
Page 1 of 10

2

High-Fidelity Transmission Simulation for Hardware-in-the-Loop
Applications

Paul Goossens, Maplesoft; Orang Vahid, Maplesoft; Ang Zhao, Maplesoft; Takashi Iwagaya, Cybernet
Systems Japan; Yoshihiko Nishi, Aisin AW; Yakayuki Kubo, Aisin AW

ABSTRACT

As automotive manufacturers strive to improve fuel-efficiency
of their products, all components and sub-systems that go into
a vehicle are under closer examination in order to minimize
energy losses. In transmissions in particular, a great deal of
effort is being put into assessing exactly how much power is
lost, and what can be done to reduce those losses and improve
overall efficiency. By investigating the losses at a very
detailed level, new high-efficiency transmissions can be
produced, through optimizing existing configurations,
adopting new configurations, employing new innovations in
components, and developing advanced controllers. These
investigations are greatly enhanced through the use of physics-
based simulation tools to create virtual prototypes of the
transmission systems. These yield more efficient products at
significantly reduced costs, by allowing engineers to address
design issues long before investing in the physical prototype
stage. These advantages are further enhanced if these high-
fidelity models can be used to develop and test powertrain
controllers in a real-time simulation environment.

This paper will present the use of symbolic technologies from
Maplesoft for developing highly-efficient code for real-time
implementation of transmission models with loss data
included. It will also cover results from a recent Hardware-in-
the-Loop testing project that demonstrate that the symbolic
approach to model code-generation for real-time
implementation can deliver dramatic execution speed
improvements over other modeling approaches.

INTRODUCTION

As automotive manufacturers strive to meet and exceed
performance requirements on fuel efficiency and ride comfort,
they have focused increasingly on the transmission design as
one of the key factors. Engineers are putting tremendous effort
into determining exactly how the power is lost, and what can
be done to reduce losses and improve overall fuel efficiency.
As a result, the transmission industry is now actively involved
in optimizing existing transmission designs and exploring new
system architectures. At the same time, transmission

controllers are becoming more complicated and more detailed
product testing is needed than ever before.

Model-based development (MBD) plays a central part towards
achieving these goals. Design iterations are done through
virtual prototypes of the transmission systems, used in
hardware-in-the-loop (HiL) simulations. Virtual prototyping
can yield more efficient products at significantly reduced costs
by allowing engineers to address design issues long before
they invest in physical prototypes. Modeling and simulation
environments like MapleSim™ have become critical tools in
MBD and are being increasingly adopted by powertrain and
transmission manufacturers.

In this paper we report on some of the activities under taken at
AISIN AW in Japan regarding HiL simulation and the use of
MapleSim environment to accelerate the development of
automatic transmissions. The requirements for low calculation
cost plant models for real-time simulations were met by
creating the gear train part of the model in MapleSim. These
models are then exported as optimized c-code for
implementation into the HiL system.

The transmission models referred to in this paper are built
using the components from the MapleSim Driveline
Component Library (DCL) [1] as well as other components
from the Standard Moldelica Libraries [2]. DCL covers all
stages in a powertrain model from the engine through to the
differential, wheels and road loads (See Figure 1).

Figure 1. Full vehicle model in MapleSim

Page 2 of 10

In Section 2, a brief overview of some of the components and
features of DCL is presented. In Section 3, some aspects of the
underlying symbolic technology that is utilized by MapleSim
towards optimized code generation for real-time application
are discussed. Section 4, is dedicated to some of the activities
in AISIN AW in modeling automatic transmissions and HiL
simulations. Conclusions are summarized in Section 5.

TRANSMISSION MODELING USING
THE DRIVELINE COMPONENT
LIBRARY

The MapleSim Driveline Component Library is a
comprehensive collection of components and models that
provide the fundamental components needed to build and
simulate complex transmission models. The acausal model
representation allows for rapid model development. The open
structure of the components makes it very easy to modify
them to suit specific requirements. Furthermore, the library
allows for flexible inclusion of power loss data that best
reflect the way in which the loss data was acquired. The DCL
components are grouped into the following categories:

• Simple Gear Sets

• Compound Gear Sets

• Multi-speed Actuation Components

• Clutches and Brakes

• CVT and Torque Converter

• Engines and Dynamometers

• Loss Elements

• Differential Gears

• Vehicle and Tire

• Gear Selectors

In the remainder of this section, some of the features of the
components used in modeling transmissions are discussed.

Clutches

As part of the standard component library, MapleSim provides
two clutch models: a standard, controllable friction clutch and
a one-way clutch [2]. Frictional clutch models include a
lookup table to define the friction coefficients as a function of
the relative speed between the friction pad and the plate. Axial
force on the plate(s) is provided by an input signal. Geometric

considerations can also be entered, such as the effect of the
inner and outer pad radii and number of pad/plate assemblies.
In DCL, these models are expanded; clutch and brake models
provide a real output port for the loss power and a Boolean
output port to indicate clutch lock-up. There are also other
formulation improvements that make DCL models perform
better when used with fixed-step integrators usually
encountered in real time applications and Hardware-in-the-
Loop simulations. DCL also includes a dog clutch component.

Figure 2. Brake and Clutch models in DCL

Torque Converter

The torque converter is modeled using tables of measured
data. The following characteristics are used:

• Torque Ratio vs Speed Ratio

• Load Capacity vs Speed Ratio

Where subscripts “t” and “p” designate turbine and pump
quantities, respectively. The required data can be given as
tabulated data or – as shown in Figure 3 – can be provided
from external calculations via real signal ports. The Torque
Converter component supports two alternative formulations
based on the following definitions of the load capacity:

		
.

 or 		
.

Page 3 of 10

Backward flow, happens during deceleration of the vehicle
where the vehicle kinetic energy is transmitted back through
the transmission to the engine. In this situation, the turbine is
pumping and the pump is acting as a turbine. Since torque
converters are not designed to work optimally this way, the
torque converter will have very different characteristics. This
is accommodated in the lookup table data by providing torque
ratios and capacity values for , typically up to about 5.

Figure 3. External data mode of the Torque Converter
Component

In the test model shown in Figure 4, the input (pump) torque is
increased linearly for the first 10 seconds. At low speeds,
between t = 0 and 4 s, the turbine torque increases faster than
the input torque. This is the “torque multiplication” effect
typically seen in the torque converters [3]. Due to the inherent
inefficiencies in the mechanism, the turbine speed is slightly
less than the pump speed while the torque is driving the pump.

Figure 4. Torque converter test model

Note that when the input torque drops at t = 15 s, the kinetic
energy of the dynamometer changes the torque flow from
forward to backward (i.e. turbine drives the pump), and the
pump speed drops below the turbine speed.

Gears, Gear Sets, and Transmissions

As shown in Figure 5, DCL includes simple and compound
gear sets and related actuation components for modeling gear
trains and transmissions. The Ravigneaux gear set component
is discussed in the following as an example of the compound
gear components in DCL.

Page 4 of 10

Figure 5. Collection of components for creating gear trains
and transmissions

Ravigneaux Gear Set

The Ravigneaux configuration is a basic automatic
transmission planetary assembly. As shown in Figure 6, this
gear set includes two sun gears; a large sun gear and a small
sun gear. These gears mesh with two planet gears connected to
a rotating carrier. The meshing inner and outer planets rotate
independently of the carrier. The inner planet meshes with the
small sun gear and the outer planet meshes with the large sun
gear. The ring gear then meshes with the outer planet and
couples the gear-train together.

Figure 6. Ravigneaux Gear set

In DCL, this configuration is constructed internally using three
Planet-Planet components and one Planet-Ring component, as

shown in Figure 7. Ring/Small Sun and Ring/Large Sun gear
ratios are provided by the user.

Figure 7. Internal structure of the Ravigneaux Gear

Selection of the required input/output transmission ratios is
achieved by coupling or decoupling the mechanical ports by
means of clutch components. The Ravigneaux Actuation
component can be used as shown in Figure 8 to easily create a
4-speed transmission.

Figure 8. Building a 4-speed transmission with the
Ravigneaux Actuation component

Lepelletier Gear Sets

There are two Lepelletier Actuation components (6-speed and
7-speed) provided in DCL which can be used together with a
Ravigneaux gear and a planetary gear to create 6-speed or 7-
speed transmissions as shown in Figure 9-a and 9-b,
respectively.

Page 5 of 10

Figure 9. Building 6-speed (a) and 7-speed (b) transmissions
with the Lepelletier Actuation components

Incorporating Losses

DCL contains all the mechanical building blocks necessary to
build a driveline system model to the required level of detail.
To achieve improved levels of fidelity, the library also
includes lossy versions of all the basic components. The
efficiency values can either be the results of calculations
performed elsewhere in the model, or the loss factors
interpolated from tables of measured data.

Meshing Efficiency

As shown in Figure 10, all of the gear components in the DCL
can easily be switched from ideal (i.e. no losses) to lossy
where power losses due to tooth-meshing are accounted for
[4]. Incorporating empirical loss data allows users to make
design decisions to reduce power losses and improve fuel
efficiency based on the in-depth system-level insight.

Figure 10. Fundamental GUI option for all gears – ideal =
true/false

In lossy mode, the meshing friction is expressed as a
transmission efficiency / which may be

defined as a function of the gear angular velocity via
data tables. As shown in Figure 11, forward (leading
teeth edge contact) and backward (trailing teeth edge
contact) efficiencies may be defined independently [4].

Figure 11. Gear Mesh – Leading/trailing edge contact

Bearing Friction

In compound gear sets (Planetary Gear, Dual-ratio Planetary
Gear, Counter-rotating Planetary Gear, Ravigneaux Gear,
Simpson Gear, and CR-CR Gear), internal bearing damping
can be added using the component options. Bearing friction
can also be added using external Bearing Friction components.
Figure 12 shows how this is done for a Counter-rotating
Planetary Gear component. The bearing friction is expressed
as a torque loss and is related only to the shaft speed [2].

Page 6 of 10

Figure 12. Adding bearing friction to gear sets

Losses in the Continuously Variable
Transmission

A continuously variable transmission (CVT) allows a
continuous range of gear ratios without the discrete gear
changes necessary in other configurations. In DCL, this
component can be switched to non-ideal mode where belt slip
and torque loss is considered via experimental data tables.
Assuming side “a” is the driver (i.e.), the
input/output torque relationship in the non-ideal mode is given
by,

where is the CVT base (geometric) ratio and is the efficiency
(provided via a real signal port). Also the input/output speed
relationship is given by,

where is the slip ratio and it is interpreted as,

where is the slip number and provided via a real signal port.

Figure 13(a) shows a simple model that incorporates a non-
ideal CVT. The CVT ratio (reduction) is changed continuously
from 1 to 2. The input and output power to and from CVT is
plotted in Figure 13 (b). The effect of slip is shown in Figure
13 (c).

Figure 13. Non-ideal CVT component in DCL3

ADVANTAGE OF THE SYMBOLIC
TECHNOLOGY

Symbolic techniques turn out to be a critical ingredient, both
to enable efficient modeling of these components as well as to
generate optimized code, yielding the required HiL execution
speed. MapleSim’s symbolic capabilities are enabled by an
underlying Maple computation engine [6], providing
extremely efficient symbolic operations that are necessary for
handling the thousands of system equations typically found in
the transmission models described in this paper.

An additional benefit to the symbolic approach is that since
the entire set of equations for the system is explicitly
generated, these equations can be manually inspected and used
for mathematical analysis, in addition to generating simulation
results and HiL code. The Maple environment is particularly
well suited for such analysis at the equation level, given a
system model. Figure 14, shows a simple example where the
equations of motion are automatically generated in Maple.

Page 7 of 10

Figure 14. (a) A simple model using Dual-ratio planetary
gear, (b) Automatically generated equations of motion

MapleSim is a Modelica environment and the Driveline
Component Library is developed using the Modelica language
[2]. A common characteristic of Modelica environments is that
system models are built by assembling components using
“physical” connections, carrying quantities like torque and
rotational angle bi-directionally between the two components.
The decision on causality of the model is deferred to
simulation time, just before the numeric integration process is
started. This is possible because the entire set of equations for
the whole system is generated symbolically, as a first step. At
this point we typically have a set of differential algebraic
equations. As shown in Figure 15, several steps are necessary
before these equations can be solved numerically, yielding
simulation results and/or HIL code. These steps are discussed
next.

Figure 15. (a) A simple model using Dual-ratio planetary
gear, (b) Automatically generated equations of motion

Equation Simplification

The initial set of equations generated from the system model is
typically large and contains many redundancies. Symbolic
techniques are used to simplify this set of equations as much

as possible. The simplifications are exact and do not result in
any loss of fidelity in the model. Trivial equations of the form
a = b are removed. Linear equations are pre-solved
analytically. Reducing the number of equations by a factor of
ten is not uncommon. This simplification step is key to the
scalability of the remaining pre-processing steps.

Index Reduction

As mentioned above, the generated system consists of
differential algebraic equations (DAEs). Such equations
cannot be readily solved with standard numerical techniques
because of the presence of algebraic constraints. The “index”
of a DAE is loosely defined as the number of times the
equations need to be differentiated in order to remove these
constraints. The goal here is to reduce the system of equations
to “index 1”, allowing numeric integration. During integration,
the constraints are monitored for “drift”, ensuring an accurate
solution, reflecting the behaviour of both the differential
equations as well as algebraic constraints. Again, symbolic
techniques turn out to be essential, allowing differentiation of
equations and efficient index reduction.

Causalization

At this point, we have a simplified system of (index 1)
differential equations. In order to numerically solve this
system, we will need to repeatedly evaluate the system for a
particular point. To enable this, we will need to turn our
(acausal) system of equations into a (causal) sequence of
numeric operations. In short, this process involves imposing
an order of evaluation onto our set of equations. Doing this
efficiently involves tools from graph theory, readily available
in the symbolic computing tool chest.

Optimized Code Generation

Executing speed is critical to HiL applications and symbolic
techniques again turn out to be key to generating highly
efficient code. It is, of course, possible to generate code
directly from the causal system of equations described above.
However by looking at those equations globally, we are able
to perform symbolic optimizations prior to generating code,
which makes the difference between achieving the required
HiL cycle times or not. These optimizations involve detecting
common computation sequences that can be factored out,
which go way beyond the (local) optimization capabilities of
available compilers.

Two Examples from DCL Models

A Simple Driveline Model

Consider the driveline mode shown in Figure 16. The model
represents a vehicle powertrain from engine to dynamometer.
The model includes a torque converter between the flywheel

Page 8 of 10

and the transmission. The transmission is a 4-speed
Ravigneaux gearbox. Using throttle and brake controllers, the
speed is changed following a ramp-up/coast down profile.

Figure 16. An example of a complete powertrain. The
Ravigneaux gearbox is activated by a Ravigneaux Actuation
component. The angular velocity of the load (Dynamometer)
is controlled by two PID controllers through the throttle and

brake commends.

Using MapleSim’s API commands from Maple, the simulation
time is measured. A fixed time-step solver (Euler) is used here
with a time step of 0.001 sec. Total simulation time is 150
seconds. The simulation was done on a 64-bit Windows 7
machine with Intel(R) Core(TM) Duo 2.40 GHz CPU. Figure
17 shows Maple’s commands for this example. These
command extract and simplify the model equations and
convert them to optimized c-code. The simulation results are
obtained from a Maple procedure which includes the complied
c-code.

Figure 17. Running MapleSim simulation using API
commands

The simulation was done over 15 times faster than real-time
(i.e. ~10 second of integration time for a 150-second
simulation). In 20 consecutive runs the average simulation
time was 9.68 with standard deviation of 0.30.

Full vehicle Model with Mean-value Engine
Model

The system in Figure 1, is the second example chosen for the
real-time demonstration. This model is considerably more
complex than the previous example and includes a detailed
mean-value engine model [7] and a 4-speed transmission
model. The MapleSim model uses the New York City Cycle
[8] and runs for 600 seconds. Simulation timing was done
under similar solver settings as the previous example. The
same computer was also used. On average the simulation was
done about 12 times faster than real-time (i.e. ~50 second of
integration time for a 600-second simulation). Based on 15
consecutive runs the average simulation time was 50.2
seconds with standard deviation of 0.54.

HIL SIMULATION OF THE
AUTOMATIC TRANSMISSIONS

In this section some of the results obtained at AISIN AW Co.,
LTD in modeling automatic transmissions and HiL
simulations are briefly discussed. At AISIN AW, HiL
simulation is extensively used to accelerate the development
of automatic transmissions. The plant models for HiL
simulations require sufficiently high fidelity to accurately
represent the aspect of the system dynamics important to the
designers. At the same time, these models have to have low
calculation cost in order to enable real-time execution. After a
formal evaluation of available software, MapleSim modeling
and simulation software together with the Driveline
Component Library was chosen by AISIN AW to create real-
time capable gear train plant models for HiL simulations.

Configuration of HiL system

As shown in Figure 18, the real-time platform used in the HiL
simulations reported here is the ADX system [9] from A&D
Technology, Inc. The plant model is deployed in Simulink
[10] and can be separated into two parts as depicted in Figure
19. The first part is the plant model which is constructed of the
s-function generated from MapleSim models including
clutches, brakes, and various gear sets. This part also includes
Simulink blocks for other parts of plant model. The second
part is the automatic testing module.

Figure 18. HiL simulation system

Page 9 of 10

Figure 19. Model for Real-time system

It is critical that the calculation time associated with the first
part (plant model) is kept as low as possible to accommodate
for the high execution times of the increasingly more complex
automatic testing routines implemented in the testing module.

One of the automatic transmission models - created in
MapleSim - is shown in Figure 20. The gear train in this
model includes a planetary gear, a Ravigneaux gear, and a
basic gear connected together using three clutches, two brakes
(modeled using clutch components), and a one-way clutch.
This gear train is connected to an idear gear which represents
the differential gear ratio. The tire load is modeled using
additional inertia, clutch, and brake components. The tire
component and the longitudinal vehicle dynamics component
of MapleSim Driveline Component Library (refer to Figure 1)
are not used here since that level of fidelity is not necessary
for the intended HiL simulations. The s-function generated
from the MapleSim’s gear train model is integrated with other
parts in Simulink.

Figure 20. Gear train model created in MapleSim

The Effectiveness of Maple/MapleSim

Previously, AISIN AW used s-function generated from
another simulation tool for the gear train model. Increasing
demands to perform more complex testing routines
necessitated a move towards modeling and simulation
environments that could break the barriers of simulation
execution time. In the following, some of the simulation
results comparing MapleSim with the other simulation tool are
presented.

The first step was to compare simulation results between the
two software in off-line and real-time simulations. Figures 21
and 22 compare the results obtained from off-line gear train
simulations in MapleSim and the other simulation tool. In
these simulations The EPA Urban Dynamometer Driving
Schedule (UDDS) [8] is used. The inputs to clutches and
brakes as well as external torques were taken from previous
HiL simulation data. Identical results obtained from the two
software for the transmission input speed (Figure 21) and for
the output speed (Figure 22).

Figure 21. The results comparison of input speeds

Figure 22. The results comparison of output speeds

After successful off-line tests, the numerical results from HiL
simulations were also compared. Figures 23(a) and (b) show
the HiL simulation results with s-function generated from the
other tool and MapleSim, respectively. These simulations and
many others demonstrated that both software produced the
same results.

Page 10 of 10

Figure 23. (a) HIL simulation result using the other tool’s s-
function (b) HIL simulation result using MapleSim’s s-

function

The next step was to compare the calculation costs in HiL
simulations. Comparisons where done on identical platforms
with a sampling time of 1ms. For the model shown above, the
implementation of the s-function generated from MapleSim in
the HiL simulations, reduced the overall CPU time by 250 s
(or 25%). This reduction translates to about half the
calculation time required by the s-function generated by the
other tool tested.

CONCLUSIONS

In this paper some of the features of the Driveline Component
Library – an add-on library for MapleSim modeling,
simulation, and analysis environment – were introduced. The
Driveline Component Library provides a comprehensive set of
components that enable transmission manufacturers – as well
as other automotive developers – to conveniently create plant
models for control and simulation. The underlying symbolic
computation engine of MapleSim (i.e. Maple) expands the
inherent advantages of similar Modelica-based physical
modeling tools to new heights. Benefiting from the power of
symbolic computing, MapleSim can generate extremely fast
code that is of vital importance when simulating large
complex systems in real-time. The paper also included a brief
description of the activities at AISIN AW on the development
of new automatic transmissions and their use of MapleSim and
the Driveline Component Library in HiL simulations. The
optimized c-code generated by MapleSim from transmission
plant models enabled AISIN AW to perform more detailed
HiL simulations. In a sample case study, it was shown that the
s-function generated by MapleSim ran twice as fast as the s-
function generated by a similar tool.

REFERENCES

[1] MapleSim User’s Guide, 2011, ISBN 978-1-926902-09-8.
[2] https://www.modelica.org/ (accessed 2/4/2012).
[3] D. Hrovat and W.E. Tobler. “Bond graph modeling and
computer simulation of automotive torque converters,” Journal
of the Franklin Institute. Volume 319, Issues 1-2, January-
February 1985, pp 93-114.
[4] Pelchen C., Schweiger C., and Otter M., “Modeling and
Simulating the Efficiency of Gearboxes and of Planetary
Gearboxes,” 2nd International Modelica Conference,
Proceedings, pp. 257-266.
[5] Joško Deur, Vladimir Ivanovic´, Matthew Hancock, and
Francis Assadian. "Modeling and Analysis of Active
Differential Dynamics," Journal of Dynamic Systems,
Measurement, and Control, 2010. Volume 132 / 061501, pp 1-
14.
[6] Bernadin L., Chin P., DeMarco P., Geddes K. O., Hare D.
E. G., Heal K. M., Labahn G., May J. P., McCarron, Monagan
M. B., Ohashi D., and Vorkoetter S. M., Maple Programming
Guide, 2011, ISBN 1-926902-08-1.
[7] - , “Mean-Value Internal Combustion Engine Model”,
Maplesoft, White Paper,
http://www.maplesoft.com/contact/webforms/whitepapers/eng
inemodel.aspx, (accessed: 2/4/2012).
[8] -, Dynamometer Driver's Aid,
http://www.epa.gov/nvfel/testing/dynamometer.htm,
(accessed: 2/4/2012).
[9] http://www.aanddtech.com/ADX.html (accessed:
2/4/2012).
[10] http://www.mathworks.com/products/simulink/
(accessed: 2/4/2012).

