
MapleMBSE 2024.1
Configuration Guide

Copyright © Maplesoft, a division of Waterloo Maple Inc.
2024

MapleMBSE 2024.1 Configuration Guide

Contents
Introduction ... vii

1 Getting Started ... 1
1.1 Introduction ... 1
1.2 Overview of MapleMBSE Mapping ... 1
1.3 The MapleMBSE Configuration Plugin ... 2

Installing the Configuration Plugin ... 2
1.4 MSE Configuration Editor .. 4
1.5 Creating a Configuration File .. 9
1.6 Using the MapleMBSE Configuration File Editor to Create or Edit an MSE
File ... 13

Introduction ... 13
Getting Started with the MapleMBSE Configuration File Editor 14
Selecting Templates ... 14
MBSE Wrapper tag ... 16
Datasource Widget .. 17

1.7 Launching MapleMBSE from the Command Line 17
1.8 An Introductory Example ... 18

2 Configuration Language Fundamentals .. 25
2.1 Notation .. 25
2.2 Overview of an MSE Configuration File .. 25
2.3 EcoreImport ... 26

3 Qualifiers ... 27
3.1 Attribute filter .. 27
3.2 Reference filter ... 28
3.3 Predicate filter .. 29

Defining the Predicate .. 29
Creating the Filter Logic for the predicate .. 29
Using the Predicate Filter .. 31

3.4 The Sorting Feature ... 31
Defining the Sorting Feature ... 32
Using the Sorting Feature ... 32

4 Query Path Expression ... 33
4.1 Query Path Expression Definition .. 33

5 Data Source .. 37
6 SyncTable Schema ... 39

6.1 SyncTable Schema Definition .. 39
6.2 Examples of SyncTable Schema ... 40
6.3 Mapping the Attribute Values of the Model Elements to the Columns 40
6.4 Mapping the Dimensions to the Records .. 41
6.5 Alternative and Group Dimensions ... 42
6.6 ReferenceDecomposition and ReferenceQuery ... 46

iii

Mapping reference values with ReferenceDecomposition and
ReferenceQuery ... 46
ReferenceDecomposition by Example ... 46
References by Dimensions or ReferenceQuery .. 48

6.7 Key Columns Defined in SyncTable Schema .. 49
6.8 The allow-empty Option ... 50
6.9 Using Default Value Generation in a Column ... 50

Limitations .. 51
Data Insertion Order with the Default Column .. 51
Using Default Value Generation to create Requirement IDs 53

7 SyncTable .. 55
8 Laying out SyncViews .. 57

8.1 Setting up a Workbook and Worksheets ... 57
8.2 Worksheet Template and View Layout .. 58

Table View Layout .. 58
Matrix View Layout .. 60

8.3 Making Worksheets Read-only .. 62
9 Capella Example ... 65

9.1 Sample MSE File for a Capella Model .. 65
Create the MSE File in the Eclipse Editor .. 65
Create the MSE File in a Text Editor ... 65
ecore Import ... 66
Data Source ... 66
synctable-schema .. 67
Worksheet Template .. 68

10 Rhapsody Example .. 73
10.1 Sample MSE File for a Rhapsody Model ... 73

Create the MSE File in the Eclipse Editor .. 73
Create the MSE File in a Text Editor ... 74
ecore Import ... 74
Data Source ... 74
synctable-schema .. 75
Worksheet Template .. 78

11 Teamwork Cloud Example ... 81
11.1 Sample MSE File for a Teamwork Cloud Model .. 81

Create the MSE File in the Eclipse Editor .. 82
Create the MSE File in a Text Editor ... 82
ecore Import ... 82
Data Source ... 82
List of Blocks from Data Source .. 83
synctable-schema .. 84
Worksheet Template .. 91

Index .. 95

iv • Contents

List of Figures
Figure 1.1: Schematic Diagram of How MapleMBSE Works 2
Figure 5.1: Relationship between model elements .. 37
Figure 6.1: SimpleTree .. 40
Figure 6.2: SyncTable From Simple Tree .. 41
Figure 6.3: SyncTable From Simple Tree (add record keyword to top level
Dimension .. 42
Figure 6.4: Simplified Model Number Two: Using Alternative and Group 42
Figure 6.5: Tree From Simplified Model Two .. 43
Figure 6.6: Table Made From The Tree of Simplified Model Two 44
Figure 6.7: Another Tree Made From Simplified Model Two 45
Figure 6.8: Another Table Made From Simplified Model Two 45
Figure 6.9: Target Model .. 47
Figure 6.10: Illustration of ReferenceDecomposition .. 47

v

vi • List of Figures

Introduction
MapleMBSE Configuration Guide Overview
MapleMBSE™ gives an intuitive, spreadsheet based user interface for entering detailed
system design definitions, which include structures, behaviors, requirements, and parametric
constraints.

The configuration file specifies the rules for how your data from your model is extracted
and mapped into a table format along with how and where the extracted data is presented
in an Excel spreadsheet.

In the following chapters, this guide will provide detailed instructions on working with
configuration files and the configuration file language.

Related Products
MapleMBSE 2024 requires the following products.

• Microsoft® Excel® 2010 Service Pack 2, Excel 2016 or Excel 2019

• Oracle® Java® SE Runtime Environment 8.

Note: MapleMBSE looks for a Java Runtime Environment in the following order:

1) If you use the -vm option specified in OSGiBridge.init (not specified by default)

2) If your environment has a system JRE (meaning either: JREs specifed by the environment
variables JRE_HOME and JAVA_HOME in this order, or a JRE specified by the Windows
Registry (created by JRE installer)), MapleMBSE will use it.

3) The JRE installed in the MapleMBSE installation directory.

If you are using IBM® Rational® Rhapsody® with MapleMBSE, the following versions
are supported: Rational Rhapsody Version 8.1.5, 8.3 and 8.4

• Teamwork CloudTM server 2021.x, 2022.x and 2024.x

• Magic Collaboration Studio 2021.x, 2022x and 2024.x

If you are using Eclipse CapellaTM with MapleMBSE, the following version is supported:

• 5.1,

If you are using EclipseTM, the following version is supported:

• 2023-3

vii

Note that the architecture of the supported non-server products (that is, 32-bit or 64-bit)
must match the architecture of your MapleMBSE architecture.

Related Resources
DescriptionResource

System requirements and installation instructions for
MapleMBSE. TheMapleMBSE Installation Guide is available
in the Install.html file located in the folder where you installed
MapleMBSE, or on the website.

https://www.maplesoft.com/documentation_center/

MapleMBSE Installation
Guide

Instructions for using MapleMBSE software. The MapleMBSE
User Guide is available in the folder where you installed
MapleMBSE.

MapleMBSE User Guide

Applications in this directory provide a hands on demonstration
of how to edit and construct models using MapleMBSE. They,
along with an accompanying guide, are located in the Application
subdirectory of your MapleMBSE installation.

MapleMBSE Applications

You can find MapleMBSE FAQs here:

https://faq.maplesoft.com

Frequently Asked
Questions

The release notes contain information about new features, known
issues and release history from previous versions. You can find
the release notes in your MapleMBSE installation directory.

Release Notes

For additional resources, visit http://www.maplesoft.com/site_resources.

Getting Help

To request customer support or technical support, visit http://www.maplesoft.com/support.

Customer Feedback

Maplesoft welcomes your feedback. For comments related to the MapleMBSE product
documentation, contact doc@maplesoft.com.

Copyrights
• Microsoft, Windows, Windows Server, Excel, and Internet Explorer are registered

trademarks of Microsoft Corporation.

• Teamwork Cloud, Cameo Systems Modeler, and MagicDraw are registered trademarks
of No Magic, Inc.

• Eclipse is a trademark of Eclipse Foundation, Inc.

• UML is a registered trademark or trademark of Object Management Group, Inc. in the
United States and/or other countries.

viii • Introduction

https://www.maplesoft.com/documentation_center/
http://www.maplesoft.com/site_resources
http://www.maplesoft.com/support

1 Getting Started
1.1 Introduction
The goal of this section is to introduce the elements of the configuration and template files
and how they are connected together by defining a simple configuration file. The details
about the elements are given in the following chapters.

A configuration file defines what data from a model is accessible and how it is presented
in Excel. In order to do that, the configuration file must define the following elements.

• The content of the Excel workbook: how many and what types of worksheets it has.

• For each worksheet, define the area that is associated with the model data - the SyncView
area and how it is displayed.

• For each SyncView area define what model data is displayed using a SyncTable.

1.2 Overview of MapleMBSE Mapping
The primary purpose of MapleMBSE is to map diagram-based models in UML into a table
form that can be easily consumed and updated by an end user.

Mapping model information from diagram-based model form into table form requires a two
step process.

First, a SyncTable Schema must be defined to convert the model to an intermediate table
structure called a SyncTable.

A SyncTable Schema specifies how to find objects in a model starting with an object given
by a DataSource. A pair of a DataSource and a SyncTable Schema defines one SyncTable.

Next, the SyncView Layout must be defined for how the SyncTable is displayed on a
spreadsheet by specifying a layout and which columns of the SyncTable to include or omit.
The resulting part of the spreadsheet displaying the SyncTable is called SyncView. The
schematic flow of displaying a model in an Excel spreadsheet is shown in
Figure 1.1 (page 2).

1

Figure 1.1: Schematic Diagram of How MapleMBSEWorks

The definition of a DataSource, a SyncTable Schema, and a SyncView Layout is called an
MSE configuration. The language used to define an MSE configuration is called MSE
configuration language. In this guide we provide the specification of the MSE configuration
language. For notation used in the specification, seeNotation (page 25). MSE configuration
files are text files that can be edited and created with any text editor. However, it is recom-
mended to use MSE Configuration Editor which provides convenient syntax highlighting
and checking. For the installation instructions, see MSE Configuration Editor (page 4).
Examples in this guide use the MSE Configuration Editor.

1.3 The MapleMBSE Configuration Plugin
You can create an MSE file, with minimal manual coding, by installing the MapleMBSE
plugin for CATIA NoMagic tools.

Installing the Configuration Plugin

You can install the MapleMBSE Configuration plugin by doing one of the following:

• Install the plugin while you are installing MapleMBSE. For instructions, see the
MapleMBSE Installation Guide, in your MapleMBSE installation directory.

• Use the CATIA NoMagic tools Resource/Plugin Manager

Using the CATIA NoMagic tools Resource Manager to Install the MapleMBSE
Plugin

1. In CATIA NoMagic tools, From the Help menu, select Resource/Plugin Manager.

2 • 1 Getting Started

2. From the Resource/Plugin Manager window click Import.

1.3 The MapleMBSE Configuration Plugin • 3

3. Go to your MapleMBSE 2024.1 installation directory, then go to the diagramPlugin
subdirectory.

4. Select MapleMBSEPlugin.zip.

5. Click Open.

6. Click Import.

1.4 MSE Configuration Editor
The MapleMBSE Configuration Editor (a.k.a MSE Editor) is provided in the same package
as MapleMBSE-Editor_2024.1.zip and can be downloaded from:

https://www.maplesoft.com/support/downloads/index.aspx#mbse.

4 • 1 Getting Started

The MSE Editor is an Eclipse add-on, and you can install with the following steps:

1. Launch Eclipse (https://www.eclipse.org/downloads/packages/installer).

2. Select Help, then Install New Software.

3. Click Add to display the Add Repository window.

1.4 MSE Configuration Editor • 5

4. In the Add Repository window click Archive.

5. Find and select the MapleMBSE-Editor_2024.1.zip file.

6 • 1 Getting Started

6. Click Open.

7. Click OK.

8. From the list of files, select MapleMBSE MSE Editor and then follow the instructions
shown in the dialog.

1.4 MSE Configuration Editor • 7

9. Click Next.

8 • 1 Getting Started

10. Click Next.

11. To proceed, accept the terms of the license agreements.

12. In the security warning dialog click Install Anyway.

13. Click Finish.

14. Restart Eclipse.

1.5 Creating a Configuration File
To use the editor, you first need to create a project folder for your configuration file(s) in
your Eclipse workspace. Then, add an MSE file to your project file.

Note: Double-clicking an MSE file in the workspace launches the editor.

1.5 Creating a Configuration File • 9

To create the project folder and MSE file do the following:

1. In Eclipse, select File-> New-> Project-> General Project.

2. Click Next.

3. Enter a name for the project.

10 • 1 Getting Started

4. Check default location to save the project to your default Eclipse workspace. Otherwise,
enter the path to the workspace you want to save the project to.

5. Click Finish.

6. Right-click on the newly created project, then select New->File.

1.5 Creating a Configuration File • 11

7. Enter a name for the new file.

12 • 1 Getting Started

8. Click Finish.

1.6 Using the MapleMBSE Configuration File Editor to
Create or Edit an MSE File
Introduction

The MapleMBSE™ GUI editor is a plugin for CATIA No Magic products that provides a
visual interface to create MapleMBSE configuration file (.MSE).

For experienced users responsible for maintaining the code for the configuration files, the
GUI editor to make it easier to maintain the GUI editor code and to add more templates in
the future.

1.6 Using the MapleMBSE Configuration File Editor to Create or Edit an MSE File • 13

The MapleMBSE Configuration editor is typically installed with MapleMBSE. If in your
situation, the MapleMBSE Configuration has not been installed along with MapleMBSE,
you can find instructions in the MapleMBSE Installation and Licensing Guide.

Getting Started with the MapleMBSE Configuration File Editor

Once the MapleMBSE Configuration File editor has been installed, you are ready to get
started.

1. Launch your CATIA No Magic product (example, MagicDraw).

2. From the menu bar, select MapleMBSE then, ConfigurationEditor.

3. The Configuration Editor tab opens.

Selecting Templates

From the MapleMBSE Configuration Editor tab:

1. Select the template you want to use from the Template list. The template is now loaded
into the MapleMBSE Configuration Editor panel.

14 • 1 Getting Started

2. For a complete description of the template you have selected, click the arrow beside
Description, or see the subsection below.

3. Drag the appropriate input from your project into the input field for the MapleMBSE
Configuration Editor template (under the Description section).

4. Select other options such as Activity Nodes as desired

Notes:

The Dimensions window provides an updated preview of the configuration file before it's
created.

The Sample window provides an updated preview of the model worksheet.

1.6 Using the MapleMBSE Configuration File Editor to Create or Edit an MSE File • 15

5. Click Export to create the configuration file.

Note: By default, the Export button is disabled until the user provides enough data to the
template. For example dragging and dropping the correct model elements to the data sources.

MBSE Wrapper tag

MbseWrapper is tag that wraps a native widget to extend the functionality of the wrapped
widget.

The syntax for using the MbseWrapper tag is:

<MbseWrapper>
<Widget/>
</MbseWrapper>

Where Widget is one of the following native Widgets:

• CheckBoxMbse

• ComboBoxMbse

• DataSourceMbse

• DatePickerMbse

• EClassQpeValidator

• ListViewMbse

• RadioButtonMbse

• SliderMbse

• SpinnerMbse

• StereotypeQpeValidator

16 • 1 Getting Started

• TextFieldMbse

• ToggleButtonMbse

Datasource Widget

DataSourceMbse

The user drags and drops elements, from the containment tree for example, and the text
field displays information about it. The image below shows a title and a text field where
the users would drop their context package. Next, while clicking on the Export button and
depending on its configuration, the query for the dropped elements will be included.

1.7 Launching MapleMBSE from the Command Line
MapleMBSE can be launched from the command line by executing the MapleMBSE.exe
command in the installation directory. The command has the following syntax.

MapleMBSE.exe [/R <memsize>] [/L <logfile>] [/E <excel.exe>] [[/I | CONFIG(*.MSE)]
[MODEL]]

• If you specify CONFIG (must be *.MSE) and MODEL files, it launches MapleMBSE
with these files. If you do not specify a MODEL or CONFIG file, you will be asked for
these files in a subsequent dialog.

• If you specify /I, MapleMBSE.exe will always ask for the MSE file in a dialog and regard
the first non-slash argument as a model file.

• MODEL can be a local file or URI. For example, consider a model file on the Teamwork
Cloud server:
= "twc://[SERVER:PORT][/PROJECT][?[username=USERNAME][&password=PASS-
WORD]][&branch=BRANCHNAME][&version=VERSION]"

Note: If you omit some items, MapleMBSE will ask for them in the dialog

1.7 Launching MapleMBSE from the Command Line • 17

• If you do not specify any file arguments, it checks if MapleMBSE.xlsm exists in the
AddIns directory inside the directory with MapleMBSE.exe. If found, MapleMBSE
launches it.

• /R <memsize>: (optional, default=905) Memory address space in MB to be reserved for
Java VM in the Excel process.

• /L <logfile>: (optional, default="MapleMBSE_Launcher.log") Log file name, relative
to %USERPROFILE% or in absolute path.

• /E <excel.exe>: (optional) Path of EXCEL.EXE
If it's not specified, the registry entries will be used:
= HKEY_CLASSES_ROOT\CLSID\<CLSID of "Excel.Application">\LocalServer32
= HKEY_CLASSES_ROOT\CLSID\<CLSID of "Excel.Application">\LocalServer
= HKEY_CLASSES_ROOT\Wow6432Node\CLSID\<CLSID of "Excel.Applica-
tion">\LocalServer32
= HKEY_CLASSES_ROOT\Wow6432Node\CLSID\<CLSID of "Excel.Applica-
tion">\LocalServer

Notes:

• After you have launched MapleMBSE successfully from the command line, if you want
to restart MapleMBSE, use the shortcut key combination CTRL+Shift+G.

• You can launch MapleMBSE from the command line using &cache=true. For example:

MapleMBSE.exe "C:\Program Files\MapleMBSE 2024\Example\TWC\19.0\TWC-
Sample.MSE" "twc://teamworkcloud:3579/Model?username=****&pass-
word=****&cache=true"

1.8 An Introductory Example
In this example, we want to define a configuration that allows us to view and update top-
level packages in a UML model. The first step is to import the definition of a UML
metamodel. A metamodel, called an Ecore, defines the types of elements a UML model
may have and their relationships. The definitions inside the configuration file that allow us
to access different elements of a model rely on the structures defined by the imported
metamodels. To import an Ecore metamodel, use an EcoreImport construct as follows.

There are two steps in converting model data into its representation in Excel. First, we define
a SyncTable Schema that converts the data into an intermediate table called a SyncTable.
In the second step, the SyncView Layout defines how a SyncTable is displayed on a
spreadsheet by specifying which SyncTable columns will be displayed, as well as their po-
sition and layout. The resulting part of the spreadsheet displaying the SyncTable is called
the SyncView.

18 • 1 Getting Started

A SyncTable Schema defines how a set of model elements is mapped to a table structure.
In this example, we define a SyncTable Schema called PackagesTable.

Note the MSE Editor performs some testing of the correctness of the defined structures.
The syntax error highlighting the closing bracket indicates that definition is incomplete
without defining a dimension.

We define the top level dimension to be an element of a Package type.

A dimension is a basic structure of a SyncTable schema. Each dimension corresponds to a
model element. The first dimension of a SyncTable Schema is a Top Level Dimension. It
represents the type of element to which the schema applies. Each following dimension is
defined with respect to the preceding one.

A dimension consists of columns. Each column represents an attribute of the element that
the dimension describes. To identify the element some of the columns must be designated
as key columns. They must represent the attributes of the element that would allow you to
identify it uniquely. Without the definition of the key column(s) the definition of the dimen-
sion is incomplete. It is indicated by a syntax error.

For a package, its name can identify it uniquely. We define a key column that corresponds
to the 'name' attribute of a Package class.

This SyncTable schema definition allows you to view, add and delete packages by referring
to their name. To create a SyncTable, the schema must be applied to a Data Source. A Data
Source defines a set of model elements. The Data Source representing the top-level data
structure of a model has the name Root. This is a reserved name. The Root is declared as
follows.

The declaration specifies that the type of the top-level data structure is Model. You can see
the types and the structure of a UML model by opening the .uml file in a text editor. For
example, the following is a snippet from UserGuide.uml in the installer, found in the

1.8 An Introductory Example • 19

<MapleMBSE>\Examples\UserGuide directory, where <MapleMBSE> is your
MapleMBSE installation directory.

<?xml version="1.0" encoding="UTF-8"?>
<uml:Model xmi:version="20131001"
xmlns:xmi="http://www.omg.org/spec/XMI/20131001"
xmlns:uml="http://www.eclipse.org/uml2/5.0.0/UML"
xmi:id="_D2UUEM_MEee6666BhKb4Cg" name="UserGuide">
<packagedElement xmi:type="uml:Package" xmi:id="_Oeqy0M_MEee6666BhKb4Cg"
name="Package1" visibility="public">

...
</packagedElement>
<packagedElement xmi:type="uml:Association" ...>
...

</packagedElement>
...

</uml:Model>

The text representation of the model is written in XML. The model and its content are rep-
resented by XML elements. The top-level element is defined by the start and end tags:
<uml:Model ...>
...

</uml:Model>

The element is a "uml:Model" that is of a type Model defined by the "uml" namespace. The
"uml" namespace is defined among the attributes of the Model element.
xmlns:uml="http://www.eclipse.org/uml2/5.0.0/UML"

The definition matches the EcoreImport we are using in the configuration file. So the type
"Model" used in the definition of the Root Data Source is the same as "uml:Model" in the
model file. We want to apply the PackageTable schema to define packages inside a model,
and the type of the data source it applies to is Package. We define a data source that represents
packages in a model as follows.

This statement defines a new data source called topPackages. The syntax
Root/packagedElementmeans we are looking at the Model elements inside theRoot
that are defined by the tagpackagedElement. The syntaxpackagedElement[Pack-
age]means we are choosing only those packagedElements that have type Package.
Looking back at the UML file, we can see that packagedElement could have at least
two types: Package or Association. We are choosing only the ones of type Package.

To create a SyncTable we apply the SyncTable schema to the Data Source using angle
brackets.

20 • 1 Getting Started

The next step is to define how the SyncTable is represented in an Excel worksheet. We do
this by defining a Worksheet Template. We define a Worksheet Template called Pack-
ages.

The template uses one argument p of type PackagesTable. That is, p must be a
SyncTable created from the SyncTable schema PackagesTable.

The Worksheet Template must define where the SyncView for the given argument is placed
and what orientation it has. In this example we choose the SyncView for the argument p to
be a vertical table (named tab1) and start in cell B3 (row 3, column 2). The section defining
tab1 is called SyncView Layout.

We also need to specify which columns of the SyncTable should be included in the Syn-
cView. A SyncTable column becomes a field in a SyncView record. A record is simply the
collection of fields. In a vertical SyncView a record is a row in the table and the fields are
the cells in the row (see theOperationsOverview section inChapter 2 of theMapleMBSE
User Guide for more details). Some fields in a record must be marked as key fields to in-
dicate that those fields are used to identify the record uniquely. In the PackageTables schema
there is only one column, PackageName. It is a key column and should be used as a key
field. PackageName is of the String data type. The definition of the SyncView layout is
then as follows.

We also want to indicate that the column should be sorted in ascending order when a model
data is loaded or when sort operation is performed after adding new data. We do so by
specifying the name of the field in the sort keys.

1.8 An Introductory Example • 21

Finally, we need to define a workbook that consists of a worksheet based on the defined
template applied to an instance of a SyncTable.

The final content of the configuration file is as follows.

The resulting file can be found inGettingStarted.MSE, in the MapleMBSE Configuration
Editor Package.

You can use the configuration file with any UML model. For example, opening MapleMBSE
with this configuration file and <MapleMBSE>\Example\UserGuide\UserGuide.uml,
where <MapleMBSE> is the location where MapleMBSE is installed, gives the following
result.

22 • 1 Getting Started

The SyncView area of the worksheet can be highlighted by choosing the name of the cor-
responding SyncView in the name box. The SyncView name has the following format.

_MapleMBSE_SyncView_<Worksheet Name>_<SyncView Layout Name>

You can add new packages to the model by adding rows in the SyncView area or by entering
them in the insertion area (cell B4). See the MapleMBSE User Guide, Chapter 2, Adding
Model Elements for more details.

For convenience, it is good to add a heading to the column explaining what it is and maybe
change the width of the column. Any such formatting changes done when editing a model
are not saved with the model data. Instead, they should be done in a separate file called
Template File. A template file is an Excel file that has the same base name as the configur-
ation file and is placed in the same folder. MapleMBSE looks for the sheets in the workbook
that match the names of the worksheets defined by the configuration file and loads the
specified SyncViews into that sheet. To define a template file for our example, we need to
create an Excel file with the name that matches the name of the configuration file and contains
a sheet called Packages.

To create the template for this example, we define a new Excel workbook. We name one
of the sheets Packages, and delete others. The data with the package name is displayed in
column B starting with row 3. We can define the heading for the column in cell B2 and in-
crease the width of the column.

1.8 An Introductory Example • 23

We save the template file with the same base name as the configuration file and in the same
folder. Now if we open MapleMBSE with the configuration file and the example model
UserGuide.uml we get the following.

Tip: the template file for this example can be found in GettingStarted.xls, in the same
place with GettingStarted.MSE.

Another way to create a template could be to open a model with the configuration file as
we did before, then save it as an Excel file using Add-Ins > MapleMBSE > Export To
Excel File. This way we have the right number of sheets with their names. It is also easier
to judge where the headings need to be added and how wide the columns should be. Any
model data loaded in the tables should be removed. If it is left in the template it may create
confusion when MapleMBSE uses the template. MapleMBSE will load SyncViews according
to the specifications in the configuration file, so some data may be overwritten and some
may not, depending on the model file with which the template is opened.

24 • 1 Getting Started

2 Configuration Language Fundamentals
2.1 Notation
The formal grammar of MSE Configuration Language is given using a simple Extended
Backus-Naur Form (EBNF) notation. Each rule in the grammar defines one symbol, in the
form:

symbol ::= expression

The following notations are used in expressions.
UsageNotation
literal string matching the string between the quotes'string'

expression is treated as a unit(expression)

0 or more occurrences of AA*

1 or more occurrences of AA+

0 or 1 occurrence of AA?

A or BA | B

name of an element of type A<A>

For reference see https://www.w3.org/TR/2008/REC-xml-20081126/#sec-notation

2.2 Overview of an MSE Configuration File
The following is the formal definition of the configuration file.

MSEConfiguration ::= EcoreImport*

WorkbookInstance &
(DataSource
| SyncTableSchema
| SyncTable
| WorksheetTemplate
)*

In MSEConfiguration, EcoreImports come first, and then other elements can be specified
in any order. The definitions of the elements are given in the following chapters. The fol-
lowing is an example of the procedure for writing an MSE Configuration file.

1. Define a Data Source and a SyncTable Schema.

2. Define a SyncTable with the pair of Data Source and SyncTable Schema.

3. Define the view and the layout of the SyncTable on WorksheetTemplate.

25

4. Define a worksheet in the WorkbookInstance with the pair of the WorksheetTemplate
and SyncTable.

2.3 EcoreImport
EcoreImport declares the type of model to be edited with the configuration file. A type of
model is defined by specifying an IRI of a metamodel definition. A metamodel, called an
Ecore, defines types of elements a model may have and their relationship. Model elements
and their attributes are queried using the structural elements defined by EcoreImports. The
formal syntax of EcoreImport declaration is as follows.

'import-ecore' '"'IRI'"' ('as'
ID)

::=EcoreImport

In the 'import-ecore' '"'IRI'"' ('as' ID) (page 26), IRI is an identifier of the Ecore
metamodel in the form of IRI (International Resource Identifier). Different types of models
have their own metamodels. The following is a list of the available Ecore models.

IRIType
http://www.eclipse.org/uml2/4.0.0/UMLUML
http://www.eclipse.org/papyrus/sysml/1.4/SysMLSysML
http://www.nomagic.com/magicdraw/UML/2.5.1Teamwork

Cloud 19.0
http://www.nomagic.com/magicdraw/UML/2.5.1.1Teamwork

Cloud 2021.x
http://www.nomagic.com/magicdraw/UML/2.5.1.1Teamwork

Cloud 2022.x
http://w3.ibm.com/Rhapsody/api/Rhapsody
http://maplembse.maplesoft.com/common/1.0MapleMBSE

metamodel

26 • 2 Configuration Language Fundamentals

3 Qualifiers
Qualifiers are used as a way to specify the type of model elements that you want to query
or create.

The basic qualifier syntax is as follows:

[Classifier|filter="value"] where a Classifier is a type of element, such as a
Class.

The filter must be an EAttribute, which is a property that belongs to the Classifier ele-
ment. There is an option to use EReference as filter but the syntax differs.

The formal definition of a Qualifier is given in the table below.
'[' (EcoreImport'::') ? EClassifier
('|'

::=Qualifier

((index=INT)?
('|' (FeatureFilter (',' FeatureFilter)*)?
('|' (Sorting (',' Sorting)*)?)?
)?

)
|

((FeatureFilter (',' FeatureFilter)*))

)?
']'

AttributeFilter | ReferenceFilter| PredicateFilter::=FeatureFilter

(EcoreImport'::')? EAttribute'='STRING::=AttributeFilter

(EcoreImport'::')? EReference'='? Qualifier::=ReferenceFilter

(EcoreImport'::')? EStructuralFeature::=Sorting

3.1 Attribute filter
Filters, either attribute or reference based, are applied in two scenarios, when gathering
elements from the model and when creating new elements from scratch.

The first scenario, when querying the model, attribute filters simply verify that the real value
and the value used in the configuration files are the same. Then, only those that match are
added to the syncview.
Conversely, the attribute filter when creating a new element, has a different meaning. In
this scenario, this kind of filter is initializing some attributes of the newly created element.
For example, the following qualifier [Property|aggregation="composite"]
has two functions. The first one, displaying only those properties with AggregationKind

27

equals to composite, and second, initializing the aggregation attribute with the value com-
posite.

3.2 Reference filter
Reference filter has also the querying-creating duality, despite the different natures of attrib-
utes and references. The differences between attributes and references are analogous to the
differences of basic types and objects like in other programming languages. References are
used to point to hard-typed Classifiers, which have their owned attributes and references.
Providing an excepted value for an attribute is easy; strings, integer, boolean, and other
basic types have the same values each time the model is queried. But it is impossible to
provide a constant value for a reference and use it to filter, pointers change each time, the
memory addresses are not constant in the model. This is why both filters have different
syntaxes. A reference filter uses an inner qualifier to describe the kind of element that
MapleMBSE is expecting to match. For the querying is as simple as the attribute filter, but
there are some special cases to consider when initializing.
While querying with the following qualifier [Prop-
erty|type=[Class|name=”block”]], the inner qualifier is helping to filter all
Classes named block, and only Properties with a type reference to such classes would be
displayed.
The reference filtering initialization has different behaviors depending on the type of refer-
ence. EReferences have properties of their own, like containment, multiplicity, and derived.
Containment refers to the fact that a reference subsets ownership, for instance, packagedEle-
ment is a containment for Package, or slot is a containment for InstanceSpecification. Derived
means that the value is a calculation of other attributes, ownedElement is a derived reference.
Depending on which one of the reference filters is being used MapleMBSE would create a
new element, refer to an existing one, or simply do nothing. Generally, if it is containment
the filter initialization would create a new element, if it is derived the filter would not change
a thing, and the rest of the time if there is a single element result of the inner qualifier in
the whole model then a reference would be initialized to that Element. For example, let us
revisit the previous qualifier[Property|type=[Class|name=”block”]], but this
time during creation. The outer qualifier dictates what kind of Classifier is being instantiated,
in this case a Property. The reference type is a non-containment, non-derived, and single
valued reference; this means that the inner qualifier would try to find a single Class named
block to fulfill the type reference while initializing the filter. If a unique Class named block
exist in the model, then the newly created Property would be typed using a reference to that
Class. Another example could be [Class|ownedAttrib-
ute=[Port|type=[Class|name=”block”]]], this illustrates how it is possible
to nest filters. When creating a element with such qualifier, a Class would be instantiate
and also a Port, this is due to the fact that ownedAttribute is a containment reference. Also,
the Port that is created would be typed as mentioned before.

28 • 3 Qualifiers

3.3 Predicate filter
A Predicate is a function that returns a boolean (true or false) value.

MapleMBSE uses predicates in the context of filtering.

The three steps involved in creating a predicate filter:

1. Defining the Predicate

2. Using the Predicate

3. Creating the Filter Logic for the predicate.

Defining the Predicate

predicate hasnotype := NOT Port.type[Class]

Creating the Filter Logic for the predicate

Unary Predicates

MapleMBSE predicates that take a single argument and return a boolean value.

NOT

The NOT predicate syntax is NOT(Predicate).

For example, NOT Port.type[Class]

N-ary Predicates

MapleMBSE predicates that can take multiple arguments and return a boolean value.

OR, AND

The OR/AND syntax is: [OR|AND](Predicate (; Predicate)+)
This means that either OR or AND can take multiple predicates as arguments, with each
predicate separated by a semicolon.

OR1

This n-ary operations check that exactly 1 predicate is true in order to return true. The syntax
is of the form:
OR1 (Predicate (; Predicate)+)

3.3 Predicate filter • 29

Propositions

Unary and n-ary predicates do not query the model data. Those predicates delegate the
matching to their children. Propositions, however, have no children and do query the model
data. Proposition predicates are the leaves of the predicate tree. They are responsible for
matching the data and the custom filter.

Attribute Proposition

Using an EAttribute, this proposition can match a string to a value stored in the model. If
multiple strings are given, they constitute an implicit OR. The syntax
is of the form:

(EcoreImport::)?(EClassifier/)?EAttribute = value(,value)*

Reference Proposition

Using an EReference, this proposition can match Qualifiers to the objects stored in the
model. If multiple qualifiers are given, they constitute an implicit OR. The syntax is of the
form:
(EcoreImport::)?(EClassifier [/ | .])? EReference Qualifi-
er(,Qualifier)*

Subset Proposition

Sometimes, MapleMBSE returns comma-separated list of strings, and instead of matching
the same concatenated string, it would be better to perform the subset operation. For this
subset proposition, the syntax would be of the form:
(EcoreImport::)?(EClassifier /)?EAttribute [SUBSET|SUPERSET]
value(,value)*

Inequality Proposition

SysML supports numeric basic types and MapleMBSE should be able to create predicates
using those types. The most powerful way to take advantage of numeric values is with in-
equality operations of the form:

30 • 3 Qualifiers

(EcoreImport::)?(EClassifier/)?EAttribute [=|!=|<|<=|>|>=]=?
intValue

Counting Proposition

There are times when a user wants to filter elements containing a specific amount of sub-
elements. To accomplish this, use counting propositions of the form:
COUNT (EcoreImport::)?(EClassifier [/ | .])?EAttribute
[=|!=|<|<=|>|>=]=? intValue

Using the Predicate Filter

When using Predicate filtering, the predicate filter syntax should be:

/qpe[Classifier| named_predicate] where /qpe is the query path expression
used to navigate from one element to another, in this case /ownedAttribute.Classifier,
as mentioned earlier in this chapter is a type of element. In the example below, the Classifier
is Port. The reference filter is mse::metaclassName="MD Customization for
SysML::additional_stereotypes::ConstraintParameter", followed by
the attribute filter aggregation="composite" and finally the predicate filter, has-
notype.

dim /ownedAttribute[Port|mse::metaclassName="MD Customization for SysML::addition-
al_stereotypes::ConstraintParameter", aggregation="composite",hasnotype]

3.4 The Sorting Feature
Thus far, you have seen how you can sort a table by mentioning the sort order in the work-
sheet template. During model load time, MapleMBSE will use Excel to sort the SyncView
(table we see in a worksheet). In this section a new type of sorting is introduced, at the
Qualifier level. This new sorting feature will sort elements that are received from the model
and then send the data to Excel, where it displayed in the SyncView.

3.4 The Sorting Feature • 31

Note: The sorting that takes place in the worksheet template can be done only alphanumer-
ically on the whole data source.

The new sorting mechanism can sort them by any common features of the Classifier (such
as attributes, references) or Virtual Features (for instance, elementTypes).
if you mention the sort order in the Qualifier and then also provide the sort-keys in the
worksheet template, the sort-keys will be given preference.

Defining the Sorting Feature

data-source elementsNew*[NamedElement|1|elementFilter|mse::ele-
mentType]

Where:

• NamedElement Can be any of Class, Activity, StateMachine, etc.

• 1 Refers to the index of the NamedElement.

• elementFilter Can be name, visibility, stereotype, etc.

• mse::elementType This is where sorting happens. In this case sorting is done using
the elementType virtual feature.

Using the Sorting Feature

For an example on using the Sorting feature, see chapter twenty of the MapleMBSE Applic-
ations Guide.

32 • 3 Qualifiers

4 Query Path Expression
4.1 Query Path Expression Definition
Query Path Expression is an expression that queries the model for model elements and at-
tribute values. It is used in defining Data Sources and SyncTable Schemas. The formal
syntax definition is as follows.

(LocalQueryExpression)+ ('@'
ReferenceDecompositionId)?

::=QueryPathExpression

(('/' AttributeId) | ('.' ReferenceId))
Qualifier?

::=LocalQueryExpression

(EcoreImportId '::')? <Attribute>::=AttributeId

(EcoreImportId '::')? <Reference>::=ReferenceId

'[' ClassifierId ('|' AttributeFilter (','
AttributeFilter)*)? ']'

::=Qualifier

(EcoreImportId '::')? <Classifier>::=ClassifierId

AttributeId '=' '"' <Expression> '"'::=AttributeFilter

ReferenceDecompositionId refers to ID of a ReferenceDecomposition defined in
ReferenceDecomposition and ReferenceQuery (page 46).

<Classifier>, <Attribute>, <Reference> refer to the corresponding UML
elements, Classifier, Attribute and Reference. The names and their types are defined by a
metamodel (via EcoreImport (page 26)). In Query Path Expressions we distinguish the
following three types.

• Classifier
A type of an element. For example, a UML model may have elements of type Class.
Class is a Classifier. An element contains subelements which can be of two types: attributes
and references.

• Attribute
A subelement that belongs to the element.

• Reference
A subelement that refers to another element.

To illustrate these types and their relations consider the example code below. The code is
a snippet from the UML example model from the MapleMBSE User Guide.

Tip: The model file, UserGuide.uml, can be opened using any text editor. It can be found
in the installation folder <MapleMBSE>/Example/UserGuide, where <MapleMBSE> is
the location of your MapleMBSE installation.

33

The text representation of the model is written in XML. The model and its content are rep-
resented by XML elements. An element can be defined as an empty element with attributes.
<element ... />

Or if it contains other elements it can be defined using the start and end tags.
<element> ... </element>

The classifiers are highlighted in blue: "uml:Class", "uml:LiteralInteger", "uml:LiteralUn-
limitedInteger", "uml:Association". The "uml" namespace is defined in the definition of the
Model element, see Getting Started (page 1). Consider the ownedAttribute element
Property1 in Class1. The attributes of the element are highlighted in green: name, visibility,
aggregation, lowerValue, upperValue. The references of Property1 are highlighted in orange:
type and association. You can see that the values of the references are the IDs of the elements
they refer to.

The names of Classifiers, Attributes, and References can be written with or without Ecor-
eImportId depending on how EcoreImport was declared. If there is only one EcoreImport
in a configuration file and it was declared without an ID:

EcoreImportId is not necessary. In this case, a query path expression that queries elements
of a package can be written as follows.
/packagedElement

If an EcoreImport was declared with an ID:

34 • 4 Query Path Expression

EcoreImportId must be used to refer to classifiers, attributes, or references defined by the
corresponding model. The same Query Path Expression takes the form.
/uml::packagedElement

In the following examples we omit EcoreImportId. The above examples of Query Path
Expressions query all elements in a package. For the above example of a query path expres-
sion, it would include elements of types Class and Association. If we want to specify that
only elements of Class type should be queried we need to specify a Qualifier:
/packagedElement[Class]

A qualifier can include one or more FeatureFilters. For example, to query a class inside a
package called Class1, the following Query Path Expression can be used.
/packagedElement[Class|name="Class1"]

The examples we have considered so far consisted of single LocalQueryExpressions. Loc-
alQueryExpressions can be combined to query nested objects. Each subsequent LocalQuery-
Expression applies to the result of the previous LocalQueryExpression. For example, to
query attributes (the ownedAttribute elements) inside Class1 inside a package, the following
Query Path Expression can be used.
/packagedElement[Class|name="Class1"]/ownedAttribute

So far, we have only used attributes in query expressions. To query a type of an ownedAt-
tribute in a class a reference must be used.
/packagedElement[Class|name="Class1"]/ownedAttribute.type

The result of the query is the element that the 'type' reference refers to. For Property1, it
would return class Class2. Another way to specify a reference is to add the specification of
ReferenceDecomposition at the end of the Query Path Expression.
/packagedElement[Class|name="Class1"]/ownedAttribute.type @
ReferenceDecompositionId

ReferenceDecomposition is defined in Chapter 6, see ReferenceDecomposition and
ReferenceQuery (page 46) . ReferenceDecomposition is a description of the referenced
object. For display purposes there is no difference between a reference query with and
without the use of ReferenceDecomposition. However, when updating a field specified by
a reference without a ReferenceDecomposition, the updates apply to the referenced object.
Whereas, with a ReferenceDecomposition the updates may change which object the reference
points to. It is not recommended to use references without ReferenceDecompositions. If
necessary, they should only be used in read-only worksheets.

4.1 Query Path Expression Definition • 35

36 • 4 Query Path Expression

5 Data Source
Data Source defines a set of model elements. A Data Source is combined with a SyncTable
Schema to create a SyncTable for the model elements defined by the Data Source. The
following is the formal definition of Data Source.

PrimaryDataSource | ChainedDataSource:: =DataSource

'data-source' (ID|'Root'|'ROOTS') '*'?
Qualifier

:: =PrimaryDataSource

'data-source' ID '=' DataSource
ObjectQueryExpression

:: =ChainedDataSource

Root is a reserved Data Source name that refers to the top-level model element. The type
of the top-level model element depends on the type of a model. Definitions of the Root Data
Source are based on the type of model, as shown in the Root Data Source
Definition (page 37) table.

Root Data Source DefinitionType of Model
UML, SysML, Teamwork Cloud

Rhapsody

A ChainedDataSource applies Query Path Expression to the result of the parent Data Source.
Consider the example in the Figure below based on UserGuide.uml model (found in
<MapleMBSE>/Example/UserGuide, where <MapleMBSE> is the MapleMBSE install-
ation directory). The Figure Figure 5.1 (page 37)) shows the relationship between the ele-
ments. For each element its classifier is given in italics. The elements enclosed in boxes
with dashed lines are included in the corresponding data sources defined below.

Figure 5.1: Relationship between model elements

37

• Primary Data Source
The example is a UML model, so the Primary Data Source is defined as follows.

In the code snippet above, the data-source retrieves the top-level element of the UML user
model (user resource).

• All Primary Data Source

In the code snippet above, the data-source retrieves all Classes regardless of their location
inside the resource set. In other words, all Classes are retrieved, whether they are the model,
or outside the model (for example, user resource, project resource, etc. or the model. In the
example above Class1, Class2 and Class3 are retrieved.

This type of Primary Data Source is very useful, however, it should be used only to make
read-only SyncTable (page 55) and ReferenceDecomposition and
ReferenceQuery (page 46)reference-decomposition.

Example for primitive DataTypes:

• Chained Data Source
The following Data Source, called "classes", defines a set of all classes in Package1. It
is defined by applying an Query Path Expression to a previously defined data source. In
this case, the top-level data source, Root. In the example shown in Figure 5.1 (page 37),
Root is UserGuide.

38 • 5 Data Source

6 SyncTable Schema
6.1 SyncTable Schema Definition
A SyncTable schema specifies how model elements are mapped to a logical table. With
data sources explained in Data Source (page 37), model elements are first organized as
trees, and then mapped to tables. Such tree nodes are defined by dimensions in SyncTable
schema, which identifies a model element by key columns. The formal syntax of SyncT-
ableSchema is defined as:

'synctable-schema' ID ('(' SyncTableParam (','
SyncTableParam)* ')')?
'{' TopLevelDimension AbstractDimension* '}'

::=SyncTableSchema

ID ':' SyncTableSchemaId::=SyncTableParam

('record')?('allow-empty')? 'dim' Qualifier '{'
DimensionMember* '}'

::=TopLevelDimension

SuccessiveDimension | DimensionGroup::=AbstractDimension

('record')?('allow-empty')? dim QueryPathExpression
'{' DimensionMember* '}'

::=SuccessiveDimension

('alternative'|'optional'|'group') '{'
DimensionMember* '}'

::=DimensionGroup

PropertyMapping | ReferenceDecomposition::=DimensionMember

AttributeColumn | ReferenceQuery::=PropertyMapping

KeyAttributeColumn | NonkeyAttributeColumn::=AttributeColumn

'key' 'column' ObjectQueryExpression 'as' ID::=KeyAttributeColumn

'column' ObjectQueryExpression 'as' ID::=NonkeyAttributeColumn

whereSyncTableSchemaId is ID of aSyncTableSchema, andTopLevelDimen-
sion appears first as defined in the formal syntax, and we need to put a qualifier to specify
what model element types are selected, then SuccessiveDimension follows in which
we put a Query Path Expression to query what model elements are selected as dimensions.
In this chapter, we explain how to specify SyncTable schemas through examples.

39

6.2 Examples of SyncTable Schema
First, we show a simple SyncTable Schema as follows:

Here we define a SyncTable Schema with an ID called PkgCls and it consists of two Di-
mensions. [REPackage] in the top level dimension means it picks up REPackage
model elements, and it must be consistent with that in data sources. The next dimension
picks up REClass elements in nestedElements feature of the top level dimension.
By applying this schema to Pkg1, Pkg2 of the data source having Figure 5.1, we obtain
two trees as shown in Figure 6.1, where Pkg1 and Pkg2 belong to the top level dimensions;
and Cls1 and Cls2 belong to the next dimensions.

Figure 6.1: SimpleTree

6.3 Mapping the Attribute Values of theModel Elements
to the Columns
The trees in the example above are translated into tables by the column definitions. The top
level dimension has PkgName and PkgDesc columns, and they are filled with the QPEs
of /name and /description, respectively. And the next dimension have ClsName

40 • 6 SyncTable Schema

column, which is filled with the QPE of /name. Then the tree in Figure 6.1 is translated
to:

Figure 6.2: SyncTable From Simple Tree

More formally speaking, each path in the trees is translated into record, and then we have
two records from the paths of Pkg1-Cls1 and Pkg2-Cls2. Note that synctable schema de-
termines all of the columns in a static way. They are, in this example, PkgName, PkgDesc,
and ClsName, and the number is three.

6.4 Mapping the Dimensions to the Records
Let us look at how dimensions are mapped to records in more detail by comparing with the
example below. The only difference from the previous example is the record keyword
in the top level dimension highlighted with bold font.

If any other conditions are the same as the above, the trees generated by this schema are
exactly the same as in Figure 6.1. However, because the top level dimension has a record
keyword, the table has more records as shown in Figure 6.3. The added records are the first
and third rows, which come from the top level dimension. Note that the last dimension (in
this example, that is the one corresponding to Cls) always creates records even if it is
missing. In this table, the rightmost column in the first and third rows is specially treated
as EMPTY. They will be shown as blank cells with light gray backgrounds, and distinguished
from the usual blank cells

6.4 Mapping the Dimensions to the Records • 41

Figure 6.3: SyncTable From Simple Tree (add record keyword to top level Dimension

Note that each record corresponds to one model element. In this example, the first record
corresponds to Pkg1, and the second one corresponds to Cls1 while the previous example
does not have any records corresponding to Pkg1 nor Pkg2. Therefore, in this example you
can add or delete packages by adding or removing a row while in the previous example you
cannot. In this sense, record keyword plays a vital role that determines which model elements
can be added or deleted by users.

6.5 Alternative and Group Dimensions
Next, we move on to how to organize tree structures by using the following example model.
For the sake of simplicity, we denote model elements with lowercase with numbers (e.g.
a1) and its types with uppercase (e.g A) in this example.

Figure 6.4: Simplified Model Number Two: Using Alternative and Group

42 • 6 SyncTable Schema

Let us consider the following configuration:

It generates a tree as show in Figure 6.5.

The top level dimension selects type A by [A], and then the root of the tree is a1. In the
following dimensions, it selects /nestedElements[B], /nestedElements[C], or
/nestedElements[D] because these are in alternative { ... } clause. That
means that if /nestedElements[B] is matched, the second dimension is used; if
/nestedElements[C] is matched, the third dimension is used; and if /nestedEle-
ments[D] is matched, the forth dimension is used. Therefore, d0, the first model element
in the nestedElements feature, is applied to the forth dimension; b1 and b2 are applied to
the third dimension; and c1 is applied to the forth dimension. And then, we obtain a tree
shown in Figure 6.5.

Figure 6.5: Tree From Simplified Model Two

This tree will be turned into a table as shown in Figure 6.6. It has four columns consisting
of Aname, Bname, Cname, and Dname. Since the top level dimension does not have a

6.5 Alternative and Group Dimensions • 43

record keyword, it does not have a record of a1. Instead it creates four records for b1,
b2, c1, and d0 corresponding to the tree nodes under "a1" in Figure 6.5. Notice that the
record for c1 in the third row fills Aname and Cname columns, and Bname column is
specially treated as VOID, which looks blank but filled with thick gray background. Likewise,
the second (Bname) and third (Cname) columns in the forth row are also filled with VOID.

Figure 6.6: Table Made From The Tree of Simplified Model Two

Let us move on to the next example using group as shown below:

It generates a tree as shown in Figure 6.7.

The difference is that now d1 belongs to c1 instead of a1 because the above configuration
says B or C followed by D rather than B, C, or D. It means something like (B or (C, D)) in
contrast with (B or C or D). That is, group keyword is something like parentheses in dimen-
sion definitions and alternative is like the or operator.

44 • 6 SyncTable Schema

Then this tree is translated to a table as shown in Figure 6.8. Since the dimensions of B and
D have a record keyword, it creates three records: b1, b2, and d1, corresponding to the first,
second, and third rows. The third and fourth columns that follow after b1 and b2, in the
first and second rows, are EMPTY and the second column in the third row is VOID in this
table.

Figure 6.7: Another Tree Made From Simplified Model Two

Figure 6.8: Another Table Made From Simplified Model Two

Since group keyword combines dimensions in alternative blocks, using it out of alternative
does not give any effects. For example,

and

give the same results.

6.5 Alternative and Group Dimensions • 45

6.6 ReferenceDecomposition and ReferenceQuery
Mapping reference values with ReferenceDecomposition and
ReferenceQuery

ReferenceDecomposition is used for presenting references of model elements. The
examples so far edit model elements themselves by querying them with QPEs, where we
can track references as well. That means we always change values of such model elements
instead of references to model elements.

First we specify the formal syntaxes of ReferenceDecomposition and Refer-
enceQuery as below:

('key')? 'reference-query' ObjectQueryPath::=ReferenceQuery

'reference-decomposition' ID '='
[ReferrableSyncTable] '{' ForeignColumn* '}'

::=ReferenceDecomposition

KeyForeignColumn | NonkeyForeignColumn::=ForeignColumn

'foreign-key' 'column' [Column] 'as' ID::=KeyForeignColumn

'foreign' 'column' [Column] 'as' ID::=NonkeyForeignColumn

InReferenceDecomposition, you should specify all of the key columns in the referred
table as KeyForeignColumn (that is, you should specify "foreign-key" for such key
columns) because we should identify a record by such key columns. If the configuration
does not satisfy this condition, it is not guaranteed to identify a unique record to make a
reference.

ReferenceDecomposition by Example

We use the following code snippet to explain ReferenceDecomposition.

This configuration transforms the target model in Figure 6.9 into a table as shown in
Figure 6.10.

This example first introduces the TypesByName synctable-schema, which itemizes
all of the types as TypeName, and AttsByName refers to that type by the type feature
of REAttribute. Note that AttsByName takes the tps argument of TypesByName,
and in Line 7, the attributes synctable takes types as an argument and then the at-
tributes synctable uses types synctable to refer to types by the ReferenceDecom-
position in Lines 25-28. Let us look into these in the following section.

46 • 6 SyncTable Schema

Figure 6.9: Target Model

Figure 6.10: Illustration of ReferenceDecomposition

Adding a Missing Target Element: the create-target Keyword

If the target element exists, then while doing the reference decomposition, MapleMBSE
can refer to that element. However, if the target element does not exist, then while doing
the reference decomposition you will see an error message indicating that MapleMBSE was
unable to resolve the reference. At this point, you would need to create the element in the
appropriate schema.

6.6 ReferenceDecomposition and ReferenceQuery • 47

To avoid having to go into the schema to create the element, you can add the create-
target keyword in the reference decomposition. In this case, while doing the reference
decomposition, if MapleMBSE cannot find the element, it will create that element.

The following MSE example illustrates how to use the create-target keyword within
a reference decomposition.

reference-decomposition cls3 = blocks {
create-target
foreign-key column BlockName as Name3
}

Note: If you refer to an element in a schema, but while typing make mistake, MapleMBSE
will create that element in the model. To correct this, delete the element in the schema or
MagicDraw.

References by Dimensions or ReferenceQuery

Next, let us see how we identify references. As show in Line 25 of

(page 46).

, we write reference-query QPE @ name in the dimension. Let us look in the part
in the example of the previous section:

In this example, we use the type feature of REAttribute as a reference to be decom-
posed. Thus, this reference refers to a type identified by the TypeName column of tps
table. This dimension hasAttName andType columns andAttName column is associated
with name feature of REAttribute of this dimension, and Type column is used to refer
to type (see the reference-query) by TypeName column of tps table.

48 • 6 SyncTable Schema

Otherwise, if the reference is associated with a dimension, we put @ name after the dimen-
sion definition as the example below:

where we use cls2 as the name of the reference. And in the following reference-de-
composition cls2, we use PkgName and ClsName columns of clsTbl to present
that reference. Therefore, this dimension has otherClass reference of REInstance
(in the previous dimension), which refers to REClass class identified by PkgName
(propagated by PkgName2 column of this dimension) and ClsName (propagated by
ClsName2 column, likewise) columns of clsTbl. Note that clsTbl is a parameter of
the synctable-schema. Since PkgName and ClsName are key columns, we specify
the foreign-key keyword in the reference decomposition. In addition, we can edit de-
scription of the reference via ClsDesc2.

6.7 Key Columns Defined in SyncTable Schema
In a synctable-schema, we need to specify key columns to identify the recode by such
key columns. So in every dimension, we need at least one key column and all of the model
elements associated with this dimension must be uniquely identified by the defined key
columns. Key columns in dimensions are one of the followings:

1. Columns defined by key column

2. All of foreign-key columns in the ReferenceDecomposition that uses references by
key reference-query or dimensions. If you use reference-query without the
key keyword, such foreign-key columns are not key columns.

3. Generally speaking, all of the foreign keys must have a non-empty value except if they
have a dimension that supports empty values.

6.7 Key Columns Defined in SyncTable Schema • 49

6.8 The allow-empty Option
When using the Optional dimension keyword in a table view a user can relate the different
successive dim to the last dim but this is not the case with the Matrix View. In the Matrix
view when referencing a synctable-schema with Optional dimensions the last dim in the
current table will be related only to the last dim in the table that is referenced. Using allow-
empty will create the desired functionality similar to the table view.

In general, foreign keys don't accept empty values unless you use the allow-empty option.

You must use allow-empty in Reference Decomposition. Use in the dimension that contains
the reference decomposition with possible empty values.

6.9 Using Default Value Generation in a Column
After you assign a name to Attribute Column use '=' and then enter the type of value you
want to generate, as in the example below. Here the attribute column has been assigned the
name PropertyName, followed by ‘=’, then the text value and Sequence number .

50 • 6 SyncTable Schema

Limitations

Default value generation column doesn't work in the following cases:

• In root dimension key column

• In alternative, group, optional key columns

Data Insertion Order with the Default Column

If you have default value generation in the sync scheme then order to enter information into
the cells is important here let's see the example We have a scheme in which record root di-
mension is package and visibility, visibility has default value next we have record dimension
for Class which has default value generation after that we have record dimension for the
property.

6.9 Using Default Value Generation in a Column • 51

Example: Create a Package that has Class and Property

This example illustrates the importance of the order of entry of data with default value
generation.

1. Enter the Package name. From the table below you can see that the Visibility has been
automatically created.

2. Enter the same Package name again. Notice the Class column has been automatically
filled.

3. Next, try to create the property by entering the package name. Notice that MapleMBSE
creates a new Class. If you repeat this, MapleMBSE will create a another new Class.

4. This time, enter the Class name first.

5. Next, enter the Package name. Notice that a property has been created.

Example: Create a Package and Class with Alternative Dimensions

In this example, a second dimension has default values but not a record dimension. After
that, there are alternative two dimensions.

52 • 6 SyncTable Schema

1. Enter the Package name. The Class and other fields are grayed-out so the package has
been created.

2. Enter the Package name again. Notice the Class was not created, as shown in the image
below.

3. To create the Class and visibility, you have to enter the Property or port name. After this,
the Class will be created as shown below.

Using Default Value Generation to create Requirement IDs

The default value generation feature has been extended to include Requirements ID (REQID)
generation. This means you can use value generation to

6.9 Using Default Value Generation in a Column • 53

added generated Requirements IDs to MapleMBSE. The general syntax is as follows:

synctable-schema RequirementsTable {
record dim

[Class|mse::stereotypeNames="SysML::Requirements::Requirement"] {
key column /name as Name
column

/taggedValue[StringTaggedValue|mse::featureName="SysML::Requirements::AbstractRequirement::Id"]/value
as ID = %REQID

column
/taggedValue[StringTaggedValue|mse::featureName="SysML::Requirements::AbstractRequirement::Text"]/value
as Specification

}
}

where "= %REQID" instructs MapleMBSE to check the modeling tool for the latest IDs,
validate these IDS, and add them to the MapleMBSE worksheet.

54 • 6 SyncTable Schema

7 SyncTable
A SyncTable is an intermediate structure created in the first step of converting model
data into a table from shown in an Excel spreadsheet. The definition of a SyncTable
consists in applying a SyncTable schema to a Data Source. The formal syntax of a
SyncTable definition is as follows.

'synctable' ID '=' SyncTableSchemaId '<' DataSourceId
'>' ('(' SyncTableId (',' SyncTableId)* ')')?

::=SyncTable

In the table 'synctable' ID '=' SyncTableSchemaId '<' DataSourceId '>' ('(' SyncTableId
(',' SyncTableId)* ')')? (page 55).

SyncTableSchemaId is an ID of a SyncTableSchema.

• DataSourceId is an ID of a DataSource.

• SyncTableId is an ID of a SyncTable.

55

56 • 7 SyncTable

8 Laying out SyncViews
This chapter describes how SyncTables are presented as SyncViews. All of the SyncViews
must be laid out in some worksheet in a workbook. The rest of the sections are organized
as 1) how to set up worksheets in a workbook; 2) how to lay out SyncTables in a table; and
how to lay out SyncTables in a matrix.

8.1 Setting up a Workbook and Worksheets
When MapleMBSE opens a model, it assigns one workbook to the model, and inWorkbook
Instance, we specify all of the worksheets managed by MapleMBSE. In each configuration,
one and only one Workbook instance must be specified.

The example below comes from Example/UserGuide.MSE, and it defines all of the
worksheets.

In the example shown “workbook’ is used to represent the arrangement of worksheets as
shown, AllElements is the name of the worksheet template and allElementsTable is the name
of the synctable that is created. By default, a worksheet is created with the name AllElements
containing the information from the corresponding worksheet-template. MapleMBSE allows
the user to create a name for the worksheet manually by using the ‘label’ attributes as
shown in the above example.
Note: When a worksheet template is created with more than one parameter they should be
separated with ‘,’ as shown above for the creating a Dependencies worksheet.

If lazy-load is specified before worksheet, MapleMBSE will load syncviews of that
worksheet when that worksheet is activated. By default, they are loaded at the startup and
then the name of worksheet-template and its parameters follow. This means the
worksheet will be defined by the specified worksheet-template. The details of
worksheet-template are explained in the next section.

If the worksheet declaration has label="XXX", MapleMBSE regards "XXX" as the name
of the worksheet. Otherwise, the name, worksheet-template is used as the name of
the worksheet. For example, AllElementswill be the name of the worksheet defined by

57

worksheet AllElements(allElementsTable). If the Excel template has the
worksheet with the same name, MapleMBSE will use this worksheet to initialize the syn-
cviews ofworksheet-template. Otherwise, MapleMBSE will create a new worksheet
with the same name.

8.2 Worksheet Template and View Layout
A worksheet template is used to define how a SyncTable should be represented in the Excel
worksheet. In a worksheet template, we can specify one or more ViewLayouts, each of
which can be a table view layout or a matrix view layout, in the following subsections re-
spectively.

The formal syntax of worksheet template is as follows.
'worksheet-template' ID '(' WorksheetTemplateParam
(',' WorksheetTemplateParam)* ')'
'{' ViewLayout* '}'

::=WorksheetTemplate

TableViewLayout | MatrixViewLayout::=ViewLayout

where ID means the name of the worksheet template and should be referred by worksheet
definitions explained in the previous section.

Important: Do not use an All Primary Data Source (page 38) directly in the workbook as
WorksheetTemplateParam;

Table View Layout

Table view layout allows the user to define how the contents of the model should be displayed
in the table. It has two possible arrangements: vertical or horizontal. The syntax for table
view layout is as show above. To define a table layout: you must specify the arrangement
of the table, the cell address to define the location of table in Excel, and the order of the
fields. A column can be populated with either mapped or unmapped fields; a mapped field
displays the attributes or value assigned to it whereas an unmapped field is used to insert a
blank column within the table. Based on how fields are declared in the synctable schema
as key column or column inside the view layout they are declared as key field or field re-
spectively. It is necessary to provide the column type as string or integer for every field that
is created except for the unmapped field.

The formal syntax of table view layouts is as follows.
('vertical' | 'horizontal') 'table' ID at'
CellAddr

::=TableViewLayout

'=' WorksheetTemplateParam '{'
('import-order' INT)? & ('enable-import'

58 • 8 Laying out SyncViews

BoolType)?
ViewColumn*(SortKeys)? '}'

MappedViewColumn | UnmappedViewColumn::=ViewColumn

KeyViewColumn | NonkeyViewColumn::=MappedViewColumn

'key' ‘ref’? 'field' [KeyColumn] ':'
ViewColumnType

::=KeyViewColumn

‘ref’? 'field' [Column] ':' ViewColumnType::=NonkeyViewColumn

'unmapped-field'::=UnmappedViewColumn

('String' | 'Integer' | 'Double')'[]'? (';'
'delimiter' '=')? & (';' 'quote' '=' STRING)?

:ViewColumnType

The following code snippet comes fromUserGuide.MSEwhich defines a table view layout.

In the example shown above, a worksheet template with ID AllElements is created for
a synctable-schema, AllElementsTable that is assigned to a parameter cls.
Line 2 defines that the table is arranged vertically and (3, 2)means it should be displayed
from Row 3 and Column B in Excel as show in the figure below. Line 3 to line 12 in the
example defines the order in which fields have to be displayed in Excel, shown as Table
View in the figure. In line 3 in the sample, key field is used for PackageName because
it was specified as key column in the synctable schema for AllElementsTable.
Column type for every field is provided as shown from line 3 to line 12, in the example
shown String is the type for all fields. To specify type integer, use Int instead of
String. sort-keys are used to indicate the columns that should be sorted in ascending
order when model data is loaded or when new data is added to the table.
Predefined Row in the figure below denotes that the Excel sheet can be formatted based on
user preference before the model is loaded in the Excel sheet.

8.2 Worksheet Template and View Layout • 59

Matrix View Layout

A matrix view layout consists of three parts, row index table view part, column index table
view part, and matrix part, as shown in the following example:

The formal syntax of matrix view layout is as follows.
'matrix' ID 'at' CellAddr
'=' [WorksheetTemplateParam] '{'
('import-order' INT)? &

::=MatrixViewLayout

('enable-import' BoolType)?
ViewColumn

60 • 8 Laying out SyncViews

MatrixRowIndexViewLayout &
MatrixColumnIndexViewLayout

'}'

'row-index' '=' [WorksheetTemplateParam]
'{' ViewColumn* (sortKeys=SortKeys)?
'}'

::=MatrixRowIndexViewLayout

'column-index' '='
[WorksheetTemplateParam]
'{' ViewColumn* (sortKeys=SortKeys)?

::=MatrixColumnIndexViewLayout

'}'

Row and column index tables identify which cell in a matrix should be selected to show a
record of the synctable. The following code snippet comes from UserGuide.MSE which
defined matrix view layout.

In this example, Lines 2 to 16 defines matrix layout with the name of Matrix1 created by
mat, that is DependenciesTable (see parameters of Dependencies). const-field
means a matrix cell should be filled with the specified value if and only if the corresponding
record exists. You can specify some column instead of const-field. For example, if
you specify field DepName : String, you can edit DepName in matrix cells.
However, you can specify only one field for a matrix view layout.

Lines 4 to 9 define a row index table, and Lines 10 to 15 define a column index table. Using
this configuration,DependentTable (row index table) needs to haveDependentPack-
ageName and DependentClassName columns, and SupplierTable (column index
table) needs to have SupplierPackageName and SupplierClassName columns,
and finally, DependenciesTable (matrix table) needs to have all of the columns, those
are DependentPackageName, DependentClassName, SupplifierPackage-

8.2 Worksheet Template and View Layout • 61

Name, andSupplierClassName. InDependenciesSheet, we can showDependenci-
esTable in a vertical table as below:

A synctable used to present in a Matrix must have all of the same key columns of row and
column index tables. In this example, DependenciesTable (synctable to be shown in
a matrix) must have DependentPackageName and DependentClassName that are
the key columns of row index table (DependentTable), andSupplierPackageName
and SupplierClassName that are key columns of column index table (SupplierT-
able). Notice that all of the column names must be unique.

8.3 Making Worksheets Read-only
You can make any worksheet in the workbook ready-only:

1. Right-right click on the worksheet tab at the bottom of the worksheet.

2. From the context menu, select Protect Sheet.

62 • 8 Laying out SyncViews

3. Leave password field blank and click Ok.

8.3 Making Worksheets Read-only • 63

64 • 8 Laying out SyncViews

9 Capella Example
9.1 Sample MSE File for a Capella Model
Based on the QPE context explained in the previous chapters, you will develop an example
configuration file to query the logical functions of the In-flight entertainment sample.

Capella has multiple ecores for the different architectural layers. It is always good practice
to include all the ecore even if you are not using it your MSE file. A main advantage with
Capella MSE file is since the model structure is maintained the same you can create MSE
files that will work with different projects without the need to update it.

To create the MSE file you can use either:

• The MapleMBSE eclipse editor

• A text editor to create a configuration file.

Note: The process for creating the content in the MSE file is the same, regardless of how
you created the MSE file.

Create the MSE File in the Eclipse Editor

If you are using the eclipse editor:

1. Select the File menu.

2. Select New Project(General Project)

3. Click New.

4. Enter a name with extension .MSE

5. Click Ok.

Note: You can use Ctrl + Space for auto-suggestions.

Create the MSE File in a Text Editor

If you are using a text editor:

1. Select the File menu.

2. Select New

3. Select Text Document

4. Enter a name and extension .MSE

65

ecore Import

First step in any MSE file is to mention the ecores we are using to query the model. For the
Capella model using the following ecore import.

Data Source

To get the top level logical functions you need to define the data-source up to the Root
Logical Function. The best way to identify the queries is to use a sample model’s melody
modeler file. Open the melody modeler file in a text editor. This will help identify the path
and queries easily.

From the screenshot, notice that the In-Flight Entertainment System has ownedModel-
Roots which contains different architectural layers. One of which is LogicalArchi-
tecture.

The project has ownedModelRoots which are of model element type SystemEngin-
eering. TheSystemEngineering package hasownedArchitectureswhich will
give us all five layers. This examples is only concerned with the logical architecture and

66 • 9 Capella Example

hence using the LogicalArchitecture classifier will get models elements from this
specific layer.

Add a data source to your MSE file that starts from Root to LogicalArchitecture.

Next, add another data-source called logicalfunctions to query the logical functions.

At this point you can continue with the queries until you reach the logical functions or you
can break down the data source so you can reuse a top level data source when necessary.

If you expandLogicalArchitecture in the text editor you will see that logical functions
are in a package calledLogical Functions.Root Logical Function is contained
in the functions package which contain other logical functions.

synctable-schema

Start the synctable-schema based on the data-source you want to link it. In this
case, start the data source with logical functions.

Use record before the dim since you will want unique information to be displayed in a
single row in Excel.

Use name as the unique identifier.

9.1 Sample MSE File for a Capella Model • 67

The model has four level of subfunctions so you need to add four dim levels which will
display respective subfunctions. The top level logical function owns the sub level and etcetra.

The above queries will display a tree structure in Excel starting from the top level.

Now that the data-source and synctable-schema are defined, they now have to
be linked.

Add the following line to your MSE file to create a synctable called logicalFunctionsTable.

Worksheet Template

In this step, define the order of the columns, the table placement and the kind of table you
want to display.

68 • 9 Capella Example

Create a template to display a vertical table that starts from row three and column four.

You should also specify the schema for which the template is defined.

Based on the columns defined in the LogicalFunctionsSchema, order the columns
and sort based on top level function and second level function.

The last step is to define the workbook you want to be displayed. You can also use the label
key word to provide a name for the worksheet. By default, the worksheet is called Func-
tionsTable if label is not specified.

Launch the configuration file you created and connect to the IFE sample.

9.1 Sample MSE File for a Capella Model • 69

70 • 9 Capella Example

When you use the above configuration file, Excel will display the functions breakdown as
shown.

In order to get the description for the functions, include a column in each dim and mention
it in the worksheet template.

9.1 Sample MSE File for a Capella Model • 71

72 • 9 Capella Example

10 Rhapsody Example

10.1 Sample MSE File for a Rhapsody Model
For this example, you will create a configuration file to query a Rhapsody Model. The
model structure is shown below. You will also create a table to retrieve all the blocks in the
Structure package and use the same table to create part properties.

To create the MSE file you can use either:

• The MapleMBSE eclipse editor

• A text editor to create a configuration file.

Note: The process for creating the content in the MSE file is the same, regardless of how
you created the MSE file.

Create the MSE File in the Eclipse Editor

If you are using the eclipse editor:

1. Select the File menu.

2. Select New Project(General Project)

73

3. Click New.

4. Enter a name with extension .MSE

5. Click Ok.

Note: You can use Ctrl + Space for auto-suggestions.

Create the MSE File in a Text Editor

If you are using a text editor:

1. Select the File menu.

2. Select New

3. Select Text Document

4. Enter a name and extension .MSE

ecore Import

The first step in creating any MSE file is to mention the ecore you are using to query the
model. For the Rhapsody model, use the ecore shown below.

Data Source

The next step is to create the data-source based on the model structure. The data source
always starts with the Root project.

Once you have added the root, you can query the contents inside the project. Use the chained
data-source to get the packages. Using nestedElements , query to get the contents
of the Root project. This will give us all the packages in the project.

74 • 10 Rhapsody Example

For this example, only the Structure package is of interest. You will need to add a filter
based on the package name to the qualified [REPackage].

This will give you access to the Structure package. Now you can either create a new
data-source to get the blocks from the Structure package or continue with pkg data-
source to get the blocks.

Add a new data source called blk to get all of the blocks under the Structure package.
Notice from the blk data source, only the Class was queried and not the blocks, specifically.
To get and add blocks to the model include a filter for a Block stereotype.

synctable-schema

Add a synctable-schema called BlocksTableSchema. Next, add the first dim
based on the data-source. We will be using the same Classifier in the table schema that
was used for the data-source. Using name as the unique identifier in the block dim.

10.1 Sample MSE File for a Rhapsody Model • 75

This will give you all the blocks from the Structure package. Add a dim to get the part
properties of the block. These properties are stored as REInstance with stereotype Ob-
ject in the ecore definition. Hence, you have to use the same in the queries.

At this point, you must use the reference because the part refers another block. From SysML,
the part properties are typed by another block and this block is not directly owned by the
top-level block. Again, you must rely on the ecore to create the reference with otherClass
and then use the reference.

The above query is same as using reference-query the screenshot below shows possible
options that can be used.

76 • 10 Rhapsody Example

Now add reference decomposition to list all the blocks that can be added as part. Before
moving further, you need to add a new synctable schema which can be used to for the ref-
erence.

Use this new schema for reference. Remember to add the table being referenced in the
synctable-schema definition. As the refblockName is added as a key column in
BlockTableReference use foreign-key column..

You have defined the hierarchy for one level down. Repeat the same block as needed to
create multiple levels. At each level, change the name of the block and the reference para-
meter(refclass). For the simplicity of the example, just add one additional level.

10.1 Sample MSE File for a Rhapsody Model • 77

The last task left to do is for the schema is to link it with the appropriate data-source
and the reference table. In our case, all of the blocks are from the same data-source
called blk.

Worksheet Template

In this step, define the order of the columns, the table placement and the kind of table you
want to display. Create a template to display a vertical table that starts from row three and
column four. You should also specify the schema for which the template is defined.

The last step is to define the workbook and list the worksheet you want to display.

78 • 10 Rhapsody Example

10.1 Sample MSE File for a Rhapsody Model • 79

Run the configuration and connect to a sample model. Expected table for the model shown.

80 • 10 Rhapsody Example

11 Teamwork Cloud Example

11.1 Sample MSE File for a Teamwork Cloud Model
Based on the QPE context presented in the previous chapters, you will create an example
MSE file to view and edit the blocks, ports and port types in a Teamwork Cloud SysML
model.

The model structure is as shown below.

The blocks are in a package called Components and the interface type in Interface Type
package.
As a prerequisite, you should be familiar with the MapleMBSE virtual features. You can
find detailed information on MapleMBSE virtual features in the virtual features guide.

To create the MSE file you can use either:

• The MapleMBSE eclipse editor

• A text editor to create a configuration file.

Note: The process for creating the content in the MSE file is the same, regardless of how
you created the MSE file.

81

Create the MSE File in the Eclipse Editor

If you are using the eclipse editor:

1. Select the File menu.

2. Select New Project(General Project)

3. Click New.

4. Enter a name with extension .MSE

5. Click Ok.

Note: You can use Ctrl + Space for auto-suggestions.

Create the MSE File in a Text Editor

If you are using a text editor:

1. Select the File menu.

2. Select New

3. Select Text Document

4. Enter a name and extension .MSE

ecore Import

The first step in any MSE file is to mention the ecore you are using to query the model. For
the TWC model, use the http://www.nomagic.com/magicdraw/UML/2.5.1
ecore. Since you will be using the virtual features, you also need to import the MapleMBSE
ecore as shown below.

Data Source

Next, use the project structure in Teamwork Cloud to define a data source to get the set of
elements you want to view/edit in MapleMBSE. The default top level data structure is the
Root model

This will give us the top Model package.

82 • 11 Teamwork Cloud Example

List of Blocks from Data Source

To get the list of blocks in the component package, use the chained data source (check
section for more details, hyperlink). Create a data source called components and navigate
to the subpackage.

From Root, use packagedElement to get model elements of type Package. This will
give all the packages under the Model. Next, add an attribute filter (hyperlink to attribute
filter) to get only the contents of the Components package. Using name as the attribute filter
in the qualifier.

You can create another chained data source to get all the blocks from the components data-
source or you can continue to navigate to the blocks from the components.

A block is defined as a Class with stereotype Block in the TWC ecore. Follow the same by
navigating to the Class and adding a stereotype.

11.1 Sample MSE File for a Teamwork Cloud Model • 83

To add a stereotype to the class, use a virtual feature called metaClassName (see section
2.1 of the virtual features guide). The value of stereotype is the Qualified Name of the re-
spective stereotypes. From the Blocks specification menu, right-click on the Applied Ste-
reotype field and select Specification (In Magic Draw or Cameo Systems Modeler).

You have successfully navigated to the Blocks.

synctable-schema

Next, create a schema to define how the model elements are mapped to a table. Create a
synctable-schema called ComponentsSchema.

84 • 11 Teamwork Cloud Example

In the schema, add a dim (hyperlink for dims) for Blocks to get the blocks name. In a
schema based on the data-source you want to assign, you start with the same query in
most cases. Every dim should have at least one key column that is unique. Use name
as key column.

Using record before a dim will uniquely assign a row to that dim. (You can include
comments in the MSE file using //)

Every subsequent dimwill query details of the previous dim. For example, in this dim you
can get properties and instances of the block defined in the previous dim.

The ecore defines properties as owned Attributes. You can also find possible queries as
auto-suggestions in Eclipse or from the specification window of that model element.

A block can have part properties, value properties, ports etc. All these are differentiated by
stereotypes added. In this case, you would want to get the proxy ports for the block. Follow
the same steps as the previous dim to identify the stereotype for a proxy port.

11.1 Sample MSE File for a Teamwork Cloud Model • 85

Using record key word in the last dim is optional by default because the last dim is
always a record column. The properties of the Classifiers are called attributes. For example
name is an attribute of Block and Port.

You have to use the reference-query and reference-decomposition (see
section 6.6 of the configuration guide) to be able to get the interface types defined. The type
of the port is a reference value because the type is not owned by the port but it is just a ref-
erence to a different model element.

You need to create another table to reference the possible values for interface type. Before
you can go any further with this synctable-schema you have to create another table
for interfaces.
Define another synctable to query the interfaces. Start with defining a data-source and
then the synctable-schema to get the details.

86 • 11 Teamwork Cloud Example

Next, a synctable-schema to get names of the interface blocks.

TheInterfaceBlocks schema is ready to be referenced in theComponentsSchema.

In the components schema you create a reference for the type of the port. Use ibs as a
parameter to reference the table in ComponentsSchema.

11.1 Sample MSE File for a Teamwork Cloud Model • 87

InterfaceBlocks is a class so in the qualifier for the reference, the reference type is mentioned
as Class.

With the Reference query part complete, use reference decomposition to get information
from the InterfaceBlocksSchema. Reference decomposition.

88 • 11 Teamwork Cloud Example

The synctable definitions are complete. You now have to link the data-source and
synctable-schema.

11.1 Sample MSE File for a Teamwork Cloud Model • 89

In the case of the components table, make sure that the synctable accounts for the reference
that you have included, as shown below.

90 • 11 Teamwork Cloud Example

In the above steps you transformed the model information into a table. In the following
section, you will control the information displayed in Excel.

Worksheet Template

In this step you will define the order of the columns, the table placement and the kind of
table you want to display.

Create a template to display a vertical table that starts from row three and column four. You
should also specify the schema for which the template is defined.

For each column you defined in the ComponentsSchema, define a field.

11.1 Sample MSE File for a Teamwork Cloud Model • 91

If you want the model elements to be sorted use sort-keys and then the field to be sorted.

Finally, define the workbook and list the worksheet you want to be displayed.

92 • 11 Teamwork Cloud Example

Double click on the file and connect to the model with similar structure from the image
below. Expected table in Excel.

11.1 Sample MSE File for a Teamwork Cloud Model • 93

94 • 11 Teamwork Cloud Example

Index
A
Attribute Filter, 27
attribute filters

creating a new element, 27
gathering elements from the model, 27

C
Capella example, 65

creating MSE file, 71
adding the data source, 66
creating the synctable schema, 67
creating the worksheet template, 68
importing ecore, 66
using Eclipse editor, 65
using text editor, 65

configuration file
formal definition, 25
overview, 25

configuration file fundamentals
EcoreImport, 26

configuration language fundamentals, 25
notation, 25

Creating a Configuration File, 11

D
data source, 37

all primary data source, 38
chained data source, 38
ChainedDataSource, 37
primary data source, 38
Root, 37

Data Source
syntax, 37

E
Elements of a Configuration File, 1

I
Installing the MSE Configuration Editor, 7
Introduction, 1
Introductory Example, 23

adding the data source, 19
creating a template file, 23
defining a dimension, 19
Defining a SyncTable Schema, 18
Importing the Ecore, 18

L
Launching MapleMBSE from the Command
Line, 17

M
MapleMBSE command line syntax, 17
MapleMBSE Configuration Plugin

MSE File
Creating,MapleMBSE Plugin, 3

MapleMBSE Mapping
DataSource, 1
Overview, 1
SyncTable, 1
SyncTable Schema, 1
SyncView Layout, 1

MSE Configuration Editor
Installation, 7

MSE configuration editor
download

URL, 4
MSE File

Creating, 11
MSE file

formal definition, 25
overview, 25

P
Predicate Filters, 29
predicate filters

steps to creating, 29
creating the filter logic, 29

95

creating the filter logic,n-ary
predicates, 29
creating the filter logic,n-ary
predicates, AND, 29
creating the filter logic,n-ary
predicates, OR, 29
creating the filter logic,n-ary
predicates, OR1, 29
creating the filter logic,n-ary
predicates, Propositions, 30
creating the filter logic,Propositions,
Attribute Proposition, 30
creating the filter logic,Propositions,
Counting Proposition, 31
creating the filter logic,Propositions,
Inequality Proposition, 30
creating the filter logic,Propositions,
Reference Proposition, 30
creating the filter logic,Propositions,
Subset Proposition, 30
creating the filter logic,unary
predicates, 29
creating the filter logic,unary
predicates,NOT, 29
defining the predicate, 29
using the predicate filter, 31

Q
Qualifiers, 27

Attribute Filters, 27
Predicate Filters, 29
Reference Filters, 28

query path expression
attribute

definition, 33
classifier

definition, 33
definition, 35
example, 33
formal syntax, 33
reference

definition, 33

R
Reference Filters, 28
restarting MapleMBSE from the command
line with shortcut key, 18
Rhapsody example, 73

add a data source, 74
add a synctable schema, 75
creating MSE file, 79

Eclipse editor, 73
text editor, 74

creating the worksheet template, 78
ecore import, 74

S
SyncTable

introduction, 55
syntax, 55

SyncTable Schema, 39
alternative and group dimensions, 45
default value generation, 53

data insertion order, 51
limitations, 51

defining key columns, 49
examples, 40
mapping attribute values of model
elements to columns, 40
mapping dimensions to records, 41
overview, 39
ReferenceDecomposition, 47

example, 46
mapping reference values, 46

ReferenceQuery, 47
mapping reference values, 46

References by dimensions or
ReferenceQuery, 48
syntax, 39

SyncViews, 57
matrix view layout, 60
read-only worksheets, 63
setting up a workbook and worksheets,
57
table view layout, 58

96 • Index

syntax, 58, 60
worksheet template and view layout, 61
worksheet template syntax, 58

T
Teamwork Cloud example, 81

creating MSE file, 93
adding the data source, 82
adding the data source, list of blocks,
83
creating the synctable schema, 84
creating the worksheet template, 91
importing ecore, 82
using Eclipse editor, 82
using text editor, 82

Index • 97

98 • Index

	MapleMBSE 2024.1 Configuration Guide
	Contents
	Introduction
	1 Getting Started
	1.1 Introduction
	1.2 Overview of MapleMBSE Mapping
	1.3 The MapleMBSE Configuration Plugin
	Installing the Configuration Plugin
	Using the CATIA NoMagic tools Resource Manager to Install the MapleMBSE Plugin

	1.4 MSE Configuration Editor
	1.5 Creating a Configuration File
	1.6 Using the MapleMBSE Configuration File Editor to Create or Edit an MSE File
	Introduction
	Getting Started with the MapleMBSE Configuration File Editor
	Selecting Templates
	MBSE Wrapper tag
	Datasource Widget
	DataSourceMbse

	1.7 Launching MapleMBSE from the Command Line
	1.8 An Introductory Example

	2 Configuration Language Fundamentals
	2.1 Notation
	2.2 Overview of an MSE Configuration File
	2.3 EcoreImport

	3 Qualifiers
	3.1 Attribute filter
	3.2 Reference filter
	3.3 Predicate filter
	Defining the Predicate
	Creating the Filter Logic for the predicate
	Unary Predicates
	NOT

	N-ary Predicates
	OR, AND
	OR1
	Propositions
	Attribute Proposition
	Reference Proposition
	Subset Proposition
	Inequality Proposition
	Counting Proposition

	Using the Predicate Filter

	3.4 The Sorting Feature
	Defining the Sorting Feature
	Using the Sorting Feature

	4 Query Path Expression
	4.1 Query Path Expression Definition

	5 Data Source
	6 SyncTable Schema
	6.1 SyncTable Schema Definition
	6.2 Examples of SyncTable Schema
	6.3 Mapping the Attribute Values of the Model Elements to the Columns
	6.4 Mapping the Dimensions to the Records
	6.5 Alternative and Group Dimensions
	6.6 ReferenceDecomposition and ReferenceQuery
	Mapping reference values with ReferenceDecomposition and ReferenceQuery
	ReferenceDecomposition by Example
	Adding a Missing Target Element: the create-target Keyword

	References by Dimensions or ReferenceQuery

	6.7 Key Columns Defined in SyncTable Schema
	6.8 The allow-empty Option
	6.9 Using Default Value Generation in a Column
	Limitations
	Data Insertion Order with the Default Column
	Example: Create a Package that has Class and Property
	Example: Create a Package and Class with Alternative Dimensions

	Using Default Value Generation to create Requirement IDs

	7 SyncTable
	8 Laying out SyncViews
	8.1 Setting up a Workbook and Worksheets
	8.2 Worksheet Template and View Layout
	Table View Layout
	Matrix View Layout

	8.3 Making Worksheets Read-only

	9 Capella Example
	9.1 Sample MSE File for a Capella Model
	Create the MSE File in the Eclipse Editor
	Create the MSE File in a Text Editor
	ecore Import
	Data Source
	synctable-schema
	Worksheet Template

	10 Rhapsody Example
	10.1 Sample MSE File for a Rhapsody Model
	Create the MSE File in the Eclipse Editor
	Create the MSE File in a Text Editor
	ecore Import
	Data Source
	synctable-schema
	Worksheet Template

	11 Teamwork Cloud Example
	11.1 Sample MSE File for a Teamwork Cloud Model
	Create the MSE File in the Eclipse Editor
	Create the MSE File in a Text Editor
	ecore Import
	Data Source
	List of Blocks from Data Source
	synctable-schema
	Worksheet Template

	Index

