
The richness of mathematics

In response to my December 5, 2013 column on Pythagorean triples, I received an email from Doug
Nuttall, a professional engineer in Elphin. He attached to his note a table of Pythagorean triples, sets of
three numbers such as (3, 4; 5) for which the square of the largest is equal to the sum of the squares of the
smallest two. There is a formula that gives all such triples where the greatest common divisor of the three
numbers is 1:

(m2 − n2, 2mn;m2 + n2),

where m and n are whole numbers, one of which is even and the other odd.

Nuttall’s table reminded me that mathematical discovery, like scientific discovery in general, depends
on amassing data, peforming experiments and looking for patterns. However, unlike other sciences, in
mathematics we can prove that things are true beyond any doubt.

One of the questions I left the reader with in my column was to find Pythagorean triples other that
(3, 4; 5) and (21, 20; 29) for which the smallest numbers differed by 1. One way to do this is to start with
two sequences of whole numbers:

(0, 1, 2, 5, 12, 29, 70, 169, 408, 985, · · ·)

and
(1, 1, 3, 7, 17, 41, 99, 239, 577, 1393, · · ·).

Both sequences have the property that any term after the second is twice the previous term plus the one
before it. For example; 70 = 2 × 29 + 12. Moreover, by taking the difference or the sum of two consecutive
terms of the first sequence, we get the terms of the second sequence.

Let me zhow you how these sequences are implicated with our Pythagorean examples, and then I will
leave it to you to proceed further.

First, (3, 4; 5): 3 = 1 × 3; 4 = 2 × 1 × 2; 5 = 12 + 22; 5 − 4 = 12; 5 + 4 = 32.

Then, (21, 20; 29): 21 = 3 × 7; 20 = 2 × 2 × 5; 29 = 22 + 52; 29 − 20 = 32; 29 + 20 = 72.

The next in line is (119, 120; 129): 119 = 7 × 17; 120 = 2 × 5 × 12; 169 = 52 + 122; 169 − 120 = 72;
169 + 120 = 172.

The two sequences occur in another setting. One of the most ancient mathematical results is that
you cannot find a positive square whole number that is double the square of another whole number. But
there are many cases where a square differs from twice another square by 1. For instance, 32 = 2 × 22 + 1
and 72 = 2 × 52 − 1. It turns out that such examples fall into a pattern, and the nuumbers involved are
corresponding terms of the sequences: (1, 1), (3, 2), (7, 5), (17, 12), (41, 29), and so on.

In the first sequence, the sum of the squares of two consecutive entries is equal to a later term in the
sequence. Thus, 52 + 122 = 169. If you take any four consecutive terms of this sequence, then the product
of the outer two differs from the product of the inner two by 1. The first two sequences are interlinked in a
number of ways; for example adding corresponding terms of the two sequences leads to the next term of the
first one. There are lots more of these treasures for you to find.

There is a third sequence formed by taking the product of corresponding terms of the foregoing two
sequences:

(0, 1, 6, 35, 204, 1189, · · ·).

I will note simply that 29 = 35 − 6 and 20 + 21 = 35 + 6, and leave other discoveries to you.

There is another sequence that is even more brimful of relationships, the Fibonacci sequence, first
studied about 800 years ago. It is so fecund that there is a journal, The Fibonacci Questerly devoted to it.
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In this case, you start with 0 and 1 and add two consecutive terms to get the next:

(0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, · · ·).

What can you observe about its entries?

Sequences of integers arise in all sorts of mathematical situations, so it was inevitable that they should be
tabulated and their properties catalogued along with contexts in which they occur. The Online Encyclopedia
of Integer Sequences (http : //oeis.org) is the standard reference for anyone wanting the dope on any sequence
they may encounter.
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