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CHAPTER TWO

THE TAYLOR EXPANSION

§1. HORNER’S METHOD

A polynomial
p(x) = anxn + an−1x

n−1 + · · ·+ a1x + a0

with its coefficents ak drawn from a field F is evaluated at an element u in the field by replacing each
occurrence of the indeterminate x by u to obtain

p(u) = anun + an−1u
n−1 + · · ·+ a1u + a0 .

The obvious way to calculate p(u) is to evaluate each term of the polynomial and then add the terms
together. This is inefficient; a superior method, due to Horner, is suggested by writing the polynomial in
nested form:

p(x) = (· · · (((anx + an−1)x + an−2)x + an−3)x + · · ·+ a1)x + a0 .

We can evaluate p(u) recursively. Let b0 = an, and bk = bk−1u + an−k for (1 ≤ k ≤ n). Then p(u) = bn.

This process can be clarified through a table:

an an−1 an−2 · · · a2 a1 a0

b0u b1u · · · bn−3u bn−2u bn−1u

an = b0 b1 b2 · · · bn−2 bn−1 bn

Each element in the bottom row is the sum of the two above it.

For example, to evaluate the polynomial 4x5 − 7x4 + 6x3 + 2x2 − x + 3 at 2, we can construct the table

4 −7 6 2 −1 3
8 2 16 36 70

4 1 8 18 35 73

and moreover use it to obtain the representation

4x5 − 7x4 + 6x3 + 2x2 − x + 3 = (4x4 + x3 + 8x2 + 18x + 35)(x− 2) + 73 .

The last number, 73, of the bottom row is the value of the polynomial at 2.

More generally,

p(x) = anxn + an−1x
n−1 + · · ·+ a1x + a0 = (b0x

n−1 + b1x
n−2 + · · ·+ bn−2x + bn−1)(x− u) + bn ,

where b0 = an, b1 = anu+an−1, b2 = anu2 +an−1u+an−2, · · ·, bn−1 = anun−1 +an−1u
n−2 + · · ·+a2u+a1,

and bn = anun + an−1u
n−1 + · · ·+ a1u + a0, the value of the polynomial at u.

Thus, we have a constructive way of realizing the Remainder Theorem,

p(x) = p1(x)(x− u) + p(u) ,

for a suitable polynomial p1(x) whose degree is n− 1, less by one than the degree of p(x).
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We can continue the Horner process to obtain

p1(x) = p2(x)(x− u) + p1(u) ;

p2(x) = p3(x)(x− u) + p2(u) ;

· · · ;

pn−1(x) = pn(x)(x− u) + pn−1(u) ,

where pk(x) is a polynomial of degree n − k, and in particular, pn(x) is a constant polynomial. This leads
to the representation

p(x) = pn(u)(x− u)n + pn−1(x− u)n−1 + pn−2(x− u)n−2 + · · ·+ p1(u)(x− u) + p(u) .

In the case of the example 4x5 − 7x4 + 6x3 + 2x2 − x + 3, we get the table

4 −7 6 2 −1 3
8 2 16 36 70

4 1 8 18 35 73
8 18 52 140

4 9 26 70 175
8 34 120

4 17 60 190
8 50

4 25 110
8

4 33

4

from which we can read off the identity

4x5 − 7x4 + 6x3 + 2x2 − x + 3 = 4(x− 2)5 + 33(x− 2)4 + 110(x− 2)3 + 190(x− 2)2 + 175(x− 2) + 73 .

Return to the general case and the representation

p(x) = p1(x)(x− u) + p(u)

where

p1(x) = anxn−1 + (anu + an−1)xn−2 + (anu2 + an−1u + an−2)xn−3 + · · ·
+ (anun−2 + an−1u

n−3 + · · ·+ a2)x + (anun−1 + an−1u
n−2 + · · ·+ a2u + a1)

= an(xn−1 + xn−2u + xn−3u2 + · · ·+ un−1) + an−1(xn−2 + xn−3u + · · ·+ un−2)
+ · · ·+ a2(x + u) + a1 .

Then p1(u) = nanun−1 + (n− 1)un−2 + · · ·+ 2a2u + a1.

For any polynomial p(x) =
∑n

k=0 akxk, we define the derivative p′(x) =
∑n

k=1 kakxk−1. Note that
this definition is made algebraically by identifying the coefficients of p′(x) in terms of those of p(x); there
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is no need to use the concept of limit. From this definition, the usual rules of the derivative with respect
to derivatives of sums, products and composition of polynomials can be demonstrated. We can iterate
differentiation to obtain derivatives of higher order. As differentiation reduces the degree of a polynomial by
one, a polynomial is of degree n if and only if its nth derivative is a nonzero constant.

Since p(x) =
∑n

k=0 pk(u)(x− u)k, we have that

p′(x) =
n∑

k=1

kpk(u)(x− u)k−1 ,

and, more generally,

p(r)(x) =
n∑

k=r+1

k(k − 1) · · · (k − r + 1)(x− u)k−r + r!pr(u) ,

for 1 ≤ r ≤ n. Substituting u for x, we find that p(r)(u) = r!pr(u), so that

p(x) =
n∑

k=0

p(k)(u)
k!

(x− u)k .

A zero r of the polynomial p(z) has multiplicity m if and only if p(z) can be written in the form p(z) =
(z − r)mq(z) where q(r) 6= 0. From the Taylor explansion, we see that this is equivalent to p(r) = p′(r) =
· · · = p(m−1)(r) = 0 and p(m)(r) 6= 0.

§2.NEWTON’S METHOD

The Taylor expansion of a polynomial about a point u can be used to motivate a standard method for
approximating roots of a given polynomial equation p(x) = 0, i.e. a number r for which p(r) = 0. We have

0 = p(r) = p(u) + (r − u)p′(u) +
1
2
(r − u)2p′′(u) + · · · .

If we have a rough idea where r is located, and select u nearby, taking care to ensure that p′(u) does not
vanish, then we can approximate the value of r by the equation

0 = p(u) + (r − u)p′(u) .

This is equivalent to

r = u− p(u)
p′(u)

.

This, of course, does not give the actual value of the root, but one might hope that it is a closer approximation.

Thus, we can define a sequence of approximants by taking u0 = u and, for each n ≥ 0,

un+1 = un −
p(un)
p′(un)

.

For real polynomials, this can be illustrated geometrically. Locate the point (un, p(un)) on the graph of the
curve y = p(x) in the cartesian plane. The tangent to the curve through this point meets the x−axis at the
point (un+1, 0). One can illustrate with a sketch that for certain shapes of the curve, the point (un+1, 0) will
be closer to the point (r, 0) on the curve than (un, 0).
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We can illustrate how the sequence of approximants proceeds by looking at a quadratic polynomial. The
behaviour in the complex plane for the quadratic p(z) = z2 − 1 is typical. The recursion for the sequence
{zn} is then zn+1 = g(zn) where

g(z) = z − z2 − 1
2z

=
z2 + 1

2z

=
z

2
+

1
2z

=
z

2
+

z

2|z|2
.

Observe that
(1) Re z > 0 ⇒ Re g(z) = 1

2 (1 + 1/|z|2)Re z > 0;
(2) |g(z)| ≤ 1

2 (|z|+ 1
|z| );

(3) arg z = θ ⇒ tan arg g(z) = (|z|2 − 1)(|z|2 + 1)−1 tan θ;
(4) |arg z| = θ < 1

2π ⇒ Re g(z) ≥ r
2 cos θ.

If we start with any first approximant z0 in the right half plane, then, by (2), the terms of the sequence
of Newton approximants {zn} eventually satisfy |zn| ≤ 3

2 when n exceeds some positive integer N . For such
n,

| tan argzn+1| ≤
5
13
| tan argzn|

so that lim argzn = 0 and lim Rezn = 1. Then, for some positive integer M , by (3), for n ≥ M ,

|zn − 1| ≤ 1
2

.

Thence, |zn| ≥ 1
2 and

|zn+1 − 1| = |g(zn)− 1| = |zn − 1|2

2|zn|
≤ |zn − 1|2 .

It follows that limn→∞ zn = 1.

If we start Newton’s approximating sequence anywhere in the right half plane, the limit of the sequence
is the zero of z2− 1 in that half plane. Similarly, any sequence in the left half plane tends to the zero in that
half plane. These half planes are known as the basins of attraction for their respective zeros. Any sequence
that starts on the imaginary axis remains there, and its behaviour is quite variable depending on the initial
term. In general, for any quadratic equation with distinct roots, the basin of attraction of each root with
respect to Newton’s sequence is the open half plane that contains that root, where the two half planes are
separated by the right bisector of the segment joining the roots.

In the case of coincident roots, the situation is particularly simple. For the quadratic (z − a)2, the
function g(z) is given by

g(z) = z − 1
2
(z − a) = a +

z − a

2
and the basin of attraction is the entire complex plane.

To give a sense of how the Newtonian sequence behaves on the right bisector, consider the quadratic
polynomial z2 + 1 whose zeros are ±i and the bisector is the real axis. Then for 0 6= x0 ∈ R, we obtain the
real sequence of Newton approximants defined by

xn+1 = xn −
x2

n + 1
2xn

=
x2

n − 1
2xn

for n ≥ 0. If x0 = cot θ, then it can be established by induction that xn = cot 2nθ. As there is no real
root, there are no constant sequences. But there are periodic sequences of all orders exceeding 1, as well as
other sequences exhibiting chaotic behaviour. For example, taking θ = π/3, we obtain the period-2 sequence
{3−1/2,−3−1/2, 3−1/2,−3−1/2, · · ·}.
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For polynomials of degree exceeding 2, the behaviour of the Newton approximating sequence is unpre-
dictable. For example, if one approximates the real zeros of 6x3 − 4x + 1 with the starting values 0.4500,
0.4600, 0.4700, 0.4800, the sequences of approximants have different limits. This can be understood from
analyzing the situation graphically [1, pp. 169-170].

§3. A FIRST LOOK AT APOLARITY

For a polynomial of positive degree n, the equation

p(z) = p(u) +
p′(u)

1!
(z − u) +

p′′(u)
2!

(z − u)2 + · · ·+ p(n)(u)
n!

(z − u)n

is true for all values of z and u, and so it remains true when we interchange these symbols to obtain

p(u) = p(z) +
p′(z)
1!

(u− z) +
p′′(z)

2!
(u− z)2 + · · ·+ p(n)(z)

n!
(u− z)n .

Let q(z) = (u− z)n, so that

q(j)(z) = (−1)jn(n− 1) · · · (n− j + 1)(u− z)n−j = (−1)j n!
(n− j)!

(u− z)n−j ,

and we have the identity

p(u) =
(−1)n

n!
〈p, q〉 ,

where
〈p, q〉 = p(z)q(n)(z)− p′(z)q(n−1)(z) + p′′(z)q(n−2)(z) + · · ·+ (−1)np(n)(z)q(z) .

While 〈p, q〉 is apparently dependent on z, we see that for q(z) = (u − z)n, it takes the constant value
(−1)nn!p(u).

In fact, as can be easily seen by taking the derivative, for any pair (p(z), q(z)) of polynomials of degrees
not exceeding n, 〈p, q〉 is a constant. Can we identify the constant? Consider the case that both polynomials
are exactly of degree n and have leading coefficient equal to 1.

Recall that, by the Fundamental Theorem of Algebra, each polynomials has exactly n zeros counting
multiplicity. Let u1, u2, · · · , un be the zeros of q(x) and v1, v2, · · · , vn be the zeros of p(x), and suppose that
sk is the k−th elementary symmetric function of the zeros of q(x) and tk the k−th elementary symmetric
function of the zeros of p(x). Thus, each of sk and tk is the sum of all

(
n
k

)
products of k of the n zeros of

the corresponding polynomial.

Then
p(z) = (z − v1)(z − v2) · · · (z − vn)

p(k)(0) = (−1)n−kk!tn−k

q(z) = (z − u1)(z − u2) · · · (z − un)

q(k)(0) = (−1)n−kk!sn−k

for k = 0, 1, 2, · · · , n.

Since 〈p, q〉 is constant, we can evaluate it by taking z = 0. This yields that

〈p, q〉 = (−1)n[n!tn − (−1)n−1(n− 1)!s1(−1)1!tn−1 + (−1)n−2(n− 2)!s2(−1)22!tn−2

+ · · ·+ (−1)nn!sn]
= n!sn − (n− 1)!1!sn−1t1 + (n− 2)!2!sn−2t2 + · · ·+ (−1)nn!tn .
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By a straightforward but tedious computation, it can be seen that this is equal to∑
σ

(u1 − vσ(1))(u2 − vσ(2)) · · · (un − vσ(n))

where each term of the sum is an n−fold product and the sum is taken over all n! permutations of {1, 2, · · · , n}.

When p and q are linear, then 〈p, q〉 = 0 occurs if and only both have the same zero. For a quadratic
polynomial p, 〈p, p〉 is the negative of the discriminant, and so vanishes if and only if it has coincident roots.
When p and q are distinct quadratics, then the condition 〈p, q〉 = 0 implies that their roots satisfy the
equation (u1 − v1)(u2 − v2) + (u1 − v2)(u2 − v1) = 0. When u1 = u2 = u, then this condition indicates that
the zero u of q(z) is one of the zeros of p(z). Suppose that u1 6= u2. To understand the significance of the
condition 〈p, q〉 = 0, we perform the transformation

φ(z) =
2z − (u1 + u2)

u1 − u2

which carries the zeros of q(z) to 1 and −1. Thus,

φ(u1) = 1, φ(u2) = −1,

w1 ≡ φ(v1) =
2v1 − (u1 + u2)

u1 − u2
,

w2 ≡ φ(v2) =
2v2 − (u1 + u2)

u1 − u2
.

Then
〈p, q〉 =

1
2
(u1 − u2)2[(1− w1)(−1− w2) + (1− w2)(−1− w1)]

= −1(u1 − u2)2(1− w1w2) .

When 〈p, q〉 = 0, then w1w2 = 1, so that, either w1 and w2 are real and interlace 1 and −1, or both lie on
the unit circle on opposite sides of the real axis, or they lie on opposite sides of the real axis and one is inside
and the other outside of the unit circle. Transforming back to the original pairs of roots, we see that one
pair of roots correspond with respect to the composite of a reflection in the line joining the other pair and
an inversion in the circle whose diameter is the segment joining them.

More generally, when q(z) = (z−u1)(z−u2) and p(z) has arbitrary degree, then the condition 〈p, q〉 = 0
is equivalent to

0 = n(n− 1)u1u2 − (n− 1)(v1 + v2 + · · ·+ vn)(u1 + u2) + 2(v1v2 + · · ·+ vn−1vn)

=
∑

1≤i<j≤n

(u1 − vi)(u2 − vj) + (u1 − vj)(u2 − vi) .

§4. PROBLEMS AND INVESTIGATIONS

1. Determine all polynomials f of degree 2 for which f(f(1)) = f(f(2)) = f(f(3)).

2. Let n be a positive integer and let

Pn(x) =
n∑

j=0

(
n

j

)2

x2j(1− x)2(n−j) .

(a) Show that Pn(1/2) ≤ Pn(x) for 0 ≤ x ≤ 1.
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(b) Show that, if Pn(x) is written as the sum of powers of (x− 1/2),

Pn(x) =
2n∑

k=0

ank

(
x− 1

2

)k

,

then ank = 0 when k is odd and ank ≥ 0 when k is even.

Hints and Comments

1. Can f(1), f(2), f(3) be all the same or all different? What is the form of a quadratic that takes the
same value at u and v when u 6= v? Where does the quadratic assume its extreme value?

2. [AMM #11155: 112:5 (May, 2005), 467]
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