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1. Difference of squares. Question: What positive integers can be written as the difference of two
squares? This is a good problem to ask students to explore. After a little experimentation, there is a good
chance that students will be able to guess the situation, namely that as long as the integer is not twice
an odd integer, i.e. not congruent to 2 modulo 4, such a representation is possible. Some students may
discover that one can cover all the odd integers by taking the difference between two consecutive squares,
since (x+ 1)2 − x2 = 2x+ 1, and that multiples of 4 can be obtained by doubling the integers used for the
odds.

A key observation is that any difference of squares can be written as a product x2− y2 = (x− y)(x+ y).
A second key obervation is that x + y and x − y have the same parity. So if a representation of a number
as the difference of two squares is possible, then that number can be written as the product of two numbers
with the same parity. Is the converse true?

Suppose that n = ab, where a and b have the same parity. Then, with a > b, we can show that
the system x + y = a;x − y = b has nonnegative integer solutions x and y and so n = x2 − y2 has the
desired representation. This suggests additional questions to be answered: given n, how many distinct
representations are possible? Are there any numbers for which such a representation is unique? Which
multiples of 4 can be written as the difference of two odd squares?

Another tool to tackle the same question is modular arithmetic. While some older students find this
difficult, it may be that the difficulty arises in part from its unfamiliarity with respect to what they have
learned and been working with for years. Younger students may actually be more comfortable with it. In
the present situation, modulo 4, we find that any square is congruent to 0 or 1, so that it is impossible for
two squares to differ by a numer that is congruent to 2 modulo 4. A finer analysis is possible if we work
modulo 8, for odd squares are always congruent to 1 modulo 8, while even squares are congruent to 0 or 4.
An odd multiple of 4 cannot be the difference of two odd squares, but every multiple of 8 can. In fact, for
any integer x,

(2x+ 1)2 − (2x− 1)2 = 8x.

We can carry the investigation further and examine the structure of the set of numbers for which such
a representation is possible. We can show that this set is closed under multiplication. For if m = a2 − b2 =
(a+ b)(a− b) and n = c2 − d2 = (c+ d)(c− d), then

mn = (a+ b)(c+ d)(a− b)(c− d) = (ac+ bd+ ad+ bc)(ac+ bd− ad− bc)
= (ac+ bd)2 − (ad+ bc)2.

We can write 1 = 12 − 02, 4 = 22 − 02, and any odd prime can be written as the difference of two squares,
so that any number that is the product of a power of 4 and any number of odd primes can be written as
the difference of two squares. This includes all numbers that are not twice an odd number and therefore
corroborates our earlier finding.

Another possible avenue of investigation is to fix values of y and check out what happens when you
multiply numbers of the form x2 − y2 where x takes different values. For example, the numbers x2 − 1 are
0, 3, 8, 15, 24, 35, 48, · · ·, and it appears that the product of any two consecutive numbers in the sequences
is in the same sequence. Can this be demonstrated? Empirically, students might arrive at the equation

[(x+ 1)2 − 1][x2 − 1] = [x(x+ 1)− 1]2 − 1.

2. Sum of squares. We can now move to numbers of the form x2 + y2, where x and y are integers.
The underlying theory is more complicated and formalizing this is beyond the range of most school students.
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However, they can still be invited to make conjectures. One can address the question as to whether the set
of such numbers is closed under multiplication. To discover this, one can follow a strategy similar to that in
Section 1, if we have recourse to imaginary numbers. For

m2 + n2 = (m+ ni)(m− ni),

so
(a2 + b2)(m2 + n2) = (a+ bi)(m+ ni)(a− bi)(m− ni)

= [(am− bn) + (an+ bm)i][(am− bn)− (an+ bm)i]

= (am− bn)2 + (an+ bm)2.

Looking at the situation modulo 4, we find that no sum of squares can be congruent to 3 modulo 4. This
includes in particular primes that are 1 less than a multiple of 4. However, it turns out that 2 and all primes
that are 1 greater than a multiple of 4 are the sums of two squares. This is not an easy result to obtain, but
there are a number of approaches. However, through investigation students may discover empirically that a
number is the sum of two squares if and only if in its decomposition into prime factors, all primes congruent
to 3 modulo 4 must occur to an even power.

There is an algorithm that will produce representations of primes congruent to 1 modulo 4 as the sum
of two squares. Let (x, y, z) be a triple of integers. Define

U(x, y, z) =

{
(x− y − z, y, 2y + z), if x > y + z
(y, x,−z), if x < y + z.

(The possibility x = y + z will not occur in the cases we are considering.) If (X,Y, Z) = (x, y, z), then
4XY + Z2 = 4xy + z2. Thus, 4xy + z2 is invariant under the transformation U . Suppose that p = 4k + 1 is
prime. Start with (k, 1, 1) and apply the operator U repeatedly. Eventually, you will get something of the
form (u, u, v). The value of the invariant is 4k + 1 = 4u2 + v2, so that p = (2u)2 + v2.

For example, if p = 73, then k = 18. Starting with (18, 1, 1) leads us in turn to (16, 1, 3), (12, 1, 5),
(6, 1, 7), (1, 6,−7), and in due course to (4, 4, 3). Continuing past this stage will take us back to where we
started, and looking at the result may give some idea as to why the method works.

As in Section 2, we can take y = 1 and investigate whether the product of x2 + 1 for two consecutive
integral values of x has the same form.

3. Pell’s equation. A Pell’s equation has the form

x2 − dy2 = k

where d is a positive nonsquare integer and k is an arbitrary integers. By expressing x2 − dy2 = (x +
y
√
d)(x−y

√
d), we can see that the set of k for which the equation is solvable is closed under multiplication.

Furthermore, in this case, there are infinitely many ways to represent 1 in the form x2 − dy2. We can look
at the solution with the small values of x and y, say (x, y) = (u, v), and then get other solutions by taking
the coefficients of 1 and d in the powers (u + v

√
d)n where n is a positive integer. Thus, for example, we

note that (u+ v
√
d)2 = (u2 + v2d) + 2uv

√
d, so that, from u2 − dv2 = 1, we can deduce

(u2 + dv2)2 − d(2uv) = (u2 − dv2)2 = 1.

The theory tells us that, for every positive nonsquare d, there is a solution of x2 − dy2 = 1 in positive
integers x, y, and that every solution can be obtained from this using powers of surds. Students might
investigate the truth of this for particular values of d. Some values of d, such as d = 61 present a tough
situation, but East Indian mathematicians managed to find a solution over a millenium ago. However, finding
solutions is a nice exercise for d < 30.
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4. A general quadratic result. Students can look at numbers representable by other quadratic
forms, such as x2 +dy2 where d is a positive integer and x2 +xy+y2. One interesting fact that might emerge
is that, when the coefficient of x2 is 1 and y is set equal to 1, we get a quadratic of the form f(x) = x2+bx+c
(with integers b and c), and for each integer x, f(x)f(x+ 1) = f(z) for some integer z.

Let us look at the example f(x) = x2 + x+ 1. We can plough through a lot of heavy algebra to verify
this is this case, but if we look at the situation more conceptually, we can readily verify our assertion. Note
that f(x−1) = x2−x+ 1. The left side of the equation asks us to consider the value of f at two consecutive
integers, and generically we might as well take them to be x− 1 and x. We find that

f(x− 1)f(x) = [(x2 + 1)− x][(x2 + 1) + x] = (x2 + 1)2 − x2 = (x2)2 + x2 + 1 = f(x2).

We can make another reduction to simplify things. Suppose we think of the result as having to show
that, for each integer m, f(m)f(m + 1) = f(r) for some integer r. Let us define the “shifted polynomial”
g(x) = f(x+m) so that g(0) = f(m) and g(1) = f(m+ 1). Then we have to show that g(0)g(1) = g(s) for
some integer s. What does g(x) look like? It has the same leading coefficient, 1, as f , so that

g(x) = x2 + ux+ v

.

Now let us compute:

g(0)g(1) = v(1 + u+ v) = v + uv + v2 = v2 + uv + v = g(v) = f(m+ v).

Notice the dual role played by v here, as the argument in the polynomial and as the constant coefficient of
the polynomial. This is a little subtle, but the student who becomes proficient at mathematics will have to
become accustomed to such switches in standpoint.

A more general version of this result was given to some students in a competition, and here are a few
of the solutions. Notice how the various solutions play off the different ways in which a quadratic can be
represented.

Let f(x) be a quadratic polynomial. Prove that there exist quadratic polynomials g(x) and h(x) for
which

f(x)f(x+ 1) = g(h(x)) ,

Solution 1. [A. Remorov] Let f(x) = a(x− r)(x− s). Then

f(x)f(x+ 1) = a2(x− r)(x− s+ 1)(x− r + 1)(x− s)
= a2(x2 + x− rx− sx+ rs− r)(x2 + x− rx− sx+ rs− s)
= a2[(x2 − (r + s− 1)x+ rs)− r][(x2 − (r + s− 1)x+ rs)− s]
= g(h(x)) ,

where g(x) = a2(x− r)(x− s) = af(x) and h(x) = x2 − (r + s− 1)x+ rs.

Solution 2. Let f(x) = ax2 + bx+ c, g(x) = px2 + qx+ r and h(x) = ux2 + vx+ w. Then

f(x)f(x+ 1) = a2x4 + 2a(a+ b)x3 + (a2 + b2 + 3ab+ 2ac)x2 + (b+ 2c)(a+ b)x+ c(a+ b− c)

g(h(x)) = p(ux2 + vx+ w)2 + q(ux+ vx+ w) + r

= pu2x4 + 2puvx3 + (2puw + pv2 + qu)x2 + (2pvw + qv)x+ (pw2 + qw + r) .
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Equating coefficients, we find that pu2 = a2, puv = a(a + b), 2puw + pv2 + qu = a2 + b2 + 3ab + 2ac,
(b + 2c)(a + b) = (2pw + q)v and c(a + b + c) = pw2 + qw + r. We need to find just one solution of this
system. Let p = 1 and u = a. Then v = a+ b and b+ 2c = 2pw + q from the second and fourth equations.
This yields the third equation automatically. Let q = b and w = c. Then from the fifth equation, we find
that r = ac.

Thus, when f(x) = ax2 + bx+ c, we can take g(x) = x2 + bx+ ac and h(x) = ax2 + (a+ b)x+ c.

Solution 3. [S. Wang] Suppose that

f(x) = a(x+ h)2 + k = a(t− (1/2))2 + k ,

where t = x+ h+ 1
2 . Then f(x+ 1) = a(x+ 1 + h)2 + k = a(t+ (1/2))2 + k, so that

f(x)f(x+ 1) = a2(t2 − (1/4))2 + 2ak(t2 + (1/4)) + k2

= a2t4 +

(
− a2

2
+ 2ak

)
t2 +

(
a2

16
+
ak

2
+ k2

)
.

Thus, we can achieve the desired representation with h(x) = t2 = x2 + (2h + 1)x + 1
4 and g(x) = a2x2 +

(−a
2

2 + 2ak)x+ (a
2

16 + ak
2 + k2).

Solution 4. [V. Krakovna] Let f(x) = ax2 + bx + c = au(x) where u(x) = x2 + dx + e, where b = ad
and c = ae. If we can find functions v(x) and w(x) for which u(x)u(x+ 1) = v(w(x)), then f(x)f(x+ 1) =
a2v(w(x)), and we can take h(x) = w(x) and g(x) = a2v(x).

Define p(t) = u(x+ t), so that p(t) is a monic quadratic in t. Then, noting that p′′(t) = u′′(x+ t) = 2,
we have that

p(t) = u(x+ t) = u(x) + u′(x)t+
u′′(x)

2
t2 = t2 + u′(x)t+ u(x) ,

from which we find that

u(x)u(x+ 1) = p(0)p(1) = u(x)[u(x) + u′(x) + 1]

= u(x)2 + u′(x)u(x) + u(x) = p(u(x)) = u(x+ u(x)) .

Thus, u(x)u(x + 1) = v(w(x)) where w(x) = x + u(x) and v(x) = u(x). Therefore, we get the desired
representation with

h(x) = x+ u(x) = x2 +

(
1 +

b

a

)
x+

c

a

and
g(x) = a2v(x) = a2u(x) = af(x) = a2x2 + abx+ ac .

Comment. The second solution can also be obtained by looking at special cases, such as when a = 1 or
b = 0, getting the answer and then making a conjecture.

5. When is a polynomial a composition of other polynomials? One Ottawa, ON high school
student, James Rickards, carried the result much further and actually got a note published in the American
Mathematical Monthly, the flagship jounral of the Mathematical Association of America. When f(x) =
x2 + bx+ c is a monic, quadratic polynomial, it is straightforward to check that f(0)f(1)) = f(c) = f(f(0)).
By a translation of the variable, it follows that f(x)f(x + 1) = f(x + f(x)) identically in x. This can be
generalized to general quadratic polynomials to obtain f(x)f(x + 1) = g(h(x)) where f(x) = ax2 + bx + c,
g(x) = x2 + bx+ ac and h(x) = ax2 + (a+ b)x+ c.

There is more significance to this result than a chance computation. If the roots of the polynomial f(x)
are r and s, then the roots of f(x + 1) are r − 1 and s − 1, and we note that f(x)f(x + 1) is a quartic
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polynomial for which the sum of two of its roots is equal to the sum of the other two. This is the critical
observation. For, it turns out that a quartic polynomial can be expressed as the composite of two quadratics
if and only if two of its roots have the same sum as the other two. We generalize this to polynomials of
higher degree.

For a set X = {x1, x2, · · · , xn}, we denote by σk(X) the kth symmetric function of the variables xi, the
sum of

(
n
k

)
products of k of the xi:

σk(X) =
∑
{xα1

xα2
· · ·xαk

: 1 ≤ α1 < α2 < · · · < αk ≤ n}

for 1 ≤ k ≤ n. We define σ0(X) = 1. We recall that if f(x) = g(h(x)) for polynomials f , g, h, then the
degree of f is the product of the degrees of g and h.

The criterion for composition. Suppose that f(x) is a polynomial with complex coefficients of degree
mn where m and n are integers exceeding 1. We begin by assuming that the leading coefficient of f(x) is 1
and generalize later.

Proposition 1. The monic polynomial f(x) can be written as the composite g(h(x)) of a polynomial
h of degree n and g of degree m if and only if R can be partitioned into m sets S1, S2, · · ·, Sm, each with n
elements (not necessarily distinct) such that, for each integer j with 0 ≤ j ≤ n− 1,

σj(S1) = σj(S2) = · · · = σj(Sm) .

Proof. Suppose that the set R of roots of f can be partitioned as indicated. Let R = {r1, r2, · · · , rmn}
be the set of roots of f , each listed as often as its multiplicity and indexed so that S1 = {r1, r2, · · · , rn},
S2 = {rn+1, rn+2, · · · , r2n}, · · ·, Sm = {rnm−n+1, rmn−n+2, · · · , rmn}. For 1 ≤ i ≤ m, let

yi(x) = (x− r(i−1)n+1)(x− r(i−1)n+2) · · · (x− rin)

be the monic polynomial whose roots are the elements of Si. Then, if i and j are distinct positive ingers
not exceeding m, the condition that the corresponding symmetric functions of Si and Sj are equal except
for the nth implies that yi(x)− yj(x) is a constant. Define zi = y1(x)− yi(x) for 1 ≤ i ≤ m.

Let h(x) = y1(x) and
g(x) = (x− z1)(x− z2) · · · (x− zm) .

Then

g(h(x)) = (y1(x)− z1)(y1(x)− z2) · · · (y1(x)− zm) = y1(x)y2(x) · · · ym(x) =

mn∏
i=1

(x− ri) = f(x) .

Now we prove that the condition on the roots of f is necessary. Suppose that we are given polynomials
g and h of respective degrees m and n for which f(x) = g(h(x)). Let

g(x) = (x− t1)(x− t2) · · · (x− tm) .

For each positive integer not exceeding m, let

ui(x) = h(x)− ti = (x− r(i−1)n+1)(x− r(i−1)n+2) · · · (x− rin) ,

say, where each linear factor is listed as often as the multiplicity of the corresponding root of ui. Then

f(x) = g(h(x)) = (h(x)− t1)(h(x)− t2) · · · (h(x)− tm)

= (x− r1)(x− r2) · · · (x− rmn) ,
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so that the rj are the roots of f .

For each index i with 1 ≤ i ≤ m, ui(x) = h(x)− ti so that all the coefficients of ui except the constant
are independent of i. It follows that all the symmetric functions of the roots of the polynomials ui agree
except the nth. Thus, we obtain the desired partition where si consists of the roots of ui. �

Let us deal with polynomials in general. Suppose that f(x) is a polynomial of degree mn and leading
coefficient a, so that f(x) = au(x) for some monic polynomial u(x). Then we show that f(x) is a composite
of polynomials of degrees m and n if and only if u(x) is so. Suppose that f(x) = g(h(x)) where g(x) is of
degree m with leading coefficient b and h(x) is of degree n with leading coefficient c. Then, by comparison of
leading coefficients, we have that a = bcm. It can be checked that u(x) = v(w(x)) where v(x) = (bcm)−1g(cx)
and w(x) = c−1h(x).

On the other hand, suppose that u(x) = v(w(x)) for some monic polynomials v(x) and w(x) of respective
degrees m and n. Then f(x) = g(h(x)) with g(x) = au(x) and h(x) = v(x).

We note that, even for monic polynomials, the decomposition of f(x) as a composite g(h(x)) is not
unique. For example, for arbitrary values of a and d, the pairs (g(x), h(x)) = (x2 + d, x2 + ax + 1) and
(g(x), h(x)) = (x2 + 2x+ d+ 1, x2 + ax) both yield

f(x) = x4 + 2ax3 + (a2 + 2)x2 + 2ax+ 1 + d = (x2 + ax+ 1)2 + d .
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