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Before we start

• How are we doing?

• Questions?

• Concerns?

• Tutorial problems?

◦ Programming problems?
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Syllabus

1. Introduction, image perception and representation

2. Enhancements – Histogram & pixelwise transforms.

3. Transforms – FFT, Laplace, Z, Hough.

4. Filtering – Linear filters.

5. Segmentation I

6. Segmentation II

7. Applications
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What are transforms?

Let I be an image represented as a function, I : IRn −→ IR,

Then T , a transform, is simply an operator on I:

J = T (I)

In practice however most operators are not called “transforms” ; this

term is derived from “integral transforms” of which the FOURIER and

LAPLACE transforms are parts of.

By extension, transforms are those that define broad classes of

operators, and/or which allows for a different representation of the

same data using different bases.
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Example of transforms relevant to IP

• FOURIER transform and its derivatives: DFT, FFT.

• Discrete cosine transform (DCT): used in coding (JPEG).

• KARHUNEN-LOÈVE transform (KLT): optimal coding.

• LAPLACE and Z transforms: exponential filters (1D).

• HOUGH transform: line and curve detection.

• Wavelet transforms: coding, filtering, texture representation.
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The FOURIER transform

image processing, transforms – p. 6/46



Background

• Named after JEAN BAPTISTE JOSEPH FOURIER (b. 1768)

• 1807: memoir, 1822: Book: “Théorie Analytique de la Chaleur”.

• Translated 1878 (FREEMAN) “Analytic theory of heat”.

• Idea that periodic signals could be decomposed as series of sines

and cosines (FOURIER series)

• Idea that non-periodic but finite-area functions can also be

represented as an integral sum of sines and cosines: the

FOURIER transform.

• Practical and useful idea that took more than 100 years to be

“digested”.

• Really took off with the advent of computers and the FFT 50

years ago.

image processing, transforms – p. 7/46



Periodic signals as sum of sines
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Continuous FT

• The FOURIER transform is a prime example of integral

transform:

• Forward transform:

F (u) =

∫ +∞

−∞
f(x)e−j2πuxdx

• Inverse transform:f(x) =
∫ +∞
−∞ F (u)ej2πuxdu

• FOURIER pairs:f(x) ⇔ F (u)

• x and u complex.

• Existence subject to:
∫ +∞
−∞ |f(x)|dx exists and is finite, f has a

finite number of discontinuities, f has bounded variations.
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2D FOURIER transform

Let f(x, y) be a 2D image, a function IR2 −→ IR. Its FOURIER

transform can be derived in the following fashion (separability):

F1(u, y) =

∫ +∞

−∞
f(x, y)e−j2πxudx

F (u, v) =

∫ +∞

−∞
F1(u, y)e

−j2πyvdy

=

∫ +∞

−∞

[
∫ +∞

−∞
f(x, y)e−j2πxudx

]

e−j2πyvdy

=

∫ +∞

−∞

∫ +∞

−∞
f(x, y)e−j2π(xu+yv)dxdy

Similarly: f(x, y) =
∫ +∞
−∞

∫ +∞
−∞ F (u, v)ej2π(xu+yv)dxdy
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Discrete FOURIER transform

Let f be a discrete function [0,M [⊂ ZZ −→ IR, then its DFT is given

by

F (u) =

M−1
∑

x=0

f(x)e−j(2πxu)/M

Similarly as before, the inverse DFT is given by:

f(x) =

M−1
∑

x=0

F (u)ej(2πxu)/M

• Q1: how many operations to compute the DFT (as a function of M )?

• Q2: is existence a problem?

• Q3: 2D versions?
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Warning: be alert (not alarmed)

• We’ll use the continuous FOURIER transform (CFT) or the DFT

somewhat interchangably.

• We’ll show proofs on the CFT if convenient.

• We’ll use the 1-D DFT for basic properties, moving to 2-D and

more later.

• We’ll try to repeat things in different contexts (1-D, 2-D,

continuous/discrete).
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Frequency domain

• Other way to write the DFT:

F (u) =

M−1
∑

x=0

f(x)[cos(2πux/M)− jsin(2πux/M)]

• Each term of F is the sum of all values of f weighted by sines

and cosines of various frequencies. F is the frequency domain

representation of f .

• Polar representation:

F (u) = ‖F (u)‖e−jφ(u);

‖F (u)‖ =
[

Re(F (u))2 + Im(F (u))2
]1/2

, φ(u) = tan−1

[

Im(F (u))

Re(F (u))

]

.
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Note on sampling

• We sample f(x) at x = 0, 1, 2, ...

• These are not necessarily integer samples. The sampling is

uniform of width ∆x but arbitrary, we mean:

f(x) = f(x0 + x ∗∆x)

• Similarly, F (u) is also sampled, but always starts at zero, i.e:

F (u) = F (u∆u)

• We have the following relationship between samplings:

∆u =
1

M∆x

• The DFT does not have infinite domain: assumption of

periodicity.
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Example on periodic signal

x <- seq(0,2*pi,length=1024)

s <- sin(x) + 2 * sin(2*x)+ 0.6*sin(8*x) + 0.5 * cos(12
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DFT output analysis

Raw DFT Output of preceding signal looks likes this:

0 200 400 600 800 1000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

m
fs

ig

Need to recenter the signal, only plot useful bits:
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Analysis of periodic signal:

Signal: s = sin(x) + 2 * sin(2*x)+ 0.6*sin(8*x) + 0.5 * cos(12*x)
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dft(s)[1] = (0, 0), dft(s)[2] = (0.5,−π/2),

dft(s)[3] = (1,−π/2), dft(s)[9] = (0.3,−π/2), dft(s)[13] = (0.25, 0)
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Non-periodic example: step

x <- seq(0,0,length=1024)

x[0:32] <- 1
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Non-periodic example

DFT of a step:
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Close form CFT of the box function

Let f be the box function:

f(x) = 1 if 1 ≥ x ≥ −1

f(x) = 0 otherwise

F (f(x))(u) =

∫ +∞

−∞
f(x)e−j2πxudx

=

∫ +1

−1
e−j2πxudx

=
1

−j2πu

[

e−j2πxu
]+1

−1

=
sin 2πu

πu
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Properties of the FOURIER transform

• Linearity: F (a.f + b.g) = a.F (f) + b.F (g) (from linearity of

the integral)

• Translation invariance: f(x− x0) ⇔ e−j2πx0uF (u).
note that ‖F (f(x− x0))‖ = ‖F (f(x))‖.

• Conversely F (u− u0) ⇔ f(x)ej2πu0x. Useful for recentering

the DFT.

◦ in discrete form: f(x)ej2πxu0/M ⇔ F (u− u0)

◦ if u0 = M/2, ej2πxu0/M = ejπx = (−1)x

◦ then, f(x)(−1)x ⇔ F (u−M/2).

• FOURIER transform of the derivative: F (d
nf

dxn ) = (2πju)nF (f)

• Derivative of the FOURIER transform:

dnF (f(x))(u)

dun
= (−2πjx)nF (f(x))(u)
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Proof of the derivative property

F (
df

dx
)(u) =

∫ +∞

−∞

df(x)

dx
e−j2πxudx

∫

a
′

b = [ab]−

∫

ab
′

(integration by part)

=
[

fe−j2πxu
]x=+∞

x=−∞
−

∫ +∞

−∞
f(x)(−j2πu)e−j2πuxdx

= 0 + j2πu

∫ +∞

−∞
fe−j2πuxdx

= j2πuF (f)(u)

Note that:
∫ +∞
−∞ |f |dx < +∞ ⇒ f(−∞) = f(+∞) = 0

Repeat the process to get the final result: F (d
nf

dxn ) = (2πju)nF (f).
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2-D DFT

• Forward 2-D DFT

F (u, v) =
1

MN

M−1
∑

x=0

N−1
∑

y=0

f(x, y)e−j2π(ux/M+yv/N)

• Inverse 2-D DFT

f(x, y) =

M−1
∑

x=0

N−1
∑

y=0

F (u, v)ej2π(ux/M+vy/N)

• Polar version

‖F (u, v)‖ =
[

Re(F (u, v))2 + Im(F (u, v))2
]1/2

φ(u, v) = tan−1

[

Im(F (u, v))

Re(F (u, v))

]
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Properties of the 2-D DFT

• DC component:

F (0, 0) =
1

MN

M−1
∑

x=0

N−1
∑

y=0

f(x, y)

• Symmetry:

F (u, v) = F ∗(−u,−v), therefore ‖F (u, v)‖ = ‖F (−u,−v)‖

• Sampling: ∆u = 1
M∆x ,∆v = 1

N∆y

• Re-centering: f(x, y)ej2π(u0x/M+v0y/N) ⇔ F (u− u0, v − v0)
(Q:how?)

• Translation invariance:

f(x− x0, y − y0) ⇔ F (u, v)e−j2π(
ux0

M
+

vy0

N
)

(Q:why?)
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Properties of the 2-D DFT (2)

• Linear (as in the 1-D case)

◦ Scaling: F (a.f) = a.F (f)
◦ Distributivity: F (f + g) = F (f) + F (g)

◦ f(ax, by) ⇔ 1
|ab|F (u/a, v/b)

◦ Note: F (f.g) 6= F (f).F (g)

• Rotation in spatial and frequency domain linked. Let:

x = r cos θ, y = r sin θ, u = ω cosφ, v = ω sinφ

Then f(x, y) and F (u, v) become f(r, θ) and F (ω, φ)
respectively, and:

f(r, θ + θ0) ⇔ F (ω, φ+ θ0)

(using the FOURIER transform in Polar coordinates).
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Properties of the 2-D DFT (3)

• Periodicity:

F (u, v) = F (u+M, v) = F (u, v +N) = F (u+M, v +N)

f(x, y) = f(x+M, y) = f(x, y +N) = f(x+M, y +N)

• Spectrum centered on origin (need to recenter):

F (u, v) = F ∗(−u,−v) =⇒ |F (u, v)| = |F (−u,−v)|

To re-center, multiply f(x, y) by (−1)x+y.

• Separability (from the continuous definition).
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Example periodic image

Synthetic texture image Modulus of its DFT

Image synthesized by setting random peaks (in symmetric pairs) in an

empty image, then doing an inverse DFT.
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Example non-periodic image

Box image Modulus of its DFT

Corresponding image to the step function in the 1-D case.
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Contrast problem with DFT images

DFT image After log transform

If D is the image on the left, the image on the right is log(D+ 1). This

reduces excessive contrast while keeping zeroes intact.
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DFT of an edge

Thin edge Thin edge DFT

Thick edge Thick edge DFT
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DFT of a real image

SEM micrograph its DFT

Notice: strongs edges at 45o, extrusions, and corresponding features in

the DFT.
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Filtering in the frequency domain
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Convolutions

• Continuous convolution (1-D):

(f ∗ g)(x) =

∫ +∞

−∞
f(h)g(x− h)dh

Here is an animation, here is another one

• in 2-D discrete, f and g both of size M ×N :

f(x, y) ∗ g(x, y) =
1

MN

M−1
∑

m=0

N−1
∑

n=0

f(m,n)g(x−m, y − n)

• Equivalent to weighted moving average.

• Q: in the spatial domain, how many operations are needed for

convolving two N ×N images?
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Convolution and FOURIER transform

• Convolution theorem: Let f, g be a function pair and F,G their

FOURIER transforms, then:

f(x, y) ∗ g(x, y) ⇔ F (u, v).G(u, v)

and

f(x, y).g(x, y) ⇔ F (u, v) ∗G(u, v)

Where . is the element-by-element standard multiplication.

• if

f(x, y) ∗ h(x, y) ⇔ F (u, v) ∗H(u, v)

Then

h(x, y) ⇔ H(u, v)

A filter designed in frequency domain yields a filter in the spatial

domain, and vice-versa.
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Proof of the convolution theorem (1-D)

Fu((f ∗ g)(x))(u) =

∫ +∞

−∞
(f ∗ g)(x)e−j2πxudx

=

∫ +∞

−∞

[
∫ +∞

−∞
f(h)g(x− h)dh

]

e−j2πxudx

=

∫ +∞

−∞
f(h)

[
∫ +∞

−∞
g(x− h)e−j2πxudx

]

dh

=

∫ +∞

−∞
f(h)

[
∫ +∞

−∞
g(x− h)e−j2π(x−h)udx

]

e−j2πhudh

=

∫ +∞

−∞
f(h)G(u)e−j2πhudh

= G(u).

∫ +∞

−∞
f(h)e−j2πhudh

= G(u).F (u)
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Steps for filtering using the DFT

1. Forward DFT of the input image;

2. Recenter;

3. Design of filter;

4. Padding to avoid edge effects;

5. Product of DFT and filter. If filter is real, leaves the phase intact;

6. Decenter;

7. Inverse DFT;

8. Remove padding.

Q: in the frequency domain, how many operations are needed for

convolving two N ×N images?

For filter design, it is useful to remember that the FOURIER transform

of a Gaussian is a Gaussian.
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FOURIER transform of a Gaussian is a Gaussian

First:

F (−2πjxf(x))(u) =

∫ +∞

−∞

−2πjxf(x)e−2πjxudx =

∫ +∞

−∞

f(x)
d

du
(e−2πjxu)dx

=
d

du
F (f(x))(u) = −2πjxF (f(x))(u)

Then, if f = e−ax2

is a Gaussian (a is positive real):
df(x)
dx

= −2axf(x) We take the

FOURIER transform of both sides:

F (
df(x)

dx
)(u) = 2πjuF (u) (derivative of a FOURIER transform)

F (−2axf(x))(u) =
a

πj
F (−2πjxf(x)) =

a

πj

d

du
F (f(x))(u) (above)

putting things together:

2πjuF (f(x))(u) =
a

πj

d

du
(F (f(x))(u))

d

du
(F (f(x))(u)) = −

2π2

a
uF (f(x))(u) =⇒

∥

∥

∥

∥

F (u) =

√

π

a
e−

2π2

a
u2
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Example of simple convolution

Corrupted text
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Example of simple convolution

Filtered text
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Example of simple convolution

DFT of text
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Example of simple convolution

Low-pass filter using Gaussian
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Example of non-trivial convolution

Corrupted Moon scene

image processing, transforms – p. 39/46



Example of non-trivial convolution

Filtered Moon scene
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Example of non-trivial convolution

DFT of corrupt scene
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Example of non-trivial convolution

Designed filter
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The Fast Fourier Transform
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History of the FFT

• Invented by C.F. Gauss in 1803, for doing astronomy-related

hand calculation. Never published (found in notes).

• First modern algorithm attributed to Cooley and Tukey, 1963,

IBM. IBM thought the algorithm was so important they decided

to put it immediately in the public domain.

• Many implementations exist.

• A good one: FFTW, the Fastest FOURIER Transform in the West.
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Decimation in time

Assume we want to do a DFT of a length which is a power of 2, i.e:

M = 2n. The DFT is written:

F (u) =

M−1
∑

x=0

f(x)e−j(2πxu)/M

We do the sums in two halves:

F (u) =

M

2
−1

∑

x=0

f(2x)e−2jπ(2x)u/M +

M

2
−1

∑

x=0

f(2x+ 1)e−2πj(2x+1)u/M

=

M

2
−1

∑

x=0

feven(x)e
−2jπxu/(M/2) + e−2πju/M .

M

2
−1

∑

x=0

fodd(x)e
−2jπxu/(M/2)
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What have we gained?

• Seeminly nothing much, however...

• Now we are doing two M/2-length DFTs instead of a single

M -length DFT.

• This means instead of doing M2 operations, we do

2× (M2 )
2 = M2

2 operations.

• Why stop here? Indeed we can decimate the two M/2 DFTs

again, and so on recursively.

• In the final recursive structure, there are n = log2(M) levels.

• At each levels there are M operations to perform.

• The final number of operations is

M. log2(M)

• Note: there are algorithms that are not limited to 2n vector

lengths (Singleton 1969).
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What difference does it make?
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Conclusion
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What have we learned?

• Transforms are a change of basis representation. They allow to

represent the same data in a different way.

• One very important tranform is the FOURIER transform and its

discrete equivalent the DFT.

• The FOURIER transform allows users to represent the data in the

frequency domain, like a prism for light.

• We can now do 1-D and 2-D DFTs

• The DFT allows users to compute convolution more quickly and

easily.

• We learned how to do useful filterings using the DFTs do do

enhancements using the frequency domain.

• There exists an efficient implementation of the DFT: the Fast

FOURIER Transform, which makes all the previous operations all

the more worthwhile.
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