
MapleSim User's Guide

Copyright © Maplesoft, a division of Waterloo Maple Inc.
2024

MapleSim User's Guide
Copyright

Maplesoft, MapleSim, and Maple are all trademarks of Waterloo Maple Inc.

© Maplesoft, a division of Waterloo Maple Inc. 2008-2024. All rights reserved.

No part of this book may be reproduced, stored in a retrieval system, or transcribed, in any form or by any means
— electronic, mechanical, photocopying, recording, or otherwise. Information in this document is subject to change
without notice and does not represent a commitment on the part of the vendor. The software described in this
document is furnished under a license agreement and may be used or copied only in accordance with the agreement.
It is against the law to copy the software on any medium except as specifically allowed in the agreement.

Linux is a registered trademark of Linus Torvalds.

Mac and Macintosh are trademarks of Apple Inc., registered in the U.S. and other countries.

Microsoft, Excel, and Windows are registered trademarks of Microsoft Corporation.

Modelica is a registered trademark of the Modelica Association.

All other trademarks are the property of their respective owners.

This document was produced using Maple and DocBook.

Contents
Introduction .. xiii

1 Getting Started with MapleSim .. 1
1.1 Physical Modeling in MapleSim .. 1

Topological or “Acausal” System Representation .. 1
Mathematical Model Formulation and Simplification 1
Advanced Differential Algebraic Equation Solvers .. 1
Acausal and Causal Modeling ... 2

1.2 The MapleSim Window ... 6
1.3 Basic Tutorial: Modeling an RLC Circuit and DC Motor 8

Building an RLC Circuit Model ... 8
Specifying Component Properties ... 11
Adding a Probe ... 12
Simulating the RLC Circuit Model ... 13
Building a Simple DC Motor Model ... 14
Simulating the DC Motor Model .. 16

2 Building a Model ... 19
2.1 The MapleSim Component Library .. 19

Viewing Help Topics for Components ... 20
Updating Models Created in a Previous Release of MapleSim 20

2.2 Browsing a Model ... 20
Model Tree .. 21
Model Navigation Controls ... 23

2.3 Defining How Components Interact in a System ... 24
2.4 Specifying Component Properties .. 25

Specifying Parameter Units ... 26
Specifying Initial Conditions ... 27

2.5 Creating and Managing Subsystems ... 28
Example: Creating a Subsystem ... 29
Viewing the Contents of a Subsystem .. 30
Adding Multiple Copies of a Subsystem to a Model 31
Editing Subsystem Definitions and Shared Subsystems 34
Working with Standalone Subsystems ... 39

2.6 Global and Subsystem Parameters .. 43
Global Parameters ... 43
Subsystem Parameters .. 45
Using Parameter Blocks for Subsystem Parameters 46
Saving Parameter Sets .. 52
Using Advanced Parameter and Variable Settings .. 53

2.7 Attaching Files to a Model .. 59
2.8 Creating and Managing Custom Libraries .. 60

Example: Creating a Custom Library from an Existing Model 60

iii

2.9 Annotating a Model ... 62
Example: Adding Text Annotation to a Model .. 63

2.10 Entering Text in 2-D Math Notation .. 64
2.11 Creating a Data Set for an Interpolation Table Component 65

Example: Creating a Data Set in Maple ... 65
2.12 Best Practices: Building a Model .. 66

Best Practices: Laying Out and Creating Subsystems 66
Best Practices: Building Electrical Models ... 67
Best Practices: Building 1-D Translational Models 69
Best Practices: Building Multibody Models .. 70
Best Practices: Building Hydraulic Models ... 71
Best Practices: Enforcing Initial Conditions .. 72

3 Creating Custom Modeling Components .. 73
3.1 Understanding Custom Components ... 73

Creating a Simple Custom Component .. 74
Typical Uses .. 75
Using The Custom Component Template ... 76

3.2 Creating Custom Components with Signal-Flow Behavior 76
Creating a Simple Signal-Flow Custom Component 76
Using Differential Equations in Custom Components 82

3.3 Creating Custom Components with Physical Connections 82
Deriving the System Equations for a Resistor ... 83

3.4 Working with Custom Components in MapleSim .. 84
Save a Custom Component as Part of the Current Model 84
Add a Custom Component to a Custom Library .. 84
Edit a Custom Component .. 85

3.5 Example: Creating a Nonlinear Spring-Damper Custom Component 85
Opening the Custom Component Template ... 86
Defining the Component Name and Equations .. 86
Defining Component Ports .. 87
Checking Dimensions .. 89
Generating the Custom Component .. 90

4 Simulating and Visualizing a Model .. 91
4.1 How MapleSim Simulates a Model ... 91

Modelica Description ... 91
Model Description ... 91
System Equations .. 91
Simplified Equations ... 92
Integration and Event Handling .. 92
Simulation Results .. 92

4.2 Simulating a Model ... 93
Simulation and Advanced Simulation Settings .. 94
Editing Probe Values .. 99

iv • Contents

Storing Parameter Sets to Compare Simulation Results 100
4.3 Simulation Progress Messages ... 100
4.4 Managing Simulation Results and Snapshots .. 101

Storing Results .. 101
Saving and Using Snapshots .. 102

4.5 Customizing Plot Window Configurations .. 103
Example: Plotting Multiple Quantities in Individual Graphs 104
Example: Plotting One Quantity versus Another .. 106

4.6 Visualizing a Multibody Model .. 109
3-D Visualization and Multibody Settings .. 109
The 3-D Workspace ... 111
Viewing and Browsing 3-D Models .. 112
Adding Shapes to a 3-D Model .. 114
Building a Model in the 3-D Workspace ... 117
Example: Building and Animating a Double Pendulum Model in the 3-D Work-
space ... 121

4.7 Best Practices: Simulating and Visualizing a Model 129
Use an External C Compiler to Run Simulations with Longer Durations 129
Compare Results Generated by Sections of Your Model 129

5 Analyzing and Manipulating a Model .. 131
5.1 Overview ... 131

MapleSim Apps .. 131
Working with Apps .. 133
Working with Templates and Scripting Worksheets 133
Using Subsystems ... 134

5.2 Retrieving Equations and Properties from a Model 135
5.3 Analyzing Linear Systems ... 135

Linear System Analysis .. 136
5.4 Optimizing Parameters ... 136
5.5 Generating and Exporting C Code from a Model 138

Preparing the Model for Export in MapleSim .. 139
Opening the Code Generation App .. 140
Loading the Subsystem ... 140
Customizing, Defining, and Assigning Parameter Values to Specific Ports 141
Selecting the Code Export Options .. 142
Generating and Saving the C code .. 145

5.6 Generating a Custom Component from External C Code/Library Definition 146
Opening the External C Code/Library Definition App 147
Specifying the C/Library Code Location and Options 147
Defining the C/Library Code Location and Options 148
Component Generation ... 148

5.7 Working with the MapleSim API and Maple Commands 149
5.8 Working with Maple Embedded Components ... 149

Contents • v

6 MapleSim Tutorials .. 151
6.1 Tutorial 1: Modeling a DC Motor with a Gearbox 151

Adding a Gearbox to a DC Motor Model .. 151
Simulating the DC Motor with the Gearbox Model 153
Grouping the DC Motor Components into a Subsystem 154
Assigning Global Parameters to a Model .. 155
Rerunning the Simulation with Different Parameter Values 157
Changing Input and Output Values .. 158

6.2 Tutorial 2: Modeling a Cable Tension Controller 160
Building a Cable Tension Controller Model .. 160
Specifying Component Properties ... 162
Rerunning the Simulation with Different Parameter Values 163
Simulating the Cable Tension Controller .. 164

6.3 Tutorial 3: Modeling a Nonlinear Damper .. 166
Generating a Spring Damper Custom Component 166
Providing Damping Coefficient Values .. 166
Building the Nonlinear Damper Model .. 167
Assigning a Parameter to a Subsystem ... 171
Simulating the Nonlinear Damper with Linear Spring Model 173

6.4 Tutorial 4: Modeling a Planar Slider-Crank Mechanism 175
Creating a Planar Link Subsystem .. 175
Defining and Assigning Parameters ... 178
Creating the Crank and Connecting Rod Elements 179
Adding the Fixed Frame, Sliding Mass, and Joint Elements 180
Specifying Initial Conditions ... 181
Simulating the Planar Slider-Crank Mechanism ... 181

6.5 Tutorial 5: Using the Custom Component Template 183
Example: Modeling a Temperature Dependent Resistor 183
Example: Compliant Contact and Piecewise Functions 188
Example: Custom Ports .. 193
Advanced Uses for Custom Components .. 198

6.6 Tutorial 6: Using the External C Code/DLL Custom Component App 203
6.7 Tutorial 7: Using the Equation Extraction App .. 208

App Description .. 209
Generating the Equations .. 211

6.8 Tutorial 8: Modeling Hydraulic Systems .. 213
Computational Issues ... 214
Basic Hydraulic Library Components .. 214
Basic Hydraulic Equations .. 216
Analysis of Simple Hydraulic Networks ... 218
Overview of Controlling Hydraulic Flow Path .. 221
Mechanical and Hydraulic Systems ... 222
Overview of Compressibility of Hydraulic Liquids 230

vi • Contents

Overview of Fluid Inertia Models ... 231
Overview of Water Hammer Models ... 233
Overview of Hydraulic Custom Components .. 241

7 Reference: MapleSim Keyboard Shortcuts .. 245
Glossary .. 251
Index .. 253

Contents • vii

viii • Contents

List of Figures
Figure 1.1: Causal Model Block Diagram ... 2
Figure 1.2: Acausal Model Block Diagram ... 3
Figure 1.3: Simple Through and Across Variable Model .. 3
Figure 1.4: Simple Through and Across Variable Electrical Model 3
Figure 1.5: RLC Circuit .. 4
Figure 1.6: RLC MapleSim Circuit ... 5
Figure 1.7: MapleSim Window ... 6
Figure 1.8: Voltage Response Plot ... 14
Figure 1.9: EMF and Inertia connections .. 15
Figure 1.10: Plots of DC Motor Torque and Speed .. 17
Figure 2.1: Components view in the Model Tree .. 21
Figure 2.2: Component selection using the Model Tree .. 22
Figure 2.3: Exploring a subsystem ... 23
Figure 2.4: Model Navigational Controls .. 23
Figure 2.5: Specifying Units using the Conversion Block 26
Figure 2.6: Initial Conditions .. 27
Figure 2.7: Subsystem Group ... 28
Figure 2.8: Creating a Subsystem .. 29
Figure 2.9: Creating Multiple Subsystems ... 32
Figure 2.10: Subsystem Definition .. 33
Figure 2.11: Adding Multiple Subsystems to a Model ... 34
Figure 2.12: DC Motor Subsystem .. 36
Figure 2.13: Copy Subsystem Dialog ... 42
Figure 2.14: Attachments ... 59
Figure 2.15: Verifying Force Arrows .. 70
Figure 2.16: Center of Mass Placement Best Practice .. 70
Figure 2.17: Hydraulic Model ... 71
Figure 3.1: The Add Apps or Templates tab .. 74
Figure 3.2: Equations Defining a Custom Component ... 77
Figure 3.3: Port Mappings ... 78
Figure 3.4: Variable to Port Mapping ... 78
Figure 3.5: Generated Custom Component .. 79
Figure 3.6: Completed Custom Component Model ... 80
Figure 3.7: Double Mass-Spring-Damper Equations ... 82
Figure 3.8: Port Mapping for Double Mass-Spring-Damper 82
Figure 3.9: Resistor Port Mapping ... 84
Figure 3.10: Nonlinear Spring-Damper Custom Component 85
Figure 4.1: Simulation Process ... 93
Figure 4.2: Simulation Results Progress Messages .. 101
Figure 4.3: Snapshots in the Advanced Simulation Settings 102
Figure 4.4: The Stored Results Palette and Snapshots .. 103

ix

Figure 4.5: Simulation Graphs .. 104
Figure 4.6: Custom Plot Window ... 106
Figure 4.7: Plot One Quantity Versus Another .. 108
Figure 4.8: 3-D Workspace ... 111
Figure 4.9: 3-D View Controls .. 112
Figure 4.10: Perspective View Double Pendulum .. 113
Figure 4.11: Orthographic View Double Pendulum ... 113
Figure 4.12: Implicit Geometry Double Pendulum .. 114
Figure 4.13: Attached Shapes ... 115
Figure 6.1: Cable Tension Controller .. 165
Figure 6.2: Nonlinear Damper Model ... 169
Figure 6.3: Planar Slider-Crank Mechanism .. 175
Figure 6.4: Temperature Dependent Resistor .. 187
Figure 6.5: Falling Ball .. 188
Figure 6.6: Bouncing Ball Dynamics .. 189
Figure 6.7: Bouncing Ball .. 191
Figure 6.8: Bouncing Ball Result ... 193
Figure 6.9: Custom Ports ... 195
Figure 6.10: Using a Custom Port .. 196
Figure 6.11: Centrifugal Pump Head Flow Rate Curve ... 199
Figure 6.12: Centrifugal Pump Custom Component .. 200
Figure 6.13: External C Code Definition for Windows ... 204
Figure 6.14: External C Code Definition for Unix ... 204
Figure 6.15: Flow Through a Pipe ... 219
Figure 6.16: Controlling Flow Path .. 222
Figure 6.17: Fixed Flow Rate Source ... 223
Figure 6.18: Translational Motion with Fixed Pressure Source 225
Figure 6.19: Fixed Pressure Source Results ... 227
Figure 6.20: Translational Fixed Flange Hydraulic component 227
Figure 6.21: Rotational Fixed Flange Hydraulic component 228
Figure 6.22: Pascal's Principle Example .. 230
Figure 6.23: Hydraulic Liquids Compressibility ... 230
Figure 6.24: System without Fluid Inertia .. 232
Figure 6.25: System with Fluid Inertia .. 232
Figure 6.26: System with and without Fluid Inertia ... 233
Figure 6.27: Water Hammer ... 234
Figure 6.28: Discretized Pipeline Segment .. 235
Figure 6.29: Water Hammer Pressure Flow Rate ... 238
Figure 6.30: Pressure Surge with an Accumulator ... 241
Figure 6.31: Head Flow Rate .. 242
Figure 6.32: Centrifugal Pump Custom Component Equations 242
Figure 6.33: Gravity Head Custom Component Equations 243

x • List of Figures

List of Tables
Table 1.1: Through and Across Variable Domain Types ... 4
Table 1.2: MapleSim Window Components .. 6
Table 2.1: MapleSim Component Library ... 19
Table 2.2: Model Navigation Controls .. 24
Table 2.3: Domain-Specific Connection Line Colors ... 25
Table 2.4: 2-D Math Notation Key Combinations ... 64
Table 3.1: Port Map .. 79
Table 3.2: Signal Flow Components ... 80
Table 3.3: Characteristics of Through and Across Variables 83
Table 3.4: Through and Across Variable Mathematical Relationship 83
Table 3.5: Resistor Variables and Parameters ... 83
Table 4.1: Simulation Settings .. 95
Table 4.2: Advanced Simulation Settings .. 97
Table 4.3: Multibody Parameter Values ... 110
Table 4.4: 3-D Visualization Parameter Values ... 110
Table 4.5: 3-D Workspace Controls .. 112
Table 5.1: MapleSim Apps ... 131
Table 5.2: MapleSim Templates .. 133
Table 6.1: Temperature Dependent Resistor Components 186
Table 6.2: Bouncing Ball Multibody Components ... 192
Table 6.3: Centrifugal Pump Data .. 199
Table 6.4: Circular Pipe Parameters ... 199
Table 6.5: Centrifugal Pump Components ... 200
Table 6.6: External C Code DLL Custom Components and Required Settings 206
Table 6.7: Basic Hydraulic Library Components ... 215
Table 6.8: Bernoulli and Darcy Equation Notation .. 217
Table 6.9: Circular Pipe Parameters ... 218
Table 6.10: Hydraulic Components .. 219
Table 6.11: Spool Valve ... 222
Table 6.12: Translational Motion with Fixed Flow Rate Sources 224
Table 6.13: Translational Motion with a Fixed Pressure Source 226
Table 6.14: Actuating Multibody Components ... 228
Table 6.15: Hydraulic Liquids Compressibility Components 230
Table 6.16: Confined Hydraulic System Components .. 231
Table 6.17: Fluid Inertia ... 231
Table 6.18: Fluid Properties Values .. 235
Table 6.19: Water Hammer Parameters ... 236
Table 6.20: Accumulator Parameters Custom Component 240
Table 7.1: Operations on a File .. 245
Table 7.2: Building a Model in the Block Diagram View 245
Table 7.3: Adding Annotations to a Model .. 245

xi

Table 7.4: Browsing a Model in the Block Diagram View 246
Table 7.5: Browsing a Model in the 3-D View .. 247
Table 7.6: Simulating a Model .. 248
Table 7.7: Navigating the Console Pane .. 249
Table 7.8: Modifying the Plot Window Layout ... 249
Table 7.9: Editing a Modelica Custom Component .. 249
Table 7.10: Miscellaneous .. 250

xii • List of Tables

Introduction
MapleSim Overview
MapleSimTM is a modeling environment for creating and simulating complex multidomain
physical systems. It allows you to build component diagrams that represent physical systems
in a graphical form. Using both symbolic and numeric approaches, MapleSim automatically
generates model equations from a component diagram and runs high-fidelity simulations.

Build Complex Multidomain Models

You can use MapleSim to build models that integrate components from various engineering
fields into a complete system. MapleSim features a library of hundreds of modeling com-
ponents, including electrical, hydraulics, mechanical, and thermal devices; sensors and
sources; and signal blocks. You can also create custom components to suit your modeling
and simulation needs.

Advanced Symbolic and Numeric Capabilities

MapleSim uses the advanced symbolic and numeric capabilities of MapleTM to generate
the mathematical models that simulate the behavior of a physical system. You can, therefore,
apply simplification techniques to equations to create concise and numerically efficient
models.

Pre-built Analysis Tools and Templates

MapleSim provides various pre-built apps and templates in the form of Maple worksheets
for viewing model equations and performing advanced analysis tasks, such as parameter
optimization. To analyze your model and present your simulation results in an interactive
format, you can use Maple features such as embedded components, plotting tools, and
document creation tools. You can also translate your models into C code and work with
them in other applications and tools, including applications that allow you to perform real-
time simulation.

Interactive 3-D Visualization Tools

The MapleSim 3-D visualization environment allows you to build and animate 3-D graph-
ical representations of your multibody mechanical system models. You can use this envir-
onment to validate the 3-D configuration of your model and visually analyze the behavior
of your system under different conditions and at different simulation start times.

Related Products
MapleSim 2024.1 requires Maple 2024.1.

xiii

MaplesoftTM also offers a suite of toolboxes, add-ons, and other applications that extend
the capabilities of Maple and MapleSim for engineering design projects. For a complete
list of products, visit http://www.maplesoft.com/products.

Related Resources
DescriptionResource

System requirements and installation instructions for MapleSim.
The MapleSim Product Installation and Licensing Guide is
available in the Install.html file located in the folder where you
installed MapleSim, or on the website

https://www.maplesoft.com/documentation_center

MapleSim Product
Installation and Licensing
Guide

Provides the following information:

MapleSim Help System

• MapleSim User's Guide: conceptual information about
MapleSim, an overview of MapleSim features, and tutorials
to help you get started.

• Using MapleSim: help topics for model building, simulation,
and analysis tasks.

• MapleSimComponent Library: descriptions of the modeling
components available in MapleSim.

Model examples from various engineering domains. From the
Help menu, select Examples to access these examples.MapleSim Examples

Model and Tutorial examples used in the User's Guide. To access
these examples, from the Help menu, select Examples > User's
Guide Examples. The examples are listed by chapter, in the order
that they appear in the User's Guide.

MapleSim User's Guide
Examples

Training webinars, product demonstrations, videos, sample
applications, and more.

For more information, visit

http://www.maplesoft.com/products/maplesim.

MapleSim Online
Resources

A collection of sample models, custom components, and analysis
templates that you can download and use in your MapleSim
projects.

For more information, visit

http://www.maplesoft.com/products/maplesim/modelgallery/.

MapleSim Model Gallery

For additional resources, visit http://www.maplesoft.com/site_resources.

Getting Help

To request customer support or technical support, visit http://www.maplesoft.com/support.

xiv • Introduction

http://www.maplesoft.com/products
https://www.maplesoft.com/documentation_center
http://www.maplesoft.com/products/maplesim
http://www.maplesoft.com/products/maplesim/modelgallery/
http://www.maplesoft.com/site_resources
http://www.maplesoft.com/support

Customer Feedback

Maplesoft welcomes your feedback. For comments related to the MapleSim product docu-
mentation, contact doc@maplesoft.com.

Introduction • xv

xvi • Introduction

1 Getting Started with MapleSim
In this chapter:

• Physical Modeling in MapleSim (page 1)

• The MapleSim Window (page 6)

• Basic Tutorial: Modeling an RLC Circuit and DC Motor (page 8)

1.1 Physical Modeling in MapleSim
Physical modeling, or physics-based modeling, incorporates mathematics and physical laws
to describe the behavior of an engineering component or a system of interconnected com-
ponents. Since most engineering systems have associated dynamics, the behavior is typically
defined with ordinary differential equations (ODEs).

To help you develop models quickly and easily, MapleSim provides the following features:

Topological or “Acausal” System Representation

The signal-flow approach used by traditional modeling tools requires system inputs and
outputs to be defined explicitly. In contrast, MapleSim allows you to use a topological
representation to connect interrelated components without having to consider how signals
flow between them.

Mathematical Model Formulation and Simplification

A topological representation maps readily to its mathematical representation and the sym-
bolic capability of MapleSim automates the generation of system equations.

When MapleSim formulates the system equations, several mathematical simplification tools
are applied to remove any redundant equations and multiplication by zero or one. The sim-
plification tools then combine and reduce the expressions to get a minimal set of equations
required to represent a system without losing fidelity.

Advanced Differential Algebraic Equation Solvers

Algebraic constraints are introduced in the topological approach to model definition. Prob-
lems that combine ODEs with these algebraic constraints are called Differential Algebraic
Equations (DAEs). Depending on the nature of these constraints, the complexity of the DAE
problem can vary. An index of the DAEs provides a measure of the complexity of the
problem. Complexity increases with the index of the DAEs.

The development of generalized solvers for complex DAEs is the subject of much research
in the symbolic computation field. With Maple as its computation engine, MapleSim uses

1

advanced DAE solvers that incorporate leading-edge symbolic and numeric techniques for
solving high-index DAEs.

Acausal and Causal Modeling

Real engineered assemblies, such as motors and powertrains, consist of a network of inter-
acting physical components. They are commonly modeled in software by block diagrams.
The lines connecting two blocks indicate that they are coupled by physical laws. When
simulated by software, block diagrams can either be causal or acausal.

Causal Modeling

Many simulation tools are restricted to causal (or signal-flow) modeling. In these tools, a
unidirectional signal, which is essentially a time-varying number, flows into a block. The
block then performs a well-defined mathematical operation on the signal and the result
flows out of the other side. This approach is useful for modeling systems that are defined
purely by signals that flow in a single direction, such as control systems and digital filters.

Figure 1.1: Causal Model Block Diagram

This approach is analogous to an assignment, where a calculation is performed on a known
variable or set of variables on the right hand side and the result is assigned to another variable
on the left:

Acausal Modeling

Modeling how real physical components interact requires a different approach. In acausal
modeling, a signal from two connected blocks travels in both directions. The programming
analogy would be a simple equality statement:

The signal includes information about which physical quantities (for example, energy, current,
torque, heat and mass flows) must be conserved. The blocks contain information about
which physical laws (represented by equations) they must obey and, hence, which physical
quantities must be conserved.

2 • 1 Getting Started with MapleSim

Figure 1.2: Acausal Model Block Diagram

MapleSim allows you to use both approaches. You can simulate a physical system (with
acausal modeling) together with the associated logic or control loop (with causal modeling)
in a manner that suits either task best.

Through and Across Variables

When using the acausal modeling approach, it is useful to identify the through and across
variables of the component you are modeling. In general terms, an across variable represents
the driving force in a system and a through variable represents the flow of a conserved
quantity. The through variable also establishes the flow direction for the sign convention
of the conserved quantity.

Figure 1.3: Simple Through and Across Variable Model

For an example of sign convention and how arrow direction represents a force acting on
the model, from the Help menu, select Examples > User's Guide Examples > Chapter
1, and then select the Constant Acceleration, Sign Convention and Arrow Convention
examples.

In the following example, in an electrical circuit, the through variable, i, is the current and
the across variable, V, is the voltage drop:

Figure 1.4: Simple Through and Across Variable Electrical Model

1.1 Physical Modeling in MapleSim • 3

The following table lists some examples of through and across variables for other domains:

Table 1.1: Through and Across Variable Domain Types

AcrossThroughDomain
Voltage (V)Current (A)Electrical
MMF (A)Magnetic Flux (Wb)Magnetic

VelocityForce (N)Mechanical (translational)

Angular VelocityTorque (N.m)Mechanical (rotational)

PressureFlowHydraulic

Temperature (K)Heat flow (W)Heat flow

As a simple example, the form of the governing equation for a resistor is

This equation, in conjunction with Kirchhoff’s conservation of current law, allows a complete
representation of a circuit.

and

To extend this example, the following schematic diagram describes an RLC circuit, an
electrical circuit consisting of a resistor, inductor, and a capacitor connected in series:

Figure 1.5: RLC Circuit

If you wanted to model this circuit manually, it can be represented with the following
characteristic equations for the resistor, inductor, and capacitor respectively:

4 • 1 Getting Started with MapleSim

By applying Kirchhoff's current law, the following conservation equations are at points a,
b, and c:

These equations, along with a definition of the input voltage (defined as a transient going
from 0 to 1 volt, 1 second after the simulation starts)

provide enough information to define the model and solve for the voltages and currents
through the circuit.

In MapleSim, all of these calculations are performed automatically; you only need to draw
the circuit and provide the component parameters. These principles can be applied equally
to all engineering domains in MapleSim and allow you to connect components in one domain
with components in others easily.

In the Basic Tutorial: Modeling an RLC Circuit and DC Motor (page 8) section of this
chapter, you will model the RLC circuit described above and explore the capabilities of
MapleSim to mix causal models with acausal models. The following figure shows how the
RLC circuit diagram appears when it is built in MapleSim.

Figure 1.6: RLC MapleSim Circuit

1.1 Physical Modeling in MapleSim • 5

For an another example of how a model can be represented using causal and acausal com-
ponents, from the Help menu, select Examples > User's Guide Examples > Chapter 1,
and then select the Double Mass Spring Damper example.

1.2 The MapleSim Window
The MapleSim window contains the following panes and components:

Figure 1.7: MapleSim Window

Table 1.2: MapleSim Window Components

DescriptionComponent
Contains tools for running a simulation, viewing simulation results,
searching the MapleSim help system, and performing other common
tasks.

Main Toolbar

Contains tools for browsing your model and subsystems
hierarchically, changing the model view, viewing the corresponding
Modelica code, grouping components, and adding probes.

Model Workspace Toolbar

Contains tools for adding annotations and laying out objects.Annotations Toolbar
The area in which you build and edit a model in a block diagram
view.Model Workspace

6 • 1 Getting Started with MapleSim

DescriptionComponent
Contains expandable menus with tools that you can use to build a
model and manage your MapleSim project. This pane contains five
tabs:

• Library Components (): contains palettes with sample
models and domain-specific components that you can add to
models.

• Local Components (): contains palettes of the subsystems
and custom components in your model.

• Model Tree (): contains a model tree for navigation through
your model.

• Attached Files (): contains attachments to your model,
including documents, parameter sets, and CAD drawings.

Palettes Pane

Use buttons on theConsole Toolbar to display the following panes:

• Console Output: displays progress messages indicating the
status of the MapleSim engine during a simulation and allows
you to clear the console using Clear Console ().

• Diagnostics Information: displays diagnostic messages for
debugging as you build your model identifying the subsystem
in which the errors are located.

Console

Contains controls for selecting the type of messages shown in the

console ().
Console Toolbar

Contains the following tabs:

• Properties (): allows you to view and edit modeling
component properties, such as names, parameter values, initial
conditions, and probe settings.

• Simulation Settings (): allows you to specify simulation
options such as the duration of the simulation and optional
parameter values for the solver and simulation engine.

• Multibody Settings (): allows you to specify options for
visualizing multibody components in the 3-D Workspace and
the 3-D Playback Window.

The contents of this pane change depending on your selection in
the Model Workspace.

Parameters Pane

1.2 The MapleSim Window • 7

1.3 Basic Tutorial: Modeling an RLC Circuit and DC
Motor
This tutorial introduces you to the modeling components and basic tools in MapleSim. It
illustrates the ability to mix causal models with acausal models.

In this tutorial, you will perform the following tasks:

1. Build an RLC circuit model.

2. Set parameter values to specify component properties.

3. Add probes to identify values of interest for the simulation.

4. Simulate the RLC circuit model.

5. Modify the RLC circuit diagram to create a simple DC motor model.

6. Simulate the DC motor model using different parameters.

For an example of theRLCCircuitmodel, from theHelpmenu, selectExamples >User's
Guide Examples > Chapter 1, and then select the RLC Circuit example. The model you
build is identical to the RLC Circuit model.

Building an RLC Circuit Model

To build the RLC circuit, you add components in the Model Workspace and connect them
in a system to form a diagram. In this example, the RLC circuit model contains ground,
resistor, inductor, capacitor, and signal voltage source components from the Electrical
component library. It also contains a step input source, which is a signal generator that
drives the input voltage level in the circuit.

To build an RLC circuit:

1. In the Library Components tab () at the left of the Model Workspace, click the
triangle beside Electrical to expand the palette. In the same way, expand the Analog
menu, and then expand the Passive submenu.

8 • 1 Getting Started with MapleSim

2. From the Electrical > Analog > Passive menu, drag the Ground component to the
Model Workspace.

3. Add the following electrical components to the Model Workspace.

• From theElectrical >Analog > Passive>Resistorsmenu, add theResistor compon-
ent.

1.3 Basic Tutorial: Modeling an RLC Circuit and DC Motor • 9

• From the Electrical > Analog > Passive > Inductors menu, add the Inductor com-
ponent.

• From the Electrical > Analog > Passive > Capacitors menu, add the Capacitor
component.

• From the Electrical > Analog > Sources > Voltage menu, add the Signal Voltage
component.

4. Drag the components in the arrangement shown below.

5. To rotate the Signal Voltage component clockwise, right-click (Control-click for Mac®)
the Signal Voltage component in the Model Workspace and select Rotate Clockwise.

6. To flip the Signal Voltage component horizontally, right-click (Control-click for Mac)
the component again and select Flip Horizontal. Make sure that the positive (blue) port
is at the top.

7. To rotate the Capacitor component clockwise, right-click (Control-click for Mac) the
Capacitor icon in the Model Workspace and select Rotate Clockwise.

You can now connect the modeling components to define interactions in your system.

8. Hover your mouse pointer over the Ground component port. The port is highlighted in
green.

9. Click the Ground input port to start the connection line.

10. Hover your mouse pointer over the negative port of the Signal Voltage component.

10 • 1 Getting Started with MapleSim

11. Click the port once. The Ground component is connected to the Signal Voltage com-
ponent.

12. Connect the remaining components in the arrangement shown below.

13. You can now add a source to your model. Expand the Signal Blocks palette, expand the
Sources menu and then expand the Real submenu.

14. From the palette, drag the Step source and place it to the left of the Signal Voltage
component in the Model Workspace. The step source has a specific signal flow, repres-
ented by the arrows on the connections. This flow causes the circuit to respond to the
input signal.

15. Connect the Step source to the Signal Voltage component. The complete RLC circuit
model is shown below.

Specifying Component Properties

To specify component properties, you can set parameter values for components in your
model.

1.3 Basic Tutorial: Modeling an RLC Circuit and DC Motor • 11

To specifying component properties:

1. In the Model Workspace, click the Resistor component. The Properties tab () at
the right of theModelWorkspace displays the name and parameter values of the resistor.

2. In the R field, enter 24, and press Enter. The resistance changes to 24 ..

3. Specify the following parameter values for the other components. You can specify units
for a parameter by selecting a value from the drop-down menu found beside the parameter
value field.

• For the Inductor, specify an inductance of 160 .

• For the Capacitor, specify a capacitance of 200 .

• For the Step source, specify a T0 value of 0.1 .

Adding a Probe

To specify data values for a simulation, you can attach probes to lines or ports to the model.
In this example, you will measure the voltage of the RLC circuit.

To add a probe:

1. In the Model Workspace Toolbar, click Attach probe ().

2. Hover your mouse pointer over the line that connects the Inductor and Capacitor
components. The line is highlighted.

3. Click the line once. The probe appears in the Model Workspace.

4. Move the probe to an empty location on the Model Workspace, and then click the
workspace to position the probe.

5. Select the probe. The probe properties appear under the Properties tab () to the right
of the Model Workspace.

6. Under the Properties tab, select the Voltage check box to include the voltage quantity
in the simulation graph.

7. To display a custom name for this quantity in the Model Workspace, enter Voltage as
shown below and press Enter.

12 • 1 Getting Started with MapleSim

The probe with the custom name is added to the connection line.

For another example of how to use a probe value in a simulation, from theHelpmenu, select
Examples >User's Guide Examples > Chapter 1, and then select the Sensors and Probes
example.

Simulating the RLC Circuit Model

Before simulating your model, you can specify the simulation duration run time.

To simulate the RLC circuit:

1. Click the Settings tab () on the right of the Parameters Pane and in the Simulation
section, set the simulation duration time (td) to 0.5 .

2. In the Advanced Simulation section, clear the Compiler check box.

3. Click Run Simulation () in the Main Toolbar. MapleSim generates the system
equations and simulates the response to the step input.

When the simulation is complete, the voltage response is plotted in a graph.

1.3 Basic Tutorial: Modeling an RLC Circuit and DC Motor • 13

Figure 1.8: Voltage Response Plot

4. Save the model as RLC_Circuit1.msim. The probes and modified parameter values are
saved as part of the model.

Building a Simple DC Motor Model

You will now add an electromotive force (EMF) component and a mechanical inertia
component to the RLC circuit model to create a DC motor model. In this example, you will
add components to the RLC circuit model using the search feature.

To build a simple DC motor:

1. In the Main toolbar, type EMF in the search bar. A drop-down list displays matches for
your search results.

14 • 1 Getting Started with MapleSim

2. Hover over the Rotational EMF in the Library Components section of the drop-down
list. The Rotational EMF component appears in a tool square beside the search field.

3. Drag the Rotational EMF component to the modeling workspace and place it to the
right of the Capacitor component.

4. Enter Inertia in the search bar.

5. Drag the Inertia component to the Model Workspace and place it to the right of the
Rotational EMF component.

6. Connect the components as shown below.

Figure 1.9: EMF and Inertia connections

1.3 Basic Tutorial: Modeling an RLC Circuit and DC Motor • 15

Note: To connect the positive blue port of the Rotational EMF component, click the port
once, drag your mouse pointer to the line connecting the capacitor and inductor, and then
click the line.

7. In the Model Workspace, click the Rotational EMF component.

8. In theProperties tab (), set the value of the transformation coefficient (k) to 10 .

9. Click the Step component and change the value of the parameter, T0, to 1 .

Simulating the DC Motor Model

To simulate the DC motor:

1. In the Model Workspace, delete Probe1.

2. In the Model Workspace Toolbar, click Attach probe ().

3. Hover your mouse pointer over the line that connects the Rotational EMF and Inertia
components.

4. Click the line, and then click on an empty area of the workspace to position the probe.

5. Select the probe, and in the Properties tab (), select the Speed and Torque check
boxes and then clear the Angle check box. The probe, with an arrow indicating the dir-
ection of the conserved quantity flow, is added to the model. The direction of the con-
served quantity flow (Torque) can be reversed by selecting the probe and then clicking
on Reverse Probe () in the Properties tab.

6. Rename the probe Output.

7. Click a blank area in the Model Workspace.

8. In the Settings tab (), set the simulation duration time (td) to 5 .

9. Click Run Simulation () in the Main Toolbar.

10. Click Show Simulation Results (). The following graphs appear.

16 • 1 Getting Started with MapleSim

Figure 1.10: Plots of DC Motor Torque and Speed

11. Save the model as DC_Motor1.msim.

1.3 Basic Tutorial: Modeling an RLC Circuit and DC Motor • 17

18 • 1 Getting Started with MapleSim

2 Building a Model
In this chapter:

• The MapleSim Component Library (page 19)

• Browsing a Model (page 20)

• Defining How Components Interact in a System (page 24)

• Specifying Component Properties (page 25)

• Creating and Managing Subsystems (page 28)

• Global and Subsystem Parameters (page 43)

• Attaching Files to a Model (page 59)

• Creating and Managing Custom Libraries (page 60)

• Annotating a Model (page 62)

• Entering Text in 2-D Math Notation (page 64)

• Creating a Data Set for an Interpolation Table Component (page 65)

• Best Practices: Building a Model (page 66)

2.1 The MapleSim Component Library
The MapleSim component library contains hundreds of components that you can use to
build models. All of these components are organized in palettes according to their respective
domains: signal blocks, electrical, 1-D mechanical, multibody, hydraulics, pneumatics,
thermal, and magnetic. Most of these components are based on the Modelica Standard
Library 4.0.0.

Table 2.1: MapleSim Component Library

DescriptionLibrary
Components to manipulate or generate input and output signals.Signal Blocks
Components to model electrical analog circuits, single phase
and polyphase systems, and machines.Electrical

Components to model 1-D translational and rotational systems.1-D Mechanical
Components, including force, motion, and joint components,
to model multibody mechanical systems.Multibody

Components to model hydraulic systems, fluid power systems,
cylinders and actuators.Hydraulics

Components to model Ideal pneumatic systems with cylinders,
directional control valves, orifices, and actuators.

Pneumatics

19

DescriptionLibrary
Components to model heat flow and heat transfer.Thermal
Components to model magnetic circuits.Magnetic

The library also contains sample models that you can view and simulate, for example,
complete electrical circuits and filters. For more information about the MapleSim library
structure and modeling components, see the MapleSim Component Library in the
MapleSim Help system.

To extend the default library, you can create a custom modeling component from a mathem-
atical model and add it to a custom library. For more information, see Creating Custom
Modeling Components (page 73).

Viewing Help Topics for Components

To view Help topics in the MapleSim Help system, perform any of the following tasks:

• Right-click (Control-click for Mac) a modeling component in any of the palettes and
select Help from the context menu.

• Search for the topic in the help search box in the main toolbar. Help topics related to your
search term are listed in the Help Results section.

• Search for the help pages for components in the MapleSim Help system.

Updating Models Created in a Previous Release of MapleSim

In MapleSim 2024.1, the Modelica Standard Library 3.2.3 was replaced with the Modelica
Standard Library 4.0.0. If you created a model in an earlier version of MapleSim, you can
open it in MapleSim 2024.1 or later. The model will be updated automatically to use equi-
valent components from the Modelica Standard Library 4.0.0. For more information, see
Using MapleSim > Updating Models Created in a Previous Release of MapleSim in
the MapleSim Help system.

2.2 Browsing a Model
Using the Model Tree or model navigation controls, you can browse your model to view
hierarchical levels of components in the Model Workspace. You can browse to the top
level for an overall view of your system. The top level is the highest level of your model:
it represents the complete system, which can include individual modeling components and
subsystem blocks that represent groups of components. You can also browse to sublevels
in your model to view the contents of individual subsystems or components.

20 • 2 Building a Model

Model Tree

The Model Tree tab () is located in the Palettes Pane. Use the Model Tree to browse
through and optionally search for elements in your model. Nodes in the model tree can
represent attachments, component types, components, parameters, or probes, depending on
the model tree view. To change the model tree view, select a view from the list below the
Find text box. The following figure shows the drop-down menu available for the 5 DoF
Robot multibody example model.

Figure 2.1: Components view in the Model Tree

The following are of the model tree views you can select from.

• Attachments:This view shows the files attached to your model. Examples of attachments
include worksheets, spreadsheets, and CAD drawings. Double-click an attachment to
open the attachment in the appropriate program. Enter a term in Find to search for docu-
ments that match your term.

• Component Types: This view organizes the model tree view according to the type of
component or subsystem. Component and subsystem nodes are identified by their type

2.2 Browsing a Model • 21

followed by their name. Enter a term in Find to search for component types that match
your term (the component's name is ignored in the search).

• Components: This view organizes the model tree view according to the Name of each
component or subsystem. Component and subsystem nodes are identified by their name
followed by their type (see Figure 2.1). Enter a term in Find to search for component
and subsystem names that match your term (the component type is ignored in the search).
This is the default model tree view.

• Connectors: This view shows all the connectors in your model.

• Parameters: This view shows the parameter definitions in your model. Parameter
definitions can come from parameter tables, parameter blocks, Modelica Records, or To
Variable components. Enter a term in Find to search for parameters names that match
your term. For more information about the parameters view (including how to find all
references to a parameter), see UsingMapleSim > Building aModel > Navigating and
Searching with the Model Tree > Parameters View in the MapleSim Help system.

• Probes: This view shows all the probes in your model. The full path to the probe is given
in brackets after the name of the probe. Enter a term in Find to search for probes with
names that match your term.

To view the parameters associated with a component or subsystem, navigate the model tree
to the component node and then select the node. This highlights the element in the Model
Workspace, changes the Model Workspace view to display the element, and populates

the Properties tab () with the configurable parameters for that element. See Figure 2.2
for an illustration of component selection.

Figure 2.2: Component selection using the Model Tree

22 • 2 Building a Model

If you select more than one component from the model tree, the Properties tab displays all
the common configurable parameters for the components. If you change a parameter in the
Properties tab, this updates the parameter for all of the selected components.

To explore a component or subsystem, you can either double-click the node in the model
tree or expand the node and then select one of its children. The Model Workspace view
changes to the appropriate level to explore the component or subsystem.

Figure 2.3: Exploring a subsystem

For more information on the Model Tree and how to manage complex models, see the
UsingMapleSim > Building aModel > Navigating and Searching with the Model Tree
section of the MapleSim Help system.

Model Navigation Controls

Alternatively, you can use the model navigation controls located in the Model Workspace
Toolbar to browse between modeling components, subsystems, and hierarchical levels in
a diagram displayed in the Model Workspace.

Figure 2.4: Model Navigational Controls

The following table summarizes what these controls do and gives the keyboard shortcuts
associated with them.

2.2 Browsing a Model • 23

Table 2.2: Model Navigation Controls

DescriptionKeyboard ShortcutControl

Return to the Main level of your model.Home

Navigate to the parent component.
Ctrl+Up Arrow

Command+Up
Arrow (Mac)

Display the contents (or children) of the selected
component.

Ctrl+Down Arrow

Command+Down
Arrow (Mac)

2.3 Defining How Components Interact in a System
To define interactions between modeling components, you connect them in a system. In the
Model Workspace, you can draw a connection line between two connection ports.

You can also draw a connection line between a port and another connection line.

MapleSim permits connections between compatible domains only. By default, each line
type appears in a domain-specific color.

24 • 2 Building a Model

Table 2.3: Domain-Specific Connection Line Colors

Line ColorDomain
BlackMechanical 1-D rotational
GreenMechanical 1-D translational
BlackMechanical multibody
BlueElectrical analog
BlueElectrical multiphase
OrangeMagnetic
PurpleDigital logic
PinkBoolean signal
Navy blueCausal signal
OrangeInteger signal
RedThermal
Light bluePneumatic

The connection ports for each domain are also displayed in specific colors and shapes. For
more information about connection ports, see the MapleSim Component Library > Con-
nectors Overview in the MapleSim Help system.

Components can have either scalar or vector connection ports. A scalar port has only one
quantity associated with it while a vector port can have more than one quantity (or dimension)
associated with it. Connections between ports with different dimensions are difficult to
manage because what quantities are physically connected is not obvious in the Model
Workspace. The Connections Manager simplifies these types of connections by letting
you examine which ports are connected and change them if necessary. To access the Con-
nections Manager, select a connection line in the Model Workspace and then select the

Properties tab (). For more information, see Using MapleSim > Building a Model >
Using the Connections Manager in the MapleSim Help system.

2.4 Specifying Component Properties
To specify component properties, you can set parameter values for components in your
model. When you select a component in theModelWorkspace, the configurable parameter

values for that component appear in the Properties tab () located on the right side of the
MapleSim window.

Note: Not all components provide editable parameter values.

You can enter parameter values in 2-D math notation, which is a formatting option that allows
you to add mathematical text such as superscripts, subscripts, and Greek characters. For
more information, see Entering Text in 2-D Math Notation (page 64).

2.4 Specifying Component Properties • 25

Note:Most parameters in the MapleSim Component Library have default values. However,
for some parameters, these default values are simply placeholders that may not represent
realistic values for use in a simulation. These placeholder values use a blue font to distinguish
them from other parameter values. You should replace these values with values that are
more suitable for your simulation. For more information, see Using MapleSim> Building
a Model > Specifying Parameters in the MapleSim Help system.

Specifying Parameter Units

You can use the drop-down menus beside parameter fields with dimensions to specify units
for parameter values. For example, the image below displays the configurable parameter
fields for a Mass component. You can optionally specify the mass in kg, lbm, g, or slug,
and the length in m, cm, mm, ft, or in.

When you simulate a model, MapleSim automatically converts all parameter units to the
International System of Units (SI). You can, therefore, select more than one system of units
for parameter values throughout a model.

If you want to convert the units of a signal, use the Conversion Block component from the
Signal Convertersmenu in the Signal Blocks palette. This component allows you to perform
conversions in dimensions such as time, temperature, velocity, pressure, and volume. In the
following example, a Conversion Block component is connected between a translational
Position Sensor and a Feedback component to convert the units of an output signal.

Figure 2.5: Specifying Units using the Conversion Block

If you include an electrical, 1-D mechanical, hydraulic, or thermal sensor in your model,
you can also select the units in which to generate an output signal.

26 • 2 Building a Model

Specifying Initial Conditions

You can set parameter values to specify initial conditions for components from all domains
in MapleSim. When you select a component that contains state variables in the Model
Workspace, the available initial condition fields appear in the Properties tab, along with
the other configurable parameter values for that component.

For example, the image below displays the initial position and initial velocity fields that
you can set for a Mass component.

Figure 2.6: Initial Conditions

Specifying How Initial Conditions are Enforced

You can determine how the initial conditions that you specified for a particular component
are enforced. The options are ignore (), guess (), and enforce (). You can select
these options for initial condition parameters individually by clicking the buttons beside
the applicable initial condition fields.

2.4 Specifying Component Properties • 27

If you select the ignore option, the parameter value that you enter in the initial condition
field is ignored and the solver uses a default value for the initial condition, typically zero.
This option is the default setting for all of the initial condition fields.

If you select the guess option, the solver treats the parameter value you entered in the initial
condition field as a best guess value. In other words, the best guess value is a starting point
for determining the initial configuration of the system for which there is a solution to the
set of equations that describe the system. The solver initially computes a solution to the
system of equations using this best guess value; however, if no solution is found, the solver
computes a solution to the system of equations using an initial condition value that is close
to the best guess value.

If you select the enforce option, the solver uses the parameter value that you enter in the
initial condition field as a start value for the simulation. Similar to the guess option, the
solver searches for a solution to the system of equations using the parameter value you
entered in the initial condition field. However, unlike the guess option, if there is no solution,
no other value is substituted, and an error message appears.

For more information about selecting these options, see Best Practices: Enforcing Initial
Conditions (page 72).

For an example of how initial conditions are enforced, from theHelpmenu, selectExamples
> User's Guide Examples > Chapter 2, and then select the Relative Positions example.

2.5 Creating and Managing Subsystems
A subsystem (or compound component) is a set of modeling components that are grouped
in a single block component. A simple DC motor subsystem is shown below.

Figure 2.7: Subsystem Group

You can create a subsystem to group components that form a complete system, for example,
a tire or DC motor. You can also create a subsystem to improve the layout of a diagram in
the Model Workspace, add multiple copies of a system to a model, analyze a component
group in Maple or to quickly assign parameters and variables. You can organize your
model hierarchically by creating subsystems within other subsystems.

28 • 2 Building a Model

After you create a subsystem you will be able to assign parameters and variables to all
components in that subsystem using the Advanced Parameter Settings and Advanced

Variable Settings tools in the Properties tab ().

For best practices on creating subsystems in MapleSim, see Best Practices: Laying Out and
Creating Subsystems (page 66).

Example: Creating a Subsystem

In the following example, you will group the electrical components of a DC motor model
into a subsystem.

To create a subsystem

1. From the Help menu, select Examples > User's Guide Examples > Chapter 2, and
then select the Simple DC Motor example.

2. Draw a box around the electrical components by dragging your mouse over them.

Figure 2.8: Creating a Subsystem

2.5 Creating and Managing Subsystems • 29

3. From theEditmenu, selectCreate Subsystem. Alternatively, right-click (Control-click,
for Mac) the boxed area and select Create Subsystem.

4. In the dialog box, enter DCMotor.

5. Click OK. A white block, which represents the DC motor, appears in the Model
Workspace.

In this example, you created a standalone subsystem, which can be edited and manipulated
independently of other subsystems in your model. If you want to add multiple copies of the
same subsystem to your model and edit those subsystems as a group, you can create a sub-
system definition. For more information, see Adding Multiple Copies of a Subsystem to a
Model (page 31).

Viewing the Contents of a Subsystem

To view the contents of a subsystem, double-click the subsystem icon in the Model
Workspace. The detailed view of a subsystem appears.

30 • 2 Building a Model

In this view, the broken line indicates the subsystem boundary. You can edit the connection
lines and components within the boundary, and add subsystem ports to connect the subsystem
to other components.

To browse to the top level of the model or to other subsystems, use the Model Navigation
controls in the Model Workspace Toolbar. For details on Model Navigation controls, see
Best Practices: Laying Out and Creating Subsystems (page 66).

Adding Multiple Copies of a Subsystem to a Model

If you plan to add multiple copies of a subsystem to a model and want all of the copies to
have the same configuration, you can create a subsystem definition. A subsystem definition
is the base subsystem that defines the attributes and configuration that you want a series of
subsystems to share.

For example, if you want to add three DC motor subsystems that all have identical compon-
ents and resistance values in your model, you would perform the following tasks:

1. Build a DC motor subsystem with the desired configuration in the Model Workspace.

2. Use that subsystem configuration to create a subsystem definition and add it to the
Components palette under the Local Components tab.

3. Add copies of the DC motor subsystem to your model using the subsystem definition as
a source.

To add copies of the DC motor subsystem to your model, you can drag the DC Motor sub-

system definition icon from Components palette under the Local Components tab ()
and place it in the Model Workspace. The copies that you add to the Model Workspace
will then share a configuration that is identical to the subsystem definition in the Local
Components tab; the copies in theModelWorkspace are called shared subsystems because
they share and refer to the configuration specified in their corresponding subsystem definition.

2.5 Creating and Managing Subsystems • 31

Figure 2.9: Creating Multiple Subsystems

Shared subsystems that are copied from the same subsystem definition are linked, which
means that changes you make to one shared subsystem will be reflected in all of the other
shared subsystems that were created from the same subsystem definition. The changes are
also reflected in the subsystem definition entry in the Local Components tab. A shared
subsystem is indicated on the model workspace by the icon .

Using the example shown above, if you change the resistance parameter of the Resistor
component in the DCMotor2 shared subsystem from 24Ω to 10Ω, the resistance value of
theResistor component in theDCMotor1 andDCMotor3 shared subsystems and theDC
Motor subsystem definition in the Local Components tab will also be changed to 10Ω.

For more information, see Editing SubsystemDefinitions and Shared Subsystems (page 34).

Example: Adding Subsystem Definitions and Shared Subsystems to a Model

In the following example, you will create aDCMotor subsystem definition and add multiple
shared subsystems to your model.

Adding a Subsystem Definition to the Local Components Tab

To add a subsystem definition

1. In the Model Workspace, right-click (Control-click for Mac) the standalone DC motor
subsystem that you created in Example: Creating a Subsystem (page 29).

2. From the context menu, select Convert to Shared Subsystem.

3. Enter DCMotor as the name for the subsystem definition and click OK.

4. Under theLocal Components tab () on the left side of theModelWorkspace, expand
the Components palette.

32 • 2 Building a Model

Figure 2.10: Subsystem Definition

The subsystem definition is added to the Components palette and the subsystem in the
Model Workspace is converted into a shared subsystem called DCMotor1. This shared
subsystem is linked to the DCMotor subsystem definition.

5. Save this model as DCMotorSubsystem.msim. You will be building on this model in
Example: Editing Shared Subsystems that are Linked to the Same Subsystem
Definition (page 34).

You can now use this subsystem definition to add multiple DC motor shared subsystems
to your MapleSim model.

Tip: If you want to use a subsystem definition in another model, add the subsystem definition
to a custom library. For more information, see Creating and Managing Custom
Libraries (page 60).

Adding Multiple DC Motor Shared Subsystems to a Model

To add multiple DCMotor shared subsystems to a model, drag the DCMotor subsystem
definition icon from the Local Components tab and place it in the Model Workspace.

2.5 Creating and Managing Subsystems • 33

Figure 2.11: Adding Multiple Subsystems to a Model

When you create a new standalone subsystem or add shared subsystems to a model, a unique
subscript number is appended to the subsystem name displayed in the Model Workspace.
As shown in the image above, subscript numbers are appended to the names of each DC
Motor shared subsystem. These numbers can help you to identify multiple subsystem copies
in your model.

Editing Subsystem Definitions and Shared Subsystems

If you edit a shared subsystem in the Model Workspace, your changes will be reflected in
the subsystem definition that is linked to the shared subsystem, as well as other shared
subsystems that were copied from the same subsystem definition.

Example: Editing Shared Subsystems that are Linked to the Same Subsystem
Definition

In this example, you will create a model that contains two DCMotor shared subsystems,
and then edit the resistance values and icons for the shared subsystems. These shared sub-
systems are linked to theDCMotor shared subsystem definition that was created inExample:
Adding Subsystem Definitions and Shared Subsystems to a Model (page 32). You will
verify that when you change one of the component values and the icon for one DCMotor
shared subsystem, the other DCMotor shared subsystems in your model--as well as any
new DCMotor shared subsystems that you add in the future--will contain the changes.

Note: Before doing this example, you should have already gone through and stored the
results from Example: Adding Subsystem Definitions and Shared Subsystems to a
Model (page 32).

34 • 2 Building a Model

To use shared subsystems:

1. In MapleSim, open the DCMotorSubsystem.msim file that you created in Example:
Adding Subsystem Definitions and Shared Subsystems to a Model (page 32).

2. Under theLocal Components tab (), expand theComponents palette, and then drag
a secondDCMotor shared subsystem on to the workspace, placing it below the existing
DCMotor shared subsystem.

3. Under the Library Components tab (), expand the 1-D Mechanical > Rotational
>Commonmenu, and then drag a second Inertia component on to the workspace, placing
it below the existing Inertia component.

4. Make the following connections between the newly added components and the existing
components in the model.

5. In the Model Workspace, double-click the DCMotor1 shared subsystem. The detailed
view of the shared subsystem appears.

2.5 Creating and Managing Subsystems • 35

Figure 2.12: DC Motor Subsystem

Note that a heading with the shared subsystem name (DCMotor_1) followed by the sub-
system definition name (DCMotor) appears at the top of the Model Workspace. In the
detailed view of all shared subsystems, this heading also appears to help you identify multiple
subsystem copies in your model. Also, when you select a shared subsystem, its subsystem

definition name appears in the Type field in the Properties tab ().

6. Select theResistor component (R1) and, in theProperties tab, clickParameters. Change
the resistance value to 50Ω.

36 • 2 Building a Model

7. In the Model Workspace Toolbar, click Icon View ().

8. You can customize the icon view of the subsystem. Click the edge of the icon boundary
and make it wider. If needed, drag the ports to the middle of the sides of the subsystem
border.

9. Using the Rectangle Tool () in the Model Workspace Toolbar, click and drag your
mouse pointer to draw a shape in the box.

10. In the Model Workspace Toolbar, click Diagram ().

11. Click Main () in the Model Workspace Toolbar to browse to the top level of the
model. Both of the DCMotor shared subsystems now display the square that you drew.

2.5 Creating and Managing Subsystems • 37

12. Under the Local Components tab on the left side of the MapleSim window, expand the
Components palette. As shown in the image below, your changes are also reflected in
the DCMotor entry in this palette.

If you double-click the DCMotor subsystems in the Model Workspace and select their
Resistor components, you will see that both of the shared subsystems now have a resistance
value of 50Ω.

13. From the Local Components tab, drag a new copy of the DCMotor subsystem and
place it anywhere in theModelWorkspace. Verify that the new copy displays the square
that you drew and its resistance value is also 50Ω, and then delete it from the workspace.

14. Save this model as DCMotorSharedSubsystem.msim. You will be building on this
model in Example: Removing the Link between a Shared Subsystem and Its Subsystem
Definition (page 38).

Example: Removing the Link between a Shared Subsystem and Its Subsystem
Definition

If your model contains multiple shared subsystems that are linked and you want to edit one
copy only, you can remove the link between a shared subsystem and its subsystem definition,
and edit that subsystem without affecting others in the Model Workspace.

38 • 2 Building a Model

Note: Before doing this example, you should have already gone through and stored the
results from Example: Editing Shared Subsystems that are Linked to the Same Subsystem
Definition (page 34) and saved the results from that example.

To remove shared subsystem link:

1. Open theDCMotorSharedSubsystem.msimmodel that you created inExample: Editing
Shared Subsystems that are Linked to the Same Subsystem Definition (page 34).

2. In the Model Workspace, right-click (Control-click for Mac) the DCMotor1 shared
subsystem.

3. Select Convert to Standalone Subsystem. The DCMotor1 subsystem is no longer
linked to the DCMotor subsystem definition in the Local Components tab; it is now
called copy of DC Motor.

4. Double-click the DCMotor1 shared subsystem.

5. Click Icon ().

6. Using the Rectangle Tool (), click and drag your mouse pointer to draw a shape in
the box in the Model Workspace.

7. Click Diagram (), and then click Main () to browse to the top level of the model.
Your change is shown in the DCMotor1 shared subsystem in the Model Workspace
and the DCMotor subsystem definition in the Local Components tab. Note that your
change is not shown in the copy of DCMotor subsystem that is no longer linked to the
DCMotor subsystem definition.

Tip: When you convert a shared subsystem to a standalone subsystem, it is a good practice
to assign the standalone subsystem a meaningful name that clearly distinguishes it from
existing shared subsystems and subsystem definitions.

Working with Standalone Subsystems

Standalone subsystems are subsystems that are not linked to a subsystem definition. You
can create a standalone subsystem in two ways: by creating a new subsystem as shown in
Example: Creating a Subsystem (page 29) or by converting a shared subsystem to a stan-
dalone subsystem as shown in Example: Removing the Link between a Shared Subsystem
and Its SubsystemDefinition (page 38). Standalone subsystems can be edited independently
without affecting other subsystems in the Model Workspace.

To identify a subsystem as a standalone subsystem, select a subsystem in the Model

Workspace and examine the Properties tab (). If that subsystem is a standalone subsys-
tem, the Type field reads Standalone Subsystem.

2.5 Creating and Managing Subsystems • 39

Standalone subsystems will not show the shared subsystem icon () on the Model Work-
space. Also, if you double-click a standalone subsystem to browse to its detailed view, no
heading is shown for the subsystem in the Model Workspace.

When you copy and paste a standalone subsystem in the Model Workspace, you can op-
tionally convert that subsystem into a shared subsystem and create a new subsystem defin-
ition. For more information, see Example: Copying and Pasting a Standalone
Subsystem (page 41).

Example: Resolving Warning Messages in the Debugging Console

When you convert a shared subsystem into a standalone subsystem, the subsystem is high-
lighted in the Model Workspace and a warning message appears, informing you that the
link to the subsystem definition has been removed.

Note: This example is an extension of Example: Removing the Link between a Shared
Subsystem and Its Subsystem Definition (page 38).

To resolve a warning message

1. ClickDiagnostic Information () at the bottom of the MapleSim window to display
the debugging console. The following warning message appears in the console.

2. To work with the copy of DC Motor subsystem as a standalone subsystem, right-click
(Control-click for Mac) the warning message and select Ignore duplication warnings
for 'copy for DC Motor' to hide the warning message from the debugging console.

Tip: If you want to view warning messages that you hid from the debugging console, click
Reset Ignored Warnings () above the console. All of the warning messages that you
previously hid will appear in the debugging console again.

40 • 2 Building a Model

Alternatively, if you want to link the copy of DC Motor standalone subsystem to the DC
Motor subsystem definition again, you can right-click (Control-click for Mac) the warning
message and selectUpdate 'copy of DCMotor' to use the shared subsystem 'DCMotor'.

Example: Copying and Pasting a Standalone Subsystem

Note: This example is an extension of Example: Removing the Link between a Shared
Subsystem and Its Subsystem Definition (page 38).

To copy and paste a standalone subsystem:

1. In theModelWorkspace, copy and paste the copy of DCMotor standalone subsystem.
A dialog box appears. (See Figure 2.13.)

2. SelectConvert the above stand-alone subsystem to a shared subsystem (Recommen-
ded). A new subsystem definition called SharedSubsystem_1 is added to theCompon-

ents palette in the Local Components tab ().

2.5 Creating and Managing Subsystems • 41

Figure 2.13: Copy Subsystem Dialog

In theModelWorkspace, the copy of DCMotor standalone subsystem has been converted
to a shared subsystem called copy of DCMotor and another copy of that shared subsystem
called copy of DCMotor1 has been added to the Model Workspace. Both the copy of DC
Motor and copy of DC Motor1 shared subsystems are linked to the new SharedSubsys-
tem_1 subsystem definition. Therefore, if you edit either copy of DC Motor or copy of
DC Motor1 in the Model Workspace, your changes will not be reflected in subsystems
that are linked to the original DCMotor subsystem definition.

Note: Alternatively, you can select Replicate the above stand-alone subsystem as a new
stand-alone subsystem to add another standalone subsystem that can be edited independently
without affecting the other subsystems in the Model Workspace.

42 • 2 Building a Model

2.6 Global and Subsystem Parameters
MapleSim lets you define global and subsystem parameter values, and assign them to
components using the Add or Change Parameters editor, parameter blocks, parameter
sets, and the Advanced Parameter Settings and Advanced Variable Settings in the
Properties tab.

Global Parameters

If your model contains multiple components that share a common parameter value, you can
create a global parameter using a Parameter Block. A global parameter allows you to define
a common parameter value in one location and then assign that common value to multiple
components in your model.

The following example describes how to define and assign a global parameter. To view a
more detailed example, see Tutorial 1: Modeling a DC Motor with a Gearbox (page 151)
in Chapter 6 of this guide.

Example: Defining and Assigning a Global Parameter

If your model contains multipleResistor components that have a common resistance value,
you can define a global parameter for the resistance value in the parameter editor view. This
is done through a parameter block.

To define and assign a global parameter:

1. In theLibrary Components tab (), expand theElectrical palette, expand theAnalog
menu, expand the Passive menu, and then expand the Resistors menu.

2. From the palette, drag three copies of theResistor component into theModelWorkspace.

3. In the Model Workspace, there is a Parameter Block (), as in the following image.

If there is not one in the model already, click Add a parameter block () from the
Model Workspace Toolbar.

2.6 Global and Subsystem Parameters • 43

4. Double-click on the parameter block in the Model Workspace. The Main subsystem
default settings screen appears. You will use this screen to define the global parameter
and assign it to the Resistor components in your model.

5. Click the first field under the Name column in the Main subsystem default settings
table.

6. Enter GlobalResistance as the global parameter name and press Enter.

7. Under Type, select Resistance[[Ω]] and specify a default value of 2.

8. Enter Global resistance variable as the description and press Enter.

The global parameter for the resistance value is now defined. You can now assign the
common GlobalResistance parameter value to the individual Resistor components that
you added to the Model Workspace.

9. Click Diagram (), then select the R1 component. Enter GlobalResistance as the
resistance value.

9. Repeat this step for the R2 component.

44 • 2 Building a Model

The resistance value of the parameterGlobalResistance (2, as defined in theMain subsys-
tem default settings table) has now been assigned to the resistance parameters of the R1
and R2 components.

The R1 and R2 components will now inherit any changes made to the GlobalResistance
parameter value in the Main subsystem default settings table. For example, if you change
the default value of the GlobalResistance parameter to 5 in the Main subsystem default
settings table, the resistance parameters of the R1 and R2 components will also be changed
to 5.Any change to theGlobalResistance parameter value will not apply to theR3 compon-
ent because it has not been assigned GlobalResistance as a parameter value.

Subsystem Parameters

You can create a subsystem parameter if you want to create a common parameter value to
share with multiple components in a subsystem. Similar to global parameters, a subsystem
parameter is a common value that you define in the parameter editor view and assign to
components.

There are two ways to assign subsystem parameters; one is by clicking Parameters ()
and the other is by using the Advanced Parameter Settings tool in the Properties tab

(). Parameters can only be assigned to components in the subsystem in which they are
defined. If you select a subsystem in the Model Workspace, click Parameters () or
Advanced Parameter Settings, and define a parameter in the parameter editor view, the
parameter that you define is assigned to components in the subsystem that you selected and
any nested subsystems.

To view an example, see Tutorial 3: Modeling a Nonlinear Damper (page 166) in Chapter
6 of this guide.

Note: If you create a parameter within a subsystem and assign its value to a component at
the top level, the component at the top level will not inherit the parameter value.

Example: Assigning a Subsystem Parameter to a Shared Subsystem

If you assign a subsystem parameter to a shared subsystem in your model, the default sub-
system parameter will also be assigned to other shared subsystems that are linked to it.
However, after the default subsystem parameter is assigned, you can edit the subsystem
parameter value for each shared subsystem separately without affecting other parameter
values in the model.

2.6 Global and Subsystem Parameters • 45

To assign a subsystem parameter to a shared subsystem

1. From theHelpmenu, selectExamples > Physical Domains >Multibody, and then select
the Double Pendulum model. This model contains two shared subsystems, L1 and L2,
which are linked to a subsystem definition called L.

2. Double-click the L1 shared subsystem.

3. Click Parameters ().

4. In the L subsystem default settings table, click the empty field at the bottom of the
table.

5. Enter c as the parameter name, keep the default value as 1, and press Enter.

6. Click Diagram (). The new subsystem parameter, c, appears in the Properties tab

() for the L1 shared subsystem.

7. Click Main (), select the L2 subsystem, and then examine the Properties tab. The
new subsystem parameter is also displayed for the L2 shared subsystem.

8. In the Properties tab, change the value of c to 50.

9. Click the L1 shared subsystem in the Model Workspace and examine the Properties
tab. Note that the value of its parameter, c, remains the same.

Using Parameter Blocks for Subsystem Parameters

As an alternative to defining subsystem parameters using the methods described above, you
can create a parameter block to define a set of subsystem parameters and assign them to
components in your model.

The following image shows a parameter block that has been added to theModelWorkspace.

When you double-click this block, the parameter editor view appears. This view allows you
to define parameter values for the block.

After defining parameter values, you can assign those values to the component parameters
in your model.

46 • 2 Building a Model

To use parameter values in another model, you can add a parameter block to a custom library.
For more information about custom libraries, see Creating and Managing Custom
Libraries (page 60).

Notes:

• Parameter blocks must be placed in the same subsystem as the components to which you
want to assign the parameter value.

• Parameter blocks at the same hierarchical level in a model cannot have the same parameter
names. For example, two separate parameter blocks in the same subsystem cannot each
contain a parameter called mass.

Example: Creating and Using a Parameter Block

In this example, you will create a set of parameters that can be shared by multiple components
in your model. By creating a parameter block, you only need to edit parameter values in
one location to compare results when you run multiple simulations.

To create and use a parameter block:

1. From the Help menu, select Examples > Physical Domains > 1-D Mechanical, and
then select the PreLoad example.

2. Under the Settings tab (), enter 0.012 seconds for td, the simulation duration time.

3. Click the SM1 Mass component on the workspace, and then click the Properties tab

(). You will be using a parameter block to set values for the following parameters:
m, L, s0, and v0.

4. From the Model Workspace Toolbar, click Add a parameter block (), and then
click on a blank area in the Model Workspace.

5. Click the Properties tab and enter the name SlidingMassParams for the parameter
block.

6. Double-click the SlidingMassParams parameter block in the Model Workspace. The
parameter editor view appears.

7. Click the first field in the table and define a new symbolic parameter called MASS.

8. Press Enter. The remaining fields for this row are activated.

9. From the Type drop-down menu, select Mass [[kg]].

2.6 Global and Subsystem Parameters • 47

10. Enter a default value of 5.

11. From the Default Units drop-down menu, select kg.

12. Enter Mass of the sliding mass for the Description field.

13. In the same way, define the following parameters and values in the Parameters subsys-
tem default settings table.

DescriptionDefault UnitsDefault ValueTypeName

Length of the sliding massm2LengthLENGTH

Initial velocity of the sliding
mass1

Velocity
V0

Initial position of the sliding
massm1PositionS0

The parameter editor view appears as follows when the values are defined.

14. Click Diagram (). When you select the parameter block in the Model Workspace,
the defined parameters appear in the Properties tab on the right side of the MapleSim
window.

48 • 2 Building a Model

15. In the Model Workspace, select the SM1 mass component in the diagram.

16. In the Properties tab, assign the following values and press Enter.

2.6 Global and Subsystem Parameters • 49

The parameters of this Mass component now inherit the numeric values that you defined
in the parameter block.

17. In the same way, assign the same values to the parameters of the SM2 and SM3 mass
components in the model.

18. In the Model Workspace, delete the probe labeled Input.

19. Select the probe labeled Output.

20. In the Properties tab, clear the check box beside Velocity.

21. To simulate the model, click Run Simulation () in the Main Toolbar.

22. Click Show Simulation Results (). The following graph appears in the Analysis
window.

50 • 2 Building a Model

23. In the Model Workspace, click the parameter block.

24. In the Properties tab, change the mass to 3.5 and the initial velocity to 5. Press Enter.
These changes apply to all of the Mass components to which you assigned the symbolic
parameter values.

25. Simulate the model again, then bring the Analysis window to the front. Another simulation
graph appears, which you can compare to your first graph.

2.6 Global and Subsystem Parameters • 51

Saving Parameter Sets

The parameters you create for your model can be stored as reusable Parameter Sets. Para-
meter Sets let you save, reuse, and compare different sets of parameters for the same model
displayed in the workspace. At any time you can easily apply and run different simulations,
saving new values for each model. A Parameter Set provides a snapshot of all the parameters
in the Model Workspace.

Parameter Sets for your model are listed in the Attached Files tab (), under Parameter
Sets as shown in the following figure.

52 • 2 Building a Model

You can use, save, reuse, and compare different sets of parameters for the same model by
right-clicking (Control-click for Mac) on a Parameter Set. For more information, see the
Using MapleSim > Building a Model > Using Parameter Sets > Saving and Applying
Parameter Sets section in the MapleSim Help system.

Using Advanced Parameter and Variable Settings

At the top level of your model, in theMain subsystem default settingswindow, you define
the subsystem by adding parameters and setting their default values. An alternative is to
directly assign subsystem parameters, variables, and initial conditions to components in
your subsystem by using the Advanced Parameter Settings and Advanced Variable

Settings tools in the Properties tab (). Advanced Settings lets you override one or more
default values.

Advanced Parameter Settings

Advanced Parameter Settings lets you override the default values for selected subsystem
components. If desired, you can parametrize the override using the parametrization feature

(). A component override in one subsystem can be converted to a parameter visible in
all the other subsystems.

In the following model an override was applied to the initial value of R and changed to the
parameter Rcommon.

2.6 Global and Subsystem Parameters • 53

In the Model Workspace, components with a parameter override are identified with an
override icon (). In the following model, the DCMotor2 subsystem has a parameter
override.

Advanced Variable Settings

Advanced Variable Settings lets you specify initial conditions for subsystem components.
When you select Advanced Variable Settings the initial condition fields appear for all
configurable components for that subsystem.

54 • 2 Building a Model

Example: Creating a Parameter Override

To create a parameter override:

1. From the Help menu, select Examples > User's Guide Examples > Chapter 2, and
then select the Simple DC Motor example.

2. Draw a box around the electrical components by dragging your mouse over them.

3. From the Edit menu, select Create Subsystem or right-click (Control-click for Mac)
the boxed area and select Create Subsystem.

4. In the dialog box, enterDCMotor, and then clickOK. The DC Motor subsystem appears.

5. Right-click (Control-click for Mac) theDCMotor subsystem, selectConvert to Shared
Subsystem, and then click OK. This creates the shared subsystem definition and adds
it Components palette under the Local Components tab.

6. Under theLocal Components tab (), expand theComponents palette, and then drag
three copies of the DC Motor shared subsystem to your Model Workspace.

2.6 Global and Subsystem Parameters • 55

7. Create three additional DC Motor subsystems as shown below.

8. Click S2, and, under the Properties tab (), set T0 to 1. Do the same for S3 and S4.

9. Click the DCMotor3 subsystem, and then click Advanced Parameter Settings under

the Properties tab (). TheAdvanced Parameter Settingswindow appears, showing
all of the subsystem components.

56 • 2 Building a Model

10. Expand R1 and enter a value of 100 for the Resistance parameter (R).

11. Click OK. The new parameter appears in the Properties tab as an override.

12. To change this override to make it a reusable parameter, click Parametrize (), enter
Rcommon as the new parameter name, and then click OK. Rcommon appears in the
Properties tab as a parameter that can now be reused in the other subsystems. Note that
it is no longer an override.

2.6 Global and Subsystem Parameters • 57

13. For each of the other subsystems, click the subsystem and in the Properties tab enter
the following values for Rcommon: of

• For DCMotor1, set Rcommon to 25Ω

• For DCMotor1, set Rcommon to 50Ω

• For DCMotor2, set Rcommon to 75Ω

14. For each of the subsystems, select the probe, and in the Properties tab select the Speed
check box and clear all of the other check boxes.

15. ClickRun Simulation () in theMain Toolbar. The following graphs appear for each
of the subsystems.

Specifying Initial Condition Overrides

You can set initial condition values to override existing initial conditions for specific sub-
system components. When you select a component, the available initial condition fields

and any existing overrides appear in the Properties tab (), along with the other config-
urable parameter values for that component.

58 • 2 Building a Model

When you select a subsystem and then click Advanced Variable Settings, all subsystem
components appear. You can select a component and specify the initial conditions for that
component. This feature is especially useful for models that contain multiple shared subsys-
tems.

2.7 Attaching Files to a Model

You can use the Attached Files tab () to attach files of any format to a model (for ex-
ample, spreadsheets or design documents created in external applications). You can save
files attached in the Attached Files tab as part of the current model and refer to them when
you work with that model in a future MapleSim session. To save a file, right-click (Con-
trol-click for Mac) the category in which you want to save the attachment and selectAttach
File.

You can also attach a file to a model from the menu bar by selecting Edit > Attach File...
. Using this method, by default, the file attaches to the Documents category. If you want
to move this attachment, you can click and drag the entry to another category.

The following image shows an Attached Files tab that contains files called CustomCom-
ponent.mw, NonLinearMSD.mw, and DamperCurve.xlsx.

Figure 2.14: Attachments

You can also use the Attached Files tab to open MapleSim templates to create custom
modeling components and ports for a model. For more information, see Analyzing and
Manipulating a Model (page 131) in this guide.

2.7 Attaching Files to a Model • 59

2.8 Creating and Managing Custom Libraries
You can create a custom library to save a collection of subsystems and custom modeling
components that you plan to reuse in multiple files or MapleSim sessions. Custom libraries

that you create appear in custom palettes in the Library Components tab () on the left
side of the MapleSim window and are saved as .msimlib files on your computer. These
custom palettes will appear in the MapleSim window in future MapleSim sessions.

You can use the subsystems and components from the custom library palette when building
a model, in the same way you add components from other palettes.

You can also share a custom library with other users. For example, if you store a custom
library on a network drive, other users with access to that location can load your custom
library in their MapleSim session.

Custom library palettes appear in the Library Components tab () and are indicated
with an icon: . A sample custom palette is shown below.

For information on creating custom libraries, see Using MapleSim > Building a Model >
Custom Libraries > Creating a Custom Library in the MapleSim Help system.

If you used a third-party tool to create models or model libraries based on the Modelica
4.0.0 programming language, you can import the .mo files for the models or model libraries
into MapleSim as .msimlib files. You can then use the imported models and libraries in
your MapleSim models as you would use any other modeling components. For more inform-
ation, see Using MapleSim > Building a Model > Importing and Opening Modelica
Models and Libraries > Importing Modelica Libraries.

Example: Creating a Custom Library from an Existing Model

In this example, you will create a custom library from the shared subsystem definitions of
an existing MapleSim model. The components added to the custom library will then be
available in future MapleSim sessions.

60 • 2 Building a Model

To create a custom library from a model:

1. From theHelpmenu, selectExamples > Physical Domains >Multibody, and then select
the 5 DoF Robot example.

This model has six shared subsystems, which are listed in the Components palette of the

Local Components tab ()

2. Save the model.

3. From the Tools menu, select Export to MapleSim Library.

4. Enter the name Robot for the library under Package.
Note: The package name that you specify will appear as the custom palette name in the
MapleSim interface.

5. Click OK.

6. After the library has been exported, click Close.

You are now in library edit mode (indicated by the watermark on the workspace and the
library properties in the Properties tab in the Parameters pane). A new custom library palette

appears in the Library Components tab () on the left side of the MapleSim window.
The palette is empty because we have not defined a hierarchy for its elements.

7. Switch to the Local Components tab (), and drag the components to the Hierarchy
tab under the root name (Robot). If desired, organize the elements into subgroups.

2.8 Creating and Managing Custom Libraries • 61

8. Click Reload () in the Main Toolbar to save your changes and reload the palette for
the custom library in the Library Components tab with the updates. The custom library
palette now contains all these components.

2.9 Annotating a Model
You can use the tools in the Model Workspace Toolbar to draw lines, arrows, and shapes.
MapleSim also provides many tools for customizing the colors, line styles, and shape fills.

You can use the text tool () in the Model Workspace Toolbar to add text annotations
to your model. In text annotations, you can enter mathematical text in 2-D math notation
and modify the style, color, and font of the text. For more information about 2-D math
notation, see Entering Text in 2-D Math Notation (page 64).

62 • 2 Building a Model

Example: Adding Text Annotation to a Model

To add text annotation to a model:

1. From the Help menu, select Examples > User's Guide Examples > Chapter 2, and
then select the Simple DC Motor example.

2. From the Annotations Toolbar, click Text Tool ().

Note: If the Annotation Toolbar is not visible, click Show/Hide Drawing Tools () in
the Model Workspace Toolbar.

3. In the Model Workspace, draw a text box for an annotation below the Step component.

When you release your left mouse button, the toolbar above theModelWorkspace switches
to the text formatting toolbar.

4. Enter the following text: This block generates a step signal with a height of 1.

5. Select the text that you entered and change the font to Arial.

6. Click anywhere outside of the text box.

7. Draw another text box below the Inertia component.

8. Enter the following text: Inertia with a ω0 value of 0 rad.

Tip: To enter the omega character (ω), click Math on the context bar to switch to
the 2-D math mode, type omega, and then press Esc. To enter the subscript, press Ctrl +
Shift + the underscore key (Windows and Linux) or Command + Shift + the underscore
key (Mac) followed by 0. Press the right arrow key to move the cursor from the subscript
position. Toggle back to text entry mode by clicking Text on the context bar, and enter the
remaining text.

9. Select the text that you entered and change the font to Arial.

2.9 Annotating a Model • 63

10. Click anywhere outside of the text box to complete the annotation.

2.10 Entering Text in 2-D Math Notation
In parameter values and annotations, you can enter text in 2-D math notation, which is a
formatting option for adding mathematical elements such as subscripts, superscripts, and
Greek characters. As you enter text in 2-D math notation, you can use the command and
symbol completion feature to display a list of possible Maple commands or mathematical
symbols that you can insert.

To enter 2-D math notation, select Math () in the text formatting toolbar.

The following table lists common key combinations for 2-D math notation:

Table 2.4: 2-D Math Notation Key Combinations

ExampleKey CombinationTask

-

Command and symbol
completion (parameter
values and annotations
only)

1. Enter the first few characters of a symbol
name, Greek character, or Maple
command.

2. Enter the key combination for your
platform:

• Esc, Mac, Windows, and Linux

• Ctrl + Shift + Space, Linux

3. From the menu, select the symbol or
command that you want to insert.

Ctrl (or Command) + Shift + underscore
(_)

Enter a subscript for a
variable

caret (^)Enter a superscript

forward slash (/)Enter a fraction

For more information, see Using MapleSim > Building a Model > Annotating a Model
> Key Combinations for 2-D Math Notation in the MapleSim Help system.

64 • 2 Building a Model

2.11 Creating a Data Set for an Interpolation Table
Component
You can create a data set to provide values for an interpolation table component in your
model. For example, you can provide custom values for input signals and electricalCurrent
Table and Voltage Table sources. To create a data set, you can either attach a Microsoft®
Excel® spreadsheet (.xls or .xlsx) or comma-separated values (.csv) file that contains the
custom values, or you can create a data set in Maple using the Data Generation App or

Random Data App. These apps are found in the Apps Manager ().

For more information about interpolation table components, see theMapleSimComponent
Library > Signal Blocks > Interpolation Tables >Overview in the MapleSim Help system.

Example: Creating a Data Set in Maple

In this example, you will use the Data Generation App to create a data set for a MapleSim
1D Lookup Table component. In this app, you can use any Maple commands to create a
data set; however, for demonstration purposes, you will create a data set using a computation
that has already been defined.

To create a data set in Maple:

1. Open a new MapleSim document.

2. In theLibraryComponents tab (), expand the Signal Blocks palette, and then expand
the Interpolation Tables menu.

3. Add a Lookup Table 1 D component to the Model Workspace.

4. In the main toolbar, click Show Apps Manager ().

5. In the Apps palette on the left, under Utility, double-click Data Generation. The Data
Generation App opens in the Apps Manager.

6. At the bottom of the app, in the Data set name field, enter TestDataSet.

7. To make the data set available in MapleSim, click Attach Data to Model.

8. In MapleSim, under the Attached Files tab (), expand the Data Sets palette. The
data set file appears in the list. You can now assign this data set to the interpolation table
component in the Model Workspace.

9. In the Model Workspace, select the Lookup Table 1 D component.

10. In the Properties tab (), from the datasource mode list, select attachment.

2.11 Creating a Data Set for an Interpolation Table Component • 65

11. From the data drop-down menu, select the TestDataSet.csv file. The data set is now
assigned to the Lookup Table 1 D component.

12. Save your model in MapleSim.

2.12 Best Practices: Building a Model
This section describes best practices to consider when laying out and building a MapleSim
model.

Best Practices: Laying Out and Creating Subsystems

To start building your model, drag components from the palettes to the center of the Model
Workspace. Drag the components into the arrangement that you want in the Model
Workspace and then, if necessary, change their orientation so that the components are facing
in the direction that you want. When you have established the position and orientation of
the components, connect them in the Model Workspace.

When grouping components into subsystems, make sure that you include logical component
groups that fit on one screen at a time. This will allow you to see all of the subsystem
components at a certain level without scrolling.

Create Subsystems for Component Groups That You Plan to Reuse

Create subsystems for component groups that you plan to reuse throughout a diagram or in
multiple files. For example, if you plan to include multiple planar link models in a pendulum
system, you can create a link subsystem so that multiple copies of that component group
could be added. If you wanted to add the link subsystem to another pendulum model, you
can create a custom library to use the subsystem in another file.

Create Subsystems for Component Groups That You Plan to Analyze

Make sure that you create subsystems for component groups that you plan to analyze in
more depth, test, or translate into source code. Several MapleSim templates allow you to
analyze and retrieve equations from particular subsystems. The Code Generation Template
allows you to generate source code from subsystems only.

For more information about performing analysis tasks, see Analyzing and Manipulating a
Model (page 131) in this guide.

Use Icon View to Control Subsystem Port Layout and Customize Subsystem
Icon

When you create a subsystem, subsytem ports are automatically created for any connection
lines that connect the subsystem to components outside the subsystem. Ports are placed on
one of the four sides of the subsystem, top, bottom, left or right.

66 • 2 Building a Model

Subsystem ports can also be added to a subsystem. In both cases, the icon view of the sub-
system shows the subsystem ports. You can enter Icon View (in the Model Workspace
Toolbar) to manage the subsystem port layout.

In Icon View, you can customize the way the subsystem appears in both the components
palette and in your model.

• Move the ports.

• Show or hide the port labels using Toggle Port Labels ().

• Automatically update the size of the subsystem box () or manually resize it.

• Add an image by adding a rectangle or circle, then click the drawing fill tool ()
and click Browse and select an image.

• Add text or use the various drawing tools on the toolbar.

Use the Debugging Console to Identify Subsystem Copies and Unconnected
Lines

You can display the debugging pane by clicking Debugging () at the bottom of the
MapleSim window.

After you run the simulation, the debugging pane displays diagnostic messages that can
help you troubleshoot potential errors as you build a model. When you clickRun diagnostic
tests () above the debugging pane (or from the Edit menu, select Check Model),
MapleSim verifies whether your model contains unconnected lines or subsystems that have
identical content but are not linked to a subsystem definition. When either of these issues
are detected, a message that identifies the subsystem in which the issue is located appears
in the debugging console. You can right-click (Control-click for Mac) the message in the
debugging pane to display options that can help you to resolve the issue.

Best Practices: Building Electrical Models

Include a Ground Component in Electrical Circuits

In each electrical circuit model, you must add and connect aGround component to provide
a reference for the voltage signals.

Verify the Connections of Current and Voltage Sources

Simulation results can be affected by the way in which a current or voltage source is con-
nected in your model. If you receive unexpected simulation results, verify the connections
between electrical sources and other components in your model. All of the current sources
in the MapleSim Component Library display an arrow that indicates the direction of the
positive current.

2.12 Best Practices: Building a Model • 67

Also, all of the voltage sources display a plus sign indicating the location of the positive
voltage and a minus sign indicating the location of the negative voltage.

Consider the following Simple DCMotor model. Note that the positive port of the Signal
Voltage source at the left of the diagram is connected to the positive port of the Resistor
component.

When this model is simulated, MapleSim returns the following results for the torque and
speed quantities.

68 • 2 Building a Model

On the other hand, if the negative port of the Signal Voltage source is connected to the
positive port of the Resistor component, as shown in the following model.

MapleSim returns different results for the speed and torque quantities.

Best Practices: Building 1-D Translational Models

Verify That All Force Arrows Are Pointed in the Same Direction

In MapleSim, all of the 1-D translational mechanical components are defined in a 1-D co-
ordinate system with the positive direction defined as the direction of the gray arrow dis-
played by the component icon.

2.12 Best Practices: Building a Model • 69

Any positive forces acting on the model cause the component to move in the direction of
the arrow, so make sure that all of the arrows displayed by the 1-D translational mechanical
components in your model point in the same direction. As an example, note that all of the
force arrows are pointed to the right in the following model.

Figure 2.15: Verifying Force Arrows

For an example of sign convention and how arrow direction represents a force acting on
the model, from the Help menu, select Examples > User's Guide Examples > Chapter
2, and then select one of theConstant Acceleration, Sign Convention, orArrowConven-
tion examples.

Best Practices: Building Multibody Models

Connect the Inboard Port of a Rigid Body Frame to a Center-of-mass Frame

Make sure that you connect the inboard port of anyRigid Body Frame components in your
model to the center-of-mass frame of a Rigid Body component. This ensures that the local
reference frame used to describe displacements and rotations for the Rigid Body Frame
component match with the center-of-mass reference frame defined on the Rigid Body
component.

In the following planar link example, theRigid Body Frame inboard ports (that is, the ports
with the icon) are both connected to a Rigid Body component.

Figure 2.16: Center of Mass Placement Best Practice

70 • 2 Building a Model

Best Practices: Building Hydraulic Models

Define Fluid Properties

When building hydraulic models, you must define the properties of the fluid that will be
used by placing the Hydraulic Fluid Properties component at the top level of your model
or at the same level as a hydraulic subsystem. If you place this component at the top level
of your model, all hydraulic components and subsystems in your model will inherit the
fluid properties defined by that component instance; if you place the Hydraulic Fluid
Properties component at the same level as a subsystem, all hydraulic components in that
subsystem and all nested subsystems will inherit the properties defined by that component
instance.

In the following example, all of the hydraulic components in the model inherit the fluid
properties defined by the Hydraulic Fluid Properties component at the top-right of the
diagram.

Figure 2.17: Hydraulic Model

For a complete tutorial on how to model hydraulic systems, see Tutorial 8: Modeling
Hydraulic Systems (page 213).

2.12 Best Practices: Building a Model • 71

Best Practices: Enforcing Initial Conditions

In complex models, all of the initial conditions might not be independent of each other. In
general, use the enforce () option to strictly enforce as many initial conditions as you
have degrees of freedom in your model. However, you can use the guess option () for a
specified initial condition parameter value to help the solver determine the desired starting
configuration for your system faster.

72 • 2 Building a Model

3 Creating Custom Modeling Components
In this chapter:

• Understanding Custom Components (page 73)

• Creating Custom Components with Signal-Flow Behavior (page 76)

• Creating Custom Components with Physical Connections (page 82)

• Working with Custom Components in MapleSim (page 84)

• Example: Creating a Nonlinear Spring-Damper Custom Component (page 85)

3.1 Understanding Custom Components
Creating custom components extends the MapleSim component library, enabling you to
create custom modeling components based on the mathematical models that you define.
Custom components can use signals, ports with associated physical domains, or a combin-
ation of the two. You can also create libraries of custom components and create custom
components to contain particular subsystems with specialized functionality.

For a complete tutorial on how to create domain specific custom components, see Tutorial
5: Using the Custom Component Template (page 183).

There are several different Custom Component templates. These are found in theTemplates

palette, under the Add Apps or Templates tab ().

73

Figure 3.1: The Add Apps or Templates tab

Creating a Simple Custom Component

The general process of creating a custom component for a MapleSim model consists of
specifying the component equations for the custom component, component parameters and
system model, specifying the port types and their values, and generating the component.

To create a custom component:

1. Start a new MapleSim model and select the Add Apps or Templates tab ().

2. From the Templates palette, double-click on Custom Component.

3. Enter a name for the template in the Create Attachment window, and then click Create
Attachment (). Maple opens with the DAE Custom Component template.

4. In theDefine Equations area, enter the equations for your custom component. Equations,
parameters, and initial conditions are all entered here. Press Enter at the end of the line.

74 • 3 Creating Custom Modeling Components

5. In the Configuration section, select Parameters, click Refresh All, and then assign
default values and types to model parameters.

6. Select Variables, click Refresh All, and then assign initial values and types for model
variables.

7. Select Ports, and then add ports to the custom components by clicking Add Port. You
can also control the layout of ports and the icon to use for the custom component.
It is possible to define custom ports. To do so, you must first define the custom port using
the Custom Port app. Then you can use the custom port in this app. For a complete tu-
torial on how to use custom ports, see Example: Custom Ports (page 193) in Chapter 6.

8. Provide the details for the port type, style, name, and port signals.

9. In the Component Generation section, enter a name for the component. This will be
the name given to the custom component in the Components palette, under the Local

Components tab () in MapleSim.

10. Click Generate MapleSim Component to create your component and to return to the
MapleSim environment. The custom component now appears in theLocal Components
tab in the Components palette.

Typical Uses

The Custom Component template is the most general template and is specifically designed
to help you create custom components from algebraic expressions, differential equations,
or systems of differential-algebraic equations. The Custom Component Template is a col-
lection of pre-built controls and procedures associated specific Maple commands to easily

3.1 Understanding Custom Components • 75

create new MapleSim components. In addition to the Custom Component, the Modelica
Custom Component allows for the creation of a custom component via user-provided
Modelica code.

Custom Component templates are more than just containers for your equations. You can
also access all of Maple’s functionality to further develop your equations before you generate
the Custom Component for your model. This includes access to Maple’s programming
language, symbolic algebra functionality, and documentation tools to instantly analyze and
verify the behavior of your component.

By using the Custom Component Template, you create a custom component in Maple by
performing the following tasks:

• Attach a custom component template to your model.

• Define and enter your governing equations and properties that determine the behavior of
the component (for example, parameters and port variables).

• Specify ports for your component.

• Define the associated port variable mappings.

• Map variables from your equations to the ports.

• Generate the component and make it available in MapleSim.

• Test and analyze your mathematical model.

The Custom Component Template contains pre-built controls that allow you to perform
these tasks with the same validation as for built-in components, preventing invalid connec-
tions and parameter values.

Using The Custom Component Template

For details on using this template, refer to the help page Using the MapleSim DAE Custom
Component Template.

3.2 Creating Custom Components with Signal-Flow
Behavior
Custom components simplify model construction by reducing the need to connect many
signal-flow components together. This example shows how to create a custom component
for a simple signal-flow equation.

Creating a Simple Signal-Flow Custom Component

Create a custom component that implements the following equation:

76 • 3 Creating Custom Modeling Components

To create a custom component

1. Start a new MapleSim model and then click Add Apps or Templates ().

2. In the Templates palette, double-click on Custom Component.

3. Enter custom for the name of the attachment, and then click Create Attachment ().

4. In the Define Equations section, enter the following equation:

Note: The equation here is enclosed in square brackets because eq must be assigned a list
of equations.

5. Press Enter to register the equation.

Figure 3.2: Equations Defining a Custom Component

Tip: The equations in the custom component do not have to be rearranged into an explicit
form. For example, you could replace the equation with:

for which there is no explicit solution for the output . MapleSim solves for
automatically.

6. In the Configuration section, select Ports, and then click Refresh All to update the
tables.

7. Click Clear All Ports.

8. Add three new ports by clickingAdd Port three times and then drag them into following
positions.

3.2 Creating Custom Components with Signal-Flow Behavior • 77

Figure 3.3: Port Mappings

9. Click on the top port on the left-hand side to select it.

10. From the Type drop-down list, select Real Signal. For the Style, select the in radio
button. The port is given the default name real_i.

11. Next, associate a variable with the port signal. Select y(t) from the drop-down list as
shown in Figure 3.4.

Figure 3.4: Variable to Port Mapping

12. Assign the remaining port mappings using the settings in Table 3.1.

78 • 3 Creating Custom Modeling Components

Table 3.1: Port Map

Port
Component

Port
Style

Port
Type

Port
Location

Port
Name

inReal
Signal

Top leftreal_i

inReal
Signal

Bottom
left

real1_i

outReal
Signal

Rightreal_o

13. From the Icon list, select Use default.

14. Under the Component Generation section, enter custom in the Name field.

15. ClickGenerateMapleSimComponent. The custom component equations are generated
and assigned to the model. The custom component icon appears in MapleSim under the
Local Components tab, in the Components palette.

Figure 3.5: Generated Custom Component

16. Drag the custom component into the workspace from the Components palette as shown
in Table 3.2.

3.2 Creating Custom Components with Signal-Flow Behavior • 79

Table 3.2: Signal Flow Components

Required SettingsLibrary LocationSymbolNumber of
Components

Component

Custom settingsLocal Components ()
> Components

1Custom
Component

Use default settings
Library Components

() > Signal Blocks >
Sources > Real

1Constant

Use default settings
Library Components

() > Signal Blocks >
Sources > Real

1Sine

17. Connect two signal sources to the input ports on the left, and then place a probe on the
right-most port (right-click and select Attach Probe), as shown below.

Figure 3.6: Completed Custom Component Model

18. Click Run Simulation () in the Main Toolbar. When the simulation is complete,
the following graph appears.

80 • 3 Creating Custom Modeling Components

Advantages of Acausal Mapping

Even though the custom component ports are specified as Signal Inputs and Signal Outputs,
MapleSim is truly acausal; signals can be inputs or outputs regardless of the pin type. For
example, if and were specified, and a probe was placed on , MapleSim
would automatically rearrange the specified equation into .

The concept of signal inputs and outputs are necessary for the code generation capabilities
of MapleSim, since the code is 'causalized', MapleSim expects inputs and provides outputs.

3.2 Creating Custom Components with Signal-Flow Behavior • 81

Using Differential Equations in Custom Components

Instead of using library components for your model, you can also use differential equations
to define your custom component. For example,Figure 3.7 shows the equations that describe
the motion of two coupled mass-spring-dampers subjected to a driving force.

Figure 3.7: Double Mass-Spring-Damper Equations

Figure 3.8 shows how the parameters are mapped to component ports:

Figure 3.8: Port Mapping for Double Mass-Spring-Damper

3.3 Creating Custom Components with Physical
Connections
When you create custom components based on physical connections, each connection port
has two variables associated with it: the across variable and the through variable. The
across variable represents the driving force in a system (temperature difference, pressure
difference, voltage drop, velocity or relative angular velocity), while the through variable
represents a flow of a conserved quantity (such as heat, mass, current, force or torque).

82 • 3 Creating Custom Modeling Components

Table 3.3: Characteristics of Through and Across Variables

Characteristics of Across VariablesCharacteristics of Through Variables
Drives the flow of the conserved quantity

Is a scalar

Defined as the difference between two points within
a physical domain

Conserved quantity (like heat or mass)

Has a direction of flow

Satisfies the relationship input = output +
accumulation

Uniform across a domain

Table 3.4 shows the mathematical relationships defining the connection between various
across and through variables.

Table 3.4: Through and Across Variable Mathematical Relationship

Across VariableThrough VariableGoverning EquationDomain
Ohm’s Law

Electrical Domain
Hagen–Poiseuille equation

Hydraulic Domain
Fourier's law

Thermal Domain

Deriving the System Equations for a Resistor

Table 3.5 shows a model of a simple resistor with several variables and one parameter.

Table 3.5: Resistor Variables and Parameters

DescriptionParameterVariable
Currenti(t)
Voltage differencev(t)
Voltage on the left portvLeft(t)
Voltage on the right portvRight(t)
ResistanceR

Ohm’s Law defines the relationship between the voltage and the current as:

Figure 3.9 shows the equations mapped to the custom component ports.

3.3 Creating Custom Components with Physical Connections • 83

Figure 3.9: Resistor Port Mapping

The current, , on the right port has a negative sign, representing flow out of the resistor.
The current on the left port is positive, representing flow into the resistor. The resistance

(R) is defined as a parameter available in the Properties tab ().

3.4 Working with Custom Components in MapleSim
In MapleSim, you can work with a custom component in the same way as you would work
with a subsystem. You can perform the following tasks:

• Save a Custom Component as Part of the Current Model

• Add a Custom Component to a Custom Library

• Edit a Custom Component

• Opening Custom Component Examples

Save a Custom Component as Part of the Current Model

When you save a model, the custom component is saved as part of the model. If you click
the Edit menu > Prune Model... then any unused custom component definition will be re-
moved from the model. To protect the custom component from potentially being cleaned
up by the Prune Model feature, do one of the following:

• Move the custom component from the Components palette of the Local Components
tab to the Hierarchy palette.

• Use the custom component in your model: drag the custom component from the Com-
ponents palette to the Model Workspace.

For more information, see Using MapleSim > Building a Model > Pruning a Model in
the MapleSim Help System.

Add a Custom Component to a Custom Library

If you want to use a custom component in a file other than the current model, add the com-
ponent to a custom library. For more information, see Creating and Managing Custom
Libraries (page 60).

84 • 3 Creating Custom Modeling Components

Edit a Custom Component

If you want to edit a custom component that you have generated, make your changes in the
corresponding Maple worksheet and regenerate the component.

To edit a custom component

1. In the MapleSim Model Workspace, double-click the custom component that you want
to edit. The corresponding Custom Component Template opens in Maple.

2. In the Maple worksheet, edit the equations, properties, or port values.

3. At the bottom of the worksheet, click Generate MapleSim Component. Your changes
are generated in the custom component displayed in MapleSim.

4. Save your changes in the .mw file and the .msim file where you added the custom com-
ponent.

3.5 Example: Creating a Nonlinear Spring-Damper
Custom Component
In this example, you will use the Custom Component Template to create a nonlinear spring-
damper custom component. The equations defined in this example are based on the
Translational Spring Damper component in MapleSim. In this case, the stiffness and
damping coefficients are replaced with input functions to the component.

To obtain the governing relationships, you can start with a free-body diagram. The diagram
for the spring-damper system is shown in the following figure.

Figure 3.10: Nonlinear Spring-Damper Custom Component

3.5 Example: Creating a Nonlinear Spring-Damper Custom Component • 85

The end points, a and b, can be defined as the ports for the component; the equations are
derived relative to these ports. Therefore, the general equation of motion is:

where d is the damping coefficient, c is the stiffness of the spring, and srel is the relative
displacement between the two ports sa and sb, can be written as:

Also, an examination of the net force on the system shows that , where,

All of the above relationships are required to define the system behavior.

Opening the Custom Component Template

The Custom Component template is part of the MapleSim templates accessed from the
Main Toolbar.

To open the custom component template:

1. In MapleSim, open the model to which you want to add the custom component.

2. From the main toolbar, click Load a Maple Worksheet ().

3. Under Templates, double-click on Custom Component.

4. EnterNonlinear Spring-Damper as the name for the template and clickCreate Attach-
ment (). The Custom Component Template opens in Maple.

Defining the Component Name and Equations

You can now specify the name that will appear for the component in the MapleSim interface
and define the equations.

To define the custom component:

1. In theEquations section, define the nonlinear system by entering the following equations.

>

86 • 3 Creating Custom Modeling Components

Note that the equations are entered in a Maple list. The constants, d (damping) and c (stiff-
ness), are replaced by the functions d(t) and c(t) to define them as input states to the system.

2. With your cursor on the equation, press Enter.

3. In the Configuration section, select Variables, and then click Refresh All to see an
updated list of variables.

You can now assign these input and output variables to ports that you will include in your
generated custom component.

Defining Component Ports

In the Ports section of the template, you assign input and output variables to ports that will
appear in the generated component, and specify the layout of these ports.

To define the ports:

1. In the Configuration section, select Ports.

2. Click Clear All Ports.

3. Click Add Port four times. Four squares appear on the diagram. These represent the
ports that you will lay out and define.

4. Drag the ports to position them with one on each side and two on the top of the diagram.

3.5 Example: Creating a Nonlinear Spring-Damper Custom Component • 87

5. Select the port on the left side of the diagram.

6. From the Type drop-down menu, select Translational.

7. For the style of the port, select b. The port's default name is tflange_b.

8. First, define the signal position. Ensure Position = unassigned is selected in the list under
Signal. From the drop-down list under Signal, select s_b(t).

9. Next, define the signal force. Select Force = unassigned in the list under Signal. From
the drop-down list under Signal, select F_b(t). The left port is now defined as a transla-
tional flange and associated with the position variable s_b(t) and force variable F_b(t).

10. Select the port on the right side of the diagram.

11. From the Type drop-down menu, select Translational.

12. For the style of the port, select a. The port's default name is tflange_a.

13. First, define the signal position. Ensure Position = unassigned is selected in the list under
Signal. From the drop-down list under Signal, select s_a(t).

14. Next, define the signal force. Select Force = unassigned in the list under Signal. From
the drop-down list under Signal, select F_a(t). The right port is now defined as a trans-
lational flange and associated with the position variable s_a(t) and force variable F_a(t).

15. Select the port at the top left of the diagram and then do the following.

• From the Type drop-down menu, select Real Signal.

• For Style, select in.

• Change Name to cin.

• Under Signal, select c(t) from the drop-down list.

This port is now defined as a signal input and associated with the stiffness variable c(t).

16. Select the port at the top right of the diagram and then do the following:

• From the Type drop-down menu, select Real Signal.

• For Style, select in.

• Change Name to din.

• Under Signal, select d(t) from the drop-down menu.

This port is now defined as a signal input and associated with the damping variable d(t).

17. From the Icon list, select Use default.

88 • 3 Creating Custom Modeling Components

The ports will be displayed in this arrangement when you generate the custom component
in MapleSim.

Checking Dimensions

This step is optional.

1. In the Configuration section, select Dimensional Analysis, and then click Check Di-
mensions. Algebraic expressions in the system equations that are dimensionally incon-
sistent are displayed in the math-container.

2. To correct the dimensions, select Variables, and then assign the following dimensions
for the system variables in the Type column:

• For c(t), enter Force/Distance.

• For d(t), enter Force/Velocity.

• For F(t), enter Force.

• For s_rel(t), enter Length.

• For v_rel(t), enter Velocity.

3. Click Refresh All. The algebraic expressions Force/Distance and Force/Velocity are
converted to the corresponding Modelica types, TranslationalSpringConstant and
TranslationalDampingConstant, respectively (you could have entered these directly).

3.5 Example: Creating a Nonlinear Spring-Damper Custom Component • 89

4. Select Dimensional Analysis, and then click Check Dimensions. The result should be
the two equations shown below.

This is a benign inconsistency indicating that the real input signals cin(t) and din(t) actually
have implied units.

Generating the Custom Component

Generate the custom component to add it to the component to the Components palette in
the Local Components tab.

1. In the Component Generation section, enter NonLinearMSD in the Name text box.

2. Click Generate MapleSim Component. The generated custom component appears in

MapleSim in the Components palette of the Local Components tab ().

You can add the custom component to a model by dragging it into the Model Workspace
as you would any other component.

3. Save your MapleSim model as NonlinearSpringDamper.msim. Tutorial 3: Modeling
a Nonlinear Damper (page 166) in Chapter 6 uses this custom component in a model.

90 • 3 Creating Custom Modeling Components

4 Simulating and Visualizing a Model
In this chapter:

• How MapleSim Simulates a Model (page 91)

• Simulating a Model (page 93)

• Simulation Progress Messages (page 100)

• Managing Simulation Results and Snapshots (page 101)

• Customizing Plot Window Configurations (page 103)

• Visualizing a Multibody Model (page 109)

• Best Practices: Simulating and Visualizing a Model (page 129)

4.1 How MapleSim Simulates a Model
Modelica Description

The equations for many components in the MapleSim library are described using the Mod-
elica physical modeling language. On the other hand, the equations for multibody components
are generated by a special-purpose engine, which uses advanced mathematical techniques
to ensure that the equations are as concise and efficient as possible, and then converted to
Modelica.

For more information about Modelica, visit http://www.modelica.org

Model Description

Each component in your model contains a system of equations that describes its behavior;
these systems of equations can consist of purely algebraic equations or differential equations.
Also, a component may define any number of events, which can change the component
behavior during a simulation by enabling or disabling part of the equations in the system
or changing state values. Connections between two or more components generate additional
equations that describe how these components interact.

System Equations

The topology equations (how the components interact) as well as the terminal (component)
equations are then collected into one large system and parameter values are also substituted
in. Now, the MapleSim simulation engine has a potentially large system of hybrid differential
algebraic equations. This means that the system has differential equations with algebraic
constraints, as well as discrete events.

91

http://www.modelica.org

Simplified Equations

A process called index reduction reduces the algebraic constraints as much as possible. At
the core of this phase is an algorithm that constructs an index-1 DAE system, modified with
other symbolic simplification techniques, to reduce the number of equations and variables.
Many of these techniques deal with handling of hybrid systems.

You can set initial values for some of the variables by specifying parameter values for certain
components in the Properties tab on the right side of the MapleSim window. If the specified
initial conditions are inconsistent, an error will be detected during the simulation. To help
solve this issue, use the Initialization Diagnostics App.

Integration and Event Handling

When all of these preprocessing steps are complete, the integration and event handling
process begins. Based on the solver type you chose, a sophisticated DAE solver numerically
integrates the system of equations. For the variable solver, algebraic constraints are constantly
monitored to avoid constraint drift, which would otherwise affect the solution accuracy.
For fixed solver type, algebraic constraints are monitored at each fixed time step.

During integration, inequality conditions that are part of the model are monitored and an
event is triggered when one or more of these conditions change. Whenever such an event
is encountered, the numeric solver stops and the simulation engine computes a new config-
uration of the system of equations based on the event conditions. This step also involves
recomputing initial conditions for the new system configuration. The solver is then restarted
and continues to numerically solve the system until another event is triggered or the simu-
lation end time is reached.

Note: Event handling occurs for both variable and fixed step solvers. The difference is that
for fixed step solvers, events are only processed at fixed time steps, whereas with a variable
solver, the solver will adjust the time step so that events are processed at exactly the time
they occur during the integration.

Simulation Results

In the last step of the simulation process, the results are generated and displayed using
graphs showing the quantities of interest and, optionally for multibody mechanical systems,
a 3-D animation.

92 • 4 Simulating and Visualizing a Model

The simulation process is summarized in the following chart:

Figure 4.1: Simulation Process

Note that the information in this section is a simplified description of the simulation process.
For more information on the DAE solvers used by the simulation engine, see the
dsolve/numeric topic in the Maple Help system.

4.2 Simulating a Model
To view the behavior or response of physical properties (for example, current or voltage),
add probes to connection lines, ports, or components in your 2-D or 3-D model. In
MapleSim, probes allow you to identify the variables of interest that are associated with
connection ports.

4.2 Simulating a Model • 93

If you add a probe to measure a through variable, an arrow appears to indicate the direction
of the positive flow in the Model Workspace.

You can specify the simulation duration, the type of solver to use, and other parameter
values for the solver, simulation engine, and 3-D Workspace. After running a simulation,
a graph appears for each specified quantity.

You can change the original probe or parameter values and run another simulation to compare
the results, or use theRerun Simulation feature to rerun the simulation without recompiling
the entire model.

For details on this process, refer to Using MapleSim > Simulating a Model > Rerunning
a Simulation without Further Compiling. For an example, see Tutorial 1: Modeling a
DC Motor with a Gearbox (page 151) in Chapter 6 of this guide.

For an example of sign convention and how arrow direction represents a force acting on
the model, select the Help menu > Examples > User's Guide Examples > Chapter 4, and
then select one of the Constant Acceleration, Sign Convention, or Arrow Convention
examples.

Simulation and Advanced Simulation Settings

The parameters used for your simulation are found under the Simulation Settings tab in
the Parameters pane. From here you can access sections for Simulation and Advanced
Simulation settings.

To access the simulation settings, click Simulation Settings tab () on the right of the
Parameters pane.

For a description of the Multibody and 3-D Visualization settings see 3-D Visualization
and Multibody Settings (page 109).

94 • 4 Simulating and Visualizing a Model

Simulation Settings

In the Simulation section you can specify the simulation duration time, the number of plot
points, the solver, and other parameters specific to the solver. See Table 4.1 for a listing
and description of the parameters available in the Simulation settings section.

Table 4.1: Simulation Settings

DescriptionDefaultParameter
The duration time of the simulation. You can specify any
positive value, including floating-point values.

Note: The duration time is not the same as the end time of
your simulation. The end time for the simulation is given
by td + ts, where ts is the start time for the simulation (see
Table 4.2).

10s

The type of solver to use for the simulation.

• Variable: use a variable time step to maintain error
tolerances.

• Fixed: use a fixed time step and disregard integration
error.

Note: The fixed step solvers are identical to those used by
MapleSim's exported code.

VariableSolver Type

4.2 Simulating a Model • 95

DescriptionDefaultParameter
DAE solver used during the simulation. The following
choices are available when Solver Type is set to Variable.

• CK45 (semi-stiff): use a semi-stiff DAE solver (ck45
method).

• RKF45 (non-stiff): use a non-stiff DAE solver (rkf45
method).

• Rosenbrock (stiff): use a stiff DAE solver (Rosenbrock
method).

If your model is complex, you may want to use a stiff DAE
solver to reduce the time required to simulate a model.

The following choices are available when Solver Type is
set to Fixed.

• Euler: use a forward Euler solver.

• Implicit Euler: use an implicit Euler solver (suitable for
stiff systems).

• RK2: use a second-order Runge-Kutta solver.

• RK3: use a third-order Runge-Kutta solver.

• RK4: use a fourth-order Runge-Kutta solver.

Variable: CK45
(semi-stiff)

Fixed: Euler

Solver

The limit on the absolute error tolerance for a successful
integration step if you are using a variable-step solver to
run the simulation. You can specify a floating-point value
for this option.
The limit on the relative error tolerance for a successful
integration step if you are using a variable-step solver to
run the simulation. You can specify a floating-point value
for this option.
Uniform size of the sampling periods if you are using a
fixed-step solver to run the simulation. You can specify a
floating-point value for this option.

0.001Step size

Minimum number of points to be plotted in a simulation.
The data points are distributed evenly according to the
simulation duration value. You can specify a positive
integer. Additional points can be added for events (see Plot
Events in Table 4.2).

Note:This option allows you to specify the number of points
for display purposes only. The actual number of points used
during the simulation may differ from the number of points
in the simulation graph.

2000Plot Points

96 • 4 Simulating and Visualizing a Model

Advanced Simulation Settings

In the Advanced Simulation section you can specify the simulation start time, a state
snapshot to use, compilation options, and other settings. Some of these settings are specific
to the solver type (variable or fixed) selected in the Simulation settings. See Table 4.2 for
a listing and description of the parameters available in the Advanced Simulation settings.

Table 4.2: Advanced Simulation Settings

DescriptionSolver
TypeDefaultParameter

The simulation start time. You can specify any
floating-point value, including negative values.

Note: The simulation start time affects the end time of
your simulation, but not the duration time for the
simulation, td. The end time for the simulation is given
by td + ts.

All0

A snapshot captures the state of your simulation at a
specific time. If you use a snapshot in your simulation,
you can override the initial conditions used in your
model and replace them with the state your model was
in at the time of the snapshot.

See Managing Simulation Results and
Snapshots (page 101) for more information on snapshots.

AllNoneUse Snapshot

Choose between a symbolic or numeric approximation
to the system Jacobian. A symbolic formulation results
in faster and more accurate simulations but can take
longer to formulate.

Note:A numeric formulation can only be used with stiff
solvers (Rosenbrock or Implicit Euler).

AllSymbolicJacobian

Apply Baumgarte constraint stabilization to your model.
Select to enter values for the derivative gain (α) and the
proportional gain (β) that are appropriate for your model.

AllBaumgarte

Apply constraint projection to your model. Select to
project back the solution found at each step of the
simulation to the constraint manifold. The projection
ends when either the maximum number of Projection
Iterations is reached or the defection falls below the
Projection Tolerance.

AllProjection

The maximum number of constraint projection iterations.

Note: This parameter is only available when Projection
is selected.

All50Projection
Iterations

4.2 Simulating a Model • 97

DescriptionSolver
TypeDefaultParameter

The tolerance value at which the projection iterations
are terminated. You can specify any positive
floating-point value.

Fixed0.00001Projection
Tolerance

Select to have constraint projection occur during event
iterations, but with slower integration results. Not
selecting, may cause the simulation to fail if the event
changes the solution to the point of not allowing the
application of constraint projection at the next step.

FixedEvent
Projection

The maximum number of event iterations allowed before
the integrator throws an error. You can specify any
positive integer value.

All100Event
Iterations

The width of the event hysteresis band. You can specify
a floating-point value greater than or equal to zero. If
set to zero, this parameter is disabled.

Fixed1. x 10-7Event
Hysteresis

The width of the event hysteresis for all event triggers
at the start of the simulation. You can specify a
floating-point value greater than or equal to zero.

Note: Used by variable step solvers.

Variable1. x 10-10Initial
Hysteresis

When selected, error control is applied to all algebraic
variables. By default, error control is only applied to
algebraic variables that trigger events, are plotted, or are
outputs of functions.

VariableIndex 1 Error
Control

Controls the relative error on algebraic variables
compared to differential variables. For example, a value
of 10 means that algebraic variables can have 10 times
the error of differential variables.

Variable1Index 1
Tolerance

Set the minimum step size. This option should be used
with caution, as if the solver is unable to achieve the
requested error tolerance with this minimum then it will
take the step anyway.

Variable0Minimum
Step Size

Set the maximum step size. (0 indicates no limit)Variable0 / no limitMaximum
Step Size

Specifies the method of variable scaling to apply to the
system. The available choices are:

• None: do not apply scaling

• Minimum: use the minimum nominal value

• Maximum: use the maximum nominal value

• Geometric: use the geometric mean of the nominal
values

VariableMinimumScaling

98 • 4 Simulating and Visualizing a Model

DescriptionSolver
TypeDefaultParameter

This option specifies whether to use heuristics to reduce
the number of events encountered during your
simulation. When selected, the mapping of piecewise
transitions into events does not occur.

VariableMinimize
Events

Specifies whether to include extra plot points at event
points during the simulation.AllPlot Events

When selected, the simulation generates diagnostics
describing constraint iterations, constraint residual, event
iterations, and step size, and plots them after the
simulation is complete in a Solver Diagnostics plot
configuration in the SimulationResults tab. For systems
with the projection option cleared, this incurs additional
computational cost.

For models with an inconsistent system of equations or
run-time issues, select this option to display details about
the variables, equations, and components that are causing
the errors.

AllSolver
Diagnostics

Specifies whether a native C compiler is used during the
simulation. When this option is selected, Maple
procedures generated by the simulation engine are
translated to C code, which is compiled by an external
C compiler.

If your model is complex, you may want to select this
option to reduce the time required to run a simulation.

VariableCompiler

Optimize the code during compilation. If this parameter
is not selected, compile time will be reduced but your
simulation will take longer to run.

AllCompile
Optimized

Editing Probe Values

Click the Model Tree tab (), and then select Probes from the list. This lists all of the
probes that you have added to the current MapleSim model.

If a probe is attached at the top level of your model, Main appears in parentheses beside
the probe name; otherwise, the subsystem for the attached probe appears beside the probe

4.2 Simulating a Model • 99

name. In the image shown above, two probes have been attached to a model: Probe1 is at
the top level of the model and Probe2 is in a subsystem calledMain.Nonlinear Damper_1
(that is, the Nonlinear Damper_1 subsystem in Main).

You can click the entries in this palette to browse to a probe in the Model Workspace, and

view and edit the probe values in the Properties tab (). You can also right-click (Con-
trol-click for Mac) entries in this palette and manipulate probes using context menus.

For more information, see Using MapleSim > Simulating a Model > Using Probes >
Editing Probe Values in the MapleSim Help system.

Storing Parameter Sets to Compare Simulation Results

You can store a group of parameter values that are assigned to a model in a parameter set.
You can then run a simulation using one parameter set, replace those parameter values with
another parameter set, and run another simulation to compare the results.

For more information, see the Using MapleSim > Building a Model > Using Parameter
Sets > Saving and Applying Parameter Sets section in the MapleSim Help system.

4.3 Simulation Progress Messages
During a simulation, you can view progress messages in the Console pane located below
the Model Workspace. These messages indicate the status of the MapleSim engine as it
generates a mathematical model; these messages can help you to debug simulation errors.
Messages for each step of the simulation are placed in their own section (for example,
Generating Equations or Computing Initial Values). When a new step starts, the preceding
section is automatically collapsed. To see the messages for a section, expand the section by
clicking on the gray arrow for that section. Alternatively, use the arrow keys to navigate
the Console pane:

• Press the Right Arrow key to expand a section.

• Press the Left Arrow key to collapse a section.

• Press the Down Arrow key to move to the following section.

• Press the Up Arrow key to move to the preceding section.

100 • 4 Simulating and Visualizing a Model

Figure 4.2: Simulation Results Progress Messages

Optionally, before running a simulation, you can specify the amount of detail in progress

messages by clicking Console Output () at the bottom of the MapleSim window and
selecting a level (Normal or Verbose) from the drop-down menu.

To clear the messages from the console, click Clear the message console ().

4.4 Managing Simulation Results and Snapshots
The Stored Results palette in the Simulation Results tab allows you to view, save, and
export results generated from multiple simulations. In addition, for each of your stored
results, you can save and export snapshots that record all of the state variables for your
model at a particular time during the simulation.

Storing Results

Whenever you simulate a model, the results are saved as Latest Results in the Stored
Results palette. This entry contains all the graphs, progress messages, and (if applicable)
the 3-D animation generated from your simulation. However, each new simulation overwrites
the results stored in the Latest Results entry.

To store a simulation result under a new name, right-click (Control-click for Mac) on the
Latest Results entry, select Save from the context menu, and then provide a name for the
stored result. You can save simulation results to compare and refer to multiple graphs gen-
erated during the current MapleSim session.

4.4 Managing Simulation Results and Snapshots • 101

If you save the stored result and then save your model, when you open the model in a future
MapleSim session, the stored result will be available in the Stored Results palette. However,
Latest Results are not saved when you close and reopen the model.

Saving and Using Snapshots

You can save the state information by taking a snapshot of your simulation at a particular
time and saving the snapshot as part of a stored result. Saving a snapshot allows you to use
the state information in subsequent simulations. To manage snapshots, including creating
new snapshots and selecting a snapshot to use in the next simulation, see the Advanced
Simulation settings (see Table 4.2).

Figure 4.3: Snapshots in the Advanced Simulation Settings

When you use a snapshot in this way, the information recorded in the snapshot provides
the initial conditions for subsequent simulations.

When no snapshot is selected for use in simulation, the Run Simulation icon in the toolbar
is . When a snapshot is selected for use in simulation, the Run Simulation icon changes
to . When a snapshot is used in a simulation, that information is available in the tooltip
of the resulting entry in the Stored Results palette.

102 • 4 Simulating and Visualizing a Model

Figure 4.4: The Stored Results Palette and Snapshots

For more information, refer to the Using MapleSim > Simulating a Model > Managing
Simulation Results > Managing Simulation Snapshots section of the MapleSim Help
system.

4.5 Customizing Plot Window Configurations
By default, probed quantities are plotted in separate simulation graphs in a plot window
called Probe Plots. In each graph, the quantity values are plotted along the -axis versus
the simulation time values along the -axis.

You can optionally create custom plot window configurations. You might want to create a
custom plot window if, for example, you want to compare multiple quantities in the same
graph, plot one quantity versus another, or view a simulation graph for a specific quantity
without editing other probe values. You can even compare quantities from two different
models. You can further customize a plot window by for instance customizing plot titles
and specifying the number of columns to appear in the plot window.

For details on creating a plot window, refer to Generating a New Plot Window Configur-
ation. For more information on plot windows, refer to the Using MapleSim > Simulating
a Model > Working with Plot Window Configurations section of the MapleSim Help
system.

When you create a new plot window, it will be populated with data without having to run
the simulation again.

Tip: When you save and reopen a model with stored results, the plots may initially show
the message No data available. You can load the plots by right-clicking on an entry in the
Stored Results palette and selecting Show Probe Plots.

If you want to work with your simulation data in another application, you can export your
results to a Microsoft Excel (.xls) or comma-separated value (.csv) file. For details, refer
to the Exporting Simulation Graph Data help page.

In the following examples, you will create custom plot window configurations.

4.5 Customizing Plot Window Configurations • 103

Example: Plotting Multiple Quantities in Individual Graphs

In this example, you will view the Probe Plots and then create a plot window configuration
in which you will add a second variable to each custom plot.

To view the Probe Plots:

1. From theHelpmenu, selectExamples >Physical Domains >Multibody, and then select
the Double Pendulum example.

2. Click Run Simulation () in the Main Toolbar.

3. Click Show Simulation Results (). The Analysis window opens with the Simulation
Results tab selected. The 3-D Playback Window and the Probe Plots are in the Simulation
Results tab. See Figure 4.5.

Figure 4.5: Simulation Graphs

104 • 4 Simulating and Visualizing a Model

To create a custom plot window configuration:

1. In the PlotWindows palette, double-click on the following plots to hide them from view:
Output1.w, Output2.a, Output2.phi, Output2.w. The plot window should now show just
two plots, Output1.a and Output1.phi.

2. Click the Duplicate the Plot Window button ().

3. Enter the name Acceleration and Angle Comparison in the Duplicate Plot Window
dialog box. Click OK. A new plot window with the name Acceleration and Angle
Comparison is created containing the currently visible plots.
Tip: To return the Probe Plots to its original view, right-click on Probe Plots in the Plot
Windows palette and select Show All Plots.

4. In the plots window, select the plot Output1.a from the Acceleration and Angle
Comparison plot window.

5. In the Variables palette, under Output2, select a.

6. Click Add Selected Variable to Selected Plot (). The plot now shows two curves,
Output1.a and Output2.a.

7. In the plots window, select the plot Output1.phi from the Acceleration and Angle
Comparison plot window.

8. In the Variables palette, under Output2, select phi and click Add Selected Variable
to Selected Plot (). (Alternatively, drag phi onto the plot.) The plot now shows both
curves.

9. In the Plot Windows palette, under Acceleration and Angle Comparison, right-click
on Output1.a (the name of the first plot), and select Rename.

10. Enter the name Acceleration (a). This changes the title of the plot.

11. In the Plot Windows palette, under Acceleration and Angle Comparison, right-click
on Output1.phi (the name of the second plot), and select Rename.

12. Enter the name Angle (phi).

The resulting plots are shown in Figure 4.6.

4.5 Customizing Plot Window Configurations • 105

Figure 4.6: Custom Plot Window

Example: Plotting One Quantity versus Another

In this example, you will create a custom plot window to plot the X and Y position of each
of the links of a double pendulum.

To plot one quantity versus another in a custom plot window:

1. From theHelpmenu, selectExamples >Physical Domains >Multibody, and then select
the Double Pendulum example.

2. In the Model Workspace toolbar, click Attach Probe ().

3. Click the right port of the L1 shared subsystem.

4. Click on an empty area of the Model Workspace to position the probe.

5. In the Properties tab (), label this probe FirstLink, and then select Length[1] and
Length[2].

6. Add another probe that measures the Length[1] and Length[2] quantities to the right
port of the L2 shared subsystem, and label this probe SecondLink.

7. Click Run Simulation () in the Main Toolbar.

8. Click Show SimulationResults (). The Analysis window opens, displaying the Probe
Plots in the Simulation Results tab.

9. We want the plots window to only show two plots, FirstLink.r_0[2] and Second-
Link.r_0[2], which will be the basis for creating a new plot window configuration. In

106 • 4 Simulating and Visualizing a Model

the Plot Windows palette, double-click on the names of the other plots to hide them
from view.

10. Click Duplicate the Plot Window ().

11. Enter the name X versus Y in the Duplicate Plot Window dialog box. Click OK. A new
plot window with the name X versus Y is created containing the currently visible plots.
Tip: To return the Probe Plots to its original view, right-click on Probe Plots in the Plot
Windows palette and select Show All Plots.

12. In the Plot Windows palette, under X versus Y, right-click on FirstLink.r_0[2] (the
name of the first plot), and select Rename.

13. Enter the name Top Link. This changes the title of the plot.

14. Similarly, change the name of the plot SecondLink.r_0[2] to Bottom Link.

15. In the plots window, select the plot Top Link from the X versus Y plot window.

16. In the Variables palette, select FirstLink: r_0[1].

17. Click Place Selected Variable on x-Axis ().

18. In the plot window, select the plot Bottom Link from the X versus Y plot window.

19. In the Variables palette, select SecondLink: r_0[1].

20. Click Place Selected Variable on x-Axis ().

21. In the Plotting Toolbar, use the slider to change the number of plot columns to 1.
The resulting plots are shown in Figure 4.7.

4.5 Customizing Plot Window Configurations • 107

Figure 4.7: Plot One Quantity Versus Another

The plots above show the motion of the end point of each link in the pendulum. The bottom
link follows a more disorderly path because of the interaction with the top link.

108 • 4 Simulating and Visualizing a Model

4.6 Visualizing a Multibody Model
In MapleSim, the 3-D visualization environment allows you to build and analyze 3-D
graphical representations of multibody systems. As you build a model and change its para-
meters, you can validate the 3-D configuration of the model and visually analyze your
simulation results. You can build 3-D models by dragging and connecting objects in the 3-
D Workspace, and you can visualize your simulation results by playing animations that
depict the movement of the objects.

As you build a block diagram in the Model Workspace, the corresponding changes are
automatically reflected in the 3-D representation in the 3-D Workspace. Similarly, when
you build a model in the 3-DWorkspace, the corresponding changes are automatically re-
flected in the block diagram in the Model Workspace. Changes that you make in either of
the workspaces are shown in both the Model Workspace and 3-D Workspace as you edit
your model.

In the 3-D Workspace, you can view your model from any direction. Also, you can attach
3-D shapes to parts of your model to create a realistic-looking system representation. These
shapes can either be imported from an external CAD file or selected from the Multibody
> Visualization palette in the Library Components tab.

After simulating your model, you can animate your 3-D model in the 3-DPlaybackWindow.
You can control playback options to focus on specific components and their motions, for
instance by specifying camera tracking options to center an object in the 3-D Playback
Window during an animation. You can also attach trace lines to show where components
move during an animation.

Tip: The quality of the visualization is affected if any open plot windows are behind the 3-
D PlaybackWindow. If you are experiencing playback issues, try moving the 3-D Playback
Window so that it does not overlap a plot window. Alternatively, minimize or close any
open plot windows.

CAD geometry and visualization shapes are drawn transparent in the 3-D Workspace and
non-transparent in the 3-D Playback Window.

For more information about adding 3-D shapes and using the 3-DWorkspace, see theUsing
MapleSim > Visualizing a Model section of the MapleSim Help system.

3-D Visualization and Multibody Settings

The parameters used for 3-D visualization of multibody mechanical components are found
under the Multibody Settings tab of the Parameters pane in sections for Animation,
Multibody, and Visualization settings.

4.6 Visualizing a Multibody Model • 109

To access the simulation settings, click Multibody Settings tab () on the right of the
Parameters pane.

Animation Settings

Under Animation, ensure the 3-D Animation check box is enabled if you want to see an
animation of your simulation runs.

Multibody Settings

You can specify the following parameter values for models containing multibody mechan-
ical components:

Table 4.3: Multibody Parameter Values

DescriptionDefaultParameter
The acceleration due to gravity at the surface of the Earth.

The default units are in .

9.81Gravity

Direction of gravity.Gravity vector

Visualization Settings

You can specify the following 3-D Visualization values for models containing multibody
mechanical components:

Table 4.4: 3-D Visualization Parameter Values

DescriptionDefaultParameter

When selected, components are positioned at the closest
location in 3-D space based on the translation snap delta value.

Enable
Translational
Snapping

Specifies the translation snap delta spacing.1Translation Snap
Delta

When selected, components are positioned at the closest
location in 3-D space based on the rotation snap delta value.

Enable Rotational
Snapping

Specifies the rotational snap delta spacing.Pi/2Rotation Snap
Delta

Specifies the size of the grid drawn in the perspective view.
The grid extends this distance in both directions on the
horizontal plane.

10Perspective Grid
Extent

Specifies the space between grid lines.1Grid Spacing

110 • 4 Simulating and Visualizing a Model

DescriptionDefaultParameter
Implicit geometry consists of spheres and cylinders
representing multibody components in the 3-D Workspace.
Cylinders are drawn using Base Radius, while spheres (for
Rigid Bodies and Joints) are drawn using Base Radius * 2.

0.02Base Radius

When enabled, a smooth transition occurs when switching
between 3-D orthographic and perspective views and when
using Fit Scene, Fit Selected, or Fit Animation in the 3-D
Workspace and 3-D Playback Window.

Enable View
Change
Animations

The 3-D Workspace

The 3-D Workspace is the area in which you build and view 3-D models in the MapleSim
window. It is found in the 3-D Workspace tab of the Analysis window.

To open 3-D Workspace:

• From the View menu, select Show 3-D Workspace... The Analysis window opens
showing the 3-D Workspace. Alternatively, from the MapleSim main toolbar, click Show
3-D Workspace ().

Figure 4.8: 3-D Workspace

4.6 Visualizing a Multibody Model • 111

Table 4.5: 3-D Workspace Controls

DescriptionComponent
The area in which you build and view a 3-D model. The arrows at
the origin indicate the directions of the world axes and are
designated by color:

3-D Workspace

X - red

Y - green

Z - blue

You can use the grid as a reference to determine the relative sizes
and positions of elements in your 3-D model.
Contains tools for hiding and displaying components in the 3-D
Workspace, toggling between different modes, selecting camera
navigation tools, and changing the 3-D model view.

3-D Toolbar

Part of the 3-D toolbar, these are controls for building and
assembling a 3-D model, and connecting 3-D objects.Construct Mode Controls

You can hover your mouse pointer over any of the buttons on the toolbar to view its tooltip.

Viewing and Browsing 3-D Models

In the 3-D Workspace, you can view and browse a 3-D model from the perspective view
or one of the orthographic views using the 3-D View Controls tool.

Figure 4.9: 3-D View Controls

The perspective view allows you to examine and browse a model from all angles in 3-D
space. It allows you to see 3-D spatial relationships between elements in your model. In the
perspective view, objects that are closer to the camera appear larger than those that are further
away from the camera.

In the following image, a double pendulum model is shown from the perspective view.

112 • 4 Simulating and Visualizing a Model

Figure 4.10: Perspective View Double Pendulum

You can also view your 3-D model from front, top, and side orthographic views. Orthographic
views use parallel projection as opposed to perspective projection, so your 3-D model appears
as a flattened object because no depth information is shown. Orthographic views are
sometimes referred to as "true length" views because they display undistorted lines and
distances in the view plane that is orthogonal to the camera direction; these views are useful
for analyzing spatial relationships or clearances between objects.

In the following image, the double pendulum model is shown from the top orthographic
view.

Figure 4.11: Orthographic View Double Pendulum

You can browse a model and change the model view while an animation is static or playing.
In all of the views, you can pan and zoom into or out from your model. In the perspective
view, you can also move the camera to view your model from above or below, and from
any direction around your model.

4.6 Visualizing a Multibody Model • 113

Tip:Before panning, zooming, or moving the camera around a large 3-D model, hover your
mouse pointer over the object that you want to focus on. MapleSim adjusts the navigation
controls according to the object on which you place the mouse pointer.

Adding Shapes to a 3-D Model

Adding Implicit Geometry

By default, basic spheres and cylinders called implicit geometry appear in the 3-DWorkspace
to represent physical components in your model. For example, consider the following double
pendulum model, which contains two revolute joints and two subsystems that represent
planar links.

In the 3-DWorkspace, the implicit geometry of the fully assembled pendulum model appears
as follows.

Figure 4.12: Implicit Geometry Double Pendulum

In this example, the spheres represent the revolute joints and rigid bodies, and the cylinders
represent the planar links.

Implicit geometry that is not connected to other implicit geometry is drawn in a light gray
color; implicit geometry that is assembled is drawn in a dark gray color, with the exception
of joint objects, which are drawn in red.

Note: Components that you exclude from a simulation in the Model Workspace do not
appear in the 3-D Workspace.

114 • 4 Simulating and Visualizing a Model

Adding Attached Shapes

If you want to create a more realistic representation of your model, you can add shapes and
lines called attached shapes to your model. To do so, you first add and connect attached
shape components from the Multibody >Visualization palette to your block diagram in
the Model Workspace.

When you simulate your model, the attached shapes appear in the 3-DWorkspace, in addi-
tion to the implicit geometry. In the following image, attached shapes have been added to
represent the pendulum stem and bob pictorially. Also, a trace line—the curved line in the
image—can be set to depict the locus of points that will be traced by a particular part of the
model during a simulation.

Figure 4.13: Attached Shapes

You can customize the color, size, scale, and other visual aspects of the attached shapes by
setting parameter values for individual components in the Properties tab before simulating
the model.

If you want to view only the implicit geometry in the 3-D Workspace, you can hide the

attached shapes by clicking Show/hide attached shapes () in the 3-D Toolbar. If you
want to view the attached shapes only, you can hide the implicit geometry by clicking

Show/hide implicit geometry ().

For more information about attached shape components, see the MapleSim Component
Library > Multibody > Visualization > Overview in the MapleSim Help system.

Note: If your model contains Flexible Beam components, deflection of the beam will not
be depicted in the implicit geometry of your 3-D model.

Example: Adding Attached Shapes to a Double Pendulum Model

In the following example, you will add cylinder shapes to represent the pendulum stem and
a sphere component to represent the pendulum bob. You will also add a Path Trace com-
ponent to display the path on which the revolute joint will move during an animation.

4.6 Visualizing a Multibody Model • 115

To add attached shapes

1. From theHelpmenu, selectExamples >Physical Domains >Multibody, and then select
the Double Pendulum example.

2. Expand the Multibody palette and then expand the Visualization menu.

3. Add two Cylindrical Geometry components below the planar link subsystems in the
Model Workspace.

4. Connect the components as shown below.

5. From the same menu, add a Spherical Geometry component and place it to the right of
the L2 shared subsystem.

6. Right-click (Control-click for Mac) the Spherical Geometry component and select Flip
Horizontal.

7. Add a Path Trace component and place it between the two Cylindrical Geometry
components.

8. Connect the components as shown below.

9. Select the first Cylindrical Geometry component (C1 in the previous figure) in the
Model Workspace.

116 • 4 Simulating and Visualizing a Model

10. In the Properties tab () on the right side of the MapleSim window, change the radius
of the cylinder to 0.2.

11. To select a color for the cylinder, click the box beside the color field and click one of
the color swatches.

12. Select the second Cylindrical Geometry component (C2 in the previous figure) in the
Model Workspace.

13. Change the radius of this cylinder to 0.2 and change the color.

14. Select the Spherical Geometry component (S1 in the previous figure).

15. Change the radius of the sphere to 0.8 and change the color.

16. To simulate the model, click Run Simulation () in the Main Toolbar.

When the simulation is complete, the Analysis window opens with the Simulation Results
tab selected. The 3-D Playback Window displays your model with the attached shapes.

17. To animate the model, click Play () in the 3-D Playback Window.

For another example of how to use the Path Trace component, from the Help menu, select
Examples > User's Guide Examples > Chapter 4, and then select the Lorenz Attractor
example.

Building a Model in the 3-D Workspace

You can build MapleSim models by adding and connecting objects in the 3-DWorkspace.
To add multibody components to a 3-D model, put the 3-D Workspace beside the main
MapleSim window, then drag the desired components from the Multibody palette, the Fa-
vorites palette, a custom library that you created, or from the search pane in the Library
Components tab to the 3-D Workspace.

In the 3-DWorkspace, you can add, connect, and lay out 3-D objects, and set initial condi-
tions for joints and other multibody components by using graphical controls in the 3-D
Workspace.

4.6 Visualizing a Multibody Model • 117

Any changes that you make to your 3-D model are automatically shown in the block diagram
representation in theModelWorkspace and vice versa. For example, if you add and connect
a Flexible Beam component in the 3-D Workspace, the block diagram representation of
the Flexible Beam with the added connection lines appear in the Model Workspace at the
same time.

Notes:

• Subsystems cannot be created in the 3-D Workspace. They must be created in the
Model Workspace.

• Components from the multibody Forces and Moments, Sensors, and Visualization
component libraries cannot be dragged into the 3-D Workspace. You must add these
components in the Model Workspace.

Moving Objects in the 3-D Workspace

In the 3-DWorkspace, you can position individual objects or groups of objects by clicking
and dragging the 3-D manipulators.

To display the 3-D manipulator for a single unconnected object, click the object once in the
3-D Workspace. You can then click and drag the blue arrow of the 3-D manipulator to
move the object along the Z axis, the green arrow to move the object along the Y axis, and
the red arrow to move the object along the X axis. You can also click and drag the sphere
at the center of the 3-D manipulator to move the object in all directions.

For a group of connected objects, the configuration of your model determines where the 3-
D manipulators are located.

• If your 3-D model contains a Fixed Frame component, click the square that represents
the Fixed Frame component to display the 3-D manipulator.

• If your model does not contain a Fixed Frame component, click the object that defines
the initial conditions for your system to display the 3-D manipulator. For example, if
your model contains a Rigid Body component with its initial condition parameters set
to Strictly Enforce, that Rigid Body component displays the 3-D manipulator. When a
model is moved in the 3-D Workspace, the initial conditions are updated for all of the
other Rigid Body components that depend on the Rigid Body component that has its
initial conditions set to Strictly Enforce.

118 • 4 Simulating and Visualizing a Model

• If your model does not contain a Fixed Frame component or a Rigid Body component
with its initial conditions set to Strictly Enforce, click any of the objects in your 3-D
model to display the 3-D manipulator. When you move the group of objects, the initial
conditions of all of the multibody components in your model are set to Treat as Guess.

Note: To display 3-D manipulators, the multibody components in your model must contain
numeric parameter values. If custom parameter values defined in a parameter block, global
parameter, or subsystem parameter are assigned to a multibody component, no 3-D manip-
ulator will appear when you click that component in the 3-D Workspace.

Assembling a 3-D Model

A 3-D model must be assembled before you can animate it. Assembling a 3-D model refers
to synchronizing the model that appears in the 3-DWorkspacewith the initial configuration
of your model defined by the assigned parameter values and initial condition guess values.
The synchronization process occurs automatically when you simulate your model. Altern-

atively, click Update 3-D View () in the 3-D Toolbar to assemble the model. In the 3-
DWorkspace, assembled implicit geometry is drawn in a dark gray color, with the exception
of joint objects, which are drawn in red.

Note: You can only assemble 3-D models with a valid configuration and valid connection
lines. For example, if you attempt to assemble a 3-D model with missing connection lines,
an error message appears in the console pane and no animation is generated.

For more information, see Assembling a 3-D Model in the MapleSim Help system.

Using the Unenforced Constraints Button to Manipulate Joints in the 3-D
Workspace

You can select a joint object in the 3-D Workspace and click Do Not Enforce Kinematic

Constraints () to specify that the kinematic constraints of the joint are not enforced in
the 3-DWorkspace as you build your model. Joints with unenforced kinematic constraints
appear in pink in the 3-D Workspace and their initial conditions are not shown in the 3-D
Workspace as you build your model.

You may want to use Do Not Enforce Kinematic Constraints () if, for example, you
are creating a closed-loop model in the 3-D Workspace and you need a joint to remain in
a specific position as you are building and laying out your 3-D model.

Notes:

• The do not enforce constraints button does not affect the actual initial conditions specified
for your joint components in the Properties tab; it affects the initial conditions depicted
in the 3-D Workspace for display purposes only.

4.6 Visualizing a Multibody Model • 119

• Initial conditions for other joints with enforced kinematic constraints will be shown in
the 3-D Workspace, but will not affect related joints with unenforced kinematic con-
straints.

For example, consider a double pendulum 3-D model that contains a revolute joint with
unenforced kinematic constraints and a second revolute joint with enforced kinematic con-
straints. If you change the initial angle of the joint with enforced kinematic constraints, the
joint with the unenforced kinematic constraints will remain in its original position while
the joint with enforced kinematic constraints will be shown at the new initial angle. To
display all of the new initial conditions in the 3-D Workspace, you must assemble your

model by running a simulation or clicking Update 3-D View ().

Displaying Attached Shapes as You Build a 3-D Model

When you connectCylindrical Geometry,Tapered CylinderGeometry,BoxGeometry,
or Spherical Geometry components to your block diagram in the Model Workspace, the
corresponding attached shapes appear in both the 3-D Workspace and the 3-D Playback
Window. The attached shape appears in the 3-D Workspace after you connect all of its
ports to compatible ports of multibody components in the Model Workspace.

Working with CAD Geometry

CAD geometry can also be shown in both the 3-D Workspace and the 3-D Playback
Window. When you add aCADGeometry component anywhere in theModelWorkspace,
the corresponding CAD image appears in the 3-D Workspace regardless of whether the
CAD Geometry component is connected to other components in your model. If a CAD
Geometry component is not connected to other components, it will be drawn at the origin
of the 3-D grid; if a CADGeometry component is connected to another component, it will
be drawn at the origin of the coordinate frame of the modeling component to which it is
attached.

You can define the translational and rotational offset for CAD images either before or after
connecting the corresponding CAD Geometry component to your model. To define these
offsets, select the CAD Geometry component in the Model Workspace and specify para-
meter values in the Properties tab.

120 • 4 Simulating and Visualizing a Model

Example: Building andAnimating a Double PendulumModel in the 3-D
Workspace

In this example, you will build and animate a double pendulum model. You will perform
the following tasks:

To build and animate a double pendulum:

1. Add and move objects in the 3-D Workspace.

2. Connect the 3-D objects.

3. Set initial conditions for the joints in your model.

4. Animate the 3-D model.

Adding and Moving Objects in the 3-D Workspace

To add or move an object:

1. Open a new MapleSim document.

2. From the MapleSim main toolbar, click Show 3-D Workspace (), and arrange that
window beside the main MapleSim window.

3. Click Always-On-Top (). This keeps the Analysis window in focus as you work in
the MapleSim window.

4. Under the Library Components tab, expand the Multibody palette, and then expand
the Bodies and Frames menu.

5. From the palette, drag a Fixed Frame component into the 3-D Workspace. A gray
square, which represents the Fixed Frame component, is added to the 3-D Workspace
and its 3-D manipulator appears.

You can use this manipulator to position objects in the 3-D Workspace.

6. Position the Fixed Frame object at the origin of the grid by clicking and dragging the
3-D manipulator arrow controls.

4.6 Visualizing a Multibody Model • 121

7. From the Multibody > Joints and Motions menu, drag a Revolute component into the
3-D Workspace and place it to the right of the Fixed Frame.

8. From theMultibody >Bodies and Framesmenu, drag aRigid Body Frame component
into the 3-D Workspace and place it to the right of the Revolute component.

9. From the same menu, drag a Rigid Body component into the 3-DWorkspace and place
it to the right of the Rigid Body Frame.

Tip: To zoom into and out from the 3-D Workspace, hover your mouse pointer over the
object that you want to focus on and rotate your mouse wheel. When zooming with the
mouse wheel, the location under the pointer remains in place, allowing you to zoom in on
that location. To pan your model, hold the Shift key and drag your mouse pointer in the 3-
D Workspace.

122 • 4 Simulating and Visualizing a Model

10. From the same menu, drag another Rigid Body Frame component into the 3-D Work-
space and place it to the right of the Rigid Body. The components for the first pendulum
link have been added.

11. Repeat steps 6 to 9 to add components for a second pendulum link to the right of the last
Rigid Body Frame component that you added.

Connecting 3-D Objects

You will now connect the objects that you added in the previous task.

4.6 Visualizing a Multibody Model • 123

To connect objects:

1. Click Connect ports ().

2. Hover your mouse pointer over the Fixed Frame object. A green dot appears.

3. Click the green dot once to start the connection line.

4. Hover your mouse pointer over the first Revolute joint component. The gray panel at
the bottom of the 3-D Workspace displays the names of the Revolute joint frames.

5. Click the Revolute joint component once. A context menu displays the names of the
frames to which you can connect the line.

124 • 4 Simulating and Visualizing a Model

6. Select R1.frame_a. The components are connected in the 3-D Workspace.

Note that the joint component is drawn in red when it is connected.

7. Click Connect ports () to start the next connection line.

8. Click the sphere that represents the Revolute joint. A context menu displays the frames
of the Revolute joint, as well as the Fixed Frame to which it is connected.

9. From the context menu, select R1.frame_b.

4.6 Visualizing a Multibody Model • 125

10. Drag your mouse pointer to the end of the cylinder that represents theRigid Body Frame
and click the green dot.

frame_b of the first revolute joint, R1, is now connected to frame_a of the first rigid body
frame, RBF1.

11. Click Connect ports to start a new connection line.

12. Hover your mouse pointer over the other end of the cylinder that represents the RBF1
component and click the cylinder once.

13. Drag your mouse pointer to the sphere that represents the first Rigid Body component,
RB1, and click it once. RB1 is now connected to RBF1.

14. In the same way, connect frame_a ofRB1 to frame_a of the secondRigid Body Frame,
RBF2.

Note: Click the connect button to start each connection line.

15. Connect frame_b of the second Rigid Body Frame to frame_a of the second Revolute
joint.

16. Connect frame_b of the second Revolute joint to frame_a of the third Rigid Body
Frame.

126 • 4 Simulating and Visualizing a Model

17. Connect thirdRigid Body Frame to the secondRigid Body, and then connect the second
Rigid Body to the fourth Rigid Body Frame. The complete 3-D model appears below.

In the 2-D model workspace, you will see that all of the components are added and connected
accordingly.

Tip: As you are building a 3-D model, it is a good practice to switch to the block diagram
view periodically to check whether the block diagram is laid out the way you want.

Setting Initial Conditions for the Joint Components

You can set initial conditions for joint components by using graphical controls in the 3-D
Workspace.

Note: Joint components that have been assigned custom parameter values defined in a
parameter block, global parameter, or subsystem parameter will not allow the use of
graphical controls for setting initial conditions. In these cases, use the fields in the Properties
tab to set the initial conditions.

To set initial conditions:

1. In the 3-D Workspace, to set the initial angle of the first revolute joint, click the sphere
that represents the first revolute joint in the 3-D Workspace. The red sphere, which
represents the joint component, is removed temporarily from the 3-D Workspace and
the manipulator for the joint appears.

4.6 Visualizing a Multibody Model • 127

2. Hover your mouse pointer over the manipulator. The manipulator appears in yellow.

3. Click and drag your mouse pointer around the manipulator to display the meter that
represents the initial angle value that you want to set for the revolute joint. A pie graph-
shaped meter appears in orange.

When you drag your mouse pointer, you can adjust the initial angle value for the degree of
freedom represented by the graphic. The angle value increases if you drag the mouse
pointer up or to the right, and decreases if you drag the mouse pointer down or to the left.

4. Release your mouse button when the meter is at the approximate initial condition value

that you want. In the Properties tab (), the θ0 parameter displays the value that you
selected. The implicit geometry is set to that value in the 3-D Workspace.

Tips:

• Alternatively, you can set initial conditions for your model by entering a value for the θ0
parameter in the Properties tab. Initial conditions that you specify in the Properties tab
will be shown in the 3-D model.

• To specify precise initial angle conditions, turn on snapping by selecting Enable Rota-

tional Snapping under Visualization in the Multibody Settings tab ().

Animating the 3-D Model

You will now simulate your 3-D model to generate the animation that can be viewed in the
playback window.

128 • 4 Simulating and Visualizing a Model

To animate the 3-D model:

1. Simulate your model by clicking Run Simulation () in the Main Toolbar. When the
simulation is complete, the Analysis window opens, containing both simulation plots
and the 3-D Playback Window.

2. Select the 3-D Playback Window. (If the playback window is not visible, double-click
3-D Playback Window in the Plot Windows palette in the left pane of the Analysis
window to view it.)

3. To play the animation, click Play () in the Playback Toolbar.

Exporting a Movie of the 3-D Model

The Export Movie feature allows you to export a recorded simulation as a movie file (for
example AVI) for playback outside of MapleSim or to share with others who may not have
MapleSim. For more information, see Using MapleSim > Visualizing a 3-D Model >
Exporting a Simulation as a Movie in the MapleSim Help system.

4.7 Best Practices: Simulating and Visualizing a Model
This section describes best practices to consider when simulating and visualizing a model.

Use an External C Compiler to Run Simulations with Longer Durations

When you set the compiler parameter to true in the Simulation Settings tab (), Maple
procedures generated by the simulation engine are translated to C code and then compiled
by an external C compiler. As a result, the time required to run a simulation can be reduced.
In general, when you use a C compiler to simulate a model, the compilation process will
be faster in simulations with longer durations.

Compare Results Generated by Sections of Your Model

For debugging purposes, you may want to view simulation results for a specific section or
subsystem in your model. By selecting a section in your model and clicking Disable ()
above the Model Workspace or pressing Ctrl + E (Command + E for Mac), you can ex-
clude part of your model from the next simulation that you run. When you simulate your
model, results will appear only for the model sections that you did not exclude. This feature
allows you to view simulation results generated by specific sections in your model and
compare results without having to delete components from the Model Workspace or build
multiple models.

For more information, see Using MapleSim > Simulating a Model > Excluding Objects
From a Simulation in the MapleSim Help system.

4.7 Best Practices: Simulating and Visualizing a Model • 129

130 • 4 Simulating and Visualizing a Model

5 Analyzing and Manipulating a Model
In this chapter:

• Overview (page 131)

• Retrieving Equations and Properties from a Model (page 135)

• Analyzing Linear Systems (page 135)

• Optimizing Parameters (page 136)

• Generating and Exporting C Code from a Model (page 138)

• Generating a Custom Component from External C Code/Library Definition (page 146)

• Working with Maple Embedded Components (page 149)

5.1 Overview
MapleSim is fully integrated with the Maple environment.

• You can use Maple-based Apps within the MapleSim interface.

• You can attach Templates to a model, which open in the Maple interface.

• You can attach Maple worksheets to a MapleSim model, allowing you full access to
commands, embedded components, plotting tools, and many other technical features to
analyze and manipulate the dynamic behavior of a MapleSim model or subsystem.

• You can use the MapleSim application programming interface (API) in a Maple worksheet
to manipulate, simulate, and analyze an existing MapleSim model programmatically.

MapleSim Apps

To start working with your MapleSim model in Maple, you can use the apps available in
the Apps Manager. Apps are pre-built tools for model building and analysis tasks: you
first create a MapleSim model and open it in one of the available apps to perform an analysis
task. Apps open in theAppsManager tab of theAnalysiswindow in MapleSim. To access

the Apps Manager, in the main toolbar, click Show Apps Manager (). The Analysis
window opens with Apps tab selected. For example, you can use apps to perform parameter
sweeps, Monte Carlo simulations, or code generation.

The following tables list the MapleSim Apps and Templates available in theAppsManager.

Table 5.1: MapleSim Apps

TaskApp Name
Component Creation

131

TaskApp Name
Create motion profiles for 1-D motion that adhere to defined velocity,
acceleration, and jerk constraints.

1-D Motion Generation

Create a custom port for a custom component. For more information,
see Creating Custom Modeling Components (page 73).

Custom Port

Create a custom hydraulic directional control valve.DCV Builder
Define and generate a MapleSim custom component from external C
Code/DLL.

External C/Library Block

Model the kinematic behavior of cams and followers.Kinematic Cam Generation
Linearize a MapleSim continuous subsystem. Perform linear analysis
on the linear system object, such as generating Bode plots and Root
Locus plots.

Linearization

Model Analysis
Retrieve equations from linear or nonlinear models. For more
information, see Tutorial 7: Using the Equation Extraction
App (page 208).

Equation Extraction

Resolve inconsistent initial conditions and errors detected during the
simulation, as well as give insight into the original configuration of
the system.

Initialization Diagnostics

Visualize the vibration modes of a multibody model.Modal Analysis
Define a random distribution for a parameter and run a simulation
using the distribution.Monte Carlo Simulation

Retrieve multibody equations in a form that is suitable for manipulation
and analysis.Multibody Analysis

Analyze and edit the parameters of a model and view possible
simulation results in a graph. For more information, see Optimizing
Parameters (page 136).

Optimization

Execute a parameter sweep.Parameter Sweep
Utility

Translate your model into C code. For more information, see
Generating and Exporting C Code from a Model (page 138).

Code Generation

Define and generate a data set to be used in MapleSim, for example,
a data set for an interpolation table component. For more information,
see Creating a Data Set for an Interpolation Table
Component (page 65).

Data Generation

Import MapleSim parameter sets from an Excel spreadsheet, or export
MapleSim parameter sets to an Excel spreadsheet.

Excel Connectivity

Define and generate a set of random data points to be used in
MapleSim, for example, a data set for an interpolation table
component.

Random Data

Heat Transfer (The MapleSim Heat Transfer Library is available as a separate add-on.)
Generate a component of a board with parts.Board and Parts Generation

132 • 5 Analyzing and Manipulating a Model

TaskApp Name
Plot a 3-D visualization of the temperature distribution of a Heat
Transfer shape component, mapping temperatures to colors.

Temperature Distribution

Note: After using a MapleSim template, save the .mw file and then save the .msim file to
which the .mw file is attached.

Working with Apps

If you close and reopen an app, the Apps Manager remembers the previous state of the app.

The Apps Manager displays three options:

• Refresh (): Return the app to the default settings.

• Export (): Save the current settings for the app. The settings are saved as a data file.

• Import (): Retrieve saved settings for an app.

Working with Templates and Scripting Worksheets

Templates are Maple worksheets that you attach to a model. Templates can be used to retrieve
and work with equations for a subsystem or build custom components.

To open a Template, from the main toolbar, click Load a Maple Worksheet (). Select
from the available templates. The templates open in Maple.

Table 5.2: MapleSim Templates

TaskTemplate Name
Create a custom modeling component based on a mathematical model.
For more information, see Creating Custom Modeling
Components (page 73).

Custom Component

Create a worksheet by opening a MapleSim model in an embedded
component.Worksheet

You can also open a black worksheet from the Load a Maple Worksheet () dialog.

If you have already attached a template or worksheet to a model, it appears in the list in the
Load a Maple Worksheet dialog under Attached Worksheets. You can select it and click
OK to load that worksheet.

5.1 Overview • 133

Working with MapleSim Equations and Properties in a Maple Worksheet

When viewing and working with MapleSim equations or properties in a Maple template,
corresponding parameters, variables, connectors, subscripts and superscripts are mapped
and represented differently.

Mapping MapleSim Programmatic Names to Maple

The programmatic names of certain parameters, variables, and connectors displayed in the
Maple worksheet differ from the names displayed for the corresponding elements in the
MapleSim interface. For example, if an Inertia component is included in a model, the
parameter for the initial value of the angular velocity appears asω0 in the MapleSim interface
and w_start in a Maple worksheet. For more information about the mappings of parameter,
variable, and connector names, see the MapleSim Component Library in the MapleSim
help system.

Representing MapleSim Subscripts and Superscripts in Maple

Subscripts and superscripts in the MapleSim interface are represented differently in a Maple
worksheet. Subscripts in the MapleSim interface appear with an underscore character in a
Maple worksheet. For example, a connector called flangea in the MapleSim interface appears
as flange_a in a Maple worksheet. Also, superscripts are formatted as regular characters in
a Maple worksheet. For example, a variable called a2 in the MapleSim interface would be
displayed as a2 in a Maple worksheet.

Using Subsystems

The basic structure for exporting models is the subsystem. An app or template allows you
to select a complete subsystem for which you want to analyze and manipulate. By converting
your model or part of your model into a subsystem, you can more easily identify the set of
modeling components that you want to explore, define the set of inputs and outputs for the
subsystem, or identify the components that you want to export as a block component. For
best practices on creating subsystems in MapleSim, see Best Practices: Laying Out and
Creating Subsystems (page 66).

For an example of a basic structure for exporting models, from the Help menu, select Ex-
amples > User's Guide Examples > Chapter 5, and then select the Preparing a Model
for Export example.

Note: When generating code for a subsystem, any included ports must be real input or real
output ports. When generating code for the top-level system, the system is considered to
have no inputs, but all probed values are treated as outputs.

Tip: If you want to use your complete model, group all of the components at the top level
of your model into a single subsystem.

134 • 5 Analyzing and Manipulating a Model

5.2 Retrieving Equations and Properties from a Model
You can use the Equation Extraction App to retrieve, define, and analyze equations and
properties such as parameters and variables in your model. Additional features within this
app are useful in generating reusable equations when there is more than one subsystem.

For a complete tutorial on how to use the Equation Extraction App, see Tutorial 7: Using
the Equation Extraction App (page 208).

To retrieve equations and properties:

1. In MapleSim, open the model for which you want to retrieve equations or properties.

2. In the main toolbar, click ShowAppsManager (). The Analysis window opens with
Apps tab selected.

3. From the Apps palette, under Model Analysis, double-click Equation Extraction to
open this app.

4. Use the navigation tools under Subsystem Selection to select the subsystem for which
you want to view equations. If you want to retrieve equations from the complete system,
click Main.

5. Click Load Selected Subsystem. The model equations are extracted and the system
parameters and variables are loaded. Under View Equations, click Extract Equations.
The system equations are shown and are automatically stored in the variable DAEs.

5.3 Analyzing Linear Systems
You can use the Linearization app to retrieve, view, and analyze the equations of a linear
system, test system input and output values, and view possible simulation results in a Bode,
Nyquist, or root locus plot.

Note: Linear analysis cannot be performed on the entire system. To perform linear analysis
using the tools in the Analysis and Simulation section of the template, you must select a
subsystem.

To analyze a linear system model from MapleSim:

1. In MapleSim, open the linear system model that you want to analyze.

2. In the main toolbar, click ShowAppsManager (). The Analysis window opens with
Apps tab selected.

3. From the Apps palette, under Component Creation, double-click Linearization to
open this app.

4. Using the navigation tools above the model diagram, select the subsystem for which you
want to view equations.

5.2 Retrieving Equations and Properties from a Model • 135

5. Click Load Selected Subsystem.

6. (Optional) Make changes in the configuration section.

7. Click Linearize. The linear system object is created and the equations for the system
are displayed.

8. (Optional) Create bode, nyquist, root locus, or response plots. See the following section,
Linear System Analysis, for details.

9. Under the Create Model section, you can create a custom component from the linear
system. After it is created, the component can be found under the Local Components

tab (). You can then add this component to your model.

Linear System Analysis

You can use the tools in the Analysis section to analyze your linear system and to view the
effects of different inputs on the outputs of your system.

For analysis, you can use the following tools:

• Bode plot

• Nyquist plot

• Root locus plot

• Response plot

In the Response section you can choose an input signal to apply to the system and then
simulate to see the effects on the output.

5.4 Optimizing Parameters
You can use the Optimization App to test the model parameters, view simulation plots,
and assign parameters to a Maple procedure to perform parameter sweeps and other advanced
optimization tasks.

You can also use commands from the Global Optimization Toolbox to perform parameter
optimization tasks. This product is not included with MapleSim. For more information,
visit the Maplesoft Global Optimization Toolbox website at
http://www.maplesoft.com/products/toolboxes/globaloptimization/.

To optimize parameters

1. In MapleSim, open the linear system model that you want to analyze.

2. In the main toolbar, click ShowAppsManager (). The Analysis window opens with
Apps tab selected.

136 • 5 Analyzing and Manipulating a Model

http://www.maplesoft.com/products/toolboxes/globaloptimization/

3. From the Apps palette, under Model Analysis, double-click Optimization to open this
app.

4. Use the navigation tools under Subsystem Selection to select the subsystem for which
you want to view equations. If you want to retrieve equations from the complete system,
click Main.

5. Click Load System. The model simulation settings are imported.

6. In the Parameters section, use the combo box list to select a parameter you want to op-
timize and click Add. Do the same to select other parameters and you'll see the list box
appear with the parameters you selected.

Note: When a parameter is selected, its current (nominal) value is shown in Nom.

7. Set the range over which the parameter may vary using the Min and Max fields.

8. Using the same process described above, set the Min and Max fields for the other para-
meters you want to optimize.

9. When you have defined all of the parameters, underObjective Function you can specify
details of how to construct your objective function, and specify whether to Minimize Ob-
jective or Maximize Objective. The objective function is defined as a Maple procedure.

For more information about Maple procedures, see Procedures in the Maple help system.

10. Now you can perform the parameter optimization. If you have the Maple Global Optim-
ization toolbox, you can use it for this step. ClickRun Parameter Optimization to perform
the parameter optimization. TheResults section displays the parameter values that optimize
the objective function.

To test different values for the parameters, move the sliders and then clickRun Simulation.
Click Restore Optimum Values to restore the values computed in step 10.

11. To use the parameter values of the sliders in the linked model, clickUpdate Parameters
in Model.

5.4 Optimizing Parameters • 137

5.5 Generating and Exporting C Code from a Model
If you want to use or test your model in an application that supports the C programming
language, you can use the Code Generation App to translate your model or a subsystem
in your model into C code. Access to the basic C code, and the ability to compile and run
it, is available in Maple. Extensions of this code are available for a variety of software tools
as additional Connector toolboxes.

For a general high-level overview of the MapleSim code export process, refer to Generating
Code for Export.

With the Code Generation app, you can define inputs and outputs for the system, set the
level of code optimization, generate the source code, and choose the format of the resulting
component and library code. You can use any Maple commands to perform task analysis,
assign model equations to a variable, group inputs and outputs, and define additional input
and output ports for variables.

Note: C code generation handles all systems modeled in MapleSim, including hybrid systems
with defined signal input (RealInput) and signal output (RealOutput) ports.

Whenever you export code or generate equations you often only see a subset of the paramet-
ers for that model. The following parameters cannot be exported:

• Multibody parameters cannot be directly exported. Only user-generated parameters that

the multibody parameters are assigned using Properties tab () are able to be exported.

• Dependent parameters cannot be exported. If the parameter A is a function of b (A=b,
A=sin(b), A=1+3/b, etc.), then A will not be able to be exported. It will be directly sub-
stituted for in the equations as a function of b. You will be able to export b.

• Parameters that change the number of equations cannot be exported.

• Parameters for discrete values cannot be exported.

The process of generating C code from a MapleSim model consists of the following steps:

• Preparing the MapleSim model

• Opening the Code Generation app

• Loading the subsystem

• Customizing, defining, and assigning parameter values to specific ports

• Selecting the code generation options

• Generating and saving the C code

138 • 5 Analyzing and Manipulating a Model

Preparing the Model for Export in MapleSim

The basic structure for exporting models is the subsystem where you define the input and
output signals from the generated code. By creating a subsystem you also improve the
visual layout of a system in theModelWorkspace. The following figure shows a subsystem
with a defined input (blue arrow) and a defined output (white arrow). When generating code
for a subsystem, all ports must be defined as real input or real output ports.

When generating code for the top-level system, there are no inputs, but all probed values
are considered as outputs, as shown in the following figure.

Tip: If you want to generate code for your complete model, group all of the components at
the top level of your model into a single subsystem.

In addition to inputs and outputs, generated code can have user-modifiable parameters
defined for it. By default, not all parameters are selected to be modifiable in the exported
code. In general, the fewer the parameters left modifiable, the less time it will take to gen-
erate and run the exported code. By default, only parameters defined in the exported subsys-
tem are selected to be modifiable in the generated code. In the above example, generating
code for the RLC subsystem, only the parameters R, L and C will default to being modifiable
in the exported code.

5.5 Generating and Exporting C Code from a Model • 139

Note: Since not all parameters are modifiable in the generated code, parameters that change
the structure of the equations, by adding or removing variables from the system, are auto-
matically removed from the list of parameters that can be exported. This is true even if the
parameters are defined in the exported subsystem.

Initialization

All discrete events initialize to the same values as the corresponding MapleSim model. For
example, if a clutch is initialized as 'locked' in the MapleSim model, then the generated
code assumes that the clutch starts in the 'locked' configuration. The same is true for con-
tinuous variables and their derivatives.

Since exported code obtains its initial conditions from an initialized MapleSim model, that
code can only be exported for subsystems that are part of a model that can be simulated.

Note: If you are unable to run or initialize your model in MapleSim, you will not be able
to export code for that model or any of its subsystems.

Opening the Code Generation App

To perform code generation, first open the Code Generation app.

1. In the main toolbar, click ShowAppsManager (). The Analysis window opens with
Apps tab selected.

2. From the Apps palette, under Utility, double-click Code Generation to open this app.

Loading the Subsystem

The Subsystem Selection part of the app identifies the subsystems that you want to generate
and export code for. After selecting a subsystem, click Load Selected Subsystem. All
defined input and output ports are loaded.

140 • 5 Analyzing and Manipulating a Model

Customizing, Defining, and Assigning Parameter Values to Specific
Ports

The Configuration interface lets you customize, define and assign parameter values to spe-
cific ports. Subsystem components to which you assign the parameter inherit a parameter
value defined at the subsystem level.

Tip: If you close and reopen this app, the Apps Manager remembers the previous state of
the app.

The refresh, export, and import buttons can be used to maintain or restore settings if you
close the app and then reopen it:

• Refresh (): Return the app to the default settings.

• Export (): Save the current settings for the app.

• Import (): Retrieve saved settings for an app.

Inputs: Contains the model input variables.

Outputs: Contains the model output variables.

Export All/Export None: Allows you to either select or remove all of the parameters for
export.

Add an additional output port for subsystem state variables: Select this option to add
an additional port for the selected subsystem state variable.

5.5 Generating and Exporting C Code from a Model • 141

Parameters: Contains the model parameters.

Filter: Filter for specific parameters.

View All/Exports: Toggle the view.

Export: Select which parameters you want to export in the symbolic form.

Value: Displays the value for the system parameter.

Export All/Export None: Allows you to either select or remove all of the parameters for
export.

After the subsystem is loaded you can group individual input and output variable elements
into a vector array and add additional input and output ports for customized parameter values.
Input ports can include variable derivatives and output ports can include subsystem state
variables.

Note: If the parameters are not marked for export they will be numerically substituted.

Selecting the Code Export Options

The Code Export Options settings specify the advanced options for the code generation
process.

Solver Options

In this section you can specify the type of solver.

142 • 5 Analyzing and Manipulating a Model

Note: There is an option to Match Current Fixed-step Simulation Settings. If selected,
the app settings will match the model's current simulation settings, which covers Solver,
Baumgarte Constraint Stabilization, Constraint Handling, and Event Handling.

Baumgarte Constraint Stabilization

The Baumgarte constraint stabilization method stabilizes the position constraint equations
by combining the position, velocity, and acceleration constraints into a single expression.
By integrating the linear equation in terms of the acceleration, the Baumgarte parameters,
alpha and beta, act to stabilize the constraints at the position level.

Apply Baumgarte constraint stabilization: select this option to apply Baumgarte constraint
stabilization to your model.

Export Baumgarte parameters: select this option to have constants for alpha and beta
included in the generated C code. This allows you change the values of alpha and beta in
the source code. You can then recompile your code and run it to see the effect on your
model.

alpha: enter a value for the derivative gain that is appropriate to your model.

beta: enter a value for the proportional gain that is appropriate to your model.

Constraint Handling Options

The Constraint Handling Options specify whether the constraints are satisfied in a DAE
system by using constraint projection in the generated file. Use this option to improve the

5.5 Generating and Exporting C Code from a Model • 143

accuracy of a DAE system that has constraints. If the constraint is not satisfied, the system
result may deviate from the actual solution and could lead to an increase in error at an expo-
nential rate.

Set theMax projection iterations to specify the maximum number of times that a projection
is permitted to iterate to obtain a more accurate solution.

Set theError tolerance to specify the desirable error tolerance to achieve after the projection.

Select Apply projection during event iterations to interpolate iterations to obtain a more
accurate solution.

Constraint projection is performed using the constraint projection routine in the External
Model Interface as described on The MathWorks™ website to control the drift in the result
of the DAE system.

Event Handling Options

The Event Handling Options section specifies whether the events are satisfied in a DAE
system by using event projection in the generated file. Use this option to improve the accuracy
of a DAE system with events. If the constraint is not satisfied, the system result may deviate
from the actual solution and could lead to an increase in error at an exponential rate.

Set the Maximum number of event iterations to specify the maximum number of times
that a projection is permitted to iterate to obtain a more accurate solution.

Set the Width of event hysteresis band to specify the desirable error tolerance to achieve
after the projection.

144 • 5 Analyzing and Manipulating a Model

Generating and Saving the C code

To generate C code

1. In MapleSim, open the model for which you want to generate code.

2. In theModelWorkspace, make sure that the components for which you want to generate
code are grouped in a subsystem.

3. In the main toolbar, click Show Apps Manager ().

4. From the Apps palette, under Utility, double-click Code Generation to open this app.

5. From the drop down list, select the subsystem for which you want to generate code. The
subsystem and its contents appears in the Subsystem Selection window.

6. Click the Load Selected Subsystem located directly below the model diagram. The
subsystem, along with all input and output variables, are now loaded into the Code
Generation app.

7. Configure the inputs, outputs, and parameters.

8. Under Code Export Options, select the solver. By default, the Euler solver is selected.

9. UnderExport, browse to select the directory where you want to save the code and specify
the name of the file. The file is automatically given a “c” prefix and a “c” extension.

10. Click Generate C Code. The C code is saved to your specified location. After the C
code is generated, the code can be viewed in the View Code area at the bottom of the
app.

5.5 Generating and Exporting C Code from a Model • 145

5.6 Generating a Custom Component from External C
Code/Library Definition
MapleSim can call external code directly within your model. By using the External C
Code/Library Definition app, you can create a custom component to call external C Code
and DLL functions directly into your model or subsystem. You can access the basic C code,
and then compile and run the code in Maple. Extensions of this code are available for a
variety of software tools as additional Connector toolboxes.

With this app, you can define the external inputs and outputs, specify the function name
and arguments, generate the source code, and choose the format of the resulting component
and library code. You can use any Maple commands to perform task analysis, assign model
equations to a variable, group inputs and outputs, and define additional input and output
ports for variables.

Changes to the parameters, inputs and outputs are remembered when you re-load your system
using the External C Code/Library Definition app.

The process of creating an external code custom component for a MapleSim model consists
of the following steps:

• Specify the custom component name

• Specify the location of the external C/library

• Define the external C/Library code options

• Specify the directory of the generated Modelica code

• Generate and save the external code custom component

146 • 5 Analyzing and Manipulating a Model

Opening the External C Code/Library Definition App

1. In the main toolbar, click Show Apps Manager ().

2. From the Apps palette, under Component Creation, select the External C/Library
Block to open this app.

Specifying the C/Library Code Location and Options

Use the External C Code/Library Definition app to define the library code location, and/or
validate and assign the code to a model. You can specify a header file, use an existing C or
shared library file, or create a new C file using the text area.

Specifying a Header file (optional)

If required, select Header File and provide the location of the existing header file.

Using an Existing C or Library File

Provide the location of the existing C or Library file.

Providing External Code into a Text Area and then Saving to File or Attachment

Enter the content directly into the app, then save to either a file or attachment before gener-
ating the component. Tutorial 6: Using the External C Code/DLL Custom Component
App (page 203) walks you through this step.

If you save to an attachment, the attachment is saved in the Attached Files tab () under
Other.

Click Validate C to verify the validity of the provided C code.

5.6 Generating a Custom Component from External C Code/Library Definition • 147

Defining the C/Library Code Location and Options

In the Configuration section,you can define the external C/Library function name, specify
the external C/Library prototype, choose the parameter name, data type, whether it is an
array, and whether it is an output of the Modelica block (by checking passed by reference).

Use the up/down arrows to rearrange the parameters. The order must match that of the C
function. If necessary click Delete Parameter to remove a parameter.

For a complete tutorial on how to create an external code custom component and its use,
see Tutorial 6: Using the External C Code/DLL Custom Component App (page 203).

Component Generation

To generate the custom component:

1. Enter the Block Name for the custom component under Component Generation.

2. ClickGenerate Component. In MapleSim, the custom component appears in the Local

Components tab (), located in the Components palette, on the left side of the
MapleSim window. The modelica code for the component can be viewed in the Modelica
Code Editor.

148 • 5 Analyzing and Manipulating a Model

5.7 Working with the MapleSim API and Maple
Commands
In addition to working with apps and templates to interact with and analyze a model, you
can use the MapleSim application programming interface (API) in a Maple worksheet. The
first step is to use the LinkModel command to link to a MapleSim model. The LinkModel
command returns a 'connection module' that allows access to a MapleSim model. For more
information about the MapleSim API, refer to the MapleSim help page and the examples
section in the LinkModel help page.

Within Maple, you can also the full power of Maple to work with your model, use commands
from any Maple packages, including MapleSim and DynamicSystems, to work with your
model programmatically.

5.8 Working with Maple Embedded Components
Embedded Components are simple graphical interface elements that you embed into a Maple
worksheet or document to view, edit, create actions, display information, and analyze the
properties of MapleSim models. You can also associate model properties with other Maple
embedded components, including sliders and plots to create custom analysis tools.

For example, you can view and change parameter values using commands in theDocument-
Tools package. Model or subsystem equations can be retrieved using commands from the
MapleSim package and you can manipulate your model as a DynamicSystems object to
analyze the model or subsystem behavior using any input functions. Embedded Components
are inserted using the Components palette.

Tip: The pre-built analysis tools available in templates are Maple embedded components,
which allow you to interact with Maple code through graphical interactive components.
The code associated with each embedded component uses commands from Maple packages,
including MapleSim and DynamicSystems.

To view the code associated with an embedded component, right-click (Control-click for
Macintosh) any of the tools in the Maple worksheet, select Component Properties, and
click Edit. For more information about embedded components, see the EmbeddedCom-
ponents topic in the Maple help system.

For more information about advanced analysis tasks, first open the Sliding Table example
from the Help > Examples > User's Guide Examples > Chapter 5 menu, and then open
the AdvancedAnalysis.mw worksheet attachment (from MapleSim, under the Attached

Files tab (), expand the Documents entry).

5.7 Working with the MapleSim API and Maple Commands • 149

150 • 5 Analyzing and Manipulating a Model

6 MapleSim Tutorials
MapleSim Tutorials help you get started with MapleSim and learn about the key features,
tools, templates and systems available in MapleSim, by leading you through a series of de-
scriptive tasks, problems and examples using best practices. Many of these examples can
be found in the Help > Examples > User's Guide Examples menu, in the order that they
are presented in the User's Guide.

In this chapter:

• Tutorial 1: Modeling a DC Motor with a Gearbox (page 151)

• Tutorial 2: Modeling a Cable Tension Controller (page 160)

• Tutorial 3: Modeling a Nonlinear Damper (page 166)

• Tutorial 4: Modeling a Planar Slider-Crank Mechanism (page 175)

• Tutorial 5: Using the Custom Component Template (page 183)

• Tutorial 6: Using the External C Code/DLL Custom Component App (page 203)

• Tutorial 7: Using the Equation Extraction App (page 208)

• Tutorial 8: Modeling Hydraulic Systems (page 213)

6.1 Tutorial 1: Modeling a DC Motor with a Gearbox
In this tutorial, you will extend a DC motor model and perform the following tasks:

• Add a gearbox to the DC motor model

• Simulate the DC motor with gearbox model

• Group the DC motor components into a subsystem

• Use a Parameter Block to assign global parameters to the model

• Add signal block components and a PI controller to the model

• Simulate the modified DC motor model using different conditions

Adding a Gearbox to a DC Motor Model

In this example, you will build the gearbox by adding and connecting an ideal gearbox
component, a backlash component with a linear spring and damper, and an inertia component
from the 1-D Mechanical library. You can use the selection tool to drag and position com-
ponents in the Model Workspace.

151

To add a gearbox:

1. From the Help menu, select Examples > User's Guide Examples > Chapter 1, and
then select the Simple DC Motor example.

2. Delete the existing probe from the workspace.

3. Select the Library Components tab () and then perform the following tasks:

• From the 1-D Mechanical > Rotational > Bearings and Gears menu, add an Ideal
Gear component to the Model Workspace and place it to the right of the Inertia
component.

• From the 1-D Mechanical > Rotational > Springs and Dampers menu, add an
Elasto-Backlash component to the Model Workspace and place it to the right of
the Ideal Gear component.

• From the 1-D Mechanical > Rotational > Common menu, add another Inertia
component to theModelWorkspace and place it to the right of the Elasto-Backlash
component.

4. Connect the components as shown in the following figure.

5. In the Model Workspace, click the Ideal Gear component.

6. In the Properties tab (), change the transmission ratio, r, to 10 and then press Enter
to accept the value.

7. Specify the following parameter values for the other components:

• For the Elasto-Backlash component, in the b field, change the total backlash value

to 0.3rad. In the d field, change the damping constant to 104 .

• For the first Inertia component (I2), in the J field, change the moment of inertia value

to 10kg⋅m2.

• For the second Inertia component (I3), in the J field, change the moment of inertia

value to 1kg⋅m2.

• For the Step source, in the height field, change the value to 100.

152 • 6 MapleSim Tutorials

Simulating the DC Motor with the Gearbox Model

To simulate the DC motor:

1. From the Model Workspace Toolbar, click Attach probe ().

2. Hover your mouse pointer over the line that connects the Elasto-Backlash component
and the second Inertia component (I3). The line is highlighted.

3. Click the line once, and then click a spot in the workspace to anchor the probe.

4. Select the probe in the Model Workspace.

5. To include the angle (phi), speed (w), acceleration (a), and torque (tau) values in the

simulation graphs, in theProperties tab (), selectAngle,Angular Velocity,Angular
Acceleration, and Torque.

6. Click a blank area in the Model Workspace.

7. Under the Settings tab (), set the td parameter to 10 seconds and press Enter.

8. Click Run Simulation () in the Main Toolbar.

9. Click Show Simulation Results (). The following graphs appear in the Analysis
window.

6.1 Tutorial 1: Modeling a DC Motor with a Gearbox • 153

10. To verify the results, from the Help menu, select Examples > User's Guide Examples
> Chapter 6, and then select the DCMotor with Gearbox example.

Grouping the DC Motor Components into a Subsystem

To group the DC motor components:

1. Draw a box around the electrical components and the first inertia component by dragging
your mouse over these components.

154 • 6 MapleSim Tutorials

2. From the Edit menu, select Create Subsystem.

3. In the Create Subsystem dialog box, enter DCMotor.

4. Click OK. A white block, which represents the DC motor, appears in the Model
Workspace.

Tip: To view the components in the subsystem, double-click the DCMotor subsystem in
the Model Workspace. To browse to the top level of the model, click Main () in the
Model Workspace Toolbar.

Assigning Global Parameters to a Model

You can define a global parameter and assign its value to multiple components in your
model.

To assign global parameters:

1. Click Main () in the Model Workspace Toolbar to browse to the top level of the
model.

2. In the ModelWorkspace, double-click sysParams () to switch to the Parameter
Default Settings view.

6.1 Tutorial 1: Modeling a DC Motor with a Gearbox • 155

3. In the first row of theMain subsystem default settings table, enterRglobal in theName
field and press Enter.

4. Specify a default value of 24 and enter Global resistance value as the description.

5. In the second row of the table, enter Jglobal in the Name field and press Enter.

6. Specify a default value of 10 and enterGlobalmoment of inertia value as the description.

7. Click Diagram View () in the Model Workspace Toolbar to return to the model

diagram. The new Rglobal and Jglobal parameters appear in the Properties tab ().
You can now assign these parameter values to other components in your model.

8. Select Make Parameters Available for Rerun.

9. In the Model Workspace, select the Inertia component I3.

10. In the Properties tab (), in the Value field for the moment of inertia parameter, enter
Jglobal and press Enter. The moment of inertia parameter now inherits the numeric
value of the global parameter Jglobal (in this example, 10).

11. Double-click the 'DC Motor' subsystem.

12. In the Model Workspace, select the EMF1 component.

156 • 6 MapleSim Tutorials

13. Properties tab (), in the Value field for k, the transformation coefficient, enter

and press Enter.

Note: This value is an approximation of the transformation coefficient.

14. Similarly, in the Properties tab () for the R1 component, in the Value field for the
resistance parameter, enter Rglobal and press Enter.

15. Click Main () to browse to the top level of your model.

16. Save the model as DC_Motor2.msim.

17. Press Play () to run the simulation.

Rerunning the Simulation with Different Parameter Values

You can use Parameter Blocks to make specific parameters tunable allowing you to rerun
simulations without having to perform a full reformulation.

SinceMake Parameters Available for Rerunwas selected, you can make updates to these
parameters in the Rerun Simulation Panel, where you can explore and compare the results
that these changes have on the simulation.

1. Click the Rerun Simulation tab) on the left side of the Analysis Window to bring
you to the Rerun Simulation panel.

2. Change the value of Jglobal to 5.

3. Press the Rerun button () to rerun the simulation with the new value for Rglobal.

4. Plots of the Latest Results and Latest Rerun simulations are available for comparison in
the Probe Plots window.

6.1 Tutorial 1: Modeling a DC Motor with a Gearbox • 157

Changing Input and Output Values

In this example, you will change the input and output values of the model to simulate different
conditions.

To change input and output values:

1. Under theLibrary Components tab (), browse to the 1-DMechanical >Rotational
> Sensors menu and then add the Rotational Speed Sensor component to the Model
Workspace and place it below the gearbox components.

2. Right-click (Control-click for Mac) theRotational Speed Sensor component and select
Flip Horizontal.

3. Delete the connection line between the Step source and the DCMotor subsystem.

4. From the Signal Blocks > Controllers menu, add the PI component to the Model
Workspace and place it to the left of the DCMotor subsystem.

5. From the Signal Blocks > Mathematical > Operators menu, add the Feedback com-
ponent to the Model Workspace and place it to the left of the PI component.

6. Connect the components as shown below.

158 • 6 MapleSim Tutorials

Tip: To draw a perpendicular line, click a point in the Model Workspace to anchor the line
and then move your mouse cursor in a different direction to draw the second line segment.

7. Click the PI component in the Model Workspace.

8. In the Properties tab (), specify a gain of 20 in the k field, and a time constant of 3
seconds in the T field.

9. Simulate the model again. When the simulation is complete, the following graphs appear.

6.1 Tutorial 1: Modeling a DC Motor with a Gearbox • 159

10. Save the model as DC_Motor3.msim.

11. To verify the results, from the Help menu, select Examples > User's Guide Examples
>Chapter 6, and then select theDCMotor SubsystemwithGearbox and PIController
example.

6.2 Tutorial 2: Modeling a Cable Tension Controller
In this tutorial, you will extend the DC motor example to model a cable that is stretched
with a pre-defined tension. The tension is defined by aConstant source and the PI controller
provides the voltage to drive the motor. You will perform the following tasks:

• Build a cable tension controller model

• Specify component properties

• Simulate the cable tension controller model

Building a Cable Tension Controller Model

In this example, you will build the cable tension controller model using a combination of
1-D mechanical rotational and translational components. You will also group components
into a Gear subsystem and add subsystem ports.

160 • 6 MapleSim Tutorials

To build the cable tension controller:

1. Open the DC_Motor3.msim file that you created in the previous tutorial and save the
file as Cable_Tension.msim.

2. Delete the probe attached to the line that connects the Elasto-Backlash and Inertia
components.

3. Delete the Rotational Speed Sensor component and its connection lines.

4. Select the Ideal Gear, Elasto-Backlash, and Inertia components and group them into
a subsystem called Gear Components.

5. From the Library Components tab (), add the following components to the Model
Workspace:

• From the 1-DMechanical > Rotational > Bearings and Gears menu, add the Ideal
Gear R 2 T component and place it to the right of theGear Components subsystem.

• From the 1-D Mechanical > Translational > Sensors menu, add the Force Sensor
component and place it to the right of the Ideal Gear R 2 T component.

• From the 1-D Mechanical > Translational > Springs and Dampers menu, add the
Spring component and place it to the right of the Force Sensor component.

• From the 1-D Mechanical > Translational > Common menu, add the Fixed com-
ponent and place it to the right of the Spring component.

6. Right-click (Control-click for Mac) the Fixed component in theModelWorkspace and
select Rotate Counterclockwise.

7. Delete the Step source and replace it with a Constant source from the Library > Signal
Blocks > Sources > Real menu.

Tip: You can connect the Constant source by dragging it onto the unconnected line end.

8. Double-click the 'Gear Components' subsystem. You will now add a port to connect
this subsystem with other components.

9. Click the negative (white) flange of the Inertia component and drag your mouse cursor
to the boundary that surrounds the subsystem components.

10. Click the line once. The subsystem port is added to the line.

6.2 Tutorial 2: Modeling a Cable Tension Controller • 161

11. Click Main () in the Model Workspace Toolbar to browse to the top level of your
model.

12. Connect the components as shown below.

Specifying Component Properties

To specify component properties:

1. In the Model Workspace, double-click the 'Gear Components' subsystem.

2. In the Properties tab (), specify the following parameter values for the subsystem
components:

• For the Ideal Gear component, change r to 0.01.

• For the Inertia component, change J to 0.1kg⋅m2.

3. Click Main () in the Model Workspace Toolbar to browse to the top level of the
model.

4. Double-click the sysParams Parameter Block to open the Parameter Settings editor.

5. In the Parameters Settings editor specify the following parameter values for the other
components:

• Name the first parameter Spring. Select Real for the Type, and enter 2110⋅109 as the
Default Value. Press Enter.

• Name the second parameter Time, select Real for the Type, then enter 0.1 for the
Default Value. Press Enter.

• Name the third parameter Constant, select Real for the Type, then enter 77.448 for
the Default Value.

162 • 6 MapleSim Tutorials

6. Select the Spring component in the Model Workspace, then select the Properties tab.

7. In the c field, enter Spring.

8. Next, select the PI controller from the Model Workspace, then select the Properties tab.

9. In the T field, enter Time.

10. Next, select the Constant source from the Model Workspace, then, as before, select the
Properties tab.

11. In the k field enter Constant.

12. Select sysParams in the Model Workspace, then select the Properties tab.

13. Ensure that Make Parameters Available for Rerun is selected.

Rerunning the Simulation with Different Parameter Values

As mentioned in Tutorial 1: Modeling a DCMotor with a Gearbox (page 151), you can use
Parameter Blocks to make specific parameters tunable allowing you to rerun simulations
without having to perform a full reformulation.

SinceMake Parameters Available for Rerunwas selected in step 8, you can make updates
to these parameters in the Rerun Simulation Panel, where you can compare the results that
these changes have on the simulation.

1. Click the Rerun Simulation tab) on the left side of the Analysis Window to bring
you to the Rerun Simulation panel.

2. Change the value of Spring to .

3. Press the Rerun button () to rerun the simulation with the new value for Rglobal.

4. Plots of the Latest Results and Latest Rerun simulations are available for comparison in
the Probe Plots window.

6.2 Tutorial 2: Modeling a Cable Tension Controller • 163

Simulating the Cable Tension Controller

To simulate the cable tension controller:

1. Click Attach probe ().

2. Click the line that connects the Feedback and PI components and then click the work-
space to position the probe.

3. Select the probe in the Model Workspace.

4. In the Properties tab (), select the Real quantity and change its name to Error.

5. Add another probe that measures theReal quantity to the line connecting the PI compon-
ent and 'DC Motor' subsystem. Change the quantity name to Controller.

164 • 6 MapleSim Tutorials

Figure 6.1: Cable Tension Controller

6. Click a blank area in the Model Workspace.

7. In the Settings tab (), specify the following parameters:

• Set the simulation duration time, td, to 5 .

• Select Variable from the Solver Type drop-down menu.

• Select Rosenbrock (stiff) from the Solver drop-down menu.

8. Click the Run Simulation () in the Main Toolbar.

9. Click Show Simulation Results (). The following graphs appear in the Analysis
window.

10. Save the file.

6.2 Tutorial 2: Modeling a Cable Tension Controller • 165

6.3 Tutorial 3: Modeling a Nonlinear Damper
In this tutorial, you will model a nonlinear damper with a linear spring. This tutorial builds
upon the concepts demonstrated in the previous tutorials. You will perform the following
tasks:

• Generate a custom spring damper defined by differential equations

• Provide custom damping coefficient values as input signals

• Build the nonlinear damper with linear spring model

• Assign a variable to a subsystem

• Simulate the nonlinear damper with linear spring model

Generating a Spring Damper Custom Component

This example uses the Nonlinear Spring Damper Custom Component created in Example:
Creating a Nonlinear Spring-Damper Custom Component (page 85) in Chapter 3.

Providing Damping Coefficient Values

You can provide custom values for interpolation table components that you add to your
model. In this example, you will provide damping coefficient values in an external file.

166 • 6 MapleSim Tutorials

To create damping coefficient values:

1. Create either a Microsoft Excel spreadsheet (.xlsx) or comma-separated values (.csv)
file that contains the following values:

The first column contains values for the relative displacement of the damper and the second
column contains values for the damping coefficients.

2. Save the file as DamperCurve.xlsx or DamperCurve.csv.

3. In MapleSim, open theNonlinearSpringDamper.msimmodel you created in Example:
Creating a Nonlinear Spring-Damper Custom Component (page 85) in Chapter 3.

4. Select the Attachment Files tab ().

5. Right-click (Control-click for Mac) Data Sets and select Attach File.

6. Browse to and select the Excel spreadsheet or .csv file that you created, and click At-
tach.... The file containing the data set is attached to your model. You will use this file
in the next task.

Building the Nonlinear Damper Model

In this example, you will build the nonlinear damper using components from the component
library.

To build the nonlinear damper:

1. Select the Local Components tab (), and then drag the NonLinearMSD custom
component into the Model Workspace.

2. Select the Library Components tab (), and then add the following components to
the Model Workspace:

• From the Signal Blocks >Mathematical >Operatorsmenu, add aGain component
and place it above the NonLinearMSD component.

• From the Signal Blocks > Sources > Real menu, add a Constant component and
place it between the NonLinearMSD and Gain components.

6.3 Tutorial 3: Modeling a Nonlinear Damper • 167

• From the Signal Blocks > Interpolation Tables menu, add a Lookup Table 1 D
component and place it to the left of the Gain component.

• From the 1-D Mechanical > Translational > Sensors menu, add a Position Sensor
component and place it to the left of the Lookup Table 1 D component.

3. Connect the components as shown in the following figure.

4. Add the following components to the Model Workspace:

• From the 1-D Mechanical > Translational > Common menu, add Mass and Force
components and place them to the left of the Position Sensor component.

• From the same menu, add a Fixed component, place it to the right of the NonLin-
earMSD component, and then rotate it counterclockwise.

• From the Signal Blocks > Sources > Real menu, add a Step source.

5. Connect the components as shown in the following figure.

168 • 6 MapleSim Tutorials

Figure 6.2: Nonlinear Damper Model

6. In the Model Workspace, select the Lookup Table 1 D component.

7. Under the Properties tab (), select attachment from the data source list.

8. Select the attachment you created (either DamperCurve.xlsx or DamperCurve.csv)
from the data list.

6.3 Tutorial 3: Modeling a Nonlinear Damper • 169

9. In the Model Workspace, select the Constant component.

10. In the Properties tab, in the Name field, change the component name to Stiffness.

11. Select the Step component, and then set height to 100.

12. Select the Mass component, and then change the mass, m, to 100kg.

13. Draw a box around all of the components in the nonlinear damper model.

170 • 6 MapleSim Tutorials

14. Group the selected components into a subsystem calledNonlinearDamper. The complete
model is shown in the following figure.

Assigning a Parameter to a Subsystem

To assign a parameter to a subsystem:

1. In the Model Workspace, double-click the 'Nonlinear Damper' subsystem.

2. In the Model Workspace Toolbar, double-click sysParams()

6.3 Tutorial 3: Modeling a Nonlinear Damper • 171

3. In the first row of the Parameter default settings view, define a spring constant para-
meter called Ks, and then press Enter.

4. In the same row, specify the Type as Translational Spring Constant, define a default

value of 1000, enter as Default Units and enter Spring constant as the Description.

You can now assign the parameter value Ks to other components in the Nonlinear
Damper subsystem.

5. In theModelWorkspace Toolbar, clickDiagramView (). TheKs parameter appears
as a field in the Properties tab with the defined default value.

6. In theModelWorkspace, select the Stiffness component and change the constant output
parameter, k, to Ks. This component now inherits the numeric value of Ks (in this ex-
ample, 1000). Therefore, if you edit the numeric value of Ks at the subsystem level, the
k parameter also inherits that change.

172 • 6 MapleSim Tutorials

Simulating the Nonlinear Damper with Linear Spring Model

To simulate the nonlinear damper:

1. Click Main () in the Model Workspace Toolbar to browse to the top level of the
model.

2. From the Model Workspace Toolbar, click Attach probe (). The cursor changes to
the probe icon when you move into the workspace.

3. To attach the probe, click the line that connects the Mass component and the Nonlinear
Damper subsystem and then click a spot in the workspace to anchor the probe.

4. In the Model Workspace, select the probe.

5. Under the Properties tab (), select the length, speed, and acceleration quantities.

6. Click a blank area in the Model Workspace. The length, speed, and acceleration
quantities (s, v, a) appear beside the probe.

7. Double-click the 'Nonlinear Damper' subsystem.

8. Add a probe to the line that connects theGain and theNonLinearMSD custom compon-
ent and then click a spot in the workspace to anchor the probe.

9. In the Model Workspace, select the probe.

10. Under the Properties tab, select the Real quantity and change its name to Damping.

6.3 Tutorial 3: Modeling a Nonlinear Damper • 173

11. Under the Settings tab (), set the td parameter to 10 seconds.

12. Click Run Simulation () in the Main Toolbar.

13. Click Show Simulation Results (). The following graphs appear in the Analysis
window.

174 • 6 MapleSim Tutorials

14. Save the file as NonLinearMSD.msim.

6.4 Tutorial 4: Modeling a Planar Slider-Crank
Mechanism
Using components from the Multibody mechanical library, you will model the planar slider-
crank mechanism shown in the following figure.

Figure 6.3: Planar Slider-Crank Mechanism

This model consists of a revolute joint, A, which is attached to a planar link. This planar
link is attached to a connecting rod by a second revolute joint,B.The connecting rod connects
to a sliding mass by a third revolute joint, C, and the sliding mass connects to ground by a
prismatic joint. In practice, this mechanism converts rotational motion at the crank to
translational motion at the sliding mass or vice versa. For the system shown in the diagram,
gravity is assumed to be the only external force, acting along the negative Y-axis (the y-
axis for the inertial frame).

In this tutorial, you will perform the following tasks:

• Create a planar link subsystem

• Define and assign subsystem parameters

• Create the crank and connecting rod elements

• Add the fixed frame, sliding mass, and joint elements to the model

• Specify initial conditions

• Simulate the planar slider-crank mechanism

Creating a Planar Link Subsystem

The preceding diagram shows that the slider-crank has two associated planar links: the crank
(the link from point A to B) and the connecting rod (the link from B to C). In both cases,

6.4 Tutorial 4: Modeling a Planar Slider-Crank Mechanism • 175

these links have their longitudinal axis along their local x-axis (x1 and x2, respectively).
Therefore, you will first create a generic planar link with two ports. The inboard port (base)

will be located units along the x-axis of the link, and the outboard port (tip) will be

located units along the x-axis of the link. In this example, L refers to the length of the

link and the center-of-mass is assumed to be in the middle of the link.

To create a planar link subsystem:

1. Open a new MapleSim document.

2. Under the Library Components tab (), browse to the Multibody > Bodies and
Frames menu, and then add two Rigid Body Frame components and a Rigid Body
component.

3. In the Model Workspace, right-click (Control-click for Mac) one of the Rigid Body
Frame components, and then select Flip Horizontal.

4. Right-click (Control-click for Mac) the Rigid Body component, and then select Rotate
Counterclockwise.

5. Drag the components in the arrangement shown below.

Notes:

• If you cannot see the labels for your components, from the View menu, select Show
Labels.

• The labels for your components may differ from the labels in the preceding figure
(that is,RB1,RBF1, andRBF2). You can change the labels in your model by selecting
the component, and then entering the new label in theName field under theProperties
tab. For this tutorial, the labels shown in the preceding figure will be used when refer-
ring to specific components.

6. Draw a connection line between the RB1 component and the right frame of the RBF1
component.

176 • 6 MapleSim Tutorials

7. Draw another connection line between the RB1 component and the left frame of the
RBF2 component.

8. Draw a box around the components by dragging your mouse over them.

9. From the Edit menu, select Create Subsystem.

10. In the Create Subsystem dialog box, enter Link, and then click OK.

You will now add ports to connect this subsystem to other components.

11. Double-click the Link subsystem.

12. Click the left frame of the RBF1 component and drag your mouse pointer to the left of
the subsystem boundary.

6.4 Tutorial 4: Modeling a Planar Slider-Crank Mechanism • 177

13. Click the line once. A subsystem port is added.

14. In the same way, using the right frame of the RBF2 component, create another port on
the right side of the subsystem boundary.

Defining and Assigning Parameters

In this task, you will define a subsystem parameter, L, to represent the length of the link
and assign the parameter value as a variable to the parameters of the Rigid Body Frame
components. The Rigid Body Frame components will then inherit the numeric value of L.

To define and assign parameters:

1. If you are not already in the Link subsystem, click Main () in the ModelWorkspace
Toolbar, and then double-click the Link subsystem.

2. In the Model Workspace Toolbar, click Parameters (), or from the Properties tab

() click Add or Change Parameters. The Standalone Subsystem default settings
window appears.

178 • 6 MapleSim Tutorials

3. In the first row of the Standalone Subsystem default settings table, enterL in theName
field, and then press Enter.

4. Specify a default value of 1 and enter Length as the description.

5. Scroll to the RBF1 component section.

6. In the Value field for , specify a position offset of , and then select m

from the Units drop-down menu. To enter a fraction, use the forward slash key (/).

7. Scroll to the RBF2 component section.

8. In theValue field for , specify a position offset of , and then selectm from

the Units drop-down menu.

9. Click Diagram View ().

Creating the Crank and Connecting Rod Elements

In this task, to create the crank and connecting rod elements, you will add aLink subsystem
definition to your model and create Crank and ConnectingRod shared subsystems. You
will also assign a different length value to the connecting rod element.

To create the crank and connecting rod elements:

1. Click Main () in the Model Workspace Toolbar to browse to the top level of your
model. The Link subsystem appears in the Model Workspace.

2. Right-click (Control-click for Mac) the Link subsystem, and then select Convert to
Shared Subsystem. The Create Shared Subsystem window appears. Click OK. A
Link subsystem definition is added to theComponents palette in theLocal Components

tab () and the Link subsystem in the Model Workspace is converted to a shared
subsystem.

3. Select the Link1 shared subsystem in the Model Workspace and in the Properties tab

(), enter Crank in the Name field.

4. From the Local Components tab, drag the Link icon to the ModelWorkspace, placing
it to the right of the Crank shared subsystem.

5. In the Model Workspace, select the second copy of the Link shared subsystem.

6. In the Properties tab (), change the shared subsystem name to ConnectingRod. See
the following figure.

6.4 Tutorial 4: Modeling a Planar Slider-Crank Mechanism • 179

7. For the ConnectingRod, change the value of the Length parameter (L) to 2.

Adding the Fixed Frame, Sliding Mass, and Joint Elements

In this task, you will add a Fixed Frame component, a Rigid Body component to represent
the sliding mass, and the Revolute joint components.

To add the fixed frame, sliding mass, and joint elements:

1. Under theLibraryComponents tab (), expand theMultibody >Bodies and Frames
menu, select the Fixed Frame component, and then place it to the left of the Crank
shared subsystem.

2. From the same menu, select the Rigid Body component and place it slightly below and
to the right of the ConnectingRod shared subsystem.

3. Add the following joints:

• From the Multibody > Joints and Motions menu, add a Revolute joint between the
Fixed Frame component and the crank, a second Revolute joint between the crank
and the connecting rod, and a third Revolute joint between the connecting rod and
the rigid body.

• From the same menu, add a Prismatic joint and place it below theCrank subsystem.

4. Select theRigid Body component in theModelWorkspace and rename it SlidingMass.

5. Right-click (Control-click for Mac) the SlidingMass component and select Flip Hori-
zontal.

6. In the same way, right-click (Control-click for Mac) the Revolute joint that is located
between the connecting rod and the rigid body and select Flip Horizontal. See the fol-
lowing figure.

180 • 6 MapleSim Tutorials

7. Connect the components as shown in the following figure.

Tip: In this example, the default axes of motion for the revolute and prismatic joints line
up with the desired axes of motion. For example, the revolute joints initially assume that
they rotate about the z-axis of the inboard frame, which always coincides with the inertial
Z-axis for XY-planar systems. If you create nonplanar models, you may need to change
these axes to make sure that they allow motion along or about the correct directions.

Specifying Initial Conditions

You can specify initial condition values for certain components in your model.

To specify initial conditions:

1. For the first revolute joint (R1 in the preceding figure), in the θ0 field, change the initial

angle to rad.

Tip: To enter π, type pi, press Esc , and then select the π symbol from the menu.

2. From the ICθ,ω drop-down menu, select Strictly Enforce.

When MapleSim solves for the initial conditions, the first angle will be set to rad before

the angles are set for the other joints.

Simulating the Planar Slider-Crank Mechanism

To simulate the planar slider-crank mechanism:

1. From the Model Workspace Toolbar, click Attach probe ().

2. In the Model Workspace, click the white 1-D translational flange (flange_b) at the top
right of the Prismatic component icon and position the probe.

3. Click the probe in the Model Workspace.

6.4 Tutorial 4: Modeling a Planar Slider-Crank Mechanism • 181

4. In the Properties tab (), select the Length quantity to measure the displacement.

5. In the same way, add a probe that measures theAngle quantity to the white 1-D rotational
flange (flange_b) at the top right of the R1 component icon (that is, the revolute joint
between the Fixed Frame and Crank components).

6. Click a blank area in the Model Workspace.

7. In the Settings tab (), expand Simulation and set the td parameter to 10 seconds.

8. Click Run Simulation () in the Main Toolbar.

9. Click Show Simulation Results (). The following graphs appear in the Analysis
window.

10. Select the 3-D Playback Window, and then click Play () in the 3-D Toolbar to see
a video of the simulation.

Tip: The quality of the visualization is affected if any open plot windows are behind the 3-
D PlaybackWindow. If you are experiencing playback issues, try moving the 3-D Playback
Window so that it does not overlap a plot window. Alternatively, minimize or close any
open plot windows.

182 • 6 MapleSim Tutorials

11. Save the file as SliderCrank.msim.

6.5 Tutorial 5: Using the Custom Component Template
This tutorial describes the use of the Custom Component template in various domains in
MapleSim. With this template, you can define system parameters and variables, set the level
of equation optimization, generate the equations, and then further analyze the resulting
equations. You can use any Maple commands to perform detailed equation analysis, assign
model equations to a variable or parameter, and define additional system variables and
parameters. These features are especially useful in generating reusable equations when there
is more than one subsystem.

The Custom Component Templates contain pre-built embedded components that let you
extract, manipulate, and analyze the symbolic system equations generated by any MapleSim
model. Using various components from the library, you will create models, set initial con-
ditions and component properties, and assign new values to parameters and variables.

In this tutorial, you will use the Custom Component template to extract the equations for
various models by performing the following tasks:

• Create the model

• Attach a Custom Component template for the model

• Enter your governing equations

• Set initial conditions by specifying the component properties

• Assign new values to parameters and variables

• View, manipulate, and reassign equations

• Simulate and translate an equation to a transfer function

• Map variables from your equations to the ports

• Specify ports for your block

• Create a custom port using the Custom Port app

For a description of the Custom Component Template see Creating Custom Modeling
Components (page 73).

Example: Modeling a Temperature Dependent Resistor

In this tutorial example, you will create a model of a circuit using a custom component for
a temperature dependent resistor whose resistance varies as

, where , , and are parameters.

6.5 Tutorial 5: Using the Custom Component Template • 183

To create the custom component:

1. Start a new MapleSim model and then, in the main toolbar, click Load a Maple Worksheet

().

2. Double-click on the Custom Component entry in the Templates palette.

3. Enter TempResistor and then click Create Attachment (). The Maple Custom
Component template is loaded.

4. In the Define Equations section, enter in the following system equations to define your
component. Press Enter at the end of the line.

5. In the Configuration section, select Parameters, and then click Refresh All.

6. Select Ports in the Configuration section.

7. Click Clear All Ports.

8. Click Add Port. A new port appears on the left side. This will become the positive
electrical pin.

9. From the Type drop-down list, select Electrical.

10. Click the Style radio button labeled +.

11. In the list box select Voltage = unassigned and then select vp(t) in the drop-down list
under Signal. This assigns the across variable of the port.

12. In the list box select Current = unassigned and then select i(t) in the drop-down list
under Signal. This assigns the through variable of the port.

13. Click Add Port. A new port appears on the right side. This will become the negative
electrical pin.

14. From the Type drop-down box, select Electrical.

15. Click the Style radio button labeled -. This changes the port style to an unfilled box.

184 • 6 MapleSim Tutorials

16. In the list box select Voltage = unassigned and then select vn(t) in the drop-down list
under Signal. This assigns the across variable of the port.

17. In the list box selectCurrent = unassigned, select i(t) in the drop-down list under Signal,
and then click the +/- button to negate the sign of the signal.

18. Click Add Port. A new port appears on the top edge. Drag the port to the center of the
bottom edge.

19. From the Type drop-down box, select Thermal.

20. Click the Style radio button labeled a.

21. Select T(t) for the Temperature variable and qdot(t) for the Heat Flow Rate variable.

22. From the Icon list, select Use default.

23. In theConfiguration section, selectVariables, and then clickRefresh All. This updates
entries in the Type column of the Variables table.

24. In the Variables table, scroll down to see the r(t) and v(t) variables. The types for r(t)
and v(t) are still listed as real.

25. Change the Type entries for r(t) and v(t) to Resistance and Voltage, respectively, and
then click Refresh All to ensure these are accepted (if not, they revert to real).

26. In the Configuration section, select Parameters.

27. In the Parameters table, enterResistance for the type of R0, andThermodynamicTem-
perature for both T0 and Tk. Assign the Default for T0 to 300. (The units are Kelvin.)
Click Refresh All to ensure these are accepted.

Note: You can also find the type names used in the preceding step by expanding the Type
Reference section and searching for the appropriate Domain and Type.

28. In the Configuration section, select Dimensional Analysis, and then click Check Di-
mensions. The message "no issues found" should appear in the text area.

29. In the Component Generation section, change the Name to TempResistor.

30. ClickGenerateMapleSimComponent to create your component and to bring you back
into the MapleSim environment. The custom component now appears under the Local

Components tab (), in the Components palette.

31. Drag the custom component into your model area.

6.5 Tutorial 5: Using the Custom Component Template • 185

32. Create the model shown in Figure 6.4 with the components and settings specified in
Table 6.1.

Note: When you build the model, make sure to attach the probe to the custom component
to measure the electrical and thermal quantities.

Table 6.1: Temperature Dependent Resistor Components

Required SettingsComponent LocationSymbolComponent

Use default settingsLocal Components >
Components

TempResistor
Custom Component

Use default settingsLibrary Components > Electrical
> Analog > CommonConstant Voltage

Use default settingsLibrary Components > Electrical
> Analog > CommonGround

Set R = 10 K/WLibrary Components > Thermal
> Heat Transfer ComponentsThermal Resistor

Set C = 0.1 J/K
Set = 280K

Library Components > Thermal
> Heat Transfer ComponentsHeat Capacitor

Set T = 298KLibrary Components > Thermal
> SourcesFixed Temperature

33. Right-click (Control-click for Mac) on the TempResistor custom component, select
Attach probe, and then click on the workspace to place the probe. See the following
figure.

186 • 6 MapleSim Tutorials

Figure 6.4: Temperature Dependent Resistor

34. Select the probe, select the Properties tab (), and then select the following quantities:

• Current

• ThermoDynamicTemperature

• HeatFlowRate

• Resistance

35. Click Run Simulation () in the Main Toolbar.

36. Click Show Simulation Results (). The following graphs appear in the Analysis
window.

6.5 Tutorial 5: Using the Custom Component Template • 187

Example: Compliant Contact and Piecewise Functions

In this tutorial example, you will create a model of a bouncing ball using a custom component
to model the compliant ground contact.

Figure 6.5: Falling Ball

The prismatic joint in Figure 6.5 models a falling ball by allowing translation of a rigid
body along the vertical y-axis. To change the falling ball into a bouncing ball, a custom

188 • 6 MapleSim Tutorials

component models the compliant ground contact using a spring-damper arrangement. The
custom component attaches to the 1-D translational ports on the prismatic joint with the
following conditions:

• The ball will hit ground at s=0 and cause the spring damper to compress (and hence ball
position will be at s<0).

• The spring-damper will impart a restoring force of F(t) to the ball until it is above at s=0.

Figure 6.6 shows a diagram of this process.

Figure 6.6: Bouncing Ball Dynamics

where

To create the custom component:

1. Start a new MapleSim model and then, in the main toolbar, click Load a Maple Worksheet

().

2. Double-click on the Custom Component entry in the Templates palette.

3. Enter contact for the name of the attachment and then click Create Attachment ().
The Maple Custom Component template is loaded.

4. In the Define Equations area, enter in the following equation, parameters, and initial
conditions to define your custom component. Press Enter at the end of the line.

5. In the Configuration section, select Ports.

6.5 Tutorial 5: Using the Custom Component Template • 189

6. Click Refresh All.

7. Click Clear All Ports.

8. Click Add Port.

9. Make the left port a Translational type. Use style a (the default). Associate its Position
variable with sa(t) and its Force variable with Fa(t).

10. Click Add Port to add a second port to the right side.

11. Make the right port a Translational type. Select style b. Associate its Position variable
with sb(t) and its Force variable with Fb(t).

12. From the Icon list, select Use default.

13. Click Refresh All.

14. In the Configuration section, select Variables.

15. Click Refresh All.

16. In the table, change the Type of s(t) to Position, and then click Refresh All.

17. In the Configuration section, select Parameters, and then click Refresh All.

18. Change the Default value for B to 10.

19. Change the Default value for K to 1000, and change its Type to real.

20. Click Refresh All.

21. In the Configuration section, select Dimensional Analysis, and then click Check Di-
mensions. The following expression appears:

. This indicates that the units (dimensions) are not

consistent; the units associated with each element in the sum are displayed. You can
choose to ignore the inconsistency, and the model will work as desired because
MapleSim's engine does not use units. Checking dimensional consistency, however, is
an easy way to avoid simple algebraic errors. To eliminate the inconsistency, the proper
types must be added to parameters B and K.

22. Select Parameters, and then enter Force/Velocity and Force/Distance for the types for
B and K, respectively.

23. Click Refresh All. The types update to the equivalent dimensional types, Translation-
alDampingConstant and TranslationalSpringConstant.

24. Select Dimensional Analysis, and then click Check Dimensions. "No issues found"
will appear.

25. In the Component Generation section, change the Name to contact.

190 • 6 MapleSim Tutorials

26. ClickGenerateMapleSimComponent to create your component and to bring you back
into the MapleSim environment. The custom component now appears in theComponents

palette in the Local Components tab ().

27. Drag the custom component into your workspace and assemble the components shown
in Figure 6.7 using the specified model components and their settings from Table 6.2.
Ensure that the prismatic joint translates along the y direction.

Figure 6.7: Bouncing Ball

6.5 Tutorial 5: Using the Custom Component Template • 191

Table 6.2: Bouncing Ball Multibody Components

Required SettingsComponent LocationSymbolComponent

Use default settingsLocal Components >
Components

Custom
Component

Use default settings
Library Components >
Multibody > Bodies and
Frames

Rigid Body

Use default settings
Library Components >
Multibody > Bodies and
Frames

Fixed Frame

For the prismatic joint to translate along
the y direction, set

to

For the prismatic joint to try enforcing
your translational initial conditions, set

ICs,v to Treat as Guess

For an initial displacement, the prismatic
joint requires a value > 0. Set

to

Library Components >
Multibody > Joints and
Motions

Prismatic

28. Click Run Simulation () in the Main Toolbar.

29. When the simulation is complete, the Simulation Results tab of the Analysis window
displays the probe plot.

192 • 6 MapleSim Tutorials

Figure 6.8: Bouncing Ball Result

30. To play the animation of the bouncing ball, select the 3-D Playback Window in the

Simulation Results tab, and then click Play () in the Playback Toolbar.

31. Use the navigation controls on the toolbar to pan, zoom, or move the camera around your
model to find a good view. For more information, see 3-D Toolbar.

32. To create a smoother animation, click the Change 3-D settings icon () and select
Interpolate Intermediate Frames from the drop-down menu. For more information,
see Animating a 3-D Model with Interpolated Frames.

Example: Custom Ports

In this tutorial example you will create a pair of custom ports with causal signals, power,
and velocity, that are generated by a dummy vehicle model and combined by a monitor

block that computes the force, using the relation . For the dummy vehicle

model we will assume the power is constant, , and the velocity is given by
, where , , and are parameters.

6.5 Tutorial 5: Using the Custom Component Template • 193

Create Custom Ports

We need to create two custom ports, an output port named bus_out and an input port named
bus_in.

1. Start a new MapleSim model, and then in the main toolbar, click Show Apps Manager

(). The Analysis window opens with Apps tab selected.

2. Double-click on theCustomPort entry underComponent Creation in theApps palette.
The Maple Custom Port Definition app is loaded.

3. In the Configuration section, select Signals, and then click Add Signal to add a new
signal.

4. Enter p as the name of the signal, enter Power as the type, select the output radio button,
and enter Vehicle power in the desc column.
Tip: You can find a type by browsing the Type Reference section. If you click the name
of a type, it is copied to the type field.

5. Click Add Signal again to add a second signal.

6. Enter v as the signal name, enter Velocity as the type, select the output radio button,
and enter Vehicle velocity in the desc column.

7. In the Generate Port section, enter bus_out in the Name field, vehicle bus port as a
Description, and select the output radio button.

8. Click Generate MapleSim Port to create the output port. You will automatically return
to your MapleSim model.

9. Return to the same app to create the input port.

10. In the Signals section, for both signals, select the input radio button and click Apply.

11. In the Generate Port section, change bus_out to bus_in and click the input style radio
button.

12. Click Generate MapleSim Port to create the input port. You will automatically return
to your MapleSim model.
The two custom ports you have defined appear in the Components palette of the Local
Components tab. See Figure 6.9.

194 • 6 MapleSim Tutorials

Figure 6.9: Custom Ports

Create Engine Model

We will first create the dummy vehicle model.

1. In MapleSim, in the main toolbar, click Load a Maple Worksheet ().

2. Double-click on the Custom Component entry in the Templates palette, and then click
Create Attachment (). The Maple Custom Component template is loaded.

3. In the Define Equations section, enter the following system equations to define your
component, and then press Enter at the end of the line.

4. In the Configuration section, select Parameters, and then click Refresh All.

5. Change the Type fields for , , and to Power, Acceleration, and Velocity, respect-
ively.

6. In the Configuration section, select Ports.

7. Click Clear All Ports.

8. Click Add Port. A new port appears on the left edge. Drag it to the right edge.

9. From the Type drop-down menu, select Custom. (It is at the bottom of the list.)

10. In the text area below the Type drop-down menu, enter bus_out.

11. Select the out style radio button.

12. Click Apply Custom.

13. From the Icon list, select Use default.

14. Using the drop-down menu and list box at the bottom of this section, assign the power
signal to and the velocity signal to . Figure 6.10 shows the completed Ports
section of the template.

6.5 Tutorial 5: Using the Custom Component Template • 195

Figure 6.10: Using a Custom Port

15. In the Configuration section, selectDimensional Analysis, and then clickCheckDimen-
sions. The message no issues found should appear.

16. In the Component Generation section, change the name to engine, and then click
Generate MapleSim Component.
The engine component appear in the Components palette of the Local Components
tab.

Create Monitor Model

1. In MapleSim, in the main toolbar, click Load a Maple Worksheet ().

2. Double-click on the Custom Component entry in the Templates palette, and then click
Create Attachment (). The Maple Custom Component template is loaded.

3. In the Define Equations section, enter in the following system equation to define your
component, and then press Enter at the end of the line.

4. In the Configuration section, select Parameters, and then click Refresh All.

5. Select Ports, and then click Clear All Ports.

6. Click Add Port. A new port appears on the left edge. This will be the bus input.

7. From the Type drop-down menu, select Custom (at the bottom of the list).

196 • 6 MapleSim Tutorials

8. In the text area below the Type drop-down menu, enter the custom type name: bus_in.

9. Click Apply Custom.

10. Using the drop-down menu and list box at the bottom of this section, assign the power
signal to and the velocity signal to .

11. Click Add Port. A new port appears on the right edge. This will be the computed force
output.

12. From the Type drop-down menu, select Real Signal. Click the out style radio button.
Assign the value signal to .

13. From the Icon list, select Use default.

14. Click Refresh All.

15. In the Configuration section, select Variables, and then click Refresh All.

16. Enter Force for the Type field of signal .

17. Select Dimensional Analysis, and then click Check Dimensions. The message
should appear. It indicates that the output port, , is

a real signal but is equated to , which has units of force (Newtons).

18. In the Component Generation section, change the name to monitor.

19. Click Generate MapleSim Component.

Complete Model
1. In MapleSim, drag the engine and monitor components from the Components palette

in the Local Components tab () into the workspace.

2. Connect the output of the engine block to the input of the monitor block. Then, attach
a probe to the output of the monitor block as shown below.

6.5 Tutorial 5: Using the Custom Component Template • 197

3. Run the simulation. The Simulation Results tab in the Analysis window shows the fol-
lowing probe plot:

Advanced Uses for Custom Components

You can use the entire range of Maple functionality to derive your system equations in the
Custom Component template. This section provides a sample advanced application.

Example: Modeling a Centrifugal Pump from a Head Flow Rate Curve

The following hydraulics example demonstrates how to apply extrapolated data from a
centrifugal pump into a custom component. Creating a centrifugal pump custom component
involves the following tasks.

• Obtain data from a graph

• Generate an equation by fitting the best curve for your data set

198 • 6 MapleSim Tutorials

• Obtain multi-argument operators

• Apply operators and generate custom component

Figure 6.11: Centrifugal Pump Head Flow Rate Curve

Table 6.3: Centrifugal Pump Data

Pressure Head

(meters)

Flow Rate

(cubic meters)
0.00980.01
0.008740.02
0.007250.03
0.0050.04
0.00250.05

Table 6.4: Circular Pipe Parameters

ValueDescriptionSymbol
Pipe hydraulic diameter

Pipe length

Height of internal pipe roughness

Maximum Reynolds number in laminar regime

Minimum Reynolds number in turbulent regime

6.5 Tutorial 5: Using the Custom Component Template • 199

Table 6.5: Centrifugal Pump Components

ValueIts UseComponent
Location

SymbolComponent

Use default
settings

This component defines a base
pressure (similar to ground in the
electrical domain) and represents a
connection to atmosphere.

Library
Components >
Hydraulics >
Reference
Components

Tank

Use default
settings :

rhoFluid:

K:

nuFluid:

All hydraulic models need a
Hydraulic Fluid Properties
component. Similar to a Parameter
block, it is placed in the Model
Workspace to define the following
hydraulic fluid properties:

• rhoFluid: liquid density

• K: Bulk Modulus defines the fluid
compressibility

• nuFluid: Kinematic Viscosity
defined as dynamic viscosity divided
by liquid density

Library
Components >
Hydraulics >
Reference
Components

Hydraulic
Fluid
Properties

Use default
settings (see
Table 6.4)

The circular pipe defines a pressure
drop in the hydraulic line. The
pressure drop is given by the Darcy
equation.

Library
Components >
Hydraulics >
Restrictions

Circular
Pipe

User defined
This custom component defines
hydraulic pressure and flow rate
properties for the hydraulic line.

Local Components
> Components

Custom
Component

Figure 6.12: Centrifugal Pump Custom Component

200 • 6 MapleSim Tutorials

To create the custom component:

1. Start a new MapleSim model and then, in the main toolbar, click Load a Maple Worksheet

().

2. Double-click on the Custom Component entry in the Templates palette.

3. Click Create Attachment (). The Maple Custom Component template is loaded.

4. In theDefine Equations section, place your cursor in the first Maple command line (that
is, the one containing eq), and then insert two document blocks (from the main menu,
select Edit > Document Blocks > Create Document Block twice).

5. Replace the contents of the first line with the following Maple command, and then press
Enter at the end of the line. This command places the values from Table 6.3 into the
list L.

6. Enter the following Maple command in the second document block, and then pressEnter
at the end of the line.This command fits a quadratic curve to the data points.

7. Enter the following system of equations, parameters, and initial conditions to define your
component in the third document block, and then press Enter at the end of the line. This
command implements the polynomial in a custom component by defining your equations
in terms of the regression curve and parameters for the block.

8. In the Configuration section, select Ports.

9. Click Clear All Ports.

10. Click Add Port to add a port on the left edge. Select the Hydraulic type, and assign the
Pressure variable to and the Volume Flow Rate variable to .

11. Click Add Port to add a port on the right edge. Select the Hydraulic type, choose style
b, assign the Pressure variable and the Volume Flow Rate variable
[click the +/- button to change the sign].

12. From the Icon list, select Use default, and then click Refresh All.

13. In the Configuration section, select Parameters, and then click Refresh All.

6.5 Tutorial 5: Using the Custom Component Template • 201

14. Change the default for to 9.81 and assign its type to Acceleration. For rho, change
its default to 1000 and its type to Density. Click Refresh All.

15. Select Variables, and then click Refresh All.

16. Change the type for to Pressure.

17. SelectDimensional Analysis, and then clickCheck Dimensions. The following expres-

sion appears: . This indicates a

dimensional inconsistency, however, because it is benign we can leave it as is. If you
prefer to remove the inconsistency, you could replace in the original expressions

with , assign the parameter the default value 1 with type VolumeFlowRate,

and protect it (add an X to the Protected column).

18. In the Component Generation section, change the Name to CentrifugalPump.

19. ClickGenerateMapleSimComponent to create your component and to bring you back
into the MapleSim environment. The custom component now appears in theComponents

palette in the Local Components tab ().

20. Drag the custom component into the Model Workspace and create the model shown in
Figure 6.12 using the specified model components and their settings from Table 6.5.

Tip: To attach the probe on the Circular Pipe component, right-click (Control-click for
Mac) on component, select Attach probe, and then position the probe by clicking on the
workspace.

Note: To display the pressure and volume flow rate quantities for your output, select the
probe, and then select the Pressure and VolumeFlowRate quantities from the Properties
tab.

21. Click Run Simulation () in the Main Toolbar.

22. Click Show Simulation Results (). The following graphs appear in the Analysis
window.

202 • 6 MapleSim Tutorials

6.6 Tutorial 6: Using the External C Code/DLL Custom
Component App
In this tutorial, you will use the External C/Library Block app to import external C Code
parameters and build your model by performing the following tasks:

• Specify the custom component name

• Specify the location of the external C/library

• Define the external C/Library code options

• Specify the directory of the generated Modelica code

• Generate and save the external code custom component

• Build the Simple External Function model

This model consists of three components: a Step function, a Constant Vector, and an Ex-
ternal C Code/DLL custom component.

The external C Code parameters are defined by a function that takes in:

• a double scalar input

• an input double array of size 2

• an output double array of size 3

and then returns a double scalar.

6.6 Tutorial 6: Using the External C Code/DLL Custom Component App • 203

To create the external code custom component:

1. Start a new MapleSim model that will call the external code.

2. In the main toolbar, click ShowAppsManager (). The Analysis window opens with
Apps tab selected.

3. Double-click on the External C/Library Block entry in the Component Creation cat-
egory of the Apps palette. The External C Code/Library Definition app opens.

4. In theCode/Library Location section, for Source Location, select theText Area radio
button. Doing so opens a text area in which C code is to be entered. For a Windows
platform, the initial content is the code shown in Figure 6.13. For a Unix platform, the
code is shown in Figure 6.14.

Figure 6.13: External C Code Definition for Windows

Figure 6.14: External C Code Definition for Unix

204 • 6 MapleSim Tutorials

5. Select the Attachment radio button just above the code edit region.

6. Enter a name for the attachment, say f1.c, in the text area to the right of the Attachment
radio button, then click the Attach button to attach the file to the MapleSim file.

7. Select the Attachment radio button for the Source Location, near the top of the app
and ensure that f1.c is selected in the drop-down menu.

8. Click Validate C to validate the code.

9. In theConfiguration section, select Function, and then enter f1 for the Function Name.

10. In the Configuration section, select Parameters.

11. Click Add Parameter, set the Name to a and click Apply to apply the changes to the
selected parameter.

12. Click Add Parameter, set the Name to b, select the Array? box, set Dim to 2 and click
Apply.

13. ClickAdd Parameter, set theName to c, select Passed by Reference, select theArray?
box, set Dim to 3 and click Apply.

14. In the Configuration section, select Return.

15. Use the following values for the C function return parameter.

16. In the Component Generation section, enter ExternalCode in the Block Name field.

17. ClickGenerate Component. In MapleSim, the custom component appears in the Local

Components tab (), located in the Components palette, on the left side of the
MapleSim window.

To use the external code custom component:

1. Using the specified model components and their settings from Table 6.6, drag the com-
ponents into the Model Workspace and set their values.

6.6 Tutorial 6: Using the External C Code/DLL Custom Component App • 205

Note: Ensure that the model component parameter values are set in your model. When you
select a component in the Model Workspace, the configurable parameter values for that

component appear in the Properties tab () located on the right side of the MapleSim
window.

Table 6.6 shows the required components and their settings.

Table 6.6: External C Code DLL Custom Components and Required Settings

Required SettingsComponent
Location

SymbolComponent

Use default settingsLocal Components >
Components

Custom
Component

Constant output value, set to
Library Components
> Signal Blocks >
Sources > Real

Constant Vector

Height: 4

Offset: 0

T0 : 5

Library Components
> Signal Blocks >
Sources > Real

Step

2. Connect the Step component to custom component input port a.

206 • 6 MapleSim Tutorials

3. Connect the Constant Vector component to custom component input port b.

4. Attach a probe to the custom component output port c and enter the following values:

5. Attach a probe to the custom component output port r and enter the following values:

6. Click Run Simulation () in the Main Toolbar.

7. Click Show Simulation Results (). The following graphs appear in the Analysis
window.

6.6 Tutorial 6: Using the External C Code/DLL Custom Component App • 207

8. To verify the results, from the Help menu, select Examples > User's Guide Examples
> Chapter 6, and then select the Simple External C Code Function example.

6.7 Tutorial 7: Using the Equation Extraction App
In this tutorial, you will use the Equation Extraction App to extract the equations for a
model by performing the following tasks:

• Open the model

• Open the Equation Extraction App

• View, manipulate, and reassign equations

The Equation Extraction App contains pre-built embedded components that lets you extract,
manipulate, and analyze the symbolic system equations generated by any MapleSim model.

208 • 6 MapleSim Tutorials

You can select variables and parameters of interest and assign them user-definable names.
These features are useful in generating reusable equations when there is more than one
subsystem.

App Description

The Equation Extraction App is a collection of pre-built controls and procedures associated
with specific Maple commands to easily generate equations from MapleSim models.

The Equation Extraction App consists of two main areas, Equation Details and View
Equations.

Subsystem Selection

This section loads the MapleSim model and shows all subsystems and their components.
From the toolbar, you can select a subsystem and load its subsystem equations.

Load Selected Subsystem: Loads the subsystem parameters and variables. If no subsystem
is selected, equations for the whole model will be loaded when you click Load Selected
Subsystem.

Equation Details

In this area you can customize and define ports, DAE variables, and parameters for the
generated equations.

Ports

For acausal ports, you can configure a port so that either the flow-variable or the across-
variable is considered an input (known).

One of the two signals must be selected as input. Select each port and then select either
Flow or Across to specify which signal is the input.

DAE Variables

Select and rename DAE variables of interest.

Variables: Contains the model DAE variables.

6.7 Tutorial 7: Using the Equation Extraction App • 209

NewName:Rename a DAE variable by selecting the variable and specifying a new variable
name in the New Name field.

Keep: Mark a variable of interest by selecting the variable and then selecting Keep. If you
use this feature,Extract Equations only displays equations of variables marked withKeep.
If no variables or parameters are marked as keep, all equations are displayed.

Use Subscripts: Use subscripted variable names.

Reset Substitutions: Restores the original names of all variables.

Parameters

Select and rename parameters of interest.

Parameters: Contains the model parameters.

New Name: Rename a model parameter by selecting the parameter and specifying a new
name in the New Name field.

Keep: Mark a parameter of interest by selecting the parameter and then selecting Keep. If
you use this feature, Extract Equations only displays equations of variables marked with
Keep. If no variables or parameters are marked as keep, all equations are displayed.

Symbolic: Specify which parameters are left in symbolic form. By default, parameters are
evaluated in the equations. (Or, useToggle Symbolic to toggle this setting for all parameters.)

Use Subscripts: Use subscripted parameter names.

Reset Substitutions: Restores the original names of all parameters.

View Equations

This area shows the system of equations in symbolic form with the assigned parameters.
You can select which equations you want to look at by selecting one of the equation types
(DAEs, Definitions, Relations, Events, ODEs, AEs). For more information about equation
types, see GetEquations.

The code edit region shows Maple code that can be used in a Worksheet template to access
the equations.

210 • 6 MapleSim Tutorials

Generating the Equations

For this example, we will use the model from theExample: Compliant Contact and Piecewise
Functions (page 188), part of Tutorial 5: Using the CustomComponent Template (page 183).
This model is also found in the Help > Examples > User's Guide Examples > Chapter
6 menu. In this model, a bouncing ball is analyzed using a prismatic joint to model a falling
ball and a custom component to model the compliant ground contact using a spring-damper
arrangement.

You will group these components into a subsystem to use in the Equation Extraction App.

Generating the System Equations

To generate the system equations:

1. From the Help menu, select Examples > User's Guide Examples > Chapter 6, and
then select Compliant Contact and Piecewise Functions.

6.7 Tutorial 7: Using the Equation Extraction App • 211

2. Place the Prismatic joint, contact custom component, probe, and Rigid Body in a sub-
system called sub. This allows the Equation Extraction app to generate equations spe-
cifically for the selected subsystem.

3. In the main toolbar, click ShowAppsManager (). The Analysis window opens with
Apps tab selected.

4. Double-click on the Equation Extraction entry in the Apps palette. The Equation Ex-
traction App opens in the Analysis window. The toolbar in the Subsystem Selection
window shows all of the subsystems in your model.

5. From the toolbar, select the sub subsystem.

212 • 6 MapleSim Tutorials

6. ClickLoad Selected Subsystem. The subsystem's component ports, DAE variables, and
parameters load automatically in the Ports, DAE Variables, and Parameters areas.

7. Click Extract Equations in the View Equations section.

The system equations appear in the View Equations area.

6.8 Tutorial 8: Modeling Hydraulic Systems
This tutorial provides you with a basic description of hydraulic systems and helps you un-
derstand how to model these systems in MapleSim. Using components from the Hydraulic
library, you will create models, set initial conditions and component properties, and assign
new values to parameters and variables.

The hydraulic components are designed primarily to convert hydraulic flow into mechanical
motion, but can also be used to model pure hydraulic circuits.

6.8 Tutorial 8: Modeling Hydraulic Systems • 213

In this tutorial, you will perform tasks based on the following basic principles and concepts:

• Basic Hydraulic Library Components

• Basic Hydraulic Equations

• Analysis of Simple Hydraulic Networks

• First Principles Modeling

• Mechanical and Hydraulic Systems

The following sections provide conceptual models that you can build using the Hydraulic
library components:

• Controlling Hydraulic Flow Path

• Actuating Multibody Systems with Hydraulic Components

• Compressibility of Hydraulic Liquids

• Fluid Inertia Models

• Water Hammer Models

• Hydraulic Custom Components

Computational Issues

Hydraulic networks tend to be numerically stiff. Generally, the stiff Rosenbrock solver is
recommended.

Basic Hydraulic Library Components

This tutorial uses the following basic Hydraulic library components.

214 • 6 MapleSim Tutorials

Table 6.7: Basic Hydraulic Library Components

Its UseLibrary LocationSymbolComponent

This component defines a base pressure
(similar to ground in the electrical domain)
and represents a connection to the atmosphere.

Hydraulics > Reference
ComponentsTank

All hydraulic models need a Hydraulic Fluid
Properties component. Similar to a Parameter
block, it is placed in the Model Workspace
to define the following hydraulic fluid
properties:

• rhoFluid: fluid density

•K: Bulk Modulus is the fluid compressibility

• nuFluid: Kinematic Viscosity is the dynamic
viscosity divided by liquid density

Hydraulics > Reference
Components

Hydraulic
Fluid
Properties

Actuators convert hydraulic flow into the
motion of a mechanical body. MapleSim
offers a Hydraulic Cylinder (for translational
motion) and a Hydraulic Motor (for rotational
motion).

Hydraulics > Actuators

Hydraulic
Motor

Hydraulic
Cylinder

You can specify either the flow rate or the
pressure of the hydraulic source (with
MapleSim calculating the other quantity). If
a Pressure Source is used, then MapleSim
balances the load in the hydraulic system
against the pressure source to find the flow
rate, and vice versa.

Hydraulics > Sources

Fixed Flow
Rate

Fixed Pressure
Source

The circular pipe introduces a pressure drop
in a hydraulic line. The pressure drop is given
by the Darcy equation, with the friction factor
being determined by using predefined
equations.

Hydraulics >
RestrictionsCircular Pipe

6.8 Tutorial 8: Modeling Hydraulic Systems • 215

Basic Hydraulic Equations

The Bernoulli and the Darcy equations are the fundamental equations necessary to analyze
hydraulic systems and define the fluid pressure and flow rate characteristics for any point
along a flow. This tutorial uses the following basic fluid equations.

• Bernoulli Equation

• Darcy Equation

• Friction Factor

Bernoulli Equation

The Bernoulli Equation defines the pressure and flow rate characteristics of incompressible
fluid flow in a pipe. For any point along a streamline, the following relationship applies.

Darcy Equation

For an incompressible fluid flowing through a pipe with a constant diameter, the pressure
drop due to pipe friction is given by the Darcy equation.

Hence

216 • 6 MapleSim Tutorials

Table 6.8: Bernoulli and Darcy Equation Notation

UnitsDescriptionSymbol
PressureP

Densityρ

Gravitational constantg

VelocityV

Elevationz
Pipe lengthL
Pipe diameterD

dimensionlessFriction factorf

Hence pressure must be applied to overcome internal frictional effects within the liquid (in
laminar flow), and the effect of the surface roughness of the pipe (in turbulent flow). Fric-
tional losses (and any other loads in the system) have to be balanced against the applied
pressure to determine the flow rate.

In MapleSim’s mechanical-hydraulic systems, the vertical displacement (z) is insignificant
compared to the other terms, and is ignored.

Friction Factor

In laminar flow, the internal frictional () effect is determined by the following equations:

=

where
is the internal friction

Re is the Reynolds number

D is the pipe diameter

V is the fluid velocity and

ν is the dynamic viscosity

6.8 Tutorial 8: Modeling Hydraulic Systems • 217

In turbulent flow, the frictional effects of the surface roughness of the pipe are characterized
by the Haaland Equation.

The Reynolds number (Re) indicates whether flow in a pipe is in laminar or turbulent flow,
or is in transition between the two. For example, the circular pipe parameters in Table 6.9
gives the Reynolds number for laminar (ReL) and turbulent (ReT) flow. Between these
two parameters, the friction factor is determined by linear interpolation.

Table 6.9: Circular Pipe Parameters

ValuesDescriptionSymbol
Pipe length

Height of internal pipe roughness

Maximum Reynolds number in laminar regime

Minimum Reynolds number in turbulent regime

Pipe hydraulic diameter

Analysis of Simple Hydraulic Networks

This section simulates a simple hydraulic system and analyzes the results from first principles
and explains how to:

• Create a simple laminar pipe flow hydraulic system

• Analyze the governing equations by applying various laws (for example, conservation
of mass, Bernoulli Equation, Darcy Equation)

Flow Through a Pipe

Figure 6.15 analyzes pressure and laminar flow rate characteristics through a pipe when
pressure is applied to overcome internal frictional effects.

To analyze flow through a pipe:

1. Create the following model using the specified model components and their settings
from Table 6.10.

Tip: To attach the probe on the Circular Pipe component, right-click (Control-click for
Mac) on the component, select Attach probe, and then position the probe by clicking on
the workspace.

218 • 6 MapleSim Tutorials

Figure 6.15: Flow Through a Pipe

Table 6.10: Hydraulic Components

ValuesLibrary LocationSymbolQuantityComponent

Use default settingsHydraulics > Reference
Components2Tank

Use default settings:

rhoFluid:

K:

nuFluid: 0.000018

Hydraulics > Reference
Components1Hydraulic Fluid

Properties

Set P =Hydraulics > Sources1Fixed Pressure
Source

Use default settingsHydraulics >
Restrictions1Circular Pipe

2. Click the probe and select the Real (the instantaneous Reynolds number), Pressure, and
VolumeFlowRate probe parameters.

6.8 Tutorial 8: Modeling Hydraulic Systems • 219

3. Click Run Simulation () in the Main Toolbar.

4. Click ShowSimulationResults (). The following graph appears showing the predicted

flow rate of

220 • 6 MapleSim Tutorials

Confirming the Modeling Results from First Principles

When analyzing the system shown in Figure 6.15, apply the Darcy equation.

Assuming that the system is in laminar flow, then

Hence

Where

V = 0.0408

Using V in the flow rate equation yields the following result:

=

This is the same value given by MapleSim. Using the calculated value ofV givesRe= 22.7.
This is far less than the critical value of 2000, and hence the system is in laminar flow.

Overview of Controlling Hydraulic Flow Path

A spool valve has a sharp-edged variable area orifice that enables or partially restricts flow
in a pipe, and can assist in switching flow from one part of a hydraulic network to another.
A spool valve has three ports.

6.8 Tutorial 8: Modeling Hydraulic Systems • 221

Table 6.11: Spool Valve

IDDescriptionNameSpool Valve
portA

portB

Area

Upstream port

Downstream port

Real input; area of orifice
in selected units

PortA

PortB

Area

The top port (inp) accepts a signal input that is equal to the open valve area. By regulating
the valve area, flow switches on or off. The left and right ports (portA and portB) are hy-
draulic connectors. In the following diagram, the model switches flow from the top leg to
the bottom leg when the simulation time reaches 5 seconds. That is, initially, the top spool
valve is open and the bottom is closed. After 5 seconds, the top spool valve closes and the
bottom opens.

Figure 6.16: Controlling Flow Path

Mechanical and Hydraulic Systems

In the following examples you will use multidomain components to simulate translational
motion in mechanical and hydraulic models with the following sources:

• Fixed Flow Rate Source

• Fixed Pressure Source

222 • 6 MapleSim Tutorials

Simulating Translational Motion with a Fixed Flow Rate Source

The following model converts flow from a fixed flow source to translational motion using
the components and their settings from Table 6.12.

Figure 6.17: Fixed Flow Rate Source

6.8 Tutorial 8: Modeling Hydraulic Systems • 223

Table 6.12: Translational Motion with Fixed Flow Rate Sources

ValuesLibrary LocationSymbolQuantityComponent

Use default settingsHydraulics > Reference
Components1Tank

Use default settings:

rhoFluid:

K:

nuFluid: 0.000018

Hydraulics > Reference
Components1Hydraulic Fluid

Properties

Use default settingsHydraulics > Sources1Fixed Flow Rate

Use default settingsHydraulics > Actuators1Hydraulic
Cylinder

Use default settings1-D Mechanical >
Translational > Common1Mass

Use default settings1-D Mechanical >
Translational > Common1Translational

Fixed

Note: The Hydraulic cylinder has a cross-sectional area A of , while the Fixed Flow

Rate has a flow Q of .

The cylinder pushes the sliding mass at a speed of

= =

This is confirmed by running the simulation and probing the speed of the sliding mass.

224 • 6 MapleSim Tutorials

Simulating Translational Motion with a Fixed Pressure Source

Replace the Fixed Flow Rate with the Fixed Pressure Source component shown in
Figure 6.18 and Table 6.13. The following model converts flow from a fixed pressure
source to translational motion.

Figure 6.18: Translational Motion with Fixed Pressure Source

6.8 Tutorial 8: Modeling Hydraulic Systems • 225

Table 6.13: Translational Motion with a Fixed Pressure Source

ValueLibrary LocationSymbolComponent

Use default settingsHydraulics > SourcesFixed Pressure
Source

The force on the Sliding Mass is equal to the cross-sectional area of the hydraulic cylinder
A multiplied by the pressure P of the hydraulic fluid.

= =

The acceleration of the Sliding Mass is given by:

= =

Therefore,

By probing the acceleration, speed, and displacement of the Sliding Mass, these values are
confirmed with the results in Figure 6.19.

226 • 6 MapleSim Tutorials

Figure 6.19: Fixed Pressure Source Results

Overview of Actuating Multibody Systems with Hydraulic Components

In the following model, connect the 1-D translational port on the hydraulic cylinder to the
1-D translational port on the multibody prismatic joint using a translation fixed flange and
a rigid body mass from Table 6.14. Use the default settings for each component.

Figure 6.20: Translational Fixed Flange Hydraulic component

6.8 Tutorial 8: Modeling Hydraulic Systems • 227

Similarly in the following model, connect the 1-D rotational port on the hydraulic motor to
the 1-D rotational port on the multibody revolute joint using a rotational fixed flange and a
rigid body mass from Table 6.14. Use the default settings for each component.

Figure 6.21: Rotational Fixed Flange Hydraulic component

Table 6.14: Actuating Multibody Components

Library LocationSymbolComponent

Hydraulics > SourcesFixed Flow Rate

1-D Mechanical > Rotational > CommonRotational Fixed Flange

1-D Mechanical > Translational > CommonTranslational Fixed Flange

Hydraulics > Reference ComponentsTank

Hydraulics > ActuatorsHydraulic Cylinder

228 • 6 MapleSim Tutorials

Library LocationSymbolComponent

Hydraulics > ActuatorsHydraulic Motor

Multibody > Joints and MotionsPrismatic

Multibody > Bodies and FramesRigid Body Frame

Multibody > Bodies and FramesRigid Body

Multibody > Joints and MotionsRevolute

Multibody > Bodies and FramesFixed Frame

Pascal's Principle

Pascal's Principle states that pressure applied to a closed hydraulic system is transmitted
everywhere equally. This principle shows that an applied force can be amplified to move
loads that would otherwise not be possible.

The model in Figure 6.22 demonstrates a simple example of Pascal's Principle. A 1 N force
(acting on a 0.1 hydraulic cylinder) transmits hydraulic pressure to a 1 hydraulic
cylinder, which lifts a 1kg load vertically. Normally, a 9.81 N force maintains the height
of a 1 kg force, but this simple hydraulic system multiplies the magnitude of a 1 N load by

a factor of 10 or .

6.8 Tutorial 8: Modeling Hydraulic Systems • 229

Figure 6.22: Pascal's Principle Example

Overview of Compressibility of Hydraulic Liquids

The compliant cylinder and constant volume chamber components (Table 6.16) model the
compressibility of hydraulic liquids under high pressure. The compliant cylinder component
also models pipe wall compliance. Both have to be attached to a node between pipes or in-
ertias as shown in Figure 6.23.

Figure 6.23: Hydraulic Liquids Compressibility

Table 6.15: Hydraulic Liquids Compressibility Components

ValueLibrary LocationSymbolComponent

230 • 6 MapleSim Tutorials

Use default settingsHydraulics > SourcesSignal Pressure

Use default settingsHydraulics > Reference
ComponentsTank

Use default settingsHydraulics > RestrictionsLinear
Resistance

Table 6.16: Confined Hydraulic System Components

ValueLibrary LocationSymbolQuantityComponent

Use default settingsHydraulics > Chambers1Compliant
Cylinder

Use default settingsHydraulics > Chambers1Constant
Volume

Overview of Fluid Inertia Models

The Fluid Inertia component models the inertia of liquid accelerating or decelerating in a
pipe and is analogous to mechanical inertia. Fluid Inertia can be significant for large diameter
pipes and when the acceleration/deceleration is large. This component is useful when
modeling water hammer.

Table 6.17: Fluid Inertia

ValueLibrary LocationSymbolQuantityComponent

Use default settingsHydraulics >
Restrictions1Fluid Inertia

System without Fluid Inertia

Figure 6.24 shows a system without fluid inertia.

6.8 Tutorial 8: Modeling Hydraulic Systems • 231

Figure 6.24: System without Fluid Inertia

System with Fluid Inertia

Figure 6.24 shows a system with fluid inertia.

Figure 6.25: System with Fluid Inertia

Figure 6.26 shows typical system flow rates with (green) and without (red) fluid inertia.
Introducing fluid inertia adds a lag into the system.

232 • 6 MapleSim Tutorials

Figure 6.26: System with and without Fluid Inertia

Overview of Water Hammer Models

Water hammer occurs when a valve suddenly stops (or significantly restricts) flow in a pipe,
resulting in a pressure surge due to a momentum change in the fluid inertia. This pressure
surge bounces off the closed valve and travels up and down the pipe, potentially causing
significant damage to the entire pipe. Water hammer is traditionally modeled by the numer-
ical solution of the following equations.

Where:

V(x,t) is the pipe velocity

P(x,t) is the pipe pressure

ρ is the liquid density

D is the pipe diameter

6.8 Tutorial 8: Modeling Hydraulic Systems • 233

t is the pipe wall thickness

K is the liquid bulk modulus

E is Young’s modulus for the pipe

is the friction factor

These equations (with the appropriate boundary and initial conditions) are typically solved
numerically, requiring custom code to solve the equations using the method of characteristics.

Example: Water Hammer

Another method of simulating water hammer involves building a lumped parameter pipeline
model. The pipeline model includes effects such as flow inertia, flow resistance (through
pipe friction), pipe compliance, and fluid compressibility.

The following figure shows a discretized pipeline with inertial and resistive properties, ini-
tially pressurized at one end to create flow. After two seconds, a valve at the other end is
closed, resulting in a pressure surge.

Figure 6.27: Water Hammer

Each subsystem consists of a compliant cylinder, a pipe, and a fluid inertia component as
shown in Figure 6.28. A pipeline (of total length L and volume V) with N segments has

pipes, each with a length,

234 • 6 MapleSim Tutorials

N+1 fluid inertia components, each with a length,

N constant volume chambers, each with a volume,

Figure 6.28: Discretized Pipeline Segment

To build the water hammer model:

1. Build the model with the components and connections shown in Figure 6.27 and
Figure 6.28.

2. Configure the Fluid Properties component with the values specified in Table 6.18.

Table 6.18: Fluid Properties Values

ValueDescriptionSymbolParameter
Name

1000 kg m-3Fluid densityrhoFluid

200 106 PaFluid bulk modulusK

Fluid kinematic viscositynuFluid

3. Configure the parameter block with the parameters and values shown in Table 6.19.

6.8 Tutorial 8: Modeling Hydraulic Systems • 235

Table 6.19: Water Hammer Parameters

ValueDescriptionParameter Name
20Number of pipe segmentsN

0.1 mPipe hydraulic diameter (D)Dia
25 mPipe LengthLen

70 109 PaPipe Young's modulus (E)Em

0.0001 mPipe internal roughnessef
0.001 mPipe wall thickness (t)thickness

4. For the Fixed Pressure component (FP2 in Figure 6.27), set the pressure (P) to 500kPa.

5. Configure the Circular Pipe components in Main and the HydraulicPipeline shared
subsystem with the following settings.

SettingParameter
Name

DiaD
L

ef
2000ReL
4000ReT

6. Configure the Fluid Inertia components in Main and the HydraulicPipeline shared
subsystem with the following settings.

SettingParameter
Name
A

L

rhoFluid

7. Configure theCompliant Cylinder component in theHydraulicPipeline shared subsys-
tem with the following settings.

236 • 6 MapleSim Tutorials

SettingParameter
Name

0α
1.4k

L

DiaD
Dia + 2*thicknessDo

EmEm

8. For the First Order component, under the Properties tab (), set T to 0.01s and y0 to
0.01.

9. Configure the Step component with the following settings.

• For height, enter -0.009999.

• For offset, enter 0.01.

• For T0, enter 2s.

10. Under the Settings tab, configure the following Simulation parameters.

• For td, enter 3s.

• For Solver Type, select Variable.

• For Solver, select Rosenbrock (stiff).

Figure 6.29 plots the pressure and flow rate at the end of a pipe for a valve that rapidly
closes after 2 seconds.

6.8 Tutorial 8: Modeling Hydraulic Systems • 237

Figure 6.29: Water Hammer Pressure Flow Rate

The maximum pressure is about 5 x 106Pa, with the liquid reaching a flow rate of 0.099 .

The maximum pressure can also be calculated using the Joukowsky equation,

238 • 6 MapleSim Tutorials

If you substitute the parameters fromTable 6.18 andTable 6.19 into the preceding equations,
and then assume:

∆Q=0.099

you get

∆P ≈ 5×106Pa

This result agrees with the MapleSim model.

Example: Attenuating Water Hammer with an Accumulator

A hydraulic accumulator is a reservoir, often located near a valve, that stores non-compress-
ible hydraulic fluid under pressure. An accumulator acts as a safety valve by allowing fluid
to enter the reservoir when the pressure increases beyond a certain threshold value. This
action attenuates the magnitude and frequency of the pressure waves.

MapleSim does not have a built-in accumulator block, but this functionality is easily modeled
with the Custom Component template using the following equations. For a complete descrip-
tion on how to create custom components, see Creating Custom Modeling
Components (page 73).

6.8 Tutorial 8: Modeling Hydraulic Systems • 239

Table 6.20: Accumulator Parameters Custom Component

ValuesDescription

0.1 mVmax
100000ppr
3000000Pmax

mKs
0Vpr

The following figure shows the same pipeline with a pressure accumulator. After two
seconds, a valve at the other end is closed, resulting in a pressure surge. Figure 6.30 shows
the pressure surge at the end of a pipeline with an accumulator.

240 • 6 MapleSim Tutorials

Figure 6.30: Pressure Surge with an Accumulator

Overview of Hydraulic Custom Components

Two examples of hydraulic custom components are centrifugal pumps and vertical pipes.
For a complete description on how to create custom components, see Creating Custom
Modeling Components (page 73).

Centrifugal Pumps

Typically, manufacturers provide head flow rate charts for centrifugal pumps, as shown in
Figure 6.31.

6.8 Tutorial 8: Modeling Hydraulic Systems • 241

Figure 6.31: Head Flow Rate

Data from these charts is easily implemented into a custom component.

To implement chart data:

1. Read several sets of head flow rate points from the plot.

2. Fit these data points to a polynomial using the Maple curve-fitting functionality.

3. Implement the polynomial into a custom component. Figure 6.32, for example, shows
the custom component equations for a centrifugal pump (including the best-fit parameters).

Note: Since the equation is a polynomial, several solutions may exist.

Figure 6.32: Centrifugal Pump Custom Component Equations

Note:Assigning the value rhoFluid to the Density parameter sets the density to be the value
defined in the Hydraulic Fluid Properties component.

Vertical Pipes

Since gravity head is usually insignificant in mechanical-hydraulic systems, the base pipe
component in MapleSim does not model vertical pipe travel. For low-pressure systems,
gravity head can be significant. Figure 6.33 shows the custom component equations to
simulate gravity head.

242 • 6 MapleSim Tutorials

Figure 6.33: Gravity Head Custom Component Equations

6.8 Tutorial 8: Modeling Hydraulic Systems • 243

244 • 6 MapleSim Tutorials

7 Reference: MapleSim Keyboard Shortcuts
Table 7.1: Operations on a File

MacWindows and LinuxTask
Command + NCtrl + NCreate a new model
Command + OCtrl + OOpen an existing model

Command + W
Ctrl + F4 (Windows)

Close the active document
Ctrl + W (Linux)

Command + SCtrl + SSave the model as an .msim file
F10F10Load Maple worksheet
Command + PCtrl + PPrint
Command + Shift + LCtrl + Shift + LPrint Layout Mode
Command + Shift + PCtrl + Shift + PPage Setup

Table 7.2: Building a Model in the Block Diagram View

MacWindows and LinuxTask
EscEscCancel operation while drawing a

connection

Command + RCtrl + RRotate the selected modeling
component 90 degrees clockwise

Command + LCtrl + L
Rotate the selected modeling
component 90 degrees
counter-clockwise

Command + KCtrl + HFlip the selected modeling component
horizontally

Command + FCtrl + FFlip the selected modeling component
vertically

Command + GCtrl + GGroup the selected modeling
components into a subsystem

Command + DCtrl + DReroute the selected connections
Command + A,Ctrl + A, Ctrl + DReroute all connections

Command + D

Table 7.3: Adding Annotations to a Model

MacWindows and LinuxTask
Ctrl + Shift + BCtrl + Shift + BMove selected objects to the back
Ctrl + Alt + BCtrl + Alt + BMove selected objects backward
Ctrl + Alt + FCtrl + Alt + FMove selected objects forward

245

MacWindows and LinuxTask
Ctrl + Shift + FCtrl + Shift + FMove selected objects to the front

Table 7.4: Browsing a Model in the Block Diagram View

MacWindows and LinuxTask
Command + M, or Command
+ Down Arrow

Ctrl + M, or Ctrl + Down
Arrow

View the selected modeling
component or subsystem in detail

Command + Up ArrowCtrl + Up ArrowView the parent level of the current
subsystem

HomeHomeReturn to Main
Command + Up ArrowCtrl + Up ArrowNavigate to parent component
Command + numeric keypad
plus key, or

Ctrl + numeric keypad plus
key, or

Ctrl and move the mouse
wheel forward

Zoom into the model workspace
Command and move the mouse
wheel forward
Command + numeric keypad
minus key, or

Ctrl + numeric keypad
minus key, or

Zoom out from the model workspace
Command and move the mouse
wheel backward

Ctrl and move the mouse
wheel backward

Command + TCtrl + TScale the model diagram to fit in the
model workspace

Command + 0 (zero)Ctrl + 0 (zero)Reset zoom factor to the default zoom
factor (100%)

246 • 7 Reference: MapleSim Keyboard Shortcuts

Table 7.5: Browsing a Model in the 3-D View

MacWindows and LinuxTask
Command + Shift + CCtrl + Shift + CConnect ports
DeleteBackspace or DeleteDelete the currently selected item
VVFit scene
EscEscSelect mode
F2F2Pan mode
F3F3Zoom mode
F4F4Rotate mode

Mouse click and dragLeft mouse button click and
dragMove the camera around a 3-D model

in the perspective view or Command + mouse click
and dragor Ctrl + left mouse button

click and drag
Right mouse button click and
drag

Right mouse button click and
drag

Panning a 3-D model oror Shift + left mouse button
click and drag Shift + mouse click and drag

Mouse wheel scroll forward
(zoom in), or backward (zoom
out)

Mouse scroll wheel forward
(zoom in), or backward
(zoom out)

Zoom into or out from the 3-D
workspace or middle mouse click and dragor middle mouse click and

drag
or Alt + mouse click and drag,
or mouse wheelor Alt + left mouse button

click and drag
XX
YY

ZZ
Change perspective view to look
down the negative X, Y, or Z axis

Shift + XShift + X
Shift + YShift + Y

Shift + ZShift + Z
Change perspective view to look
down the positive X, Y, or Z axis

R or Command + 4R or Ctrl + 4Change perspective view to look at
the right side of the scene

• 247

MacWindows and LinuxTask

L or Command + 3L or Ctrl + 3Change perspective view to look at
the left side of the scene

T or Command + 5T or Ctrl + 5Change perspective view to look at
the top side of the scene

M or Command + 6M or Ctrl + 6Change perspective view to look at
the bottom side of the scene

F or Command + 1F or Ctrl + 1Change perspective view to look at
the Front side of the scene

B or Command + 2B or Ctrl + 2Change perspective view to look at
the Back side of the scene

SSSave the current camera pose. (Only
one camera pose can be saved.)

HHReturn to the last saved camera pose.
Shift + F5Shift + F5Refresh 3-D view

Table 7.6: Simulating a Model

MacWindows and LinuxTask
F5F5Run simulation
F6F6View Simulation Results.

If the Simulation Results is currently
in focus, bring MapleSim window into
focus.

Shift + F6Shift + F6View Rerun Simulation Window.

If the Rerun Simulation Window is
currently in focus, bring MapleSim
window into focus.

F7F7View 3-D Workspace.

If the 3-D Workspace is currently in
focus, bring MapleSim window into
focus.

F8F8View Apps Manager.

If the Apps Manager is currently in
focus, bring MapleSim window into
focus.

Command + ECtrl + EToggle enable/disable selected
components or connections to exclude
selection from the next simulation

248 • 7 Reference: MapleSim Keyboard Shortcuts

Table 7.7: Navigating the Console Pane

MacWindows and LinuxTask
Right ArrowRight ArrowExpands a section
Left ArrowLeft ArrowCollapses a section
Up or Down ArrowUp or Down ArrowMoves cursor to the following or

previous section

Table 7.8: Modifying the Plot Window Layout

MacWindows and LinuxTask
Shift + TShift + TTile plot windows
Shift + CShift + CCascade plot windows

Shift + FShift + F

Fit plots in plot window.
Automatically adjust row heights to
fit all plots in a plot window in the
available vertical space.

Table 7.9: Editing a Modelica Custom Component

MacWindows and LinuxTask

F9F9

View the Modelica Code Editor.

If the Modelica Code Editor is
currently in focus, bring MapleSim
window into focus.

Command + NCtrl + NNew Modelica custom component
Command + SCtrl + SSave Modelica custom component
Command + FCtrl + FFind and replace
Command + GCtrl + GGo to a line

Command + SpaceCtrl + SpaceAutocomplete on part of a keyword
or component name

Command + Shift + SpaceCtrl + Shift + Space

Insert a Modelica syntax template
after typing a typing a term like block,
if, ife, or for. See Using MapleSim >
Building a Model > Modelica
Custom Components > Modelica
Code Editor > Syntax Templates for
a complete list of terms.

Command + TabCtrl + TabToggle left navigation pane (if
unlocked)

• 249

Table 7.10: Miscellaneous

MacWindows and LinuxTask
Alt + SAlt + SPerform a search
F1F1Open Help window
F12F12Compare models

For keyboard shortcuts for 2-D math notation, refer to Using MapleSim > Building a
Model > Annotating a Model > Key Combinations for 2-D Math Notation.

250 • 7 Reference: MapleSim Keyboard Shortcuts

Glossary
DescriptionTerm

Formatting option that allows you to enter mathematical
text, such as superscripts, subscripts, and Greek characters.2-D math notation

The area of the MapleSim window in which you can build
and edit a 3-D model.3-D workspace

Shapes that you can display in a 3-D model to create a
realistic representation of a system model. Attached shapesAttached shapes include cylinders, trace lines, and CAD geometry that you
import from another file.
The point of view from which a 3-D scene is viewed.Camera
The process by which a camera follows the movement of
a target 3-D component that you select. The targetCamera tracking component is centered in the 3-D playback window during
an animation.
A user-defined component that you can create and add to
a MapleSim model using the Custom Component Template.Custom component

A collection of modeling components and subsystems that
can be saved in a user-defined palette and used in a future
MapleSim session.

Custom library

Configurable graphical controls, buttons, meters, and other
interactive components that you can add to a Maple standardEmbedded component worksheet to analyze, manipulate, and visualize equations
and Maple commands.
Default cylinders and spheres that are displayed in a 3-D
model to represent modeling components.Implicit geometry

A collection of routines or commands that can be used in
Maple. Most Maple packages provide a set of commandsMaple package for a particular mathematical or scientific domain, or field
of study.
The default collection of domain-specific modeling
components included in MapleSim. These modelingMapleSim component library components can be found in the gray palettes in the
Libraries tab.
The area of the MapleSim window in which you can build
and edit a model in a block diagram view.Model workspace

A type of 3-D view that uses parallel projection and displays
lines in the view plane at their "true length." In MapleSim,Orthographic view you can view a model from front, top, and side orthographic
views.
A 3-D view that allows you to examine and browse a model
from any direction in 3-D space.Perspective view

251

DescriptionTerm
The tool used to identify quantities of interest in order to
simulate a MapleSim model.Probe

A subsystem copy that shares the same configuration as
other subsystems. All shared subsystems are linked to aShared subsystem particular subsystem definition, which defines the
configuration.
A subsystem that is not linked to a subsystem definition
and can be edited and manipulated independent of other
subsystems in a model.

Standalone subsystem

A collection of modeling components grouped in a single
block.Subsystem

A subsystem block that defines the configuration for a series
of shared subsystems.Subsystem definition

252 • Glossary

Index
Symbols
2-D math notation, 64
3-D animation, 128

enable, 110
3-D display controls

3-D manipulators, 118
adding a trace, 115
attached shapes, 115, 120
implicit geometry, 114
initial conditions, 127

3-D model construction, 117
3-D playback window, 109
3-D view navigation, 112
3-D views

orthographic, 112
perspective, 112

3-D workspace, 111
axis designation, 112

A
acausal mapping, 81
acausal modeling, 2, 5, 8
across variables, 3

custom components, 82
adding a probe, 12
advanced simulation settings, 97
alpha, 97
analyzing models

using the API, 149
with apps and templates, 133

animating the 3-D model, 128
annotations, 62
API, 149
apps

code generation, 138
equation extraction, 135
parameter optimization, 136

apps and templates
analyzing your model with, 133

arrow convention, 67, 69
attaching files to a model, 59
attachments palette, 59

B
Baumgarte, 97

alpha, 97
beta, 97

best practices, 71
building 1-D translational models, 69
building electrical models, 67
building hydraulic models, 71
building multibody models, 70
enforcing initial conditions, 72
laying out and creating subsystems, 66
simulating and visualizing a model, 129

beta, 97
building a model

adding and moving objects in the 3-D
workspace, 121
assembling a 3-D Model, 119
displaying attached shapes as you build
a 3-D Model, 120
moving objects in the 3-D workspace,
118
using do not enforce constraints, 119

C
CAD geometry, 120
causal modeling, 2, 5, 8
code generation

C code, 138
initialization, 140
options, 142
subsystem, 139

compile optimized, 99
compiler, 99
connection lines, 24

colors, 24
connection ports, 24
conserved quantity flow

arrow convention, 16, 70, 94

253

constraint handling options, 143
constraint projection, 97, 143

during event iterations, 98
iterations, 97
tolerance, 98

constraint stabilization, 97
construct mode, 117
custom components

defining equations, 86
defining ports, 87
Editing, 85
external C code/DLL, 147, 207
modeling from extrapolated data, 198
template, 201
understanding custom components, 75

custom libraries, 60
custom plot window, 103

D
DAE variables, 209
data sets

creating in Maple, 65
generating for model, 59

debugging console, 40
diagnostic messages, 7, 67
differential algebraic equations, 1
DLL

custom component, 147
drawing, 62
DynamicSystems package, 149

E
embedded components, 149
equations

app, 211
retrieving, 135

error tolerance, 96
event hysteresis, 98
event iterations, 98
event projection, 98
Examples

Adding Attached Shapes to a Double
Pendulum Model, 115
Adding Text Annotation to a Model, 63
Assigning a Subsystem Parameter to a
Shared Subsystem, 45
Building a Double Pendulum Model in
the 3-D Workspace, 121
Copying and Pasting a Standalone Subsys-
tem, 41
Creating a Custom Library from an Exist-
ing Model, 60
Creating a Data Set in Maple, 65
Creating a Parameter Override, 55
creating a subsystem, 29
Creating and Using a Parameter Block,
47
Defining and Assigning a Global Paramet-
er, 43
Editing Shared Subsystems that are
Linked to the Same Subsystem Definition,
34
Nonlinear Spring-Damper Custom Com-
ponent, 89
Plotting Multiple Quantities in Individual
Graphs, 104
Plotting One Quantity Versus Another,
106
Removing the Link between a Shared
Subsystem and Its Subsystem Definition,
38
Resolving Warning Messages in the De-
bugging Console, 40

external C code/DLL
custom component, 147, 207

F
fixed time step, 95
flow direction, 3

G
global parameters, 155, 163
grid

254 • Index

3-D grid, 120
using CAD geometry, 120

H
help pane, 20
hydraulic systems, 243

basic hydraulic equations, 216
basic hydraulic library components, 214,
218
Bernoulli equation, 216
compressibility, 230
custom accumulator component, 239
custom component, 241
Darcy equation, 216
fluid inertia, 231
friction factor, 217
Joukowsky equation, 238
multibody hydraulic, 227
multidomain, 222
Pascal's principle, 229
spool valve, 221
translational motion, 225
water hammer, 233

I
implicit geometry, 114
index 1 error control, 98
index 1 tolerance, 98
initial conditions, 54

best practices for enforcing initial condi-
tions, 72
overrides, 58
specifying, 27
specifying how initial conditions are en-
forced, 27

initial hysteresis, 98
initialization, 140
interpolation tables, 166

J
Jacobian, 97

K
keyboard shortcuts, 245
kinematic constraints, 119

L
latest results

from simulation, 101
linear systems

analyzing, 135
linearization, 135
LinkModel, 149

M
MapleSim component library, 5, 8, 19
MapleSim model

embedded components, 149
MapleSim window, 7
minimize events, 99
model tree, 21
model workspace, 6
Modelica, 91
Modelica custom component, 75
modeling components

connecting, 10
models

building, 8
multibody

best practices for building multibody
models, 70
settings, 109

multibody parameter values, 110

P
palettes, 7, 19
parameter block

for global parameters, 43
for subsystem parameters, 46

parameter optimization, 136
parameter override, 55
parameters

advanced parameter settings, 45, 53
advanced variable settings, 53

Index • 255

defining, 43
global parameters, 43
parameter sets, 52, 100
parameter values, 11, 25
subsystem parameters, 45

physical components, 83
physical models

analyzing, 131
navigating, 23

plot events, 99
plot points, 96
plot windows, 107
plots

add second variable to graph, 104
set x-axis variable, 106

port and parameter management, 141
probes, 93

adding, 12
arrow convention, 16, 70, 94

probes palette, 99
progress information messages, 101
projection, 97
projection iterations, 97
projection tolerance, 98

R
rerun simulation, 94, 157

S
scaling, 98
settings

advanced simulation, 97
simulation, 95

sign convention, 3
signal flow, 81
simulating, 99
simulation

duration time, 95
initial conditions, 102
settings, 95
start time, 97

simulation graphs, 107

simulation parameters
compiler, 99
settings, 94

simulation results
clear message console, 101
comparing, 101
exporting graph data, 103
managing, 101
progress messages, 100
snapshots, 102
storing, 101
viewing, 101

snapshots, 102
using, 97

solver, 96
solver diagnostics, 99
solver type, 95
specifying component properties, 11
standalone subsystem, 39
state, 102
step size, 96
stored results

from simulation, 101
subsystem(s)

adding a port, 161
adding multiple copies of a subsystem to
a model, 31
adding subsystem definitions and shared
subsystems to a model, 32
code generation, 139
creating and managing, 28, 154
definition, 31
editing multiple instances, 34
linking, 32
parameters, 45
shared, 31
standalone, 39

T
templates, 133

custom component, 86
understanding custom components, 76

through variables, 3

256 • Index

arrow convention, 16, 70, 94
custom components, 82

time
simulation duration, 95
simulation end, 97
simulation start, 97

time step, 95
trace lines, 109, 115

example, 115, 117
tutorials, 151

Basic Tutorial: Modeling an RLC Circuit
and DC Motor, 17

U
units

specifying parameter units, 26

V
variable scaling, 98
variable time step, 95
visualization, 109

transparency, 109
visualization parameters

settings, 109

Index • 257

258 • Index

	MapleSim User's Guide
	Contents
	Introduction
	1 Getting Started with MapleSim
	1.1 Physical Modeling in MapleSim
	Topological or “Acausal” System Representation
	Mathematical Model Formulation and Simplification
	Advanced Differential Algebraic Equation Solvers
	Acausal and Causal Modeling
	Causal Modeling
	Acausal Modeling
	Through and Across Variables

	1.2 The MapleSim Window
	1.3 Basic Tutorial: Modeling an RLC Circuit and DC Motor
	Building an RLC Circuit Model
	Specifying Component Properties
	Adding a Probe
	Simulating the RLC Circuit Model
	Building a Simple DC Motor Model
	Simulating the DC Motor Model

	2 Building a Model
	2.1 The MapleSim Component Library
	Viewing Help Topics for Components
	Updating Models Created in a Previous Release of MapleSim

	2.2 Browsing a Model
	Model Tree
	Model Navigation Controls

	2.3 Defining How Components Interact in a System
	2.4 Specifying Component Properties
	Specifying Parameter Units
	Specifying Initial Conditions
	Specifying How Initial Conditions are Enforced

	2.5 Creating and Managing Subsystems
	Example: Creating a Subsystem
	Viewing the Contents of a Subsystem
	Adding Multiple Copies of a Subsystem to a Model
	Example: Adding Subsystem Definitions and Shared Subsystems to a Model
	Adding a Subsystem Definition to the Local Components Tab
	Adding Multiple DC Motor Shared Subsystems to a Model

	Editing Subsystem Definitions and Shared Subsystems
	Example: Editing Shared Subsystems that are Linked to the Same Subsystem Definition
	Example: Removing the Link between a Shared Subsystem and Its Subsystem Definition

	Working with Standalone Subsystems
	Example: Resolving Warning Messages in the Debugging Console
	Example: Copying and Pasting a Standalone Subsystem

	2.6 Global and Subsystem Parameters
	Global Parameters
	Example: Defining and Assigning a Global Parameter

	Subsystem Parameters
	Example: Assigning a Subsystem Parameter to a Shared Subsystem

	Using Parameter Blocks for Subsystem Parameters
	Example: Creating and Using a Parameter Block

	Saving Parameter Sets
	Using Advanced Parameter and Variable Settings
	Advanced Parameter Settings
	Advanced Variable Settings
	Example: Creating a Parameter Override
	Specifying Initial Condition Overrides

	2.7 Attaching Files to a Model
	2.8 Creating and Managing Custom Libraries
	Example: Creating a Custom Library from an Existing Model

	2.9 Annotating a Model
	Example: Adding Text Annotation to a Model

	2.10 Entering Text in 2-D Math Notation
	2.11 Creating a Data Set for an Interpolation Table Component
	Example: Creating a Data Set in Maple

	2.12 Best Practices: Building a Model
	Best Practices: Laying Out and Creating Subsystems
	Create Subsystems for Component Groups That You Plan to Reuse
	Create Subsystems for Component Groups That You Plan to Analyze
	Use Icon View to Control Subsystem Port Layout and Customize Subsystem Icon
	Use the Debugging Console to Identify Subsystem Copies and Unconnected Lines

	Best Practices: Building Electrical Models
	Include a Ground Component in Electrical Circuits
	Verify the Connections of Current and Voltage Sources

	Best Practices: Building 1-D Translational Models
	Verify That All Force Arrows Are Pointed in the Same Direction

	Best Practices: Building Multibody Models
	Connect the Inboard Port of a Rigid Body Frame to a Center-of-mass Frame

	Best Practices: Building Hydraulic Models
	Define Fluid Properties

	Best Practices: Enforcing Initial Conditions

	3 Creating Custom Modeling Components
	3.1 Understanding Custom Components
	Creating a Simple Custom Component
	Typical Uses
	Using The Custom Component Template

	3.2 Creating Custom Components with Signal-Flow Behavior
	Creating a Simple Signal-Flow Custom Component
	Advantages of Acausal Mapping

	Using Differential Equations in Custom Components

	3.3 Creating Custom Components with Physical Connections
	Deriving the System Equations for a Resistor

	3.4 Working with Custom Components in MapleSim
	Save a Custom Component as Part of the Current Model
	Add a Custom Component to a Custom Library
	Edit a Custom Component

	3.5 Example: Creating a Nonlinear Spring-Damper Custom Component
	Opening the Custom Component Template
	Defining the Component Name and Equations
	Defining Component Ports
	Checking Dimensions
	Generating the Custom Component

	4 Simulating and Visualizing a Model
	4.1 How MapleSim Simulates a Model
	Modelica Description
	Model Description
	System Equations
	Simplified Equations
	Integration and Event Handling
	Simulation Results

	4.2 Simulating a Model
	Simulation and Advanced Simulation Settings
	Simulation Settings
	Advanced Simulation Settings

	Editing Probe Values
	Storing Parameter Sets to Compare Simulation Results

	4.3 Simulation Progress Messages
	4.4 Managing Simulation Results and Snapshots
	Storing Results
	Saving and Using Snapshots

	4.5 Customizing Plot Window Configurations
	Example: Plotting Multiple Quantities in Individual Graphs
	Example: Plotting One Quantity versus Another

	4.6 Visualizing a Multibody Model
	3-D Visualization and Multibody Settings
	Animation Settings
	Multibody Settings
	Visualization Settings

	The 3-D Workspace
	Viewing and Browsing 3-D Models
	Adding Shapes to a 3-D Model
	Adding Implicit Geometry
	Adding Attached Shapes
	Example: Adding Attached Shapes to a Double Pendulum Model

	Building a Model in the 3-D Workspace
	Moving Objects in the 3-D Workspace
	Assembling a 3-D Model
	Using the Unenforced Constraints Button to Manipulate Joints in the 3-D Workspace
	Displaying Attached Shapes as You Build a 3-D Model
	Working with CAD Geometry

	Example: Building and Animating a Double Pendulum Model in the 3-D Workspace
	Adding and Moving Objects in the 3-D Workspace
	Connecting 3-D Objects
	Setting Initial Conditions for the Joint Components
	Animating the 3-D Model
	Exporting a Movie of the 3-D Model

	4.7 Best Practices: Simulating and Visualizing a Model
	Use an External C Compiler to Run Simulations with Longer Durations
	Compare Results Generated by Sections of Your Model

	5 Analyzing and Manipulating a Model
	5.1 Overview
	MapleSim Apps
	Working with Apps
	Working with Templates and Scripting Worksheets
	Working with MapleSim Equations and Properties in a Maple Worksheet
	Mapping MapleSim Programmatic Names to Maple
	Representing MapleSim Subscripts and Superscripts in Maple

	Using Subsystems

	5.2 Retrieving Equations and Properties from a Model
	5.3 Analyzing Linear Systems
	Linear System Analysis

	5.4 Optimizing Parameters
	5.5 Generating and Exporting C Code from a Model
	Preparing the Model for Export in MapleSim
	Initialization

	Opening the Code Generation App
	Loading the Subsystem
	Customizing, Defining, and Assigning Parameter Values to Specific Ports
	Selecting the Code Export Options
	Solver Options
	Baumgarte Constraint Stabilization
	Constraint Handling Options
	Event Handling Options

	Generating and Saving the C code

	5.6 Generating a Custom Component from External C Code/Library Definition
	Opening the External C Code/Library Definition App
	Specifying the C/Library Code Location and Options
	Defining the C/Library Code Location and Options
	Component Generation

	5.7 Working with the MapleSim API and Maple Commands
	5.8 Working with Maple Embedded Components

	6 MapleSim Tutorials
	6.1 Tutorial 1: Modeling a DC Motor with a Gearbox
	Adding a Gearbox to a DC Motor Model
	Simulating the DC Motor with the Gearbox Model
	Grouping the DC Motor Components into a Subsystem
	Assigning Global Parameters to a Model
	Rerunning the Simulation with Different Parameter Values
	Changing Input and Output Values

	6.2 Tutorial 2: Modeling a Cable Tension Controller
	Building a Cable Tension Controller Model
	Specifying Component Properties
	Rerunning the Simulation with Different Parameter Values
	Simulating the Cable Tension Controller

	6.3 Tutorial 3: Modeling a Nonlinear Damper
	Generating a Spring Damper Custom Component
	Providing Damping Coefficient Values
	Building the Nonlinear Damper Model
	Assigning a Parameter to a Subsystem
	Simulating the Nonlinear Damper with Linear Spring Model

	6.4 Tutorial 4: Modeling a Planar Slider-Crank Mechanism
	Creating a Planar Link Subsystem
	Defining and Assigning Parameters
	Creating the Crank and Connecting Rod Elements
	Adding the Fixed Frame, Sliding Mass, and Joint Elements
	Specifying Initial Conditions
	Simulating the Planar Slider-Crank Mechanism

	6.5 Tutorial 5: Using the Custom Component Template
	Example: Modeling a Temperature Dependent Resistor
	Example: Compliant Contact and Piecewise Functions
	Example: Custom Ports
	Create Custom Ports
	Create Engine Model
	Create Monitor Model
	Complete Model

	Advanced Uses for Custom Components
	Example: Modeling a Centrifugal Pump from a Head Flow Rate Curve

	6.6 Tutorial 6: Using the External C Code/DLL Custom Component App
	6.7 Tutorial 7: Using the Equation Extraction App
	App Description
	Subsystem Selection
	Equation Details
	Ports
	DAE Variables
	Parameters

	View Equations

	Generating the Equations
	Generating the System Equations

	6.8 Tutorial 8: Modeling Hydraulic Systems
	Computational Issues
	Basic Hydraulic Library Components
	Basic Hydraulic Equations
	Bernoulli Equation
	Darcy Equation
	Friction Factor

	Analysis of Simple Hydraulic Networks
	Flow Through a Pipe
	Confirming the Modeling Results from First Principles

	Overview of Controlling Hydraulic Flow Path
	Mechanical and Hydraulic Systems
	Simulating Translational Motion with a Fixed Flow Rate Source
	Simulating Translational Motion with a Fixed Pressure Source
	Overview of Actuating Multibody Systems with Hydraulic Components
	Pascal's Principle

	Overview of Compressibility of Hydraulic Liquids
	Overview of Fluid Inertia Models
	System without Fluid Inertia
	System with Fluid Inertia

	Overview of Water Hammer Models
	Example: Water Hammer
	Example: Attenuating Water Hammer with an Accumulator

	Overview of Hydraulic Custom Components
	Centrifugal Pumps
	Vertical Pipes

	7 Reference: MapleSim Keyboard Shortcuts
	Glossary
	Index

