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CHAPTER FIVE

APPROXIMATION BY POLYNOMIALS

§1. NORMS

We have seen in the fourth chapter that we can interpolate a polynomial function at any finite set of
points, so that polynomials are sufficiently numerous to reflect functional values at a finite set of points.
This raises the question: given an arbitrary continuous function on a set S of real or complex numbers, how
closely can we approximate it by a polynomial?

We need to specify exactly what we mean by approximation. If we try to match a function by a
polynomial at a finite number of points, then we have poor control over how the polynomial relates to the
function away from these points. To speak reasonably of approximation of a function by a polynomial, we
want to have the polynomial close to the function on an infinite domain of points, usually an interval of the
real line, or some set with a non-void interior, such as a disc, in the complex plane.

The first recourse that might come to the mind of an undergraduate is the production of a Taylor
polynomial for the function. There are two difficulties with this approach. First, the production of Taylor
polynomials of arbitrarily high degree depends on the function being infinitely differentiable. Secondly, the
Taylor polynomial of the nth degree matches the first n derivatives of the function at a particular real or
complex point, and so is an excellent local approximation. However, as we move away from the point, the
closeness of the two functions deterioriates, and indeed the Taylor series fails to converge outside of an
interval or disc of convergence.

It is customary to discuss approximation by polynomials in terms of a normed linear space that contains
all the polynomials along with the function to be approximated. Such a space is a vector space over R or C
for which each of its entries f possesses a norm ‖f‖ with the following properties:

(1) ‖f‖ ≥ 0, with equality if and only if f = 0;
(2) ‖cf‖ = |c|‖f‖ for each scalar c and function f ;
(3) ‖f + g‖ ≤ ‖f‖+ ‖g‖ for any pair of functions f and g.

The distance between two functions f and g is defined as ‖f − g‖, in much the same way as we describe the
distance between two complex numbers in terms of the absolute value of the difference.

The Uniform Norm. Let V be a vector space of continuous functions defined on a closed subset K of
C. Then each function is bounded on K and we can defined the uniform norm:

‖f‖∞ = sup{|f(z)| : z ∈ K} .

A sequence {fn} of functions in V is said to converge uniformly to f if and only if limn→∞ ‖f − fn‖∞ = 0.
This agrees with the definition of uniform convergence on a set given in an advanced calculus course.

The Lp Norm. Let 1 ≤ p ≤ ∞. Consider the space Lp(K) of complex functions defined on a closed
complex set K for which |f |p is Lebesgue integrable. In this setting, we regard two functions as being equal
if and only if the set of points upon which they differ has Lebesgue measure 0. Then

‖f‖p =
{

(
∫

K
|f |pdt)1/p; if 1 ≤ p < ∞

esssup {|f(t)| : t ∈ K}; if p = ∞

defines a norm on Lp(K). If p = 2, then Lp(K) is actually a Hilbert space whose norm is given by the inner
product

〈f, g〉 =
∫

K

f̄gdt .
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§2. WEIERSTRASSS APPROXIMATION THEOREM

Let us consider the problem of approximation by polynomials of real functions defined on a closed real
interval [a, b].

Weierstrass Approximation Theorem. Let f be a continuous complex function on [a, b]. There
exists a sequence {pn} of polynomials that converges uniformly to the function f on [a, b]. If f takes real
values, then the polynomials can be determined so they take real values.

The use of an approximate identity. [8] The first strategy that we shall consider is one that is used in
many approximation situations, and that is to convolve the function f with an “approximate identity” that
embraces the property that we wish the approximants to have, in this case, of being polynomials. First,
note that we can restrict the argument to approximating a function which vanishes at the end points 0 and
1. (If we can approximate f(x) − f(0) − x[f(1) − f(0)] by a sequence of polynomials, then by adding the
polynomial f(0) + x[f(1)− f(0)] to each approximant, we get the desired sequence of approximants.)

Thus, let f be a continuous function for which f(0) = f(1) = 0 and extend this function to all of R by
making it vanish everywhere off [0, 1]. The function, so extended, is uniformly continuous.

Define the polynomial of degree 2n,

qn(x) = cn(1− x2)n

where cn is chosen so that ∫ 1

−1

qn(x)dx = 1 .

Using the fact that (1− x2)n ≥ 1− nx2, we can get an estimate for the value of cn:

1 = 2cn

∫ 1

0

(1− x2)ndx ≥ 2cn

∫ 1/
√

n

0

(1− x2)ndx

≥ 2cn

∫ 1/
√

n

0

(1− nx2)dx >
cn√
n

,

whence cn <
√

n.

For any δ > 0,
qn(x) <

√
n(1− δ2)n

when δ ≤ x ≤ 1. Thus, the uniform limit of {qn} is 0 on any closed interval of [−1, 1] that does not contain
0. We see that the graph of the qn spikes more at the origin as n increases, while the area under the graph
maintains the value 1. Another way of putting it, is that the “weight” of qn is more and more concentrated
at the origin.

We set

pn(x) =
∫ 1

−1

f(x + t)qn(t)dt

for 0 ≤ x ≤ 1. It is not clear at this stage that pn is indeed a polynomial. However, noting that f vanishes
off [0, 1] and making a simple linear change of variables, we have that,

pn(x) =
∫ 1−x

−x

f(x + t)qn(t)dt =
∫ 1

0

f(t)qn(x− t)dt ,

which is manifestly a polynomial in x. Since the integral of qn is 1, we can think of the integral defining pn

as a weighted average of the values of f ; as n increases, more and more of the weight is concentrated near
the value of t for which x − t is zero, so that we are increasing the weight of values of f close to f(x). All
that remains are the epsilonics.
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Let ε > 0 be given. Because f is uniformly continuous, we can select δ > 0 for which |f(y)−f(x)| < ε/2
whenever |y − x| < δ. Let M = sup |f(x)|. Since, for each fixed δ > 0,

lim
n→∞

√
n(1− δ2)n = 0 ,

we can select an integer N for which
√

n(1− δ2)n < ε/(8M) for all n > N . Then, for n > N and 0 ≤ x ≤ 1,
we have that

|pn(x)− f(x)| =
∣∣∣∣ ∫ 1

−1

[f(x + t)− f(x)]qn(t)dt

∣∣∣∣
≤

∫ 1

−1

|f(x + t)− f(x)|qn(t)dt

≤ 2M

∫ δ

−1

qn(t)dt +
ε

2

∫ δ

−δ

qn(t)dt + 2M

∫ 1

δ

qn(t)dt

≤ 4M
√

n(1− δ2)n +
ε

2
<

ε

2
+

ε

2
= ε .

The desired result follows. ♠

§3. BERNSTEIN POLYNOMIALS

Another approach to the approximation problem is through Bernstein polynomials. If f is a continuous
function, define the Bernstein polynomial of order n:

B(f, n;x) =
n∑

k=0

f

(
k

n

)(
n

k

)
xk(1− x)n−k .

For example, B(1, n;x) = 11, B(x, n;x) = x and B(x2, n;x) = [(n− 1)x2 + x]/n for each positive integer n.

It turns out that f(x) is the uniform limit of B(f, n;x) as n tends to infinity. This can be proved using
a more general result of Korovkin [4]. Recall that a linear operator is positive iff Tf is everywhere positive
when f is so. We have then that f ≤ g implies Tf ≤ Tg. A positive linear operator T is bounded and
‖T‖ = ‖T1‖∞.

Theorem. Let Ln be a positive linear operator from C[a, b] into C[a.b] and suppose that Ln(f) converges
uniformly to f when f(x) is any one of the three functions 1, x, x2. Then Ln(f) converges to f uniformly
for every continuous function f on [a, b].

Comments. If we consider C[a, b], the space of all continuous functions (real or complex) on [a, b] as a
Banach space, then the positive linear operator Ln must be bounded. Positive simply means that Ln(f) ≥ 0
whenever f ≥ 0,

Lemma 1. Let X be a compact metric space, and let α and β be positive continuous functions defined
on X whose zero sets are Z(α) = {x : α(x) = 0} and Z(β) = {x : β(x) = 0}. Suppose further that
Z(β) ⊆ Z(α), and that ε is any positive number.

Then there exists a positive number M = M(ε) such that

α(x) ≤ ε + Mβ(x)

for all x ∈ X.

Proof. Define the function γ for which γ(x) = 0 whenever β(x) = 0 and

γ(x) = max
{

α(x)− ε

β(x)
, 0

}
when β(x) > 0. Then γ(x) is a continuous function on the compact space X and so is bounded by some
number M . The result follows. ♣
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Before formulating the second lemma, we need two definitions. For a continuous function on X, define
∆(f) = {(x, t) ∈ X ×X : f(x) = f(t)}. The continuous function γ defined on X ×X is a boundary function
for f if and only if Z(γ) ⊆ ∆(f). For each t ∈ X, we define the function γt on X by γt(x) = γ(x, t).

Lemma 2. Suppose that X is a compact metric space, that f is a continuous function on X and that
γ is a boundary function for f . Suppose that Ln is a sequence of positive linear operators from C(X) into
C(X) for which

(i) Ln(1) −→ 1 uniformly;

(ii) Ln(γt)(t) −→ 0 uniformly in t;

Then Ln(f) −→ f uniformly on X.

Proof. Let α(x, t) = |f(x) − f(t)|. Let ε > 0. By Lemma 1 applied to α and γ, we can determine a
constant M for which

|f(x)− f(t)| ≤ (ε/2) + Mγ(x, t)

for all (x, t) in X ×X. Let t be fixed and apply the positive linear operator Ln to obtain

|Ln(f)(x)− f(t)Ln(1)(x)| ≤ (ε/2)Ln(1)(x) + MLn(γt)(x)

for all x ∈ X. Now let x = t:

|Ln(f)(t)− f(t)| ≤ |Ln(f)(t)− f(t)Ln(1)(t)|+ |f(t)||Ln(1)(t)− 1|
≤ (ε/2)Ln(1)(t) + MLn(γt)(t) + ‖f‖∞|Ln(1)(t)− 1| .

We can now select Nε such that, for n > Nε, the right side is less than ε. The proof can now be concluded.
♣

Proof of the Theorem. Now let X = [a, b] and γ(x, t) = (x− t)2. Then γt(x) = (x− t)2 = x2 − 2tx + t2,
so that

Ln(γt) = Ln(x2)− 2tLn(x) + t2Ln(1)

converges uniformly in X to x2 − 2tx + t2 = (x− t)2.

Let y, t ∈ [a, b] and c = |a|+ |b|. Then

|Ln(γt)(y)− (y − t)2| = |(Ln(x2)(y)− y2)− 2t(Ln(x)(y)− y) + t2(Ln(1)(y)− 1(y)|
≤ ‖Ln(x2)− x2‖∞ + 2c‖Ln(x)− x‖∞ + c2‖Ln(1)− 1‖∞ ,

and the right side is less than ε > 0 for n sufficiently large. If we take y = t, we find that Ln(γt)(t) → 0
uniformly and the result follows from Lemma 2. ♠

Back to Bernstein polynomials. We apply Korovkin’s Theorem, taking [a, b] = [0, 1], γ(x, t) = (x − t)2

and Ln(f) = B(f, n).

B((x− t)2, n;x) =
(

1− 1
n

)
x2 +

(
1
n
− 2t

)
x + t2 ,

so that

B(γt, n; t) =
(

1− 1
n

)
t2 +

(
1
n
− 2t

)
t + t2 =

t(1− t)
n

.

Hence
|B(γt, n; t)| ≤ 1

4n
.

If follows that f is the uniform limit of B(f, n), as n →∞.

One can see intuitively that the Bernstein functions might converge. Let

bn,k(x) =
(

n

k

)
xk(1− x)n−k .
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Taking the derivative, one can easily note that this function assumes its maximum value at x = k/n, and
that as n increases, this maximum value becomes more pronounced as the function takes smaller values for x
away from k/n. Thus, as n increases, the value B(f, n;x) is a weighted average of the numbers f(k/n) with
the weight concentrated at those values of f(k/n) for which k/n is close to x. In fact, a proof of the uniform
convergence of B(f, n;x) to f(x) can be constructed in a way similar to that used for our first argument for
the Weierstrass Approximation Theorem by splitting the sum

f(x)−B(f, n;x) =
n∑

k=0

(f(x)− f(k/n))bn,k(x)

into three parts according as k/n is less than x and sufficiently far from it, close to x or greater than x and
sufficiently far from it.

Another way to look at the Bernstein approximation is to think of the points (k/n, f(k/n)) in the plane
as “control points” that are exactly given as points on the graph of the function f(x), but which we wish
to have, at least approximately, as points on the graph of a function that is easily calculated. This can be
generalized to a set P of points pk (0 ≤ k ≤ n) in d−dimensional space Rn. If we join these control points
consecutively by line segments, we get a polygon, which of course will be nonsmooth at the points. However,
we can use Bernstein polynomials to get a close and reasonably computable approximation to the curves
that they suggest. We can define the Bézier curve in space parametrically by

Bn(P ; t) =
n∑

k=0

pkbn,k(t) ,

This method of relating a consecutive set of points in space to a curve has many attractive features. It is
affinely invariant: if we transform the set P to another set Q by an affine transformation, then the Bézier
curve for Q is the same affine transformation of the Bézier curve for P . The Bézier curve will collapse to a
point if and only if the points in P coincide. The points on the Bézier curve lie in the convex hull of P . The
Bézier curve starts at p0 and ends at pn. [5, pp. 757-773]

§4. THE ABSOLUTE VALUE FUNCTION

As a special case, let us examine the approximation of the absolute value function |x| on the interval
[−1, 1] by polynomials. One way to do this is through a binomial expansion. Let t = 1−x2, so that 0 ≤ t ≤ 1.
Then

|x| = (x2)1/2 = [1− (1− x2)]1/2 = (1− t)1/2

=
∞∑

n=0

(
1/2
n

)
(−t)n = 1− 1− x2

2
−

∞∑
n=2

(2n− 3)!(1− x2)n

22n−2(n− 2)!n!
.

Since this series converges uniformly on [−1, 1], its partial sums will provide a convergent approximating
series of polynomials.

A second approach is through Fourier series. Every point on the interval [−1, 1] can be represented in
the form cos θ for some value of θ in [0, π]. We recall that the Fourier series of a continuous function f(θ)
defined on the closed interval [−π, π] is given by

1
2
a0 +

∞∑
k=0

(ak cos kθ + bk sin kθ) ,

where
an =

1
π

∫ π

−π

f(θ) cos nθdθ

and
bn =

1
π

∫ π

−π

f(θ) sinnθdθ .
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In general, the Fourier series need not converge to its parent function, even a continuous one. However, if f
is not only continuous, but piecewise monotonic, we will have convergence.

We compute the Fourier series of | cos θ| on the interval [−π, π]. Because | cos θ| sin kθ is an odd function,
bk = 0 for each value of k. Because | cos θ| cos kθ is even,

ak =
2
π

∫ π

0

| cos θ| cos kθdθ

=
2
π

[ ∫ π/2

0

cos θ cos kθdθ −
∫ π

π/2

cos θ cos kθdθ

]
=

2
π

[ ∫ π/2

0

cos θ cos kθdθ + (−1)k

∫ π/2

0

cos θ cos kθdθ

]
.

Thus ak = 0 when k is odd, a0 = 4/π and ak is equal to

2
π

∫ π/2

0

[cos(k + 1)θ + cos(k − 1)θ]dθ

when k is positive and even. Thus, for k = 2r with r ≥ 1, we have that

a2r =
2
π

(−1)r+1

(
1

2r − 1
− 1

2r + 1

)
=

4
π

[
(−1)r+1

4r2 − 1

]
.

Hence, the Fourier series for | cos θ| is

4
π

[
1
2

+
∞∑

r=1

(−1)r+1

4r2 − 1
cos 2rθ

]
.

Let us now relate this to functions on [−1, 1]. By De Moivre’s Theorem, for any nonnegative integer n,
we find that

cos nθ + i sinnθ = (cos θ + i sin θ)n = Tn(cos θ) + i sin θUn(cos θ).

where Tn(x) and Un(x) are polynomials that satisfies the pair of recursions

Tn+1(x) = xTn(x) + (x2 − 1)Un(x)

Un+1(x) = Tn(x) + xUn(x) .

This can be deduced from the equation

cos(n + 1)θ + i sin(n + 1)θ = (cos θ + i sin θ)(cos nθ + i sinnθ) .

We have that T0(x) = 1, U0(x) = 0, T1(x) = x, U1(x) = 1, T2(x) = 2x2 − 1, U2(x) = 2x. The recursions
have the form ρn+1 = Mρn, where ρn = (Tn(x), Un(x))t and M is the matrix(

x x2 − 1
1 x

)
.

This matrix has the characteristic polynomial λ2 − 2xλ + 1 and so satisfies M2 = 2xM − I. Hence

Tn+1(x) = 2xTn(x)− Tn−1(x)

and
Un+1(x) = 2xUn(x)− Un−1(x) .
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We call Tn(x) the Chebyshev polynomial of degree n, or sometimes the Chebyshev polynomial of the first
kind and Un(x) the Chebyshev polynomial of the second kind of degree n− 1. Recalling our series expansion
of | cos θ| in terms of cosines of multiple angles, we obtain that

|x| = 4
π

(
1
2

+
∞∑

k=1

(−1)k+1

4k2 − 1
T2k(x)

)
.

If we define pn(x) = (4/π)((1/2) +
∑n

k=0(−1)k+1(4k2 − 1)−1T2k(x), then, since |T2k(x)| ≤ 1 on [−1, 1], we
have that ∣∣|x| − pk(x)

∣∣ =
4
π

∣∣∣∣ ∞∑
k=n+1

(−1)k+1

4k2 − 1
T2k(x)

∣∣∣∣
≤ 4

π

∞∑
k=n+1

1
4k2 − 1

=
2

π(2n− 1)
.

Hence |x| is the uniform limit of the sequence {pn} of polynomials on [−1, 1].

There is a famous conjecture due to Bernstein concerning |x| that was recently settled. For any contin-
uous real function on [a, b], define the modulus of continuity ω(δ; f) for δ > 0 by

ω(δ; f) = sup{|f(x)− f(y)| : |x− y| ≤ δ} .

Let
En(f) = inf{‖f − p‖∞ : p a polynomial of degree not exceeding n} .

Then, it is known that
En(f) ≡ En(f : [−1, 1]) ≤ 6ω(1/n; f)

so that f can be uniformly approximated by polynomials. In the case of f(x) = |x|, the above calculation
shows that

2nE2n(|x|) <
2
π

.

In 1913, Bernstein proved that there is a positive constant β such that

lim
n→∞

2nE2n(|x|) = β

with 0.278 < β < 0.286, and conjectured that β = 1/(2
√

π). This was settled negatively in 1985 by Varga
and Carpenter. [5, pp. 749-757]

§5. THE STONE-WEIERSTRASS THEOREM

The Weierstrass Approximation Theorem has a beautiful generalization that is worth presenting. We
need a few definitions. Let X be a space. A set of real (or complex) functions defined on X is said to be
an algebra if and only if it is a linear space that is also closed under multiplication. A family of functions
separates the points of X if and only if, given two distinct points x1 and x2 of X, there is a function in the
family that takes different values at these points.

The Stone-Weierstrass Theorem. Suppose that X is a compact Hausdorff topological space and
A is an algebra of continuous real-valued functions defined on X that separates points and for which there
is no point in X at which all the functions in A vanish. Then the uniform closure of A is the set of all
continuous real functions on X.

The proof of this has a number of steps:

I. For any pairs (x1, x2) of points of X and (c1, c2) of real numbers, there is a function f ∈ A for which

f(x1) = c1 and f(x2) = c2 .
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II. Let B be the uniform closure of A. Then, if f ∈ B, then so also does |f | ∈ B. To see this, suppose
that the range of f lies inside a closed interval I. By the Weierstrass Approximation Theorem, we can find a
sequence {pn(t)} of polynomials that converges uniformly to |t| on I. Then the sequence {pn ◦ f} converges
uniformly to |f |.

III. If f, g ∈ B, then max (f, g) and min (f, g) both belong to B. This follows from the identities

2 max (f, g) = (f + g) + |f − g|

and
2 min (f, g) = (f + g)− |f − g| .

This closure extends to finite maxima and minima of functions.

IV. For any ε > 0 and any real-valued continuous function f on X and any point x ∈ X, there exists a
function gx for which gx(x) = f(x) and gx(y) > f(y)− ε for all y ∈ X. [By step I, given any y 6= x, we can
find a function hy ∈ B for which hy(x) = f(x) and hy(y) = f(y). There exists an open neighbourhood Uy of
y for which hy(t) > f(t)− ε for t ∈ Uy. There is a similar open neighbourhood Ux of x. Use the compactness
of X to cover X with finitely many such neighbourhoods and take the maximum of the corresponding hy.]

V. For any ε > 0 and any real-valued continuous function f on X, there is a function h ∈ B for
which |f(x) − h(x)| < ε. [For each x ∈ X, construct the function gx as in step IV, and select an open
neighbourhood Vx for which gx(y) < f(y) + ε for all y ∈ Vx. Use the compactness of X to find a finite cover
of neighbourhoods Vx and let h be the minimum of the corresponding gx.] The theorem now follows. ♠

§6. NEAREST APPROXIMANT.

Now that we know that every continuous function f on a closed interval can be uniformly approximated
by polynomials, the question arises as to what is the best approximant to f by polynomials whose degree is
less than n. One way of detecting this best approximant is through an alternation property.

Suppose that f is a continuous function on [a, b] and that p is a polynomial of degree less than n.
Suppose that K = sup{|f(x) − p(x)| : a ≤ x ≤ b} and that there are n + 1 points ai in increasing order in
[a, b] for which |f(ai)− p(ai)| = K (0 ≤ i ≤ n). Suppose further that f(ai)− p(ai) alternate in sign, so that
f(ai)− p(ai) = −(f(ai−1)− p(ai−1)) for 1 ≤ i ≤ n.

Suppose that q(x) is a polynomial for which ‖f − q‖∞ < K. Then, by checking a diagram, we can see
that the graphs of f(x) − p(x) and f(x) − q(x) must cross in each of the n intervals [ai−1, ai] (1 ≤ i ≤ n),
so that p(x) − q(x) is a nonzero polynomial with n roots, one in each interval [ai−1, ai]. Thus, p(x) − q(x)
and, hence, q(x) are polynomials of degree at least n. Therefore, p(x) is the best approximant to f(x) from
among the polynomials of degree less than n, with respect to the uniform norm.

The case of the function xn approximate on [−1, 1] be polynomials of degree less than n is of particular
interest. Using the alternation property, we see that the best approximant of x by constants is the function
0, and the best approximant of x2 by polynomials of degree not exceeding 1 is the constant function 1/2.

In general, if for xn, we can find a polynomial p(x) of degree less than n for which xn − p(x) assumes
its maximum absolute value n + 1 times in [−1, 1] with the alternation property, then p(x) must be the best
uniform approximant to xn among polynomials of degree less than n. It is straightforward to construct a
polynomial of degree not exceeding n to serve as xn − p(x).

For nonnegative integers n, let Tn(x) be the function introduced in Section 5.4, to wit

Tn(x) = cos(n arccos x)

for −1 ≤ x ≤ 1. With θ = arccos x, it is a consequence of cos nθ + i sinnθ = (cos θ + i sin θ)n and
sin2 θ = 1 − cos2 θ that cos nθ is a polynomial of degree n in cos θ; thus Tn(x) is a polynomial of degree n.
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Indeed,

Tn(x) =
1
2
[(x +

√
x2 − 1)n + (x−

√
x2 − 1)n]

=
n

2

bn/2c∑
k=0

(−1)k (n− k − 1)!
k!(n− 2k)!

(2x)n−2k = 2n−1xn + · · ·

=
bn/2c∑
k=0

(
n

2k

)
xn−2k(x2 − 1)k .

Since | cos nθ| = 1 when nθ is an even multiple of π, Tn(x) assumes its maximum and minimum values
with alternating signs when x = cos(kπ/n) for k = 0, 1, · · · , n, i.e. n + 1 times. Thus the polynomial
xn − 21−nTn(x) is that polynomial of degree n− 1 that best approximates xn uniformly.

The Chebyshev polynomials have a number of interesting properties that are listed in (1, 29-41). They
constitute a family of polynomials that commute under composition. Moreoever, according to a result of
Block and Thielman, if {pn} is a sequence of polynomials for which pn has degree n for n = 1, 2, 3, · · ·,
and pn ◦ pm = pmn for all n, m, then there is a linear polynomial q(x) for which either q−1 ◦ p ◦ q = xn or
q−1 ◦ p ◦ q = Tn. The generating function for the Chebyshev polynomials is

1− tx

1− 2tx + t2
=

∞∑
k=0

Tn(x)tn

and they satisfy the differential equation

(1− x2)T ′′n (x)− xT ′n(x) + n2Tn(x) = 0 .

§7. ORTHOGONALITY AND APPROXIMATE INTEGRATION

The familiar orthogonality relation

2
∫ π

0

cos mθ cos nθdθ =
∫ π

−π

cos mθ cos nθdθ = πδm,n

can be transformed by the subsitution x = cos θ to the relations

2
π

∫ 1

−1

Tn(x)Tm(x)√
1− x2

dx = δm,n .

This suggests another context in which to consider the approximation problem, that of inner product space.
The background theory is reviewed in (2, 41-56). Let w(x) be a nonnegative Lebesgue integrable function
on [a, b] that is positive almost everywhere. The space C([a, b]) of all continuous complex functions on the
interval [a, b] can be equipped with the inner product

〈f, g〉 =
∫ b

a

f(x)g(x)w(x)dx .

The norm ‖f‖w is given by

‖f‖w =

√∫ b

a

|f(x)|2w(x)dx

and the completion of C([a, b]) with respect to this norm is denoted by L2(w; [a, b]) or just L2(w) when the
underlying interval is understood.
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Once the weight function is given, we can start with the linearly independent set {1, x, x2, · · · , xn, · · ·}
of polynomials on [a, b] and use the Gram-Schmidt orthogonalization process to determine an on orthogonal
(or orthonormal) set of real polynomials that will serve as a basis for the space of polynomials. We can then
complete the space with respect to the norm induced by w. If {pn} is such a basis, with the degree of pn

equal to n, then we have that pn(x) = γnxn + rn−1(x) for some polynomial rn−1 of degree less than n and
constant γn. From this, we can derive a recursion of the form

xpn(x) = anpn+1(x) + bnpn(x) + an−1pn−1(x) (∗)

where p−1(x) ≡ 0, a−1 = 0 and an = γn/γn+1. To see this, note that the degree of xpn(x) is n + 1, so that
it admits a representation of the form

xpn(x) =
n+1∑
k=0

dkpk(x) .

Then 〈xpn, pk〉 = 〈pn, xpk〉 = 0 for 0 ≤ k ≤ n − 2, from which we have that dk = 0 for 0 ≤ k ≤ n − 2.
Comparing the leading coefficient on the two sides of the equation (∗), we find that γn = dn+1γn+1. The
remaining relation is a little more complicated and can be derived from taking the inner product of the
equation with pn−1.

Quite a bit more can be said about the polynomials pn(x). Noting that p0(x) = 1 and 0 = 〈pn, p0〉 =∫ b

a
pn(x)w(x)dx, we see that the polynomial pn(x) must change sign at least once in the open interval (a, b).

It cannot change signs more than n times because of its degree. Let {ri : 1 ≤ i ≤ m} be the set of all points
within (a, b) where the polynomial pn(x) changes sign, indexed in increasing order of magnitude. Since
pn(x)(x− r1) · · · (x− rm) is a polynomial of constant sign on (a, b),

∫ b

a
pn(x)(x− r1) · · · (x− rm)w(x)dx 6= 0.

This entails that (x− r1) · · · (x− rm) cannot lie within the linear span of the set {p0, p1, · · · , pn−1} and so it
must have degree n. Therefore, m = n and we deduce that all the zeros of pn(x) are simple and lie within
the open interval (a, b).

Furthermore, if we let a = r0 and b = rn+1, then it can be shown that each open interval (ri, ri+1)
(0 ≤ i ≤ n) contains a zero of pn+1.

The zeros ri of pn(x) figure in an approximate integration formula.

Theorem. Let n be a positive integer and let r1, r2, · · · , rn be the zeros of pn(x). Then there are real
numbers λ1, λ2, · · ·, λn for which∫ b

a

f(x)w(x)dx = λ1f(r1) + λ2f(r2) + · · ·+ λnf(rn) ,

for every polynomial f(x) of degree not exceeding 2n− 1.

Proof. For 1 ≤ i ≤ n, let

qi(x) =
(x− r1) · · · ̂(x− ri) · · · (x− rn)

(ri − r1) · · · (ri − ri−1)(ri − ri+1) · · · (ri − rn)
=

pn(x)
p′n(ri)(x− ri)

.

Suppose that f(x) is a polynomial of degree not exceeding 2n− 1. Then the Lagrange Polynomial of degree
less than n that agrees with f(x) at x = ri (1 ≤ i ≤ n) is g(x) =

∑n
i=1 f(ri)qi(x). Therefore

f(x)− g(x) = pn(x)s(x)

where s(x) is a polynomial of degree not exceeding n− 1. Since s(x) is in the linear span of {pi(x) : 0 ≤ i ≤
n− 1},

∫ b

a
pn(x)s(x)w(x)dx = 0. Therefore∫ b

a

f(x)w(x)dx =
∫ b

a

g(x)w(x)d(x) =
n∑

i=1

f(ri)
∫ b

a

qi(x)w(x)dx .
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Example. Let [a, b] = [−1, 1] and w(x) = 1. Then

(p0(x), p1(x), p2(x), p3(x)) =
(

1, x, x2 − 1
3
, x3 − 3

5
x

)
and ∫ 1

−1

f(x)dx = 2f(0) for deg f(x) ≤ 1 ;

∫ 1

−1

f(x)dx = f(−1/
√

3) + f(1/
√

3) for deg f(x) ≤ 3 ;

and ∫ 1

−1

f(x)dx =
5
9
f

(
−

√
3
5

)
+

8
9
f(0) +

5
9
f

(√
3
5

)
for deg f(x) ≤ 5 .

In fact, if we know the formula for the particular interval [−1, 1], we can obtain the formula for a general
interval [a, b] using ∫ b

a

f(x)dx =
b− a

2

∫ 1

−1

f

(
1
2
a(1− t) +

1
2
b(1 + t)

)
dt .

This device helps us to obtain a generalization of the trapezoidal and Simpson’s rules which give an
exact value of the integral over an interval in terms of values at n + 1 points for polynomials of degrees up
to 2n− 1. The condition that two of the evaluation points be endpoints of the interval requires the insertion
of an additional evaluation point.

Recall that the trapezoidal rule ∫ b

a

f(x)d(x) =
b− a

2
(f(a) + f(b))

holds for polynomials of degrees not exceeding 1 and that Simpson’s Rule∫ b

a

f(x)dx =
b− a

6

(
f(a) + 4f

(
a + b

2

)
+ f(b)

)
holds for polynomials of degrees not exceeding 3. At the next stage, we consider the interval [−1, 1] and
exploit the symmetry to seek a formula of the form∫ 1

−1

f(x)dx = uf(−1) + vf(−w) + vf(w) + uf(1)

where u, v, w are real numbers with 0 < w < 1. This formula always holds for f(x) = xk when k is odd, and
imposing it on f(x) = xk when k = 0, 2, 4 leads to

1 = u + v
1
3

= u + vw2 1
5

= u + vw4 .

Hence
2 = 3v(1− w2) = 15vw2(1− w2)

from which w = 1/
√

5 and (u, v) = ( 1
6 , 5

6 ). Thus, for polynomials f(x) of degree not exceeding 5,∫ 1

−1

f(x)dx =
1
6
[f(−1) + 5f(−1/

√
5) + 5f(1/

√
5) + f(1)] .
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This in turn yields that, for such polynomials,∫ b

a

f(x)dx =
b− a

12

[
f(a) + 5f

((
5 +

√
5

10

)
a +

(
5−

√
5

10

)
b

)
+ 5f

((
5−

√
5

10

)
a +

(
5 +

√
5

10

)
b

)
+ f(b)

]
.

§8. PROBLEMS AND INVESTIGATIONS

1. Suppose that a and b are positive integers. Prove that, if

a2 + b2

ab + 1

is an integer, then it is a square.

2. Let Pn be the vector space of real polynomials of degree not exceeding n and C be the vector space
of real continuous funtions, both defined on the closed unit interval [0, 1]. With respect to the sup-norm

‖f‖∞ ≡ sup{|f(x)| : 0 ≤ x ≤ 1} ,

C is a complete normed linear space and Pn a closed linear subspace of dimension n. Let 0 = a0 < a2 <
· · · < an = 1 and define, for f ∈ C, Ln(f) to be that polynomial whose values equal those of f at a0, a1, · · ·,
an. The norm of Ln is defined by

‖Ln‖ = sup{‖Ln(f)‖∞ : ‖f‖∞ ≤ 1} .

What can be said about the norm ‖Ln‖?

3. The n + 1 Bernstein polynomials of degree n are defined by

bn,k(x) =
(

n

k

)
xk(1− x)n−k

for 0 ≤ k ≤ n. When all n + 1 polynomials are plotted on the same graph for large fixed n over the interval
0 ≤ x ≤ 1, an “upper envelope” begins to be seen. Let

β(x) = lim
n→∞

√
n max{bn,k(x) : 0 ≤ k ≤ n} .

Find a closed form expression for β(x).

Hints and comments

1. This is an International Mathematical Olympiad problem. A simpler version appeared on the 1998
Canadian Mathematical Olympiad. In that, one was required to show that, if the sequence {a + n} was
defined recursively by a0 = 0, a1 = m and an+1 = m2an − an−1 for n ≥ 1, then the positive integers a, b
satisfy (a2 + b2)/(ab+1) = m2 if and only if a and b are two consecutive terms of the sequence. To solve this
problem, we use a descent argument. Let a ≥ b and f(a, b) = (a2 + b2).(ab + 1). Suppose that a = nb − r.
Then n − 1 < f(a, b) < n, so that, if f(a, b) is an integer, then f(a, b) = n and f(b, r) = n. Thus, we can
define ak > · · · > a2 > a1 > 0 with ak = a, ak−1 = b, a− i + 1 = nai − ai+1 for 2 ≤ i ≤ k− 1, and a2 = na1.
This can be related to the Chebshev polynomials in the following way. If Vn(x) = Un(x/2), then f(a, b) is
an integer if and only if n = m2 and

(a, b) = (mvk(m2),mvk−1(m2)) .

4. β(x) = [2πx(1 − x)]−1/2. [AMM #10990: 110:1 (January, 2003), 59; 111:9 (November, 2004),
825-826.]
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