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CHAPTER ELEVEN

DIOPHANTINE EQUATIONS FOR POLYNOMIALS

§1. INTRODUCTION

In Section 10.4, we noted that the pellian equation x2 − dy2 = k and x3 + cy3 + c2z3 − 3cxyz = 1
can be solved when the parameters c and d and variables x, y, z are polynomials. The solution (x, y, z) =
(s2− t2, 2st, s2 + t2) for x2 +y2 = z2 is also well-known. It is natural to consider other diophantine equations
for which polynomial solutions might exist, such as the Fermat equation xn + yn = zn. It is a deep result
that, when n ≥ 3, there are no nontrivial solutions for the Fermat equation in integers, which then rules
out solutions in polynomials over Z. However, this latter result is obtainable more directly with the aid of a
remarkable result called the “abc Theorem”.

The abc Theorem for polynomials is a kind of analogue of the abc Conjecture in number theory formulated
by Oesterlé and Masser in 1985, which states that, if ε > 0 and the integers a, b, c are pairwise coprime with
a + b = c, then the maximum of |a|, |b|, |c| does not exceed Cε

∏
p1+ε where Cε depends only on ε and

the product is taken over all primes p dividing abc. Since this conjecture implies the truth of Fermat’s Last
Theorem for sufficiently large exponents, it is deep. However, the polynomial version, known as Mason’s
Theorem, is much more tractable with a brief and easily understandable proof. It was proved in 1981 by
W.W. Stothers. [4, 6].

§2. THE abc THEOREM

Theorem 11.1. Suppose that a(x), b(x), c(x) are pairwise coprime nonconstant polynomials for which

a(x) + b(x) = c(x) .

Suppose that the product a(x)b(x)c(x) has exactly k distinct zeros. Then the degrees of each of the polyno-
mials a(x), b(x) and c(x) cannot exceed k − 1.

Proof. Let f = a/c and g = b/c. These are rational functions for which f + g = 1 and f ′ = −g′.
Suppose that a(x) =

∏
(x−u)r, b(x) =

∏
(x− v)s and c(x) =

∏
(x−w)t where u, v, w run through the roots

of a, b and c, respectively. Because of the coprimality condition, the sets of u, v and w do not overlap. Then

f ′(x)
f(x)

=
∑ r

x− u
−

∑ t

x− w

and
g′(x)
g(x)

=
∑ s

x− v
−

∑ t

x− w
.

Suppose that h(x) =
∏

(x − u)
∏

(x − v)
∏

(x − w). The degree of h(x) is exactly k and the functions
φ(x) = h(x)f ′(x)/f(x) and ψ(x) = h(x)g′(x)/g(x) are both polynomials of degree not exceeding k − 1.

We have that
b(x)
a(x)

=
g(x)
f(x)

= −f
′(x)/f(x)
g′(x)/g(x)

= −φ(x)
ψ(x)

.

Thus,
b(x)ψ(x) = a(x)φ(x) .

Since a(x) and b(x) are coprime, a(x) must divide φ(x), and so its degree cannot exceed k − 1. Similarly,
the degree of b(x) does not exceed k − 1. The degree of c(x) can be handled similarly. ♠
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Theorem 11.2. (Davenport) Let f(x) and g(x) be coprime nonconstant polynomials. Then the degree
of f3 − g2 is at least 1

2 (deg f(x)) + 1.

Proof. If the degrees of f3 and g2 differ, then the degree of f3 − g2 is at least equal to the degree of f3

or three times the degree of f and the result follows.

Suppose that the degrees of f3 and g2 are equal to 6m, so that the degree of f is 2m and of g is 3m.
Since (f3 − g2) + g2 = f3 and the number of zeros of the product of f3, g2 and f3 − g2 cannot exceed the
sum of the degrees of f , of g and of f3 − g2, we have, by the abc theorem,

6m ≤ 2m+ 3m+ deg (f3 − g2)− 1 .

whence
deg (f3 − g2) ≥ m+ 1 =

1
2
(deg f) + 1 .

♠

Equality in Davenport’s theorem is attained when f(t) = t2 + 2 and g(t) = t3 + 3t.

§3. FERMAT’S THEOREM FOR POLYNOMIALS

The abc Theorem allows for a quick proof of the following result: The equation f(x)n + g(x)n = h(x)n

has nontrivial solutions in polynomials f and g for n a positive integer, only when n = 1 and n = 2.

The case n = 1 is obvious, and an example of a solution when n = 2 is (f(x), g(x), h(x)) = (x2−1, 2x, x2+
1). Suppose, for some value of n, the identity holds where at least one polynomial has positive degree. Then,
by the abc Theorem, each of the degrees of f(x)n, g(x)n, h(x)n cannot exceed deg f(x)+deg g(x)+deg h(x)−1
(since a polynomial and each of its powers have the same number of distinct roots). Hence

n deg f(x) ≤ deg f(x) + deg g(x) + deg h(x)− 1

n deg g(x) ≤ deg f(x) + deg g(x) + deg h(x)− 1

n deg h(x) ≤ deg f(x) + deg g(x) + deg h(x)− 1 .

Adding the three inequalities yields that

n(deg f(x) + deg g(x) + deg h(x)) ≤ 3((deg f(x) + deg g(x) + deg h(x))− 1)

so that n < 3. ♣

More generally, we can analyse the diophantine equation fα + gβ = hγ , where α, β and γ are positive
integers exceeding 1. Wolog, we may suppose that 2 ≤ α ≤ β ≤ γ. If a, b, c are the respective degrees of f ,
g, h, we have that

αa ≤ a+ b+ c− 1

βb ≤ a+ b+ c− 1

γc ≤ a+ b+ c− 1 .

Adding these three inequalities yields that

α(a+ b+ c) ≤ αa+ βb+ γc ≤ 3(a+ b+ c− 1) ,

whence α < 3. Thus, α = 2. The three inequalities become a ≤ b + c − 1, βb ≤ a + b + c − 1 and
γc ≤ a+ b+ c− 1. Again, adding the three inequalities, yields

β(b+ c) ≤ βb+ γc ≤ 3(b+ c) + a− 3 ≤ 4(b+ c)− 4 ,
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whence β < 4. Hence β = 2 or β = 3.

Solutions can be found for (α, β, γ) = (2, 2, n) for any integer n ≥ 2. So, suppose that β = 3. Then
a ≤ b+ c− 1 and 2b ≤ a+ c− 1 lead to b ≤ 2c− 2 and a ≤ 3c− 3. Thus, γc ≤ 6c− 6, so that γ ≤ 5.

Solutions can be found for all of the values of (α, β, γ) within these bounds.

S4. CATALAN’S EQUATION FOR RATIONAL FUNCTIONS

Finally, we show that u(x)m− v(x)n = 1 is not solvable for rational functions, unless m = n = 2. When
m = n = 2, it is satisfied by (u(x), v(x)) = ((x2 + 1)(x2 − 1)−1, 2x(x2 − 1)−1).

Suppose that u(x) = f(x)/g(x) and v(x) = h(x)/k(x), where both the polynomial pairs (f, g) and (h, k)
are coprime. Then

f(x)mk(x)n − g(x)mh(x)n = g(x)mk(x)n . (11.1)

Since (f, g) is coprime, g(u) = 0 implies that k(u) = 0. Since (h, k) is coprime, k(u) = 0 implies that
g(u) = 0. Hence, there is a finite set of complex numbers zi for which

g(x) =
∏

(x− zi)ai

and
k(x) =

∏
(x− zi)bi ,

where the ai and bi are positive integers. The multiplicity of zi as a root of the three terms of (11.1) are nbi,
mai and nbi +mai respectively. If nbi and mai differ, then the multiplicity of zi as a root of the left side
is the lesser of these, which is not possible. Hence nbi = mai, from which we deduce that k(x)n = g(x)m.
Hence f(x)m − h(x)n = g(x)m.

From the result in Section 3, we see that (m,n) = (2, 2) or (m,n) = (3, 2). In the latter case, g(x)3 =
k(x)2 = l(x)6 for some polynomial l(x). This yields f(x)3 − h(x)2 = l(x)6, which is not solvable. ♣

$5. PROBLEMS AND INVESTIGATIONS

1. Determine polynomials solutions to each of the following diphantine equations:

(a) a3 + b3 + c3 = d3 ;

(b) 1
2a(a+ 1) + b2 = c3 .

2. Determine polynomial solutions to the simultaneous system of diophantine equations:

2(b2 + 1) = a2 + c2 ; 2(c2 + 1) = b2 + d2 .

Hints and references

1. (b) See [AMM #10510; 1996, 266; 105:4 (April, 1998), 375]. Two simple solutions are

(a, b, c) = (2x2 − 1, x(x2 − 1), x2) ;

(a, b, c) = (32x6 − 1, 4x3, 8x4) .

2. See [2].
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