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In this (largely expository) article, we propose a simple modification of the multiply-with-carry
random number generators of Marsaglia [1994] and Couture and L’Écuyer [1997]. The resulting
generators are both efficient (since they may be configured with a base b which is a power of 2)
and exhibit maximal period. These generators are analyzed using a simple but powerful algebraic
technique involving b-adic numbers.
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1. INTRODUCTION

A pseudorandom number generator (RNG) for high-speed simulation and
Monte Carlo integration should have several properties: (1) it should have enor-
mous period, (2) it should exhibit uniform distribution of d-tuples (for a large
range of d ), (3) it should exhibit a good structure (usually a lattice structure)
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in high dimensions, and (4) it should be efficiently computable (preferably with
a base b which is a power of 2). Typically the RNG is a member of a family of
similar generators with different parameters and one hopes that parameters
and seeds may be easily chosen so as to guarantee properties (1), (2), (3) and (4).
Generators with these properties are surprisingly rare. Some of the best can-
didates known at present are given by L’Écuyer [1996, 1999] and Matsumoto
and Nishimura [1998].

Marsaglia and Zaman [1991] showed that their add-with-carry (AWC) gener-
ators satisfy condition (1). By giving up on (4) and using an appropriate base b,
they achieve good distribution properties of d-tuples for values d which are
less than the “lag.” Tezuka et al. [1993] showed that these generators fail
the spectral test (cf. Coveyou and MacPherson [1967] and Knuth [1997]) for
large d . A generalization, the multiply-with-carry (MWC) generator, was de-
scribed in Marsaglia [1994] and Couture and L’Écuyer [1997] and indepen-
dently, (motivated by some questions in cryptography) in Klapper and Goresky
[1993, 1994, 1997] where it was called a feedback-with-carry shift register,
or FCSR. This article, which is largely expository, combines both points of
view.

The MWC generator was proposed as a modification of the AWC genera-
tor which satisfies both conditions (1) and (4). That is, all computations are
performed modulo a base b which is a power of 2. However the distributional
properties (2) of MWC sequences are not optimal, and in fact they are rather
difficult to determine. See Couture and L’Écuyer [1997], where estimates on
the distribution of d-tuples are derived (using some sophisticated techniques
from number theory).

In this article, we show that a slight (almost trivial) modification of the MWC
generator results in sequences with maximum period (from which it follows
that the distribution of d-tuples is uniform, for all d less than the lag, d0)
and which continue to satisfy properties (1) and (4). It is relatively easy to
find generators of this type with base b a power of 2 (say, b = 221), with d0
around 100, and with periods around 10750. As in Couture and L’Écuyer [1997],
one could use the spectral test to search for parameters which might satisfy
(3) however it is expected that for large d >d0 the lattice structure will suf-
fer from the same shortcomings as those described in Couture and L’Écuyer
[1997].

In Theorems 2.1, 2.2, 2.3, 2.4, 3.1 and 4.1, we describe the main properties of
these generators. The proofs of Theorems 3.1 and 4.1 are “elementary.” Proofs
of the other results may be distilled from the literature on AWC and MWC gen-
erators [Couture and L’Écuyer 1994, 1997; Marsaglia and Zaman 1991; Tezuka
et al. 1993]. However, there is a very illuminating algebraic technique which
may be used to give short and efficient proofs of these results. It is a simple
but not entirely obvious modification of the technique of Klapper and Goresky
[1997] (and, as such, it is a special case of the general technique of Klapper and
Xu [1999]). We have included these short proofs at the end of this article for
the benefit of the reader who may not be familiar with the language of discrete
valuations and algebraic completions.
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2. MULTIPLY WITH CARRY GENERATORS

Throughout this article, we denote the integers by Z and the ring of integers
modulo m by Z/(m). Fix an integer “base”, b ≥ 2 and fix integer coefficients
a0, a1, . . . , ar with a0 chosen to be relatively prime to b. (If b is a power of 2,
this simply means that a0 is odd.) A MWC generator of order r and base b
consists of a space 6 of states and a transformation rule T : 6→ 6.Here, each
state σ ∈ 6 is an r + 1 tuple,

σ = (x−1, . . . , x−r ; c)

where 0 ≤ xi < b and c ∈ Z. The transformation rule

σ ′ = (x ′−1, . . . , x ′−r , c′) = T (σ )

is defined as follows. If i < −1, then x ′i = xi+1. The numbers x ′−1 and c′ are the
unique solutions to

a0x ′−1 + c′b =
r∑

i=1

aix−i + c (1)

with 0 ≤ x ′i < b. The values of x ′−1 and c′ may be computed as follows: Calculate
once and for all

A = a−1
0 (mod b) (2)

and realize this as an integer between 0 and b−1. Set τ =∑r
i=1 aix−i + c. Then

set

x ′−1 = (Aτ ) (mod b) (3)

c′ = (τ − a0x ′−1)
b

= τ div b. (4)

The integer c is called the “carry” or the “memory” of the state. The output of
the state σ = (x−1, . . . , x−r ; c) is the integer OUT(σ ) = x−r and the normalized
output is the real number x−r/b ∈ (0, 1].

Since the carry c ∈ Z is arbitrary, there are infinitely many different states
and infinitely many different output sequences. However, there are only finitely
many periodic states, in which case the carry remains within a certain finite in-
terval w− ≤ c ≤ w+ in accordance with Theorem 3.1 below. Moreover, from any
initial state, the generator will eventually enter a periodic state. Consequently,
for any initial state, the output sequence from the generator is eventually pe-
riodic; it has an initial transient segment whose size depends roughly on how
far c is from this interval.

The analysis of the MWC generator relies heavily on the number theoretic
properties of the connection integer

m = −a0 +
r∑

i=1

aibi (5)

(so named because it plays the same role as the connection polynomial of a linear
feedback shift register). It follows that m is relatively prime to b. Moreover,
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every m > 0 which is relatively prime to b has a unique representation of
the form (5) with 0 ≤ ai < b (for 0 ≤ i ≤ r), and with a0 6= 0 and relatively
prime to b. In this paper, however, we allow the ai to be arbitrary integers,
so for a given connection integer m the representation (5) is not necessarily
unique: one could even take a0 = −m. It would be interesting to study to what
extent the computations (3) and (4) might be optimized by appropriate choice
of coefficients ai.

As originally defined in Marsaglia [1994] and Couture and L’Écuyer [1994],
the coefficient a0 was equal to 1. If the base b is chosen to be a power of 2,
then these generators admit efficient implementations; however, the connection
integer will be constrained to be of the form m = Nb−1 for some integer N . In
this case, b is never a primitive root modulo m which implies (see Corollary 2.3)
that the generator will never have maximal period. A similar criticism applies
to the (original) subtract-with-borrow (SWB) generator. The introduction of a
nontrivial value for a0 (as first described in Klapper and Xu [1999]) comes with
the cost of two more multiplications per round, but it has the benefit that the
connection integer m may be chosen so that b is primitive modulo m and this
leads to properties (1), (2) and (4) listed above: (1) the period of the generator is
m− 1, which is maximal; (2) the d dimensional distribution properties of this
generator are optimal, for each d < r, and (4) the modulus b may be taken to
be a power of 2.

Throughout the rest of this section, we fix a modulus b and consider the
MWC generator corresponding to a connection integer m as in (5), where b is
relatively prime to m.

Suppose σ = (x−1, x−2, . . . , x−r ; c) is a state of the generator. This state deter-
mines an integer

h = brc + a0

r−1∑
j=0

x−r+ j b j −
r−1∑
k=1

bk
k∑

i=1

aix−r+k−i. (6)

Conversely, the number h determines the state σ (an observation for which we
thank an anonymous referee). For reading Eq. (6), modulo b allows us to recover
x−r from h, then reading modulo b2 and knowing x−r allows us to recover x−r+1.

Continuing this way by induction we recover xi for−r ≤ i ≤ −1. Finally, knowl-
edge of these xi and of h allows us to recover c. Several important properties of
the state can best be expressed in terms of h (cf. Theorems 2.1 and 2.2).

Let us say that a state of the generator is degenerate if the output remains
constant. The “bottom” state, in which all xi = 0 and c = 0 is degenerate with
output 0 (and h = 0). The “top” state, in which all xi = b− 1 and

c = −a0 +
r∑

i=1

ai

is degenerate with output b− 1 (and h = m). (There may be more degenerate
states.) The proofs of the following results will appear in Section 6.

THEOREM 2.1. The output sequence is strictly periodic if and only if 0 ≤
h ≤ m.

ACM Transactions on Modeling and Computer Simulation, Vol. 13, No. 4, October 2003.
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Define B = b−1 (mod m) and represent it as a nonnegative integer 0 < B < m.
Define A as in (2).

THEOREM 2.2. Suppose the generator is in a strictly periodic state. Then for
all i ≥ 0 we have

x−r+i = −A(hBi (mod m)) (mod b). (7)

Equation (7) means that first the number hBi = hb−i is computed modulo m,
and is represented as a number between 0 and m − 1. Then, this number is
multiplied by −A and reduced modulo b to give an integer between 0 and b−1.

Let 6 be the set of all possible states (x−1, . . . , x−r ; c) where 0 ≤ xi < b and
where c ∈ Z. Let i : Z/(m) → 6 be defined by (6), associating h ∈ Z/(m) with
the state σ. Let S : Z/(m) → Z/(m) be the mapping S(h) = Bh (mod m). Let
φ : Z/(m)→ Z/(b) be the mapping φ(h) = −Ah (mod b). Theorem 2.2 says the
following diagram “commutes”, that is, T (i(h)) = i(S(h)) and φ(h) = OUT(i(h))
for all h ∈ Z/(m).

COROLLARY 2.3. If m is prime and if b is a primitive root modulo m then the
period of the MWC generator is m− 1.

In this case, we say the resulting periodic sequence is a (generalized) `-
sequence (or long sequence), because of the many properties it shares with
m-sequences (or maximal length sequences) from the theory of linear feedback
shift registers and finite fields.

THEOREM 2.4. Suppose m is prime and b is a primitive root (mod m). Fix
d ≥ 1 and let z = (z1, z2, . . . , zd ) with 0 ≤ zi < b. Then the number N (z) of
occurrences of the d-tuple z which begin in any fixed period of the sequence (7)
can vary at most by 1. That is, N (z) is either⌊

m− 1
bd

⌋
or
⌊

m− 1
bd

⌋
+ 1.

In particular, if bd < m− 1, then every d-tuple occurs at least once in any fixed
period.

3. BOUNDS ON THE CARRY

Throughout this section, we consider a MWC generator of order r with base
b, coefficients a0, a1, . . . , ar and state σ = (x−1, x−2, . . . , x−r ; c) as described in
Section 2. Recall that c and ai are integers and that 0 ≤ xi < b− 1. We show
that the carry rapidly converges to a narrow range.

ACM Transactions on Modeling and Computer Simulation, Vol. 13, No. 4, October 2003.



P1: GDP
CM165A-01 ACM-TRANSACTION September 15, 2003 16:34

6 • M. Goresky and A. Klapper

There are two generators which we refer to as extremal generators. The first
extremal generator has a0 > 0 and all the remaining coefficients ai ≤ 0 (for
1 ≤ i ≤ r). The second has a0 < 0 and all the remaining coefficients ai ≥ 0.

If a0 > 0, define

w+ =
∑
ai>0

1≤i≤r

ai and w− = −a0 +
∑
ai<0

1≤i≤r

ai.

If a0 < 0, define

w+ = −a0 +
∑
ai>0

1≤i≤r

ai and w− =
∑
ai<0

1≤i≤r

ai.

THEOREM 3.1. Suppose the generator is not extremal. If the generator is in a
strictly periodic state then the carry c lies in the range

w− < c < w+. (8)

If c ≥ w+, then it will drop monotonically and exponentially until it lies within
this range and it will remain within this range thereafter. If c ≤ w−, then it
will rise monotonically and exponentially until it lies within this range, and it
will remain within this range thereafter. If the generator is extremal, then c will
move monotonically until it lies within the range

w− ≤ c ≤ w+

and it will remain within this range thereafter.

PROOF. Let us assume a0 > 0. (The proof for a0 < 0 is completely parallel.)
From (1), since 0 ≤ xi ≤ b− 1, we have

c′ = 1
b

[
r∑

i=1

aix−i + c − a0x ′−1

]
≤
(

b− 1
b

)
w+ + c

b
. (9)

If c < w+, this gives c′ < w+. If c = w+, this gives c′ ≤ w+. If c > w+ this gives

c′ − c ≤ (w+ − c)
(

b− 1
b

)
< 0,

hence the carry decreases monotonically. Moreover, if c > 0, then c′ − w+ ≤
(c − w+)/b, which is to say that c − w+ decreases exponentially. It is easy to
see that there are no strictly periodic states with c = w+ unless the generator
is extremal. For if c = c′ = w+, then (1) gives

(b− 1)w+ =
r∑

i=1

aix−i − a0x ′−1.

The right side of this equation achieves its maximum value, (b− 1)w+, when
x ′−1 = 0 and

x−i =
{

0 whenever ai < 0

b− 1 whenever ai > 0.

ACM Transactions on Modeling and Computer Simulation, Vol. 13, No. 4, October 2003.
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Eventually this 0 = x ′−1 will get shifted into one of the positions where ai > 0 and
then the value of c will drop below w+. (If ai ≤ 0 for all i, then the generator is
extremal, w+ = 0, and the degenerate “bottom” (all-zero) state satisfies c = w+.)
In summary, if the generator is not extremal and if the carry starts out at any
positive value, it will drop until c < w+ and will remain there forever.

To obtain the lower bound on c, Eq. (1) gives

c′ = 1
b

[
r∑

i=1

aix−i + c − a0x ′−1

]
≥ b− 1

b
w− + c

b
.

If c > w−, then c′ > w−. If c = w−, then c′ ≥ w−. If c < w−, then

c′ − c ≥
(

b− 1
b

)
(w− − c) > 0,

so the value of c will increase monotonically (and exponentially). Let us examine
the possible periodic states with c = c′ = w−. For such a state, Eq. (4) gives

(b− 1)w− =
r∑

i=1

aix−i − a0x ′−1.

The right side of this equation achieves its minimum value, (b− 1)w−, when
x ′−1 = b− 1 and

xi =
{

b− 1 whenever ai < 0

0 whenever ai > 0.

If some coefficient ai is positive (which is to say, if the generator is not extremal),
then this b− 1 = x ′−1 will eventually be shifted into the ith position, and the
value of c will rise above w−.However, if the generator is extremal (i.e., if ai ≤ 0
for 1 ≤ i ≤ r), then this argument fails and indeed, the degenerate “top” state
satisfies c = w− and xi = b − 1 for all i. In summary, if the generator is not
extremal and if the carry starts out at some negative value, then it will rise
until c > w− and it will remain there forever.

4. LATTICE STRUCTURE

Consecutive d-tuples (xk , xk+1, . . . , xk+d−1) of numbers generated by the MWC
generator (1) do not form a d-dimensional lattice. However, Tezuka et al. [1993]
and Couture and L’Écuyer [1994] discovered the remarkable fact that these
vectors lie very nearly on the lattice of vectors formed by the associated linear
congruential generator with base b, multiplier B, and modulus m. To be precise,
using the notation of Section 2, we have the following result:

THEOREM 4.1 (COUTURE AND L’ÉCUYER [1994]). For every z ∈ Z/(m),

φ(z)
b
≤ S(z)

m
≤ φ(z)+ 1

b
.

The sequence of numbers z, S(z), S2(z), . . . form the output of the LCG with
base b, multiplier B, and modulus m (so consecutive d-tuples in this sequence

ACM Transactions on Modeling and Computer Simulation, Vol. 13, No. 4, October 2003.
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form vectors that lie on a lattice in Rd ). The following is an alternate proof of
Theorem 4.1.

PROOF. Consider z ∈ Z/(m) to be an integer 0 ≤ z ≤ m − 1. Since b is
relatively prime to m there exists a unique u ∈ Z/(m) so that bu ≡ z (mod m),
or u = S(z) = b−1z (mod m). Realizing u as an integer, 0 ≤ u ≤ m− 1 gives

bu = z + em (10)

from which it also follows that 0 ≤ e ≤ b− 1. (On the one hand, z = bu− em <

(b− e)m so e ≤ b− 1. On the other hand, bu = z + em < (1 + e)m so e ≥ 0.)
Dividing (10) by m gives e ≤ bu/m ≤ e + 1 while reading (10) modulo b gives
z = −ea0 (mod b) or e = φ(z). Hence, φ(z) ≤ bS(z)/m ≤ φ(z)+ 1.

5. b-ADIC NUMBERS

As in Section 2, we fix a base b and consider the MWC generator which corre-
sponds to a connection integer m of Eq. (5). In the literature, it is customary to
analyze this generator by associating to each fraction h/m its fractional “dec-
imal” expansion in base b. Instead, we use the equivalent, but more abstract
expansion of−h/m as an element of the ring Zb of b-adic numbers. (One expan-
sion is just the reverse of the other.) The proofs become cleaner since various
number-theoretic operations, such as (mod b) may be applied to elements of Zb.

A b-adic number (or, more precisely, a b-adic integer) α ∈ Zb is a formal power
series,

α = x0 + x1b+ x2b2 + · · · (11)

with 0 ≤ xi < b.The sequence x0, x1, . . . is referred to as the coefficient sequence
of α. Addition and multiplication in Zb are performed “with carry.” That is,
xbr + (b− x)br = br+1. It is clear that Zb contains the positive integers, but it
also contains the negative integers since −1 = (b−1)+ (b−1)b+ (b−1)b2+· · ·
as may be seen by adding 1 to both sides. It also contains all fractions of the
form h/m where m is relatively prime to b. In fact, if a positive integer m is
expanded in base b

m = m0 +m1b+ · · · +mrbr , (12)

then m is relatively prime to b if and only if m0 is invertible in Z/(b). Then

1
m
= a0 + a1b+ · · ·, (13)

where m0a0 ≡ 1 (mod b) and where the higher order coefficients ai may be
computed, one at a time, by substituting (12) and (13) in the equation m 1

m = 1.
It is easy to see that the ring of b-adic numbers Zb is isomorphic to the direct

product
∏

p Zp of the p-adic numbers Zp over all prime factors p of b.
It is easy to see that the fractions α = h/m (with h, m ∈ Z and m relatively

prime to b) are precisely the elements of Zb whose coefficient sequence (11)
is eventually periodic. We also refer to the coefficient sequence as the b-adic
expansion of h/m.

ACM Transactions on Modeling and Computer Simulation, Vol. 13, No. 4, October 2003.
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By summing the relevant geometric series, it is easy to see that the fractions
h/m with −m ≤ h ≤ 0 are precisely the elements of Zb whose coefficient se-
quence is strictly periodic (cf. Klapper and Goresky [1997 Thm. 2.1]). The case
h = 0 corresponds to the coefficient sequence 0, 0, . . . and the case h = −m
corresponds to the coefficient sequence b− 1, b− 1, . . . .

6. PROOFS OF THEOREMS 2.1, 2.2, AND 2.4

Throughout this section, we fix a MWC generator with base b and with param-
eters a0, a1, . . . , ar where a0 is relatively prime to b. Let m = −a0+

∑r
i=1 aibi be

the connection integer as in Eq. (5). Choose a seed state σ = (x−1, x−2, . . . , x−r ; c)
as in Section 2. The output sequence x−r , x−r+1, . . . , x−1, x0, x1, . . . correspond
to the following b-adic number

α = x−r + x−r+1b+ · · · + x0br + x1br+1 + · · · (14)

LEMMA 6.1. Let σ = (x−1, x−2, . . . , x−r ; c) be the seed state of the generator
and define the integer h ∈ Z by Eq. (6). Then the resulting b-adic number α is
the b-adic expansion of the fraction −h/m.

PROOF. This is a special case of Klapper and Xu [1999, Thm. 3]. Alterna-
tively, one may easily adapt the proof of Klapper and Goresky [1997, Thm. 4.1],
replacing 2 by b. (In both cases, the proof is parallel to the original method of
Golomb [1982, Sect. 2.5])

PROOF OF THEOREM 2.1. This follows immediately from Lemma 6.1 and
Section 5.

PROOF OF THEOREM 2.2. To a given state σ = (x−1, x−2, . . . , x−r ; c) we associate
the b-adic number f (σ ) = α of (14). By Lemma 6.1, α = −h/m for some integer
h. (The precise value of h is given by (6); however, this fact is not needed for the
argument.) If σ ′ = (x ′−1, . . . , x ′−r ; c′) represents the next state, then

f (σ ′) = x−r+1 + x−r+2b+ · · · = −h′

m

for some integer h′. So the following equation holds in Zb :

bf (σ ′)+ x−r = f (σ )

or

h = bh′ −mx−r . (15)

Although this is an equation in Zb, all the terms are integers, so it is an equal-
ity among integers. Reading this equation modulo b gives x−r ≡ −m−1h ≡
−Ah (mod b) (since m ≡ a0 (mod b)). In other words, the output is OUT(σ ) =
−Ah (mod b).

Reading Eq. (15), modulo m gives h′ ≡ Bh (mod m). Now suppose the state
σ is a nonzero, strictly periodic state. Then the same is true for σ ′, hence by
Theorem 2.1, 0 < h, h′ < m. So we have the following equality,

h′ = Bh (mod m),

ACM Transactions on Modeling and Computer Simulation, Vol. 13, No. 4, October 2003.
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provided we interpret the instructions (mod m) to mean: reduce modulo m,
then represent this quantity as an integer between 0 and m− 1.

It follows that the ith state σ (i) will correspond to the fraction f (σ (i)) = h(i)/m,
where h(i) = Bih (mod m), and the output will therefore be

OUT(σ (i)) = −Ah(i) (mod b) = −A(Bih (mod m)) (mod b).

PROOF OF THEOREM 2.4. (This proof is parallel to Klapper and Goresky [1997,
Sect. 13.4]) A purely periodic nonzero sequence x = (x0, x1, . . . ) with connection
integer m is the b-adic expansion of a rational number −h/m with 0 < h < m.
Since b is chosen to be primitive, the different nonzero choices of h correspond
to cyclic shifts of x. Thus, a d-digit subsequence z = (z1, z2, . . . , zd ) occurs in
x if and only if it occurs as the first d digits in the b-adic expansion of some
rational number−h/m.Moreover, two such rational numbers−h/m and−k/m
have the same first d digits if and only if

− h
m
≡ − k

m
(mod bd ),

that is, if and only if h ≡ h (mod bd ). So we only need to count the number of h
with a given first d digits and with 0 < h < m.

Suppose that br < m < br+1. If d > r, then there is at most one such h and
the result follows. Thus, we may assume that d ≤ r. Now we count the number
of possible h with 0 < h < m whose first d digits are fixed. Write

h = (h0 + h1b+ · · · + hd−1bd−1)+ bd (hd + · · · + hrbr−d ) = h′ + bd h′′ (16)

with 0 ≤ hi < b. Similarly set m = m′ + bd m′′. Then

m′′ =
⌊m

bd

⌋
=
⌊

m− 1
bd

⌋
and

0 ≤ h′, m′ < bd . (17)

First, note that h′′ ≤ m′′. For if h′′ ≥ m′′ + 1, then

h ≥ bd h′′ ≥ bd m′′ + bd > bd m′′ +m′ = m,

which contradicts h < m. We now consider two cases.

Case 1. h′ ≥ m′. Every choice of h′′ ≤ m′′ − 1 will give 0 < h < m since, by
(17),

h = h′ + bd h′′ < bd + bd h′′ ≤ bd + bd (m′′ − 1) ≤ bd m′′ +m′ = m.

There are m′′ such choices.

Case 2. h′ < m′. Any choice of h′′ ≤ m′′ will give h < m. If h′ 6= 0, then all
such choices give 0 < h < m and there are m′′ + 1 possible such choices. If
h′ = 0, then all nonzero choices of h′′ ≤ m′′ give 0 < h < m and there are m′′

such choices.

We remark that if b = 2 and d = 1 (i.e., when counting the number of
occurrences of a single bit in a binary `-sequence), then m′ = 1 so the two cases
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are: h′ = 1 and h′ = 0. In particular, Case 2 with h′ 6= 0 never occurs. In other
words, the sequence (7) is balanced: the number of 0’s equals the number of 1’s,
and this number is (m− 1)/2.

7. EXAMPLES

Let m > 2 be a prime number and let b = 2ω with ω ≥ 1. Then b is a primitive
root modulo m if and only if 2 is a primitive root modulo m and ω is relatively
prime to m− 1. Moreover, 2 is not primitive modulo m if and only if

2(m−1)/p ≡ 1 (mod m) (18)

for some prime factor p of m − 1. If 2 is a primitive root modulo m, then m ≡
3 or 5 (mod 8). These facts make it fairly easy to find large primes for which
2 is a primitive root. The following examples were found in a few hours using
MAPLE. They use auxiliary primes p and q. In accordance with Theorem 2.4, in
each of these cases, the resulting MWC generator will have period m−1 and the
resulting d-tuples will be uniformly distributed, with every d-tuple occurring
whenever d ≤ d0. The last column, T = m− 1, gives the approximate period of
the generator.

b p q m d0 T
221 b14 − b2 + 1 b58 − b36 + 1 4pq + 1 71 10455

221 b52 − b7 − 1 4p2 + 1 103 10657

221 b60 − b13 − 1 b60 − b26 − 1 2pq + 1 119 10758

223 b12 + b7 + 1 b25 + b19 + 1 2pq + 1 37 10256

223 b14 − b7 − 1 b27 + b26 + 1 4pq + 1 41 10284

224 b48 − b46 − b38 − b14 + 1 2p+ 1 47 10347

224 b41 − b38 − 2b14 + 1 2p+ 1 40 10296

225 b6 − b4 − 1 b16 − b11 − 1 2pq + 1 21 10166

231 b7 + b4 + 1 b30 + b14 − 1 4pq + 1 37 10345

232 b33 − b20 − b14 − b11 − b4 + 1 4p+ 1 32 10318

233 b3 + b2 + 1 b27 + b14 + 1 4pq + 1 30 10298

235 b2 + b− 1 b41 − b28 + 1 4pq + 1 43 10453

ACKNOWLEDGMENTS

We are very grateful to the editor, and to an anonymous referee, for their
thoughtful comments and suggestions on an earlier version of this article.

REFERENCES

COVEYOU, R. AND MACPHERSON, R. 1967. Fourier analysis of uniform random number generators.
J. ACM 14, 100–119.
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