
Image Analysis and Processing

Transforms

Laurent Najman

laurent.najman@esiee.fr

ESIEE Paris

Université Paris-Est, Laboratoire d’Informatique Gaspard-Monge, Équipe

A3SI

image processing, transforms – p. 1/46

Before we start

• How are we doing?

• Questions?

• Concerns?

• Tutorial problems?

◦ Programming problems?

image processing, transforms – p. 2/46

Syllabus

1. Introduction, image perception and representation

2. Enhancements – Histogram & pixelwise transforms.

3. Transforms – FFT, Laplace, Z, Hough.

4. Filtering – Linear filters.

5. Segmentation I

6. Segmentation II

7. Applications

image processing, transforms – p. 3/46

What are transforms?

Let I be an image represented as a function, I : IRn −→ IR,

Then T , a transform, is simply an operator on I:

J = T (I)

In practice however most operators are not called “transforms” ; this

term is derived from “integral transforms” of which the FOURIER and

LAPLACE transforms are parts of.

By extension, transforms are those that define broad classes of

operators, and/or which allows for a different representation of the

same data using different bases.

image processing, transforms – p. 4/46

Example of transforms relevant to IP

• FOURIER transform and its derivatives: DFT, FFT.

• Discrete cosine transform (DCT): used in coding (JPEG).

• KARHUNEN-LOÈVE transform (KLT): optimal coding.

• LAPLACE and Z transforms: exponential filters (1D).

• HOUGH transform: line and curve detection.

• Wavelet transforms: coding, filtering, texture representation.

image processing, transforms – p. 5/46

The FOURIER transform

image processing, transforms – p. 6/46

Background

• Named after JEAN BAPTISTE JOSEPH FOURIER (b. 1768)

• 1807: memoir, 1822: Book: “Théorie Analytique de la Chaleur”.

• Translated 1878 (FREEMAN) “Analytic theory of heat”.

• Idea that periodic signals could be decomposed as series of sines

and cosines (FOURIER series)

• Idea that non-periodic but finite-area functions can also be

represented as an integral sum of sines and cosines: the

FOURIER transform.

• Practical and useful idea that took more than 100 years to be

“digested”.

• Really took off with the advent of computers and the FFT 50

years ago.

image processing, transforms – p. 7/46

Periodic signals as sum of sines

0 200 400 600 800 1000 1200

0
5

1
0

1
5

2
0

Index

s
ig

sin(x) + 2 * sin(2*x)+ 0.6*sin(8*x) + 0.5 *
cos(12*x) image processing, transforms – p. 8/46

Continuous FT

• The FOURIER transform is a prime example of integral

transform:

• Forward transform:

F (u) =

∫ +∞

−∞
f(x)e−j2πuxdx

• Inverse transform:f(x) =
∫ +∞
−∞ F (u)ej2πuxdu

• FOURIER pairs:f(x) ⇔ F (u)

• x and u complex.

• Existence subject to:
∫ +∞
−∞ |f(x)|dx exists and is finite, f has a

finite number of discontinuities, f has bounded variations.

image processing, transforms – p. 9/46

2D FOURIER transform

Let f(x, y) be a 2D image, a function IR2 −→ IR. Its FOURIER

transform can be derived in the following fashion (separability):

F1(u, y) =

∫ +∞

−∞
f(x, y)e−j2πxudx

F (u, v) =

∫ +∞

−∞
F1(u, y)e

−j2πyvdy

=

∫ +∞

−∞

[
∫ +∞

−∞
f(x, y)e−j2πxudx

]

e−j2πyvdy

=

∫ +∞

−∞

∫ +∞

−∞
f(x, y)e−j2π(xu+yv)dxdy

Similarly: f(x, y) =
∫ +∞
−∞

∫ +∞
−∞ F (u, v)ej2π(xu+yv)dxdy

image processing, transforms – p. 10/46

Discrete FOURIER transform

Let f be a discrete function [0,M [⊂ ZZ −→ IR, then its DFT is given

by

F (u) =

M−1
∑

x=0

f(x)e−j(2πxu)/M

Similarly as before, the inverse DFT is given by:

f(x) =

M−1
∑

x=0

F (u)ej(2πxu)/M

• Q1: how many operations to compute the DFT (as a function of M)?

• Q2: is existence a problem?

• Q3: 2D versions?

image processing, transforms – p. 11/46

Warning: be alert (not alarmed)

• We’ll use the continuous FOURIER transform (CFT) or the DFT

somewhat interchangably.

• We’ll show proofs on the CFT if convenient.

• We’ll use the 1-D DFT for basic properties, moving to 2-D and

more later.

• We’ll try to repeat things in different contexts (1-D, 2-D,

continuous/discrete).

image processing, transforms – p. 12/46

Frequency domain

• Other way to write the DFT:

F (u) =

M−1
∑

x=0

f(x)[cos(2πux/M)− jsin(2πux/M)]

• Each term of F is the sum of all values of f weighted by sines

and cosines of various frequencies. F is the frequency domain

representation of f .

• Polar representation:

F (u) = ‖F (u)‖e−jφ(u);

‖F (u)‖ =
[

Re(F (u))2 + Im(F (u))2
]1/2

, φ(u) = tan−1

[

Im(F (u))

Re(F (u))

]

.

image processing, transforms – p. 13/46

Note on sampling

• We sample f(x) at x = 0, 1, 2, ...

• These are not necessarily integer samples. The sampling is

uniform of width ∆x but arbitrary, we mean:

f(x) = f(x0 + x ∗∆x)

• Similarly, F (u) is also sampled, but always starts at zero, i.e:

F (u) = F (u∆u)

• We have the following relationship between samplings:

∆u =
1

M∆x

• The DFT does not have infinite domain: assumption of

periodicity.

image processing, transforms – p. 14/46

Example on periodic signal

x <- seq(0,2*pi,length=1024)

s <- sin(x) + 2 * sin(2*x)+ 0.6*sin(8*x) + 0.5 * cos(12

0 200 400 600 800 1000

−
3

−
2

−
1

0
1

2
3

Index

s
ig

image processing, transforms – p. 15/46

DFT output analysis

Raw DFT Output of preceding signal looks likes this:

0 200 400 600 800 1000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

m
fs

ig

Need to recenter the signal, only plot useful bits:

image processing, transforms – p. 16/46

Analysis of periodic signal:

Signal: s = sin(x) + 2 * sin(2*x)+ 0.6*sin(8*x) + 0.5 * cos(12*x)

−20 −10 0 10 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

m
rf

s
ig

[l
/2

 +
 x

 +
 1

]

dft(s)[1] = (0, 0), dft(s)[2] = (0.5,−π/2),

dft(s)[3] = (1,−π/2), dft(s)[9] = (0.3,−π/2), dft(s)[13] = (0.25, 0)

image processing, transforms – p. 17/46

Non-periodic example: step

x <- seq(0,0,length=1024)

x[0:32] <- 1

0 200 400 600 800 1000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

x

image processing, transforms – p. 18/46

Non-periodic example

DFT of a step:

0 200 400 600 800 1000

0
5

1
0

1
5

2
0

2
5

3
0

Index

re
c
e
n
te

r(
M

o
d
(f

x
))

image processing, transforms – p. 19/46

Close form CFT of the box function

Let f be the box function:

f(x) = 1 if 1 ≥ x ≥ −1

f(x) = 0 otherwise

F (f(x))(u) =

∫ +∞

−∞
f(x)e−j2πxudx

=

∫ +1

−1
e−j2πxudx

=
1

−j2πu

[

e−j2πxu
]+1

−1

=
sin 2πu

πu

image processing, transforms – p. 20/46

Properties of the FOURIER transform

• Linearity: F (a.f + b.g) = a.F (f) + b.F (g) (from linearity of

the integral)

• Translation invariance: f(x− x0) ⇔ e−j2πx0uF (u).
note that ‖F (f(x− x0))‖ = ‖F (f(x))‖.

• Conversely F (u− u0) ⇔ f(x)ej2πu0x. Useful for recentering

the DFT.

◦ in discrete form: f(x)ej2πxu0/M ⇔ F (u− u0)

◦ if u0 = M/2, ej2πxu0/M = ejπx = (−1)x

◦ then, f(x)(−1)x ⇔ F (u−M/2).

• FOURIER transform of the derivative: F (d
nf

dxn) = (2πju)nF (f)

• Derivative of the FOURIER transform:

dnF (f(x))(u)

dun
= (−2πjx)nF (f(x))(u)

image processing, transforms – p. 21/46

Proof of the derivative property

F (
df

dx
)(u) =

∫ +∞

−∞

df(x)

dx
e−j2πxudx

∫

a
′

b = [ab]−

∫

ab
′

(integration by part)

=
[

fe−j2πxu
]x=+∞

x=−∞
−

∫ +∞

−∞
f(x)(−j2πu)e−j2πuxdx

= 0 + j2πu

∫ +∞

−∞
fe−j2πuxdx

= j2πuF (f)(u)

Note that:
∫ +∞
−∞ |f |dx < +∞ ⇒ f(−∞) = f(+∞) = 0

Repeat the process to get the final result: F (d
nf

dxn) = (2πju)nF (f).

image processing, transforms – p. 22/46

2-D DFT

• Forward 2-D DFT

F (u, v) =
1

MN

M−1
∑

x=0

N−1
∑

y=0

f(x, y)e−j2π(ux/M+yv/N)

• Inverse 2-D DFT

f(x, y) =

M−1
∑

x=0

N−1
∑

y=0

F (u, v)ej2π(ux/M+vy/N)

• Polar version

‖F (u, v)‖ =
[

Re(F (u, v))2 + Im(F (u, v))2
]1/2

φ(u, v) = tan−1

[

Im(F (u, v))

Re(F (u, v))

]

image processing, transforms – p. 23/46

Properties of the 2-D DFT

• DC component:

F (0, 0) =
1

MN

M−1
∑

x=0

N−1
∑

y=0

f(x, y)

• Symmetry:

F (u, v) = F ∗(−u,−v), therefore ‖F (u, v)‖ = ‖F (−u,−v)‖

• Sampling: ∆u = 1
M∆x ,∆v = 1

N∆y

• Re-centering: f(x, y)ej2π(u0x/M+v0y/N) ⇔ F (u− u0, v − v0)
(Q:how?)

• Translation invariance:

f(x− x0, y − y0) ⇔ F (u, v)e−j2π(
ux0

M
+

vy0

N
)

(Q:why?)

image processing, transforms – p. 24/46

Properties of the 2-D DFT (2)

• Linear (as in the 1-D case)

◦ Scaling: F (a.f) = a.F (f)
◦ Distributivity: F (f + g) = F (f) + F (g)

◦ f(ax, by) ⇔ 1
|ab|F (u/a, v/b)

◦ Note: F (f.g) 6= F (f).F (g)

• Rotation in spatial and frequency domain linked. Let:

x = r cos θ, y = r sin θ, u = ω cosφ, v = ω sinφ

Then f(x, y) and F (u, v) become f(r, θ) and F (ω, φ)
respectively, and:

f(r, θ + θ0) ⇔ F (ω, φ+ θ0)

(using the FOURIER transform in Polar coordinates).

image processing, transforms – p. 25/46

Properties of the 2-D DFT (3)

• Periodicity:

F (u, v) = F (u+M, v) = F (u, v +N) = F (u+M, v +N)

f(x, y) = f(x+M, y) = f(x, y +N) = f(x+M, y +N)

• Spectrum centered on origin (need to recenter):

F (u, v) = F ∗(−u,−v) =⇒ |F (u, v)| = |F (−u,−v)|

To re-center, multiply f(x, y) by (−1)x+y.

• Separability (from the continuous definition).

image processing, transforms – p. 26/46

Example periodic image

Synthetic texture image Modulus of its DFT

Image synthesized by setting random peaks (in symmetric pairs) in an

empty image, then doing an inverse DFT.

image processing, transforms – p. 27/46

Example non-periodic image

Box image Modulus of its DFT

Corresponding image to the step function in the 1-D case.

image processing, transforms – p. 28/46

Contrast problem with DFT images

DFT image After log transform

If D is the image on the left, the image on the right is log(D+ 1). This

reduces excessive contrast while keeping zeroes intact.

image processing, transforms – p. 29/46

DFT of an edge

Thin edge Thin edge DFT

Thick edge Thick edge DFT

image processing, transforms – p. 30/46

DFT of a real image

SEM micrograph its DFT

Notice: strongs edges at 45o, extrusions, and corresponding features in

the DFT.

image processing, transforms – p. 31/46

Filtering in the frequency domain

image processing, transforms – p. 32/46

Convolutions

• Continuous convolution (1-D):

(f ∗ g)(x) =

∫ +∞

−∞
f(h)g(x− h)dh

Here is an animation, here is another one

• in 2-D discrete, f and g both of size M ×N :

f(x, y) ∗ g(x, y) =
1

MN

M−1
∑

m=0

N−1
∑

n=0

f(m,n)g(x−m, y − n)

• Equivalent to weighted moving average.

• Q: in the spatial domain, how many operations are needed for

convolving two N ×N images?

image processing, transforms – p. 33/46

http://commons.wikimedia.org/wiki/File:Convolucion_Funcion_Pi.gif
http://mathworld.wolfram.com/images/gifs/convgaus.gif

Convolution and FOURIER transform

• Convolution theorem: Let f, g be a function pair and F,G their

FOURIER transforms, then:

f(x, y) ∗ g(x, y) ⇔ F (u, v).G(u, v)

and

f(x, y).g(x, y) ⇔ F (u, v) ∗G(u, v)

Where . is the element-by-element standard multiplication.

• if

f(x, y) ∗ h(x, y) ⇔ F (u, v) ∗H(u, v)

Then

h(x, y) ⇔ H(u, v)

A filter designed in frequency domain yields a filter in the spatial

domain, and vice-versa.

image processing, transforms – p. 34/46

Proof of the convolution theorem (1-D)

Fu((f ∗ g)(x))(u) =

∫ +∞

−∞
(f ∗ g)(x)e−j2πxudx

=

∫ +∞

−∞

[
∫ +∞

−∞
f(h)g(x− h)dh

]

e−j2πxudx

=

∫ +∞

−∞
f(h)

[
∫ +∞

−∞
g(x− h)e−j2πxudx

]

dh

=

∫ +∞

−∞
f(h)

[
∫ +∞

−∞
g(x− h)e−j2π(x−h)udx

]

e−j2πhudh

=

∫ +∞

−∞
f(h)G(u)e−j2πhudh

= G(u).

∫ +∞

−∞
f(h)e−j2πhudh

= G(u).F (u)
image processing, transforms – p. 35/46

Steps for filtering using the DFT

1. Forward DFT of the input image;

2. Recenter;

3. Design of filter;

4. Padding to avoid edge effects;

5. Product of DFT and filter. If filter is real, leaves the phase intact;

6. Decenter;

7. Inverse DFT;

8. Remove padding.

Q: in the frequency domain, how many operations are needed for

convolving two N ×N images?

For filter design, it is useful to remember that the FOURIER transform

of a Gaussian is a Gaussian.

image processing, transforms – p. 36/46

FOURIER transform of a Gaussian is a Gaussian

First:

F (−2πjxf(x))(u) =

∫ +∞

−∞

−2πjxf(x)e−2πjxudx =

∫ +∞

−∞

f(x)
d

du
(e−2πjxu)dx

=
d

du
F (f(x))(u) = −2πjxF (f(x))(u)

Then, if f = e−ax2

is a Gaussian (a is positive real):
df(x)
dx

= −2axf(x) We take the

FOURIER transform of both sides:

F (
df(x)

dx
)(u) = 2πjuF (u) (derivative of a FOURIER transform)

F (−2axf(x))(u) =
a

πj
F (−2πjxf(x)) =

a

πj

d

du
F (f(x))(u) (above)

putting things together:

2πjuF (f(x))(u) =
a

πj

d

du
(F (f(x))(u))

d

du
(F (f(x))(u)) = −

2π2

a
uF (f(x))(u) =⇒

∥

∥

∥

∥

F (u) =

√

π

a
e−

2π2

a
u2

image processing, transforms – p. 37/46

Example of simple convolution

Corrupted text

image processing, transforms – p. 38/46

Example of simple convolution

Filtered text

image processing, transforms – p. 38/46

Example of simple convolution

DFT of text

image processing, transforms – p. 38/46

Example of simple convolution

Low-pass filter using Gaussian

image processing, transforms – p. 38/46

Example of non-trivial convolution

Corrupted Moon scene

image processing, transforms – p. 39/46

Example of non-trivial convolution

Filtered Moon scene

image processing, transforms – p. 39/46

Example of non-trivial convolution

DFT of corrupt scene

image processing, transforms – p. 39/46

Example of non-trivial convolution

Designed filter

image processing, transforms – p. 39/46

The Fast Fourier Transform

image processing, transforms – p. 40/46

History of the FFT

• Invented by C.F. Gauss in 1803, for doing astronomy-related

hand calculation. Never published (found in notes).

• First modern algorithm attributed to Cooley and Tukey, 1963,

IBM. IBM thought the algorithm was so important they decided

to put it immediately in the public domain.

• Many implementations exist.

• A good one: FFTW, the Fastest FOURIER Transform in the West.

image processing, transforms – p. 41/46

http://www.fftw.org

Decimation in time

Assume we want to do a DFT of a length which is a power of 2, i.e:

M = 2n. The DFT is written:

F (u) =

M−1
∑

x=0

f(x)e−j(2πxu)/M

We do the sums in two halves:

F (u) =

M

2
−1

∑

x=0

f(2x)e−2jπ(2x)u/M +

M

2
−1

∑

x=0

f(2x+ 1)e−2πj(2x+1)u/M

=

M

2
−1

∑

x=0

feven(x)e
−2jπxu/(M/2) + e−2πju/M .

M

2
−1

∑

x=0

fodd(x)e
−2jπxu/(M/2)

image processing, transforms – p. 42/46

What have we gained?

• Seeminly nothing much, however...

• Now we are doing two M/2-length DFTs instead of a single

M -length DFT.

• This means instead of doing M2 operations, we do

2× (M2)
2 = M2

2 operations.

• Why stop here? Indeed we can decimate the two M/2 DFTs

again, and so on recursively.

• In the final recursive structure, there are n = log2(M) levels.

• At each levels there are M operations to perform.

• The final number of operations is

M. log2(M)

• Note: there are algorithms that are not limited to 2n vector

lengths (Singleton 1969).

image processing, transforms – p. 43/46

What difference does it make?

0 500 1000 1500 2000

0
5
0

1
0
0

1
5
0

Length of data vector

ra
ti
o
 N

^2
/(

N
.L

o
g
N

)

image processing, transforms – p. 44/46

Conclusion

image processing, transforms – p. 45/46

What have we learned?

• Transforms are a change of basis representation. They allow to

represent the same data in a different way.

• One very important tranform is the FOURIER transform and its

discrete equivalent the DFT.

• The FOURIER transform allows users to represent the data in the

frequency domain, like a prism for light.

• We can now do 1-D and 2-D DFTs

• The DFT allows users to compute convolution more quickly and

easily.

• We learned how to do useful filterings using the DFTs do do

enhancements using the frequency domain.

• There exists an efficient implementation of the DFT: the Fast

FOURIER Transform, which makes all the previous operations all

the more worthwhile.

image processing, transforms – p. 46/46

	Before we start
	Syllabus
	What are transforms?
	Example of transforms relevant to IP
	The {sc Fourier} transform
	Background
	Periodic signals as sum of sines
	Continuous FT
	2D {sc Fourier} transform
	Discrete {sc Fourier} transform
	Warning: be alert (not alarmed)
	Frequency domain
	Note on sampling
	Example on periodic signal
	DFT output analysis
	Analysis of periodic signal:
	Non-periodic example: step
	Non-periodic example
	Close form CFT of the box function
	Properties of the {sc Fourier} transform
	Proof of the derivative property
	2-D DFT
	Properties of the 2-D DFT
	Properties of the 2-D DFT (2)
	Properties of the 2-D DFT (3)
	Example periodic image
	Example non-periodic image
	Contrast problem with DFT images
	DFT of an edge
	DFT of a real image
	Filtering in the frequency domain
	Convolutions
	Convolution and {sc Fourier} transform
	Proof of the convolution theorem (1-D)
	Steps for f-iltering using the DFT
	{sc Fourier} transform of a Gaussian is a Gaussian
	Example of simple convolution
	Example of simple convolution
	Example of simple convolution
	Example of simple convolution

	Example of non-trivial convolution
	Example of non-trivial convolution
	Example of non-trivial convolution
	Example of non-trivial convolution

	The Fast Fourier Transform
	History of the FFT
	Decimation in time
	What have we gained?
	What difference does it make?
	Conclusion
	What have we learned?

