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CHAPTER THREE
LOCATING ZEROS OF POLYNOMIALS

1. APPROXIMATION OF ZEROS

Since the determination of the zeros of a polynomial in exact form is impractical for polynomials of
degrees 3 and 4 and generally not feasible for polynomials of higher degree, it is necessary to get information
about the zeros in other ways. We have seen in Chapter 2, that Newton’s Method is a good approximating
technique provided we start close to the desired zero. However, in order to apply it, we need to know roughly
where in the complex plane it resides. More generally, there are applications of polynomials that depend
on knowing the character of the roots, specifically whether they lie within the unit disc (in the analysis of
the stability of recursions) or in the left half plane (in the analysis of the stability of solutions to differential
equations).

In the case of real polynomials, we can apply the Intermediate Value Theorem that provides that a
polynomial p(z) has at least one zero in any interval (a,b) for which p(a) and p(b) are nonzero numbers of
opposite sign. There are other tests of increasing sophistication. One of the simplest and most convenient is
Descartes’ Rule of Signs that asserts that for a real polynomial, the number of positive zeros of p(z) cannot
exceed the number of changes of signs in its nonzero coefficients when read from left to right, and the number
of negative zeros cannot exceed the number of changes of signs in p(—zx).

A finer version of this is the Theorem of Fourier and Budan. Let u and v be two real numbers with
u < v and p(u)p(v) # 0. Form the sequences {p(u),p’(u),p” (u), -} and {p(v),p'(v),p" (v),---}. If Ais
the number of sign changes in the former and B the number of sign changes in the latter, then the number
of zeros of p(z) in the interval [u,v] cannot exceed A — B and differs from it by an even number. A more
complicated test which gives the exact number of zeros in a real interval is given by Sturm’s Theorem [1,
pp. 179-182].

One can approach the question by comparing the polynomial p(z) under investigation with a second
polynomial ¢(z) whose zeros are known. For complex polynomials, we recall the classical result of Rouché:
Suppose that the polynomials p and q satisfy the condition

Ip(2) = a(2)| <la(2)|

for z belonging to a closed path gamma in the complex plane. Then p(z) and q(z) have the same number
of zeros counting multiplicity within the region surrounded by the path.

In Chapter 2, we have seen that the condition of apolarity on a pair of polynomials entails a relationship
that intertwines their zeros. However, the expression of that relationship there was not useful, so we return
to this idea in the present chapter and obtain Grace’s Theorem, a tool to give us information about zeros of
a polynomial.

§2. THE ZEROS OF A POLYNOMIAL AND ITS DERIVATIVE

For a real polynomial, the most elementary theorem that relates the zeros of a polynomial to those of
its derivatives (the critical points of the polynomial) is Rolle’s Theorem, that provides that between any two
real zeros of a real polynomial is at least one zero of its derivative.

If all the zeros of a polynomial are real, then we have a “zero-shifting” property that applies to the
zeros of itself and the derivative: Suppose that the polynomial p(z) of degree n has all real distinct roots
1 < 9 < +++ < &p, and the polynomial is altered by replacing one of its roots x; by , € (x;,x;+1). Then
all the roots of p’(x) increase their value. [2]
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In studying the zeros of the derivative, we begin with the observation that, when p(z) = [[,<;<,.(z —
z)™i, then p/'(2) = >, mi(z — z1)™ -+ (2 — 2z;)™ 1+ (2 — 2,)™" and

_7'(2) _ m;
P(z) = o0 _;Z_Zi . (3.1)

The zeros of the function P(z) are the zeros of the derivative that are not shared by p(z).

Applying this to the root-shifting result, let p(z) = [[],;(z —z;)](z — ;) and q(z) = [[ ;. (z —2;)](z —
x}), where z1 < g < -+ < x; < & < Tjp1 < -+ < xy,. Then

B oo o?@ _d@ 11w
P(x) Q()_p(aj) q(2) r—x; r—x (x—a:i)(x_x;),

so that Q(z) > P(x) whenever the functions are defined for x < x; and = > 2}, and Q(z) < P(z) for
x; < & < ;. One can then be persuaded of the result by analyzing the graphs of P(x) and Q(z). &

A complex analogue of Rolle’s Theorem is the Gauss-Lucas Theorem, which provides that all of the
critical points of p(z) lie in the closed convex hull of the zeros of p(z). This is certainly true if a critical point
is actually a zero of p(z).

Suppose that z does not belong to the convex hull of the zeros of p(z). Then there is a line that
separates z from the zeros z; of p(z), so that for some «, a < arg (z — 2;) < a+ 7 for each i. Therefore,
—(a+7) < arg m;/(z — z;) < —a for each i. Hence, each of the terms in P(z) lies strictly on one side of a
line through the origin and so P(z) cannot vanish. &

Another generalization of Rolle’s theorem applies to the nonreal critical points of a real polynomial.
Jensen’s Theorem can be formulated this way. Suppose that p(z) is a real polynomial that has a complex
conjugate pair (w,w) of zeros. Let D,, be the closed disc whose diameter joins w and w. Then every nonreal
zero of p'(z) lies on one of the D,,.

The idea of the proof is to show that, for each complex z lying outside of all of the D,,, we can express
P(z) as the sum of terms whose imaginary parts are nonzero and have sign opposite to that of the imaginary
part of 2. One looks at the imaginary part of (z — w)~! + (2 — w)~! when the zero w is nonreal and of
(z —w)~! when w is real. [7, p. 15].

If the polynomial has three distinct zeros, then the geometry of the zeros and those of the derivative is
quite interesting. If all the zeros are simple, so that the polynomial is a cubic, then the zeros of the derivative
are the foci of the unique ellipse that touches, at the midpoints of its sides, the triangle formed by the zeros
in the complex plane, If the zeros have general multiplicity, then we still get a triangle formed by the zeros,
but the ellipse whose foci are zeros of the derivative, touches the triangle at different points in its sides. [5,
6]

§3. THE ENESTROM-KAKEYA THEOREM

The Enestrom-Kakeya Theorem holds that, if p(z) = a,2" + Ap_12""1 4+ -+ a12+ ag is a polynomial
with nonnegative real coefficients for which

p 2> Qp-1 2 Ap_2 > - >ag >0,

then all of its zeros z satisfy |z| < 1. A slight generalization of this was provided by Joyal, Labelle and
Rahman [3], in that the condition ag > 0 is dropped and the conclusion becomes that all of the zeros satisfy
the inequality

12 < an — ag + |aol
|an|
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Let q(2) = (1 — 2)p(2) = —a, 2" + f(2), where
f(2) = (an —an_1)2" + (@n_1 — an_2)z""* +---+ (a1 — ap)z + ay .

We need to use the complex variables result that the maximum modulus of an analytic function on a closed
disc is attained on the circumference. When |z| = 1, we have that

|f(2)] < (an — an-1) + (@n—1 — @p—2) + -+ + (a1 — ao) + |ao| = an — ao + |ao|
When |z| =1, also |1/z| =1 and we find that
12" f(1/2)] < an — ao + lao| -

Since z"f(1/z) is a polynomial, and so analytic inside and on the unit disec, this inequality holds for all z
with |z| < 1. Thus, when 0 < |z| <1,
f 1 < an — ag + |ao| _
z 2™

Replacing z by 1/z, we deduce that
[f(2)] < (an — ao + laol)[2|"
when |z| > 1.
Suppose that |z| > (a, — ag + |ao|)|an|~!. Then
la(2)| = (1 = 2)p(2)| = | = anz""" + f(2)|
> |z|"(lanz| = (an — ao + |ag|) > 0.

The result follows. &

§4. ANALYSIS OF A TRINOMIAL

The trinomial polynomial p(z) = 1 — z 4 ¢z™ , where ¢ # 0 and n is an integer exceeding 1, has a zero z
for which |z —1| <1 and a zero for which |z — 1| > 1. Joyal, Labelle and Rahman provide a nice elementary
proof of this fact. [4]

First, consider the case n = 2. Then the transformation w = z — 1 converts the quadratic polynomial
to cw? + (2¢ — 1)w + c. Since the product of the zeros of this quadratic is equal to 1, either both its zeros
lie on the unit circle or one lies inside and the other outside. The desired result follows.

Now let n > 3. The derivative of the polynomial p(z) = 1 — z + ¢2", namely ncz"~! — 1, has at least
one zero in the left half plane. But this zero must be contained in the closed convex hull of the zeros of p(z);
hence, there must be a zero of p(z) in the left half plane and this zero satisfies |z — 1| > 1.

It remains to show that there is at least one zero for which |z — 1| < 1. With w = z — 1, it is equivalent
to show that —w + ¢(w + 1)™ = 0 for some w with |w| < 1. If we make the transformation v = 1/w, then
the equation becomes equivalent to

"t pe(v4+1)"=0.

We need to show that there is a solution with |v| > 1. Finally, if v = u — 1, the equation becomes
—(u—=1)""14cu"=0.
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Let K be the closed convex hull of the roots of this equation in u. By the Gauss-Lucas Theorem, K
must contain all of the zeros of the (n — 2)th derivative

—(n =1 (u—1) + (cn!/2)u?
or equivalently, of

cn
1— —u? .
u—|—2u

However, as we have seen, this quadratic has a zero that satisfies |u — 1| > 1, and so this must be true of
—(u—-1)""1 4" =0.

Tracking back, we see that there must be a zero of 1 — z + cz™ that satisfies |z — 1| < 1.

5. CENTRE OF MASS

For the n—tple z = (21, 29, - -, 2, ) of complex numbers, the centre of mass G(z) is defined by
1
G(z) = E(z1+zQ+m+zn) .

This can be generalized to the centre of mass with respect to an arbitrary complex ¢. Let w(z) = a(z—¢) ™1 +b
be a linear fractional mapping that carries ¢ to infinity. Compute G(w(z)) and then map the result back via
w~r. The result is independent of the parameters a and b, and we find it to be

n

Gc<z)zc+n(2%1€)_l =<—n<§<1%)_1 |

i=1

When 21, 29, - -, 2z, are the zeros, not necessarily distinct, of the nth degree polynomial p(z), then

p(¢)
P’

Ge(p)=Ge(z)=(—n

Observe that lim¢_,o, G¢(2) = G(z).

When r is a zero of p(z), then its multiplicity exceeds its multiplicity as a zero of p’(z) and lim¢_,, G¢(p) =
r. When 7 is nonreal, this entails that when ( is close to r, then G¢(p) and ¢ are on the same side of the
real axis, so that Im ¢- Im G¢(p) > 0.

On the other hand, suppose that all of the zeros of p(z) are real, that there are at least two distinct
zeros, and that ¢ is nonreal. We will suppose that ¢ is in the upper half plane, so that Im ¢ > 0. We
can relate the centre of mass with respect to ¢ to the standard centre of mass through the transformation
z — (2 — ()71, Geometrically, this is the composite of a translation 2 — z — ¢, inversion in the unit circle
of the complex plane and reflection about the real axis. The real line is carried first to a line in the lower
half plane, then a circle in the lower half plane tangent to the real axis at the origin and finally, the reflected
image of this circle in the upper half plane. The zeros of p(z) are carried to points on this circle and the
centre of mass (which is the image of G¢(p)) of these zeros is in the interior of this circle. But the interior
of this circle is the image of the lower half plane so that Im G¢(p) < 0. Therefore, Im ¢- Im G¢(p) < 0. A
similar argument gives the same inequality when ( is in the lower half plane. Thus, we obtain the following
result:

For a polynomial with real coefficients and at least two distinct zeros, all the zeros are real if and only
if Im ¢ - Im G¢(p) < 0 for every nonreal ¢ [7, Theorem 1.1.9, p. 6-7].

Since G¢(p) is a generalized centre of mass of the zeros of p, it is interesting to see under what circum-
stances it is a zero itself.
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It is straightforward to see that, if ¢ is already a zero of a polynomial p(z), then G¢(p) = (. If the
polynomial has exactly one zero r of arbitrary multiplicity, then G¢(p) = r for all ¢ (so the foregoing result
fails in this case). If p(z) has exactly two distinct zeros, we may suppose that p(z) is monic so that it is
equal to (z — r)™(z — s)*, where m + k = n, the degree of the polynomial. Suppose that G¢(p) = r. Then

n(¢ = )¢~ s)

T T

whence
0=(¢C—r)n(¢—s)—nC+ (ms+kr)] = (¢ —r)k(r—s) .
Therefore, G¢(p) is a zero of p(z) only when ( itself is a zero of p(z).

Suppose that p(z) is a polynomial of degree n with more than two distinct zeros and that one of the
zeros is r with multiplicity m. Then p(z) = (z — r)™q(z) for some polynomial ¢(z) of degree n —m > 2
which does ot vanish at r and has at least two distinct zeros. The condition G¢(p) = r leads to

(€ =7)g'(¢) = (n—m)q(C) -

This is equivalent to

nom_d© 5~ m
C=r  aqQ) “ZC-ri’

where the r; are the zeros of ¢(z), m; are positive integers and s > 2. There is a nontrivial value of ¢ distinct
from the zeros of p(z) that satisfies this equation.

Example 1. When p(z) = 2% — 2 = (2 — 1)z(z 4+ 1), then G¢(p) = 2¢(3¢%2 — 1)~!. While G¢(p) = 0 if
and only if ( = 0, we have that G¢(p) =1 when ( =1,—1/3 and G¢(p) = —1 when ( = —1,1/3.

Example 2. When p(z) = z* — 1022 + 9 = (2 — 3)(z — 1)(z + 1)(2 + 3), the condition that G¢(p) =1
leads to the equation
(C=1)(¢*=5¢) =¢"—10¢* +9,
which reduces to

0=(C-1(¢*~4¢-9).

The zeros of the quadratic factor are real.

§6. APOLARITY AND GRACE’S THEOREM

Let p(z) be a polynomial of degree n and ¢ be a number in the extended complex plane. We define the
derivative of p with respect to { by

o= {6 LT

When p(z) = >)_ (7)arz” and ¢ # oo, we have that

n—1
Acp(z) =n kZ:O (n ; 1) (ar + ak+1C)zk .

More generally,
Ag Agy - A, f(2) = nllag + a101 4 az02 + -+ - + 0]

where o; is the ith elementary symmetric function of the ¢;. If the (; are the zeros of the polynomial
9(z) = > 1o (71)bez", then the equality A¢, Ac, -+ Ac, f(2) = 0 is equivalent to

agb, — (?) arbp—1 + (Z) asbp_o + -+ (—1)n(lnbo =0. (33)
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Two polynomials of degree n satisfying this condition are said to be apolar.

As was noted in Section 2.3, when f(z) and g(z) are two polynomials of degree not exceeding n, the
polynomial

(f.9) = F(2)9™(2) = [(2)g" "V (2) + [ ()97 7D (2) = -+ (=1)"f " (2)g(2)

is a constant. By examining the Taylor expansion of the polynomials at 0, we see that the apolarity condition
(3.3) is equivalent to (f,g) = 0.

As an example, to see how the computations work out, it is convenient to look at the cubic situation.
It can be checked that, for ¢ finite,

Ac(az+b) = (az+b)+((—2)a=al+b,

Ac(az? +2bz +¢) = 2(az® +2bz +¢) + (¢ — 2)(2az + 2b) = 2[(b+ al)z + (c + b()] ,

and
Ac(az® +3bz* + 3cz + d) = 3(az® + 3b2 + 3cz + d) + 3(C — 2)(az® + 2bz + ¢)

=3[(b+ a¢)z* + 2(c + b¢)z + (d + )] -
Taking ¢ = (3, (2, (3 successively, we find that
A, Agy(az® +3b2° 4 3cz + d) = 6[(c + b1 + b2 + al1(2)z + (d + (1 + (o + b(1(2))]
and

Ay A, A (a2® + 3b2% + 3¢2® + d) = 6[c(s + b1 + bCals + al1eoCs + d + cCi + clo + b1
=6[d + c(C1 + G2 + ¢3) + b(C1¢2 + C1¢3 + (2G3) + a1(2(3] -

If (1, (2, (3 are the zeros of the polynomial q(z) = az®+ 3622+ 3yz+§ and p(2) = az® + 3b2% + 3¢z +d,

then 3 ” 5
3cB 3y _ a}

Ar A A = —
¢344C2 C1p(z) 6{d a a a

= (6/a)|ad — 3Bc +3vb — da] .

The McLaurin Expansion of these polynomials can be written

() =p(0)+ 3| 0o [0 2y [0

3 6 6
and
=10+ [ 10] [ £0] 2 [0] s
whence

Ay Ag, Ay p(2) =

Where a circular domain signifies either an open half plane or the interior or exterior of a disk, we have
the following result for helping to locate the zeros of a polynomial:

Grace’s Theorem. Let f and g be apolar polynomials. If all the zeros of f belong to a circular
domain, then at least one of the zeros of g also belong to the same circular domain.

We can deduce from this that when f and g are apolar, any convex region that encloses all the zeros of
f(2) must intersect any convex region that encloses all the zeros of g(z).
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Before getting to the proof of Grace’s Theorem, we need a preliminary result which is a generalization
of the Gauss-Lucas Theorem: Let K be a circular domain that contains all the zeros of the polynomial f(z)
and suppose that ( ¢ K. Then all the zeros of A¢ f(z) also lie in K. Since the case { = oo is the Gauss-Lucas
Theorem, we will suppose that ¢ is in the complex plane. Suppose that A¢f(c) = 0. Then this means that

(€= a)f'(@) + nf(a) =0

whence fa)
nf(a
g_a_f/(a)_GlX(f)7

so that ¢ is the a—centre of mass of the zeros of f.

Suppose, if possible, that a & K. Then for any set z, G,(z) lies in the closed convex hull of z. To see
this, consider a line that separates & and K; the linear fractional mapping w(z) used to define G, maps «
to oo and the line to a circle containing w(z). The regular centre of mass of w(z) lies inside this circle, and
so its image under w~! lies in the same half-plane determined by the line as z. This means that ( = G, (f)
must be in K, contrary to hypothesis.

Now we can establish Grace’s Theorem. Suppose that (1, (2, - - -, {,, are the zeros of g(z), and suppose, if
possible, that all of these lie outside of K. Then, by the foregoing, all the zeros of the generalized derivatives
of f(z) must be contained in K. In particular,

ACQACs T ACnf(Z) =c(z —u),
a linear polynomial with u € K. Because f and g are apolar,
AClAﬁzACs T ACnf(Z) =0,

so that 0 = A¢, (2 —u) = (1 —u. Thus u = (; ¢ K, which contradicts the previous statement. Hence, at
least one of the (; belongs to K. &

Example. We can apply this theorem to affirming what was earlier shown about the zeros of p(z) =

1 — z + ¢z™. Suppose that

a(z) = =" + (’f)b by

Then p and ¢ are apolar if and only if
0=1-—n(=1/n)bp_1+ (=1)"cbg =14 b1+ (—1)"cbg .

Specifically, let ¢(z) = (2 — 1)® + (—=1)""1. Then g¢(z) = 0 is equivalent to (z — 1)" = (—=1)", so that all
the zeros of ¢(z) are on the circumference of the circle defined by |z — 1| = 1. Hence ¢(z) has all its zeros
satisfying each of the conditions |z — 1| < 1 and |z — 1| > 1. Since g(z) = 2" —nz""1 + ...+ (=1)""Inz, p
and ¢ are apolar and we find that p must have at least one zero satisfying each of the conditions |z — 1] <1
and [z —1|>1. &

A result that is an almost immediate consequence of Grace’s Theorem is Szegos’s Theorem: Suppose
that f and g are both polynomials of degree n and that all of the zeros of f lie within a circular domain K.

Let . .
=Y <Z> apz®  and  g(z) = kZ:O (Z) bz® |

k=0
and define the polynomial

h(z) = i (Z) apbpz® .

k=0
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Then every zero of h(z) is of the form —ws, where w is a zero of g(z) and s € K.

Suppose that h(v) = 0, so that

i (Z) abpo® = 0. (3.4)

k=0

o ==o( ) =2 (D) evn ()

= (=1)"bpv" + (=1)" 'nby_10" 2 + (—1)”—2(

Let

n

2) b 222 4.

Since (3.4) is simply the condition that p(z) and f(z) are apolar, p(z) has a zero u inside K. In other words,
there exists s € K such that —v/s = w, a zero of g(z). The result follows. &

An open question is the Sendov-Ilieff Conjecture: Let p(z) be a polynomial of degree exceeding 1 all of
whose roots lie inside the closed unit disc defined by |z| < 1. Then, if w is one of the roots of p(z), then the
closed unit disc with centre w contains at least one roots of the derivative p’(z). This conjecture holds for
polynomials of degree not exceeding 5 and for polynomials with only three distinct roots. [7. p. 18]

§7. STABILITY

In solving an nth order linear differential equation with constant coefficients, it is often an issue whether
its solutions remain bounded as the variable tends to infinity. This is so, provided that all the zeros of its
characteristic polynomial have negative real parts. A polynomial with this property is said to be stable. The
Routh-Hurwitz Problem is to determine what conditions are equivalent to stability.

For real linear, quadratic and cubic polynomials, the criterion is reasonably straightforward. All that is
required for a quadratic is that its coefficients have the same sign, all positive or all negative. For the cubic,
23 4+ b2 + cz + d, it is necessary and sufficient that all coefficients are positive and also that bc > d.

We observe that it suffices to consider polynomials with real coefficients. For, if p(z) = >} _, apz®, the

polynomial
n

f2) = anz)O_@w*) = p(2)p(z)
k=0

k=0

has real coefficients and its roots are those of p(z) along with their complex conjugates. Thus, p(z) is stable
if and only if f(2) is stable.

Theorem. Suppose that the monic polynomial p(z) = >,'_, axz" is a polynomial with real coefficients
and that q(z) = Y -, bxz" is that monic polynomial of degree m = ) whose zeros are the sums of all
possible pairs of zeros of p(z). Then p(z) is stable if and only if all the coefficients of both p and q are
positive.

Proof. Suppose that p(z) is stable. Then it can be factored as a product of real linear and quadratic
polynomials of the form 2+« and (2 +a+i8)(z+a—iB) = (2 +a)? + 32, whose coefficients are all positive.
Hence, the coefficients of p(z) are all positive. Since every zero of p(z) has a negative real part, this is true
of the zeros of ¢(z), and it too has positive coefficients.

On the other hand, suppose that p(z) and ¢(z) have all coefficients positive. Then all the real zeros of

both of these polynomials must be negative, by Descartes’ Rule of Signs. Since each complex conjugate pair
of nonreal zeros of p(z) add to a real zero of g(z), all the nonreal zeros of p(z) have negative real parts. [

8. PROBLEMS AND INVESTIGATIONS
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1. Prove that, for each positive integer n, the polynomial
zz+1)(x+2)- - (z+2n—-1)+ (z+2n+1) - (x4 4n)
has no real zeros.

2. Let f(z) = 2® — 3z + 1. How many distinct real roots does the equation f(f(z)) = 0 have?

3. Let f(z) = 2* — 4ax® + 6b%2? — 4¢3z + d* where a,b,c,d > 0. Prove that, if f(z) has four distinct
real zeros, then a > b > ¢ > d.

4. Let a,b,c be real numbers for which 0 < ¢ < b < a < 1. Must every zero w of the polynomial
2%+ az? + bz + ¢ satisfy Jw| < 17

5. If the quadratic polynomial 22 + az + b has two zeros that satisfy |z| = 1, then |a| < 2 and |b] = 1.
Is the converse true?

6. The polynomial 22 — 3322 + 2162 has the property that it and all its derivatives have integer zeros.
Investigate which polynomials of degree not excededing 5 that have this property.

7. Let p(z) be a polynomial of degree n all of whose zeroes satisfy |z| = 1, and suppose that ¢(z) =
np(z) — 2zp'(z). Must all of the zeros of ¢(z) lie on the unit circle?

8. Let n > 2 and
_ n2+n—1 n? n?—1 n?—n 2n—1 n n—1
P,(z)==z — 32" +z +x +x +a2" —32" "+ 1.
Prove that P,(z) > 0 when z > 0.

9. Let S°7_ axz" be a monic polynomial with complex coefficients and zeros zi, zs, - -, z,. Prove that
k=0 p y p ) 9 9
1 n
— E |zi|> < 1+ max |an_x|? .
n i~ 1<k<n

10. Let ag, a1, -+, agsm, be real numbers with as,, # 0. Define polynomials p(z) and ¢(z) by

2m
p(z) = Z a; 2"
i=0

and
2m
Q(Z) — ZaiZZm—z )
1=0

Suppose that p(z) is not a multiple of z — 1 and that

2p(2) = q(2) = agm(z — 1>+
Prove that, if (—=1)"p(1)/azm > 0, then p(z) has m zeros satisfying |z| > 1 and m zeros satisfying |z| < 1.
Prove that, if (—1)™p(1)/agm, < 0, then p(z) has m + 1 zeros satisfying |z| > 1 and m — 1 zeros satisfying
|z| < 1.

11. Let k > 4 be an integer and a > 2 be a real. The equation z* — a2*~! 41 = 0 has exactly one root

u that satisfies 0 < u < 1. Prove that every complex root z of this equation satisfies |z| < w.

12. Show that the equation 2% — 2cz® 4+ 2¢z — 1 = 0 has a root not on the unit circle |z| = 1 if and only
of u'/3 4+ v'/3j lies outside the unit circle, where ¢ = u + vi.
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13. The polynomial 23 — 3322 + 2162 has the property that all of the zeros of it and its derivatives are
integers. Investigate which polynomials of degree not exceeding 5 have this property.
Hints and Comments

1. Let t =z + 2n.
2. Sketch the graph of the cubic and locate its zeros.
6. [AMM 106:10 (December, 1999), 959]

8. Use Descartes Rule of Signs to determine the number or positive roots, and then find what these are.
[AMM #10978: 109:10 (December, 2002), 921; 111:7 (August-September, 2004), 629.]

9. [AMM #11008: 110:4 (April, 2003), 340; 112:1 (January, 2005), 91]

10. An example is 22 + 3. [AMM #10995: 110:2 (February, 2003), 156; 111:10 (December, 2004), 917]
11. [AMM #10688: 105:8 (October, 1998), 769; 107:2 (February, 2000), 181]

12. [AMM #10253: 99:8 (October, 1992), 782; 102:3 (March, 1995), 277]

12. [AMM 106:10 (December, 1999), 959] See also [3].
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