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ABSTRACT. For X a non-empty topological space and k a positive integer,
we denote by Sub(X,k) the set of non-empty subsets of X having cardinal-
ity < k, suitably topologized. The Sub( - ,k) are homotopy functors and
their properties are studied. We prove that if X is Hausdorff and path-
connected, then for all k > 1 and n > 0, the maps mn (Sub(X,k)) —
7n (Sub(X, 2k + 1)) induced by the inclusion are the 0-maps. In the di-
rection of non-triviality, we prove that if X is a non-empty closed manifold
of dimension > 2, then for each k > 1, Sub(X, k) is homologically non-trivial.

1. INTRODUCTION

Let X be a non-empty topological space and k a positive integer. We denote
by Sub(X, k) the set of non-empty subsets of X having cardinality < k. As a
set, Sub(X,k) contains the configuration spaces C(X,4) for 1 < i < k where
C(X,1i) is the space of unordered i-tuples of distinct points of X. The C(X,1)
have proved important in homotopy theory (e.g. [1], [4]) and certain geometric
applications (e.g. [3], [5], [7], [8], [9], [10], [11]). Our topologization of Sub(X, k)
will be such that for 1 < i < k, C(X,) with its standard topology will be a
subspace of Sub(X, k), and will take into account the fact that finite subsets of
different cardinalities may nevertheless be close. In contrast with the C( - , k),
the Sub( - , k) are functors (in fact, homotopy functors).
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748 DAVID HANDEL

Our first main result is that if X is a non-empty path-connected Hausdorff
space, then for each & > 1 and n > 0 the map

Tn (Sub(X, k)) = 7, (Sub(X, 2k + 1))

induced by the inclusion is the 0-map. In contrast with this, our second main
result is that if X is a non-empty closed manifold of dimension > 2, then Sub(X, k)
is homologically non-trivial for all £ > 1.

In §2 we topologize the Sub(X, k) and establish some general topological prop-
erties. In §3 we establish some homotopy properties of the Sub(X, k), and our
main results are proved in §4.

I thank the referee for suggesting several useful additions and ideas for further
investigation.

2. GENERAL TOPOLOGY OF Sub(X, k)

Let X be a non-empty Hausdorff space and k a positive integer. Write X*
for the k-fold Cartesian product X x --- x X and let ¢¥ : X* — Sub(X,k) be
given by ¢ (z1,...,21) = {21,...,21}. Thus, for example, if z, y € X, then
X (z,2,y) = ¢ (2,9,y) = {z,y}. We give Sub(X,k) the quotient topology
relative to the surjection q,f , and will henceforth call this topology the standard
topology on Sub(X, k). Note that q,f factors through the &' symmetric product
Spk(X). We sometimes abbreviate ¢; by leaving off the subscript k and/or the
superscript X when there is no danger of confusion. Trivially, the quotient map
q: X! — Sub(X,1) is a homeomorphism.

If k is a positive integer, let k denote {1,...,k}. For positive integers k,! and
any function « : k£ — [ we obtain, for any topological space X, a continuous map
a, : X! = X* given by a, (z1,...,21) = (Zaq),--->Tax))- Let N denote the
full sub-category of the category of sets whose objects are the k, & > 1. The
following Lemma is immediate:

Lemma 2.1. For each fized topological space X, the assignments k — X* and
a —> a, constitute a contravariant functor from N to the category of topological
spaces. Furthermore, if a : k — [, then for each non-empty topological space X,
the image of a, is {(z1,...,2) | z; = x; whenever a(i) = a(j)}. O

Lemma 2.2. Let a : k — | and suppose X is a non-empty Hausdorff space.
Then the image of o, is closed in X*.

PROOF. Suppose z = (z1,...,7;) € X¥ —Ima,. Then there exist i, j € k such
that a(i) = a(j) but z; # z;. Choose disjoint neighborhoods U, V in X of z;,
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xj, respectively. Then {(y1,...,yx) | vs € U, y; € V} is a neighborhood of z in
X* which is disjoint from Ima . O

For k > 1 > 1 let surj(k,l) denote the set of all surjections k — L.

Lemma 2.3. Let X be a non-empty Hausdorff space. Then for integersk >1>1
and o € surj(k,l), a, : X! = X* is a homeomorphism onto a closed subspace of
X*k,

PROOF. Since a is surjective, we can choose a function 5 : [ — k such that af
is the identity on [. It follows that B, a, is the identity on X! and so a, is a
homeomorphism onto its image. The latter is closed in X* by Lemma 2.2. O

We have set inclusions
Sub(X,1) C Sub(X,2) C Sub(X,3) C---.

The question arises as to whether the standard topology on Sub(X,k) agrees
with the subspace topology derived from the standard topology on Sub(X, k + 1).
Fortunately the two topologies agree:

Proposition 2.4. Let X be a non-empty Hausdorff space and k a positive integer.
Then the standard topology on Sub(X, k) agrees with the subspace topology derived
from the standard topology on Sub(X,k+1). Moreover, Sub(X,k) is closed in
Sub(X,k+1).

PROOF. For each a € surj(k + 1,k), it follows from Lemma 2.3 that o, : X* —
X*+1is a closed map. For each such a the diagram

Cx
Xk - - Xk+1

le le+1

Sub(X, k) — Sub(X,k+1)

commutes where i is the inclusion map. Thus ¢ is continuous with respect to
the standard topologies on Sub(X, k) and Sub(X,k + 1). Thus all assertions will
follow if we show that ¢ is a closed map with respect to the standard topologies.

Let A be closed in Sub(X,k). Then g; '(A) is closed in X* and hence each
oy (g5 ' (A)) is closed in X**1. We have

G (i) = |J  ec(g'A).

a€surj(k+1,k)
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Since surj(k+1, k) is finite, qk_jl (i(4)) is closed in X**! and hence i(A) is closed
in Sub(X,k+ 1). O

Proposition 2.5. Let X be a non-empty Hausdorff space and k a positive integer.
Then the quotient map qi : X* — Sub(X, k) is a closed map.

PRrROOF. We proceed by induction on &, the result being trivial for £ = 1. Suppose
k> 1 and that gx_; : X*~' — Sub(X,k — 1) is a closed map. Note that for any
subset A of X%

gla@={ U agli(a@nswxr-n)|u U B
a€surj(k,k—1) Béesurj(k,k)
Since, by Lemma 2.3, the a, and 3, are all closed maps, it remains only to show
that if A is closed in X*, then g (A) N Sub(X, k — 1) is closed in Sub(X,k — 1).
This follows immediately from the fact that
w@NSub(X,k-1)= ) @10 N4
a€surj(k,k—1)

and the inductive hypothesis that ¢;_1 is a closed map. O

In general, q,g( need not be an open map. For example, if X = R and U =
(0,2) x (0,2) x (2,4), then (1,3,3) € g5 'g3(U) but (1,3,3) is not an interior point
of g3 'q3(U). However, we do have the following:

Lemma 2.6. Let X be a non-empty Hausdorff space, k a positive integer, and
suppose U is open in X. Then q(U x X*~1) and q(U*) are open in Sub(X,k).

PRrOOF. Each o € surj(k, k) = ¥}, yields a self-homeomorphism o, : X* — X*.
Note that
g lqUx X = o (Ux X",
gEX
a union of open sets, proving the openness of ¢(U x X*~1). Since ¢~ 'q(U*) = U*,
the openness of ¢(U*) follows. O

Proposition 2.7. If X is a non-empty Hausdorff space and k a positive integer,
then Sub(X, k) is Hausdorff.

Proor. Let S and T be distinct points in Sub(X, k). We can suppose that there
exists an ¢ € S such that x € T. Since X is Hausdorff we can choose disjoint
open subsets U and V of X such that € U and T C V. By Lemma 2.6,
q(U x X*¥=1) and ¢q(V*) are open in Sub(X, k). Note that they are disjoint and
that S € q(U x X*k=1), T € q(V*). O
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Suppose X is a pointed Hausdorff space with basepoint xq. For any positive
integer k, let Subo(X, k) denote the subspace of Sub(X,k) consisting of those
subsets which contain zo. Then Subg(X, k) is a pointed Hausdorff space with
basepoint {z¢}.

Proposition 2.8. Let X be a pointed Hausdorff space and k a positive integer.
Then Subg(X, k) is a closed subspace of Sub(X, k).

PROOF. ¢~'(Subo(X, k)) consists of all k-tuples of points of X with at least one
coordinate equal to g, and this is closed in X*. O

Suppose X and Y are non-empty Hausdorff spaces and f : X — Y continuous.
For k > 1 define Sub(f, k) : Sub(X, k) — Sub(Y, k) by Sub(f,k)(S) = f(S) for
each S € Sub(X,k). If X and Y are pointed and f is a pointed map, define
Subg(f, k) : Subo(X, k) — Subo(Y, k) to be the restriction of Sub(f, k).

Proposition 2.9. For each k > 1, Sub( - ,k) is a covariant functor from the
category of non-empty Hausdorff spaces to itself. If f : X = Y is a continuous
map of non-empty Hausdorff spaces, the diagram

Sub(X, k) ——2 0 supy, k)

l |

commautes, where the vertical maps are the inclusions.

PRrROOF. The only issue is continuity of Sub(f, k) when f : X — Y is continuous.
This is immediate from commutativity of the diagram

X*k ! Yk

| |

SUb(X, k) W SUb(Y, k') 5

the continuity of the top and two vertical maps, and the fact that ¢ is a quotient
map. O

By restriction we obtain:
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Proposition 2.10. For each k > 1, Subg( - , k) is a covariant functor from the
category of pointed Hausdorff spaces to itself. If f : X — Y is a pointed continuous
map of pointed Hausdorff spaces, the diagram

Subo(f, k)

Subo(X, k) Subo(Y, k)

l l

S’Ltb(](X, k + 1) m Subo(Y, k + ].)

commautes, where the vertical maps are the inclusions. O

We next describe a base for the standard topology on Sub(X, k). Suppose
Uiy, ...,U, are pairwise-disjoint, non-empty open subsets of X with r < k. Write

Uy, Ui = {A € Sub(X, k) | AnU; #0 for 1 <i <rand A C UyU---UU,}.
Let B be any base for the topology on X and let
By, = {(U1,...,U.)i | Ui € B for all i}.

Proposition 2.11. Let X be a non-empty Hausdorff space, B a base for the topol-
ogy on X, and k a positive integer. Then By is a base for the standard topology
on Sub(X, k). Moreover, if V is open in Sub(X,k) and A = {x1,...,2,} €V
where the x; are distinct, there exist pairwise-disjoint neighborhoods Uy, ... U, of
Ti,...,T., respectively, in B such that A € (Uy,...,U.)x C V.

Proovr. Let (Uy,...,U,)X € B,. We have
e ((U,...,U)7) = U Ua(1) X -+ X Ug(k)s

a€surj(k,r)

a union of open rectangles and hence open in X*, whence B, consists of open sets
in Sub(X, k).

Now let V be any open subset of Sub(X, k) and suppose A = {z1,...,z,} €V
where the z; are distinct. Then ¢~'(V) is open in X* and ¢~'(4) C ¢~ ' (V).
Note that ¢~ (A4) = {(wa(l), s Tar) | @ € surj(k,r)}. For each a € surj(k,r)
we can choose pairwise-disjoint open neighborhoods Uy,...,U%

respectively, such that Ug) X --- x Ugy) C q (V). For 1 <i < r we can choose
U; € B such that

of z1,...,xz,,

zelic () U~
aesurj(k,r)

Then 4 € (Ux,..., U)X C V. O
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Corollary 2.12. If X is a non-empty second-countable Hausdorff space, then so
are the Sub(X, k) for all k > 1. O

Let X be a non-empty Hausdorff space and A a non-empty subspace of X.
Then for each k > 1, Sub(A, k) is a subset of Sub(X, k). If i : A — X denotes the
inclusion map, then Sub(i, k) : Sub(A, k) — Sub(X, k) is the inclusion map. The
question arises as to whether or not the subspace topology on Sub(A, k) derived
from the standard topology on Sub(X, k) coincides with the standard topology
on Sub(A, k). Fortunately, the two are the same:

Proposition 2.13. Let A be a non-empty subspace of the Hausdorff space X and
k> 1. Then:

(a) The subspace topology on Sub(A, k) derived from the standard topology on
Sub(X, k) coincides with the standard topology on Sub(A,k).

(b) If A is open (respectively closed) in X, then Sub(A, k) is open (respectively
closed) in Sub(X, k).

PROOF OF (a). Since the inclusion map Sub(A, k) — Sub(X, k) is Sub(i, k) where
i: A — X is the inclusion, it follows that the inclusion of Sub(A, k) into Sub(X, k)
is continuous with respect to the standard topologies. Thus it remains only to
show that each subset U of Sub(A, k) which is open in the standard topology
on Sub(A, k) is also open in the subspace topology derived from the standard
topology on Sub(X, k). It suffices to show that whenever S = {z1,...,2,} €
U C Sub(A, k) where the z; are distinct and U is open in the standard topology
on Sub(A, k), then there exist pairwise-disjoint open neighborhoods Vi,...,V,
in X of z1,...,%,, respectively, such that (Vi,...,V,)&X N Sub(A, k) C U. We
can choose pairwise-disjoint open neighborhoods Uy,...,U, in A of z1,...,2,,
respectively, such that (Uy,...,U,)i C U. Since A has the subspace topology
derived from X, there exist open subsets T7,...,T, of X such that U; = T; N A
for each i. Using the Hausdorffness of X, we can choose pairwise-disjoint open
sets Vi1,...,V, in X such that z; € V; C T; for each i. It is immediate that

Vi, ..., V)X nSub(A k) C (Ur,...,U)d CU. O

ProOF OF (b). Let A be open in X and write T (A4), T(X) for the topologies on
A and X, respectively. Then the inclusion of bases T(A)r C T (X)x yields that
Sub(A, k) is open in Sub(X, k).

Suppose A is closed in X and S € Sub(X, k)—Sub(A, k). Say S = {z1,...,z,}
where the z; are distinct and z; ¢ A. We can choose pairwise-disjoint open
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neighborhoods Uy,...,U,. in X of zi,...,x,, respectively, with U; C X — A.
Then S € (Uy,...,U.)¥ C Sub(X,k) — Sub(A,k). O

Proposition 2.14. Let X be a non-empty Hausdorff space and k, | positive in-
tegers. Then the union map

w: Sub(X, k) x Sub(X,l) = Sub(X,k+1)
given by p(S,T) = SUT is continuous.

ProoF. Let T denote the topology on X. Suppose V = (U, .. .,Ur)iﬁrl € Trti
and that (S,T) € =1 (V). Suppose Uy, , . -.,Un, are the distinct U; which meet
S, and Uy, ..., Uy, the distinct U; which meet 7. Then S € (Upn,,...,Un,)ik €
Te, T € (Unl,...,Unt)lX € 7/, and each U; occurs either among the U,,; or Upy;
(possibly both). It is immediate that

(S.T) € Umys--,Um i X Unys-. . Un )it C (V)
establishing the openness of u=1(V). O

Proposition 2.15. Suppose X is a non-empty, locally compact, Hausdorff space.
Then for each k > 1, Sub(X, k) is locally compact.

PrOOF. Let S = {x1,...,2,} € Sub(X, k) where the z; are distinct. Since X is
locally compact and Hausdorff we can find pairwise-disjoint open neighborhoods
Up,...,U, of z1,...,z,, respectively, whose closures U; are all compact. Then

SE(Ul,...,UT)kXC U Q(Ua(l) X"'XUa(k)).

aesurj(k,r)

The latter union is a finite union of compact spaces and hence compact, providing
a compact neighborhood of S in Sub(X, k). O

Proposition 2.16. Let X and Y be non-empty Hausdorff spaces. Let k and | be
positive integers. Suppose either X andY are both locally compact, or that'Y is
locally compact and | = 1. Then the cartesian product map

cp: Sub(X, k) x Sub(Y,l) = Sub(X x Y, ki)

given by cp(S,T) = S x T is continuous.
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ProOF. We have the commutative diagram

Xk )yl (X x V)M

XxY
q;fquyl lqklx

Sub(X, k) x Sub(Y,1) ——= Sub(X x Y, kl)

where, regarding (X x Y)* as the space of k x [ matrices with entries in X x Y,
f is given by

f@y, o meyn, Ui = (T, 95)-
Under the hypotheses, either all the spaces involved are locally compact and
Hausdorff, or qlY is the identity map on a locally compact Hausdorff space. Under
either hypothesis, q,g( X qlY is a quotient map. The continuity of ¢p now follows
from the continuity of the other maps in the above diagram. O

Proposition 2.17. Suppose X is a non-empty regular space. Then for each k >
1, Sub(X, k) is regular.

PROOF. Let S = {z1,...,2,} € Sub(X, k) where the x; are distinct. By Proposi-
tion 2.11, it suffices to show that if Uy, ..., U, are pairwise-disjoint open neighbor-
hoods of x1,...,z,, respectively, in X, then there exists an open neighborhood
V of S in Sub(X, k) such that V C (Uy,...,U,);X. By regularity of X there exist
open neighborhoods Vi, ..., V, in X of z1, ..., z,, respectively, such that for each
i, V, C U;. Let
A= U Va(l) X e xVa(k).
a€surj(k,r)

Then A is closed in X* and so by Proposition 2.5, q(A) is closed in Sub(X, k).
Taking V = (Vi,..., V)& we have

SeVcq)cU,.. Ui O
Corollary 2.12 and Proposition 2.17, together with the Urysohn Metrization
Theorem, yield:

Theorem 2.18. Let X be a non-empty second-countable metric space. Then for
all k> 1, Sub(X, k) is metrizable. O

Proposition 2.19. Let X and Y1,...,Y; be non-empty topological spaces with
X Hausdorff. Suppose f; : Y; — X are continuous, 1 < i < k. Then the map

f : Yi Xoene X Yk - SUb(Xak) given by f(yla"'ayk) = {fl(yl)a"'afk(yk)} is
continuous.
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PROOF. f is the composition

Y1><---><YkMXX---XX&SUZ)(X,IC). O

Proposition 2.20. Let X and Y be non-empty topological spaces with X Haus-
dorff. Suppose fi,...,fr : Y — X are continuous. Then g : ¥ — Sub(X,k)

given by g(y) = {f1(y),..., fu(y)} is continuous.
PROOF. g is the composition
Y & vh Ly sub(x, k)
where A is the k-fold diagonal map and f is as in Proposition 2.19. O

Suppose we are given a topological group G, a non-empty Hausdorff space X,
and a continuous group action a : G x X — X. For each k£ > 1, a induces a
group action ay : G x Sub(X, k) — Sub(X, k) in the evident way.

Proposition 2.21. Let a: G x X = X be a continuous group action where X
is a non-empty Hausdorff space and G a locally compact Hausdorff topological
group. Then for each k > 1, ap : G x Sub(X, k) — Sub(X, k) is a continuous
group action.

PROOF. The only issue is continuity of aj. We have the commutative diagram

G x Xk Xk

1G><le/ le

G x Sub(X, k) ——= Sub(X,k)

where f(g,z1,...,2x) = (921,...,92%). le X g is a quotient map since G is
locally compact and Hausdorff. Since f and ¢4 are continuous, continuity of «y
follows. O

Let X be a non-empty Hausdorff space. Recall that C(X, k), the configura-
tion space of unordered k-tuples of distinct points of X, is the quotient space
F(X,k)/%) where

F(X,k) = {(z1,-..,7) € X¥ | 2 # 2 if i # 5}
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and the symmetric group X acts by permutating coordinates. As aset, C(X, k) C
Sub(X, k). Note that F(X, k) is open in X*, the diagram

F(X, k) —= Xk

C(X, k) —= Sub(X,k)

is commutative where g and ¢' are the respective quotient maps, and F(X, k) =
¢ '(C(X,k)). Thus:

Proposition 2.22. Let X be a non-empty Hausdorff space and k > 1. Then the
topology on C (X, k) as a quotient of F(X, k) coincides with the subspace topology

derived from the standard topology on Sub(X,k). Moreover, C(X,k) is open in
Sub(X, k). O

For X a locally compact Hausdorff space, let XT denote the one-point com-
pactification of X. We follow the convention that if X is already compact, then
X is the union of X with a new isolated point.

For any non-empty Hausdorff space X and any k > 2, the composition

C(X, k) = Sub(X, k) 5 Sub(X,k)/Sub(X,k— 1)

where p is the collapsing map, is a continuous injection onto a subspace whose
complement consists of a single point x*.

Proposition 2.23. Let X be a non-empty regular space and k > 2. Then:

(a) The ingection C(X, k) — Sub(X,k)/Sub(X,k — 1) is a homeomorphism of
C(X,k) onto an open subspace of Sub(X,k)/Sub(X,k—1).

(b) If, additionally, X is compact, then Sub(X,k)/Sub(X,k—1) is C(X, k)T,
the one-point compactification of C(X, k).

Proor. Sub(X, k) is regular by Proposition 2.17, and Sub(X,k — 1) is closed in
Sub(X, k) by Proposition 2.4. Thus Sub(X, k)/Sub(X,k — 1) is Hausdorff. Write
i:C(X,k) = Sub(X,k)/Sub(X,k —1) for the above injection. It follows easily
from the openness of C(X,k) in Sub(X, k) (Proposition 2.22) that 7 is an open
map. Part (a) now follows, and we henceforth identify C'(X,k) with an open
subspace of Sub(X,k)/Sub(X,k—1).

Suppose, additionally, X is compact. Then C(X,k) is locally compact and
Hausdorff, and so C(X, k)% is defined. Since

Sub(X, k) /Sub(X,k — 1) = C(X, k) U {*}
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and the former is compact Hausdorff, part (b) follows. O

Theorem 2.24. For each n > 1 and k > 1, Sub(R", k) is topologically embed-
dable in some finite-dimensional Fuclidean space.

PROOF. We proceed by induction on k, the result being immediate for k£ = 1.
Suppose k > 1 and that f : Sub(R™, k—1) — R" is a topological embedding
for some positive integer a. By Theorem 2.18, Sub(R", k) is normal and so, by
Proposition 2.4 and the Tietze Extension Theorem, f extends to a continuous
map ¢ : Sub(R™ k) — R®. Again, using Theorem 2.18 and Proposition 2.4,
there exists a non-negative-valued continuous map « : Sub(R", k) — R such that
a 1(0) = Sub(R",k —1). Since C(R", k) is a smooth manifold, there exists a
topological embedding h : C(R", k) — S for some positive integer b. Define
i: Sub(R" k) — R by

{(z) = a(z)h(z) if z € C(R™, k),

0 it 2 € Sub(R", k — 1).
Continuity of i follows easily from the facts that h and i are continuous, h is
bounded, and a vanishes on Sub(R",k —1). Define j : Sub(R", k) — Ro+t+2
by j(z) = (9(z), a(z),i(x)). Then j is continuous. Since g distinguishes different
points of Sub(R"™, k — 1), a distinguishes points of Sub(R"™, k — 1) from points of
C(R"™, k), and i distinguishes different points of C(R", k), j is injective. Thus,
writing D™ for the closed unit disk in R"™, compactness of Sub(D", k) implies that
the restriction of j to Sub(D", k) is a topological embedding. Since the interior

of D™ is homeomorphic to R", the result now follows from the functoriality of
Sub( - , k) and Proposition 2.13. O

Corollary 2.25. Suppose X is homeomorphic to a non-empty subspace of some
finite-dimensional Euclidean space. Then for each k > 1, Sub(X, k) is topologi-
cally embeddable in some finite-dimensional Euclidean space. O

3. HoMOTOPY PROPERTIES OF Sub(X, k)

Proposition 3.1. Let (X, xzq) be a path-connected pointed Hausdorff space. Then
for all k > 1, Sub(X, k) and Subo(X, k) are path-connected.

PROOF. Since X* and {z(} x X*¥~! are path-connected, so are their images under
the quotient map gq. O

Proposition 3.2. Let h: X x I — Y be a homotopy from f to g where X and
Y are non-empty Hausdorff spaces. Then:
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(a) hg : Sub(X, k) x I — Sub(Y, k) given by

hk({xl,...,xr},t) = {h(@1,1),. .., h(zp, 1)}

is a homotopy from Sub(f, k) to Sub(g,k). Moreover, the diagram

Sub(X, k) x T —™~ Sub(Y, k)

| |

Sub(X, k + 1) x I —> Sub(Y,k +1)

k+1

commautes, where the vertical maps are the inclusions.

(b) If A is a non-empty subset of X and h is a homotopy rel A (i.e. h(a,t) is
independent of t for each a € A), then hy is a homotopy rel Sub(A, k).

PROOF. The only issue is the continuity of hy. We have the commutative diagram

k

kaI%XkXIké(XXI)kLYk
qﬁ(xlzl lq;’f
Sub(X, k) x I Sub(Y, k)

hy

where A : I — I* is the k-fold diagonal map, and ¢ is the permutation map which
interleaves the coordinates of X* with those of I*. Since I is locally compact and
Hausdorff, ¢ x 17 is a quotient map. The continuity of hj now follows. O

Corollary 3.3. Let h : X x I — Y be a pointed homotopy from f to g where
X and Y are pointed Hausdorff spaces. Then hy : Subo(X, k) x I — Subo(Y, k)
given by

hk({xl,...,xr},t) = {h(z1,1), ..., h(zp, )}
is a pointed homotopy from Subo(f, k) to Sube(g, k). O

Corollary 3.4. For non-empty Hausdorff spaces X and k > 2, the homotopy
type of Sub(X,k)/Sub(X,k — 1) depends only on the homotopy type of X. O

In general, the homotopy type of C(X, k) is not determined by the homotopy
type of X (see [4]). However, by Proposition 2.23 and Corollary 3.4, for non-
empty compact Hausdorff spaces X, the homotopy type of C(X, k)" depends
only on the homotopy type of X.
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Proposition 3.5. Suppose i : A S X isa cofibration where X is Hausdorff,
and A non-empty. Then for each k > 1, Sub(i, k) : Sub(A, k) — Sub(X,k) is a
cofibration. If X is pointed with basepoint in A, then Subg(i, k) : Subo(A, k) —
Subg(X, k) is a cofibration.

PROOF. Let r: X x I — X x I be a retraction of X x I onto (X x {0})U (A x I).
Let my : X x I — X and w5 : X X I — I denote the respective projections. Let
f:Sub(X, k) x I - Sub(X,k) x I be the composition

Sub(X, k) x I = Sub(X, k) x Sub(I,1) ——— Sub(X x I, k)
J{ (Sub(mrr, k),Sub(rar, k))
Sub(X, k) x Sub(I, k)
llsub(x‘ Ry Xmin
Sub(X, k) x I

The cartesian product map cp is continuous by Proposition 2.16. The composition
mincq,g is clearly continuous, and so min is continuous. Hence f is continuous.
It is easily checked that f is a retraction onto (Sub(X,k)x {0})U (Sub(A, k) xI).
The required retraction in the pointed case is obtained by restriction of this f. [

Proposition 3.6. Suppose X is a non-empty locally contractible Hausdorff space.
Then for each k > 1, Sub(X, k) is locally contractible.

PRrROOF. It suffices to show that whenever Uy, ..., U, are mutually disjoint open
subsets of X with h; : U; x I — U; a strong deformation retraction to a one-point
space {z;}, 1 < i <r <k, then {{xl, ... ,a:,q}} is a strong deformation retract of
(Ut,...,Us)x. For each « € surj(k,r) let

ha:Ua(l) X---XUa(k) XI—)Ua(l)X---XUa(k)

be given by
ha((’u’la s ,Uk),t) = (ha(l)(ulﬂt)a Tt ha(k)(ukﬂt))
and let
h: U Ua(l) X -+ X Ua(k) xI— U Ua(l) X -+ X Ua(k)
a€surj(k,r) a€esurj(k,r)

be the disjoint union of the h®. Passage to quotients yields a continuous

h:(Up,...,U)& x T = (Uy,...,U)&
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which is the desired strong deformation retraction. O

Lemma 3.7. Let X be a non-empty compact locally contractible space which is
topologically embeddable in some finite-dimensional Euclidean space. Then:

(a) For each k > 1, Sub(X, k) is an ANR.

(b) For each k > 2, Sub(X,k)/Sub(X,k —1) is an ANR.

Proor. By Corollary 2.25 and Proposition 3.6, Sub(X, k) is a compact, locally
contractible space which is topologically embeddable in some finite-dimensional

Euclidean space. Part (a) now follows from [2, p. 240].
Applying [12, Theorem 8.2] to the case X; = Sub(X, k), A; = Sub(X,k—1)
and X, = a one-point space, part (b) follows. O

Theorem 3.8. Let X be a non-empty compact locally contractible space which is
topologically embeddable in some finite-dimensional Fuclidean space. Then for all
k > 1, the inclusion Sub(X,k — 1) — Sub(X, k) is a cofibration.

ProoF. By Lemma 3.7(a), the spaces Sub(X,i) are locally compact, separable
metric ANRs, and hence ENRs. The assertion is now a consequence of [6, p. 84,
Problem 3*]. O

4. MAIN THEOREMS

Theorem 4.1. Let X be a path-connected pointed Hausdorff space. Then for
each k > 1 and n > 0, the map m, (SubO(X, k)) — Tn (SubO(X, 2k — 1)) induced
by the inclusion is the 0-map.

PRrROOF. The result is immediate for n = 0 by Proposition 3.1. Let n > 1. Thus
Ty, is group-valued. We use additive notation even though the group operation
might be non-commutative in case n = 1. Let f : S™ — Subo(X, k) be a pointed
map. We have the homotopy-commutative diagram

Sn v 57 T Subg (X, k) v Subo(X, k) —2—> Subo(X, k)

HI
i

Snw)(k xSuboXk —>Sub0X2k 1)
Subo(X, k)

(in fact, all regions are strictly commutative except for the triangle involving the
diagonal and comultiplication on S™). In this diagram, ¢ is the folding map, u
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the restriction of the union map, and i the inclusion. Thus, writing ¢ for the
identity map on S™,

ix[f] = i full] = i (f V el = iu ([ + [f])
and so i.[f] = 0. O
Theorem 4.2. Let (X, x0) be a path-connected pointed Hausdorff space. Then

for each k > 1 andn > 0, the map 7, (Sub(X, k)) — T (Sub(X, 2k + 1)) induced
by the inclusion is the 0 map.

PROOF. The case n = 0 is immediate from Proposition 3.1. Let n > 1. Then 7,
is group-valued and as in the proof of Theorem 4.1 we use additive notation. We
have the commutative diagrams

Sub(X, k) 2 Subo(X, k + 1)
I 2 SUb(](X, 2k + 1)

lil
I

Sub(X, k) x Sub(X, k) —== Sub(X,2k) —— Sub(X,2k + 1)

\/

Sub(X, k)

where a adjoins zg to each set, A is the diagonal map, I; and l; are the axial
inclusions, p the union map, and the other maps are inclusions.

Let f : 8™ — Sub(X,k) be a pointed map. Then from general homotopy
theory, AL[f] = li«[f] + l24[f]- Thus

3ol f]1 = Gupe ALF] = Giptu (Ll F] + o[ £]) = 2] f] = 0
since i, = 0 by Theorem 4.1. O
For any non-empty Hausdorff space X, let Sub (X) = |J Sub(X, k) with the weak
topology. Thus Sub (X) is the space of all non—emptgzénite subsets of X. From
Theorem 4.2 we have:

Corollary 4.3. Let X be a non-empty path-connected Hausdorff space. Then
Sub (X) is weakly contractible. O
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Theorem 4.4. Let M be a non-empty compact connected n-dimensional mani-
fold without boundary, n > 2. Then for each k > 1, the mod 2 singular cohomology
group H™ (Sub(M, k); Z/2) is isomorphic to Z/2, and Hi(Sub(M, k); Z/2) =0
for i > nk.

ProoF. All homology and cohomology groups below are with Z/2 coefficients,
and for brevity we write My for Sub(M, k). We proceed by induction on k, the
result being immediate for k£ = 1. Suppose k& > 1 and, inductively, that

(1) H'(My_1) =0 for i>n(k-1).

Since My, — Mj,_1 is the configuration space C'(M, k), an nk-dimensional manifold,
the pair (M, Mj_1) is a compact relative nk-manifold and so by Lefschetz duality
(see, e.g. [13, p. 297, Theorem 19]), we have isomorphisms

HI (Mg, My_1) = Hpi—j (C(M, k))

for all j, where H denotes Alexander cohomology. Since M and M;_; are com-
pact ANR’s by Lemma 3.7, it follows from [13, p. 290, Theorem 10] that the
above Alexander cohomology groups are isomorphic to the corresponding singu-
lar cohomology groups. Thus

(2) HI (My, My—1) =0 for j>nk
and
(3) H™ (My,, My,—1) = Ho(C(M,k)) = Z/2.

Let i > nk. Then exactness of
H'(My, My—1) = H (M) — H'(Mj—1)

and the vanishing of the extreme groups by (2) and (1), we have H*(M},) = 0.
From exactness of

H™ Y (My_1) = H™ (My, My—1) — H™ (My,) — H™ (My_1),

it follows from (1) that the extreme groups vanish, and so by (3), H"* (M},) = Z/2,
completing the proof. O
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