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Abstract. We introduce a group of periodic permutations, a new version of the
infinite symmetric group. We then generalize and study the Robinson–Schensted
correspondence for such permutations.

Introduction

In the last few decades the study of combinatorics and representation theory
of the symmetric group has exploded and really became a field of its own, with
hundreds of papers and several books dedicated solely to the subject. We refer the
reader to [F,M,Sa,St] for the introduction to the field, connections to other areas,
and an overview of extensions too numerous to be listed here.

By an ‘infinite symmetric group’ most authors think of the group Σ1 of permuta-
tions of N with bounded support. The study of Σ1 led to remarkable successes with
connections and applications to a number of fields from Representation Theory to
Probability to Mathematical Physics (see e.g. [AD,BO,VK]). In this paper we con-
sider a family of groups Σm which become periodic with period m after a certain
point. These groups generalize Σ1, and have a number of interesting algebraic and
combinatorial properties which we explore in this paper.

Our main tool is the Robinson–Schensted correspondence, one of the most im-
portant bijections in the combinatorics of Young tableaux. The correspondence is
a classical special case of the celebrated Robinson–Schensted–Knuth (RSK) corre-
spondence, which has countless reformulations and generalizations in the literature
(see references in [F,St]). In the classical case, it maps a permutation σ ∈ Sn into
a pair of standard Young tableaux of the same shape λ, and can be viewed as a
combinatorial way to represent Burnside’s identity for the symmetric group Sn.
What makes this bijection important is its robustness and various ‘bonus’ proper-
ties, such as the length of the longest increasing subsequence in σ being equal to
the first part of λ.

Key words and phrases. Infinite symmetric group, affine Weyl group, Robinson–Schensted
correspondence.
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To analyze periodic permutations, we consider a stable version of the Robinson–
Schensted correspondence, defined by applying the correspondence to longer and
longer subpermutations and taking a limit. The resulting stable Robinson–Schensted
map is well defined, but is no longer one-to-one. We are mostly concerned with
the inverse problem: given a resulting pair of tableaux, can one reconstruct the
original permutation? Reminiscent to the “can you hear the shape of a drum?”
question, this problem also has a negative solution. On the other hand, it has
enough structure to make it interesting and deserving further investigation.

To give a more technical overview of the results, let us start with a formal defini-
tion of our main object of study. Let Σm be the group of m-periodic permutations
σ : N → N such that: σ(i + m) = σ(i) + m for all i large enough. Observe that
Σ1 is indeed a group of permutations with bounded support. Perhaps surprisingly,
and in contrast with Σ1, groups Σm are finitely generated for m ≥ 2. We show that
group Σm is mapped onto a Weyl group Wm of affine root systems Âm−1, and this
homomorphism proves to be important in the inverse problem.

Roughly speaking, when formulated for all one-to-one maps from N into itself,
the inverse problem has little structure, as some pairs of tableaux have no preimages
of the stable Robinson–Schensted map, while others have infinitely many. When re-
stricted to m-periodic permutations we discover that the resulting pairs of tableaux
are also periodic in certain precise sense, and have additional properties, including
a connection to Wn

The paper has the following outline. In the first section we study algebraic
properties of Σm. The stable Robinson–Schensted map is defined in Section 2, and
the inverse problem is introduced in Section 3. Then, in Section 4 we study these
for m-periodic permutation. We conclude with questions, open problems and final
remarks.

1. Periodic permutations

Let N = {1, 2, 3, . . . } denote the set of positive integers, and let σ : N → N
be a one-to-one correspondence. Define a multiplication on all such σ by taking
compositions, and let S∞ denote the resulting group of permutations.

We say that σ ∈ S∞ is m-periodic if there exists N > 0 such that σ(i + m) =
σ(i) + m for all i ≥ N . Let Σm be the set of all m-periodic permutations, and let
Σ = ∪mΣm. We refer to elements σ ∈ Σ as periodic permutations.

Note that 1-periodic permutations are simply all permutations σ ∈ S∞ with
finite support: Supp(σ) = {i | σ(i) 6= i}.

Proposition 1.1 Σ1 ( Σ2 ( Σ3 ( . . . ( Σ ( S∞ is a proper chain of
subgroups.

Proof. First, let us check that Σm and Σ are closed under multiplication. Indeed,
suppose σ1, σ2 ∈ Σm. Then [σ1σ2](i + m) = σ1

(
σ2(i + m)

)
= σ1

(
σ2(i) + m

)
=

[σ1σ2](i) + m ∈ Σm. Similarly, if σ ∈ Σm, then σ−1 ∈ Σm, which proves that Σm

is a subgroup of S∞. Also, if σ1 ∈ Σm, σ2 ∈ Σn, then σ1, σ2 ∈ Σmn ⊂ Σ, which
implies that Σ = ∪mΣm is a subgroup of S∞.

To show the inclusion Σm−1 ⊂ Σm, consider a subgroup H ⊂ Σm of m-periodic
permutations with σ(n) = n for all m|n. It is easy to see that the map β : Σm−1 →
H defined by [β(σ)]((m−1)r+i) = mr+1+i, 0 ≤ i < m−1, is a group isomorphism.
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Finally, a permutation τ = (1, 2)(m + 1,m + 2)(2m + 1, 2m + 2) · · · ∈ Σm, while
clearly τ /∈ Σn for all n < m, which completes the proof. ¤

Proposition 1.2 Groups Σ1, Σ, and S∞ are not finitely generated.

This shows that despite attractive appearance, the most natural versions of the
‘infinite symmetric groups’ are not finitely generated, in contrast with the group Σm

for m ≥ 2 (see below). This, of course, is well known and easy to prove. We present
here an elementary proof for completeness.

Proof. For the first part, suppose H = 〈σ1, . . . , σk〉, with Supp(σi) ⊂ A. Then
Supp(σ) ⊂ A for all σ ∈ H, and thus H  Σ1. For the second part, consider
H = 〈σ1, . . . , σk〉, for any σ1 ∈ Σm1 , . . . , σk ∈ Σmk

. Then H ⊂ ΣM  Σ, where
M = m1 · · ·mk. The third part is obvious as S∞ is uncountable. ¤

Example 1.3 Consider the first nontrivial example of a group of 2-periodic
permutations Σ2. Define

α = (1, 2), τ1 = (1, 2)(3, 4)(5, 6) · · · , τ2 = (2, 3)(4, 5)(6, 7) · · · .

Note that α, τ1, τ2 ∈ Σ2 and α2 = τ2
1 = τ2

2 = 1. We claim that Σ2 = 〈α, τ1, τ2〉.
By definition, for every σ ∈ Σ2 there exists an N such that σ(n + 2) − σ(n) = 2
for all n ≥ N . Define a = a(σ) := σ(2n) − 2n, b = b(σ) := σ(2n + 1) − (2n + 1),
which are independent of n, for n ≥ N . Since σ is one-to-one, we must have the
in-flow |{j | σ(j) ≤ n}| equal to out-flow |{i | σ(i) ≥ n}|. Taking n large enough
this implies that a = −b.

Now, observe that 〈τ1, τ2〉 ' Z2 ∗ Z2 ' D∞ is an infinite dihedral group with
elements ρk = (τ1τ2)k satisfying a(ρk) = k and b(ρk) = −k, for all k ∈ Z. Therefore,
if σ ∈ Σ2, then σρk ∈ Σ1 for k = −a(σ).

Finally, since ρ1 = τ1τ2 is an infinite cycle on N:

. . . 8 → 6 → 4 → 2 → 1 → 3 → 5 → 7 → . . .

Let ρ = αρ1. Then 〈α, ρ〉 ⊃ 〈ρ−kαρk, ∀k ∈ Z〉 = 〈(1, r),∀r > 1〉 = Σ1. Therefore
Σ2 = 〈τ1, τ2〉 · 〈α, ρ〉 = 〈α, τ1, τ2〉, and thus Σ2 is finitely generated. Furthermore,
Σ2 ' Σ1 o Z, where Z = 〈ρ1〉 acts on Σ1 by conjugation.

Note that Σ2 contains a lamplighter group Z2 o Z, and thus has an exponential
growth. Clearly, Σ2 does not have Kazhdan’s property T since it is mapped ont Z.
Moreover, Σ2 is amenable as can be shown by the following calculation. Consider
finite sets Bn = {(Sn, k),−n/2 < k < n/2} of vertices in the Cayley graph of Σ1oZ
with generating set corresponding to (1, 2) ∈ Σ1 and ±1 ∈ Z. Then the relative
size of the boundary |∂Bn|/|Bn| = O(1/n) → 0 as n → ∞, which implies that
Σ2 ' Σ1 o Z is amenable [dlH].

For the rest of this section we consider only a group of m-periodic permuta-
tions Σm with m ≥ 3. Let α = (1, 2), and

τi = (i, i + 1)(m + i,m + i + 1)(2m + i, 2m + i + 1) · · · , for i = 1, . . . , m.

Clearly, α, τi ∈ Σm. Denote this set of m-periodic permutations by Rm. The main
result of this section is the following theorem.
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Theorem 1.4 Group of m-periodic permutations Σm with m ≥ 3 is finitely
generated by Rm. In other words, Σm = 〈α, τ1, . . . , τm〉.

Before we prove the theorem, let us recall the structure of the Coxeter group

Wn = 〈s1, . . . , sn〉/
(
s2

k = (sisj)2 = (srsr+1 mod m)3 = 1, ∀ k, r, i− j 6= ±1
)
.

Group Wn is a Weyl group of affine root system Ân−1 and is well understood [B,H].
It can be viewed as an automorphism group of a lattice L = {(a1, . . . , an) ∈ Zn |
a1 + . . . + an = 0}, with the action of si on L given by reflections:

si : (. . . , ai, ai+1, . . . ) → (. . . , ai+1 + 1, ai − 1, . . . ), i = 1, . . . , n− 1,

sn : (a1, . . . , an) → (an − 1, . . . , a1 + 1).

Now consider a group Υm of all one-to-one correspondences ω : Z → Z such that
ω(i + m) = ω(i) + m for all i ∈ Z, and ω(0) + ω(1) + . . . + ω(m− 1) =

(
m
2

)
. One

can view Υm as m-periodic doubly infinite permutations. Define a natural map
γ : Σm → Υm by setting γ(σ) = ω if σ(i) = ω(i), for all i large enough.

Lemma 1.5 1. Groups Wn and Υn are isomorphic for all n ≥ 2.
2. Map γ : Σm → Υm defined above is a group homomorphism.

Proof. For ω ∈ Υn, define ai(ω) = ω(i)− i, i = 1, . . . , n. Clearly, ω is uniquely
determined by the values ai(ω). Also, from ω(0) + . . . + ω(n− 1) =

(
n
2

)
we have:

a1(ω) + . . . + an(ω) =
(
ω(1)− 1

)
+ . . . +

(
ω(n− 1)− (n− 1)

)
+

(
ω(0)− 0

)
= 0.

Define πi := γ(τi) = · · · (i −m, i −m + 1)(i, i + 1)(i + m, i + m + 1) · · · ∈ Υn, for
i = 1, . . . , n. Consider a group homomorphism ψ : Wn → Υn defined by ψ(si) = πi.
It is easy to see that ψ is an isomorphism, which implies part 1. Proof of part 2 is
straightforward. ¤

Proof of Theorem 1.4 From the first part of Lemma 1.5, Υm is finitely generated:
Υm = 〈π1, . . . , πm〉. The second part implies that for every σ ∈ Σm there exists ρ ∈
H := 〈τ1, . . . , τm〉 such that σρ ∈ Σ1. Consider an element h = (τ1τ2 · · · τm) ∈ Σm,
and check that h is an infinite cycle on N. Thus Σ1 = 〈α, ρ〉, and σ ∈ H · 〈α, ρ〉 ⊂
〈Rm〉. ¤

We conclude this section with two side results of independent interest.

Proposition 1.6 Groups Σm, m ≥ 2, are amenable, non-solvable, and have
exponential growth.

Proof. Since S5 ⊂ Σ1 ⊂ Σm, for all m ≥ 2, this implies that Σm are not solvable.
The exponential growth of Σm follows from the exponential growth of Σ2 ⊂ Σm.
Amenability can be shown by a direct calculation similar to that in Example 1.3.
We omit the details. ¤

Proposition 1.7 Group Σ contains Wn as a subgroup, for all n ≥ 1.



PERIODIC PERMUTATIONS 5

Proof. It suffice to show that the group Σ2n ⊂ Σ, contains Wn as a subgroup,
for all n ≥ 2. Consider a map φ : Wn → Σ2n defined on generators si, 1 ≤ i < n,
and sn as follows:

φ(si) = (2i, 2i + 2)(2i + 2n, 2i + 2 + 2n) · · ·
· (2n− 2i− 1, 2n− 2i + 1)(4n− 2i− 1, 4n− 2i + 1) · · ·

φ(sn) = (1, 2) (2n, 2n + 2)(4n, 4n + 2) · · ·
· (2n− 1, 2n + 1)(4n− 1, 4n + 1) · · ·

One can view φ(Wn) as a group of periodic doubly infinite permutations of the
set N ordered as {. . . , 9, 7, 5, 3, 1, 2, 4, 6, 8, . . . }. Such permutations are obviously
2n-periodic (as permutations in S∞). A straightforward check shows that the map φ
is a group homomorphism. ¤

2. The stable Robinson–Schensted correspondence

Recall that a Young tableau A of shape λ = (λ1 ≥ λ2 ≥ . . . ) is a function
A : [λ] → N on Young diagram [λ] corresponding to λ with nonnegative integers
increasing in rows and columns. We will think of values A as being written in
squares of [λ] (cf. [F,M,St]). The weight of A, denotes w(A), is a set of integers in A.
Tableau A is called standard if w(A) = {1, . . . , n}, where n = |λ| = λ1 + λ2 + . . .
Let A, B be two Young tableaux of the same shape λ, |λ| = n, such that B is
standard. We call these RS-pairs.

An insertion of an integer c into RS-pair (A,B) is a RS-pair (A′, B′), obtained
by the following procedure. Start with the first row of A. If c is larger than all
integers in the first row, add a new square with c at the end. Otherwise, find the
smallest integer d > c, replace d with c, and ‘bump’ d to insert in the next row.
Repeat until a new Young tableau A′ is obtained of shape µ, |µ| = n + 1. For B,
add a new square with (n + 1), to obtain B′ of the same shape µ.

1 2

3 5

6

7

4

9

10 11

12 13

1 2

3 5

6

7

4

9

10

11

12

13

8

A A'

Figure 1. Insertion of 8 into tableau A gives a tableau A′. Here 8
‘bumps’ 10, which in turn ‘bumps’ 12.

For any permutation (c1, c2, . . . , cn, . . . ) ∈ S∞, define a sequence of RS-pairs
{(An, Bn)} obtained by successive insertion of c1, c2, . . . , starting with an empty
RS-pair. The correspondence ϕn : (c1, . . . , cn) → (An, Bn) is called Robinson–
Schensted correspondence.

Note that integers in Bn are never erased, while in An they may change after
future insertions. We say that {An} stabilizes if for every i ∈ N there exist N =
N(i) such that i is never erased after the first N insertions.
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Proposition 2.1 The sequence {An} stabilizes for all (c1, c2, . . . ) ∈ S∞.

Proof. The only way (i) is erased if the inserted integer c ‘bumps’ i, which can
happen only if c < i. Thus it suffices to take the smallest integer N = N(i), such
that i < cN+1, cN+2, . . . ¤

Thus we can speak of pairs of infinite Young tableaux (A∞, B∞) obtained as
stable limits of (An, Bn). Denote by ϕ : σ → (A∞, B∞) the stable Robinson–
Schensted correspondence defined as above. The shape of A∞ and B∞ is going to
be the same (possibly infinite) order ideal in Z2

≥0, which can denoted by an infinite
sequence λ = (λ1 ≥ λ2 ≥ . . . ), where λi ∈ N ∪ {0,∞}. We refer to λ as a stable
shape of σ. Note that the weight of A and B is N. When speaking of infinite Young
tableaux, we will always assume that, unless explicitly stated otherwise.

Example 2.2 Consider a 2-periodic permutation

σ = (2, 3)(4, 5)(6, 7) · · · = (1, 3, 2, 5, 4, 7, 6, . . . ) ∈ Σ2

Tableaux (A∞, B∞) = ϕ(σ) of stable shape (∞,∞) are given in Figure 2. Note
that A∞ = B∞ and the fact that σ is an involution: σ2 = 1.

1 2

3 5

6

7

4

9 11

8
A = B

Figure 2. Stable Robinson-Schensted bijection ϕ(σ) = ϕ(ω) = (A,B).

Similarly, for another 2-periodic permutation

ω = (1, 3) (2, 5)(4, 7)(6, 9)(8, 11) = (3, 5, 1, 7, 2, 9, 4, 11, 6, . . . ) ∈ Σ2

we have ω2 = 1 and (A∞, B∞) = ϕ(ω). This shows that the stable Robinson–
Schensted correspondence is not one-to-one. On the other hand, an exhaustive
search shows that σ and ω are the only preimages of (A∞, B∞).

Example 2.3 Let π = (1, 3, 2, 6, 5, 4, 10, 9, 8, 7, 15, 14, 13, 12, 11, . . . ) ∈ S∞ be
another involution, and (A∞, B∞) = ϕ(π) (see Figure 3). Here tableaux A∞ = B∞
have stable shape (∞,∞,∞, . . . ). In the next section we show that there exist
infinitely many permutations that are mapped into (A∞, B∞).

1 2

3 5

6

4

9

10

11

13

15

8

7

12

14
A = B 

Figure 3. Stable Young tableaux (A,B) = ϕ(π).
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The following result extends the duality property of the Robinson–Schensted
correspondence. As a corollary it implies that involutions are mapped into equal
tableaux.

Proposition 2.4 If ϕ(σ) = (A∞, B∞) for σ ∈ S∞, then ϕ(σ−1) = (B∞, A∞).

Proof. Let (An, Bn) = ϕ(σ(1), . . . , σ(n)), (A′n, B′
n) = ϕ(σ−1(1), . . . , σ−1(n)),

and ϕ(σ−1) = (A′∞, B′
∞). As in the proof above, let N = N(i) be smallest integers

such that σ(k) > i and σ−1(k) > i for all k ≥ N . Therefore, integers 1, . . . , i are
never erased in AN and A′N . By duality of the Robinson–Schensted correspondence
(see e.g. [St]), subtableaux of integers smaller than 1 in (AN , BN ) coincide with that
in (B′

N , A′N ). This implies the result. ¤

3. The inverse problem

We already know that the stable Robinson–Schensted correspondence is not one-
to-one (see Example 2.3). The main question we ask is the following problem.

Inverse Problem: Find all preimages σ = ϕ−1(A,B) of the stable Robinson–
Schensted correspondence for any given pair of infinite Young tableaux (A, B) of
the same stable shape.

Below we prove both negative and positive results, showing that certain pairs of
tableaux have no preimages, while others have infinitely many. In the next section
we return to periodic permutations for which the problem is more structured.

Proposition 3.1 If ϕ(σ) = (A, B), then the stable shape λ of A,B cannot end
with an infinite tail of nonzero integers.

Proof. Suppose λk = λk+1 = . . . = ` > 1 be the tail of λ. If ϕ(σ) = (A, B),
there exist an integer N so that the value A(k, `) is never erased. The only way we
can have B(m, `) > N with m > k, is by inserting an integer smaller than A(k, `)
(and bumping all the way to m-th row). Note that there is only a finite number
of integers smaller than σ(N) while there exist infinitely many values B(m, `) > N
with m > k. The result now follows by contradiction. ¤

Define the height h(λ) ∈ N ∪ {∞} to be the number of positive parts in a
partition λ. The following proposition proves existence of preimages in the inverse
problem for pairs of tableaux of the same stable shape with a finite height.

Theorem 3.2 Every pair of infinite Young tableaux (A,B) of stable shape λ
with h(λ) < ∞, has a preimage σ ∈ S∞ : ϕ(σ) = (A,B).

Proof. The result follows by induction on the height h(λ) = k. First, consider
the case ` = λk < ∞. This case is similar to the classical inverse of the Robinson–
Schensted correspondence (see [F,Sa,St]). Use induction on `. The base of induction
is straightforward as for k = 1 there exist a unique Young tableau corresponding
to an identity permutation.

For k ≥ 2, let ak = A(k, `), b = B(k, `). Find the largest integer ak−1 in (k− 1)-
th row such that ak−1 < ak, then find the largest integer ak−2 in (k−2)-th row such
that ak−2 < ak−1, etc. Now remove b from B, replace each ai with ai+1 to obtain
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tableaux A′ and B′ of stable shape µ. Set σ(b) = a1 and use induction assumption
to obtain the rest of the permutation.

Now suppose λk = ∞. Set σ(B(k, i)) = A(1, i) for all i = 1, 2, . . . Remove the
first row in A, the last (k-th) row in B, to obtain two Young tableaux of the same
stable shape µ, h(µ) = k − 1. Finally, use the inductive assumption to obtain the
rest of the permutation. ¤

Let us note that the method in the proof above breaks completely for λ =
(∞,∞, . . . ). Basically, as the height k grows the resulting permutation never sta-
bilizes. Intuitively, this suggests that in this case of the inverse problem there are
no preimages. As Example 2.3 shows, this is not true. In fact, our rather limited
set of experiments suggest the opposite:

Conjecture 3.4 Every pair of infinite tableaux of stable shape λ = (∞,∞, . . . )
has at least one preimage of the stable Robinson–Schensted map.

The following result suggests that the inverse problem is infeasible in certain
cases.

Proposition 3.5 The number of preimages is unbounded for tableaux with stable
shape of finite height.

First proof. We use an explicit construction. Consider a partition λ = (∞, . . . ,∞)
(k times). Consider two equal tableaux (Ak, Bk) = ϕ(σk), where

σk = (1, 3, 2, 6, 5, 4, . . . , r+k, r+k−1, . . . , r+1, r+2k, r+2k−1, . . . , r+k+1, . . . )

and r =
(
k
2

)
. See Figures 2, 4 for k = 2, 3 examples. We prove by induction that

a pair of tableaux (Ak, Bk) defined above has at least k distinct preimages. This
immediately implies the result.

1 2

3 5

6

4

9

10

11

13

15

8

7

12

14

Figure 4. Stable Young tableau A3 = B3.

The base of induction, the case k = 2, is given in Example 2.2. For the step of
induction, use the construction given in the second part of the proof of Theorem 3.2.
Set σ(B(k, i)) = A(1, i) for all i ∈ N. As before, remove the first row in Ak, the
last row in Bk. Observe that we obtain two tableaux with the numbers in the same
relative order as in Ak−1 and Bk−1. By induction assumption, there are now (k−1)
ways to extend σ to a permutation. The k-th permutation is given by σk defined as
above. It is straightforward to check that all these permutations are different. ¤

Second proof. Let Ak = Bk be two infinite tableaux of stable shape (∞,∞)
with integers (1, 2, . . . , k, k + 2, k + 4, . . . ) in the first row, and integers (k + 1, k +
3, k + 5, . . . ) in the second row. For every i ∈ {1, . . . , k}, define

σk,i =(1, 2, . . . , i− 1, k + 1, k + 3, . . . , m− 2,m, i,m + 2, i + 1, m + 4,

i + 2,m + 6, . . . , r − 2, k − 1, r, k, r + 2, k + 2, r + 4, k + 4, . . . ),



PERIODIC PERMUTATIONS 9

where m = 3k−2i+1, r = 5k−4i+1. Routine check shows that ϕ(σk,i) = (Ak, Bk),
and that σk,i 6= σk,j for 1 ≤ i < j ≤ k. ¤

Example 3.6 When k = 2, the constructions in two proofs coincide with those
in Example 2.2. When k = 3, the first construction gives the following 3-periodic
permutations:

(6, 9, 3, 12, 5, 1, 15, 8, 2, 18, 11, 4, 21, 14, 7, . . . ),

(3, 6, 1, 9, 5, 2, 12, 8, 4, 15, 11, 7, 18, 14, 10, . . . ),

(1, 3, 2, 6, 5, 4, 9, 8, 7, 12, 11, 10, 15, 14, 13, . . . ).

The second construction gives the following 2-periodic permutations, all mapped
into (A3, B3) as in Figure 4.

σ3,1 = (4, 6, 8, 1, 10, 2, 12, 3, 14, 5, 16, 7, 18, 9, . . . ),

σ3,2 = (1, 4, 6, 2, 8, 3, 10, 5, 12, 7, 14, 9, 16, 11, . . . ),

σ3,3 = (1, 2, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, . . . ).

Both constructions can be generalized in several, very different directions. The idea
behind them is used to obtain the following result.

Theorem 3.7 There exists a pair of infinite Young tableaux with uncountably
many preimages.

Proof. Let A = B = ϕ(π) be as in Example 2.3. Let A′ be obtained by removing
the first row in A. Note relabelling integers (preserving the order) give tableau A
again. Consider a sequence c = (3, 6, 5, 10, 9, 8, 15, 14, 13, 12, 21, 20, 19, 18, 17, . . . )
obtained by permuting integers in A′. From above, ϕ(c) = (A′, B) is well defined,
although c /∈ S∞. Substitute a subsequence 3, 5, 8, 12, 17, . . . in c of integers that
appear in the first row in A′ (and the second row in A) by a sequence variables
a = (a1, a2, a3, . . . ) This gives a sequence

u = (a1, 6, a2, 10, 9, a3, 15, 14, 13, a4, 21, 20, 19, 18, a5, . . . )

Define an infinite permutation σ ∈ S∞ by the following substitution of ar in u.
Observe that in order for σ ∈ S∞ we need a sequence a to be a permutation
of I ∪ J , where I = {i1, i2, . . . } = {1, 2, 4, 7, 11, 16, . . . }, and J = {j1, j2, . . . } =
{3, 5, 8, 12, 17, . . . }. Check that ϕ(σ) = (A,B) only if every ai is smaller than all
integers in u which appear before ai, with possible exception of elements of I that
not in the same row of A. Fix a1 = 3, a2 = 5, and let (a3, a4), (a5, a6), (a7, a8),
etc. be a permutation of {1, 8}, {2, 12}, {4, 17}, etc. In general, take (a2r−1, a2r)
to be any permutation of (ir−1, jr+1), for all r > 1. This substitution satisfies
the conditions above and a straightforward check shows that the resulting permu-
tation σ is mapped into (A,B). Clearly, all 2N choices of substitutions produce
distinct permutations. ¤

Note that a permutation π in Example 2.3 is not included in the uncountable set
of permutations σ produced in the proof above. Let us mention here a connection
to the first proof of Theorem 3.5 which underscores the importance of tableaux A′.

In conclusion, let us state the following conjecture which contrasts Theorem 3.7
above:
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Conjecture 3.8 Every pair of Young tableaux of the same stable shape with
finite height has a finite number of preimages of the stable Robinson–Schensted
map.

This suggests that the inverse problem may have a positive resolution for all
partitions with finite height.

4. Periodic tableaux

In this section we introduce a new class of periodic (infinite) Young tableaux and
connect them to periodic permutations by means of the stable Robinson–Schensted
correspondence. Everywhere below we assume that partitions have finite height.

We say that an infinite Young tableau A is m-periodic if there for some N ∈ N
we have: if an integer k is in i-th row, then so is k + m. Clearly, this is equivalent
to saying that large enough integers are place in rows of A according to i mod m.

Suppose λ = (λ1, λ2, . . . ) is the shape of m-periodic tableau A, λi ∈ N∪{∞}, and
let ` = h(λ). Clearly, `(λ) < ∞ since λi = ∞ for at most m rows. Let µr(A) denotes
the number of integers i placed in r-th row of A, and such that N ≤ i < N + m.
We call the sequence µ = (µ1, µ2, . . . ) the periodic shape of a tableaux A.

Lemma 4.1 The periodic shape of a m-periodic tableau A is a partition of m.

Proof. Indeed, if ar(n) is the number of integers ≤ n in r-th row, then ar(n) ≥
ar+1(n) by definition of a Young tableau. Observe that µr = limn→∞ ar(n)/m for
all r < `, which implies the result. ¤

The following result is the main connection between periodic permutations and
periodic tableaux:

Theorem 4.2 If σ ∈ Σm is a m-periodic permutation, then Young tableaux
(A,B) = ϕ(σ) produced by the stable Robinson–Schensted correspondence are m-
periodic with the same stable shape λ and the same periodic shape µ.

Proof. We need the following well known property of the classical Robinson–
Schensted correspondence (see e.g. [St]). Let σ ∈ Sn, and (An, Bn) = ϕn(σ). Then
the first row in An consists of all elements ai = σ(ki) such that σ(j) > ai for all
j > ki, 1 ≤ j ≤ n. The second row of An can be obtained in a similar way after
elements a1, a2, . . . are removed from σ. Similarly we obtain the third row, etc.

Let us show that the above description works verbatim as we let n →∞. Indeed,
for any permutation σ ∈ S∞, consider a sequence P1 = (a1, a2, . . . ), such that
ai = σ(ki) and σ(j) > ai for all j > ki. From the above construction, the element ai

is always in the first row of An for all n ≥ ki, and thus are in the first row of A∞ = A.
Same for the sequence of integers P2 in the second row, etc. Note that every integer
a = σ(k) must belong to one of the Pi for i ≤ k since nothing can possibly precede
it after the P1, . . . , Pk−1 are removed.

Now suppose σ ∈ Σm and N is an integer such that σ(i+m) = σ(i) for all i ≥ N .
By definition, if a ∈ P1, then (a+m) ∈ P1, and thus P1 is m-periodic. Use induction
to show that the same holds for all Pi. This proves that tableaux A is periodic. By
proposition 2.4, we have ϕ(σ−1) = (B, A). Since σ−1 ∈ Σm, we conclude that B is
m-periodic as well.



PERIODIC PERMUTATIONS 11

Recall that Proposition 2.1 implies that A and B have the same stable shape.
For the periodic shape, let sr(n) be the length of the r-th row of An or, equivalently,
of Bn. Define M = max{σ(i)−i, i ∈ N} < ∞ for m-periodic permutations. Let µ =
(µ1, µ2, . . . ) be the periodic shapes of A. Finally, define pr(n) = |Pr ∩ {1, . . . , n}|.
From above, pr(n) = ar(n). Observe that for all n ≥ N we have sr(n) − pr(n) <
N +mM since an integer cannot be bumped more than m times, each coming after
at most M steps from the previous. Therefore, as in Lemma 4.1, we have

µr = lim
n→∞

ar(n)/m = lim
n→∞

pr(n)/m = lim
n→∞

sr(n)/m .

Now symmetry in the definition of sr(n) implies the result. ¤

Example 4.3 Let us show that the inverse of Theorem 4.2 is not true. Consider
3-periodic tableaux A = B with the stable shape (∞,∞) with the first row P1 =
(1, 2, 4, 5, 7, 8, 10, 11, . . . ) and the second row P2 = (3, 6, 9, 12, . . . ). The periodic
shape is a partition µ = (2, 1). By construction as in the proof of Theorem 3.2 we
have ϕ(σ) = (A,B) for σ = (3, 6, 1, 9, 12, 2, 15, 18, 4, 21, 24, 5, . . . ). Since σ /∈ Σ, we
conclude that not every preimage of an m-periodic pair of Young tableaux (A,B)
with the same stable and periodic shape, is m-periodic.

In view of Theorem 4.2 and Example 4.3 we can consider the a restriction on the
Inverse Problem to m-periodic permutations and tableaux. The following result
show what we know about the number of preimages of the Robinson–Schensted
map. Note that it still does not resolve the inverse problem in this case.

Theorem 4.4 The is a finite number permutations σ ∈ Σm with σ(i + m) =
σ(i) + m for all i ≥ N , and which are preimages σ = ϕ−1(A,B) of any given two
m-periodic Young tableaux (A,B) of the same stable shape.

Proof. Let N1 be the smallest integers such that i and i+m are in the same row
in A respectively, for all i ≥ N1. Define N2 similarly, for the tableau B. We shall
find a bound on the smallest M such that the J = {N1, . . . , N1 + m− 1} are never
erased after the first M steps of the stable Robinson–Schensted correspondence.

By construction, after N2 steps the sequence of rows in which the new elements
appear in B is periodic. Let d denote any element of J that lies in the largest (r-th)
row of A. Since it can’t be ‘bumped’, after at most t = N2 + (N1 + m − 1) steps
we the element d is never erased. Next, the elements of J in the previous row of A
can be ‘bumped’ only to the last row, and the number of times that can happen is
at most µr ≤ µr−1 times. Thus these elements are never erased after t + m steps.
Repeat this to obtain a bound M ≤ N1 + N2 + m2.

To summarize, we obtain σ(j) < M for all N1 ≤ j < N1 + m. Since σ ∈ Σm,
these values determine σ(i)−i for all i ≥ N . There is a finite number of possibilities:
at most mM , so we can try them all. In each possible case, we obtain N−1 elements
of N which are unaccounted. These are the elements in I = {σ(1), . . . , σ(N − 1)}.
Trying all (N − 1)! permutations of I exhaust all possibilities. ¤

Now recall the group homomorphism γ : Σm → Υm defined in section 1. By
Lemma 1.5, group Υm has a natural isomorphism with the Weyl group Wn of root
system Ân−1.
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Denote by η : Σm → Wn the homomorphism η(τi) = si with τi ∈ Σm, si ∈ Wn

defined as in section 1. We obtain:

Corollary 4.5 Let Q = ϕ−1(A,B) ∩ Σm be the set of preimages of the stable
Robinson–Schensted correspondence for a given pair of m-periodic Young tableaux
(A,B) of the same stable and periodic shape. Then η(Q) ⊂ Wn is finite.

Proof. Indeed, from the proof of Theorem 4.4 there exists a finite number of
values σ(i)− i for i large enough. From the proof of Lemma 1.5 this is exactly what
we need. ¤

One can view Corollary 4.5 as a stable analogue of the Robinson–Schensted
correspondence. What is says, basically, is that for m-periodic pairs of tableaux
the “right” correspondence is not with m-periodic permutations, but with elements
of Wn instead. As our very first Example 1.2 shows, this “correspondence” is
not unique. Still, our finiteness result shows that this connection deserves further
investigation.

5. Final remarks

1) Let us speculate on some probabilistic models for generation of infinite per-
mutations. First, consider a probability distribution P = {pi, i ∈ N} and think
of an urn with balls labeled i ∈ N and having probability pi of being selected. If
we now start removing the balls from the urn without replacement. The result is
a permutation σ ∈ S∞ with properties which depend on P . For example, when
pn = (1− 1

2n )/2(n
2), an easy calculation shows that σ ∈ Σ1 with probability ε > 0.

Another way to obtain a random infinite permutation is by taking infinitely
many samples {an} from a continuous distribution P on R+ and then record the
relative order of a sequence {n + an}. Note that without adding a growing term
the infinite permutation does not stabilize. One can study the rows of tableaux
and their dependence of P . For example, if P is exponential, the rows of A grow
linearly, while columns at least exponentially fast.

2) It would be nice to find more about the algebraic structure of groups Σm.
For example, we do not know whether these groups are finitely presented. In a
different direction, can one extend Dixon’s theorem on probability of generating Sn

by two random permutations?

3) One is tempted to generalize the stable Robinson–Schensted map in direction
of the classical Robinson–Schensted–Knuth (RSK) correspondence [F,St]. Simply
consider all infinite matrices X = (xi,j) such that every row and column contains
only a finite number of nonzero entries. We say that X is m-periodic if for some
integer N we have xi+m,j+m = xi,j for all i, j ≥ N . From that point in one can
follow the standard construction, or the “continuous” version given in [P].

One can show an RSK–analogues of Proposition 2.1, Proposition 2.4, and Theo-
rem 4.2. It would be interesting to find the analogue of the group Wn in this case.
We leave the exploration of this subject to the reader.

4) Even if Conjecture 3.8 is false, it may still be true when restricted to m-
periodic permutations. One can, perhaps find efficient bounds on the number of
preimages in this case. Can one describe the pairs of m-periodic tableaux with
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exactly one preimage? We believe in the case m = 2 the inverse problem can
be completely resolved. Now, what about involutions, when both tableaux are
identical? Can one completely resolve the inverse problem in this case?

5) Finally, in recent years there has been much work done on combinatorics of
the wight multiplicities, generalizing Young tableaux, for affine root systems includ-
ing Ân (see [L,vL]). It would be interesting to see if our stable map construction
and the periodic shape appear in this context.
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