 2k is the highest power

of 2 that divides q.) Thus 2s+1 does not divide 2s.

Suppose that it has been established for 1 ≤ i ≤ p that when n = 2si, 2s+1|n if and only if p is even.
We have that

a2s(p+1) = bs2sp− a2s(p−1) .

If p is even, then bsa2sp ≡ 0 (mod 2s+1), so that a2s(p+1) ≡ as
2(p− 1) ≡ 2s (mod 2s+1), and a2s(p+1) is not a

multiple of 2s+1. If p is odd, then each term on the right side of the foregoing equation is a multiple of 2s+1,
and therefore so is a2s(p+1). The desired result follows by induction.

Solution 3. The characteristic equation for the recursion is t2 − 2t − 1 = 0, with roots t = 1 ±
√

2.
Solving the recursion, we find that

an =
1

2
√

2
[(1 +

√
2)n − (1−

√
2)n]

=
1√
2

[ ∞∑
k=0

(
n

2k + 1

)
2k
√

2
]

=
∞∑

k=0

(
n

2k + 1

)
2k = n +

∞∑
k=1

(
n

2k + 1

)
2k

= n +
∞∑

k=1

n

2k + 1

(
n− 1
2k

)
2k .

(We use the convention that
(

i
j

)
= 0 when i < j. Suppose that n = 2rs where r is a nonnegative integer

and s is odd. Since the odd number 2k + 1 divides n
(
n−1
2k

)
= 2rs

(
n−1
2k

)
, 2k + 1 must divide s

(
n−1
2k

)
, so that

2s must divide n
(
n−1
2k

)
=

(
n

2k+1

)
. Therefore, 2s+1 must divide each term

(
n

2k+1

)
for k ≥ 1. Therefore an ≡ n

(mod 2s) and the desired result follows.

Comment. Y. Zhao obtained by induction that(
an+1 an

an an−1

)
=

(
2 1
1 0

)n

from which the matrix equation (
a2n+1 a2n

a2n a2n−1

)
=

(
an+1 an

an a2n−1

)2

yields the equation a2n = an(an−1 + an+1.
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344. A function f defined on the positive integers is given by

f(1) = 1 , f(3) = 3 , f(2n) = f(n) ,

f(4n + 1) = 2f(2n + 1)− f(n)
f(4n + 3) = 3f(2n + 1)− 2f(n) ,

for each positive integer n. Determine, with proof, the number of positive integers no exceeding 2004
for which f(n) = n.

Solution. Let g(n) be defined for positive integer n by writing n to base 2 and reversing the digits.
Specifically, if n =

∑r
k=0 ak2r with each ak equal to 0 or 1 and ar = 1, then g(n) =

∑n
k=0 ar−k2k. We prove

that g(n) has the properties ascribed to f(n). It is checked that g(1) = g(2) = g(3) = 1. Let n = ar2r +
ar−12r−1+· · ·+a12+a0. Then 2n = ar2r+1+· · ·+a02+0 and g(2n) = 0·2r+1+a02r+· · ·+ar−12+ar = g(n).

Since 4n + 1 = ar2r+2 + ar−12r+1 + · · ·+ a123 + a02 + 0 · 2 + 1,

g(n) + g(4n + 1) = (a02r + a12r−1 + · · ·+ ar−12 + ar) + (2r+2 + a02r + a12r−1 + · · ·+ ar−12 + ar)

= 2r+2 + a02r+1 + a1r
r + · · ·+ ar−122 + ar2 = 2(2r+1 + a02r + a12r−1 + · · ·+ ar−12 + ar

= 2g(a22r+1 + a02r + a12r−1 + · · ·+ ar−12 + ar) = 2g(2n + 1) .

(This uses the fact that a2i + a2i = a2i+1.)

Since 4n + 3 = ar2r+2 + ar−12r+1 + · · ·+ a123 + a02 + 1 · 2 + 1,

2g(n) + g(4n + 3)

= (a02r+1 + a12r + a22r−1 + · · ·+ ar−122 + ar2)

+ (2r+2 + 2r+1 + a02r + a12r−1 + · · ·+ ar−12 + ar)

= (2r+2 + a02r+1 + a12r + · · ·+ ar2) + (2r+1 + a02r + a12r−1 + · · ·+ ar)
= 2g(2n + 1) + g(2n + 1) = 3g(2n + 1) .

We show by induction that f(n) = g(n) for every positive integer n. This is true for 1 ≤ n ≤ 4. Suppose
it holds for 1 ≤ n ≤ 4m. Then

f(4m + 1) = 2f(2m + 1)− f(m) = 2g(2m + 1)− g(m) = g(4m + 1) ;

f(4m + 2) = f(2m + 1) = g(2m + 1) = g(4m + 2) ;

f(4m + 3) = 3f(2m + 1)− 2f(m) = 3g(2m + 1)− 2g(m) = g(4m + 3) ;

f(4m + 4) = f(2m + 2) = g(2m + 2) = f(4m + 4) .

Thus we have a description of f(n).

For f(n) = n, it is necessary and sufficient that n is a palindrome when written to base 2. We need to
find the number of palindromes between 1 and 2004 = (11111010100)2 inclusive. The number of (2r − 1)−
and 2r−digit palindromes is each 2r−1 as the first and last digits must be 1 and there are r − 1 other
matching pairs of digits or central digits that can be set to either 0 or 1. The number of palindromes
up to 211 − 1 = 2047 is 2(1 + 2 + 4 + 8 + 16) + 32 = 94. The only palindromes between 2004 and 2048
are (11111011111)2 and (11111111111)2, and these should not be counted. Therefore, there are exactly 92
palindromes, and therefor 92 solutions of f(n) = n between 1 and 2004, inclusive.

345. Let C be a cube with edges of length 2. Construct a solid figure with fourteen faces by cutting off all
eight corners of C, keeping the new faces perpendicular to the diagonals of the cuhe and keeping the
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newly formed faces identical. If the faces so formed all have the same area, determine the common area
of the faces.

Solution 1. In the situation where the cuts pass through the midpoints of the edges, yielding a cube-
octahedron with six square and eight equilateral-triangular sides, we find that the square faces have area 2
and the triangular faces have area (

√
3/4)(

√
2) =

√
6/4 < 2. Moving the cuts closer to the vertices yields

triangular faces of area less than 2 and octahedral faces of area greater than 2. Thus, for equal areas of the
corner and face figures, the cuts must be made a a distance exceeding 1 from each vertex.

The corner faces of the final solid are hexagons formed by large equilateral triangles with smaller
equilateral triangles clipped off each vertex; the other faces are squares (diamonds) in the middle of the faces
of the cube. Let the square faces have side length x. The vertices of this face are distant 1 − (x/

√
2) from

the edge of the cube, so that smaller equilateral triangles of side
√

2(1 − (x/
√

2)) =
√

2 − x are clipped off
from a larger equilateral triangle of side 2(

√
2− x) + x = 2

√
2− x. The areas of the hexagonal faces of the

solid figure are each √
3

4
[(2
√

2− x)2 − 3(
√

2− x)2] =
√

3
2

+
x
√

6
2

− x2
√

3
2

.

For equality, we need

x2 =
√

3
2

[1 + x
√

2− x2] ,

or
(2 +

√
3)x2 − x

√
6−

√
3 = 0 .

Hence

x =
√

6 +
√

8
√

3 + 18
2(2 +

√
3)

and the common area is

x2 =
6 + 2

√
3 +

√
27 + 12

√
3

7 + 4
√

3
= (6 + 2

√
3 +

√
27 + 12

√
3)(7− 4

√
3) .

Solution 2. Let the cut be made distant u from a vartex. As in Solution 1, we argue that 1 < u < 2. Then
the edge of the square face of the final solid is distant u/

√
2 from the vertex of the cube and

√
2(1− (u/2))

from the centre of the face. Thus, the square face has side length
√

2(2− u) and area 8− 8u + 2u2.

The hexagonal face of the solid consists of an equilateral triangle of side
√

2u with three equilateral
triangles of side

√
2(u− 1) clipped off. Its area is (

√
3/2)[−2u2 +6u− 3. For equality of area of all the faces,

we require that
2(8− 8u + 2u2) =

√
3(−2u2 + 6u− 3)

or
2(2 +

√
3)u2 − 2(8 + 3

√
3)u + (16 + 3

√
3) = 0 .

Solving this equation and taking the root less than 2 yields that

u =
(8 + 3

√
3)−

√
9 + 4

√
3

2(2 +
√

3)
,

whence

2− u =
√

3 +
√

9 + 4
√

3
2(2 +

√
3)

.

Thus, the common area is

2(2− u)2 =
6 + 2

√
3 +

√
27 + 12

√
3

7 + 4
√

3
= (6 + 2

√
3 +

√
27 + 12

√
3)(7− 4

√
3) .
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346. Let n be a positive integer. Determine the set of all integers that can be written in the form

n∑
k=1

k

ak

where a1, a2, · · · , an are all positive integers.

Solution 1. The sum cannot exceed
∑n

k=1 k = 1
2n(n+1). We prove by induction that the set of integers

that can be written in the required form consists of the integers from 1 to 1
2n(n + 1) inclusive. Observe that

1 is representable for any n (for example, by making each ak equal to kn). Also, 1
2n(n + 1) is representable,

by taking a1 = a2 = · · · = an. Thus, the result holds for n = 1 and n = 2.

Suppose that it holds for n = m ≥ 2. Then, by taking am+1 = m + 1 and appending (m + 1)/(m + 1)
to each integer representable by an m−term sum, we find that each integer between 2 and 1

2m(m + 1) +
1 = (m2 + m + 2)/2 inclusive can be represented with a (m + 1)− term sum. By taking am+1 = 1 and
appending m + 1 to each integer representable by an m−term sum, we find that each integer between m + 2
and 1

2m(m + 1) + (m + 1) = 1
2 (m + 1)(m + 2) can be represented with an (m + 1)−term sum. Since

[(m2 + m + 2)/2]− (m + 2) = 1
2 (m2 −m− 2) = 1

2 (m− 2)(m + 1) ≥ 0 for m ≥ 2, 1
2 (m2 + m + 2) ≥ m + 2.

Thus, we can represent all numbers between 1 and 1
2 (n + 1)(n + 2) inclusive. The result follows.

Solution 2. [Y. Zhao] Lemma. For any integer k with 1 ≤ k ≤ 1
2n(n + 1), there is a subset Tk of

{1, 2, · · · , n} for which the sum of the numbers in Tk is k.

Proof. Tk is the entire set when k = 1
2n(n + 1). For the other values of k, we give a proof by induction

on k. A singleton suffices for 1 ≤ k ≤ n. Suppose that the result holds for k = m − 1 < 1
2n(n + 1). Then

Tm−1 must lack at least one number. If 1 6∈ Tm−1, let Tm = Tm−1 ∪ {1}. If 1 ∈ Tm−1, let i > 1 be the least
number not in Tm−1. Then let Tm = Tm−1 ∪ {i + 1}\{i}. ♠

Now to the result. Let 2 ≤ k ≤ 1
2n(n + 1) be given and determine Tk−1. Define ai = 1 when i ∈ Tk−1

and ai = 1
2n(n + 1)− (k − 1) when i 6∈ Tk−1. Then

∑ {
i

ai
: i 6∈ Tk−1

}
=

[(
n + 1

2

)
− (k − 1)

]−1 ∑
{i : i 6∈ Tk−1}

=
[(

n + 1
2

)
− (k − 1)

]−1[(
n + 1

2

)
−

∑
{i : i ∈ Tk−1

]
= 1 .

Since one can give a representation for 1 and since no number exceeding
(
n+1

2

)
can be represented, it follows

that the set of representable integers consists of those between 1 and
(
n+1

2

)
inclusive.

347. Let n be a positive integer and {a1, a2, · · · , an} a finite sequence of real numbers which contains at least
one positive term. Let S be the set of indices k for which at least one of the numbers

ak, ak + ak+1, ak + ak+1 + ak+2, · · · , ak + ak+1 + · · ·+ an

is positive. Prove that ∑
{ak : k ∈ S} > 0 .

Solution. We prove the result by induction on n. When n = 1, the result is obvious. Let m ≥ 2
and suppose that the result holds for all n ≤ m − 1. Suppose a suitable sequence {a1, a2, · · · , am} is given.
If a1 6∈ S, then

∑
{ak : k ∈ S} > 0, by the induction hypothesis applied to the (m − 1)−element set

{a2, · · · , am}. Suppose that a1 ∈ S and that r is the smallest index for which a1 + a2 + · · ·+ ar > 0. Then,
for 1 ≤ i ≤ r − 1, a1 + · · ·+ ai ≤ 0 and so

(ai+1 + · · ·+ ar) = (a1 + · · ·+ ar)− (a1 + · · ·+ ai) > 0 ,
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i.e., a2, a3, · · · , ar ∈ S. Hence
∑
{ak : 2 ≤ k ≤ r} > 0. If there are no elements of S that exceed r. then

the desired conclusion follows. Otherwise, by the induction hypothesis applied to the (m− r)− element set
{ar+1, · · · , am}, we have that

∑
{ak : k ∈ S, r + 1 ≤ k ≤ m} > 0. The desired conclusion follows.

Comment. Most solvers had much more elaborate solutions which essentially used this idea. No one
recognized that the proliferation of cases could be sidestepped by the technical use of an induction argument.

348. Suppose that f(x) is a real-valued function defined for real values of x. Suppose that f(x) − x3 is an
increasing function. Must f(x)− x− x2 also be increasing?

(b) Suppose that f(x) is a real-valued function defined for real values of x. Suppose that both f(x)−3x
and f(x)−x3 are increasing functions. Must f(x)−x−x2 also be increasing on all of the real numbers,
or on at least the positive reals?

Solution. (a) The answer is no. Consider f(x) = x3 + x. Then x = f(x) − x3 is increasing, but
g(x) = f(x)− x− x2 = x3 − x2 is not. Indeed, g(0) = 0 while g( 1

2 ) = − 1
8 < 0.

Solution 1. (b) Let u ≥ v. Suppose that u + v ≤ 2. Then, since f(x) − 3x is increasing, f(u) − 3u ≥
f(v)− 3v, whence

f(u)− f(v) ≥ 3(u− v) ≥ (u + v + 1)(u− v) = u2 − v2 + u− v =⇒ f(u)− u− u2 ≥ f(v)− v − v2 .

Suppose that u + v ≥ 2. Then, since f(x)− x3 is increasing,

f(u)− u3 ≥ f(v)− v3 =⇒ f(u)− f(v) ≥ u3 − v3 = (u− v)(u2 + uv + v2) .

Now
2[(u2 + uv + v2)− (u + v + 1)] = (u + v)2 + (u− 1)2 + (v − 1)2 − 4 ≥ 0 ,

so that u2 + uv + v2 ≥ u + v + 1 and

f(u)− f(v) ≥ (u− v)(u + v + 1) = u2 − v2 + u− v =⇒ f(u)− u− u2 ≥ f(v)− v − v2 .

Hence f(u)− u− u2 ≥ f(v)− v − v2 whenever u ≥ v, so that f(x)− x− x2 is increasing. ♠

Solution 2. [F. Barekat] (b) Let u ≥ v. Then, as in Solution 1, we find that f(u)− f(v) ≥ 3(u− v) and
f(u)− f(v) ≥ u3 − v3 = (u− v)(u2 + uv + v2). If 1 ≥ u ≥ v, then 3 ≥ u + v + 1, so that

f(u)− f(v) ≥ 3(u− v) ≥ (u + v + 1)(u− v) .

If u ≥ v ≥ 1, then u2 ≥ u, v2 ≥ v and

f(u)− f(v) ≥ (u− v)(u2 + uv + v2) ≥ (u− v)(u + 1 + v) .

In either case, we have that f(u)− u− u2 ≥ f(v)− v − v2. Finally, if u ≥ 1 ≥ v, then

f(u)− u− u2 ≥ f(1)− 2 ≥ f(v)− v − v2 .

The result follows. ♠

Comment. D. Dziabenko assumed that f was differentiable on R, so that f ′(x) ≥ 3 and f ′(x) ≥ 3x2

everywhere. Hence, for all x, 3f ′(x) ≥ 3x2 + 6, so that f ′(x) ≥ x2 + 2 ≥ 2x + 1. Hence, the derivative of
f(x) − x − x2 is always nonnegative, so that f(x) − x − x2 is increasing. However, there is nothing in the
hypothesis that forces f to be differentiable, so this is only a partial solution and its solver would have to
settle for a grade of 2 out of 7. A little knowledge is a dangerous thing. If calculus is used, you need to make
sure that everything is in place, all assumptions made identified and justified. Often, a more efficient and
transparent solution exists without recourse to calculus.
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349. Let s be the semiperimeter of triangle ABC. Suppose that L and N are points on AB and CB produced
(i.e., B lies on segments AL and CN) with |AL| = |CN | = s. Let K be the point symmetric to B with
respect to the centre of the circumcircle of triangle ABC. Prove that the perpendicular from K to the
line NL passes through the incentre of triangle ABC.

Let the incentre of the triangle be I.

Solution 1. Let P be the foot of the perpendicular from I to AK, and Q the foot of the perpendicular
from I to CK. Since BK is a diameter of the circumcircle of triangle ABC, ∠BAK = ∠BCK = 90◦ and
IP‖BA, IQ‖BC. Now |IP | = s − a = |BN |, |IQ| = s − c = |BL| and ∠PIQ = ∠ABC = ∠NBL, so that
∆IPQ ≡ ∆BNL (SAS). Select R on IP and S on IQ (possibly produced) so that IR = IQ, IS = IP .
Thus, ∆ISR ≡ ∆BNL and RS‖NL (why?). Since IPKQ is concyclic, ∠KIP +∠IRS = ∠KIP +∠IQP =
∠KIP + ∠IKP = 90◦. Therefore IK is perpendicular to RS, and so to NL.

Solution 2. Lemma. Let W,X, Y, Z be four points in the plane. Then WX ⊥ Y Z if and only ig
|WY |2 − |WZ|2 = |XY |2 − |XZ|2.

Proof. Note that

2(−→W −−→X ) · (−→Z −−→Y ) = (−→Y −−→W )2 − (−→Z −−→W )2 − (−→Y −−→X )2 + (−→Z −−→X )2 .♠ .

Since BK is a diameter of the circumcircle, ∠LAK = ∠NCK = 90◦. We have that

|KL|2 − |KN |2 = (|KA|2 + |AL|2)− (|KC|2 + |CN |2) = |KA2| − |KC|2

= (|BK|2 − |AB|2)− (|BK|2 − |BC|2) = |BC|2 − |AB|2 .

Let U and V be the respective feet of the perpendiculars from I to BA and BC. Observe that |AU | =
|BN | = s− a, |CV | = |BL| = s− c and |BU | = |BV | = s− b, so that |UL| = |BC| = a, |V N | = |AB| = c.
Then

|IL|2 − |IN |2 = (|IU |2 + |UL|2)− (|IV |2 + |V N |2) = |UL|2 − |V N |2 = |BC|2 − |AB|2 ,

which, along with the lemma, implies the result.

350. Let ABCDE be a pentagon inscribed in a circle with centre O. Suppose that its angles are given by
∠B = ∠C = 120◦, ∠D = 130◦, ∠E = 100◦. Prove that BD, CE and AO are concurrent.

Solution 1. [P. Shi; Y. Zhao] The vertices ABCDE are the vertices A1, A5, A7, A11, A12 of a regular
18−gon. (Since A,B,C, D, E lie on a circle, the position of the remaining vertices are determined by that of
A are the angle sizes. Alternatively, look at the angles subtended at the centre by the sides of the pentagon.)
Since the sum of the angles of a pentagon is 540◦, ∠A = 70◦. Since ∠AED > 90◦, D and E lie on the same
side of the diameter through A, and B and C lie on the other side. Thus, the line AO produced intersects
the segment CD. Consider the triangle ACD for which AO produced, BD and CE are cevians. We apply
the trigonometric version of Ceva’s theorem.

We have that ∠CAO = 30◦, ∠ADB = 40◦, ∠DCE = 10◦, ∠OAD = 10◦, ∠BDC = 20◦ and ∠ECA =
70◦. Hence

sin∠CAO · sin∠ADB · sin∠DCE

sin∠OAD · sin∠BDC · sin∠ECA
=

( 1
2 ) sin 40◦ sin 10◦

sin 10◦ sin 20◦ sin 70◦
=

cos 20◦

sin 70◦
= 1 .

Hence the three lines AO, BD and CE are concurrent as desired.

Solution 2. [C. Sun] Let BD and CE intersect at P . We can compute the following angles: ∠EAB =
∠EBA = 70◦, ∠AEB = 40◦, ∠BEP = ∠PDC = 20◦, ∠EBP = ∠PCD = 10◦, ∠PBC = ∠PED = 40◦,
∠BCP = ∠EDP = 110◦ and ∠BPC = ∠EPD = 30◦. Since triangle ABE is acute, the circumcentre O
of it (and the pentagon) lie in its interior, and ∠AOB = 1

2∠AEB = 80◦. Since triangle ABE is isosceles,
∠BAO = ∠ABO = 50◦.
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Let Q be the foot of the perpendicular from E to AB and R the foot of the perpendicular from B
to EP produced. Since ∆EQB ≡ ∆ERB (ASA), QB = RB. Since ∠BPR = 30◦, ∠PBR = 60◦ and
PB = 2RB = 2QB = AB. Hence ABP is isosceles with apex ∠ABP = 80◦. Thus, ∠BAP = ∠BPA = 50◦.
Hence ∠BAO = ∠BAP = 50◦, so that AO must pass through P and the result follows.

351. Let {an} be a sequence of real numbers for which a1 = 1/2 and, for n ≥ 1,

an+1 =
a2

n

a2
n − an + 1

.

Prove that, for all n, a1 + a2 + · · ·+ an < 1.

Solution. Let bn = 1/an for n ≥ 1, whence b1 = 2 and bn+1 = b2
n − bn + 1 = bn(bn − 1) + 1 for n ≥ 1.

Then {bn} is an increasing sequence of integers and
1
bn

=
1

bn − 1
− 1

bn+1 − 1
for n ≥ 1. Hence

a1 + a2 + · · ·+ an =
1
b1

+
1
b2

+ · · ·+ 1
bn

=
[

1
b1 − 1

− 1
b2 − 1

]
+

[
1

b2 − 1
− 1

b3 − 1

]
+ · · ·+

[
1

bn − 1
− 1

bn+1 − 1

]
=

1
b1 − 1

− 1
bn+1 − 1

= 1− 1
bn+1 − 1

< 1 .

352. Let ABCD be a unit square with points M and N in its interior. Suppose, further, that MN produced
does not pass through any vertex of the square. Find the smallest value of k for which, given any position
of M and N , at least one of the twenty triangles with vertices chosen from the set {A,B,C, D, M, N}
has area not exceeding k.

Solution 1. Wolog, suppose that M lies in the interior of triangle ABN . Then

[ABM ] + [AMN ] + [BMN ] + [CND] = [ABN ] + [CND] =
1
2

,

so that at least one of the four triangles on the left has area not exceeding 1/8. Hence k ≤ 1/8. We give a
configuration for which each of the twenty triangles has area not less than 1/8, so that k = 1/8.

Suppose that M and N are both located on the line joining the midpoints of AD and BC with M
distant 1/4 from the side AD and N distant 1/4 from the side BC. Then

1
4

= [ABM ] = [CDM ] = [ABN ] = [CDN ]

3
8

= [BCM ] = [DAN ]

1
2

= [ABC] = [BCD] = [CDA] = [DAB]

1
8

= [DAM ] = [BCN ] = [AMN ] = [BMN ] = [CMN ] = [DMN ] = [AMC] = [ANC] = [BMD] = [BND] .

Solution 2. [L. Fei] Suppose that all triangle have area exceed k. Then M and N must be in the interior
of the square distant more than 2k from each edge to ensure that areas of triangles like ABM exceed k.
Similarly, M and N must be distant more than k

√
2 from the diagonals of the square. For points M and

N to be available that satisfy both conditions, we need to find a point that is distant at least 2k from the
edges and k

√
2 from the diagonal; such a point would lie on a midline of the square. The condition is that

2k +
√

2(k
√

2) < 1
2 or k < 1

8 . On the other hand, we can give a configuration in which each area is at least
equal to k and some areas are exactly 1

8 . This would have M and N on the same midline, each equidistant
from an edge and the centre of the square.
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