
OLYMON

VOLUME 4

2003

Problems 199-282

This is the Mathematical Olympiads Correspondence Program sponsored by the Canadian Mathematical
Society and the University of Toronto Department of Mathematics. The organizer and editor is Edward J.
Barbeau of the University of Toronto Department of Mathematics, and the problems and solutions for this
volume of Olymon were prepared by Edward J. Barbeau of the University of Toronto, and Valeria
Pandelieva in Ottawa.

Notes. A real-valued function on the reals is increasing if and only if f(u) ≤ f(v) whenever u < v. It is
strictly increasing if and only if f(u) < f(v) whenever u < v.

The inverse tangent function is denoted by tan−1 x or arctan x. It is defined by the relation y = tan−1 x
if and only if π/2 < y < π/2 and x = tan y/

199. Let A and B be two points on a parabola with vertex V such that V A is perpendicular to V B and θ is
the angle between the chord V A and the axis of the parabola. Prove that

|V A|
|V B|

= cot3 θ .

200. Let n be a positive integer exceeding 1. Determine the number of permutations (a1, a2, · · · , an) of
(1, 2, · · · , n) for which there exists exactly one index i with 1 ≤ i ≤ n and ai > ai+1.

201. Let (a1, a2, · · · , an) be an arithmetic progression and (b1, b2, · · · , bn) be a geometric progression, each of
n positive real numbers, for which a1 = b1 and an = bn. Prove that

a1 + a2 + · · ·+ an ≥ b1 + b2 + · · ·+ bn .

202. For each positive integer k, let ak = 1+(1/2)+ (1/3)+ · · ·+(1/k). Prove that, for each positive integer
n,

3a1 + 5a2 + 7a3 + · · ·+ (2n + 1)an = (n + 1)2an −
1
2
n(n + 1) .

203. Every midpoint of an edge of a tetrahedron is contained in a plane that is perpendicular to the opposite
edge. Prove that these six planes intersect in a point that is symmetric to the centre of the circumsphere
of the tetrahedron with respect to its centroid.

204. Each of n ≥ 2 people in a certain village has at least one of eight different names. No two people have
exactly the same set of names. For an arbitrary set of k names (with 1 ≤ k ≤ 7), the number of people
containing at least one of the k(≥ 1) names among his/her set of names is even. Determine the value
of n.

205. Let f(x) be a convex realvalued function defined on the reals, n ≥ 2 and x1 < x2 < · · · < xn. Prove
that

x1f(x2) + x2f(x3) + · · ·+ xnf(x1) ≥ x2f(x1) + x3f(x2) + · · ·+ x1f(xn) .

206. In a group consisting of five people, among any three people, there are two who know each other and
two neither of whom knows the other. Prove that it is possible to seat the group around a circular table
so that each adjacent pair knows each other.
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207. Let n be a positive integer exceeding 1. Suppose that A = (a1, a2, · · · , am) is an ordered set of m = 2n

numbers, each of which is equal to either 1 or −1. Let

S(A) = (a1a2, a2a3, · · · , am−1am, ama1) .

Define, S0(A) = A, S1(A) = S(A), and for k ≥ 1, Sk+1 = S(Sk(A)). Is it always possible to find a
positive integer r for which Sr(A) consists entirely of 1s?

208. Determine all positive integers n for which n = a2 + b2 + c2 + d2, where a < b < c < d and a, b, c, d are
the four smallest positive divisors of n.

209. Determine all positive integers n for which 2n− 1 is a multiple of 3 and (2n− 1)/3 has a multiple of the
form 4m2 + 1 for some integer m.

210. ABC and DAC are two isosceles triangles for which B and D are on opposite sides of AC, AB = AC,
DA = DC, ∠BAC = 20◦ and ∠ADC = 100◦. Prove that AB = BC + CD.

211. Let ABC be a triangle and let M be an interior point. Prove that

min {MA, MB, MC}+ MA + MB + MC < AB + BC + CA .

212. A set S of points in space has at least three elements and satisfies the condition that, for any two
distinct points A and B in S, the right bisecting plane of the segment AB is a plane of symmetry for
S. Determine all possible finite sets S that satisfy the condition.

213. Suppose that each side and each diagonal of a regular hexagon A1A2A3A4A5A6 is coloured either red
or blue, and that no triangle AiAjAk has all of its sides coloured blue. For each k = 1, 2, · · · , 6, let rk

be the number of segments AkAj (j 6= k) coloured red. Prove that

6∑
k=1

(2rk − 7)2 ≤ 54 .

214. Let S be a circle with centre O and radius 1, and let Pi (1 ≤ i ≤ n) be points chosen on the (circumference
of the) circle for which

∑n
i=1

−−→
OPi = 0. Prove that, for each point X in the plane,

∑
|XPi| ≥ n.

215. Find all values of the parameter a for which the equation 16x4 − ax3 + (2a + 17)x2 − ax + 16 = 0 has
exactly four real solutions which are in geometric progression.

216. Let x be positive and let 0 < a ≤ 1. Prove that

(1− xa)(1− x)−1 ≤ (1 + x)a−1 .

217. Let the three side lengths of a scalene triangle be given. There are two possible ways of orienting
the triangle with these side lengths, one obtainable from the other by turning the triangle over, or by
reflecting in a mirror. Prove that it is possible to slice the triangle in one of its orientations into finitely
many pieces that can be rearranged using rotations and translations in the plane (but not reflections
and rotations out of the plane) to form the other.

218. Let ABC be a triangle. Suppose that D is a point on BA produced and E a point on the side BC, and
that DE intersects the side AC at F . Let BE + EF = BA + AF . Prove that BC + CF = BD + DF .

219. There are two definitions of an ellipse.

(1) An ellipse is the locus of points P such that the sum of its distances from two fixed points F1 and
F2 (called foci) is constant.
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(2) An ellipse is the locus of points P such that, for some real number e (called the eccentricity) with
0 < e < 1, the distance from P to a fixed point F (called a focus) is equal to e times its perpendicular
distance to a fixed straight line (called the directrix).

Prove that the two definitions are compatible.

220. Prove or disprove: A quadrilateral with one pair of opposite sides and one pair of opposite angles equal
is a parallelogram.

221. A cycloid is the locus of a point P fixed on a circle that rolls without slipping upon a line u. It consists
of a sequence of arches, each arch extending from that position on the locus at which the point P rests
on the line u, through a curve that rises to a position whose distance from u is equal to the diameter
of the generating circle and then falls to a subsequent position at which P rests on the line u. Let v be
the straight line parallel to u that is tangent to the cycloid at the point furthest from the line u.

(a) Consider a position of the generating circle, and let P be on this circle and on the cycloid. Let PQ
be the chord on this circle that is parallel to u (and to v). Show that the locus of Q is a similar cycloid
formed by a circle of the same radius rolling (upside down) along the line v.

(b) The region between the two cycloids consists of a number of “beads”. Argue that the area of one of
these beads is equal to the area of the generating circle.

(c) Use the considerations of (a) and (b) to find the area between u and one arch of the cycloid using a
method that does not make use of calculus.

222. Evaluate
∞∑

n=1

tan−1

(
2
n2

)
.

223. Let a, b, c be positive real numbers for which a + b + c = abc. Prove that

1√
1 + a2

+
1√

1 + b2
+

1√
1 + c2

≤ 3
2

.

224. For x > 0, y > 0, let g(x, y) denote the minimum of the three quantities, x, y +1/x and 1/y. Determine
the maximum value of g(x, y) and where this maximum is assumed.

225. A set of n lighbulbs, each with an on-off switch, numbered 1, 2, · · · , n are arranged in a line. All are
initially off. Switch 1 can be operated at any time to turn its bulb on of off. Switch 2 can turn bulb 2
on or off if and only if bulb 1 is off; otherwise, it does not function. For k ≥ 3, switch k can turn bulb k
on or off if and only if bulb k−1 is off and bulbs 1, 2, · · · , k−2 are all on; otherwise it does not function.

(a) Prove that there is an algorithm that will turn all of the bulbs on.

(b) If xn is the length of the shortest algorithm that will turn on all n bulbs when they are initially off,
determine the largest prime divisor of 3xn + 1 when n is odd.

226. Suppose that the polynomial f(x) of degree n ≥ 1 has all real roots and that λ > 0. Prove that the set
{x ∈ R : |f(x)| ≤ λ|f ′(x)|} is a finite union of closed intervals whose total length is equal to 2nλ.

227. Let n be an integer exceeding 2 and let a0, a1, a2, · · · , an, an+1 be positive real numbers for which a0 = an,
a1 = an+1 and

ai−1 + ai+1 = kiai

for some positive integers ki, where 1 ≤ i ≤ n.

Prove that
2n ≤ k1 + k2 + · · ·+ kn ≤ 3n .
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228. Prove that, if 1 < a < b < c, then

loga(loga b) + logb(logb c) + logc(logc a) > 0 .

229. Suppose that n is a positive integer and that 0 < i < j < n. Prove that the greatest common divisor of(
n
i

)
and

(
n
j

)
exceeds 1.

230. Let f be a strictly increasing function on the closed interval [0, 1] for which f(0) = 0 and f(1) = 1. Let
g be its inverse. Prove that

9∑
k=1

(
f

(
k

10

)
+ g

(
k

10

))
≤ 9.9 .

231. For n ≥ 10, let g(n) be defined as follows: n is mapped by g to the sum of the number formed by taking
all but the last three digits of its square and adding it to the number formed by the last three digits of
its square. For example, g(54) = 918 since 542 = 2916 and 2 + 916 = 918. Is it possible to start with
527 and, through repeated applications of g, arrive at 605?

232. (a) Prove that, for positive integers n and positive values of x,

(1 + xn+1)n ≤ (1 + xn)n+1 ≤ 2(1 + xn+1)n .

(b) Let h(x) be the function defined by

h(x) =
{

1, if 0 ≤ x ≤ 1;
x, if x > 1.

Determine a value N for which
|h(x)− (1 + xn)

1
n | < 10−6

whenever 0 ≤ x ≤ 10 and n ≥ N .

233. Let p(x) be a polynomial of degree 4 with rational coefficients for which the equation p(x) = 0 has
exactly one real solution. Prove that this solution is rational.

234. A square of side length 100 is divided into 10000 smaller unit squares. Two squares sharing a common
side are called neighbours.

(a) Is it possible to colour an even number of squares so that each coloured square has an even number
of coloured neighbours?

(b) Is it possible to colour an odd number of squares so that each coloured square has an odd number
of coloured neighbours?

235. Find all positive integers, N , for which:
(i) N has exactly sixteen positive divisors: 1 = d1 < d2 < · · · < d16 = N ;
(ii) the divisor with the index d5 (namely, dd5) is equal to (d2 + d4)× d6 (the product of the two).

236. For any positive real numbers a, b, c, prove that

1
b(a + b)

+
1

c(b + c)
+

1
a(c + a)

≥ 27
2(a + b + c)2

.

237. The sequence {an : n = 1, 2, · · ·} is defined by the recursion

a1 = 20 a2 = 30
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an+2 = 3an+1 − an for n ≥ 1 .

Find all natural numbers n for which 1 + 5anan+1 is a perfect square.

238. Let ABC be an acute-angled triangle, and let M be a point on the side AC and N a point on the side
BC. The circumcircles of triangles CAN and BCM intersect at the two points C and D. Prove that
the line CD passes through the circumcentre of triangle ABC if and only if the right bisector of AB
passes through the midpoint of MN .

239. Find all natural numbers n for which the diophantine equation

(x + y + z)2 = nxyz

has positive integer solutions x, y, z.

240. In a competition, 8 judges rate each contestant “yes” or “no”. After the competition, it turned out,
that for any two contestants, two judges marked the first one by “yes” and the second one also by “yes”;
two judges have marked the first one by “yes” and the second one by “no”; two judges have marked
the first one by “no” and the second one by “yes”; and, finally, two judges have marked the first one by
“no” and the second one by “no”. What is the greatest number of contestants?

241. Determine sec 40◦ + sec 80◦ + sec 160◦.

242. Let ABC be a triangle with sides of length a, b, c oppposite respective angles A, B, C. What is the
radius of the circle that passes through the points A, B and the incentre of triangle ABC when angle
C is equal to (a) 90◦; (b) 120◦; (c) 60◦. (With thanks to Jean Turgeon, Université de Montréal.)

243. The inscribed circle, with centre I, of the triangle ABC touches the sides BC, CA and AB at the
respective points D, E and F . The line through A parallel to BC meets DE and DF produced at the
respective points M and N . The modpoints of DM and DN are P and Q respectively. Prove that
A,E, F, I, P, Q lie on a common circle.

244. Let x0 = 4, x1 = x2 = 0, x3 = 3, and, for n ≥ 4, xn+4 = xn+1 + xn. Prove that, for each prime p, xp is
a multiple of p.

245. Determine all pairs (m,n) of positive integers with m ≤ n for which an m × n rectangle can be tiled
with congruent pieces formed by removing a 1× 1 square from a 2× 2 square.

246. Let p(n) be the number of partitions of the positive integer n, and let q(n) denote the number of
finite sets {u1, u2, u3, · · · , uk} of positive integers that satisfy u1 > u2 > u3 > · · · > uk such that
n = u1 + u3 + u5 + · · · (the sum of the ones with odd indices). Prove that p(n) = q(n) for each positive
integer n.

For example, q(6) counts the sets {6}, {6, 5}, {6, 4}, {6, 3}, {6, 2}, {6, 1}, {5, 4, 1}, {5, 3, 1}, {5, 2, 1},
{4, 3, 2}, {4, 3, 2, 1}.

247. Let ABCD be a convex quadrilateral with no pairs of parallel sides. Associate to side AB a point T
as follows. Draw lines through A and B parallel to the opposite side CD. Let these lines meet CB
produced at B′ and DA produced at A′, and let T be the intersection of AB and B′A′. Let U, V,W be
points similarly constructed with respect to sides BC, CD, DA, respectively. Prove that TUV W is a
parallelogram.

248. Find all real solutions to the equation√
x + 3− 4

√
x− 1 +

√
x + 8− 6

√
x− 1 = 1 .

249. The non-isosceles right triangle ABC has ∠CAB = 90◦. Its inscribed circle with centre T touches the
sides AB and AC at U and V respectively. The tangent through A of the circumscribed circle of triangle
ABC meets UV in S. Prove that:
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(a) ST‖BC;

(b) |d1−d2| = r , where r is the radius of the inscribed circle, and d1 and d2 are the respective distances
from S to AC and AB.

250. In a convex polygon P, some diagonals have been drawn so that no two have an intersection in the
interior of P. Show that there exists at least two vertices of P, neither of which is an enpoint of any of
these diagonals.

251. Prove that there are infinitely many positive integers n for which the numbers {1, 2, 3, · · · , 3n} can be
arranged in a rectangular array with three rows and n columns for which (a) each row has the same
sum, a multiple of 6, and (b) each column has the same sum, a multiple of 6.

252. Suppose that a and b are the roots of the quadratic x2 + px + 1 and that c and d are the roots of the
quadratic x2 + qx + 1. Determine (a− c)(b− c)(a + d)(b + d) as a function of p and q.

253. Let n be a positive integer and let θ = π/(2n + 1). Prove that cot2 θ, cot2 2θ, · · ·, cot2 nθ are the
solutions of the equation(

2n + 1
1

)
xn −

(
2n + 1

3

)
xn−1 +

(
2n + 1

5

)
xn−2 − · · · = 0 .

254. Determine the set of all triples (x, y, z) of integers with 1 ≤ x, y, z ≤ 1000 for which x2 + y2 + z2 is a
multiple of xyz.

255. Prove that there is no positive integer that, when written to base 10, is equal to its kth multiple when
its initial digit (on the left) is transferred to the right (units end), where 2 ≤ k ≤ 9 and k 6= 3.

256. Find the condition that must be satisfied by y1, y2, y3, y4 in order that the following set of six simulta-
neous equations in x1, x2, x3, x4 is solvable. Where possible, find the solution.

x1 + x2 = y1y2 x1 + x3 = y1y3 x1 + x4 = y1y4

x2 + x3 = y2y3 x2 + x4 = y2y4 x3 + x4 = y3y4 .

257. Let n be a positive integer exceeding 1. Discuss the solution of the system of equations:

ax1 + x2 + · · ·+ xn = 1

x1 + ax2 + · · ·+ xn = a

· · ·

x1 + x2 + · · ·+ axi + · · ·+ xn = ai−1

· · ·

x1 + x2 + · · ·+ xi + · · ·+ axn = an−1 .

258. The infinite sequence {an;n = 0, 1, 2, · · ·} satisfies the recursion

an+1 = a2
n + (an − 1)2

for n ≥ 0. Find all rational numbers a0 such that there are four distinct indices p, q, r, s for which
ap − aq = ar − as.

6



259. Let ABC be a given triangle and let A′BC, AB′C, ABC ′ be equilateral triangles erected outwards on
the sides of triangle ABC. Let Ω be the circumcircle of A′B′C ′ and let A′′, B′′, C ′′ be the respective
intersections of Ω with the lines AA′, BB′, CC ′.

Prove that AA′, BB′, CC ′ are concurrent and that

AA′′ + BB′′ + CC ′′ = AA′ = BB′ = CC ′ .

260. TABC is a tetrahedron with volume 1, G is the centroid of triangle ABC and O is the midpoint of TG.
Reflect TABC in O to get T ′A′B′C ′. Find the volume of the intersection of TABC and T ′A′B′C ′.

261. Let x, y, z > 0. Prove that

x

x +
√

(x + y)(x + z)
+

y

y +
√

(x + y)(y + z)
+

z

z +
√

(x + z)(y + z)
≤ 1 .

as above to get a linear polynomial with root r.

262. Let ABC be an acute triangle. Suppose that P and U are points on the side BC so that P lies between
B and U , that Q and V are points on the side CA so that Q lies between C and V , and that R and W
are points on the side AB so that R lies between A and W . Suppose also that

∠APU = ∠AUP = ∠BQV = ∠BV Q = ∠CRW = ∠CWR .

The lines AP , BQ and CR bound a triangle T1 and the lines AU , BV and CW bound a triangle T2.
Prove that all six vertices of the triangles T1 and T2 lie on a common circle.

263. The ten digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 are each used exactly once altogether to form three positive integers
for which the largest is the sum of the other two. What are the largest and the smallest possible values
of the sum?

264. For the real parameter a, solve for real x the equation

x =
√

a +
√

a + x .

A complete answer will discuss the circumstances under which a solution is feasible.

265. Note that 9592 = 919681, 919 + 681 = 402; 9602 = 921600, 921 + 600 = 392; and 9612 = 923521,
923 + 521 = 382. Establish a general result of which these are special instances.

266. Prove that, for any positive integer n,
(
2n
n

)
divides the least common multiple of the numbers 1, 2, 3, · · · ,

2n− 1, 2n.

267. A non-orthogonal reflection in an axis a takes each point on a to itself, and each point P not on a to
a point P ′ on the other side of a in such a way that a intersects PP ′ at its midpoint and PP ′ always
makes a fixed angle θ with a. Does this transformation preserves lines? preserve angles? Discuss the
image of a circle under such a transformation.

268. Determine all continuous real functions f of a real variable for which

f(x + 2f(y)) = f(x) + y + f(y)

for all real x and y.

269. Prove that the number

N = 2× 4× 6× · · · × 2000× 2002 + 1× 3× 5× · · · × 1999× 2001
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is divisible by 2003.

270. A straight line cuts an acute triangle into two parts (not necessarily triangles). In the same way, two
other lines cut each of these two parts into two parts. These steps repeat until all the parts are triangles.
Is it possible for all the resulting triangle to be obtuse? (Provide reasoning to support your answer.)

271. Let x, y, z be natural numbers, such that the number

x− y
√

2003
y − z

√
2003

is rational. Prove that
(a) xz = y2;
(b) when y 6= 1, the numbers x2 + y2 + z2 and x2 + 4z2 are composite.

272. Let ABCD be a parallelogram whose area is 2003 sq. cm. Several points are chosen on the sides of the
parallelogram.
(a) If there are 1000 points in addition to A,B, C, D, prove that there always exist three points among
these 1004 points that are vertices of a triangle whose area is less that 2 sq. cm.
(b) If there are 2000 points in addition to A,B, C, D, is it true that there always exist three points
among these 2004 points that are vertices of a triangle whose area is less than 1 sq. cm?

273. Solve the logarithmic inequality
log4(9

x − 3x − 1) ≥ log2

√
5 .

274. The inscribed circle of an isosceles triangle ABC is tangent to the side AB at the point T and bisects
the segment CT . If CT = 6

√
2, find the sides of the triangle.

275. Find all solutions of the trigonometric equation

sinx− sin 3x + sin 5x = cos x− cos 3x + cos 5x .

276. Let a, b, c be the lengths of the sides of a triangle and let s = 1
2 (a + b + c) be its semi-perimeter and r

be the radius of the inscribed circle. Prove that

(s− a)−2 + (s− b)−2 + (s− c)−2 ≥ r−2

and indicate when equality holds.

277. Let m and n be positive integers for which m < n. Suppose that an arbitrary set of n integers is given
and the following operation is performed: select any m of them and add 1 to each. For which pairs
(m,n) is it always possible to modify the given set by performing the operation finitely often to obtain
a set for which all the integers are equal?

278. (a) Show that 4mn −m − n can be an integer square for infinitely many pairs (m,n) of integers. Is it
possible for either m or n to be positive?

(b) Show that there are infinitely many pairs (m,n) of positive integers for which 4mn−m− n is one
less than a perfect square.

279. (a) For which values of n is it possible to construct a sequence of abutting segments in the plane to form
a polygon whose side lengths are 1, 2, · · · , n exactly in this order, where two neighbouring segments are
perpendicular?
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(b) For which values of n is it possible to construct a sequence of abutting segments in space to form
a polygon whose side lengths are 1, 2, · · · , n exactly in this order, where any two of three sucessive
segments are perpendicular?

280. Consider all finite sequences of positive integers whose sum is n. Determine T (n, k), the number of
times that the positive integer k occurs in all of these sequences taken together.

281. Let a be the result of tossing a black die (a number cube whose sides are numbers from 1 to 6 inclusive),
and b the result of tossing a white die. What is the probability that there exist real numbers x, y, z for
which x + y + z = a and xy + yz + zx = b?

282. Suppose that at the vertices of a pentagon five integers are specified in such a way that the sum of the
integers is positive. If not all the integers are non-negative, we can perform the following operation:
suppose that x, y, z are three consecutive integers for which y < 0; we replace them respectively by the
integers x + y,−y, z + y. In the event that there is more than one negative integer, there is a choice of
how this operation may be performed. Given any choice of integers, and any sequence of operations,
must we arrive at a set of nonnegative integers after a finite number of steps?

For example, if we start with the numbers (2,−3, 3,−6, 7) around the pentagon, we can produce
(1, 3, 0,−6, 7) or (2,−3,−3, 6, 1).

Solutions

199. Let A and B be two points on a parabola with vertex V such that V A is perpendicular to V B and θ is
the angle between the chord V A and the axis of the parabola. Prove that

|V A|
|V B|

= cot3 θ .

Comment. A lot of students worked harder on this problem than was necessary. It should be noted that
all parabolas are similar (as indeed all circles are similar); this means that you can establish a general result
about parabolas by dealing with a convenient one. Let us see why this is so. One definition of a parabola
is that it is the locus of points that are equidistant from a given point (called the focus) and a given line
(called the directrix) that does not contain the point. Any point-line pair can be used, and each such pair
can be transformed into another by a similarity transformation. (Translate one point on to the other, make
a rotation to make the two lines parallel and perform a dilation about the point that makes the two lines
coincide.) The same transformation will take the prabola defined by one pair to the parabola defined by the
other. You should point out in your solution that there is no loss of generality in taking the particular case
of a parabola whose equation in the plane is y = ax2. But you do not have to be even that general; it is
enough to assume that the parabola has the equation y = x2 or x = y2. (Exercise: Determine the focus and
the directrix for these parabolas.) Some of the solvers did not appear to be aware that parabolas need not
have vertical or horizontal axes; the axis of a parabola can point in any direction.

Solution. Wolog, suppose that the parabola is given by y2 = x, so that its vertex is the origin and its
axis is the x−axis. Suppose A ∼ (u, v) is a point on the parabola whose radius vector makes an angle θ with
the axis; then v/u = tan θ. Hence 1/u = v2/u2 = tan2 θ, so that A ∼ (cot2 θ, cot θ). Similarly, it can be
shown that B ∼ (tan2 θ,− tan θ). Hence

|V A|2

|V B|2
=

cot2 θ(cot2 θ + 1)
tan2 θ(tan2 θ + 1)

= cot6 θ ,

and the result follows.

200. Let n be a positive integer exceeding 1. Determine the number of permutations (a1, a2, · · · , an) of
(1, 2, · · · , n) for which there exists exactly one index i with 1 ≤ i ≤ n− 1 and ai > ai+1.
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Comment. Some solvers found it difficult to appreciate what was going on in this problem. It is often a
good beginning strategy to actually write out the appropriate permutations for low values of n. This does
two things for you. First, it gives you a sense of what goes into constructing the right permutations and so
how your argument can be framed. Secondly, it gives you some data against which you can check your final
answer.

Solution 1. For n ≥ 1, let pn be the number of permutations of the first n natural numbers that satisfy
the condition. Suppose that ai = n for some i with 1 ≤ i ≤ n− 1. Then (a1, a2, · · · , ai−1) and (ai+1, · · · , an)
must both be in increasing order, so that the appropriate permutation is determined uniquely once its first
i− 1 entries are found. There are

(
n−1
i−1

)
ways of choosing these entries. If an = n, then there are pn−1 ways

of ordering the first n− 1 numbers to give an appropriate permutation. Hence

pn =
[ n−1∑

i=1

(
n− 1
i− 1

)]
+ pn−1 = 2n−1 − 1 + pn−1 .

Thus, substituting for each pi in turn, we have that

pn = (2n−1 − 1) + (2n−2 − 1) + · · ·+ (22 − 1) + (2− 1) + (1− 1) = 2n − 1− n = 2n − (n + 1) .

Solution 2. [H. Li; M. Zaharia] For n ≥ 2, let pn be the number of acceptable permutations. We have
that p2 = 1. Consider first the placing of the numbers 1, 2, · · · , n− 1 in some order. If they appear in their
natural order, then we can slip in n before any one of them to get an acceptable permutation; there are n−1
ways of doing this. If there exists a single consecutive pair (r, s) of numbers for which r < s and r follows
s, then we can slip n between s and r or at the end to get an acceptable permutation. There are 2pn−1

possibilities. If there is more than one pair (r, s) of consecutive pairs with r < s and r following s, then no
placement of n will yield an acceptable permutation. Hence

pn = 2pn−1 + (n− 1)

so that
pn + n + 1 = 2(pn−1 + n) = 22(pn−2 + n− 1)

= · · · = 2n−2(p2 + 3) = 2n−2 · 4 = 2n ,

whence pn = 2n − (n + 1).

Solution 3. [R. Barrington Leigh] Let 1 ≤ k ≤ n − 1 and let (x, y) be a pair of integers for which
1 ≤ y < x ≤ n and x − y = k. There are n − k such pairs, (1, k + 1), (2, k + 2), · · · , (n − k, k). For each
such pair, we consider suitable permutations for which x and y are adjacent in the order (x, y). Then the
numbers 1, 2, · · · , y − 1 must precede and x + 1, · · · , n must follow the pair. The remaining k − 1 numers
from x + 1 to x + k− 1 = y− 1 can go either before or after the pair; there are 2k−1 possibilities. Once it is
decided whether each of these goes before or after the pair, there is only one possible arrangement. Hence
the number of permutations of the required type is

n−1∑
k=1

(n− k)2k−1 =
n−1∑
k=1

[(n− k + 1)2k − (n− k + 2)2k−1]

=
n−1∑
k=1

[(n− k − 1)2k − (n− k − 2)2k−1

= 2 · 2n−1 − (n + 1) = 2n − (n + 1) .

Solution 4. Let 1 ≤ i ≤ n − 1 and consider the number of suitable permutations for which ai > ai+1.
There are

(
n
i

)
possible choices of {a1, a2, · · · , ai} with a1 < a2 < · · · < ai, and except for the single case of
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{1, 2, · · · , i}, the maximum element ai of each of them exceeds the minimum element ai+1 of its complement
{ai+1, · · · , an}. Hence the number of permutations is

n−1∑
i=1

[(
n

i

)
− 1

]
=

n∑
i=0

[(
n

i

)
− 1

]
= 2n − (n + 1) .

Solution 5. (Variant of Solution 4.) We can form an acceptable permutation in the following way. Let
1 ≤ k ≤ n. Select any subset of k numbers in one of

(
n
k

)
ways and place them in ascending order at the

beginning of the arrangement and place the other n − k at the end, again in ascending order. This fails to
work only when the set chosen is {1, 2, · · · , k}. Hence the total number of ways is

n∑
k=1

[(
n

k

)
− 1

]
=

[ n∑
k=1

(
n

k

)]
− n = (2n − 1)− n .

Solution 6. [D. Yu] Let 1 ≤ i ≤ n− 1. There are
(
n−1

i

)
ways of selecting a subset U of {1, 2, · · · , n− 1}

that has i elements. Let V = {1, 2, · · · , n}\U . Then we can obtain a suitable permutation by putting the
elements of U in ascending order and the elements of V in ascending order, and putting U so ordered before
V so ordered, or vice versa. The only time this does not work is when U = {1, 2, 3, · · · , i}, when we must put
V first. Hence we get 2

(
n−1

i

)
− 1 suitable permutations. Since every suitable permutation can be obtained

in this way for some i, there are

n−1∑
i=1

[
2
(

n− 1
i

)
− 1

]
= 2

[ n−1∑
i=1

(
n− 1

i

)]
− (n− 1)

= 2(2n−1 − 1)− (n− 1) = 2n − (n + 1)

suitable permutations.

201. Let (a1, a2, · · · , an) be an arithmetic progression and (b1, b2, · · · , bn) be a geometric progression, each of
n positive real numbers, for which a1 = b1 and an = bn. Prove that

a1 + a2 + · · ·+ an ≥ b1 + b2 + · · ·+ bn .

Solution 1. The result is obvious if a1 = an = b1 = bn, as then all of the ai and bj are equal. Suppose
that the progressions are nontrivial and that the common ratio of the geometric progression is r 6= 1. Observe
that

(rn−1 + 1)− (rn−k + rk−1) = (rk−1 − 1)(rn−k − 1) > 0 .

Then
b1 + b2+ · · ·+ bn = b1(1 + r + r2 + r3 + · · ·+ rn−1)

=
b1

2

n∑
k=1

(rn−k + rk−1)

<
b1n

2
(rn−1 + 1) =

n

2
[b1r

n−1 + b1]

=
n

2
[bn + b1] =

n

2
[an + a1] = a1 + a2 + · · ·+ an .

Solution 2. For 1 ≤ r ≤ n, we have that

br = b
(n−r)/(n−1)
1 b(r−1)/(n−1)

n

= a
(n−r)/(n−1)
1 a(r−1)/(n−1)

n

≤ n− r

n− 1
a1 +

r − 1
n− 1

an = ar ,
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by the arithmetic-geometric means inequality.

202. For each positive integer k, let ak = 1+(1/2)+ (1/3)+ · · ·+(1/k). Prove that, for each positive integer
n,

3a1 + 5a2 + 7a3 + · · ·+ (2n + 1)an = (n + 1)2an −
1
2
n(n + 1) .

Solution 1. Observe that, for 1 ≤ k ≤ n,

(2k + 1) + (2k + 3) + · · ·+ (2n + 1) = (1 + 3 + · · ·+ 2n + 1)− (1 + 3 + · · ·+ 2k − 1) = (n + 1)2 − k2 .

Then

3a1 + 5a2 + 7a3+ · · ·+ (2n + 1)an

= (3 + 5 + · · ·+ 2n + 1) · 1 + (5 + 7 + · · ·+ 2n + 1) ·
(

1
2

)
+ · · ·+ (2n + 1)

(
1
n

)
=

n∑
k=1

[(n + 1)2 − k2]
(

1
k

)
= (n + 1)

n∑
k=1

1
k
−

n∑
k=1

k

= (n + 1)2an −
1
2
n(n + 1) .

Solution 2. Observe that for each positive integer k ≥ 2,

[(k + 1)2ak −
1
2
k(k + 1)]− [k2ak−1 −

1
2
(k − 1)k]

= k2(ak − ak−1) + (2k + 1)ak −
1
2
k(k + 1− k − 1)

= k2(1/k) + (2k + 1)ak − k = (2k + 1)ak .

Hence
3a1 + 5a2+ · · ·+ (2n + 1)an

= 3a1 +
n∑

k=2

{[(k + 1)2ak −
1
2
k(k + 1)]− [k2ak−1 −

1
2
(k − 1)k]}

= 3a1 + [(n + 1)2an −
1
2
n(n + 1)]− [4a1 − 1]

= (n + 1)2an −
1
2
n(n + 1) + 1− a1 = (n + 1)2an −

1
2
n(n + 1) .

Solution 3. We use an induction argument. The result holds for k = 1. Suppose it holds for n = k−1 ≥ 1.
Then

3a1 + 5a2+ · · ·+ (2k − 1)ak−1 + (2k + 1)ak

= k2ak−1 −
1
2
k(k − 1) + (2k + 1)ak

= k2

(
ak −

1
k

)
− 1

2
k(k − 1) + (2k + 1)ak

= (k + 1)2ak − [k +
1
2
k(k − 1)]

= (k + 1)2ak −
1
2
k(k + 1) .
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Solution 4. [R. Furmaniak] Let a0 = 0, Then ai = ai−1 + (1/i) for 1 ≤ i ≤ n, so that

n∑
i=1

(2i + 1)ai =
n∑

i=1

[(i + 1)2 − i2]ai

=
n∑

i=1

[(i + 1)2ai − i2ai−1 − i2(1/i)]

= (n + 1)2an − a0 −
n∑

i=1

i = (n + 1)2an −
1
2
n(n + 1) .

Solution 5. [A. Verroken] Let a0 = 0. For n ≥ 1,

(n + 1)2an =
n∑

k=0

(2k + 1)an

=
n∑

k=0

(2k + 1)
[
ak +

(
1

k + 1
+

1
k + 2

+ · · ·+ 1
n

)]

=
n∑

k=1

(2k + 1)ak +
n−1∑
k=0

(2k + 1)
(

1
k + 1

+
1

k + 2
+ · · ·+ 1

n

)

=
n∑

k=1

(2k + 1)ak +
n−1∑
k=0

(
1

k + 1

)
(1 + 3 + · · ·+ (2k + 1))

=
n∑

k=1

(2k + 1)ak +
n−1∑
k=0

(
1

k + 1

)
(k + 1)2

from which the result follows. (To see the second last equality, write out the sums and instead of summing
along the 2k + 1, sum along the 1/(k + 1).]

Solution 6. [T. Yin] Recall Abel’s Partial Summation Formula:

n∑
k=1

ukvk = (u1 + u2 + · · ·+ un)vn −
n−1∑
k=1

(u1 + u2 + · · ·+ uk)(vk+1 − vk) .

(Prove this. Compare with integration by parts in calculus.) Applying this to uk = 2k + 1 and vk = ak, we
find that u1 + · · ·+ uk = (k + 1)2 − 1 and vk+1 − vk = 1/(k + 1), whereupon

n∑
k=1

(2k + 1)ak = (n + 1)2an − an −
n−1∑
k=1

(k + 1) +
n−1∑
k=1

1
k + 1

= (n + 1)2an − an −
[
n(n + 1)

2
− 1

]
+ [an − 1]

= (n + 1)2an −
n(n + 1)

2
.

203. Every midpoint of an edge of a tetrahedron is contained in a plane that is perpendicular to the opposite
edge. Prove that these six planes intersect in a point that is symmetric to the centre of the circumsphere
of the tetrahedron with respect to its centroid.

Solution 1. Let O be the centre of the circumsphere of the tetrahedron ABCD and G be its centroid.
Then

−−→
OG =

1
4
(−→OA +−−→

OB +−−→
OC +−−→

OD) .
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Let N be the point determined by

−−→
ON = 2−−→OG =

1
2
(−→OA +−−→

OB +−−→
OC +−−→

OD) .

Let P be the midpoint of the edge AB. Then

−−→
PN = −−→

ON −−−→OP = −−→
ON − 1

2
(−→OA +−−→

OB) =
1
2
(−−→OC +−−→

OD)

and
−−→
PN · −−→CD =

1
2
(−−→OD +−−→

OC) · (−−→OD +−−→
OC) =

1
2
(|−−→OD|2 − |−−→OC|2) = 0 .

Hence −−→PN ⊥ −−→
CD, so that the segment PN is contained in a plane that is orthogonal to CD. A similar

result holds for the other five edges. The result follows.

Solution 2. [O. Bormashenko] Let O be the circumcentre and let G be the centroid of the tetrahedron.
Let M be the midpoint of the edge AB and N the midpoint of the edge CD. The centroid of the triangle
ABC lies at a point E on MC for which CE = 2EM , so that CM = 3EM . The centroid of the tetrahedron
is the position of the centre of gravity when unit masses are placed at its vertices, and so is the position of
the centre of gravity of a unit mass placed at D and a triple mass at E. Thus G is on DE and satisfies
DG = 3GE.

Consider triangle CDE. We have that

CM

ME
· EG

GD
· DN

NC
= (−3) ·

(
1
3

)
· 1 = −1 ,

so that, by the converse to Menelaus’ Theorem, G, M and N are collinear. Consider triangle MCN and
transversal DGE. By Menelaus’ Theorem,

−1 =
ME

EC
· CD

DN
· NG

GM
=

(
1
2

)
· (−2) · NG

GM
,

whence NG = GM and G is the midpoint of MN .

Suppose that K is the point on OG produced so that OG = GK. Since OK and MN intersect in G
at their respective midpoints, OMKN is a planar parallelogram and ON‖KM . Since OC = OD, triangle
OCD is isosceles, and so ON ⊥ CD. Hence KM ⊥ CD. Therefore, K lies on the plane through the midpoint
M of AB and perpendicular to CD. By symmetry, K lies on the other planes through the midpoints of an
edge and perpendicular to the opposite edge.

204. Each of n ≥ 2 people in a certain village has at least one of eight different names. No two people have
exactly the same set of names. For an arbitrary set of k names (with 1 ≤ k ≤ 7), the number of people
containing at least one of the k names among his/her set of names is even. Determine the value of n.

Solution 1. Let P be a person with the least number of names. The remaining n − 1 people have at
least one of the names not possessed by P , so by the condition of the problem applied to the set of names
not possessed by P , n− 1 is even and so n is odd. Let x be one of the eight names, and suppose, if possible,
that no person has x as his/her sole name. Then all n people have at least one of the remaining names which
yields the contradiction that n must be even. Hence, for each name, there is a person with only that name.
Suppose there is no person with only a pair {x, y} of names. Then there are n− 2 people who have a name
other than x and y, which yields again a contradiction, since n − 2 is odd. Hence, for each pair of names,
there is exactly one person possessing those two names.

We can continue the argument. Suppose, if possible, there is no person possessing exactly the three
names x, y and z. Then except for the six people with the name sets {x}, {y}, {z}, {x, y}, {y, z}, {z, x},
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everyone possesses at least one of the names other than x, y, z, which leads to a contradiction. Eventually,
we can argue that, for each nonvoid set of the eight names, there is exactly one person with that set of
names. Since there are 255 = 28 − 1 such subsets, there must be 255 people.

Solution 2. [R. Furmaniak] For 1 ≤ i ≤ 8, let Si be the set of people whose names include the ith name.
By the condition of the problem for k = 1, the cardinality, #Si, of Si must be even. Suppose, for 2 ≤ k ≤ 7,
it has been shown that any intersection of fewer than k of the Si has even cardinality.

Consider an intersection of k of the Si, say S1 ∩ S2 ∩ · · · ∩ Sk. By the condition of the problem,
#(S1 ∪ S2 ∪ · · · ∪ Sk), the number of people with at least one of the first k names, is even. But, from the
Principle of Inclusion-Exclusion, we have that

#(S1 ∪ S2 ∪ · · · ∪ Sk) =
k∑

i=1

#Si −
∑
i 6=j

#(Si ∩ Sj) +
∑
i,j,k

#(Si ∩ Sj ∩ Sk)− · · ·+ (−1)k#(S1 ∩ S2 ∩ · · · ∩ Sk) .

By the induction hypothesis, each term in the series on the right but the last is even, and so the last is even
as well.

Consider the largest set of names, say {i1, · · · , ir} possessed by any one person. This set can appear
only once, so that ∩r

j=1Sij is a singleton. By the above paragraph, the intersection must have eight members
(no fewer) and so some person possesses all eight names.

If a set of names does not belong to any person, let T be a maximal such set with k ≤ 7 names, say the
first k names. By maximality, each superset of T be be a set of names for someone. The supersets consist
of the k names along with all of the 28−k − 1 possible subsets of the remaining names. But the superset of
names are possessed by all the people in S1 ∩ S2 ∩ · · · ∩ Sk, and this set has even cardinality and so cannot
have cardinality 28−k− 1. This is a contradiction. Thus every possible nonvoid set of names must occur and
n = 28 − 1.

205. Let f(x) be a convex realvalued function defined on the reals, n ≥ 2 and x1 < x2 < · · · < xn. Prove
that

x1f(x2) + x2f(x3) + · · ·+ xnf(x1) ≥ x2f(x1) + x3f(x2) + · · ·+ x1f(xn) .

Solution 1. The case n = 2 is obvious. For n = 3, we have that

x1f(x2)+x2f(x3) + x3f(x1)− x2f(x1)− x3f(x2)− x1f(x3)
= (x3 − x2)f(x1) + (x2 − x1)f(x3)− (x3 − x1)f(x2)

= (x3 − x1)
[
(x3 − x2)
(x3 − x1)

f(x1) +
(x2 − x1)
(x3 − x1)

f(x3)− f(x2)
]
≥ 0 .

Suppose, as an induction hypothesis, that the result holds for all values of n up to k ≥ 3. Then

x1f(x2) + x2f(x3) + · · ·+ xkf(xk+1) + xk+1f(xk)
= [x1f(x2) + · · ·+ xkf(x1)] + [xkf(xk+1) + xk+1f(x1)− xkf(x1)]
≥ [x2f(x1) + · · ·+ x1f(xk)] + [xk+1f(xk) + x1f(xk+1)− x1f(xk)]
= x2f(x1) + · · ·+ xk+1f(xk) + x1f(xk+1) ,

by the result for n = k and n = 3.

Solution 2. [J. Kramar] For 1 ≤ i ≤ n, let λi = (xi−x1)/(xn−x1), so that 0 = λ1 ≤ λ2 ≤ · · · ≤ λn−1 ≤
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λn = 1 and xi = λixn + (1− λi)x1. Then

f(xn)λn−1 + (1− λ2)f(x1) = (f(xn)− f(x1))λn−1 + f(x1)(λn−1 + λn − λ2)
= (f(xn)− f(x1))(λn−1λn − λ1λ2) + f(x1)(λn + λn−1 − λ2 − λ1)

= (f(xn)− f(x1))
n−1∑
i=2

(λiλi+1 − λi−1λi) + f(x1)
n−1∑
i=2

(λi+1 − λi−1)

=
n−1∑
i=2

[λi+1 − λi−1][λif(xn) + (1− λi)f(x1)]

≥
n−1∑
i=2

[λi+1 − λi−1]f(xi) .

Multiplying by xn − x1 and rearranging terms yields that

xn−1f(xn) + xnf(x1) ≥
[ n−1∑

i=2

f(xi)(xi+1 − xi−1)
]

+ x1f(xn) + x2f(x1)

from which the desired result follows.

Solution 3. [D. Yu] Note that the inequality holds for a function f(x) if and only if it holds for m+f(x)
for all real constants m. We begin by establishing that a convex function on a closed interval is bounded
below.

Proposition. Let f(x) be a convex function defined on the closed interval [a, b]. Then there exists a
constant M such that f(x) ≥ M for a ≤ x ≤ b.

Proof. Let c be the midpoint of [a, b]. Then, when a < c ≤ x ≤ b, we have that

f(c) ≤ f(a)(x− c) + f(x)(c− a)
x− a

≤ |f(a)|(b− c) + f(x)(c− a)
c− a

whence
f(x) ≥ f(c)− |f(a)|(b− c)(c− a)−1 .

Similarly, when a ≤ x ≤ c < b, we have that

f(c) ≤ f(x)(b− c) + |f(b)|(c− x)
b− x

≤ f(x)(b− c) + |f(b)|(c− a)
b− c

whence
f(x) ≥ f(c)− |f(b)|(c− a)(b− c)−1 .

We can take M to be the minimum of f(c)− |f(a)|(b− c)(c− a)−1 and f(c)− |f(b)|(c− a)(b− c)−1. ♠

Return to the problem. Because of the foregoing, it is enough to prove the result when f(x) ≥ 0 on
[x1, xn]. From the convexity, the graph of f on [x1, xn] lies below the line segment joining (x1, f(x1)) and
(xn, f(xn)). The nonnegative area between this line and the graph is at least as big as the area between the
trapezoid with vertices (x1, 0), (x1, f(x1)), (xn, f(xn)), (xn, 0) and the union of the trapezoids with vertices
(xi, 0), (xi, f(xi)), (xi+1, f(xi+1)), (xi+1, 0) (1 ≤ i ≤ n− 1), and this latter area is equal to

1
2

[
(f(x1) + f(xn))(xn − x1)−

n−1∑
i=1

(f(xi) + f(xi+1)(xi+1 − xi)
]

=
1
2

[
xnf(xn)− x1f(x1) +

n−1∑
i=1

(xif(xi)− xi+1f(xi+1))

+ xnf(x1) +
n−1∑
i=1

xif(xi+1)− x1f(xn)−
n−1∑
i=1

xi+1f(xi)
]

.
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The result follows from this.

206. In a group consisting of five people, among any three people, there are two who know each other and
two neither of whom knows the other. Prove that it is possible to seat the group around a circular table
so that each adjacent pair knows each other.

Solution. Let the five people be A,B, C, D, E. We first show that each person must know exactly two
of the others. Suppose, if possible, that A knows B,C,D. Then, by considering all the triples containing A,
we see that each pair of B,C,D do not know each other, contrary to hypothesis. Thus, A knows at most
two people. On the other hand, if A knows none of B, C and D, then each pair of B,C,D must know each
other again yielding a contradiction. Therefore, A knows exactly two people, say B and E. Similarly, each
of the others knows exactly two people.

Since A knows B and E, A does not know C and D, so, by considering the triple A,C, D, we see that C
and D must know each other, and by considering the triple A,B, E, that B and E do not know each other.
Thus, B knows A and one of C and D; suppose, say, that B knows C. Then B knows neither of D and E,
so that D must know E. Hence, we can seat the people in the order A−−B −−C −−D −−E, and each
adjacent pair knows each other.

207. Let n be a positive integer exceeding 1. Suppose that A = (a1, a2, · · · , am) is an ordered set of m = 2n

numbers, each of which is equal to either 1 or −1. Let

S(A) = (a1a2, a2a3, · · · , am−1am, ama1) .

Define, S0(A) = A, S1(A) = S(A), and for k ≥ 1, Sk+1 = S(Sk(A)). Is it always possible to find a
positive integer r for which Sr(A) consists entirely of 1s?

Solution 1. For i > m = 2n, define ai = ai−m. Then, by induction, for positive integers r, we can show
that the rth iterate of S acting on A is

Sr(A) = S(Sr−1(A)) =
(
· · · ,

r∏
i=0

a
(r

i)
k+i, · · ·

)
.

This is clear when r = 1. Suppose it holds for the index r. Then the kth term of Sr+1(A) is equal to

r∏
i=0

a
(r

i)
k+i

r+1∏
i=1

a
( r

i−1)
k+i =

r+1∏
i=0

a
(r+1

i )
k+i .

Now let r = 2n. Then, for 1 ≤ i ≤ 2n−1,(
2n

i

)
=

(
2n

i

)(
2n − 1

1

)(
2n − 2

2

)
· · ·

(
2n − i + 1

i− 1

)
is even, since the highest power of 2 that divides 2n − j is that same as the highest power of 2 that divides
j for 1 ≤ j ≤ 2n − 1 and 2 divides i to a lower power than it divides 2n. Hence the kth term of Sm(A) is
equal to akak+m = a2

k = 1, and so Sm(A) has all its entries equal to 1.

Solution 2. [A. Chan] Defining ai for all positive indices i as in the previous solution, we find that

S(A) = (a1a2, a2a3, a3a4, · · · , ama1)

S2(A) = (a1a3, a2a4, a3a5, · · · , ama2)

S4(A) = (a1a5, a2a6, a3a7, · · · , ama4)
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S8(A) = (a1a9, a2a10, · · · , ama8)

and so on, until we come to, for m = 2n,

Sm(A) = (a1a1+m, a2a2+m, · · · , ama2m) = (a2
1, a

2
2, · · · , a2

m) = (1, 1, · · · , 1).

Solution 3. [R. Romanescu] We prove the result by induction on n. The result holds for n = 1, since for
A = (a1, a2), we have that S(A) = (a1a2, a2a1), and S2(A) = (1, 1). Suppose, for vectors with 2n entries, we
have shown that S2n

(A) = (1, 1, · · · , 1) for n-vectors A, for n ≥ 1. Consider the following vector with 2n+1

entries: A = (a1, b1, a2, b2, · · · , am, bm) where m = 2n. Then

S2(A) = (a1a2, b1b2, a2a3, b2b3, · · · , am−1am, bm−1bm) ,

i.e., applying S twice is equivalent to applying S to the separate vectors consisting of the even entries and
of the odd entries. Then, by the induction, applying S2 2n times (equivalent to applying S 2n+1 times), we
get a vector consisting solely of 1s.

208. Determine all positive integers n for which n = a2 + b2 + c2 + d2, where a < b < c < d and a, b, c, d are
the four smallest positive divisors of n.

Solution. It is clear that a = 1. Suppose, if possible that n is odd; then its divisors a, b, c, d must be
odd, and so a2 + b2 + c2 + d2 must be even, leading to a contradiction. Hence n must be even, and so b = 2,
and exactly one of c and d is odd. Hence

n = a2 + b2 + c2 + d2 ≡ 1 + 0 + 1 + 0 = 2

mod 4, and so c must be an odd prime number and d its double. Thus, n = 5(1 + c2). Since c divides n, c
must divide 5, and so c = 5. We conclude that n = 130.

209. Determine all positive integers n for which 2n− 1 is a multiple of 3 and (2n− 1)/3 has a multiple of the
form 4m2 + 1 for some integer m.

Solution. We first establish the following result: let p be an odd prime and suppose that x2 ≡ −1 (mod
p) for some integer n; then p ≡ 1 (mod 4). Proof. By Fermat’s Little Theorem, xp−1 ≡ 1 (mod p), since x
cannot be a multiple of p. Also x4 ≡ 1 (mod p). Suppose that p− 1 = 4q + r where 0 ≤ r ≤ 3. Since p− 1
is even, so is r; thus, r = 0 or r = 2. Now xr ≡ xrx4q ≡ xp−1 ≡ 1 (mod p), so r = 0. Therefore p − 1 is a
multiple of 4. ♠

Suppose that 3 divides 2n− 1. Since 2n ≡ (−1)n (mod 3), n must be even. When n = 2, (2n− 1)/3 = 1
has a multiple of the form (2m)2 + 1; any value of m will do. Suppose that n ≥ 2. Let n = 2u · v, with v
odd and u ≥ 1. Then

2n − 1 = (2v + 1)(2v − 1)(2w + 2w−2v + · · ·+ 22v + 1)

where w = n − 2v = 2v(2u−1 − 1). Suppose that (2m)2 ≡ −1 (mod (2n − 1)/3)). Then, since 2v + 1 is
divisible by 3, (2m)2 ≡ −1 (mod 2v − 1), If v ≥ 3, then 2v − 1 is divisible by a prime p congruent to 3 (mod
4) and, by the foregoing result, x2 ≡ −1 (mod p) is not solvable. We are led to a contradiction, and so v = 1
and n must be a power of 2.

Now let n = 2u. Then

2n − 1 = (2− 1)(2 + 1)(22 + 1)(24 + 1) · · · (22u−1
+ 1)

so that
2n − 1

3
=

u−1∏
i=1

(22i

+ 1) .
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We now use the Chinese Remainder Theorem: if q1, q2, · · · , qr are pairwise coprime integers and ai, a2,
· · · , ar arbitrary integers, then there exists an integer x such that x ≡ ai (mod q1q2 · · · qr) for 1 ≤ i ≤ r, and

x is unique up to a multiple of q1q2 · · · qr. This is applied to qi = 22i

+ 1 (1 ≤ i ≤ u− 1) and ai = 22i−1−1.
Observe that qi and qj are coprime for i < j. (For, if 22i ≡ −1 (mod p), then 22j ≡ 22i+1 ≡ 1 (mod p), so
that 22j

+ 1 ≡ 2 (mod p) and p = 1.) So there exists an integer m for which

m ≡ 22i−1−1 (mod 22i

+ 1)

for 1 ≤ i ≤ u− 1. Therefore
4m2 + 1 ≡ 22 · 22i−2 + 1 ≡ 22i

+ 1 ≡ 0

modulo
∏u−1

i=1 (22i

+ 1) as desired.

For example, when u = 3, we have m ≡ 1 (mod 5) and m ≡ 2 (mod 17), so we take m = 36 and find that
4m2 + 1 = 61× 85 = 61× ( 1

3 × (28 − 1)). When u = 4, we need to satisfy m ≡ 1 (mod 5), m ≡ 2 (mod 17)
and m ≡ 8 (mod 257): when m = 3606, 4m2 + 1 = 52012045 = 2381× 5× 17× 257 = 2381× ( 1

3 × (216− 1)).

210. ABC and DAC are two isosceles triangles for which B and D are on opposite sides of AC, AB = AC,
DA = DC, ∠BAC = 20◦ and ∠ADC = 100◦. Prove that AB = BC + CD.

Solution 1. Produce BC to E so that CE = CD. Note that ∠DCE = 60◦ (why?). Then ∆DCE
is isosceles and so ∠CDE = 60◦. Since DA = DE, we have that ∠DAE = ∠DEA = 10◦. Therefore,
∠BAE = 60◦ − 10◦ = 50◦ and ∠BEA = 60◦ = 10◦ = 50◦, whence AB = BE.

Solution 2. Let a = |AB| = |AC|, b = |BC|, c = |AD| = |CD|, and d = |BD|. From the Law of Cosines
applied to two triangles, we find that d2 = b2 + c2 + bc = a2 + c2 − ac, whence 0 = b2 − a2 + (b + a)c =
(b + a)(b− a + c). Therefore, a = b + c, as desired.

Solution 3. [M. Zaharia] From the Law of Sines, we have that (sin 80◦)BC = (sin 20◦)AB and

(sin 80◦)CD = (sin 100◦)CD = (sin 40◦)AC = (sin 40◦)AB .

Hence
(sin 80◦)[BC + CD] = [sin 20◦ + sin 40◦]AB = [2 sin 30◦ cos 10◦]AB .

Since sin 80◦ = cos 10◦ and sin 30◦ = 1/2, the result follows.

Solution 4. Since, in any triangle, longer sides are opposite larger angles, AB = AC > AD. Let E be a
point of the side AB for which AE = AD. Then ∆AED is isosceles with apex angle 60◦, from which we find
that CD = AD = DE = AE. Since ∆DEC is isosceles and ∠EDC = ∠ADC−∠ADE = 100◦− 60◦ = 40◦,
it follows that ∠DEC = ∠DCE = 70◦, ∠ACE = 70◦ − 40◦ = 30◦ and

∠ECB = 80◦ − 30◦ = 50◦ = 120◦ − 70◦ = ∠DEB − ∠DEC = ∠CEB .

Hence BE = BC and so AB = AE + EB = CD + BC.

Solution 5. Since ∠ABC + ∠ADC = 80◦ + 100◦ = 180◦, ABCD is a concyclic quadrilateral. Suppose,
wolog, that the circumcircle has unit radius. Since AB, BC and CD subtend respective angles 160◦, 40◦,
80◦ at the centre of the circumcircle, AB = 2 sin 80◦, BC = 2 sin 20◦ and CD = 2 sin 40◦. Since

sin 20◦ + sin 40◦ = 2 sin 30◦ cos 10◦ = sin 80◦ ,

the result follows.

211. Let ABC be a triangle and let M be an interior point. Prove that

min {MA, MB, MC}+ MA + MB + MC < AB + BC + CA .

19



Solution 1. Let D, E, F be the respective midpoints of BC, AC, AB. Suppose, wolog, M belongs to
both of the trapezoids ABDE and BCEF . Then

MA + MB < BD + DE + EA and MB + MC < BF + FE + EC

whence
MA + 2MB + MC < AB + BC + CA .

To see, for example, that MA+MB < BD +DE +EA, construct GH such that G lies on the segment
BD, H lies on the segment AE, GH‖DE and M lies on the segment GH. Then

AM + MB < AH + HM + MG + GB = AH + HG + GB

< AH + HD + DG + GB = AH + HD + DB

< AH + HE + ED + DB = EA + DE + BD .

Solution 2. [R. Romanescu] We first establish that, if W is an interior point of a triangle XY Z, then
XW + WY < XZ + ZY . To see this, produce Y W to meet XZ at V . Then

XW + Y W < XV + V W + Y W = XV + V Y < XV + V Z + ZY = XZ + ZY .

Let AP , BQ, CR be the medians of triangle ABC. These medians meet at the centroid G and partition
the triangle into six regions. Wolog, suppose that M is in the triangle AGR. Then AM + MB < AG + GB
and AM + MC < AR + RC. Hence 2AM + MB + MC < AG + GB + AR + RC. Since AP < AR + RP =
1
2 (AB + AC), AG = 2

3AP < 1
3 (AB + BC). Similarly, BG < 1

3 (AB + AC). Also CR < 1
2 (AC + BC) and

AR = 1
2AB. Hence

AG + GB + AR + RC <
7
6
AB +

5
6
AC +

5
6
BC

< AB +
1
6
(AC + BC) +

5
6
AC +

5
6
BC

= AB + BC + CA .

The result now follows.

212. A set S of points in space has at least three elements and satisfies the condition that, for any two
distinct points A and B in S, the right bisecting plane of the segment AB is a plane of symmetry for
S. Determine all possible finite sets S that satisfy the condition.

Solution. We first show that all points of S lie on the surface of a single sphere. Let U be the smallest
sphere containing all the points of S. Then there is a point A ∈ S on the surface of U . Let B be any other
point of S and P be the right bisecting plane of the segment AB. Since this is a plane of symmetry for S,
the image V of the sphere U reflected in P must contain all the points of S. Let W be the sphere whose
equatorial plane is P ∩U = P ∩V . Then S ⊆ U ∩V ⊆ W ⊆ U ∪V . Since U is the smallest sphere containing
S and W is symmetric about P , U ⊆ W , V ⊆ W and U ∩ V = U ∪ V . Hence U = V and P must be an
equatorial plane of U . But this means that B must lie on the surface of U .

Consider the case that S is a planar set; then the points of S lie on a circle. Let three of them in order
be A, B, C. Since the image of B reflected in the right bisector of AC is a point of S on the arc AC, it can
only be B itself. Hence AB = BC. Since S is finite, S must consist of the vertices of a regular polygon.

In general, any plane that intersects S must intersect it in the vertices of a regular polygon, so that, in
particular, all the faces of the convex hull of S are regular polygons. Let F be one of these faces and G and
H be faces adjacent to F sharing the respective edges AB and BC with F . Then G and H are images of
each other under the reflection in the right bisector of AC, and so must be congruent. Consider the vertex
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B of F ; if I is a face adjacent to G and contains the vertex B, then F and I must be congruent. In this
way, we can see that around each vertex of the convex hull of S, every second face is congruent. Thus, the
polyhedron has all its faces of one or two types of congruent regular polygons. Since every vertex can be
carried into every other by a sequence of reflections in right bisectors of edges, each vertex must have the
same number of faces that contain it.

Since all the angles of faces meeting at a given vertex must sum to less than 360◦ and since all the
faces are regular polygons, there must be 3, 4 or 5 faces at each vertex. If all the faces are congruent, the
convex hull must be a regular polyhedron whenever S has at least four points. If S consists of the vertices
of a regular tetrahedron or a regular octahedron, the conditions of the problem are satisfied. Otherside, it
is possible to find an edge and a vertex whose plane intersects the polyhedron in a non-equilateral triangle
so S cannot be at the vertices of a cube, a regular dodecahedron or a regular icosahedron.

If the polyhedron has two types of faces, then at each vertex, there must be two equilateral triangles
and either two squares or two pentagons. Suppose that PQR is one of the triangle faces, and that T is the
other end of the edge emanating from R. Then the plane PQT cuts the polyhedron in the non-equilateral
triangle PQT (note that all sides have the same length, so there are no other points of S on this plane).
Hence, this possibility must be rejected.

213. Suppose that each side and each diagonal of a regular hexagon A1A2A3A4A5A6 is coloured either red
or blue, and that no triangle AiAjAk has all of its sides coloured blue. For each k = 1, 2, · · · , 6, let rk

be the number of segments AkAj (j 6= k) coloured red. Prove that

6∑
k=1

(2rk − 7)2 ≤ 54 .

Solution 1. Suppose, say, r1 = 0. Since every edge emanating from A1 is blue, every other edge is red,
so that r2 = r3 = r4 = r5 = r6 = 4 and

∑6
k=1(2rk − 7)2 = 72 + 5× 12 = 54.

Suppose, that every vertex is adjacent to at least one red edge, that, say, r1 = 1 and that A1A2 is red.
Then each of A3, A4, A5, A6 must be joined to each of the others by a red segment, so that r3, r4, r5 and r6

are at least equal to 3. Since all of them are joined to A1 be a blue segment, r3, r4, r5 and r6 are at most
equal to 4. Thus, (2rk − 7)2 = 1 for 3 ≤ k ≤ 6. Since 1 ≤ rk ≤ 5,

∑6
k=1(2rk − 7)2 ≤ 2× 52 + 4× 12 = 54.

Suppose that rk ≥ 2 for each k. Then 2 ≤ rk ≤ 5, so that (2rk − 7)2 ≤ 32 for each k and so∑6
k=1(2rk − 7)2 ≤ 6× 32 = 54.

Solution 2. [A. Feiz Mohammadi] We prove the more general result: Suppose that each side and each
diagonal of a regular n−gon A1A2 · · ·An is coloured either red or blue, and that no triangle AiAjAk has all
of its sides coloured blue. For each k = 1, 2, · · · , n, let rk be the number of segments AkAj (j 6= k) coloured
red. Then

n∑
k=1

[
2rk −

(
3n− 4

2

)]2

≤ n3

4
.

For 1 ≤ k ≤ n, let bk be the number of segments AkAj (j 6= k) coloured blue. There are
(
bk

2

)
pairs

of these segments; if AkAj and AkAi are two of them, then AiAj must be coloured red. Hence
∑n

k=1

(
bk

2

)
counts the number of red segments, each as often as there are triangles containing it whose other edges are
coloured blue. Suppose that AuAv is one of these red segments. There are bu blue segments emanating from
Au and bv from Av, so that the red segments can be counted at most min {bu, bv} ≤ 1

2 (bu + bv) times.

Hence
n∑

k=1

(
bk

2

)
≤

∑ {
bu + bv

2
: AuAv is coloured red

}
.
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Each bk will appear in rk summands, and rk = (n− 1)− bk, so that

1
2

[ n∑
k=1

b2
k −

n∑
k=1

bk

]
=

n∑
k=1

(
bk

2

)
≤ 1

2

n∑
k=1

rkbk

=
1
2

n∑
k=1

[(n− 1− bk)bk] =
n− 1

2

n∑
k=1

bk −
1
2

n∑
k=1

b2
k

=⇒
n∑

k=1

b2
k ≤

n

2

n∑
k=1

bk

=⇒
n∑

k=1

(
2bk −

n

2

)2

≤ n3

4

=⇒
n∑

k=1

[
2rk −

(
3n− 4

2

)]2

≤ n3

4
.

The upper bound in Feiz Mohammadi’s result is actually attained when r1 = 0 and rk = n−2 for k ≥ 2,
and when rk = n− 1 for each k.

214. Let S be a circle with centre O and radius 1, and let Pi (1 ≤ i ≤ n) be points chosen on the (circumference
of the) circle for which

∑n
i=1

−−→
OPi = 0. Prove that, for each point X in the plane,

∑
|XPi| ≥ n.

Solution 1. Use complex numbers, representing S by the unit circle in the complex plane and the points
Pi by complex numbers zi for which |zi| = 1 and

∑
zi = 0. Then∑

|z − zi| =
∑

|zi||zzi − 1| =
∑

|zzi − 1|

≥
∣∣∣∣ ∑

(zzi − 1)
∣∣∣∣ =

∣∣∣∣z(
∑

zi − 1)
∣∣∣∣

=
∣∣∣∣∑ zi − n

∣∣∣∣ = |0− n| = n .

Solution 2. We have that ∑
|XPi| =

∑
|−−→OPi −

−−→
OX||−−→OPi|

≥ (−−−−−−−→OPi −OX) · (−−→OPi)

= n−
∑−−→

OX · −−→OPi

= n−−−→OX ·
∑−−→

OPi = n .

(The inequality is due to the Cauchy-Schwarz Inequality.)

Solution 3. [O. Bormashenko] Let the points Pi ∼ (cos ui, sinui) be placed on the unit circle of the
cartesian plane and let X ∼ (x, y). For 1 ≤ i ≤ n,

(x sinui − y cos ui)2 ≥ 0 ⇐⇒ x2 sin2 ui + y2 cos2 ui ≥ 2xy cos ui sinui

⇐⇒ x2 + y2 ≥ x2 cos2 ui + 2xy cos ui sinui + y2 sin2 ui ,

so that
|XPi|2 = (x− cos ui)2 + (y − sinui)2

= x2 + y2 + 1− 2x cos ui − 2y sinui

≥ (1− x cos ui − y sinui)2 .
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Thus,
n∑

i=1

|XPi| ≥
n∑

i=1

(1− x cos ui − y sinui)

= n− x

n∑
i=1

cos ui − y

n∑
i=1

sinui = n ,

because of
∑n

i=1

−−→
OPi = O and the vanishing of the components of this sum in the two coordinate directions.

Solution 4. [A. Mao] Let the equation of the circle S in the cartesian plane be x2 + y2 = 1. Wolog, we
may assume that X lies on the x−axis. Let r and s be the lines of equations x = 1 and x = −1 respectively.
If X lies outside the circle, the reflection in the nearer of the lines r and s take X to a point Y for which

|OY | =
{

2− |OX|, for 1 < |OX| ≤ 2;
|OX| − 2, for |OP | ≥ 2.

Since Y lies on the same side of the line of reflection as all of the Pi and X lies on the opposite side,∑
|XPi| ≥

∑
|Y Pi|.

If 1 ≤ |OX| < 3, the first reflection takes X to the interior of the circle. If |OX| ≥ 3, the first reflection
reduces the distance from the origin by 2 and a chain of finitely many reflections will take X into the circle.

Hence, wolog, we may suppose that X lies within or on the circle. Let X ∼ (w, 0) with −1 ≤ w ≤ 0
and let Pi ∼ (cos ui, sinui). Then

|XPi| =
√

(w − cos ui)2 + sin2 ui

=
√

w2 − 2w cos ui + 1

=
√

(1− w cos ui)2 + w2 sin2 ui

≥
√

(1− w cos ui)2 = 1− w cos ui ,

since |w cos ui| ≤ 1. Hence ∑
|XPi| ≥ n− w

∑
cos ui = n .

215. Find all values of the parameter a for which the equation 16x4 − ax3 + (2a + 17)x2 − ax + 16 = 0 has
exactly four real solutions which are in geometric progression.

Solution 1. Let x + (1/x) = t. Then the equation becomes f(t) ≡ 16t2 − at + 2a − 15 = 0. If the
original equation has all real roots, then this quadratic in t must have two real roots t1 and t2, both of which
have absolute value exceeding 2 (why?). The discriminant of the quadratic is equal to a2 − 64(2a − 15) =
(a − 8)(a − 120), so that its roots are real if and only if a ≤ 8 or a ≥ 120. Observe that f(2) = 49 > 0, so
that 2 does not lie between the roots, t1 and t2. Hence the roots are either both less than −2 or both greater
than 2.

If both of the roots, t1 and t2 are negative, then their sum a/16 is less than −4, so that a < −64 and
t1t2 = (2a − 15)/64 < 0. But this yields a contradiction, as the roots have the same sign. Hence, we must
have 2 < t1 < t2, say, so that the four roots x1, x2, x3, x4 of the given equation are positive. Suppose
that x1 ≤ x2 ≤ x3 ≤ x4 with x1 and x4 the solutions of x + (1/x) = t2 and x2 and x3 the solutions of
x + (1/x) = t1. (Explain why this alignment of indices is correct.) Note that x1x4 = x2x3 = 1. Since the
four roots are in geometric progression with common ration (x4/x1)1/3 = x

−2/3
1 , we find that

t2 = x1 +
1
x1

=
(

x
1/3
1 +

1

x
1/3
1

)((
x

1/3
1 +

1

x
1/3
1

)2

− 3
)

= t1(t21 − 3)
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so that
a

16
= t1 + t2 = t1(t21 − 2) ,

whence
a = t1(16t21 − 32) = t1(at1 − 2a + 15− 32) = at21 − (2a + 17)t1

so that,
0 = −16t21 + a(t1 − 2) + 15

= −16t21 + 16t1(t21 − 2)(t1 − 2) + 15

= 16t41 − 32t31 − 48t21 + 64t1 + 15

= (2t1 − 5)(2t1 + 3)(4t21 − 4t1 − 1) .

Therefore, t2 = 5/2 and so a = 170.

Indeed, when a = 170, we find that 0 = 16x4−170x3+357x2−170x+16 = (x−8)(x−2)(2x−1)(8x−1).

Solution 2. Let the roots by ur3, ur, ur−1, ur−3, with u > 0. Since the product of the roots is 1, we
must have that u = 1. From the relationship between the coefficients and the roots, we have that

r3 + r + r−1 + r−3 =
a

16

and
r4 + r2 + 2 + r−2 + r−4 =

2a + 17
16

.

Let s = r + r−1 so that s3 − 2s = a/16 and s4 − 3s2 + 2 = (2a + 17)/(16) = 2(s3 − 2s) + (17/16). Hence

0 = s4 − 2s3 − 3s2 + 4s + (15/16)

= (1/16)(4s2 − 4s− 15)(4s2 − 4s− 1) = (1/16)(2s + 3)(2s− 5)(4s2 − 4s− 1) .

Since s must be real and its absolute value is not less than 2, s = 5/2 and so r is equal to either 2 or 1/2.
Therefore

a = 16
(

8 + 2 +
1
2

+
1
8

)
= 170 .

216. Let x be positive and let 0 < a ≤ 1. Prove that

(1− xa)(1− x)−1 ≤ (1 + x)a−1 .

Solution 1. If x = 1, the inequality degenerates, but the related inequality (1− xa) ≤ (1 + x)a−1(1− x)
holds. If x > 1, then, with y = 1/x, the inequality is equivalent to (1−ya)(1−y)−1 ≤ (1+y)a−1. (Establish
this.) Hence, it suffices to show that the inequality holds when 0 < x < 1.

By the concavity of the function (1+x)1−a for x > −1, we have that (1+x)1−a ≤ 1+(1−a)x. (Observe
that the tangent to the curve y = (1 + x)1−a at (0, 1) is y = 1 + (1− a)x.) Therefore

(1− x)− (1 + x)1−a(1− xa) ≥ (1− x)− [1 + (1− a)x](1− xa)

− x− (1− a)x + xa + (1− a)xa+1 = xa + (1− a)xa+1 − (2− a)x .

By the Arithmetic-Geometric Means Inequality,

xa + (1− a)xa+1

2− a
≥ xa(2−a)−1

x(a+1)(1−a)/(2−a)

= x−(1−a)2/(2−a)x > x ,
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since x < 1. The result now follows.

Solution 2. [A. Feiz Mohammadi] As above, we can restrict to the situation that 0 < x < 1. Let
f(a) = (1− xa)(1 + x)1−a. Suppose, to begin with, we take 0 < a = m/n < 1 for some positive integers m
and n. Since m < n, m− k < n− k < n for 0 < k. Hence

xn

(
1− xm

1− x

)
=

m−1∑
k=0

xnxk ≤
m−1∑
k=0

xm−kxk

≤ mxm < nxm ,

whence (using the binomial expansion),

(1 + xn)1/n ≤ 1 +
xn

n

≤ 1 +
xm(1− x)

1− xm
=

1− xm+1

1− xm
.

This inequality holds if we replace x by x1/n. Therefore

(1 + x)1/n ≤ 1− x(m+1)/n

1− xm/n

=⇒ (1− xm/n)(1 + x)1−(m/n) ≤ (1− x(m+1)/n)(1 + x)1−(m+1)/n .

Thus, f(m/n) ≤ f((m + 1)/n).

Let u and v be two rationals with 0 < u < v < 1, and let n be a common denominator, so that u = m/n
and v = (m + p)/n for some positive integers m and p. Then f(u) ≤ f(v). Let r0 be a given rational in
(0, 1), and let {rk : k ≥ 0} be an increasing sequence for which limk→∞ rk = 1. Since f is an increasing
function of rational a,

1− x = f(1) = lim
k→∞

f(rk) ≥ f(r0) .

Suppose that a is any real with 0 < a < 1. Suppose, if possible, that f(a) > 1 − x and let ε =
f(a) − (1 − x) > 0. Since f is continuous at a, there is a positive number δ with 0 < δ < min (a, 1 − a)
for which |f(r) − f(a)| < ε whenever 0 < |a − r| < δ. Let r be a rational satisfying this condition. Then
0 < r < 1, f(r) < f(1) and so

ε > f(a)− f(r) = (f(a)− f(1)) + (f(1)− f(a)) > f(a)− f(1)

yielding a contradiction. The result follows.

Solution 3. [R. Furmaniak] Fix x > 0, x 6= 1 and let

F (a) = (1− xa)(1 + x)1−a(1− x)−1

for a > 0. Note that F (a) > 0. Observe that, by the Arithmetic-Geometric Means Inequality,

2x(a+b)/2 ≤ xa + xb

so that
(1− xa)(1− xb) ≤ (1− x(a+b)/2)2 .

Hence √
F (a)F (b) ≤ F

(
a + b

2

)
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for a, b > 0, so that log F (a) is a concave function on the half-line (0,∞).

Now F (1) = 1 and F (2) = (1 + x)(1 + x)−1 = 1, so that log F (a) vanishes at a = 1 and a = 2. Hence,
by the concavity,

F (a) ≤ 1 ⇐⇒ log F (a) ≤ 0 ⇐⇒ 0 < a ≤ 1 or 2 ≤ a

and the result follows.

217. Let the three side lengths of a scalene triangle be given. There are two possible ways of orienting
the triangle with these side lengths, one obtainable from the other by turning the triangle over, or by
reflecting in a mirror. Prove that it is possible to slice the triangle in one of its orientations into finitely
many pieces that can be rearranged using rotations and translations in the plane (but not reflections
and rotations out of the plane) to form the other.

Solution 1. There are several ways of doing this problem. Observe that, if a geometric figure has a
reflective axis of symmetry, then a rotation of 180◦ about a point on the axis (combined with a translation)
will allow it to be superimposed upon its image reflected in an axis perpendicular to the reflective axis. For
example, this applies to kites and isosceles triangles. So one strategy is to cut the triangle into finitely many
pieces that have such a reflective axis of symmetry.

(a) Cut from the three vertices into the circumcentre of the triangle to obtain three isosceles triangles,
which can be rearranged to give the other orientation.

(b) The triangle has at least one internal altitude. Cutting along this altitude yields two right triangles,
each of which can be sliced along its median to the hypotenuse to give two isosceles triangles.

(c) Slice along the lines from the incentre of the triangle to the feet of the perpendiculars to the sides
from the incentre. This yields three kites that can be moved to give the other orientation.

Solution 2. Superimpose the triangle onto its image obtained by reflecting in a line parallel to its longest
side so that the corresponding side of one triangle contains the opposite vertex to this side of the other. Make
cuts to produce the quadrilateral common to the triangle and its image. The remaining (isosceles) pieces of
the triangle can be rotated to cover the corresponding parts of the image.

218. Let ABC be a triangle. Suppose that D is a point on BA produced and E a point on the side BC, and
that DE intersects the side AC at F . Let BE + EF = BA + AF . Prove that BC + CF = BD + DF .

Solution 1. [O. Bormashenko] Produce CA to W so that AW = AB; produce FE to X so that
EX = EB; produce FC to Y so that CY = CB; produce FD to Z so that DZ = BD. Then ∠EXB =
∠EBX = 1

2∠FEB (exterior angle), and

FW = FA + AW = FA + AB = BE + EF = XE + EF = XF

so that ∠FWX = ∠FXW = 1
2∠CFE.

∠CBY = ∠CY B = 1
2∠BCF =⇒

∠XBY = ∠XBE − ∠CBY =
1
2
(∠FEB − ∠BCF ) =

1
2
∠CFE

(exterior angle). Hence, ∠XBY = ∠FWX = ∠Y WX and WBXY is concyclic.

Also,

∠ZBW =∠ABW − ∠ABZ = ∠ABW − ∠DBZ =
1
2
(∠CAB − ∠XDB)

=
1
2
∠DFA =

1
2
∠CFE = ∠FXW = ∠ZXW

and so WBXZ is concyclic. Therefore, WXY Z is concyclic and ∠FZW = ∠XZW = ∠XY W = ∠XY F .
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Consider triangles ZFW and Y FX. Since FW = FX, ∠ZFW = ∠Y FX and ∠FZW = ∠XY Z,
∆ZFW ≡ ∆Y FX, and so FZ = FY . Therefore,

BC + CF = Y C + CF = Y F = ZF = ZD + DF = BD + DF .

Solution 2. [A. Feiz Mohammadi] Let ∠EBF = u1, ∠ABF = u2, ∠BFE = v1 and ∠BFA = v2. From
the law of sines, we have that

EB : EF : BF = sin v1 : sinu1 : sin(u1 + v1)

whence
(EB + EF ) : BF = (sin v1 + sinu1) : sin(u1 + v1) .

Similarly,
(AB + FA) : BF = (sin v2 + sinu2) : sin(u2 + v2) .

Hence
sinu1 + sin v1

sin(u1 + v1)
=

sinu2 + sin v2

sin(u2 + v2)
⇔

cos 1
2 (u1 − v1)

cos 1
2 (u1 + v1)

=
cos 1

2 (u2 − v2)
cos 1

2 (u2 + v2)

⇔ cos
1
2
(u1 − v1) cos

1
2
(u2 + v2) = cos

1
2
(u2 − v2) cos

1
2
(u1 + v1)

⇔ cos
1
2
(u1 + u2 + v2 − v1) + cos

1
2
(v1 + v2 + u2 − u1)

= cos
1
2
(u1 + u2 + v1 − v2) + cos

1
2
(v1 + v2 + u1 − u2)

⇔ cos
1
2
(u1 + u2 + v2 − v1)− cos

1
2
(v1 + v2 + u1 − u2)

= cos
1
2
(u1 + u2 + v1 − v2)− cos

1
2
(v1 + v2 + u2 − u1)

⇔ sin
1
2
(u1 + v2) sin

1
2
(v1 − u2) = sin

1
2
(u2 + v1) sin

1
2
(v2 − u1)

⇔
sin 1

2 (v2 + u1) cos 1
2 (v2 − u1)

sin 1
2 (v2 − u1) cos 1

2 (v2 − u1)
=

sin 1
2 (v1 + u2) cos 1

2 (v1 − u2)
sin 1

2 (v1 − u2) cos 1
2 (v1 − u2)

⇔ sinu1 + sin v2

sin(v2 − u1)
=

sinu2 + sin v1

sin(v1 − u2)

⇔ sin∠FBC + sin∠BFC

sin∠FCB
=

sin∠FBD + sin∠DFB

sin∠FDB

⇔ FC + BC

BF
=

DF + DB

BF
⇔ BC + CF = BD + DF .

219. There are two definitions of an ellipse.

(1) An ellipse is the locus of points P such that the sum of its distances from two fixed points F1 and
F2 (called foci) is constant.

(2) An ellipse is the locus of points P such that, for some real number e (called the eccentricity) with
0 < e < 1, the distance from P to a fixed point F (called a focus) is equal to e times its perpendicular
distance to a fixed straight line (called the directrix).

Prove that the two definitions are compatible.

Solution 1. Consider the following set of equivalent equations:√
(x + c)2 + y2 +

√
(x− c)2 + y2 = 2a
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⇔
√

(x + c)2 + y2 = 2a−
√

(x− c)2 + y2

⇔ x2 + 2xc + c2 + y2 = 4a2 + x2 − 2xc + c2 + y2 − 4a
√

(x− c)2 + y2

⇔
√

(x− c)2 + y2 = a− xc

a
= e

(
a

e
− x

)
where e = c/a. In applying the first definition, we may take the foci to be at the points (c, 0) and (−c, 0)
and the sum of the focal radii to be 2a. The final equation in the set describes the locus of a point whose
distance from the focus (c, 0) is equal to e times the distance to the line x = a/e.

However, in applying the second definition, we can without loss of generality assume that the focus is
at (c, 0) and the directrix is given by x = d. Where e is the eccentricity, let a = de. Then, reading up the
equations, note that in going from the third to the second, both sides of the second have the same sign.
Then the first equation describes a locus determined by the two foci condition.

Solution 2. In this solution, we start with the standard form of the equation for each definition and
show that it describes the other locus.

In applying the first definition, place the foci at the points (c, 0) and (−c, 0), where c > 0, and let the
ellipse be the locus of points P for which the sum of the distances to the foci is the constant value 2a > 0.
Thus, the equation of the locus is √

(x− c)2 + y2 +
√

(x + c)2 + y2 = 2a

⇔
√

(x− c)2 + y2 = 2a−
√

(x + c)2 + y2

⇒ x2 − 2cx + c2 + y2 = 4a2 − 4a
√

(x + c)2 + y2 + x2 + 2cx + c2 + y2

⇔ a
√

(x + c)2 + y2 = a2 + cx

⇒ a2x2 + 2a2xc + a2c2 + a2y2 = a4 + 2a2cx + c2x2

⇔ (a2 − c2)x2 + a2y2 = a2(a2 − c2) .

Let b2 = a2 − c2. Then the equation can be written

x2

a2
+

y2

b2
= 1 .

This equation can also be written

y2 = b2 − b2x2

a2
.

Consider the line x = d, where d > 0 and let P be a point on the ellipse, F be the focus at (c, 0) and Q be
the foot of the perpendicular from P to the line x = d. We want to select d so that the ratio PF 2 : PQ2 is
independent of P (x, y). Now

PF 2

PQ2
=

(x− c)2 + y2

(d− x)2

=
x2 − 2cx + c2 + b2 − (b2/a2)x2

x2 − 2dx + d2

=
(a2 − b2)x2 − 2a2cx + (b2 + c2)a2

a2x2 − 2a2dx + a2d2

=
c2

a2

[
x2 − (2a2/c)x + (a4/c2)

x2 − 2dx + d2

]
.

The quantity in the square brackets is equal to 1 when d = a2/c. Thus, when d = a2/c, PF 2 : PQ2 = c2 : a2,
a constant ration. Define e = c/a. Note that e < 1. Then we find that PF = ePQ and a = de.
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On the other hand, start with the focus-directrix definition of an ellipse with eccentricity e, focus at
(0, 0) and directrix x = d. Then

x2 + y2 = e2(x2 − 2dx + d2) ⇔ (1− e2)
[
x +

de2

1− e2

]2

+ y2 = d2e2 +
d2e4

1− e2
=

d2e2

1− e2

⇔
[
x +

de2

1− e2

]2

+
y2

1− e2
=

(
de

1− e2

)2

.

Setting y = 0, we can check that the curve cuts the x−axis at the points ((de)/(1+e), 0) and ((−de)/(1−
e), 0). Define a to be equal to

1
2

(
de

1 + e
+

de

1− e

)
=

de

1− e2
,

c = ea and b =
√

a2 − c2. Then the equation of the focus-directrix locus becomes

(x + c)2 +
y2

1− (c2/a2)
= a2

⇔ (x + c)2

a2
+

y2

b2
= 1 ,

which is a shift of the locus of equation
x2

a2
+

y2

b2
= 1

c units to the left.

Since it is not completely clear that the latter form indeed represents the locus according to the two-foci
definition, we show that the sum of the distances from any point on the curve to the points (0, 0) and (−2c, 0)
is constant. Note that y2 = (b2/a2)[b2 − x2 − 2cx], from which

x2 + y2 =
(cx− b2)2

a2

and
(x + 2c)2 + y2 = x2 + 4cx + 4c2 + (b2/a2)[b2 − x2 − 2cx]

= (1/a2)[(a2 − b2)x2 + 2c(2a2 − b2)x + 4a2c2 + (a2 − c2)2]

= (1/a2)[c2x2 + 2c(a2 + c2) + (a2 + c2)2]

=
(cx + a2 + c2)2

a2
.

We need to ensure which square root is correct when we calculate the sum of the distances. Note that

b2

c
=

a2

c
− c =

a

e
− c =

d

1− e2
− de2

1− e2
= d

so that x < d = b2/c. Note also that

a2 + c2

c
− de

1− e
=

a2

c
+ c− de

1− e
=

d

1− e2
[1 + e2 − e(1 + e)] =

d

1 + e
> 0 .

Hence

−a2 + c2

c
< − de

1− e
≤ x
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at all points on the curve. Hence

√
x2 + y2 +

√
(x + 2c)2 + y2 =

1
a
[(b2 − cx) + (cx + a2 + c2)]

=
a2 + b2 + c2

a
=

2a2

a
= 2a ,

a constant.

220. Prove or disprove: A quadrilateral with one pair of opposite sides and one pair of opposite angles equal
is a parallelogram.

Solution 1. The statement is false. To see how to obtain the solution, start with a triangle XY Z with
∠XY Z < ∠XZY < 90◦. Then it is possible to find a point W on Y Z for which XW = XZ (this is the
diagram for the ambiguous case ASS-congruence situation). There are two ways of gluing a copy of triangle
XY W to XY Z (the copy of XW glued along XZ) to give a quadrilateral with an opposite pair of angles
equal to ∠Y and an opposite pair of sides equal to |XY |. One of these satisfies the condition and is not a
parallelogram.

C. Shen followed this strategy with |XY | = 8, ∠XY Z = 60◦, |Y W | = 3 and |Y Z| = 5 to obtain a
quadrilateral ABCD with |AB| = 5, |BC| = 8, |CD| = 3, |DA| = 8, |BD| = 7 and ∠DAB = ∠DCB = 60◦.

Solution 2. The statement is false. Suppose that we have fixed D, A, B and that AB is one of the equal
sides and ∠DAB is one of the equal angles. Then C is the intersection of two circles. One of the circles
contains the locus of points at which DB subtends an angle equal to ∠DAB and the other circle is that with
centre D and radius equal to |AB|. The two circles are either tangent or have two points of intersection.
One of these points will give the expected parallelogram, so the question arises whether the other point will
give a suitable quadrilateral. We show that it can.

Using coordinate geometry, we may take A ∼ (0, 0), B ∼ (3, 0), D ∼ (2, 2) so that ∠DAB = 45◦. The
point E that completes the parallelogram is (5, 2), and this will be one of the intersections of the two circles.
The circle that subtends an angle of 45◦ from DB has as its centre the circumcentre of ∆BDE, namely
(7/2, 3/2); this circle has equation x2− 7x+ y2− 3y +12 = 0. The circle with centre D and radius 3 = |AB|
has equation x2− 4x + y2− 4y− 1 = 0. These circles intersect at the points E ∼ (5, 2) and C ∼ (22/5, 1/5).
The quadrilateral ABCD satisfies the given conditions but is not a parallelogram.

Comment. Investigate what happens when A, B and D are assigned the coordinates (0, 0), (2, 0) and
(i) (1, 1) or (ii) (2, 2), respectively.

Comment. Consider the following two “proofs” that the quadrilateral must be a parallelogram.

“Proof” 1. Let AB = CD and ∠A = ∠C. Suppose that X and Y , respectively, are the feet of the
perpendiculars dropped from B to AD and from D to BC. Then triangles AXB and CY D, having equal
acute angles and equal hypotenuses must be congruent. Hence AX = CY , and also BX = DY , from which
it can be deduced that triangles BXD and DY B are congruent. Therefore XD = Y B and so AD = BC
and the quadrilateral is a parallelogram.

“Proof” 2. Suppose that AB = CD and that ∠B = ∠D. Applying the Law of Sines, we find that

DC

sin∠DAC
=

AC

sin∠ADC
=

AC

sin∠ABC
=

AB

sin∠ACB
=

CD

sin∠ACB
.

Therefore, ∠DAC = ∠ACB so that ∠DCA = ∠BAC and AB‖DC.

221. A cycloid is the locus of a point P fixed on a circle that rolls without slipping upon a line u. It consists
of a sequence of arches, each arch extending from that position on the locus at which the point P rests
on the line u, through a curve that rises to a position whose distance from u is equal to the diameter
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of the generating circle and then falls to a subsequent position at which P rests on the line u. Let v be
the straight line parallel to u that is tangent to the cycloid at the point furthest from the line u.

(a) Consider a position of the generating circle, and let P be on this circle and on the cycloid. Let PQ
be the chord on this circle that is parallel to u (and to v). Show that the locus of Q is a similar cycloid
formed by a circle of the same radius rolling (upside down) along the line v.

(b) The region between the two cycloids consists of a number of “beads”. Argue that the area of one of
these beads is equal to the area of the generating circle.

(c) Use the considerations of (a) and (b) to find the area between u and one arch of the cycloid using a
method that does not make use of calculus.

Solution. (a) Suppose the circle generating the cycloid rotates from left to right. We consider half the
arc of the cycloid joining a point T to a point W on v. Let P be an intermediate point on the cycloid and Q
be the point on the generating circle as described in the problem. Suppose that the perpendicular dropped
from W to u meets u at Y and the perpendicular dropped from T to v meets v at X. Thus TXWY is a
rectangle with |TX| = |WY | = 2r and |TY | = |XW | = πr, where r is the radius of the generating circle.

Let the generating circle touch u and v at U and V , respectively. Then |arc (PU)| = |TU |, so that

|arc V Q| = |arc V P | = πr − |arc PU | = πr − |TU | = |UY | = |V W | .

This means that Q is on the circle of radius r rolling to the left generating a second cycloid passing through
W , Q, T . This second cycloid is the image of the first under a 180◦ rotation that interchanges the points T
and W .

(b, c) Let α be the area of the region within the rectangle TXWY bounded by the two cycloids (one
of the “beads”), β be the area above the cycloid TPW and γ the area below the cycloid TQW within the
rectangle. Because the region TXV WP is congruent to the region WY UTQ, β = γ. Hence

α + 2β = α + β + γ = (2r)(πr) = 2πr2 .

At each vertical height between the lines u and v, the length of the chord PQ of the “bead” is equal
to the length of the chord at the same height of the generating circle, so that the “bead” can be regarded
as being made of infinitesimal slats of the circle that have been translated. Thus, the “bead” has the same
area as the generating circle, namely πr2 (this is due to a principle enunciated by a seventeenth century
mathematician, Cavalieri). Thus α = πr2 and 2β = 2πr2 − α = πr2. The area under the cycloid and above
TY is equal to α + β and the area under a complete arch of the cycloid is 2α + 2β = 2πr2 + πr2 = 3πr2,
three times the area of the generating circle.

222. Evaluate
∞∑

n=1

tan−1

(
2
n2

)
.

Solution 1. Let an = tan−1 n for n ≥ 0. Thus, 0 < an < π/2 and tan an = n. Then

tan(an+1 − an−1) =
(n + 1)− (n− 1)

1 + (n2 − 1)
=

2
n2

for n ≥ 1. Then
m∑

n=1

tan−1 2
n2

= tan−1(m + 1) + tan−1 m− tan−1 1− tan−1 0 .

Letting m →∞ yields the answer π/2 + π/2− π/4− 0 = 3π/4.

31



Solution 2. Let bn = tan−1(1/n) for n ≥ 0. Then

tan(bn−1 − bn+1) =
2
n2

for n ≥ 2, whence
m∑

n=1

tan−1 2
n2

=tan−1 2 +
m∑

n=2

(bn−1 − bn+1) = tan−1 2 + tan−1 1 + tan−1 1
2
− tan−1 1

m
− tan−1 1

m + 1

= (tan−1 2 + cot−1 2) + tan−1 1− tan−1 1
m
− tan−1 1

m + 1

=
π

2
+

π

4
− tan−1 1

m
− tan−1 1

m + 1
for m ≥ 3, from which the result follows by letting m tend to infinity.

Solution 3. [S. Huang] Let sn =
∑n

k=1 tan−1(2/n2) and tn = tan sn. Then {tn} = {2,∞,−9/2,−14/5.−
20/9, · · ·} where the numerators of the fractions are {−2,−5,−9,−14,−20, · · ·} and the denominators are
{−1, 0, 2, 5, 8, · · ·}. We conjecture that

tn =
−n(n + 3)

(n− 2)(n + 1)
for n ≥ 1. This is true for 1 ≤ n ≤ 5. Suppose that it holds to n = k − 1 ≥ 5, so that tk−1 =
−(k − 1)(k + 2)/(k − 3)k. Then

tk =
tk−1 + (2/k2)
1− 2tk−1k−2

=
−k2(k − 1)(k + 2) + 2(k − 3)k
k3(k − 3) + 2(k − 1)(k + 2)

=
−k(k + 3)(k2 − 2k + 2)

(k − 2)(k + 1)(k2 − 2k + 2)
=

−k(k + 3)
(k − 2)(k + 1)

.

The desired expression for tn holds by induction and so limn→∞ tn = −1. For n ≥ 3, tn < 0 and
tan−1(2/n2) < π/2, so we must have π/2 < sn < π and sn = π − tan−1 tn. Therefore

lim
n→∞

sn = tan−1(π + lim
n→∞

tn) = π − (π/4) = (3π)/4 .

223. Let a, b, c be positive real numbers for which a + b + c = abc. Prove that
1√

1 + a2
+

1√
1 + b2

+
1√

1 + c2
≤ 3

2
.

Solution 1. Let a = tan α, b = tan β, c = tan β, where α, β, γ ∈ (0, π/2). Then

tan(α + β + γ) =
tanα + tanβ + tan γ − tanα tanβ tan γ

1− tanα tanβ − tanβ tan γ − tan γ tanα
=

a + b + c− abc

1− ab− bc− ca
= 0 ,

whence α + β + γ = π. Then, the left side of the inequality is equal to

cos α + cos β + cos γ = cos α + cos β − cos(α + β)

= 2 cos
(

α + β

2

)
cos

(
α− β

2

)
− 2 cos2

(
α + β

2

)
+ 1

≤ 2 cos
(

α + β

2

)
− 2 cos2

(
α + β

2

)
+ 1

= 2 sin
(

γ

2

)
− 2 sin2

(
γ

2

)
+ 1

=
3
2
− 1

2
(2 sin(γ/2)− 1)2 ≤ 3

2
,
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with equality if and only if α = β = γ = π/3.

Solution 2. Define α, β and γ and note that α + β + γ = π as in Solution 1. Since cos x is a concave
function on [0, π/2], we have that

cos α + cos β + cos γ

3
≤ cos

(
α + β + γ

3

)
= cos

π

3
=

1
2

,

from which the result follows.

Solution 3. [G. N. Tai] Define α, β, γ as in Solution 1 and let s = cos α + cos β + cos γ. Then

s = 2 cos
α + β

2
cos

α− β

2
+ 1− 2 sin2 γ

2
= 2 sin

γ

2
cos

α− β

2
+ 1− 2 sin2 γ

2
.

Thus, for each α. β, the quadratic equation

2t2 − 2 cos
α− β

2
· t + (s− 1) = 0

has at least one real solution, namely t = sin(γ/2). Hence, its discriminant is positive, so that

cos2
α− β

2
− 2(s− 1) ≥ 0 =⇒ 2s ≤ 2 + cos2

α− β

2
≤ 3 =⇒ s ≤ 3/2 .

Equality occurs if and only if α = β = γ = π/3.

224. For x > 0, y > 0, let g(x, y) denote the minimum of the three quantities, x, y +1/x and 1/y. Determine
the maximum value of g(x, y) and where this maximum is assumed.

Solution 1. When (x, y) = (
√

2, 1/
√

2), all three functions x, y + (1/x), 1/y assume the value
√

2 and so
g(
√

2, 1/
√

2) =
√

2.

If 0 < x ≤
√

2, then g(x, y) ≤ x ≤
√

2. Suppose that x ≥
√

2. If y ≥ 1/
√

2, then g(x, y) ≤ 1/y ≤
√

2. If
0 < y ≤ 1/

√
2, then

g(x, y) ≤ y + (1/x) ≤ 1√
2

+
1√
2

=
√

2 .

Thus, when x > 0, y > 0, then g(x, y) ≤
√

2. If either x 6=
√

2 or y 6= 1/
√

2, then the foregoing inequalities
lead to g(x, y) <

√
2. Hence g(x, y) assumes its maximum value of

√
2 if and only if (x, y) = (

√
2, 1/

√
2).

Solution 2. [M. Abdeh-Kolachi] Let u be the minimum of x, y + (1/x) and 1/y. Then u ≤ x, u ≤ 1/y
and u ≤ y + (1/x). By the first two inequalities, we also have than y + (1/x) ≤ (1/u) + (1/u) = 2/u, so that
u ≤ 2/u and u ≤

√
2. Hence g(x, y) ≤

√
2 for all x, y > 0. Since g(

√
2, 1/

√
2) =

√
2, g has a maximum value

of
√

2 assumed when (x, y) = (
√

2, 1/
√

2).

We need to verify that this maximum is assumed nowhere else. Suppose that g(x, y) =
√

2. Then√
2 ≤ x,

√
2 ≤ 1/y and √

2 ≤ y + (1/x) ≤ (1/
√

2) + (1/
√

2) =
√

2 .

We must have equality all across the last inequality and this forces both x and 1/
√

y to equal
√

2.

Solution 3. [R. Appel] If x ≤ 1 and y ≤ 1, then g(x, y) ≤ x ≤ 1. If y ≥ 1, then g(x, y) ≤ 1/y ≤ 1. It
remains to examine the case x > 1 and y < 1, so that y + (1/x) < 2. Suppose that min (x, 1/y) = a and
max (x, 1/y) = b. Then min (1/x, y) = 1/a and max (1/x, y) = 1/b, so that

y +
1
x

=
1
a

+
1
b

=
a + b

ab
.
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Hence g(x, y) = min (a, (a + b)/(ab)). Either a2 ≤ 2 or a2 ≥ 2. But in the latter case,

a + b

ab
≤ 2b√

2b
=
√

2 .

In either case, g(x, y) ≤
√

2. This maximum value is attained when (x, y) = (
√

2, 1/
√

2).

Solution 4. [D. Varodayan] By the continuity of the functions, each of the regions {(x, y) : 0 < x <
y + (1/x), xy < 1}, {(x, y) : 0 < x, y + (1/x) < x, y + (1/x) < (1/y)}, and {(x, y) : 0 < (1/y) < x, (1/y) <
y + (1/x)} is an open subset of the plane; using partial derivatives, we see that none of the three functions
being minimized have any critical values there. It follows that any extreme values of g(x, y) must occur on
one of the curves defined by the equations

x = y + (1/x) (1)

x = 1/y (2)

y + (1/x) = (1/y) (3)

On the curve (1), x > 1 and

g(x, y) = min
(

x,
x

x2 − 1

)
=

{
x, if x ≤

√
2;

x
x2−1 , if x ≥

√
2.

On the curve (2),
g(x, y) = min (x, 2/x)

=
{

x, if x ≤
√

2;
2/x, if x ≥

√
2.

On the curve (3), 0 < y < 1 and

g(x, y) = min
(

y

1− y2
,
1
y

)
=

{
y

1−y2 , if 0 < y < 1√
2
;

1/y, if 1√
2
≤ y ≤ 1.

On each of these curves, g(x, y) reaches its maximum value of
√

2 when (x, y) = (
√

2.1/
√

2).

Solution 5. [J. Sparling] Let z = 1/y. For fixed z, let

vz(x) = min {x, z, (1/x) + (1/z)}

and
w(z) = max {vz(x) : x > 0} .

Suppose that z ≤ 1. Then (1/x) + (1/z) ≥ z, so vz(x) = min {x, z} and

vz(x) =
{

x, for x ≤ z;
z, for x ≥ z;

so that w(z) = z when z ≤ 1. Suppose that 1 < z ≤
√

2, so that z ≤ z/(z2 − 1). Then

vz(x) =


x, for x ≤ z;
z, for z ≤ x < z/(z2 − 1);
(1/x) + (1/z), for z/(z2 − 1) ≤ x;
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so that w(z) = z when 1 < z ≤
√

2. Finally, suppose that
√

2 > z. Note that x ≤ (1/x) + (1/z) ⇔
zx2−x−z ≤ 0. Then the minimum of x and (1/x)+(1/z) is x when zx2−x−z ≤ 0, or x ≤ (1+

√
1 + 4z2)/2z.

Since
√

2−
[
1 +

√
1 + 4z2

2z

]
=

(2
√

2z − 1)−
√

1 + 4z2

2z

=
4z2 − 4

√
2z

2z[(2
√

2z − 1) +
√

1 + 4z2]

=
2(z −

√
2)

(2
√

2z − 1) +
√

1 + 4z2
≥ 0 ,

this minimum is always less than z, so that

vz(x) =

{
x, for x ≤ 1+

√
1+4z2

2z
1
x + 1

z , for x ≥ 1+
√

1+4z2

2z ,

so that w(z) = (1 +
√

1 + 4z2)/(2z) ≤
√

2 when
√

2 ≤ z. Hence, the minimum value of w(z) =
√

2 and this
is the maximum value of g(x, y), assumed when (x, y) = (

√
2, 1/

√
2).

Solution 6. For x > 0, let

hx(y) = min
(

x, y +
1
x

,
1
y

)
.

Suppose that x ≤
√

2. Then x− (1/x) ≤ (1/x) and

hx(y) =


y + 1

x , if 0 < y ≤ x− 1
x ;

x, if x− 1
x ≤ y ≤ 1

x ;
1
y , if 1

x ≤ y;

so that the minimum value of hx(y) is x, and this occurs when x− (1/x) ≤ y ≤ (1/x). Suppose that x ≥
√

2.
Then y + (1/x) ≤ (1/y) ⇔ xy2 + y − x ≤ 0 and

√
2−

[
1 +

√
1 + 4x2

2x

]
=

(
√

8x− 1)−
√

1 + 4x2

2x

=
4x2 − 4

√
2x

2x[(
√

8x− 1) +
√

1 + 4x2)

=
2(x−

√
2)

(
√

8x− 1) +
√

1 + 4x2
≥ 0 ,

so that
1 +

√
1 + 4x2

2x
≤
√

2 ≤ x .

hx(y) =

{
y + 1

x , when 0 < y ≤ −1+
√

1+4x2

2x ;
1
y , when −1+

√
1+4x2

2x ≤ y;

so that the minimum value of hx(y) is (1+
√

1 + 4x2)/(2x), and this occurs when y = (−1+
√

1 + 4x2)/(2x).

Thus, we have to maximize the function u(x) where

u(x) =
{

x, if 0 < x ≤
√

2;
1+
√

1+4x2

2x , if
√

2 ≤ x.

By what we have shown, this maximum is
√

2 and is attained when x =
√

2. The result follows.
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225. A set of n lighbulbs, each with an on-off switch, numbered 1, 2, · · · , n are arranged in a line. All are
initially off. Switch 1 can be operated at any time to turn its bulb on of off. Switch 2 can turn bulb 2
on or off if and only if bulb 1 is off; otherwise, it does not function. For k ≥ 3, switch k can turn bulb k
on or off if and only if bulb k−1 is off and bulbs 1, 2, · · · , k−2 are all on; otherwise it does not function.

(a) Prove that there is an algorithm that will turn all of the bulbs on.

(b) If xn is the length of the shortest algorithm that will turn on all n bulbs when they are initially off,
determine the largest prime divisor of 3xn + 1 when n is odd.

Solution. (a) Clearly x1 = 1 and x2 = 2. Let n ≥ 3. The only way that bulb n can be turned on is for
bulb n − 1 to be off and for bulbs 1, 2, · · · , n − 2 to be turned on. Once bulb n is turned on, then we need
get bulb n− 1 turned on. The only way to do this is to turn off bulb n− 2; but for switch n− 2 to work, we
need to have bulb n − 3 turned off. So before we can think about dealing with bulb n − 1, we need to get
the first n− 2 bulbs turned off. Then we will be in the same situation as the outset with n− 1 rather than
n bulbs. Thus the process has the following steps: (1) Turn on bulbs 1, · · · , n − 2; (2) Turn on bulb n; (3)
Turn off bulbs n− 2, · · · , 1; (3) Turn on bulbs 1, 2, · · · , n. So if, for each positive integer k, yk is the length
of the shortest algorithm to turn them off after all are lit, then

xn = xn−2 + 1 + yn−2 + xn−1 .

We show that xn = yn for n = 1, 2, · · ·. Suppose that we have an algorithm that turns all the bulbs on.
We prove by induction that at each step we can legitimately reverse the whole sequence to get all the bulbs
off again. Clearly, the first step is to turn either bulb 1 or bulb 2 on; since the switch is functioning, we can
turn the bulb off again. Suppose that we can reverse the first k− 1 steps and are at the kth step. Then the
switch that operates the bulb at that step is functioning and can restore us to the situation at the end of
the (k − 1)th step. By the induction hypothesis, we can go back to having all the bulbs off. Hence, given
the bulbs all on, we can reverse the steps of the algorithm to get the bulbs off again. A similar argument
allows us to reverse the algorithm that turns the bulbs off. Thus, for each turning-on algorithm there is a
turning-off algorithm of equal length, and vice versa. Thus xn = yn.

We have that xn = xn−1 + 2xn−2 + 1 for n ≥ 3. By, induction, we show that, for m = 1, 2, · · ·,

x2m = 2x2m−1 and x2m+1 = 2x2m + 1 = 4x2m−1 + 1 .

This is true for m = 1. Suppose it is true for m ≥ 1. Then

x2(m+1) = x2m+1 + 2x2m + 1 = 2(x2m + 1) + 4x2m−1

= 2(x2m + 2x2m−1 + 1) = 2x2m+1 ,

and
x2(m+1)+1 = x2(m+1) + 2x2m+1 + 1 = 2x2m+1 + 4x2m + 3

= 2(x2m+1 + 2x2m + 1) + 1 = 2x2(m+1) + 1 .

Hence, for m ≥ 1,

3x2m+1 + 1 = 4(3x2m−1 + 1) = · · · = 4m(3x1 + 1) = 4m+1 = 22(m+1) .

Thus, the largest prime divisor is 2.

226. Suppose that the polynomial f(x) of degree n ≥ 1 has all real roots and that λ > 0. Prove that the set
{x ∈ R : |f(x)| ≤ λ|f ′(x)|} is a finite union of closed intervals whose total length is equal to 2nλ.

Solution. Wolog, we may assume that the leading coefficient is 1. Let f(x) =
∏k

i=1(x − ri)mi , where
n =

∑k
i=1 mi. Then

f ′(x)
f(x)

=
k∑

i=1

mi

x− ri
.
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Note that the derivative of this function, −
∑k

i=1 mi(x − ri)−2 < 0, so that it decreases on each interval
upon which it is defined. By considering the graph of f ′(x)/f(x), we see that f ′(x)/f(x) ≥ 1/λ on finitely
many intervals of the form (ri, si], where ri < si and the ri and sj interlace, and f ′(x)/f(x) ≤ −1/λ on
finitely many intervals of the form [ti, ri), where ti < ri and the ti and rj interlace. For each i, we have
ti < ri < si < ti+1.

The equation f ′(x)/f(x) = 1/λ can be rewritten as

0 =(x− r1)(x− r2) · · · (x− rk)− λ

k∑
i=1

mi(x− r1) · · · ̂(x− ri) · · · (x− rk)

= xk −
( k∑

i=1

ri − λ

k∑
i=1

mi

)
xk−1 + · · · .

(The “hat” indicates that the term in the product is deleted.) The sum of the roots of this polynomial is

s1 + s2 + · · ·+ sk = r1 + · · ·+ rk − λn ,

so that
∑m

i=1(si−ri) = λn. This is the sum of the lengths of the intervals (ri, si] on which f ′(x)/f(x) ≥ 1/λ.
Similarly, we can show that f ′(x)/f(x) ≤ −1/λ on a finite collection of intervals of total length λn. The set
on which the inequality of the problem holds is equal to the union of all of these half-open intervals and the
set {r1, r2, · · · , rk}. The result follows.

227. Let n be an integer exceeding 2 and let a0, a1, a2, · · · , an, an+1 be positive real numbers for which a0 = an,
a1 = an+1 and

ai−1 + ai+1 = kiai

for some positive integers ki, where 1 ≤ i ≤ n.

Prove that
2n ≤ k1 + k2 + · · ·+ kn ≤ 3n .

Solution. Since ki = (ai−1/ai) + (ai+1/ai) for each i,

n∑
i=1

ki =
n∑

i=1

(
ai+1

ai
+

ai

ai+1

)
≥

n∑
i=1

2 = 2n .

As for the other inequality, since the expression has cyclic symmetry, there is no loss in generality in
supposing that an ≥ a1 and an ≥ an−1 with inequality in at least one case, so that 2an > an−1 + a1.
Therefore, kn = 1 and an = an−1 + a1.

We establish the right inequality by induction. For the case n = 3, we may suppose that

a2 + a3 = k1a1 ; a1 + a3 = k2a2 ; a1 + a2 = a3 .

Substituting for a3 and rearranging the terms yields the brace of equations

2a2 = (k1 − 1)a1 2a1 = (k2 − 1)a2

whence 4 = (k1 − 1)(k2 − 1). It follows that k1 + k2 + k3 is either 5 + 2 + 1 = 8 or 3 + 3 + 1 = 7.

Now suppose the result holds when the index is n−1 ≥ 3. Then, supposing that kn = 1 and substituting
for an, we obtain the n− 1 equations

an−1 + a2 = (k1 − 1)a1
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a1 + a3 = k2a2

· · ·

an−3 + an−1 = kn−2an−2

an−2 + a1 = (kn−1 − 1)an−1 .

By the induction hypothesis

(k1 − 1) + k2 + · · ·+ (kn−1 − 1) ≤ 3(n− 1) = 3n− 3

whence
k1 + k2 + · · ·+ kn ≤ (3n− 3) + 2 + 1 = 3n .

228. Prove that, if 1 < a < b < c, then

loga(loga b) + logb(logb c) + logc(logc a) > 0 .

Solution. Since 1 < a < b < c, loga b > 1, so that

loga(loga b) = loga b · logb(loga b) > logb(loga b) .

Also
0 < logc a = logc b · logb a < logc b < 1 ,

so that logb(logc a) < 0 and

logc(logc a) = logc b · logb(logc a) > logb(logc a) .

Hence,
loga(loga b) + logb(logb c) + logc(logc a)

> logb(loga b) + logb(logb c) + logb(logc a)
= logb(loga b · logb c · logc a) = logb 1 = 0 .

Comment. As an exercise, you should justify the following fundamental facts about change of basis,
beginning with the definition, logp q = r iff pr = q where 0 < p, q and p 6= 1: (1) logu v · logv w = logu w; (2)
logu v = 1/(logv u).

229. Suppose that n is a positive integer and that 0 < i < j < n. Prove that the greatest common divisor of(
n
i

)
and

(
n
j

)
exceeds 1.

First solution. Since
(
n
k

)
=

(
n

n−k

)
for 1 ≤ k ≤ n−1, it suffices to prove the result when 0 < i < j ≤ n/2,

so that i + j ≤ n. Observe that(
n

i

)
=

(
n

n− i

)(
n− 1

n− 1− i

)
· · ·

(
n− j + 1

n− j + 1− i

)(
n− j

i

)
so that

(
n
i

)
>

(
n−j

i

)
, and that(

n

i

)(
n− i

j

)
=

n!
i!j!(n− i− j)!

=
(

n

j

)(
n− j

i

)
.

Suppose, if possible, that
(
n
i

)
and

(
n
j

)
are coprime. Then, since

(
n
i

)
divides the product of

(
n
j

)
and

(
n−j

i

)
,(

n
i

)
must divide

(
n−j

i

)
. But this is impossible, since

(
n−j

i

)
<

(
n
i

)
.

38



Second solution. Observe that, for 1 ≤ i < j ≤ n− 1,(
n

i

)
=

n(n− 1) · · · (j + 1)
(n− i) · · · (j − i + 1)

(
j

i

)
>

(
j

i

)
and (

n

i

)(
n− i

j − i

)
=

n!
i!(j − i)!(n− j)!

=
(

n

j

)(
j

i

)
.

If
(
n
i

)
and

(
n
j

)
were coprime, then

(
n
i

)
would divide the smaller

(
j
i

)
, an impossibility.

230. Let f be a strictly increasing function on the closed interval [0, 1] for which f(0) = 0 and f(1) = 1. Let
g be its inverse. Prove that

9∑
k=1

(
f

(
k

10

)
+ g

(
k

10

))
≤ 9.9 .

Solution. Observe that x = g(y) and y = f(x) determine the same curve. Sketch a diagram that
includes the graph of y = f(x) and the rectangles with vertices (k/10, f(k/10)), (k/10, 0), ((k + 1)/10, 0),
((k + 1)/10, f(k/10) and areas (1/10)f(k/10), for 1 ≤ k ≤ 0. The area under the graph of y = f(x) and the
x−axis for 1/10 ≤ x ≤ 1 is at least (1/10)

∑9
k=1 f(k/10).

Similarly, the area between the graph of x = g(y) and the y−axis for 1/10 ≤ y ≤ 1 is at least
(1/10)

∑9
k=1 g(k/10). Since both these regions do not overlap the square with side 1/10 and opposite

vertices at (0, 0) and (1/10, 1/10), we must have

1
100

+
1
10

9∑
k=1

(
f

(
k

10

)
+ g

(
k

10

))
≤ 1

from which the result follows.

231. For n ≥ 10, let g(n) be defined as follows: n is mapped by g to the sum of the number formed by taking
all but the last three digits of its square and adding it to the number formed by the last three digits of
its square. For example, g(54) = 918 since 542 = 2916 and 2 + 916 = 918. Is it possible to start with
527 and, through repeated applications of g, arrive at 605?

Solution. Suppose n ≥ 1000. Then g(n) ≥ bn2/1000c ≥ 1000. Since g(527) = 1006, the result of each
subsequent repeated application of g also exceeds 1000 and so can never be 605.

232. (a) Prove that, for positive integers n and positive values of x,

(1 + xn+1)n ≤ (1 + xn)n+1 ≤ 2(1 + xn+1)n .

(b) Let h(x) be the function defined by

h(x) =
{

1, if 0 ≤ x ≤ 1;
x, if x > 1.

Determine a value N for which
|h(x)− (1 + xn)

1
n | < 10−6

whenever 0 ≤ x ≤ 10 and n ≥ N .

Solution. Recall the power-mean inequality(
an + bn

2

)1/n

≤
(

an+1 + bn+1

2

)1/(n+1)
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for n a positive integer and a, b > 0. Applying this to (a, b) = (1, x) yields

(1 + xn)n+1 ≤ 2(1 + xn+1)n .

If 0 ≤ x ≤ 1, then xn+1 ≤ xn and

(1 + xn+1)n ≤ (1 + xn)n ≤ (1 + xn)n+1 .

Let 1 ≤ x. Then (
1 +

1
xn+1

)n

≤
(

1 +
1
xn

)n

.

Multiplying by xn(n+1) yields (xn+1 + 1)n ≤ (xn + 1)n+1, as desired.

(b) Let 0 ≤ x ≤ 1. Then, for each positive integer n, |1 − (1 + xn)1/n| = (1 + xn)1/n − 1 ≤ 21/n − 1.
Now let 1 ≤ x ≤ 10. Then, for each positive integer n,

|x− (1 + xn)1/n| = (1 + xn)1/n − x ≤ (2xn)1/n − x = x[21/n − 1] ≤ 10(21/n − 1) .

It follows that, for 0 ≤ x ≤ 10 and each positive integer n,

|h(x)− (1 + xn)1/n| ≤ 10(21/n − 1) .

Suppose that N is an integer that exceeds 1/ log2(1 + 10−7). (N could be 3× 107 for example.) Then

n ≥ N =⇒ 1
n
≤ 1

N
< log2(1 + 10−7)

=⇒ 21/n < (1 + 10−7) =⇒ 10(21/n − 1) < 10−6

=⇒ |h(x)− (1 + xn)1/n| < 10−6

for 0 ≤ x ≤ 10.

Comments. The (b) part of this question was badly handled, and solvers did not make the logic of
the situation clear. This is a situation, where one works backwards to determine what a suitable value of
N might be. Unfortunately, this working backwards involves starting with the desired result, and so the
implications are in reverse. For problems of this type, the solution must be re-edited to put it into the
proper logical form: start with what is given; proceed by justified logical steps to what is desired. The
appropriate final form of the solution thus should be: “Let N be equal to · · ·. Then (following a sequence of
manipulations), |h(x)− · · · |&c.” Note that in the above solution, we do a little initial spadework to get an
upper bound independent of x for the difference. Having gotten the upper bound, we then define a suitable
value of N . The final part of the solution then shows that N does the job, using material that is already
known to be true. Those of you who will be studying mathematics at university will undoubtedly in their
initial analysis course encounter ε− δ arguments, which are notoriously difficult for many students to grasp.
The present solution is such an argument for a particular value of ε, so an attempt to really understand the
logical structure at this point will pay dividends for you later on.

There are other ways of establishing (a). For example, when 0 ≤ x ≤ 1,(
1 + xn+1

1 + xn

)n

≤ 1 ≤ 1 + xn

while, if 1 ≤ x,

(xn + 1)n+1 − (xn+1 + 1)n =
n∑

r=0

[(
n + 1

r

)
xn(n+1−r) −

(
n

r

)
x(n+1)(n−r)

]
+ 1

=
n∑

r=0

[(
n + 1

r

)
xr −

(
n

r

)]
x(n+1)(n−r) + 1 ≥ 1 .
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One could use the Arithmetic-Geometric Means Inequality to obtain

(1 + xn+1)2 ≤ (1 + xn)(1 + xn+2) ⇒ (1 + xn+1)2(n+1) ≤ (1 + xn)n+1(1 + xn+2)n+1

⇒ (1 + xn+1)n+2

(1 + xn+2)n+1
≤ (1 + xn)n+1

(1 + xn+1)n

for each positive integer n. When n = 1, we have

(1 + x)2

1 + x2
= 1 +

2x

1 + x2
≤ 2

from which one of the inequalities follows.

233. Let p(x) be a polynomial of degree 4 with rational coefficients for which the equation p(x) = 0 has
exactly one real solution. Prove that this solution is rational.

Solution. Suppose that p(x) = x4 + tx3 + ux2 + vx + w, where t, u, v, w are all rational. (There is no
loss of generality in supposing that the leading coefficient is 1.) Since p(x) = 0 has exactly one real solution
r and since nonreal solutions come in pairs, there are two possibilities: (a) p(x) = (x − r)4, in which case
r = −t/4 is rational, or (b) r is a double root and p(x) = (x− r)2(x2 + bx+ c) = x4 +(b− 2r)x3 +(c− 2br +
r2)x2 + (br2 − 2cr)x + cr2. Then t = b− 2r, u = c− 2br + r2, v = br2 − 2cr and w = cr2.

We find that 4r3 + 3tr2 + 2ur + v = 0 (by manipulating the values for t, &c, to eliminate b and c), so
that r is a root of the cubic polynomial

q(x) = 4x3 + 3tx2 + 2ux + v

with rational coefficients. Hence, r is a root of the quadratic

f(x) ≡ 16p(x)− (4x + t)q(x) = (8u− 3t2)x2 + (12v − 2ut)x + (16w − vt)

with rational coefficients. (Use long division to divide q(x) into p(x).) It is not possible for all coefficients of
f(x) to vanish, for this would imply that u = (3/8)t2, v = (3/48)t3, w = (1/44)t4 and p(x) = (x + (t/4))4,
nor can f be a nonzero constant. If 8u−3t2 = 0, then r = −(16w−vt)/(12v−2ut) is rational. If 8u−3t2 6= 0,
then we can divide q(x) by p(x) to get a relation q(x) = f(x)g(x) + h(x), where h(x) is a linear polynomial
with rational coefficients and the root r. In this case, also, r is rational.

Comment. If you have knowledge of calculus, then you can note that p(x) = x4 + tx3 + ux2 + vx + w =
(x− r)2(x2 + bx + c) implies that

q(x) = p′(x) = 4x3 + 3tx2 + 2ux + v

= 2(x− r)(x2 + bx + c) + (x− r)2(2x + b)

= (x− r)[2(x2 + bx + c) + (x− r)(2x + b)]

so that both p(x) and q(x) have root r, We can proceed

234. A square of side length 100 is divided into 10000 smaller unit squares. Two squares sharing a common
side are called neighbours.

(a) Is it possible to colour an even number of squares so that each coloured square has an even number
of coloured neighbours?

(b) Is it possible to colour an odd number of squares so that each coloured square has an odd number
of coloured neighbours?
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Solution. [Y. Zhao] (a) Yes, it is possible in many ways to perform the task. For example, colour any
two nonadjacent squares, and both of them will have zero coloured neighbours. So there are evenly many
(2) coloured squares, each with an even number (0) of coloured neighbours.

(b) Suppose, if possible, we could colour an odd number of squares so that each has an odd number of
coloured neighbours. Let us count the number of segments or edges that connect two coloured neighbours.
Since for each coloured square there is an odd number of coloured neighbours, then the total number of their
common sides is the sum of an odd number of odd terms, and so is odd. However, two coloured neighbours
share each of these common edges, therefore each coloured neighbour is counted twice in the sum; thus, the
sum should be even. This is a contradiction. So, it is impossible to colour an odd number of squares so that
each has an odd number of coloured neighbours.

235. Find all positive integers, N , for which:

(i) N has exactly sixteen positive divisors: 1 = d1 < d2 < · · · < d16 = N ;

(ii) the divisor with the index d5 (namely, dd5) is equal to (d2 + d4)× d6 (the product of the two).

Solution. There are some preliminary easy observations:

(1) Since N has exactly sixteen positive divisors and d5 is an index, d5 ≤ 16. On the other hand, d6 is
a proper divisor of dd5 , so d6 ≤ dd5 . Thus 6 < d5 ≤ 16.

(2) If N were odd, all its factors would be odd. But, by (ii), the factor dd5 would be the product of an
even and an odd number, and so be even. But this would given N an even divisor and lead to a contradiction.

(3) Recall that, if N =
∏

pki
i is the prime factor decomposition, then the number of all divisors, including

1 and N is
∏

(1+ki). [To understand this formula, think how we can form any of the divisors of N ; we have
to choose its prime factors, each to any of the possible exponents. For an arbitrary prime factor pi there
are (1 + ki) possibility for the exponent (from 0 to ki inclusive). In particular, the factor 1 corresponds to
taking all exponents 0, and N to taking all exponents to be the maximum ki.] It can be checked that there
are five cases for the prime factorization of N ; (i) N = p15, N = p7

1p2; (iii) N = p3
1p2p3; (iv) N = p3

1p
3
2; (v)

N = p1p2p3p4.

We now put all of this together, and follow the solution of K.-C. R. Tseng. From (1), d2 = 2.

If d4 is composite (i.e. not a square), then d4 = 2d3 is even. Since d2 + d4 divides a factor dd5 of N ,
it divides N . Since d2 + d4 = 2(1 + d3), 1 + d3 divides N . But then 1 + d3 would equal d4 = 2d3, which is
impossible. If d4 were a perfect square, then it must equal either 4 or 9 (since d4 < d5 ≤ 16). In either case,
d3 = 3, and 6 must be one of the factors. This excludes the possibility that d4 = 9, since 6 should preceded
9 in the list of divisors. On the other hand, if d4 = 4, then d5 must be equal to either 5 or 6, which is not
possible by (1).

Hence, d4 must be a prime number, and so one of 3, 5, 7, 11, 13. Since d3 ≥ 3, d4 6= 3.

Suppose that d4 = 5. Then d2 +d4 = 7 must divide N . Thus d5 or d6 must be 7. If d5 = 7, then d3 6= 3,
for otherwise 6 would be a factor between d4 and d5. But then d3 = 4, so that N = 22 · 5 · 7 ·K where K is
a natural number. But N must have 16 divisors, and the only way to obtain this is to have 23 rather than
22 in the factorization. Thus, d6 = 8 and d7 = 10. But then dd5 = d7 6= (d2 + d4)d6. So d5 = 7 is rejected
and we must have d6 = 7. This entails that d5 = 6. But this denies the equality of d6 = dd5 and (d2 + d4)d6.
We conclude that d4 6= 5.

Suppose that d4 = 7. Then d2 + d4 = 9 is a factor of N , so d3 = 3. Then 6 must be a factor of N ; but
there is not room for 6, and this case is impossible.

Suppose that d4 = 11. Then d2 + d4 = 13 divides N , and is either d5 (when 12 is not a factor) or d6

(when 12 is a factor). If d5 = 13, then d3 is either a prime number less than 11 or 4. It cannot be 3, as there
is no room to fit the divisor 6. If d3 = 4, then N = 22 · 11 · 13 ·K and the only way to get 16 divisors is
for the exponent of 2 to be 3. Thus, 8 divides N , but there is no room for this divisor. Similarly, if d5 = 5,
there is no room for 10.
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Finally (with d4 = 11, d5 = 13), if d3 = 7, we already have four prime divisor of N , and this forces
N = 2 · 7 · 11 · 13 = 2002. We have that the divisors in increasing order are 1, 2, 7, 11, 13, 14, 22, 26, 77, 91,
143, 154, 182, 286, 1001, 2002, and all the conditions are satified.

When d4 = 11, d6 = 13, then d5 = 12, so that 3, 4, 6 are all factors of N ; but there is no room for them
between d2 and d4.

The remaining case is that d4 = 13, which makes d2 + d4 = 15 a factor of N ; but there is no room for
both 3 and 5 between d2 and d4. We conclude that N = 2002 is the only possibility.

236. For any positive real numbers a, b, c, prove that

1
b(a + b)

+
1

c(b + c)
+

1
a(c + a)

≥ 27
2(a + b + c)2

.

Solution. [G.N. Tai] Apply the AM-GM Inequality to get

1
b(a + b)

+
1

c(b + c)
+

1
a(c + a)

≥ 3 3

√
1

abc(a + b)(b + c)(c + a)

a + b + c ≥ 3 3
√

abc

a + b + c =
1
2
((a + b) + (b + c) + (c + a)) ≥ 3

2
3
√

(a + b)(b + c)(c + a) .

Multiplying these inequalities together and dividing by (a + b + c)2 yields the result. Equality occurs if and
only if a = b = c.

237. The sequence {an : n = 1, 2, · · ·} is defined by the recursion

a1 = 20 a2 = 30

an+2 = 3an+1 − an for n ≥ 1 .

Find all natural numbers n for which 1 + 5anan+1 is a perfect square.

Solution. [R. Marinov] The first few terms of the sequence are 20, 30, 70, 180, 470, 1230. Observe that

0 = (an+1 − an−1)(an+1 + an−1 − 3an) ⇔ a2
n+1 − 3an+1an = a2

n−1 − 3anan−1

so that
a2

n+1 − 3anan+1 + a2
n = a2

n − 3an−1an + a2
n−1

for n ≥ 2. Hence a2
n+1− 3an+1an + a2

n is a constant for N ≥ 2, and its value is 302− 2 · 30 · 20+202 = −500.

Now, 1 + 5anan+1 = 501− 500 + 5anan+1 = 501 + (an+1 + an)2 for each n ≥ 1. Since 1 + 5anan+1 = k2

is equivalent to
3× 167 = 501 = (k − (an+1 + an))(k + (an+1 − an) ,

we must have that either (i) A− (an+1 + an) = 1 and A+(an+1 + an) = 501 or (ii) A− (an+1 + an) = 3 and
A + (an+1 + an) = 167. The second possibility leads to an+1 + an = 82 which is not divisible by 10 and so
cannot occur. The first possibility leads to an+1 + an = 250, which occurs when n = 3. Since the sequence
is increasing (prove this!), this is the only possibility.

238. Let ABC be an acute-angled triangle, and let M be a point on the side AC and N a point on the side
BC. The circumcircles of triangles CAN and BCM intersect at the two points C and D. Prove that
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the line CD passes through the circumcentre of triangle ABC if and only if the right bisector of AB
passes through the midpoint of MN .

Solution. Denote the circumcentres of the triangles ABC, ANC and BMN by O, O1 and O2 re-
spectively. Denote also their circumcircles by K, K1 and K2 respectively, and the radii of these circles
by R, R1 and R2 respectively. The common chord CD of K1 and K2 is perpendicular to O1O2. Thus,
O ∈ CD ⇐⇒ CO ⊥ O1O2.

We prove two lemmata.

Lemma 1. Let M1 be the perpendicular projection of the point M onto AB and N1 the projection of
the point N onto AB. The right bisector of AB, the line SAB , passes through the midpoint of MN if and
only if AN1 = BM1.

Proof. Note that MM1N1N is a trapezoid with bases parallel to SAB . Recall that the midline of a
trapezoid has the following property: the segment that connects the midpoints of the two nonparallel sides
is parallel to the bases and its length is the average of the lengths of the two parallel sides. As a direct
consequence, a line passing through one of the midpoints of the two nonparallel sides and is parallel to the
bases must pass through the midpoint of the other side. Applying this yields that SAB passes through the
midpoint of MN if and only if SAB passes through the midpoint of M1N1. Since SAB intersects AB at its
midpoint, this is equivalent to SAB passes through the midpoint of M1N1 ⇔ AB and M1N1 have the same
midpoint, which is equivalent to AM1 = BN1 or AN1 = BM1 ♠.

Lemma 2. The diagonals d1 and d2 of the quadrilateral PQRS are perpendicular if and only if its sides
a, b, c, d satisfy the relationship a2 + c2 = b2 + d2. ((a, c) and (b, d) are pairs of opposite sides.)

Proof. (To follow the steps of the proof, please draw an arbitrary convex quadrilateral PQRS with the
respective lengths of SR, RQ, QP and PS given by a, b, c and d.) Let d1 and d2 intersect at I, and let

∠PIQ = θ , |IP | = t , |IQ| = z , |IR| = y , |IS| = x .

The Law of Cosines applied to triangles PQI, QRI, RSI and SPI yields

a2 = x2 + y2 − 2xy cos θ

c2 = z2 + t2 − 2zt cos θ

b2 = y2 + z2 + 2yz cos θ

d2 = x2 + t2 + 2xt cos θ .

As a2 + c2 = b2 + d2 is equivalent to (xy + zt + yz + xt) cos θ = 0, or cos θ = 0, the result follows. ♠

Let us return to the problem. Consider (in figure 1) the quadrilateral CO1OO2. We already know from
the foregoing that

• CD passes through O ⇔ CO ⊥ O1O2;
• CO ⊥ O1O2 ⇔ O1C

2 + OO2
2 = O2C

2 + OO2
1;

• AN1 = BM1 ⇔ SAB passes through the midpoint of MN .

So to complete the solution, it is necessary to prove that

O1C
2 + OO2

2 = O2C
2 + OO2

1 ⇐⇒ AN1 = BM1 .

From the Law of Cosines,

OO2
1 = O1C

2 + OC2 − 2O1C ·OC · cos ∠O1CO

and
OO2

2 = O2C
2 + OC2 − 2O2C ·OC · cos ∠O2CO
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from which

O1C
2 + OO2

2 = O2C
2 + OO2

1 − 2OC · (O2C cos ∠O2CO)−O1C cos ∠O1CO) .

We need to establish that (i) ∠O1CO = ∠NAB and (ii) ∠O2CO = ∠MBA. (See figure 3.) Ad (i),
∠AO1N = 2∠ACN = 2α and ∠CO1N = 2∠CAN = 2β, say, so that ∠CO1A = 2(α + β). The common
chord CA of K1 and K is right bisected by O1O, so that ∠CO1A = 2∠CO1O and ∠CO1O = α + β. On
the other hand, ∠COO1 = 1

2∠COA = ∠CBA = γ, say. Hence, ∠O1CO = 180◦ − (α + β + γ). Also,
∠ANB = α + β and ∠NAB = 180◦ − (α + β + γ) = ∠O1CO. Similarly, (ii) can be shown.

From the extended Law of Sines involving the circumradius, we have that 2R1 = AN/ sinC and 2R2 =
MB/ sinC. It follows that

O2C cos ∠O2CO −O1C cos ∠O1CO = 0

⇔ R2 · cos ∠MBA−R1 · cos ∠NAB = 0

⇔ MB cos ∠MBA = AN cos ∠NAB .

However, MB cos ∠MBA = BM1 and AN cos ∠NAB = AN1 (the lengths of the projections on AB). The
result now follows, that CD passes through O if and only if SAB passes through the midpoint of MN .

239. Find all natural numbers n for which the diophantine equation

(x + y + z)2 = nxyz

has positive integer solutions x, y, z.

Solution. Let (n;x, y, z) = (n;u, v, w) be a solution of the equation. Then the quadratic equation

t2 + (2u + 2v − nuv)t + (u + v)2 = 0

has two solutions, w and a second one w′ for which ww′ = (u + v)2 > 0 (product of the roots). Since
w + w′ = −(2u + 2v − nuv), an integer, w′ must be a positive integer, and so (n;x, y, z) = (n;u, v, w′) is a
solution of the equation. If w > (u+v), then w′ < (u+v). It follows that, if there is a solution, we can repeat
the process long enough using any two of the three variables as fixed to always find solutions (n;x, y, z) of
the equation for which z ≤ x + y, y ≤ x + z and x ≤ x + y. So we impose this additional restriction in our
search. Wolog, we can also suppose that 1 ≤ x ≤ y ≤ z.

Suppose x = 1. Since z ≤ x+y = 1+y, (x, y, z) = (1, r, r) or (1, r, r+1). The first leads to (2r+1)2 = nr2

or 1 = r(nr − 4r − 4), whence (n; r) = (9, 1). The second leads to 4(r + 1)2 = nr(r + 1), or 4 = (n − 4)r;
this yields (n; r) = (8; 1), (6; 2), (5; 4). Thus, the four solutions with x = 1 are

(n;x, y, z) = (5; 1, 4, 5), (6; 1, 2, 3); (8; 1, 1, 2); (9; 1, 1, 1) .

Suppose x ≥ 2. Then

nxyz = (x + y + z)(x + y + z) ≤ (z + z + z)(x + y + x + y) = 6z(x + y)

so that nxy ≤ 6(x + y). Rearranging the terms and adding 36 to both sides yields

(nx− 6)(ny − 6) ≤ 36 .

Since 2 ≤ x ≤ y, we find that (2n − 6)(2n − 6) ≤ 36 so that 0 ≤ n ≤ 6. Checking turns up the additional
solutions

(n;x, y, z) = (1; 9, 9, 9), (2; 4, 4, 8); (3; 3, 3, 3); (4; 2, 2, 4) .

Thus, the only natural numbers n for which a solution exists are 1, 2, 3, 4, 5, 6, 8, 9.
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240. In a competition, 8 judges rate each contestant “yes” or “no”. After the competition, it turned out,
that for any two contestants, two judges marked the first one by “yes” and the second one also by “yes”;
two judges have marked the first one by “yes” and the second one by “no”; two judges have marked
the first one by “no” and the second one by “yes”; and, finally, two judges have marked the first one by
“no” and the second one by “no”. What is the greatest number of contestants?

Solution. Let n be the number of contestants. Then, the marks of the judges for each of them can be
recorded in a column of eight zeros or ones, as follows: there is a 1 on the ith position of the number if the
ith judge has marked this contestant by “yes” and there is a 0 in this position if the ith judge has marked
this contestant by “no”. This way, the information about the marks of the contestants will be recorded in
an n × 8 table. Now, the given condition implies that the 2 × 8 table formed by any two columns of the
above table has exactly two rows of each of 00, 01, 10, 11. Denote this property by (∗). We will now show
that eight columns with any pair having this property do not exist.

Suppose the contrary, and consider a table with eight columns. Interchanging 1 and 0 in any column
does not change the property (∗), so, wolog, we can assume that the first row consists solely of 0s. Let there
be ai 0s in the ith row. Then

∑8
i=1 ai = 8 × 4 = 32 and

∑8
i=2 ai = 32 − 8 = 24. Next, we will count the

number of pairs of two 0s that can appear in the lines of the table in two different ways.

(i) In the ith row, there are ai 0s. We can choose two of them in
(
ai

2

)
ways, so the number of possible

pairs in all rows is
∑8

i=1

(
ai

2

)
.

(ii) There are 8 columns. We can choose two of them in
(
8
2

)
= 28 ways. In each selection, there are

exactly two rows with 00, so that all the ways to get combinations of two 0s is 2× 28 = 56. Thus,

8∑
i=1

(
ai

2

)
= 56 .

We have that
8∑

i=1

(
ai

2

)
=

a1(a1 − 1)
2

+
8∑

i=2

ai(ai − 1)
2

= 28− 1
2

8∑
i=2

ai +
1
2

8∑
i=2

a2
i = 28− 12 +

1
2

8∑
i=2

a2
i ,

from which
∑8

i=2 a2
i = 2(56−28+12) = 80. From the ineqaulity of the root mean square and the arithmetic

mean, we have that
a2
2 + · · ·+ a2

8

7
≥

(
a2 + · · ·+ a8

7

)2

=
576
49

.

whence 80 =
∑8

i=2 a2
i ≥ 576/7 > 82, which is false. Therefore, we must conclude that there cannot be eight

columns with condition (∗). However, we can realize this condition with a table of seven columns:

0 0 0 0 0 0 0
0 1 1 1 1 0 0
0 1 1 0 0 1 1
0 0 0 1 1 1 1
1 0 1 0 1 0 1
1 0 1 1 0 1 0
1 1 0 0 1 1 0
1 1 0 1 0 0 1

Thanks to Emil Kolev, Sofia, Bulgaria for this problem.

241. Determine sec 40◦ + sec 80◦ + sec 160◦.
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Solution 1. The values 40◦, 80◦ and 160◦ all satisfy cos 3θ = −1/2, or 8 cos3 θ − 6 cos θ + 1 = 0. Thus,
cos 40◦. cos 80◦ and cos 160◦ are the roots of the cubic equation 8x3 − 6x + 1 = 0, so that their reciprocals
sec 40◦, sec 80◦ and sec 160◦ are the roots of the cubic equation x3 − 6x2 + 8 = 0. The sum of the roots of
this cubic is

sec 40◦ + sec 80◦ + sec 160◦ = 6 .

Solution 2. Let z = cos 40◦+ i sin 40◦. Then z9 = 1. In fact, since z9−1 = (z−1)(z2 +z+1)(z6 +z3 +1)
and the first two factors fail to vanish, z6+z3+1 = 0. Also 1+z+z2+ · · ·+z8 = (1+z+z2)(1+z3+z6) = 0.
Observe that cos 40◦ = 1

2 (z + 1
z ), cos 80◦ = 1

2 (z2 + 1
z2 ) and cos 160◦ = 1

2 (z4 + 1
z4 ), so that the given sum is

equal to

2
[

z

1 + z2
+

z2

1 + z4
+

z4

1 + z8

]
= 2

[
z

1 + z2
+

z2

1 + z4
+

z5

1 + z

]
= 2

[
z(1 + z + z4 + z5) + z2(1 + z + z2 + z3) + z5(1 + z2 + z4 + z6)

(1 + z)(1 + z2)(1 + z4)

]
= 2

[
z7 + z6 + 3z5 + z4 + z3 + 3z2 + z + 1

(1 + z)(1 + z2)(1 + z4)

]
= 2

[
(z + 1)(z6 + z3 + 1) + 3z2(z3 + 1)

(1 + z)(1 + z2)(1 + z4)

]
= 2

[
0− 3z8

1 + z + z2 + z3 + z4 + z5 + z6 + z7

]
= 2

[
−3z8

−z8

]
= 6 .

Solution 3. [T. Liu]

sec 40◦ + sec 80◦ + sec 160◦ =
cos 40◦ + cos 80◦

cos 40◦ cos 80◦
+

1
cos 160◦

=
2 cos 60◦ cos 20◦

cos 40◦ cos 80◦
+

1
cos 160◦

=
cos 20◦ cos 160◦ + cos 40◦ cos 80◦

cos 40◦ cos 80◦ cos 160◦

=
cos 180◦ + cos 140◦ + cos 120◦ + cos 40◦

cos 40◦(cos 240◦ + cos 80◦)

=
−1− 1/2

(1/2)(− cos 40◦ + cos 120◦ + cos 40◦)
=
−3/2
−1/4

= 6 .

Solution 4. Let x = cos 40◦, y = cos 80◦ and z = cos 160◦. Then

x + y + z = 2 cos 60◦ cos 20◦ − cos 20◦ = 0

and

xy + yz + zx =
1
2
[cos 120◦ + cos 140◦ + cos 240◦ + cos 80◦ + cos 200◦ + cos 120◦]

=
1
2

[
− 3

2
+ x + y + z

]
= −3

4
.

Now
8 sin 40◦ cos 40◦ cos 80◦ cos 160◦ = 4 sin 80◦ cos 80◦ cos 160◦

= 2 sin 160◦ cos 160◦ = sin 320◦ = − sin 40◦

so that xyz = −1/8. Then the sum of the problem is equal to (xy + yz + zx)/(xyz) = 6.
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242. Let ABC be a triangle with sides of length a, b, c oppposite respective angles A, B, C. What is the
radius of the circle that passes through the points A, B and the incentre of triangle ABC when angle
C is equal to (a) 90◦; (b) 120◦; (c) 60◦. (With thanks to Jean Turgeon, Université de Montréal.)

Solution. ∠AIB = 180◦− 1
2 (∠BAC +∠ABC) = 90◦+ 1

2∠C, an obtuse angle. Hence, the side AB of the
circle through A, I,B subtends an angle of 180◦−∠C at the centre of the circle, so that its radius has length
c/(2 sin(90◦ − C/2)) = c/(2 cos C/2). The radius is equal to c/

√
2, c and c/

√
3 when ∠C = 90◦, 120◦, 60◦

respectively.

Comment. a diameter of the circumcircle of ABI is the line joining I to the centre of the escribed circle
on side AB.

243. The inscribed circle, with centre I, of the triangle ABC touches the sides BC, CA and AB at the
respective points D, E and F . The line through A parallel to BC meets DE and DF produced at
the respective points M and N . The midpoints of DM and DN are P and Q respectively. Prove that
A,E, F, I, P, Q lie on a common circle.

Solution 1. Since AF ⊥ FI and AE ⊥ EI, AEIF is concyclic. Since ∆ANF ∼ ∆BDF and BD = BF ,
then AF = AN , Similarly, AE = AM , and so A is the midpoint of NM . Thus, AP‖ND and so

∠APE = ∠APM = ∠NDM = ∠FDE =
1
2
∠FIE = ∠AIE

and AEPI is concyclic. Similarly AFQI is concyclic. Thus P,Q, I all lie on the circle (with diameter AI)
through A, E and F .

Solution 2. [T. Yue] Let AQ produced meet CB at R. Then AQ = QR and NQ = QD, so that RD =
AN = AE =⇒ CR = CD + DR = CE + AE = CA. Therefore ∆CAR is isosceles with median CQ. Hence
CQ ⊥ AR and Q lies on the angle bisector of ∠ACR. Thus, I, Q, C are collinear with ∠IQA = ∠IFA = 90◦.
Hence AFQIE is concyclic. Also AFPIE is conclyclic and the result follows.

Solution 3. Recall that the nine-point circle of a triangle is that circle that contains the midpoints of the
sides, the pedal points (feet of altitudes) and the midpoints of the segments joining the orthocentre to the
vertices. We show that the six points in question lie on the nine-point circle of triangle MND; indeed, that
A,P, Q are the midpoints of the sides, F,E are pedal points and I is the midpoint of the segment joining
the orthocentre and D.

ID ⊥ AM , AF ⊥ IF , AF = AM , FI = ID and ∠FAM = 180◦ − ∠NAF = 180◦ − ∠FBD = ∠FID.
Hence ∆FAM ∼ ∆FID and we can transform ∆FAM to ∆FID by a composite of a rotation about F
through 90◦ and a dilation with factor |IF |/|FA|. Hence MF ⊥ ND and so F is a pedal point of ∆DMN .
Similarly, E is a pedal point. [An alternative argument can be had by noting that A,M,F, E lie on a circle
with centre A and diameter NM , so that right angles are subtended at E and F by NM .]

Produce DI to meet the incircle again at H. Since ∠DFH = 90◦, H lies on FM . Similarly, H lies on
EN , so that H is the orthocentre of ∆AMN , and I is the midpoint of DH. The result follows.

244. Let x0 = 4, x1 = x2 = 0, x3 = 3, and, for n ≥ 4, xn+4 = xn+1 + xn. Prove that, for each prime p, xp is
a multiple of p.

Solution. The recursion is satisfied by the sequences whose nth terms are any of an, bn, cn, dn, where
a, b, c, d are the roots of the quartic equation t4 − t− 1 = 0, and so it is satisfied by un = an + bn + cn + dn.
Observe that u0 = 4, u1 = a + b + c + d = 0 (the sum of the roots), u2 = a2 + b2 + c2 + d2 = (a + b + c +
d)2 − 2(ab + ac + ad + bc + bd + cd) = 0− 0 = 0 and

u3 = (a3 + b3 + c3 + d3)

= (a + b + c + d)3 − 3(a + b + c + d)(ab + ac + ad + bc + bd + cd) + 3(abc + abd + acd + bcd)
= 0− 0 + 3 = 3 .
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[To check the last, begin with the easier observation that

(x3 + y3 + z3)− (x + y + z)3 + 3(x + y + z)(xy + yz + zx)− 3xyz ≡ 0

and note that

(a3 + b3 + c3 + d3)− (a + b + c + d)3 + 3(a + b + c + d)(ab + ac + ad + bc + bd + cd)− 3(abc + abd + acd + bcd)

is a polynomial of degree 3 in four variables that vanishes when any of a, b, c, dequals 0; by the factor theorem,
it is divisible by abcd. This can happen only if it is identically 0.] Thus, the sequences {xn} and {un} agree
for n = 0, 1, 2, 3 and so agree at every index n.

Let p be a prime. Then

0 = (a + b + c + d)p = ap + bp + cp + dp + pf(a, b, c, d)

from the multinomial expansion, where f(a, b, c, d) is a symmetric polynomial that can be written as a
polynomial in the symmetric functions s1 = a+b+c+d, s2 = ab+ac+ad+bc+bd+cd, s3 = abc+abd+acd+bcd,
s4 = abcd, each of which is an integer. Thus, ap + bp + cp + dp = −pf(a, b, c, d), where f(a, b, c, d) is an
integer and the result follows.

245. Determine all pairs (m,n) of positive integers with m ≤ n for which an m × n rectangle can be tiled
with congruent pieces formed by removing a 1× 1 square from a 2× 2 square.

Solution 1. The tiling can be done for all pairs (m,n) of positive integers for which m ≥ 2, n ≥ 2, and
either (1) (m,n) = (2, 3k), (3k, 2), (3, 2k), (2k, 3) for some positive integer k, or (2) m ≥ 4, n ≥ 4, provided
mn is a multiple of 3.

Since each tile is made up of three unit squares, the area of each rectangle must be a multiple of 3, so
that 3|mn. The tiling is impossible if either m or n is equal to 1. If m or n equals 2, then the other variable
must be a multiple of 3. Suppose, say, the number of rows m equals 3, and let n = 2k + 1. Colour the k + 1
odd unit squares (counting from the end) in each of the top and bottom rows. It is impossible for a tile to
cover more than one coloured square, so that at least 2(k + 1) tiles are necessary. But since the area of the
rectangle is 3(2k + 1), we do not have room for this many tiles. Thus, if m or n equals 3, the other variable
must be even.

We show that the tiling is possible in each of the cases cited. Note that two tiles can be combined to
form a 3 × 2 or 2 × 3 rectangle, so any rectangle that has one dimension divisible by 3 and the other even
can be tiled. In particular, 6× 3, 6× 2, 2× 6, 3× 6 rectangles can be tiled, and by combining these, we can
tile any rectangle one of whose dimensions is a multiple of 6 and the other dimension exceeds 1.

Suppose that m = 6k + 3 where k ≥ 1. If we can tile a 9× n rectangle, then by appending tiled 6× n
rectangles, we can tile a (6k + 3) × n rectangle. A 9 × n rectangle can be tiled when n is even; a 9 × 3
rectangle cannot be tiled, but a 9× 5 rectangle can be tiled (exercise: do it!). It can be deduced that a 9×n
rectangle can be tiled when n = 2 or n ≥ 4. By symmetry, we see that an m × (6k + 3) rectangle can be
tiled whenever m ≥ 4 and k ≥ 1.

246. Let p(n) be the number of partitions of the positive integer n, and let q(n) denote the number of
finite sets {u1, u2, u3, · · · , uk} of positive integers that satisfy u1 > u2 > u3 > · · · > uk such that
n = u1 + u3 + u5 + · · · (the sum of the ones with odd indices). Prove that p(n) = q(n) for each positive
integer n.

For example, q(6) counts the sets {6}, {6, 5}, {6, 4}, {6, 3}, {6, 2}, {6, 1}, {5, 4, 1}, {5, 3, 1}, {5, 2, 1},
{4, 3, 2}, {4, 3, 2, 1}.

Solution. A partition of the natural number n can be illustrated by a Ferrers diagram, in which there
are several rows of symbols, left justified, each row containing no more symbols than the row above it and
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the numbers of symbols in each row giving a number in the partition, ordered from largest to smallest. For
example, if n = 15, the partition 15 = 7 + 4 + 3 + 1 is represented by the diagram

x x x x x x x
x x x x
x x x
x

There is a one-one correspondence between partitions of n and diagrams of n symbols in which each row
contains no more symbols than its predecessor. We can also get n symbols by counting the symbols in each
gnomon (indicated by a, b, c in the diagram below), so that in the present example 15 = 10 + 4 + 1.

a a a a a a a
a b b b
a b c
a

The difficulty is that, if we specify the lengths of the gnomons, there are several possibilities for placing
the gnomons to give us a Ferrars diagram. So we need a way of specifying exactly which element of the
gnomon is at the turning point. One way to do this is to get a measure of the number of vertical elements
in the gnomon, which, we achieve by counting for each gnomon after the first, the elements in the vertical
shaft along with the elements above and to the right in the horizontal shaft of the previous gnomon; this is
indicated by the symbols y and z in the diagram:

x y y y y y y
x y z z
x y z
x

So we insert in the sum 10 + 4 + 1 the lengths of these hybrid gnomons to get 10 + 8 + 4 + 3 + 1 where the
even terms count the number of y’s and z’s. On the other hand, given such a sum, we can reconstruct the
diagram uniquely.

In the general situation, given a partition of n, construct its Ferrars diagram. To construct a sum
counted by q(n), the first term counts the number of symbols in the upper left gnomon, the second the
number of symbols in the gnomon formed by the second column and the top row to the right of the first
column, the third the number of symbols in the gnomon formed by the second column below the first row
and the second row to the right of the first column, and so on. On the other hand, given a sum counted
by q(n), we can construct a Ferrars diagram as follows. If the last term is an evenly indexed term, make a
horizontal row of that number of symbols; if it is oddly indexed, make a vertical column of that number of
symbols to form the lowest rightmost gnomon of the diagram. Now work along the sum from right to left.
At each evenly indexed summand, to get the gnomon for the next term to the left, extend the top row by
one symbol to the left and make it part of a gnomon with the number of terms of the next summand to
the left; at each oddly indexed summand, to get the gnomon for the next term to the left, extend the lect
column by one symbol up and make it part of a gnomon with the number of terms of the next summand
to the left. In this way, we obtain a one-one correspondence between partitions counted by p(n) and finite
sequences counted by q(n).

In the example of the problem, we get the correspondence [6; {6, 5}], [5 + 1; {6, 4}]; [4 + 2; {5, 4, 1}],
[4 + 1 + 1; {6, 3}]; [3 + 3; {4, 3, 2}], [3 + 2 + 1; {5, 3, 1}]; [3 + 1 + 1 + 1; {6, 2}]; [2 + 2 + 2; {4, 3, 2}]; [2 + 2 +
1 + 1; {5, 2, 1}]; [2 + 1 + 1 + 1 + 1; {6, 1}]; [1 + 1 + 1 + 1 + 1 + 1; {6}].

247. Let ABCD be a convex quadrilateral with no pairs of parallel sides. Associate to side AB a point T
as follows. Draw lines through A and B parallel to the opposite side CD. Let these lines meet CB
produced at B′ and DA produced at A′, and let T be the intersection of AB and B′A′. Let U, V,W be
points similarly constructed with respect to sides BC, CD, DA, respectively. Prove that TUV W is a
parallelogram.
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Solution. [T. Yin] Let AB and CD produced intersect at Y . Suppose A′ and B′ are defined as in the
problem. Let the line through C parallel to AD meet AB produced at B′′ and the lines through B parallel
to AD meet CD produced at C ′, so that U is the intersection of BC and B′′C ′. Let P be the intersection
of AB′ and BC ′ and Q the intersection of A′B and B′′C. Then A′B‖AB′‖CD and AD‖BC ′‖B′′C, so that
APBA′ and CQBC ′ are parallelograms. Hence

BT : TA = A′B : AB′ = AP : AB′ = Y C ′ : Y C

and
BU : UC = BC ′ : B′′C = Y B : Y B′ .

Since also Y B : Y B′′ = Y C ′ : Y C, BT : TA = BU : UC and TU‖AC. Similarly, V W‖AC, TU‖BD,
UW‖BD and so TUV W is a parallelogram.

248. Find all real solutions to the equation√
x + 3− 4

√
x− 1 +

√
x + 8− 6

√
x− 1 = 1 .

Solution 1. For the equation to be valid over the reals, we require that x ≥ 1. Suppose that y2 = x− 1
and y ≥ 0. Then the equation becomes

|y − 2|+ |y − 3| = 1 .

When 1 ≤ x ≤ 5, we have that 0 ≤ y ≤ 2 and the equation becomes (2 − y) + (3 − y) = 1 or y = 2, x = 5.
When 5 ≤ x ≤ 10, we have that 2 ≤ y ≤ 3 and the equation becomes an identity (y−2)+(3− y) = 1. Thus,
it holds for all x on the closed interval [5, 10]. Finally, when 10 ≤ x, we have that 3 ≤ y and the equation
becomes (y − 2) + (y − 3) = 1 or y = 3, x = 10. Thus, the complete set of solutions of the equation is given
by 5 ≤ x ≤ 10. All these solutions check out.

Solution 2. [Z. Wu] For a solution to exist, we require that x ≥ 1 and that both 0 ≤ x+3−4
√

x− 1 ≤ 1
and 0 ≤ x + 8− 6

√
x− 1 ≤ 1. These two conditions lead to (x + 2)2 ≤ 16(x− 1) and (x + 7)2 ≤ 36(x− 1),

which in turn leads to
(x− 2)(x− 10) = (x2 + 4x + 4)− (16x− 16) ≤ 0

and
(x− 5)(x− 17) = (x2 + 14x + 49)− (36x− 36) ≤ 0 .

These conditions are both satisfied only if 5 ≤ x ≤ 10. (Thus, 5 ≤ x ≤ 10 is a necessary condition for a
solution.)

On the other hand, 5 ≤ x ≤ 10 implies that 2 ≤
√

x− 1 ≤ 3, so that (as in Solution 1) we find that the
equation is equivalent to (

√
x− 1 − 2) + (3 −

√
x− 1) = 1, which is an identity. Thus, the equation holds

exactly when 5 ≤ x ≤ 10.

Comment. Your first observation should be that, in order for the equation to make sense, we require
that x ≥ 1. It is important not just to write down a lot of algebraic equations, but to indicate the logical
relationships between them; which equations imply which other equations? which pairs of equations are
equivalent? This is especially desirable when surd equations are involved, where the operations that lead
from one equation to another are not logically reversible and extraneous solutions might be introduced.

249. The non-isosceles right triangle ABC has ∠CAB = 90◦. Its inscribed circle with centre T touches the
sides AB and AC at U and V respectively. The tangent through A of the circumscribed circle of triangle
ABC meets UV in S. Prove that:

(a) ST‖BC;
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(b) |d1−d2| = r , where r is the radius of the inscribed circle, and d1 and d2 are the respective distances
from S to AC and AB.

Solution. Wolog, we may assume that AB < AC so that S and C are on opposite sides of AB. Ad
(a), ∠SV T = ∠SV A = 45◦, AV = V T and SV is common, so that triangles AV S and TV S are congruent.
Hence ∠SAV = ∠STV =⇒ ∠STU = ∠SAU = ∠ACB (by the tangent-chord property). Since TU‖AC, it
follows that CB‖ST .

Ad (b), let P and Q be the respective feet of the perpendiculars from S to AB and AC. Note that
SQAP is a rectangle so that ∠PUS = ∠PSU = 45◦ and so PU = PS. Then |QS|−|PS| = |AP |−|PU | = r.

250. In a convex polygon P, some diagonals have been drawn so that no two have an intersection in the
interior of P. Show that there exists at least two vertices of P, neither of which is an enpoint of any of
these diagonals.

Solution 1. If no diagonal has been drawn, the result is clear. Suppose that at least one diagonal has
been drawn. Let d be a diagonal that has, on one of its sides, the fewest vertices of the polygon. There is at
least one such vertex. Then on that side, no further diagonal is drawn, since it cannot cross d and cannot
have fewer vertices between its endpoints than d. Hence there is at least one vertex on that side from which
no diagonal is drawn.

On the other side of d, select a diagonal g which has the smallest number of vertices between its endpoints
on the side opposite to the side of d. By an argument similar to the above, there is at least one vertex on
the side of g opposite to d from which no diagonal has been drawn.

Solution 2. [S. King] The result is vacuously true for triangles. Suppose that the polygon has at least
four sides. Suppose that a (possibly void) collection of diagonals as specified in the problem is given. We
continue adding diagonals one at a time such that each new diagonal does not cross any previous one in the
interior of the polygon. At each stage, the polygon P is partitioned into polygons with fewer sides all of
whose vertices are vertices of the polygon P. As long as any of the subpolygons has more than three sides,
we can add a new diagonal. However, the process will eventually terminate with a triangulation of P, i.e.,
a partitioning of P into n − 2 triangles all of whose vertices are vertices of P. (Exercise. Explain why the
number of triangles is n− 2. One way to do this is to note that the sum of all the angles of the triangles is
equal to the sum of the angles in the polygon.)

Each triangle must have at most two sides in common with the given polygon. Since there are n sides
and n−2 triangles, at least two triangles have two sides in common with P. In each case, the vertex common
to the two sides has no diagonal emanating from it (neither an original diagonal nor an added diagonal),
and the result follows.

Comment. Many solvers failed to appreciate that the collection of diagonals is given, and that the
problem is to establish the desired property no matter what the collection is. A lot of arguments had the
students constructing diagonals without indicating how the ones constructed might have anything to do with
a given set; in effect, they were giving a particular situation in which the result obtained. Several solvers
tried induction, using one diagonal to split P into two, but did not handle well the possibility that the loose
vertices in the subpolygons might be at the ends of the subdividing diagonal. One way around this is to
make the result stronger, and show that one can find two non-adjacent vertices that are not the endpoints
of diagonals. This is certainly true for quadrilaterals, and using this an induction hupothesis yielded a
straightforward argument for polygons of higher order.

251. Prove that there are infinitely many positive integers n for which the numbers {1, 2, 3, · · · , 3n} can be
arranged in a rectangular array with three rows and n columns for which (a) each row has the same
sum, a multiple of 6, and (b) each column has the same sum, a multiple of 6.

Solution 1. The sum of all the numbers in the array is 3n(3n + 1)/2, so that each column sum must be
3(3n + 1)/2. Since this is divisible by 6, 3(3n + 1) must be a multiple of 12, and so 3n + 1 is divisible by 4
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and n ≡ 1 (mod 4). Since each row sum, n(3n + 1)/2 is divisible by 6, n must be divisible by 3. Putting
this together, we conclude that n = 12k + 9 for some value of k.

We now show that, for each n of this form, we can actually construct an array with the desired property.
Starting with the magic square, we derive the following array for n = 9:

8 1 6 17 10 15 26 19 24
21 23 25 3 5 7 12 14 16
13 18 11 22 27 20 4 9 2

We generalize this for n = 12k +9, for k a nonnegative integer. Suppose that an array is possible. Then
the sum of all the elements in the array is (36k+27)(18k+14) = 18(4k+3)(9k+7). The sum of the elements
in each column is 6(9k + 7) = 54k + 42 and the sum in each row is 6(4k + 3)(9k + 7) = (4k + 3)(54k + 42).
If we can achieve this with distinct entries, then we have constructed the array.

We build the array by juxtaposing horizontally 4k + 3 square 3× 3 blocks of the form:

8 + 9a 1 + 9a 6 + 9a
3 + 9b 5 + 9b 7 + 9b
4 + 9c 9 + 9c 2 + 9c

where we make 4k + 3 distinct choices of each of a, b, c to ensure that no number is repeated in any row (it
is not possible for any repetition to occur down a column). To achieve the column sum, we require that
15 + 9(a + b + c) = 54k + 42, or a + b + c = 6k + 3 = 3(2k + 1). To achieve the row sum, we require that

15(4k + 3) + 27
∑

a = 15(4k + 3) + 27
∑

b = 15(4k + 3) + 27
∑

c

= (4k + 3)(54k + 42)

so that ∑
a =

∑
b =

∑
c = (4k + 3)(2k + 1) = 0 + 1 + · · ·+ (4k + 2) ,

where each sum is over 4k+3 distinct elements. It is convenient to let the sets of a’s, b’s, and c’s each consist
of the numbers 0, 1, 2, · · · , 4k + 2 in some order. In the ith 3× 3 block, let 0 ≤ a, b, c,≤ 4k + 2 and

a = i− 1

b ≡ (i− 1) + 2(k + 1) = 2k + i + 1 (mod 4k + 2)

c = (6k + 3)− (a + b) ≡ 4k + 3− 2i (mod 4k + 3) .

for 1 ≤ i ≤ 4k+3. It is straightforward to verify that the a’s, the b’s and the c’s each run through a complete
set of residues (mod 4k + 3), and we have arranged that a + b + c = 6k + 3. If 1 ≤ i ≤ 2k + 1, then 2k + 2 ≤
b = 2k + i+1 ≤ 4k +2 and 2k +2 ≤ a+ b = 2(k + i) ≤ 6k +2, so that 1 ≤ c ≤ 4k +1. If 2k +2 ≤ i ≤ 4k +3,
then 0 ≤ b = (2k + i + 1) − (4k + 3) = i − 2k − 2 ≤ 2k + 1 and 2k + 1 ≤ a + b = 2i − 2k − 3 ≤ 6k + 3, so
that 0 ≤ c ≤ 4k + 2. With this choice of the variables a, b, c we can construct the array as desired.

For example, when n = 45, k = 3, there are 15 blocks and the choice of a, b, c for these blocks can be
read along the rows of

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
8 9 10 11 12 13 14 0 1 2 3 4 5 6 7
13 11 9 7 5 3 1 14 12 10 8 6 4 2 0

It is left as an exercise for the reader to construct the 3× 45 array.

Solution 2. [Y. Zhao] We can form the 3× 9 array:

4 9 2 13 18 11 22 27 20
12 14 16 21 23 25 3 5 7
26 19 24 8 1 6 17 10 15
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Suppose, as an induction hypothesis, we can build a 3× n array for some positive integer n. Duplicate this
array five times and put them side by side in a row. Partition the 3× 5n array into fifteen 1× n subarrays,
and to the elements of each of the fifteen subarrays add a constant number as indicated by the positions in
the following 3× 5 table:

+0 +3b +6n +9n +12n
+6n +9n +12n +0 +3
+12n +6n +0 +9n +3n

The row sum of the numbers added is 30n and the column sum is 18n, so the 3 × 5n array preserves the
divisibility by 6 properties of the 3×n array. Therefore, we can see by induction that an array is constructibel
whenever n = 9× 5k for 0 ≤ k.

Solution 3. [J. Zhao] For the time being, neglect the conditions involving divisibility by 6, and focus
only on the condition that the numbers 1, 2, · · · , 3n be used and that the row sums and the column sums be
each the same. Then, when n = 3, a magic square will serve.

Suppose that, for some k ≥ 1, we have found a suitable 3× 3k matrix M . Let A be the 3× 3k+1 matrix
obtained by placing three copies of M side by side and B the 3 × 3k+1 matrix determined by placing side
by side the 3× 3k matrices B1, B2, B3 where each column of B1 is (the transpose of) (0, 1, 2), of B2 is (1,
2, 0), and of B3 is (2, 0, 1). Each of A and B has constant row sums and constant column sums.

Let N = A + 3k+1B. Then N not only has constant row and column sums, but consists of the numbers
1, 2, · · · , 3k+2 (why?). The row sums of M are each (1/6)(3k+1)(3k+1 + 1), so that the row sums of N are
each

3× (1/6)(3k+1)(3k+1 + 1) + 3k+1(3k) + 3k+1(2× 3k) = (1/6)[3k+2(3k+1 + 1)] + (32k+1 × 3)

= (1/6)(3k+2)(3k+1 + 1 + 6× 3k) = (1/6)(3k+2)(3k+2 + 1) .

The column sums of M are each (3/2)(3k+1 + 1) and so the column sums of N are each

(3/2)(3k+1 + 1) + 3k+1 + 2× 3k+1 = (1/2)(3k+2 + 3 + 2× 3k+2) = (3/2)(3k+2 + 1) .

We now require that each of (1/6)(3k+1)(3k+1 +1) and (3/2)(3k+1 +1) be divisible by 6. This will occur
exactly when 3k+1 + 1 ≡ 0 (mod 4), so that k must be even. Thus, we can obtain an array as desired when
n = 9m for some positive integer m. (Note that 9m ≡ 9 (mod 12).)

252. Suppose that a and b are the roots of the quadratic x2 + px + 1 and that c and d are the roots of the
quadratic x2 + qx + 1. Determine (a− c)(b− c)(a + d)(b + d) as a function of p and q.

Solution 1. From the theory of the quadratic, we have that a + b = −p, c + d = −q and ab = cd = 1.
Then

(a− c)(b− c)(a + d)(b + d) = (a− c)(b + d)(b− c)(a + d)
= (ab− cd + ad− bc)(ba− cd + bd− ca)

= (ad− bc)(bd− ca) = abd2 − a2cd− b2cd + abc2

= d2 − a2 − b2 + c2 = [(c + d)2 − 2cd]− [(a + b)2 − 2ab]

= (q2 − 2)− (p2 − 2) = q2 − p2 .

Solution 2. Using a + b = −p, c + d = −q and ab = cd = 1, we obtain that

(a− c)(b− c)(a + d)(b + d) = [ab− (a + b)c + c2][ab + (a + b)d + d2]

= (1 + pc + c2)(1− pd + d2) = (2 + c2 + d2)− p2

= (c + d)2 − p2 = q2 − p2 .
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253. Let n be a positive integer and let θ = π/(2n + 1). Prove that cot2 θ, cot2 2θ, · · ·, cot2 nθ are the
solutions of the equation(

2n + 1
1

)
xn −

(
2n + 1

3

)
xn−1 +

(
2n + 1

5

)
xn−2 − · · · = 0 .

Solution 1. From de Moivre’s Theorem that

cos mθ + i sinmθ = (cos θ + i sin θ)m ,

we obtain from a comparison of imaginary parts that

sinmθ =
(

m

1

)
cosm−1 θ sin θ −

(
m

3

)
cosm−3 sin3 θ + · · · ,

for each positive integer m. Hence

sin(2n + 1)θ = sin2n+1 θ

[(
2n + 1

1

)
cot2n θ −

(
2n + 1

3

)
cot2n−2 θ + · · ·

]
.

When θ = (kπ)/(2n + 1) for 1 ≤ k ≤ n, sin(2n + 1)θ = 0 while sin θ 6= 0. The desired result follows.

Solution 2. [Y. Zhao] Observe that, for each complex a,

1
2
[(a + 1)2n+1 − (a− 1)2n+1] =

(
2n + 1

1

)
a2n +

(
2n + 1

3

)
a2n−2 +

(
2n + 1

5

)
a2n−4 + · · · .

Suppose that a = i cot kθ with θ = π/(2n + 1) and 1 ≤ k ≤ n. Note that sin kθ 6= 0. Then(
2n + 1

1

)
(− cot2 kθ)n +

(
2n + 1

3

)
(− cot2 kθ)n−1 + · · · = 1

2
[(i cot kθ + 1)2n+1 − (i cot θ − 1)2n+1]

=
1
2

(
i

sin kθ

)2n+1

[(cos kθ − i sin kθ)2n+1 − (cos kθ + i sin kθ)2n+1]

=
(

i

sin kθ

)2n+1

[− sin(2n + 1)kθ] =
(

i

sin kθ

)2n+1

[− sin kπ] = 0 ,

and the result follows.

254. Determine the set of all triples (x, y, z) of integers with 1 ≤ x, y, z ≤ 1000 for which x2 + y2 + z2 is a
multiple of xyz.

Solution. Suppose that x2 + y2 + z2 = kxyz, for a positive integer k. It can be checked that if the
equation is satisfied by (x, y, z) then it is also satisfied by (x, y, kxy − z). Since z2 < x2 + y2 + z2 = kxyz,
it follows that z < kxy, If z > 1

2kxy, then kxy − z < 1
2kxy. Suppose that we start with a solution. If we

have, say z exceeding 1
2xy, then we can replace z by a new value less than 1

2xy. We can do the analogous
thing with x and y. Every such operation reduces the sum x + y + z, so it can be performed at most finitely
often, and we reach a situation where it cannot be done any more. Thus, we arrive at a solution where,
say, 1 ≤ x ≤ y ≤ z ≤ kxy/2, so that, in particular kx ≥ 2. We can also start with such a solution and go
backwards to achieve any given solution.

Since

x2 + y2 +
(

kxy

2
− z

)2

=
(

kxy

2

)2

,
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it follows that

x2 + y2 +
(

kxy

2
− y

)2

≥
(

kxy

2

)2

,

so that
3y2 ≥ x2 + 2y2 ≥ kxy2

and kx ≤ 3. Thus kx = 2 or kx = 3.

The case kx = 2 leads to x2 + (y − z)2 = 0 which has no solutions as specified. Hence kx = 3 and
k = 1 or k = 3. For these two cases, we find that the base solutions are respectively (x, y, z) = (3, 3, 3) and
(x, y, z) = (1, 1, 1).

Suppose that k = 1. Modulo 3, any square is congruent to 0 or 1. If, say, x ≡ 0 (mod 3), then
y2 + z2 ≡ 0 (mod 3); this can occur only if y and z are multiples of 3. Hence (x, y, z) = (3u, 3v, 3v) for
some integers u, v, w. But then 9u2 + 9v2 + 9w2 = 27uvw, or u2 + v2 + w2 = 3uvw. Contrarily, any solution
(u, v, w) of this equation gives rise to a solution (x, y, z) of x2 + y2 + z2 = xyz. Therefore there is a one-one
correspondence between solutions of x2 + y2 + z2 = xyz where all numbers are multiples of 3 and solutions
of x2 + y2 + z2 = 3xyz. We will obtain these solutions below.

The only other possibility is that none of x, y, z is divisible by 3. But then, x2 + y2 + z2 would be a
multiple of 3 and xyz not a multiple of 3; thus there are no solutions of this type.

Suppose that k = 3. From the above, we know that every solution arises from a solution for which
1 ≤ x ≤ y ≤ z ≤ 3xy/2 and for such a solution x = 1. Let (x, y, z) = (1, y, ty) where 1 ≤ y ≤ 3/2. Then
1 + (1 + t2)y2 = 3ty2, so that

y2 =
1

3t− 1− t2
=

1
5
4 − (t− 3

2 )2
.

The denominator is not less than 1, so that y2 ≤ 1. Hence the only solution that can generate the rest is
(x, y, z) = (1, 1, 1).

To get a handle on the situation, fix x = u and consider a sequence of solutions (x, y, z) = (u, vn−1, vn).
The solution w = vn−1 satisfies the quadratic equation

u2 + w2 + v2
n = 3uwvn

and so also does a second value w = vn+1. By the theory of the quadratic, we have that

vn+1 + vn−1 = 3uvn (1)

and
vn+1vn−1 = u2 + v2

n . (2)

If we start off with a solution (x, y, z) = (u, v0, v1), we can use either (1) or (2) to determine the sequence
{vn}. Note that, since

vn+1 − vn = vn − vn−1 + (3u− 2)vn > vn − vn−1 ,

if v1 ≥ v0, then the sequence {vn} is increasing. Note also, that the equations (1) and (2) are symmetric in
vn−1 and vn+1, so we can extend the sequence backwards as well as forwards.

Using the recursion vn+1 = 3uvn − vn−1, we get the following sequences for various values of u:

u = 1 : {vn} = {1, 1, 2, 5, 13, 34, 89, 233, 610}

u = 2 ; {vn} = {1, 1, 5, 29, 169, 985}

u = 5 ; {vn} = {194, 13, 1, 2, 29, 433}

u = 13 ; {vn} = {34, 1, 5, 194}
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u = 29 ; {vn} = {433, 5, 2, 169}

u = 34 ; {vn} = {13, 189}

and so on. This yields the following solutions with 1 ≤ x ≤ y ≤ z ≤ 1000: (x, y, z) = (1, 1, 1), (1, 1, 2),
(1, 5, 13), (1, 13, 34), (1, 34, 89), (1, 89, 233), (1, 233, 610), (2, 5, 29), (2, 29, 169), (2, 169, 985), (5, 13, 194),
(5, 29, 433).

255. Prove that there is no positive integer that, when written to base 10, is equal to its kth multiple when
its initial digit (on the left) is transferred to the right (units end), where 2 ≤ k ≤ 9 and k 6= 3.

Solution 1. Note that the number of digits remains the same after multiplication. Thus, if k ≥ 5, the
left digit of the number must be 1 and so the multiple must end in 1. This is impossible for k = 5, 6, 8. If
k = 7 or 9, then the number must have the form 10m + x where x ≤ 10n − 1. Then k(10m + x) = 10x + 1,
so that

x =
k · 10m − 1

10− k
≥ 7 · 10m − 1

3
> 2× 10m ,

an impossibility.

If k = 4, the first digit of the number cannot exceed 2, and so must be even to achieve an even product.
Thus, for some positive integers m and x ≤ 10m − 1, we must have 4(2× 10m + x) = 10x + 2, whence

x =
4× 10m − 1

3
> 10m ,

again an impossibility. Finally, if k = 2, then d ≤ 4 and 2(d ·10m +x) = 10x+d, whence d(2 ·10m−1) = 8x.
Since 2 · 10m − 1 is odd, 8 must divide d, which is impossible. The desired result follows.

Solution 2. [A. Critch] Suppose that multiplication is positive for some k 6= 3. Let the number be
d · 10m + u for a positive digit d, a positive integer m and a nonnegative integer u < 10m − 1. Then
k(d · 10m + u) = 10u + d, whence

(10m − 1)k < k · 10m − 1 ≤ d(k × 10m − 1) = (10− k)u ≤ (10− k)(10m − 1) ,

so that k < 10− k and k is equal to 2 or 4. Since k is even, d must be even. Since

10− k = d

(
k × 10m − 1

u

)
> d

k × 10m − k

10m − 1
= dk ,

d < (10/k) − 1. When k = 2, d must be 2, and we get 2(2 × 10m − 1) = 8u, or 2 × 10m − 1 = 4u, an
impossibility. When k = 4, we get d < 1.5, which is also impossible. Hence the multiplication is not possible.

Comment. When k = 3, the first digit must be 1, 2 or 3. It can be shown that 2 and 3 do not work, so
that we must have 3(10m + x) = 10x + 1 for x = (3× 10m − 1)/7. This actually gives a result when m ≡ 5
(mod 6). Indeed, when m = 5, we obtain the example 142857.

256. Find the condition that must be satisfied by y1, y2, y3, y4 in order that the following set of six simulta-
neous equations in x1, x2, x3, x4 is solvable. Where possible, find the solution.

x1 + x2 = y1y2 x1 + x3 = y1y3 x1 + x4 = y1y4

x2 + x3 = y2y3 x2 + x4 = y2y4 x3 + x4 = y3y4 .

Solution. We have than y1(y2 − y3) = x2 − x3 = y4(y2 − y3), whence (y1 − y4)(y2 − y3) = 0. Similarly,
(y1 − y2)(y3 − y4) = 0 = (y1 − y3)(y2 − y4). From this, we deduce that three of the four yi must be
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equal. Suppose, wolog, that y1 = y2 = y3 = u and y4 = v. Then the system can be solved to obtain
x1 = x2 = x3 = u2/2 and x4 = uv − (u2/2) = 1

2u(2v − u). (This includes the case u = v.)

257. Let n be a positive integer exceeding 1. Discuss the solution of the system of equations:

ax1 + x2 + · · ·+ xn = 1

x1 + ax2 + · · ·+ xn = a

· · ·

x1 + x2 + · · ·+ axi + · · ·+ xn = ai−1

· · ·

x1 + x2 + · · ·+ xi + · · ·+ axn = an−1 .

Solution 1. First, suppose that a = 1. Then all of the equations in the system become x1+x2+· · ·+xn =
1, which has infinitely many solutions; any n− 1 of the xi’s can be chosen arbitrarily and the remaining one
solved for.

Henceforth, assume that a 6= 1. Adding all of the equations leads to

(n− 1 + a)(x1 + x2 + · · ·+ xn) = 1 + a + a2 + · · ·+ an−1 =
1− an

1− a
.

If a = 1− n, then the system is viable only if an = 1. This occurs, only if a = −1 and n is a positive integer
i.e., when (n, a) = (2,−1). In this case, both equations in the system reduce to x2 − x1 = 1, and we have
infinitely many solution. Otherwise, when a = 1− n, there is no solution to the system.

When a 6= 1− n, then

x1 + x2 + · · ·+ xn =
1− an

(1− a)(n− 1 + a)
.

Taking the difference between this and the ith equation in the system leads to

(a− 1)xi = ai−1 −
(

1− an

(1− a)(n− 1 + a)

)
for each i and the system is solved.

Solution 2. As above, we dispose first of the case a = 1. Suppose that a 6= 1.Taking the difference of
adjacent equations leads to (a− 1)(xi+1− xi) = ai− ai−1, so that xi+1 = xi + ai−1 for 1 ≤ i ≤ n− 1. Hence
xi = x1 + (1 + a + · · ·+ ai−2) for 2 ≤ i ≤ n. From the first equation, we find that

(n− 1 + a)x1 + 1 + (1 + a) + (1 + a + a2) + · · ·+ · · · (1 + a + · · ·+ an−2) = 1

=⇒ (n− 1 + a)x1 +
(1− a2) + · · ·+ (1− an−1)

1− a
= 0

=⇒ (n− 1 + a)x1 +
n− 2− a2(1 + a + · · ·+ an−3)

1− a
= 0

=⇒ (n− 1 + a)x1 +
(n− 2)(1− a)− a2(1− an−2)

(1− a)2
= 0 .

Suppose that n = 1− a. Then

0 = (n− 2)(1− a)− a2(1− an−2) = −(1 + a)(1− a)− a2(1− an−2) = an−2 − 1 ,

so that a must be −1 and n = 2, The system reduces to a single equation with an infinitude of solutions. If
n 6= 1− a, then we can solve for x1 and then obtain the remaining values of the xi.
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Comment. Beware of the “easy” questions. Many solvers had only a superficial analysis which did not
consider the possibility that a denominator might vanish, and almost nobody picked up the (n, a) = (2,−1)
case. When you write up your solution, it is good to dispose of the singular cases first before you get into
the general situation.

258. The infinite sequence {an;n = 0, 1, 2, · · ·} satisfies the recursion

an+1 = a2
n + (an − 1)2

for n ≥ 0. Find all rational numbers a0 such that there are four distinct indices p, q, r, s for which
ap − aq = ar − as.

Solution. The recursion can be rewritten as

an+1 = 2a2
n − 2an + 1 ⇔ 2an+1 − 1 = (2an − 1)2 .

Let bn = 2an − 1, so that an = 1
2 (bn + 1). Then ap − aq = ar − as is equivalent to bp − bq = br − bs. Since

bn+1 = b2
n for each nonnegative integer n, we have that bn = b2n

0 . If bp − bq = br − bs, then b0 must be the
rational solution of a polynomial equation of the form,

x2p

− x2q

− x2r

+ x2s

= 0

where the left side consists of four distinct monomials. One possibility is b0 = 0. Suppose now that b0 6= 0.
Dividing by the monomial with the smallest exponent, we obtain a polynomial equation for b0 whose leading
coefficient and constant coefficients are each 1. So the numerator of b0 written in lowest terms, dividing the
constant term, must be ±1 and the denominator, dividing the leading coefficient, must also be ±1. Hence,
the only possibilities for b0 are −1, 0 and 1. These correspond to the possibilities 0, 1

2 , 1 for a0, and each of
these choices leads to a sequence for which an = a1 for n ≥ 1 and for which there are two pairs of terms
with the same difference (0).

259. Let ABC be a given triangle and let A′BC, AB′C, ABC ′ be equilateral triangles erected outwards on
the sides of triangle ABC. Let Ω be the circumcircle of A′B′C ′ and let A′′, B′′, C ′′ be the respective
intersections of Ω with the lines AA′, BB′, CC ′.

Prove that AA′, BB′, CC ′ are concurrent and that

AA′′ + BB′′ + CC ′′ = AA′ = BB′ = CC ′ .

Solution. A rotation of 60◦ about the vertex A takes triangle ACC ′ to the triangle AB′B, and so
BB′ = CC ′. Similarly, it can be shown that each of these is equal to AA′. Suppose that BB′ and CC ′

intersect in F . From the rotation, ∠BFC ′ = 60◦ = ∠BAC ′, so that AFBC ′ is concyclic.

hence ∠C ′FB = ∠C ′AB = 60◦. Also ∠AFC ′ = ∠ABC ′ = 60◦, ∠AFB′ = 60◦ and so ∠BFC =
∠C ′FB′ = 120◦. Since ∠BFC + ∠BA′C = 180◦, the quadrilateral BFCA′ is concyclic and ∠BFA′ =
∠BCA′ = 60◦. Hence ∠AFA′ = ∠AFC ′+ ∠C ′FB + ∠BFA′ = 180◦, so that A,A′ and F are collinear, and
AA′, BB′ and CC ′ intersect at F .

From Ptolemy’s Theorem, AB · C ′F = AF · BC ′ + FB · AC ′ , whence C ′F = AF + BF . Similarly,
A′F = BF + CF and C ′F = AF + BF . Indeed, AA′ = BB′ = CC ′ = AF + A′F = AF + BF + CF .

[J. Zhao] Let O be the circumcentre of triangle A′B′C ′ and let the respective midpoints of A′A′′,
B′B′′, C ′C ′′ be X, Y , Z. Since OX ⊥ A′A′′, OX ⊥ FX. Similarly, OY ⊥ FY and OZ ⊥ FZ, so
that X, Y , Z lie on the circle with diameter OF . Suppose, wolog, that F lies on the arc ZX. Then
∠XZY = ∠XFY = ∠A′FB′′ = 60◦ and ∠ZXY = ∠ZFY = 60◦, so that XY Z is an equilateral triangle
and Ptolemy’s theorem yields that FY = FX + FZ.
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Hence

AA′′ + BB′′ + CC ′′ = (A′A′′ + B′B′′ + C ′C ′′)− (AA′ + BB′ + CC ′)
= 2(A′X + B′Y + C ′Z)− (AA′ + BB′ + CC ′)
= 2(A′X ± FX + B′Y ∓ FY + C ′Z ± FZ)− (AA′ + BB′ + CC ′)
= 2(A′F + B′F + C ′F )− (AA′ + BB′ + CC ′)
= 4(AF + BF + CF )− 3(AF + BF + CF )
= AF + BF + CF = AA′ = BB′ = CC ′ .

260. TABC is a tetrahedron with volume 1, G is the centroid of triangle ABC and O is the midpoint of TG.
Reflect TABC in O to get T ′A′B′C ′. Find the volume of the intersection of TABC and T ′A′B′C ′.

Solution. Denote by X’ the reflection of a point X in O. In particular, T ′ = G. Let D be the midpoint
of BC. Since TT ′ = TG and AA′ intersect at O, the points A,G,D, T,A′ are collinear. Let A1 be the
intersection of DT and GA′. Since the reflection in O takes any line to a parallel line, A′G‖AT , so that
(from triangle DTA), DA1 : DT = DG : DA = 1 : 3 and A1 is the centroid of triangle TBC. Also

GA1 : GA′ = GA1 : AT = DA1 : DT = 1 : 3

so that GA1 = (1/3)GA′.

Applying the same reasoning all around, we see that each side of one tetrahedron intersects a face of the
other in its centroid one third of the way along its length. Thus GA′ intersects TBC in A1, GB′ intersects
TAC in B1, GC ′ intersects TAB in C1, TA intersects GB′C ′ in A2, TB intersects GA′C ′ in B2 and TC
intersects GA′B′ in C2. Note that the A′i = Aj , B′i = Bj , C ′i = Cj for i 6= j.

The intersection of the two tetrahedra is a parallelepiped with vertices T,A2, B2, C2, A1, B1, C1, G and
faces TA2C1B2, TB2A1C2, TC2B1A2, GA1C2B1, GB1A2C1, GC1B2A1 (to see that, say, TB2A1C2 is a
parallelogram, note that a dilation with centre T and factor 3/2 takes it to a parallelogram with diagonal
TD). The volume of this parallelpiped is three times that of the skew pyramid TB2A1C2A2 with base
TB2A1C2 and altitude dropped from A2, which in turn is twice that of tetrahedron TA2B2C2. But the
volume of tetrahedron TA2B2C2 is 1/27 = (1/3)3 that of TABC since it can be obtained from TABC by
a dilation with centre T and factor 1/3. Hence the volume of the parallelpiped common to both tetraheda
TABC and GA′B′C ′ is 6× (1/27) = 2/9 is the volume of either of these tetrahedra.

261. Let x, y, z > 0. Prove that

x

x +
√

(x + y)(x + z)
+

y

y +
√

(x + y)(y + z)
+

z

z +
√

(x + z)(y + z)
≤ 1 .

Solution. Observe that

(x + y)(x + z)− (
√

xy +
√

xz)2 = x2 + yz − 2x
√

yz = (x−√yz)2 ≥ 0

(with equality iff x2 = yz). Hence

x

x +
√

(x + y)(x + z)
≤ x

x +
√

xy +
√

xz
=

√
x√

x +
√

y +
√

z
,

with a similar inequality for the other two terms on the left side. Adding these inequalities together leads
to the desired result.
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262. Let ABC be an acute triangle. Suppose that P and U are points on the side BC so that P lies between
B and U , that Q and V are points on the side CA so that Q lies between C and V , and that R and W
are points on the side AB so that R lies between A and W . Suppose also that

∠APU = ∠AUP = ∠BQV = ∠BV Q = ∠CRW = ∠CWR .

The lines AP , BQ and CR bound a triangle T1 and the lines AU , BV and CW bound a triangle T2.
Prove that all six vertices of the triangles T1 and T2 lie on a common circle.

Solution 1. Note that the configuration requires the feet of the altitudes to be on the interior of the
sides of the triangle and the orthocentre to be within the triangle. Let θ be the common angle referred to in
the problem. Let XY Z be that triangle with sides parallel to the sides of triangle ABC and A on Y Z, B on
ZX and C on XY . Then A,B, C are the respective midpoints of Y Z, ZX, XY and the orthocentre H or
triangle ABC is the circumcentre of triangle XY Z. [Why?] Let ρ be the common length of HX, HY , HZ.

Let K be the intersection of AP and BQ (a vertex of T1). Since ∠KPC + ∠KQC = 180◦, CQKP is
concyclic. Hence ∠AKB+∠AZB = ∠PKQ+∠PCQ = 180◦ and AKBZ is concyclic. Since AH ⊥ BC and
BH ⊥ AC, the angle between AH and BH is equal to ∠ACB = ∠XZY , so that AHBZ is also concyclic.
Thus, A,H, K, B, Z lie on a common circle, so that ∠HKZ = ∠HBC = 90◦.

Now θ = ∠APC = ∠ZAK = ∠ZHK, so that, in the right triangle HKZ, |HK| = ρ cos θ. Similarly,
it can be shown that the distance from each vertex of triangle T1 and T2 from H is ρ cos θ and the result
follows.

Solution 2. [R. Dan] Let H be the orthocentre of triangle ABC, let AP and BQ intersect at D, and let
AU and BQ intersect at E. Triangle APU is isosceles with AP = AU , and AH a bisector of ∠PAU and a
right bisector of PU . Suppose X = AH ∩BC, Y = BH ∩AC and Z = CH ∩AB.

Since triangles APU and BQV are similar, ∠PAH = ∠QBH, so that ABDH is concyclic and ∠ADH =
∠ABH. Similarly, ACEH is concyclic and ∠AEH = ∠ACH. Since the quadrilateral BZY C has right angles
at Z and Y , BZY C is concyclic and

∠ABH = ∠ABY = ∠ZBY = ∠ZCY = ∠ZCA = ∠ACH .

Therefore, ∠ADH = ∠ABH = ∠ACH = ∠AEH.

Since AH is common, ∠ADH = ∠AEH and ∠DAH = ∠EAH, triangles ADH and AEH are congruent
(ASA) and HD = HE. Thus, H is equidistant from the intersections of BQ with both AP and AU . Similarly,
H is equidistant from the intersection of AP and both BQ and BV . Following around, we can show that H
is equidistant from all the vertices of triangle T1 and T2, and the result follows.

263. The ten digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 are each used exactly once altogether to form three positive integers
for which the largest is the sum of the other two. What are the largest and the smallest possible values
of the sum?

Solution 1. Since the sum has at least as many digits as either of the summands, the sum must have
at least four digits. However, the number of digits of the sum cannot exceed one more than the number of
digits of the larger summand. Hence, the sum can have at most five digits. However, a five-digit sum must
arise from the sum of a four-digit number which is at most 9876 and a single-digit number which is at most
9. Since this means that the sum cannot exceed 9885, we see that a five-digit sum is impossible.

A four-digit sum can arise either as the sum of two three-digit numbers or as the sum of a four-digit
and a two-digit number. In the former case, the sum must exceed 1000 and be less than 2000 and, in the
latter case, it must be at least 2000.

Thus, the smallest possible sum must be obtained by adding two three-digit numbers to get a four-
digit sum. Since the digits of the sum are all distinct, the smallest possible sum is at least 1023. Since

61



589 + 437 = 1026, the smallest sum is at most 1026. We may assume that each digit in the first summand
exceeds the corresponding digit in the second summand. The only possibilities for a lower sum are

5pq + 4rs = 1023 , 6pq + 3rs = 1024 , 6pq + 3rs = 1025 ,

for digits p, q, r, s. One can check that none of these works.

For the largest sum, let the first summand have four digits and the second two. The hundreds digit of
the first summand is 9 and the thousands digit of the sum exceeds the thousands digit of the first summand
by 1. Since 5987 + 34 = 6021, the largest sum is at least 6021. The only possibilities to consider for a larger
sum are

79ab + cd = 80ef , 69ab + cd = 70ef , 59ab + cd = 60ef ,

for digits a, b, c, d, e, f . It can be checked that none of these works.

Thus, the smallest sum is 1026 and the largest is 6021.

Solution 2. [C. Shen] As in Solution 1, we eliminate the possibility of a five-digit sum. Suppose that we
have

a9bc + de = f0gh

with digits a, b, c, d, e, f, g, h and f = a + 1. There must be a carry from adding the tens digits and we have
two possibilities:

c + e = h , b + d = 10 + g ; (1)

c + e = 10 + h , b + d = 9 + g . (2)

In case (1), we have that

36 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = a + b + c + d + e + f + g + h

= a + 10 + 2g + 2h + f = 2(5 + g + h + a) + 1 ,

which is impossible, as the two sides have different parities. In case (2), we have that

36 = a + 9 + 2g + 10 + 2h + f = 2(10 + a + g + h) ,

so that a + g + h = 8. Since a, g, h are all positive integers, a ≤ 5 and we have the case 59bc + de = 60gh
with c + e ≥ 11. The only possibilities for (c, e) are (8, 3), (8, 4), (7, 4), and these lead to

5978 + 43 = 6021 , 5978 + 34 = 6012 , 5987 + 34 = 6021 .

The largest sum is 6021.

The smallest sum is at least 1023 and at most 1026 = 589 + 437. Suppose that

pqr + uvw = 102x

with 3 ≤ x ≤ 6. Since r + w ≥ 3 + 4 = 7 and q + v ≥ 7, we have

r + w = 10 + x , q + v = 11 , p + u = 9 .

Hence
42 = 3 + 4 + 5 + 6 + 7 + 8 + 9 = p + q + r + u + v + w + x

= 9 + 11 + 2x + 10 = 30 + 2x ,

so that x = 6 and 1026 is the smallest sum.

264. For the real parameter a, solve for real x the equation

x =
√

a +
√

a + x .
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A complete answer will discuss the circumstances under which a solution is feasible.

Solution 1. Suppose that y =
√

a + x. Note that x and y are both nonnegative. Then x2 − a = y and
y2 − a = x, whence

0 = (x2 − y2) + (x− y) = (x− y)(x + y + 1) .

Since x + y + 1 ≥ 1, it follows that y = x and so

0 = x2 − x− a = (x− (1/2))2 − ((1/4) + a) .

For a real solution, we require that a ≥ −1/4. For −1/4 ≤ a ≤ 0, both the sum and the product of the
solutions are nonnegative and we get the candidates

x =
1±

√
1 + 4a

2
.

When a > 0, the equation has a positive and a negative solution, and only the positive solution

x =
1 +

√
1 + 4a

2

is up for consideration.

We check that these solutions work. When a ≥ −1/4, x = 1
2 (1 +

√
1 + 4a) and

a + x =
2a + 1 +

√
1 + 4a

2
=

4a + 2 + 2
√

4a + 1
4

=
(

1 +
√

4a + 1
2

)2

,

so that

a +
√

a + x =
2a + 1 +

√
1 + 4a

2
=

(
1 +

√
4a + 1
2

)2

= x2 .

When −1/4 ≤ a ≤ 0, x = 1
2 (1−

√
1 + 4a),

a + x =
2a + 1−

√
1 + 4a

2
=

(
1−

√
4a + 1
2

)2

.

so that

a +
√

a + x = a +
(

1−
√

4a + 1
2

)
=

(
1−

√
4a + 1
2

)2

= x2 .

(Note that, when a > 0,
√

a + x =
√

4a + 1− 1
2

and we get an extraneous solution.)

Solution 2. x =
√

a +
√

a + x =⇒ x2 − a =
√

a + x

=⇒ 0 = x4 − 2ax2 − x + a2 − a = (x2 − x− a)(x2 + x− a + 1) .

We analyze the possibilities from x2−x− a = 0 as in Solution 1. If, on the other hand, x2 +x− (a− 1) = 0,
then x = 1

2 (−1±
√

4a− 3), which is real when a ≥ 3/4. The possibility x = 1
2 (
√

4a− 3− 1) leads to

x + a =
(√

4a− 3 + 1
2

)2
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and

a +
√

a + x =
2a + 1 +

√
4a− 3

2
6=

(√
4a− 3− 1

2

)2

.

Thus, x = 1
2 (
√

4a− 3 − 1) is extraneous. Since 1
2 (−1 −

√
4a− 3) < 0, x = 1

2 (−1 −
√

4a− 3) < 0 is also
extraneous,

Solution 3. For a solution, we require that x ≥ 0. By squaring twice, we are led to the equation

0 = x4 − 2ax2 − x + a2 − a = a2 − (2x2 + 1)a + (x4 − x) .

Solving for a yields

a =
(2x2 + 1) +

√
(2x2 + 1)2 − 4(x4 − x)

2
=

(2x2 + 1) +
√

4x2 + 4x + 1
2

=
(2x2 + 1) + (2x + 1)

2
= x2 + x + 1 ,

or

a =
(2x2 + 1)− (2x + 1)

2
= x2 − x .

(Note that the proper square root has been extracted since x ≥ −1/2.) In the first case√
a +

√
a + x =

√
x2 + x + 1 +

√
x2 + 2x + 1 =

√
x2 + 2x + 2 > x .

In the second case, √
a +

√
a + x =

√
x2 − x +

√
x2 =

√
x2 = x .

Thus, only the case, a = x2 − x leads to a valid solution. Note that a = x2 − x = (x − 1
2 )2 − 1

4 , so that
a ≥ −1

4 for a solution to work. Since we require x ≥ 0 and a = x(x − 1), we see from the graph of this
equation that there are two valid values of x when − 1

4 ≤ a ≤ 0 and one valid value of x when 0 < a.

Solution 4. [J. Zhao] For any real x, one of the following must hold:

x >
√

a + x ; x <
√

a + x ; x =
√

a + x .

In case of the first,

x >
√

a + x >

√
a +

√
a + x 6= x ,

so that such x does not satisfy the equation. Similarly, we can reject any x satisfying the second condition
as a solution of the equation. Hence for every solution of the given equation, we must have that x =

√
a + x

or x2 − x− a = 0. We now finish off as in the previous solutions.

Comment. Many solvers did not pay attention to the feasibility of the solutions. Solution 3 was
particularly insidious, because it was easy to skip the analysis that only one of the values of x gave a
solution when a > 0. Surd equations is a dandy topic for students to lose points they should gain because
of carelessness or a superficial treatment.

265. Note that 9592 = 919681, 919 + 681 = 402; 9602 = 921600, 921 + 600 = 392; and 9612 = 923521,
923 + 521 = 382. Establish a general result of which these are special instances.

Solution. Let b ≥ 2 be a base of enumeration. Then we wish to investigate solutions of the system

(bk − u)2 = bkv + w (1)
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(u− 1)2 = v + w (2)

where k, u, v are positive integers and the integer w satisfies 0 ≤ w ≤ bk − 1. The numerical examples given
correspond to (b, k, u) = (10, 3, 41), (10, 3, 40) and (10, 3, 39). Subtracting (2) from (1) yields

(b2k − 1)− 2(bk − 1)u = (bk − 1)v

whence v = (bk +1)−2u and w = u2−bk. We require that bk ≤ u2 ≤ 2bk−1 in order to get a generalization.
So, to generate examples of the phenomenon, first select a base b and a parameter k for the number of digits;
then select u to satisfy the foregoing inequality. Then one can check, with v and w determined, the desired
system of equations holds.

Consider first the situation b = 10. When k = 1, we have that u = 4 and we get the case 62 =
36, 3+6 = 32. When k = 2, we have that 10 ≤ u ≤ 14 and find that 862 = 7396, 73+96 = 132 and so on up to
902 = 8100, 81+0 = 92. When k = 3, we have that 32 ≤ u ≤ 44, and find that 9562 = 913936, 913+936 = 432

and so on up to 9682 = 937024, 937 + 24 = 312.

Examples from base 3 are 52 = (221)3, (2 + 21)3 = 32; 62 = (1100)3, (11 + 0)3 = 22; 202 = (112211)3,
(112 + 211)3 = 62; 212 = (121100)3, (121 + 100)3 = 52.

Comment. In the above system, we could replace u− 1 by u− d and get other instances. For example,
with (b, k) = (10, 2), we can get the instances (272 = 729, 7 + 29 = 62), (292 = 841, 8 + 41 = 72), (302, 32),
(392, 62), (402, 42), (502, 52), (572, 92). (602, 62), (702, 72), (752, 92), (782, 122), (802, 82) and (982, 102).

Another formulation is to note that the numerical equations are special instances of the system n2 =
bkx + y; (n − x)2 = x + y with 0 ≤ y ≤ bk − 1 and 0 ≤ n < bk, where (n, b, x, y) = (959, 10, 919, 681),
(960, 10, 921, 600), (961, 10, 923, 521). These equations imply that x(2n − x) = (bk − 1)x, whence x =
2n− (bk − 1). Thus,

n2 = 2bkn− b2k + bk + y =⇒ y = (bk − n)2 − bk ,

and we require that bk ≤ (bk − n)2 < 2bk − 1. The analysis can be continued from here.

This question was, on the whole, badly done. In describing the generalization, one needs to provide a
road map whereby one can make the appropriate subsitutions to obtain further examples. Many solvers were
content to write down some equations of which the numerical examples were an instance without analyzing
the conditions under which the equations could be used to obtain further examples. In effect, no further
information was provided to show where other examples might be found.

266. Prove that, for any positive integer n,
(
2n
n

)
divides the least common multiple of the numbers 1, 2, 3, · · · ,

2n− 1, 2n.

Solution. We first establish that
0 ≤ b2xc − 2bxc ≤ 1

for each positive real x. (b·c refers to “the greatest integer not exceeding”.) If, for some integer s, 2s ≤
2x ≤ 2s + 1, then s ≤ x < s + 1

2 and b2xc = 2bxc; if 2s + 1 ≤ 2x < 2s + 2, then s + 1
2 ≤ x < s + 1 and

b2xc = 2s + 1 = 2bxc+ 1.

Let p be a prime divisor of
(
2n
n

)
, so that p ≤ 2n. Suppose that pk is the highest power of p that divides

an integer not exceeding 2n. Then pk ≤ 2n < pk+1. The exponent of p in the prime factorization of
(
2n
n

)
is

equal to (⌊
2n

p

⌋
+

⌊
2n

p2

⌋
+

⌊
2n

p3

⌋
+ · · ·+

⌊
2n

pk

⌋)
− 2

(⌊
n

p

⌋
+

⌊
n

p2

⌋
+ · · ·+

⌊
n

pk

⌋)
=

k∑
i=1

(⌊
2n

pi

⌋
− 2

⌊
n

pi

⌋)
≤ k .

Hence the exponent of p in the prime factorization of
(
2n
n

)
does not exceed the exponent of p in the prime

factorization of the least common multiple of the first 2n positive integers, for each prime divisor of
(
2n
n

)
.

The result follows.

65



267. A non-orthogonal reflection in an axis a takes each point on a to itself, and each point P not on a to
a point P ′ on the other side of a in such a way that a intersects PP ′ at its midpoint and PP ′ always
makes a fixed angle θ with a. Does this transformation preserves lines? preserve angles? Discuss the
image of a circle under such a transformation.

Solution. We suppose that θ 6= 90◦. The transformation preserves lines. This is clear for any line
parallel to a. Let AB be a line through A that meets a at P , and let A′ and B′ be the reflective images of A
and B. Since AA′‖BB′ and a is a median from P of triangles PAA′ and PBB′, it follows that A′, B′ and
P are colllinear. Thus, any point on the line AP gets carried to a point on the line A′P . However, angles
are not preserved. A line perpendicular to a is carried to a line making an angle not equal to a right angle
with a (while a is kept fixed). [What is the angle of intersection?]

Suppose that the axis of reflection is the y axis. Let A and B be mutual images with A to the left and B
to the right of the axis, AB meeting the axis at P and the upper right (and lower left) angles of intersection
being θ. If A ∼ (x, y) (with x ≤ 0), then P ∼ (0, y − x cot θ) and B ∼ (−x, y − 2x cot θ). If B ∼ (u, v) (with
u ≥ 0), then P ∼ (0, v − u cot θ) and A ∼ (−u, v − 2u cot θ). Thus the transformation is given by

(x, y) −→ (X, Y ) ≡ (−x, y − 2x cot θ) .

Consider the particular case of the circle with equation x2 + y2 = 1. The image curve has equation

1 = (−X)2 + (Y − 2X cot θ)2 = (1 + 4 cot2 θ)X2 − 4XY cot θ + Y 2

and this does not represent a circle. Thus, circles are not preserved under the transformation. In fact, a
general circle with equation of the form (x − a)2 + (y − b)2 = r2 gets carried to an second degree curve in
the plane which turns out to be an ellipse.

Comment. A synthetic way of analyzing the image of a circle is to note that two chords of a circle that
bisect each other must be diameters, and so have the same length. Using this, one can argue that a circle
with one diameter along the axis and other perpendicular to the axis does not go to a circle.

268. Determine all continuous real functions f of a real variable for which

f(x + 2f(y)) = f(x) + y + f(y)

for all real x and y.

Solution 1. First, we show that f(u) = 0 if and only if u = 0. Suppose that f(u) = 0. Then, for all x,

f(x) = f(x + 2f(u)) = f(x) + u + f(u) = f(x) + u

so that u = 0. On the other hand, let v = f(0). Taking (x, y) = (−2v, 0) in the condition yields that

v = f(0) = f(−2v + 2v) = f(−2v) + 0 + v ,

whence
0 = f(−2v) = f(−2v + 2f(−2v)) = 0− 2v + 0 = −2v

and v = 0.

Setting y = x yields
f(x + 2f(x)) = x + 2f(x)

for all x. Let g(x) ≡ x + 2f(x). Then f(g(x)) = g(x) so that

1
2
[g(g(x))− g(x)] = g(x)
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whence
g(g(x)) = 3g(x) .

Note also that g(0) = 0 + 2f(0) = 0. If g(x) ≡ 0, then f(x) = −x/2, and this is a valid solution. Suppose
that g(z) = a 6= 0 for some z and a. Then, as g(0) = 0 and g is continuous, g assumes all values between 0
and a (by the intermediate value theorem). But g(a) = g(g(z)) = 3g(z) = 3a, so by the same argument, g
assumes all values between 0 and 3a. We can continue on to argue that g assumes all values between 0 and
3ka for each positive integer k. Thus g assumes all positive values if a > 0 and assumes all negative values
if a < 0.

Suppose that the former holds. Then, for all x ≥ 0, we have that g(x) = 3x and so x + 2f(x) = 3x,
whence f(x) = x. Therefore, when x is arbitrary and y ≥ 0, f(x + 2y) = f(x) + 2y. In particular,
0 = f(−2y + 2y) = f(−2y) + 2y so that f(−2y) = −2y. Hence, for all x, we must have that f(x) = x. A
similar argument can be followed to show that f(x) ≡ x when a < 0. Therefore, the only two solutions are
f(x) = x and f(x) = −x/2.

Solution 2. [S. Eastwood] Setting x = y, we find that f(x + 2f(x)) = x + 2f(x) for all real x. Let

A = {x + f(x) : x ∈ R} .

Then A is a nonvoid set. Suppose that a ∈ A. Then f(a) = a, so that 3a = a + 2f(a) ∈ A. Hence
a ∈ A ⇒ 3a ∈ A. Since x → x + 2f(x) is continuous, it satisfies the intermediate value theorem and so A
must be of one of the following types: A = {0}; A = [b,∞), A = [−b,∞), A = R for some nonnegative value
of b.

Suppose that A = {0}. Then, for all real x, x+2f(x) = 0 and so f(x) = −x/2. This is a valid solution.

Suppose that A has a nonzero element a. Then

a = f(a) = f(−a + 2a) = f(−a + 2f(a)) = f(−a) + a + f(a) = f(−a) + 2a ,

whence f(−a) = −a and −3a = −a + 2f(−a) ∈ A. Hence A must contain numbers that are both positive
and negative, and so must consist of the whole set of reals. Hence, for all real x, f(x) = x, and this also is
valid.

Solution 3. [J. Zhao] Suppose that f(u) = f(v). Then, for each x,

f(x) + u + f(u) = f(x + f(u)) = f(x + f(v)) = f(x) + v + f(v)

so that u = v. Hence, f is one-one. Since f is continuous, f is always strictly increasing or always strictly
decreasing on R.

Suppose that f is increasing. Then

lim
x→+∞

x + 2f(x) = +∞

and
lim

x→−∞
x + 2f(x) = −∞ ,

so that x + f(x) assumes every real value (by the intermediate value theorem). Suppose that z is any real
number. Select y such that y + 2f(y) = z. Then

f(z) = f(y + 2f(y)) = f(y) + y + f(y) = z ,

and so f(x) ≡ x. This works.

Suppose that f is decreasing. Suppose, if possible, that p and q are such that p + 2f(p) < q + 2f(q).
Then f(p + 2f(p)) > f(q + 2f(q)). But, we get a contradiction since f(p + 2f(p)) = p + 2f(p) and
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f(q + 2f(q)) = q + 2f(q). Hence, there is a constant c such that, for all real x, x + 2f(x) = c. Hence,
f(x) = − 1

2 (−x + c). Plugging this into the functional equation, we find that c = 0, and so we obtain the
solution f(x) = −x/2.

Comments. If we assume that f(x) is a polynomial, then it can be shown that its degree must be 1.
Assuming a solution f(x) = cx + d for constants c and d leads to the equations d = 0 = 2c2 − c − 1 =
(2c + 1)(c− 1). Thus, it is not hard to get a partial solution.

There were a number of approaches to ascertaining that f(0) = 0. A. Critch began with the observation
that f(2f(0)) = f(0 + 2f(0)) = f(0) + 0 + f(0) = 2f(0). Let a = 2f(0), so that f(a) = a. Furthermore,

f(2a) = f(a + a) = f(a + 2f(0)) = a + f(0) = (3a/2)

and
f(2a) = f(0 + 2a) = f(0 + 2f(a)) = f(0) + a + f(a) = (5a/2) .

This leads to a = 0.

R. Dan noted that f(2f(y)) = y + f(y), and then went on to derive

f(−2f(y) + 2f(y)) = f(−2f(y)) + y + f(y) = f(−2f(y)) + f(2f(y)) .

Along with the property that f(0) = 0, one can then show that f assumes both positive and negative values.

269. Prove that the number

N = 2× 4× 6× · · · × 2000× 2002 + 1× 3× 5× · · · × 1999× 2001

is divisible by 2003.

Solution 1. We will start with more general observations. Let k be a natural number, A = 2× 4× 6×
· · · × (2k), B = 1× 3× 5× · · · × (2k − 1), C = 2k + 1 and M = A + B. Since 1 = C − 2k, 3 = C − (2k − 2)
and so on, B = (C − 2k)(C − (2k − 2)) · · · (C − 2). Upon expansion, we find that the only term in the right
side that does not contain C is (−1)k × 2× 4× · · · × (2k). Thus

M = C × natural number + (1 + (−1)k)×A ,

so that, when k is odd (for example, when k = 1001), M is divisible by C. The result follows.

Solution 2. [T. Yue] Modulo 2003,

2× 4× 6× · · · × 2000× 2002
≡ (−2001)× (−1999)× (−1997)× · · · × 3× 1
= −(2001× 1999× 1997× · · · × 3× 1) .

Therefore, N ≡ 0 (mod 2003), i.e., N is divisible by 2003.

270. A straight line cuts an acute triangle into two parts (not necessarily triangles). In the same way, two
other lines cut each of these two parts into two parts. These steps repeat until all the parts are triangles.
Is it possible for all the resulting triangle to be obtuse? (Provide reasoning to support your answer.)

Solution 1. It is clear that if in the final step there are k cuts, made as required, they form k+1 triangles.
Assume, if possible, that all of these triangles be obtuse. Note the total number of acute or right angles in
the configuration after each cut. When the cutting line intersects an existing side of a triangle, it forms two
new angles with a sum of 180◦, so that at least one of them is acute or right. When the cutting line passes
through a vertex of a triangle, it forms two new angles, dividing the existing angle (smaller than 180◦) into
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smaller angles, so that there is one more acute or right angle than before. Hence at each step, the total
number of acute and right angles in the configuration increases at least by 2. Starting from a configuration
with three such angles, after k steps, we get at least 2k + 3 acute or right angles. On the other hand, in
k + 1 obtuse triangles, there must be exactly 2(k + 1) non-obtuse angles. This contradicts our assumption,
so that the answer to the question of the problem is “no”.

Solution 2. Suppose that there were a way to cut the given triangle into t obtuse triangles. According
to the required procedure of cutting, if two triangles with a common vertex appear after one cut, then they
will lie on the same side of the plane with respect to another line segment (say, a side of the triangle or a
previous cut). Denote by n the number of points that are vertices of the obtuse triangles but not vertices of
the given triangle. On the one hand, the sum of the interior angles in all the triangles is 180t◦. On the other
hand, for each of the n points, the sum of all triangular angles at a vertex there is 180◦. So the sum of all
the interior angles of the triangles will be (180n + 180)◦ (we must add the sum of the angles of the original
triangle). Hence t = n + 1. However, only the n interior vertices can be vertices of an obtuse angle, and
each of them can be the vertex of at most one obtuse angle. Hence t ≤ n, yielding a contradiction. Thus, it
is impossible to cut the original triangle into obtuse triangles only.

271. Let x, y, z be natural numbers, such that the number

x− y
√

2003
y − z

√
2003

is rational. Prove that
(a) xz = y2;
(b) when y 6= 1, the numbers x2 + y2 + z2 and x2 + 4z2 are composite.

Solution. (a) Since the given number is rational, it can be represented as a reduced fraction p/q, where
p and q 6= 0 are two coprime integers. This yields

xq − yp = (yq − zp)
√

2003 .

Since the left side is rational, the right must be as well. Since
√

2003 is irrational, both sides must vanish.
Thus xq − yp = yq − zp = 0, whence x/y = y/z = p/q, so that xz = y2.

(b) Let M = x2 +y2 +z2 and N = x2 +4z2. We will prove that M and N are both composite, provided
that y 6= 1. Since xz − y2,

M = x2 + y2 + z2 = x2 + 2xz + z2 − y2 = (x + z)2 − y2 = (x + z − y)(x + z + y) .

For M to be composite, the smaller factor, x + z − y must differ from 1. (It cannot equal −1. Why?) Since
y is a natural number distinct from 1, y > 1. As xz = y2, at least one of x and z is not less than y. Say that
x ≥ y. If x = y, then z = y and x + z − y = y > 1; if x > y, then x + z − y ≥ z > 1. Thus in all possible
cases, x + y − z > 1 and M is the product of two natural numbers exceeding 1.

Similarly,

N = x2 + 4z2 = x2 + 4xz + 4z2 − 4y2 = (x + 2z)2 − (2y)2 = (x + 2z − 2y)(x + 2z + 2y) .

To prove that N is composite, it suffices to show that the smaller factor x+2z− 2y exceeds 1. (Why cannot
this factor equal −1?) We prove this by contradiction. Suppose, if possible, that x + 2z − 2y = 1. Then
x + 2z = 2y + 1, whence

x2 + 4xz + 4z2 = 4y2 + 4y + 1 ⇔ x2 + 4z2 = 4y + 1 .

However, it is clear that x2 + 4z2 ≥ 4xz = 4y2, from which it follows that 4y + 1 ≥ 4y2. But this inequality
is impossible when y > 1. Thus, we conclude that x + 2z − 2y 6= 1 and so N is composite.
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272. Let ABCD be a parallelogram whose area is 2003 sq. cm. Several points are chosen on the sides of the
parallelogram.
(a) If there are 1000 points in addition to A,B, C, D, prove that there always exist three points among
these 1004 points that are vertices of a triangle whose area is less that 2 sq. cm.
(b) If there are 2000 points in addition to A,B, C, D, is it true that there always exist three points
among these 2004 points that are vertices of a triangle whose area is less than 1 sq. cm?

Solution. (a) Since there are 1000 points on the sides of a parallelogram, there must be at least 500
points on one pair of adjacent sides, regardless of the choice of points. Wolog, let these points be on the
sides AB and BC of the parallelogram. and let m of the points P1, P2, · · · , Pm be on AB and k of the points
Q1, Q2, · · · , Qk be on BC. Let P1 and Q1 be the points closest to B. Connect the vertex C to P1, P2, · · · , Pm

and the point P1 to Q1, Q2, · · · , Qk to get m + k + 1 triangles the sum of whose areas equals the area of
ABC. Thus [ABC] = 1

2 [ABCD] = 1001.5 sq cm. Let us assume that each of these m + k + 1 triangles has
an area that exceeds 2 sq cm. Then [ABC] ≥ 501× 2 = 1002 > 1001.5, a contradiction. Therefore, at least
one of these triangles must have an area of less than 2 sq cm.

(b) No, this is not always true. We will construct a counterexample to justify this answer. Let us choose
2000 points on the sides of ABCD so that 1000 of them are on AB and 1000 of them are on CD. We will
consider the first set of 1000 points, and then do symmetrical constructions and considerations for the second
set. Using the notation from (a), let m = 1000, k = 0 and select the points so that BP1 = P1P2 = P2P3 =
· · · = P1000A. Then the triangle CBP1, CP1P2, · · ·, CP1000A have the same area, say s sq cm. However,
s = [ABC]/1001 = (1001.5)/(1000) > 1; thus, this choice of the first 1000 points allows a construction of
triangles such that the area of each of them exceeds 1 sq cm. Similarly, all triangles formed symmetrically
with vertices among the other set of 1000 points have an area which exceeds 1 sq cm. So it is not true that
there always exists three points among the chosen 2000 points and the points A,B, C, D that are vertices of
a triangle whose area is less than 1 sq cm.

Comments. (1) It was not specified in the text of the question that the three points chosen to be the
vertices of a triangle have to be non-collinear. Otherwise, we get the trivial case of a “triangle” with an area
of 0, which is not interesting, because 0 < 1, 0 < 2 and such a triangle will be an example of existence in
both cases. However, it is expected that candidates will make a reasonable interpretation of the problem
that renders it nontrivial.

(2) Looking into possible interpretations of this problem, Michael Lipnowski came up with a different,
but very similar, and interesting problem. Let ABCD be a parallelogram whose area is 2003 sq cm. Several
points are chosen inside the parallelogram. (a) If there are 1000 points in addition to A,B, C, D, prove that
there are always three points among these 1004 points that are vertices of a triangle whose area is less than
2 sq cm. (b) If there are 2000 points in addition to A,B, C, D, is it true that there are always three points
among the 2004 points that are vertices of a triangle whose area is less than 1 sq cm. We provide a solution
to this problem. Please note that the answer to (b) differs from the answer of the corresponding part of the
original question.

(a) Let |AB| = x, |AD| = y. Let P and Q lie on AB and CD respectively, so that PQ‖AD and
|AP | = |DQ| = (4/2003)x. This way, we have a parallelogram “cut” from ABCD. Construct analogous par-
allelograms with respect to the sides AB, BC and CD, drawing lines parallel to these sides, so that each of
them has a width of (4x)/2003 or (4y)/2003 respectively. (1) If at least one of the points lies within the paral-
lelograms “cut”, say, R, is within APQD, then [ARD] < (1/2)(4/2003)[ABCD] = (1/2)(4/2003)(2003) = 2,
so this proves what is required. (2) Let us assume that all 1000 points (without the vertices of course) lie
within the interior parallelogram KLMN whose vertices are the intersection points of the four lines drawn
before. Clearly, it is similar to ABCD, and the coefficient of proportionality is 1995/2003, so its area is
(1995/2003)2 · (2003) = (19952)/(2003). Divide KLMN into 499 congruent parallelograms (for example, by
drawing 498 equally spaced lines parallel to KL). Then, since 1000 = 2× 499 + 2 points lie inside KLMN ,
at least one of the 499 parallelograms contains at least three of them, according to the extended pigeonhole
principle. Consider the triangle formed by them. Since each of these parallelograms has an area equal to
(1/499)[KLMN ] = (1/499)(19952/2003) < (1995 · 1996)/(499 · 2003) = 4 · (1995/2003) < 4, then the area
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of the triangle will not exceed half of 4, namely 2. So there must be at least one triangle inside ABCD of
area less than 2.

(b) Yes, it is always true that there exists three among the 2004 points that are vertices of a triangle
with area less than 1. Proceed as in (a) except for the following differences: (1) Construct the parallel lines so
that the width of the “cut” parallelograms is (2x)/2003 or (2y)/2003, respectively. Now, the parallelogram
KLMN is similar to ABCD, with a coefficient of proportionality 1999/2003 and an area of (19992)/2003.
(2) Divide KLMN into 999 congruent parallelograms. Since 2000 = 2×999+2 points lie within 999 regions,
at least one region contains at least three of the points. Similar calculations show that in this case, the area
of the triangle formed by these three points has area less than 1. The result holds.

273. Solve the logarithmic inequality
log4(9

x − 3x − 1) ≥ log2

√
5 .

Solution. Let 3x = y. Then y > 0 and the given inequality is equivalent to log4(y2 − y − 1) ≥ log2

√
5.

Since the logarithmic function is defined only for positive numbers, we must have y2 − y − 1 > 0. In this
domain, the inequality is equivalent to y2−y−1 ≥ 5 or (y+2)(y−3) ≥ 0. The solution of the last inequality
consists of all numbers not less than 3 (since y > 0). Hence 3x ≥ 3 or x ≥ 1. Thus, the inequality is satisfied
if and only if x ≥ 1.

Comment. It is very important before starting to solve the inequality to determine the domains so
that all functions are well-defined. It is mandatory to take these restrictions into consideration for the final
answer as well as along the way in making transformations.

274. The inscribed circle of an isosceles triangle ABC is tangent to the side AB at the point T and bisects
the segment CT . If CT = 6

√
2, find the sides of the triangle.

Solution. Denote the midpoint of CT by K, and the tangent point of the inscribed circle and BC by
L. Then, from the given information,

CK =
1
2
CT . (1)

We will use the standard notation a, b, c for the lengths of BC, CA and AB, respectively. It is not specified
which two sides of the isosceles triangle are equal, so there are two possible cases.

Case 1. AC = BC or a = b. Then T is also the midpoint of AB. By the tangent-secant theorem,
CL2 = CK · CT , which together with (1) implies that (a − (c/2))2 = CL2 = (1/2)CT 2 = 36. Hence
a = 6 + (c/2) (2).

On the other hand, from the Pythagorean theorem applied to triangle BCT , we get that a2 = (c2/4)+72.
Using (2), we obtain that (

6 +
c

2

)2

=
c2

4
+ 72 ⇔ 36 + 6c = 72 ⇔ c = 6 ,

whence a = b = 9. So the lengths of the triangle are (a, b, c) = (9, 9, 6).

Case 2. AB = AC or c = b. Now L is the midpoint of the side BC so that

CL2 = CK · CT = (1/2)CT 2 ⇔ (a2/4) = (1/2)(6
√

2)2 = 36 ⇔ a = 12 . (3)

Next we have to calculate the lengths of AB and AC. From the cosine law, applied to triangle BCT with
β = ∠ABC,

CT 2 = BT 2 + BC2 − 2BT ·BC cos β

⇔ (6
√

2)2 = (a2/4) + a2 − a2 cos β

⇔ 72 = 36 + 144− 144 cos β ⇔ cos β = 3/4 .
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On the other hand, the cosine law for triangle ABC leads to

b2 = c2 + a2 − 2ca cos β = b2 + a2 − 2ba cos β

⇔ cos β = a/2b .

This, with (3), implies that c = b = 8. Therefore, (a, b, c) = (8, 8, 12).

275. Find all solutions of the trigonometric equation

sinx− sin 3x + sin 5x = cos x− cos 3x + cos 5x .

Solution 1. [M. Lipnowski] Note that, if x = θ satisfies the equation, then so does x = θ + π. Thus, it
suffices to consider 0 ≤ x ≤ π. A simple computation shows that x = π/2 is not a solution, so that we may
assume that cos x 6= 0. Multiplying both sides of the equation by 2 cos x 6= 0 yields that

sinx− sin 3x + sin 5x = cos x− cos 3x + cos 5x

⇔ 2 sinx cos x− 2 sin 3x cos x + 2 sin 5x cos x = 2 cos2 x− 2 cos 3x cos x + 2 cos 5x cos x

⇔ sin 2x− (sin 4x + sin 2x) + sin 6x + sin 4x) = 1 + cos 2x− (cos 4x + cos 2x) + (cos 6x + cos 4x)
⇔ sin 6x− cos 6x = 1 .

Squaring both sides of the last equation, we get

sin2 6x− 2 sin 6x cos 6x + cos2 6x = 1 ⇔ sin 12x = 0 .

This equation has as a solution x = kπ/12 for k an integer. Checking each of these for validity, we find that
the solutions are x = π/12, 2π/12, 5π/12, 9π/12, 10π/12, and the general solution is obtained by adding a
multiple of π to each of these.

Solution 2. The given equation is equivalent to

2 sin 3x cos 2x− sin 3x = 2 cos 3x cos 2x− cos 3x

⇔ (2 cos 2x− 1)(sin 3x− cos 3x) = 0 .

Thus, either cos 2x = 1
2 in which case x = ±(π/6) + kπ for some integer k, or cos 2x 6= 1

2 . In the latter case,
we must have cos 3x 6= 0 (why?), so that tan 3x = 1 and x = (π/12) + (kπ/3). Thus, all solutions of the
equation are x = (π/12) + kπ, (π/6) + kπ, (5π/12) + kπ, (3π/4) + kπ and (5π/6) + kπ where k is an integer.

276. Let a, b, c be the lengths of the sides of a triangle and let s = 1
2 (a + b + c) be its semi-perimeter and r

be the radius of the inscribed circle. Prove that

(s− a)−2 + (s− b)−2 + (s− c)−2 ≥ r−2

and indicate when equality holds.

Solution 1. Let the angles of the triangle at A, B, C be 2α, 2β, 2γ, respectively, Then (s − a)−1 =
(tanα)/r, etc., and the ineqaulity is equivalent to

tan2 α + tan2 β + tan2 γ ≥ 1 .

Since α + β + γ = 90◦,

1 = tanα tanβ + tanβ tan γ + tan γ + tanα

≤
√

tan2 α + tan2 β + tan2 γ

√
tan2 β + tan2 γ + tan2 α ,
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by the Cauchy-Schwarz Inequality. Equality occurs if and only if tanα = tanβ = tan γ = 1/
√

3, i.e., when
the triangle is equilateral.

Solution 2. Let u = (s−a)−1, v = (s− b)−1 and w = (s− c)−1. Then (u− v)2 +(v−w)2 +(w−u)2 ≥ 0
implies that u2 + v2 + w2 ≥ uv + vw + wu. Hence

1
(s− a)2

+
1

(s− b)2
+

1
(s− c)2

≥ 1
(s− a)(s− b)

+
1

(s− b)(s− c)
+

1
(s− c)(s− a)

=
(s− a) + (s− b) + (s− c)

(s− a)(s− b)(s− c)
=

s

(s− a)(s− b)(s− c)
.

Since the area of the triangle is rs =
√

s(s− a)(s− b)(s− c), we have that (s− a)(s− b)(s− c) = r2s, and
the desired result follows. Equality occurs if and only if u = v = w ⇔ a = b = c.

Solution 3. [S. Seraj] Let a = v +w, b = w+u, c = u+v; the condition that a, b, c are sides of a triangle
is equivalent to u, v, w being all positive. By the Arithmetic-Geometric Means Inequality, we have that

x2y2 + z2x2 ≥ 2x2yz

for any positive reals x, y, with equality if and only if y = z. Applying this to the three numbers u, v, w in
cyclic order and adding, we find that

u2v2 + v2w2 + w2u2 ≥ (u + v + w)uvw

from which we find that

(s− a)2(s− b)2 + (s− b)2(s− c)2 + (s− c)2(s− a)2 ≥ s(s− a)(s− b)(s− c) = r2s2 .

Dividing by (s−a)2(s− b)2(s−c)2 = r4s2 yields the desired result. Equality occurs if and only if u = v = w,
i.e. when the triangle is equilateral.

Comment. We can also use the Arithmetic-Geometric Means Inequality to obtain that

1
(s− a)2

+
1

(s− b)2
≥ 2

(s− a)(s− c)
=

2(s− c)
(s− a)(s− b)(s− c)

,

etc., and add the inequalities to get the result. Many solvers neglected to mention when equality occurred.

277. Let m and n be positive integers for which m < n. Suppose that an arbitrary set of n integers is given
and the following operation is performed: select any m of them and add 1 to each. For which pairs
(m,n) is it always possible to modify the given set by performing the operation finitely often to obtain
a set for which all the integers are equal?

Solution. If the task can be completed, then it can be completed in particular when the sum of the
integers in the set is equal to 1 (for example, if there is one 1 and the rest all 0). Suppose that the operation
is performed x times, so that the sum is increased by m each time, until all the numbers are equal to y.
Then we must have 1 + mx = ny, from which it follows that the greatest common divisor of m and n is
equal to 1.

Conversely, suppose that the greatest common divisor of m and n is equal to 1. Then it is possible to
find positive integers u and v for which mu = nv + 1. For convenience, let us suppose that the numbers in
the set are arranged in a ring. We show that it is possible to increase any of these numbers by one more
than we increase the rest of the numbers if the operation is repeated suficiently often. Suppose the numbers
are a1, a2, · · · , an in order around the ring, and we wish to increase a1 by one more than the rest. Begin by
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adding 1 to each of a1, a2, · · · , am; then add 1 to each of am+1, am+2 and so on for m numbers. Each time,
increase a run of m numbers by 1, starting off immediately after the last number increased on the previous
round. Doing this u times, we find that each number is increased by v except for a1 which is increased by
v + 1.

To achieve our task, begin with a sequence of operations, each of which increases the minimum number
of the set by one more than each other number. After a finite number of times of doing this, the difference
between the maximum and minimum numbers of the set will be reduced by 1. Eventually, this difference
will be reduced to zero and the job will be done.

Comment. One approach is to increase the smallest m numbers of the set by 1 each time around. This
looks as though it should succeed, but it seems difficult to establish that this is so.

278. (a) Show that 4mn −m − n can be an integer square for infinitely many pairs (m,n) of integers. Is it
possible for either m or n to be positive?

(b) Show that there are infinitely many pairs (m,n) of positive integers for which 4mn−m− n is one
less than a perfect square.

Solution 1. (a) Two possible solutions are (m,n) = (−(5k2 ± 2k),−1) and (m,n) = (−a2, 0). Suppose,
if possible, that 4mn−m−n = x2 with at least m and n positive. Then (4m− 1)(4n− 1) = 4x2 + 1. There
must be at least one prime q congruent to −1 modulo 4 which divides 4m − 1 and so 4x2 + 1. Therefore,
(2x)2 ≡ −1 (mod q), whence (2x)4 ≡ 1 (mod q). By Fermat’s Little Theorem, (2x)q−1 ≡ 1 (mod q). Observe
that neither 2x nor (2x)3 is congruent to ±1 (mod q), so that 4 is the minimum positive value of r for which
(2x)r ≡ 1 (mod q). Let q = 4s + 3. Then

(2x)q−1 = (2x)4s · (2x)2 ≡ (2x)2 6≡ 1

(mod q), which contradicts the Fermat result. Hence, it is not possible for either m or n to be positive.

(b) One set of solutions is given by (m,n) = (3k2, 1).

Solution 2. Examples of solutions can be given as in the foregoing solution. Suppose if possible, there
exist m,n, k with m a positive integer, for which (4m− 1)(4n− 1) = 4k2 + 1. Then this means that 4k2 + 1
has a positive factor congruent to −1 (mod 4). Let r be the smallest positive value of k for which such a
factor of 4k2 + 1 exists. Then

4r2 + 1 = ab

where a, b are positive integers exceeding 1 and congruent to −1 modulo 4 and a ≤ b. Then 4r2 + 1 ≥ a2 ⇒
2r > a ⇒ r > a− r. Clearly, r − a < r, whence |r − a| < r. Then

4(r − a)2 + 1 = (4r2 + 1) + 4a(a− 2r) = a(4a + b− 8r)

so that |r− a| is a smaller value of k than r for which 4k2 + 1 has a factor congruent to −1 modulo 4. (Why
is r − a not 0?) This contradicts the definition of r, and so no solution with m,n positive is possible.

279. (a) For which values of n is it possible to construct a sequence of abutting segments in the plane to form
a polygon whose side lengths are 1, 2, · · · , n exactly in this order, where two neighbouring segments are
perpendicular?

(b) For which values of n is it possible to construct a sequence of abutting segments in space to form
a polygon whose side lengths are 1, 2, · · · , n exactly in this order, where any two of three sucessive
segments are perpendicular?

Solution. (a) Since the direction of the sides alternates around the polygon, n must be even. Let n = 2k.
Suppose that the odd sides of the polygon are parallel to the x−axis and the even sides to the y−axis. Then
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along each odd side, the abscissa of the vertices increases or decreases by an odd integer, and for all the
sides, the net increase of the abscissae is zero. In other words, modulo 2,

0 = ±1± 3± 5± · · · ± (2k − 1) ≡ 1 + 3 + 5 + · · ·+ (2k − 1) = k2 ,

whence k is even, and n is a multiple of 4. Similarly, consideration of the ven sides leads to, modulo 4,

0 = 2(±1± 2± 3± · · · ± k) ≡ 2(1 + 2 + · · ·+ k) = k(k + 1)

from which we infer that k must be a multiple of 4. Hence, it is necessary that n is a multiple of 8.

Now, suppose that n is a multiple of 8. For n = 8, we can construct the octagon with vertices (0, 0),
(1, 0), (1, 2), (−2, 2), (−2,−2), (−7,−2), (−7,−8), (0,−8), corresponding to the sums

1− 3− 5 + 7 = 2− 4− 6 + 8 = 0 .

In general, for n = 8r (r ≥ 1), we can take the polygon corresponding to the sums

1 + 3 + · · ·+ (2r − 1)− (2r + 1)− · · · − (6r − 1) + (6r + 1) + · · ·+ (8r − 1) = 0

and
2 + 4 + · · ·+ 2r − (2r + 2)− · · · − (6r) + (6r + 2) + · · ·+ 8r = 0 .

(b) By the condition of the problem, the sides of the parallelogram must cycle through the three
coordinate directions in turn, so n must be a multiple of 3, say n = 3k. As in (a), we can argue that, for
some choice of signs, with the congruence taken modulo 2,

0 = ±1± 4± · · · ± (3k − 2) ≡ 1 + 4 + · · ·+ (3k − 2) =
k(3k − 1)

2
,

0 = ±2± 5± · · · ± (3k − 1) ≡ 2 + 5 + · · ·+ (3k − 1) =
k(3k + 1)

2
,

0 = ±3± 6± · · · ± 3k ≡ 3(1 + 2 + · · ·+ k) =
3k(k + 1)

2
.

Hence, k(3k− 1), k(3k + 1) and 3k(k + 1) are all divisible by 4. This is possible if and only if k is a multiple
of 4, say 4r, so that n = 12r is a multiple of 12.

On the other hand, suppose that n = 12r, for r ≥ 1. We can construct polyons corresponding to the
sums

1 + 4 + · · ·+ (3r − 2)− (3r + 1)− · · · − (9r − 2) + (9r + 1) + · · ·+ (12r − 2) = 0 ,

2 + 5 + · · ·+ (3r − 1)− (3r + 2)− · · · − (9r − 1) + (9r + 2) + · · ·+ (12r − 1) = 0 ,

3 + 6 = · · ·+ 3r − (3r + 3)− · · · − 9r + (9r + 3) + · · ·+ 12r = 0 ,

for the lengths of the sides in the three respective coordinate directions.

280. Consider all finite sequences of positive integers whose sum is n. Determine T (n, k), the number of
times that the positive integer k occurs in all of these sequences taken together.

Solution. Each ordered partition of n corresponds to a placement of vertical lines between certain
adjacent pairs of dots in a line of n dots. For example, the sequence {4, 2, 3, 1} partitioning 10 corresponds
to

· · · · | · ·| · · · | · .

Suppose, first that k = n. Then there is one possible sequence, and so T (n, n) = 1. If k = n− 1, then
there are two sequences ({1, n− 1} and {n− 1, 1}), so T (n, n− 1) = 2. Henceforth, let 2 ≤ k ≤ n− 2.

75



If k is the initial term of the sequence, the first vertical line will occur after the kth dot, and there are
n− k − 1 position between adjacent remaining dots in which lines might be placed to signify the sequences
beginning with k. There are 2n−k−1 such possibilities. Similarly, there are 2n−k−1 possibilities where k is
the final term of the sequence. Thus, k occurs 2n−k times as the first or the last term of a sequence.

Suppose that that k occurs in an intermediate position, and that the sum of the terms preceding k is
equal to s and the sum of the terms succeeding k is equal to n− k − s > 0. By an argument similar to that
in the previous paragraph, there are 2s−1 · 2n−k−s−1 = 2n−k−2 sequences where the terms before k have a
sum s. Since we have that 1 ≤ s ≤ n−k−1, there are (n−k−1)2n−k−2 occurrences of k in an intermediate
position in the sequences.

Therefore, the total number of occurrences of k in all sequences is

2n−k + (n− k − 1)2n−k−2 = (n− k + 3)2n−k ,

for 1 ≤ k ≤ n− 1, and T (n, n) = 1.

281. Let a be the result of tossing a black die (a number cube whose sides are numbers from 1 to 6 inclusive),
and b the result of tossing a white die. What is the probability that there exist real numbers x, y, z for
which x + y + z = a and xy + yz + zx = b?

Solution. Eliminating z from the system, we obtain the equation

x2 + (y − a)x + (y2 − ay + b) = 0 .

This is solvable for real values of x if and only if

(y − a)2 − 4(y2 − ay + b) ≥ 0 ⇐⇒ −3y2 + 2ay + (a2 − 4b) ≥ 0 .

Since −3y2+2ay+(a2−4b) is negative for large values of y, the inequality −3y2+2ay+(a2−4b) ≥ 0 is solvable
for real values of y if and only there are real solutions to the quadratic equation 3y2 − 2ay − (a2 − 4b) = 0,
and the condition for this is a2 ≥ 3b.

So, if a2 ≥ 3b, we can find a solution for the inequality in y, and then solve the equation for x, and
then set z = a − x − y. So the system is solvable if and only if a2 ≥ 3b, and this occurs when a ≥ 5 or
when (a, b) = (2, 1), (3, 1), (3, 2), (3, 3), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5). (In particular, when (a, b) = (3, 3),
(x, y, z) = (a/3, a/3, a/3) necessarily.) The required probability is 21/36 = 7/12.

Solution 2. The system of equations is equivalent to the system: xy + (x + y)[a − (x + y)] = b;
z = a− (x + y). The first of these equations can be written as

3(2x + y − a)2 + (3y − a)2 = 4(a2 − 3b) .

Hence, we require that a2 ≥ 3b. On the other hand, if a2 ≥ 3b, then we can determine a real pair (u, v) for
which 3u2 + v2 = 4(a2 − 3b). Then

(x, y, z) =
(

3u− v + 2a

6
,
a + v

3
,
2a− 3u− v

6

)
satisfies the system. There are 21 of the possible 36 outcomes of casting the dice for which a2 ≥ 3b, so the
desired probability is 7/12.

Comment. The necessity of the condition a2 ≥ 3b also follows from

a2 − 3b = (x2 + y2 + z2)− (xy + yz + zx) =
1
2
[(x− y)2 + (y − z)2 + (z − x)2] ≥ 0 .
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282. Suppose that at the vertices of a pentagon five integers are specified in such a way that the sum of the
integers is positive. If not all the integers are non-negative, we can perform the following operation:
suppose that x, y, z are three consecutive integers for which y < 0; we replace them respectively by the
integers x + y,−y, z + y. In the event that there is more than one negative integer, there is a choice of
how this operation may be performed. Given any choice of integers, and any sequence of operations,
must we arrive at a set of nonnegative integers after a finite number of steps?

For example, if we start with the numbers (2,−3, 3,−6, 7) around the pentagon, we can produce
(1, 3, 0,−6, 7) or (2,−3,−3, 6, 1).

Solution. Let x1, x2, x3, x4, x5 be the five numbers in order around the pentagon at some particular
point, and suppose that x3 < 0 and we change the numbers to x1, x2 + x3,−x3, x4 + x3, x5. Observe that
under the operation, the sum of the numbers remains unchanged, and so always positive, Let S be the sum
of the squares of the differences

S = (x1 − x3)2 + (x2 − x4)2 + (x3 − x5)2 + (x4 − x1)2 + (x5 − x2)2 ,

and T be the corresponding sum of squares after the operation has been performed:

T = (x1 + x3)2 + (x2 − x4)2 + (x3 + x5)2 + (x4 + x3 − x1)2 + (x5 − x2 − x3)2 .

Then S − T = −2x3(x1 + x2 + x3 + x4 + x5) > 0 since x3 < 0 and x1 + x2 + x3 + x4 + x5 > 0.

Each time we perform the operation, the sum S of the squares decreases. Since this sum is a positive
integer, this can happen only finitely often, so we must come to a stage at which there is no negative number
available to operate on. The result follows.

Comment. It appears to be the case that the number of operations required and the final configuration
when all the numbers are nonnegative is independent of the choice of the negative number on which to
operate at each stage.
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