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Solutions.
668. The nonisosceles right triangle ABC has ∠CAB = 90◦. The inscribed circle with centre T touches the

sides AB and AC at U and V respectively. The tangent through A of the circumscribed circle meets
UV produced in S. Prove that

(a) ST ‖ BC;

(b) |d1− d2| = r, where r is the radius of the inscribed circle and d1 and d2 are the respective distances
from S to AC and AB.

(a) Solution 1. Wolog, suppose that the situation is as diagrammed. ∠BAC = ∠AUT = ∠AV T = 90◦,
so that AUV T is a rectangle with AU = AV and UT = V T . Hence AUTV is a square with diagonals AT
and UV which right-bisect each other at W . Since SW right-bisects AT , by reflection in the line SW , we
see that ∆ASU ≡ ∆UST , and so ∠UTS = ∠UAS.

Let M be the midpoint of BC. Then M is the circumcentre of ∆ABC, so that MA = MC and
∠MCA = ∠MAC. Since AS is tangent to the circumcircle of ∆ABC, AS ⊥ AM . Hence

∠UTS = ∠UAS = ∠SAM − ∠BAM = 90◦ − ∠BAM = ∠MAC = ∠MCA .

Now UT ⊥ AB implies that UT‖AC. Since ∠UTS = ∠ACB, it follows that ST‖BC.

Solution 2. Wolog, suppose that S is on the opposite side of AB to C.

BT , being a part of the diameter produced of the inscribed circle, is a line of reflection that takes the
circle to itself and takes the tangent BA to BC. Hence ∠UBT = 1

2∠ABC. Let α = ∠ABT . By the tangent-
chord theorem applied to the circumscribed circle, ∠XAC = ∠ABC = 2α, so that ∠SAU = 90◦ − 2α.

Consider triangles SAU and STU . Since AUTV is a square (see the first solution), AU = UT and
∠AUV = ∠TUV = 45◦ so ∠SUA = ∠SUT = 135◦. Also SU is common. Hence ∆SAU ≡ ∆STU , so
∠STU = ∠SAU = 90◦ − 2α. Therefore,

∠STB = ∠UTB − ∠STU = (90◦ − α)− (90◦ − 2α) = α = ∠TBC

from which it results that ST‖BC.

Solution 3. As before ∆AUS ≡ ∆TUS, so ∠SAU = ∠STU . Since UT‖AC, ∠STU = ∠SY A. Also, by
the tangent-chord theorem, ∠SAB = ∠ACB. Hence ∠SY A = ∠STU = ∠SAB = ∠ACB, so ST‖BC.

Solution 4. In the Cartesian plane, let A ∼ (0, 0), B ∼ (0,−b), C ∼ (c, 0). The centre of the circum-
scribed circle is at M ∼ (c/2,−b/2). Since the slope of AM is −b/c, the equation of the tangent to the
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circumscribed circle through A is y = (c/b)x. Let r be the radius of the inscribed circle. Since AU = AV , the
equation of the line UV is y = x− r. The abscissa of S is the solution of x− r = (cx)/b, so S ∼ ( br

b−c , cr
b−c ).

Since T ∼ (r,−r), the slope of ST is b/c and the result follows.

(b) Solution 1. [· · ·] denotes area. Wolog, suppose that d1 > d2, as diagrammed.

Let r be the inradius of ∆ABC. Then [AV U ] = 1
2r2, [AV S] = 1

2rd1 and [AUS] = 1
2rd2. From

[AV U ] = [AV S]− [AUS], it follows that r2 = rd1 − rd2, whence r = d1 − d2.

Solution 2. [F. Crnogorac] Suppose that the situation is as diagrammed. Let P and Q be the respective
feet of the perpendiculars from S to AC and AB. Since ∠PV S = 45◦ and ∠SPV = 90◦, ∆PSV is isosceles
and so PS = PV = PA + AV = SQ + AV , i.e., d1 = d2 + r.

Solution 3. Using the coordinates of the fourth solution of (a), we find that

d1 =
∣∣∣∣ cr

b− c

∣∣∣∣ and d2 =
∣∣∣∣ br

b− c

∣∣∣∣
whence |d2 − d1| = r as desired.

(b) Solution. [M. Boase] Wolog, assume that the configuration is as diagrammed.

Since ∠SUB = ∠AUV = 45◦, SU is parallel to the external bisector of ∠A. This bisector is the locus
of points equidistant from AB and CA produced. Wolog, let PS meet this bisector in W , as in the diagram.
Then PW = PA so that PS − PA = PS − PW = SW = AU and thus d1 − d2 = r.

669. Let n ≥ 3 be a natural number. Prove that

1989|nnnn

− nnn

,

i.e., the number on the right is a multiple of 1989.

Solution 1. Let N = nnnn

− nnn

. Since 1989 = 32 · 13 · 17,

N ≡ 0 (mod 1989) ⇔ N ≡ 0 (mod 9, 13 & 17) .

We require the following facts:
(i) xu ≡ 0 (mod 9) whenever u ≥ 2 and x ≡ 0 (mod 3).
(ii) x6 ≡ 1 (mod 9) whenever x 6≡ 0 (mod 3).
(iii) xu ≡ 0 (mod 13) whenever x ≡ 0 (mod 13).
(iv) x12 ≡ 1 (mod 13) whenever x 6≡ 0 (mod 13), by Fermat’s Little Theorem.
(v) xu ≡ 0 (mod 17) whenever x ≡ 0 (mod 17).
(vi) x16 ≡ 1 (mod 17) whenever x 6≡ 0 (mod 17), by FLT.
(vii) x4 ≡ 1 (mod 16) whenever x = 2y + 1 is odd. (For, (2y + 1)4 = 16y3(y + 2) + 8y(3y + 1) + 1 ≡ 1
(mod 16).)

Note that

N = nnn

[
n(nnn

−nn) − 1
]

= nnn

[
nnn(nnn−n−1) − 1

]
.

Modulo 17. If n ≡ 0 (mod 17), then nnn ≡ 0, and so N ≡ 0 (mod 17).

If n is even, n ≥ 4, then nn ≡ 0 (mod 16), so that

nnn(nnn−n−1) ≡ 1(nnn−n−1) ≡ 1

so N ≡ 0 (mod 17).
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Suppose that n is odd. Then nn ≡ n (mod 4)

⇒ nn − n = 4r for some r ∈ N

⇒ nnn−n = n4r ≡ 1 (mod 16)

⇒ nnn−n − 1 ≡ 0 (mod 16)

⇒ nnn(nnn−n−1) ≡ 1 (mod 17

⇒ N ≡ 0 (mod 17) .

Hence N ≡ 0 (mod 17) for all n ≥ 3.

Modulo 13. If n ≡ 0 (mod 13), then nnn ≡ 0 and N ≡ 0 (mod 13).

Suppose that n is even. Then nn ≡ 0 (mod 4), so that nnn − nn ≡ 0 (mod 4). Suppose that n is odd.
Then nnn−n − 1 ≡ 0 (mod 16) and so nnn − nn ≡ 0 (mod 4).

If n ≡ 0 (mod 3), then nn ≡ 0 so nn(nnn−n − 1) ≡ 0 (mod 3). If n ≡ 1 (mod 3), then nnn−n ≡ 1 so
nn(nnn−n−1) ≡ 0 (mod 3). If n ≡ 2 (mod 3), then, as nn−n is always even, nnn−n ≡ 1 so nn(nnn−n−1) ≡ 0
(mod 3). Hence, for all n, nnn − nn ≡ 0 (mod 3).

It follows that nnn − nn ≡ 0 (mod 12) for all values of n. Hence, when n is not a multiple of 13,
n(nnn

−n) ≡ 1 so N ≡ 0 (mod 13).

Modulo 9. If n ≡ 0 (mod 3), then nnn ≡ 0 (mod 9), so N ≡ 0 (mod 9). Let n 6≡ 0 (mod 9). Since
nnn − nn is divisible by 12, it is divisible by 6, and so n(nnn

−nn) ≡ 1 and N ≡ 0 (mod 9). Hence N ≡ 0
(mod 9) for all n.

The required result follows.

670. Consider the sequence of positive integers {1, 12, 123, 1234, 12345, · · ·} where the next term is constructed
by lengthening the previous term at the right-hand end by appending the next positive integer. Note
that this next integer occupies only one place, with “carrying”occurring as in addition. Thus, the ninth
and tenth terms of the sequence are 123456789 and 1234567900 respectively. Determine which terms of
the sequence are divisible by 7.

Solution 1. For positive integer n, let xn be the nth term of the sequence, and let x0 = 0. Then, for
n ≥ 0, xn+1 = 10xn + (n + 1) so that xn+1 ≡ 3xn + (n + 1) (mod 7). Suppose that m is a nonnegative
integer and that x7m = a. Then

x7m+1 ≡ 3a + 1 x7m+2 ≡ 2a + 5 x7m+3 ≡ 6a + 4 x7m+4 ≡ 4a + 2
x7m+5 ≡ 5a + 4 x7m+6 ≡ a + 4 x7m+7 ≡ 3a + 5

In particular, we find that, modulo 7, {x7m} is periodic with the values {0, 5, 6, 2, 4, 3} repeated, so that
0 ≡ x0 ≡ x42 ≡ x84 ≡ · · ·. Hence, modulo 7, x7m+1 ≡ 0 iff a ≡ 2, x7m+2 ≡ 0 iff a ≡ 1, x7m+3 ≡ 0 iff a ≡ 4,
x7m+4 ≡ 0 iff a ≡ 3, x7m+5 ≡ 0 iff a ≡ 2 and x7m+6 ≡ 0 iff a ≡ 3. Putting this all together, we find that
xn ≡ 0 (mod 7) if and only if n ≡ 0, 22, 26, 31, 39, 41 (mod 42).

Solution 2. [C. Deng] Recall the formula

rn−1 + 2rn−2 + · · ·+ (n− 1)r + n =
rn+1 − r − (r − 1)n

(r − 1)2
.

[Derive this.] Noting that

an = 1 · 10n−1 + 2 · · · 10n−2 + · · ·+ (n− 1) · 10 + n ,
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we find that
81an = 10n+1 − 10− 9n

for each positive integer n. Therefore

81(an+42 − an) = 10n+1((106)7 − 1)− 9(42)

for each positive integer n. Since 106 ≡ 1 (modulo 7), it follows that an+42 ≡ an (modulo 7), so that the
sequence has period 42 (modulo 7). Thus, the value of n for which an is divisible by 7 are the solutions of
the congruence 3n+1 ≡ 2n + 3 (modulo 7). These are n ≡ 22, 26, 31, 39, 41, 42 (modulo 7).

671. Each point in the plane is coloured with one of three distinct colours. Prove that there are two points
that are unit distant apart with the same colour.

Solution 1. Suppose that the points in the plane are coloured with three colours. Select any point P .

We form two rhombi PQSR and PUWV , one the rotated image of the other for which all of the
following segments have unit length: PQ, PR, SQ, SR, QR, PU , PV , WU , WV , UV , SW . If P,Q,R are
all coloured differently, then either the result holds or S must have the same colour as P . If P,U, V are all
coloured differently, then either the result holds or W must have the same colour as P . Hence, either one of
the triangles PQR and PUV has two vertices the same colour, or else S and W must be coloured the same.

Solution 2. Suppose, if possible, the planar points can be coloured without two points unit distance
apart being coloured the same. Then if A and B are distant

√
3 apart, then there are distinct points C

and D such that ACD and BCD are equilateral triangles (ACBD is a rhombus). Since A and B must be
coloured differently from the two colours of C and D, A and B must have the same colour. Hence, if O is
any point in the plane, every point on the circle of radius

√
3 consists of points coloured the same as O. But

there are two points on this circle unit distant apart, and we get a contradiction of our initial assumption.

Solution 3. Suppose we can colour the points of the plane with three colours, red, blue and yellow so
that the result fails. We show that three collinear points at unit distance are coloured with three different
colours. Let P,Q,R be three such points, and let P,R be opposite sides of a unit hexagon ABPCDR whose
centre is Q.

If, say, Q is red, B and A must be coloured differently, as are A and R, R and D, D and C, C and P ,
P and B. Thus, B, R, C, are one colour, say, blue, and A, D, P the other, say yellow. The preliminary
result follows.

Now consider any isosceles triangle UV W with |UV | = |UW | = 3 and |V W | = 2. It follows from the
preliminary result that U and V must have the same colour, as do U and W . But V and W cannot have
the same colour and we reach a contradiction.

Solution 4. [D. Arthur] Suppose that the result is false. Let A, B be two points with |AB| = 3. Within
the segment AB select P,Q with |AP | = |PQ| = |QB| = 1, and suppose that R and S are points on the
same side of AB with ∆RAP and ∆SPQ equilateral. Then |RS| = 1. Suppose if possible that A and Q
have the same colour. Then P must have a second colour and R and S the third, leading to a contradiction.
Hence A must be coloured differently from both P and Q. Similarly B must be coloured differently from
both P and Q. Since P and Q are coloured differently, A and B must have the same colour.

Now consider a trapezoid ABCD with |CB| = |AB| = |AD| = 3 and |CD| = 1. By the foregoing
observation, C, A, B, D must have the same colour. But this yields a contradiction. The result follows.

672. The Fibonacci sequence {Fn} is defined by F1 = F2 = 1 and Fn+2 = Fn+1+Fn for n = 0,±1,±2,±3, · · ·.
The real number τ is the positive solution of the quadratic equation x2 = x + 1.

(a) Prove that, for each positive integer n, F−n = (−1)n+1Fn.

(b) Prove that, for each integer n, τn = Fnτ + Fn−1.
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(c) Let Gn be any one of the functions Fn+1Fn, Fn+1Fn−1 and F 2
n . In each case, prove that Gn+3+Gn =

2(Gn+2 + Gn+1).

(a) Solution. Since F0 = F2 − F1 = 0, the result holds for n = 0. Since F−1 = F1 − F0 = 1, the result
holds for n = 1. Suppose that we have established the result for n = 0, 1, 2, · · · r. Then

F−(r+1) = F−r−1 = F−r+1 − F−r = (−1)rFr−1 − (−1)r+1Fr = (−1)r+2(Fr−1 + Fr) = (−1)r+2Fr+1 .

The result follows by induction.

(b) Solution 1. The result holds for n = 0, n = 1 and n = 2. Suppose that it holds for n = 0, 1, 2, · · · , r.
Then

τ r+1 = τ r + τ r−1 = (Fr + Fr−1)τ + (Fr−1 + Fr−2) = Fr+1τ + Frτ .

This establishes the result for positive values of n. Now τ−1 = τ − 1 = F−1τ + F−2, so the result holds for
n = −1. Suppose that we have established the result for n = 0,−1,−2, · · · ,−r. Then

τ−(r+1) = τ−(r−1) − τ−r = (F−(r−1) − F−r)τ + (F−r − F−(r+1)) = F−(r+1)τ + F−(r+2) .

Solution 2. The result holds for n = 1. Suppose that it holds for n = r ≥ 0. Then

τ r+1 = τ r · τ = (Frτ + Fr−1)τ = Frτ
2 + Fr−1τ

= (Fr + Fr−1)τ + Fr = Fr+1τ + Fr .

Now consider nonpositive values of n. We have that τ0 = 1, τ−1 = τ − 1, τ−2 = 1− τ−1 = 2− τ . Suppose
that we have shown for r ≥ 0 that τ−r = F−rτ + F−r−1. Then

τ−(r+1) = τ−1τ−r = F−r + F−r−1(τ − 1) = F−r−1τ + (F−r − F−r−1)

= F−r−1τ + F−r−2 = F−(r+1)τ + F−(r+1)−1 .

By induction, it follows that the result holds for both positive and negative values of n.

(c) Solution. Let Gn = FnFn+1. Then

Gn+3 + Gn = Fn+4Fn+3 + Fn+1Fn

= (Fn+3 + Fn+2)(Fn+2 + Fn+1) + (Fn+3 − Fn+2)(Fn+2 − Fn+1)
= 2(Fn+3Fn+2 + Fn+2Fn+1) = 2(Gn+2 + Gn+1) .

Let Gn = Fn+1Fn−1. Then

Gn+3 + Gn = Fn+4Fn+2 + Fn+1Fn−1

= (Fn+3 + Fn+2)(Fn+1 + Fn) + (Fn+3 − Fn+2)(Fn+1 − Fn)
= 2(Fn+3Fn+1 + Fn+2Fn) = 2(Gn+2 + Gn+1) .

Let Gn = F 2
n . Then

Gn+3 + Gn = F 2
n+3 + F 2

n = (Fn+2 + Fn+1)2 + (Fn+2 − Fn+1)2

= F 2
n+2 + 2Fn+2Fn+1 + F 2

n+1 + F 2
n+2 − 2Fn+2Fn+1 + F 2

n+1 = 2(Gn+2 + Gn+1) .
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Comments. Since F 2
n = FnFn−1 + FnFn−2, the third result of (c) can be obtained from the first two. J.

Chui observed that, more generally, we can take Gn = Fn+uFn+v where u and v are integers. Then

Gn+3 + Gn − 2(Gn+1 + Gn+2)
= (Fn+3+uFn+3+v + Fn+uFn+v)− 2(Fn+2+uFn+2+v + Fn+1+uFn+1+v)
= (2Fn+1+u + Fn+u)(2Fn+1+v + Fn+v) + Fn+uFn+v

− 2(Fn+1+u + Fn+u)(Fn+1+v + Fn+v)− 2Fn+1+uFn+1+v

= 0 ,

so that Gn+3 + Gn = 2(Gn+2 + Gn+1).

673. ABC is an isosceles triangle with AB = AC. Let D be the point on the side AC for which CD = 2AD.
Let P be the point on the segment BD such that ∠APC = 90◦. Prove that ∠ABP = ∠PCB.

Solution 1. Produce BA to E so that BA = AE and join EC. Then D is the centroid of ∆BEC
and BD produced meets EC at its midpoint F . Since AE = AC, ∆CAE is isosceles and so AF ⊥ EC.
Also, since A and F are midpoints of their respective segments, AF‖BC and so ∠AFB = ∠DBC. Because
∠AFC and ∠APC are both right, APCF is concyclic so that ∠AFP = ∠ACP .

Hence ∠ABP = ∠ABC − ∠DBC = ∠ABC − ∠AFB = ∠ACB − ∠ACP = ∠PCB.

Solution 2. Let E be the midpoint of BC and let F be a point on BD produced so that AF‖BC. Since
triangle ADF and CDB are similar and CD = 2AD, then AF = EC and AECF is a rectangle.

Since ∠APC = ∠AFC = 90◦, the quadrilateral APCF is concyclic, so that ∠AFB = ∠ACP . Since
AF‖BC, ∠AFB = ∠FBC. Therefore

∠ABP = ∠ABC − ∠PBC = ∠ABC − ∠FBC = ∠ACB − ∠ACP = ∠PCB .

Solution 3. [S. Sun] The circle with diameter AC has as its centre the midpoint O of AC. It intersects
BC at the midpoint E (since AB = AC and AE ⊥ BC). Let EO produced meet the circle again at F ; then
AECF is concyclic.

Suppose FB meets AC at G. A rotation of 180◦ about O takes A ↔ C, F ↔ E, so that BC = 2EC =
2AF and AF‖BC. The triangles AGF and CGB are similar. Since BC = 2AF , then CG = 2GA, so that G
and D coincide. Because AF‖BC and AFCP is concyclic, ∠DBC = ∠DFA = ∠PFA = ∠PCA. Therefore

∠ABP = ∠ABC − ∠DBC = ∠ABC − ∠PCA = ∠PCB .

Solution 4. Assign coordinates: A ∼ (0, a), B ∼ (−1, 0), C ∼ (1, 0). Then D ∼ ( 1
3 , 2a

3 ). Let P ∼ (p, q).
Then, since P lies on the lines y = a

2 (x + 1), q = a
2 (p + 1). The relation AP ⊥ PC implies that

−1 =
(

q − a

p

)(
q

p− 1

)
=

[
a(p− 1)

2p

][
a(p + 1)
2(p− 1)

]
=

a2(p + 1)
4p

=
aq

2p

whence p = −a2/(a2 + 4) and q = 2a/(a2 + 4). Now

tan∠ABP =
a− (a/2)
1 + (a2/2)

=
a

2 + a2

while
tan∠PCB =

−q

p− 1
=

−2a

−a2 − (a2 + 4)
=

a

a2 + 2
= tan ∠ABP .

The result follows.
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Solution 5. [C. Deng] Let A ∼ (0, b), B ∼ (−a, 0), C ∼ (a, 0) so that D ∼ (a/3, 2b/3). The midpoint M
of AC has coordinates (a/2, b/2). It can be checked that the point with coordinates(

−ab2

4a2 + b2
,

2a2b

4a2 + b2

)
is the same distance from M as the points AB so that it is on the circle with diameter AC and AP‖CP .
Since this point also lies on the line with equation 2ay = bx + ba through B and D, it is none other than
the point P . The circle with equation

x2 +
(

y +
a2

b

)2

= a2 +
a4

b2

is tangent to AB and AC at B and C respectively and contains the point P . Hence ∠PCB = ∠PBA =
∠DBA, as desired.

674. The sides BC, CA, AB of triangle ABC are produced to the poins R, P , Q respectively, so that
CR = AP = BQ. Prove that triangle PQR is equilateral if and only if triangle ABC is equilateral.

Solution . Suppose that triangle ABC is equilateral. A rotation of 60◦ about the centroid of ∆ABC
will rotate the points R, P and Q. Hence ∆PQR is equilateral. On the other hand, suppose, wolog, that
a ≥ b ≥ c, with a > c. Then, for the internal angles of ∆ABC, A ≥ B ≥ C. Suppose that |PQ| = r,
|QR| = p and |PR| = q, while s is the common length of the extensions. Then

p2 = s2 + (a + s)2 + 2s(a + s) cos B

and
r2 = s2 + (c + s)2 + 2s(c + s) cos A .

Since a > c and cos B ≥ cos A, we find that p > r, and so ∆PQR is not equilateral.

675. ABC is a triangle with circumcentre O such that ∠A exceeds 90◦ and AB < AC. Let M and N be
the midpoints of BC and AO, and let D be the intersection of MN and AC. Suppose that AD =
1
2 (AB + AC). Determine ∠A.

Solution. Assign coordinates: A ∼ (0, 0), B ∼ (2 cos θ, 2 sin θ), C ∼ (2u, 0) where 90◦ < θ < 180◦ and
u > 1. First, we determine O as the intersection of the right bisectors of AB and AC. The centre of AB
has coordinates (cos θ, sin θ) and its right bisector has equation

(cos θ)x + (sin θ)y = 1 .

The centre of segment AC has coordinates (u, 0) and its right bisector has equation x = u. Hence, we find
that

O ∼
(

u,
1− u cos θ

sin θ

)
N ∼

(
1
2
u,

1− u cos θ

2 sin θ

)
M ∼ (u + cos θ, sin θ)

and
D ∼ (u + 1, 0) .

The slope of MD is (sin θ)/(cos θ − 1). The slope of ND is (u cos θ − 1)/((u + 2) sin θ). Equating these two
leads to the equation

u(cos2 θ − sin2 θ − cos θ) = 2 sin2 θ + cos θ − 1
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which reduces to
(u + 1)(2 cos2 θ − cos θ − 1) = 0 .

Since u + 1 > 0, we have that 0 = 2 cos2 θ − cos θ − 1 = (2 cos θ + 1)(cos θ − 1). Hence cos θ = −1/2 and so
∠A = 120◦.

676. Determine all functions f from the set of reals to the set of reals which satisfy the functional equation

(x− y)f(x + y)− (x + y)f(x− y) = 4xy(x2 − y2)

for all real x and y.
Solution. Let u and v be any pair of real numbers. We can solve x + y = u and x− y = v to obtain

(x, y) =
(

1
2
(u + v),

1
2
(u− v)

)
.

From the functional equation, we find that vf(u)− uf(v) = (u2 − v2)uv, whence

f(u)
u

− u2 =
f(v)

v
− v2 .

Thus (f(x)/x)− x2 must be some constant a, so that f(x) = x3 + ax. This checks out for any constant a.

677. For vectors in three-dimensional real space, establish the identity

[a× (b−c)]2 +[b× (c−a)]2 +[c× (a−b)]2 = (b×c)2 +(c×a)2 +(a×b)2 +(b×c+c×a+a×b)2 .

Solution 1. Let u = b× c, v = c× a and w = a×b. Then, for example, a× (b− c) = a×b− a× c =
a× b + c× a = v + w. The left side is equal to

(v+w) · (v+w)+(u+w) · (u+w)+(u+v) · (u+v) = 2[(u ·u)+(v ·v)+(w ·w)+(u ·v)+(v ·w)+(w ·u)]

while the right side is equal to

(u · u) + (v · v) + (w ·w) + (u + v + w)2

which expands to the final expression for the left side.

Solution 2. For vectors u, v, w, we have the identities

(u× v)×w = (u ·w)v − (v ·w)u

and
u · (v ×w) = (u× v) ·w .

Using these, we find for example that

[a× (b− c)] · [a× (b− c)] = [a× (b− c)× a] · (b− c)
= {(a · a)(b− c)− [(b− c) · a]a} · (b− c)

= |a|2[|b|2 + |c|2 − 2(b · c)]− [(b · a− c · a]2

= |a|2[|b|2 + |c|2 − 2(b · c)]− (b · a)2 − (c · a)2 + 2(b · a)(c · a) .

Also
(b× c) · (b× c) = [(b · b)c− (c · b)b] · c

= |b|2|c|2 − (c · b)2
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and

(b× c) · (c× a) = [(b× c)× c] · a = (b · c)(c · a)− (c · c)(b · a) .

From these the identity can be checked.

678. For a, b, c > 0, prove that

1
a(b + 1)

+
1

b(c + 1)
+

1
c(a + 1)

≥ 3
1 + abc

.

Solution 1. It is easy to verify the following identity

1
a(1 + b)

+
1

1 + abc
=

1
1 + abc

(
1 + a

a(1 + b)
+

b(1 + c)
1 + b

)
.

This and its analogues imply that

1
a(b + 1)

+
1

b(c + 1)
+

1
c(a + 1)

+
3

1 + abc
=

1
1 + abc

(
1 + a

a(1 + b)
+

b(1 + c)
1 + b

+
1 + b

b(1 + c)
+

c(1 + a)
1 + c

+
1 + c

c(1 + a)
+

a(1 + b)
1 + a

)
.

The arithmetic-geometric means inequality yields

1
a(b + 1)

+
1

b(c + 1)
+

1
c(a + 1)

+
3

1 + abc
≥ 6× 1

1 + abc
.

Miraculously, subtracting 3/(1 + abc) from both sides yields the required inequality. ♥

Solution 2. Multiplying the desired inequality by (1+abc)a(b+1)b(c+1)c(a+1), after some manipulation,
produces the equivalent inequality:

abc(bc2 + ca2 + ab2) + (bc + ca + ab) + (abc)2(a + b + c) + (bc2 + ca2 + ab2)
≥ 2abc(a + b + c) + 2abc(bc + ca + ab) .

Pairing off the terms of the left side and applying the arithemetic-geometric means inequality, we get

(a2b3c + bc) + (ab2c3 + ac) + (a3bc2 + ab) + (a3b2c2 + ab2)

+ (a2b3c2 + bc2) + (a2b2c3 + ca2)

≥ 2ab2c + 2abc2 + 2a2bc + 2a2b2c + 2ab2c2 + 2a2bc2

= 2abc(a + b + c) + 2abc(ab + bc + ca)

as required.

Solution 3. [C. Deng] Taking the difference between the two sides yields, where the summation is a

9



cyclic one,

∑ (
1

a(b + 1)
− 1

1 + abc

)
=

∑ 1 + abc− a(b + 1)
a(b + 1)(1 + abc)

=
1

1 + abc

∑ (
b

b + 1
(c− 1)− 1

a(b + 1)
(a− 1)

)
=

1
1 + abc

∑ (
c

c + 1
(a− 1)− 1

a(b + 1)
(a− 1)

)
=

1
1 + abc

∑
(a− 1)

(
c

c + 1
− 1

a(b + 1)

)
=

1
1 + abc

∑ (
a2 − 1

a

)(
abc + ac− c− 1

(a + 1)(b + 1)(c + 1)

)
=

1
(1 + abc)(1 + a)(1 + b)(1 + c)

∑ (
a2bc + a2c +

c

a
+

1
a
− ac− a− bc− c

)
=

1
(1 + abc)(1 + a)(1 + b)(1 + c)

∑ (
a2bc + a2c− 2ab− 2a +

b

c
+

1
c

)
=

1
(1 + abc)(1 + a)(1 + b)(1 + c)

∑ b + 1
c

(a2c2 − 2ac + 1)

=
1

(1 + abc)(1 + a)(1 + b)(1 + c)

∑ b + 1
c

(ac− 1)2 ≥ 0 ,

as desired.

Solution 4. [S. Seraj] Using the Arithmetic-Geometric Means Inequality, we obtain a2c+a2b2c3 ≥ 2a2bc2

and ab + a3bc2 ≥ 2a2bc and the two cyclic variants of each. Adding the six inequalities yields that

a2c + a2b2c3 + ab2 + a3b2c2 + bc2 + a2b3c2 + ab + a3bc2 + bc + a2b3c + ac + ab2c3

≥ 2a2bc2 + 2a2b2c + 2ab2c2 + 2a2bc + 2ab2c + 2abc2 .

Adding the same terms to both sides of the equations, and then factoring the two sides leads to

(1 + abc)(3abc + a2bc + ab2c + abc2 + a2c + ab2 + bc2 + ab + bc + ca)
≥ 3abc(abc + ac + bc + ab + a + b + c + 1) = 3abc(a + 1)(b + 1)(c + 1) .

Carrying out some divisions and strategically grouping terms in the numerator yields that

(abc2 + bc2 + abc + bc) + (a2bc + a2c + abc + ac) + (ab2c + ab2 + abc + ab)
abc(a + 1)(b + 1)(c + 1)

≥ 3
1 + abc

.

Factoring each bracket and simplifying leads to the desired inequality.

679. Let F1 and F2 be the foci of an ellipse and P be a point in the plane of the ellipse. Suppose that
G1 and G2 are points on the ellipse for which PG1 and PG2 are tangents to the ellipse. Prove that
∠F1PG1 = ∠F2PG2.

Solution. Let H1 be the reflection of F1 in the tangent PG1, and H2 be the reflection of F2 in the
tangent PG2. We have that PH1 = PF1 and PF2 = PH2. By the reflection property, ∠PG1F2 =
∠F1G1Q = ∠H1G1Q, where Q is a point on PG1 produced. Therefore, H1F2 intersects the ellipse in G1.
Similarly, H2F1 intersects the ellipse in K2. Therefore

H1F2 = H1G1 + G1F2 = F1G1 + G1F2

= F1G2 + G2F2 = F1G2 + G2H2 = H2F1 .
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Therefore, triangle PH1F2 and PF1H2 are congruent (SSS), so that ∠H1PF2 = ∠H2PF1. It follows that

2∠F1PG1 = ∠H1PF1 = ∠H2PF2 = 2∠F2PG2

and the desired result follows.

680. Let u0 = 1, u1 = 2 and un+1 = 2un + un−1 for n ≥ 1. Prove that, for every nonnegative integer n,

un =
∑ {

(i + j + k)!
i!j!k!

: i, j, k ≥ 0, i + j + 2k = n

}
.

Solution 1. Suppose that we have a supply of white and of blue coaches, each of length 1, and of red
coaches, each of length 2; the coaches of each colour are indistinguishable. Let vn be the number of trains
of total length n that can be made up of red, white and blue coaches of total length n. Then v0 = 1, v1 = 2
and v2 = 5 (R, WW, WB, BW, BB). In general, for n ≥ 1, we can get a train of length n + 1 by appending
either a white or a blue coach to a train of length n or a red coach to a train of length n − 1, so that
vn+1 = 2vn + vn−1. Therefore vn = un for n ≥ 0.

We can count vn in another way. Suppose that the train consists of i white coaches, j blue coaches
and k red coaches, so that i + j + 2k = n. There are (i + j + k)! ways of arranging the coaches in order;
any permutation of the i white coaches among themselves, the j blue coaches among themselves and k red
coaches among themselves does not change the train. Therefore

un =
∑ {

(i + j + k)!
i!j!k!

: i, j, k ≥ 0, i + j + 2k = n

}
.

Solution 2. Let f(t) =
∑∞

n=0 untn. Then

f(t) = u0 + u1t + (2u1 + u0)t2 + (2u2 + u1)t3 + · · ·
= u0 + u1t + 2t(f(t)− u0) + t2f(t) = u0 + (u1 − 2u0)t + (2t + t2)f(t)

= 1 + (2t + t2)f(t) ,

whence
f(t) =

1
1− 2t− t2

=
1

1− t− t− t2

=
∞∑

n=0

(t + t + t2)n =
∞∑

n=0

tn
[∑ {

(i + j + k)!
i!j!k!

: i, j, k ≥ 0, i + j + 2k = n

}]
.

Solution 3. Let wn be the sum in the problem. It is straightforward to check that u0 = w0 and u1 = w1.
We show that, for n ≥ 1, wn+1 = 2wn + wn−1 from which it follows by induction that un = wn for each n.
By convention, let (−1)! = ∞. Then, for i, j, k ≥ 0 and i + j + 2k = n + 1, we have that

(i + j + k)!
i!j!k!

=
(i + j + k)(i + j + k − 1)!

i!j!k!

=
(i + j + k − 1)!

(i− 1)!j!k!
+

(i + j + k − 1)!
i!(j − 1)!k!

+
(i + j + k − 1)!

i!j!(k − 1)!
,

whence

wn+1 =
∑ {

(i + j + k − 1)!
(i− 1)!j!k!

: i, j, k ≥ 0, (i− 1) + j + 2k = n

}
+

∑ {
(i + j + k − 1)!

i!(j − 1)!k!
: i, j, k ≥ 0, i + (j − 1) + 2k = n

}
+

∑ {
(i + j + k − 1)!

i!j!(k − 1)!
: i, j, k ≥ 0, i + j + 2(k − 1) = n− 1

}
= wn + wn + wn−1 = 2wn + wn−1
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as desired.

681. Let a and b, the latter nonzero, be vectors in R3. Determine the value of λ for which the vector equation

a− (x× b) = λb

is solvable, and then solve it.

Solution 1. If there is a solution, we must have a · b = λ|b|2, so that λ = (a · b)/|b|2. On the other
hand, suppose that λ has this value. Then

0 = b× a− b× (x× b)
= b× a− [(b · b)x− (b · x)b]

so that
b× a = |b|2x− (b · x)b .

A particular solution of this equation is

x = u ≡ b× a
|b|2

.

Let x = z be any other solution. Then

|b|2(z− u) = |b|2z− |b|2u
= (b× a + (b · z)b)− (b× a + (b · u)b)
= (b · z)b

so that z− u = µb for some scalar µ.

We check when this works. Let x = u + µb for some scalar µ. Then

a− (x× b) = a− (u× b) = a− (b× a)× b
|b|2

= a +
b× (b× a)

|b|2

= a +
(b · a)b− (b · b)a

|b|2

= a +
(

b · a
|b|2

)
b− a = λb ,

as desired. Hence, the solutions is

x =
b× a
|b|2

+ µb ,

where µ is an arbitrary scalar.

Solution 2. [B. Yahagni] Suppose, to begin with, that {a,b} is linearly dependent. Then a = [(a ·
b)/|b|2]b. Since (x×b) ·b = 0 for all x, the equation has no solutions except when λ = (a ·b)/|b|2. In this
case, it becomes x× b = 0 and is satisfied by x = µb, where µ is any scalar.

Otherwise, {a,b,a× b} is linearly independent and constitutes a basis for R3. Let a solution be

x = αa + µb + β(a× b) .
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Then
x× b = α(a× b) + β[(a× b)× b] = α(a× b) + β(a · b)b− β(b · b)a

and the equation becomes
(1 + β|b|2)a− β(a · b)b− α(a× b) = λb .

Therefore α = 0, µ is arbitrary, β = −1/|b|2 and λ = −β(a · b) = (a · b)/|b|2.

Therefore, the existence of a solution requires that λ = (a · b)/|b|2 and the solution then is

x = µb− 1
|b|2

(a× b) .

Solution 3. Writing the equation in vector components yields the system

b3x2 − b2x3 = a1 − λb1 ;

−b3x1 + b1x3 = a2 − λb2 ;

b2x1 − b1x2 = a3 − λb3 .

The matrix of coefficients of the left side is of rank 2, so that the corresponding homogeneous system of
equations has a single infinity of solutions. Multiplying the three equations by b1, b2 and b3 respectively and
adding yields

0 = a1b1 + a2b2 + a3b3 − λ(b2
1 + b2

2 + b2
3) .

Thus, for a solution to exist, we require that

λ =
a1b1 + a2b2 + a3b3

b2
1 + b2

2 + b2
3)

.

In addition, we learn that the corresponding homogeneous system is satisfied by

(x1, x2, x3) = µ(b1, b2, b3)

where µ is an arbitrary scalar.

It remains to find a particular solution for the nonhomogeneous system. Multiplying the third equation
by b2 and subtracting the second multiplied by b3, we obtain that

(b2
2 + b2

3)x1 = b1(b2x2 + b3x3) + (a3b2 − a2b3) .

Therefore, setting b2
1 + b2

2 + b2
3 = b2, we have that

b2x1 = b1(b1x1 + b2x2 + b3x3) + (a3b2 − a2b3) .

Similarly
b2x2 = b2(b1x1 + b2x2 + b3x3) + (a1b3 − a3b1) ,

b2x3 = b3(b1x1 + b2x2 + b3x3) + (a2b1 − a1b2) .

Observing that b1x1 + b2x2 + b3x3 vanishes when

(x1, x2, x3) = (a3b2 − a2b3, a1b3 − a3b1, a2b1 − a1b2) ,

we obtain a particular solution to the system:

(x1, x2, x3) = b−2(a3b2 − a2b3, a1b3 − a3b1, a2b1 − a1b2) .
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Adding to this the general solution of the homogeneous system yields the solution of the nonhomogeneous
system.

682. The plane is partitioned into n regions by three families of parallel lines. What is the least number of
lines to ensure that n ≥ 2010?

Solution. Suppose that there are x, y and z lines in the three families. Assume that no point is common
to three distinct lines. The x+ y lines of the first two families partition the plane into (x+1)(y +1) regions.
Let λ be one of the lines of the third family. It is cut into x+y +1 parts by the lines in the first two families,
so the number of regions is increased by x + y + 1. Since this happens z times, the number of regions that
the plane is partitioned into by the three families of

n = (x + 1)(y + 1) + z(x + y + 1) = (x + y + z) + (xy + yz + zx) + 1 .

Let u = x + y + z and v = xy + yz + zx. Then (by the Cauchy-Schwarz Inequality for example),
v ≤ x2 + y2 + z2, so that u2 = x2 + y2 + z2 + 2v ≥ 3v. Therefore, n ≤ u + 1

3u2 + 1. This takes the value
2002 when u = 76. However, when (x, y, z) = (26, 26, 25), then u = 77, v = 1976 and n = 2044. Therefore,
we need at least 77 lines, but a suitably chosen set of 77 lines will suffice.

683. Let f(x) be a quadratic polynomial. Prove that there exist quadratic polynomials g(x) and h(x) for
which

f(x)f(x + 1) = g(h(x)) ,

Solution 1. [A. Remorov] Let f(x) = a(x− r)(x− s). Then

f(x)f(x + 1) = a2(x− r)(x− s + 1)(x− r + 1)(x− s)

= a2(x2 + x− rx− sx + rs− r)(x2 + x− rx− sx + rs− s)

= a2[(x2 − (r + s− 1)x + rs)− r][(x2 − (r + s− 1)x + rs)− s]
= g(h(x)) ,

where g(x) = a2(x− r)(x− s) = af(x) and h(x) = x2 − (r + s− 1)x + rs.

Solution 2. Let f(x) = ax2 + bx + c, g(x) = px2 + qx + r and h(x) = ux2 + vx + w. Then

f(x)f(x + 1) = a2x4 + 2a(a + b)x3 + (a2 + b2 + 3ab + 2ac)x2 + (b + 2c)(a + b)x + c(a + b− c)

g(h(x)) = p(ux2 + vx + w)2 + q(ux + vx + w) + r

= pu2x4 + 2puvx3 + (2puw + pv2 + qu)x2 + (2pvw + qv)x + (pw2 + qw + r) .

Equating coefficients, we find that pu2 = a2, puv = a(a + b), 2puw + pv2 + qu = a2 + b2 + 3ab + 2ac,
(b + 2c)(a + b) = (2pw + q)v and c(a + b + c) = pw2 + qw + r. We need to find just one solution of this
system. Let p = 1 and u = a. Then v = a + b and b + 2c = 2pw + q from the second and fourth equations.
This yields the third equation automatically. Let q = b and w = c. Then from the fifth equation, we find
that r = ac.

Thus, when f(x) = ax2 + bx + c, we can take g(x) = x2 + bx + ac and h(x) = ax2 + (a + b)x + c.

Solution 3. [S. Wang] Suppose that

f(x) = a(x + h)2 + k = a(t− (1/2))2 + k ,

where t = x + h + 1
2 . Then f(x + 1) = a(x + 1 + h)2 + k = a(t + (1/2))2 + k, so that

f(x)f(x + 1) = a2(t2 − (1/4))2 + 2ak(t2 + (1/4)) + k2

= a2t4 +
(
− a2

2
+ 2ak

)
t2 +

(
a2

16
+

ak

2
+ k2

)
.
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Thus, we can achieve the desired representation with h(x) = t2 = x2 + (2h + 1)x + 1
4 and g(x) = a2x2 +

(−a2

2 + 2ak)x + (a2

16 + ak
2 + k2).

Solution 4. [V. Krakovna] Let f(x) = ax2 + bx + c = au(x) where u(x) = x2 + dx + e, where b = ad
and c = ae. If we can find functions v(x) and w(x) for which u(x)u(x + 1) = v(w(x)), then f(x)f(x + 1) =
a2v(w(x)), and we can take h(x) = w(x) and g(x) = a2v(x).

Define p(t) = u(x + t), so that p(t) is a monic quadratic in t. Then, noting that p′′(t) = u′′(x + t) = 2,
we have that

p(t) = u(x + t) = u(x) + u′(x)t +
u′′(x)

2
t2 = t2 + u′(x)t + u(x) ,

from which we find that

u(x)u(x + 1) = p(0)p(1) = u(x)[u(x) + u′(x) + 1]

= u(x)2 + u′(x)u(x) + u(x) = p(u(x)) = u(x + u(x)) .

Thus, u(x)u(x + 1) = v(w(x)) where w(x) = x + u(x) and v(x) = u(x). Therefore, we get the desired
representation with

h(x) = x + u(x) = x2 +
(

1 +
b

a

)
x +

c

a

and
g(x) = a2v(x) = a2u(x) = af(x) = a2x2 + abx + ac .

Solution 5. [Generalization by J. Rickards.] The following statement is true: Let the quartic polynomial
f(x) have roots r1, r2, r3, r4 (not necessarily distinct). Then f(x) can be expressed in the form g(h(x) for
quadratic polynomials g(x) and h(x) if and only if the sum of two of r1, r2, r3, r4 is equal to the sum of the
other two.

Wolog, suppose that r1 + r2 = r3 + r4. Let the leading coefficient of f(x) be a. Define h(x) =
(x− r1)(x− r2) and g(x) = ax(x− r2

3 + r1r3 + r2r3 − r1r2). Then

g(h(x)) = a(x− r1)(x− r2)[(x− r1)(x− r2)− r2
3 + r1r3 + r2r3 − r1r2

= a(x− r1)(x− r2)[x2 − (r1 + r2)x− r2
3 + r1r3 + r2r3)

= a(x− r1)(x− r2)[x2 − (r3 + r4)x + r3(r1 + r2 − r3)]

= a(x− r1)(x− r2)(x2 − (r3 + r4)x + r3r4

= a(x− r1)(x− r2)(x− r3)(x− r4)

as required.

Conversely, assume that we are given quadratic polynomials g(x) = b(x− r5)(x− r6) and h(x) and that
c is the leading coefficient of h(x). Let f(x) = g(h(x)).

Suppose that
h(x)− r5 = c(x− r1)(x− r2)

and that
h(x)− r6 = c(x− r3)(x− r4) .

Then
f(x) = g(h(x)) = bc2(x− r1)(x− r2)(x− r3)(x− r4) .

We have that

h(x) = c(x− r1)(x− r2) + r5 = cx62− c(r1 + r2)x + cr1r2 + r5
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and
h(x) = c9x− r3)(x− r4) + r6 = cx2 − c(r3 + r4)x + cr3r4 + r6 ,

whereupon it follows that r1 + r2 = r3 + r4 and the desired result follows.

Comment. The second solution can also be obtained by looking at special cases, such as when a = 1 or
b = 0, getting the answer and then making a conjecture.
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