Image Enhancement

Laurent Najman

laurent.najman@esiee.fr

ESIEE Paris

Université Paris-Est, Laboratoire d'Informatique Gaspard-Monge, Équipe A3SI

Image Enhancement – p. 1/59

Book

- Digital Image Processing, Second Edition
 - $^{\circ}$ authors: Rafael C. Gonzalez and Richard E.Woods
 - ^o editor: Prentice Hall

What is image enhancement?

We try to improve an image so that it looks **subjectively** better!

original image

enhanced image

Which one of these images looks "better"?

Domain Methods • Spatial Domain

- $^{\circ}$ refers to the aggregate of pixels composing an image
- direct manipulation of the pixels
- Frequency Domain
 - $^{\circ}$ Fourier transfrom is the key
 - $^{\circ}$ Consists of variations on low- and high-pass filtering

Original image

Fourier spectrum of this image

Spatial Domain – Background

- Spatial domain: aggregate of pixels/voxels composing an image.
- Spatial domain method: procedures that operate directly on these pixels.
- We use masks (say, 3×3) for enhancement techniques: mask processing or filtering

$$g(x,y) = T[f(x,y)]$$

Intensity Mapping

$$s = T(r)$$

- T is of size 1×1
- T is a gray-level transformation function
- gray level in the range [0, L-1]

a b FIGURE 3.2 Graylevel transformation functions for contrast enhancement.

Source: http://www.imageprocessingbook.com – p. 6/59

Basic Gray Level Transformations

- linear
- logarithmic: $s = c \log(1+r)$
- power-law: $s = c r^{\gamma}$

Application of Linear Transforation

Negative image: s = L - 1 - r

a b FIGURE 3.4 (a) Origina

(a) Original digital mammogram.
(b) Negative image obtained using the negative transformation in Eq. (3.2-1).
(Courtesy of G.E. Medical Systems.)

Log Transformations (1)

 $s = c \, \log(+1+r)$

a b

FIGURE 3.5 (a) Fourier spectrum. (b) Result of applying the log transformation given in Eq. (3.2-2) with c = 1.

Log Transformations (2)

Power-law Transformation

 $s = cr^{\gamma}$

CRT Monitor: Gamma Correction

• Gamma Correction: transformation to display an image accurately on a computer screen

Application of Power-law Transformation

a b c d

FIGURE 3.8

(a) Magnetic resonance (MR) image of a fractured human spine. (b)-(d) Results of applying the transformation in Eq. (3.2-3) with c = 1 and $\gamma = 0.6, 0.4, and$ 0.3, respectively. (Original image for this example courtesy of Dr. David R. Pickens, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center.)

Source: http://www.imageprocessingbook.com – p. 13/59

Contrast Stretching

- Piecewise-linear transformations
 - $^{\circ}$ gray level in the range [0, L-1]
 - \circ (r_1, s_1) and (r_2, s_2) control the shape of the transformation

Contrast Stretching

- Three cases:
 - \circ $r_1 = s_1$ and $r_2 = s_2$: linear function
 - ° $r_1 = r_2, s_1 = 0$ and $s_2 = L 1$: thresholding function (binary image)
 - $^{\circ}$ intermediate value
- In general: $r_1 \leqslant r_2, s_1 \leqslant s_2$
- Stretch value linearly

Source: http://www.imageprocessingbook.com – p. 16/59

Histogram

- Histogram: discrete function $h(r_k) = n_k$
 - ° r_k : k^{th} gray level
 - \circ n_k : # pixels in the image having gray level r_k
 - $^{\circ}$ gray level in the range [0, L-1]
 - $^{\circ}$ n: total number of pixels

Histogram normalization

$$norm(r_k) = (r_k - r_{\min})\frac{V_{\max} - V_{\min}}{r_{\max} - r_{\min}} + V_{\min}$$

where

- r_{\min} is the lowest gray-value
- r_{\max} is the highest gray-value
- V_{\min} is the new desired lowest gray value
- V_{max} is the new desired highest gray value

Histogram Equalization (1)

• we make all gray values in an image equally probable

- probability density function
 - ° $p_r(r)$: probability density function (PDF) of random variable r
 - $\circ p_r(r)dr$: # pixels with gray level values in the range [r, r + dr]

Histogram Equalization (2)

- s = T(r) with $0 \leq r \leq 1$
 - $^\circ~$ r has been normalized between 0 and 1
- assumptions:
 - \circ T(r) is single-valued
 - $^{\circ}$ monotonically increasing
 - $\circ \quad 0 \leqslant T(r) \leqslant 1 \text{ for } 0 \leqslant r \leqslant 1$

$$\circ \quad r = T^{-1}(s) \text{ with } 0 \leqslant s \leqslant 1$$

FIGURE 3.16 A gray-level

transformation function that is both single valued and monotonically increasing.

Histogram Equalization (3)

- $p_r(r)$ and $p_s(s)$ PDF of two random variables
- s = T(r) with $0 \leq r \leq 1$

$$p_r(r)\,dr = p_s(s)\,ds$$

We want $p_r(r)$ transformed into $p_s(s)$ to look like constant

Proove that $s = T(r) = \int_0^r p_r(w) dw$ does the job.

Histogram Equalization (4)

Hence $s = \int_0^r p_r(r) \, dr = T(r)$

- we deal with image: discrete value
 - $^{\circ}$ summation instead of integrals
 - $^{\circ}$ probabilities instead of PDF
- probability of occurrence of gray level r_k is:
 - ° $p_r(r_k) = \frac{n_k}{n}$ with k = 0, 1, ..., L 1

$$s_{k} = T(r_{k}) = \sum_{j=0}^{k} p_{r}(r_{j})$$
$$s_{k} = \sum_{j=0}^{k} \frac{n_{j}}{n} \text{ with } k = 0, 1, ..., L - 1$$

Histogram Equalization – Example (5)

Histogram Equalization (6)

• Why Histogram Equalization does not produce flat histograms ?

Histogram Equalization

a b

FIGURE 3.20 (a) Image of the Mars moon Photos taken by NASA's *Mars Global Surveyor.* (b) Histogram. (Original image courtesy of NASA.)

Histogram Equalization (8)

a b c

FIGURE 3.21 (a) Transformation function for histogram equalization. (b) Histogramequalized image (note the washed-

out appearance). (c) Histogram of (b).

Histogram Matching (1)

• we specify the shape of the histogram that we wish the processed image to have

Histogram Matching (2)

- Let assume we want to have the PDF $p_z(z)$
 - $\circ s = T(r) = \int_0^r p_r(w) dw$

$$\circ \quad G(z) = \int_0^z p_r(t) \, dt = s$$

- G(z) = T(r)(1) $z = G^{-1}(s) = G^{-1}[T(r)]$
- Algorithm:
 - ° (1) Obtain T(r)
 - ° (2) Compute G(z)
 - ° (3) Compute $G^{-1}(z)$
 - $^{\circ}$ (4) Obtain output image by applying eq. (1)

Histogram Matching (3)

Local Enhancement

local histogram equalization

- $^\circ~$ using a $N \times N$ masks
- $^{\circ}$ applying the equalization only to the pixel at the center of the mask
- $^{\circ}$ repeat the process to all the pixel (convolution)

a b c

FIGURE 3.23 (a) Original image. (b) Result of global histogram equalization. (c) Result of local histogram equalization using a 7×7 neighborhood about each pixel.

Using Histogram Statistics

- we use some statistical parameters
 - global:

•
$$p(r_i) = \frac{n_i}{n}$$

• $m(r) = \sum_{i=0}^{L-1} p(r_i) r_i$
• $\sigma^2(r) = \sum_{i=0}^{L-1} (r_i - m)^2 p(r_i)$

 $^{\circ}$ local:

• $p(r_{s,t})$: neighborhood normalized histogram at coordinates (s,t) using a mask centered at (x,y)

•
$$m_{S_{xy}} = \sum_{(s,t)\in S_{xy}} p(r_{s,t}) r_{s,t}$$

•
$$\sigma^2(S_{xy}) = \sum_{(s,t)\in S_{xy}} [r_{s,t} - m_{S_{xy}}]^2 p(r_{s,t})$$

Local Statistics – Example (1)

• How to enhance this image?

FIGURE 3.24 SEM image of a tungsten filament and support, magnified approximately 130×. (Original image courtesy of Mr. Michael Shaffer, Department of Geological Sciences, University of Oregon, Eugene).

Local Statistics – Example (2)

Image Analysis!

- What do we want to achieve?
 - We want to enhance dark areas while leaving light areas unchanged
- Can we use local statistic to obtain it?
 - $^{\circ}$ where the image is dark: local mean \ll global mean
 - $^{\circ}$ enhance area with only low contrast: local standard deviation \ll global standard deviation
 - avoiding to enhance constant areas: local standard deviation higher than a fixed minimum value

Local Statistics – Example (3)

Mathematical translation

- g(x,y) = E.f(x,y)
 - $\circ \quad \text{if } m_{S_{xy}} \leqslant k_0 \, M_G$
 - $\circ \quad \text{and} \ k_1 \ D_G \leqslant \sigma_{S_{xy}} \leqslant k_2 \ D_G$
- g(x,y) = f(x,y) otherwise
- E_0, k_0, k_1, k_2 : specified parameters
- M_G : global mean of the input image
- D_G : global standard deviation

Local Statistics – Example (4)

Image Substraction

$$g(x,y) = f(x,y) - h(x,y)$$

Image Averaging

- $g(x,y) = f(x,y) + \eta(x,y)$
 - $\circ g(x,y)$: noisy image
 - $\circ f(x,y)$: original image
 - \circ $\eta(x,y)$: uncorrelated noise with zero average value
- We reduce the noise content by adding a set of noisy images $g_i x, y$
- $\overline{g}(x, y)$ is formed by:

$$\circ \ \overline{g}(x,y) = \frac{1}{K} \sum_{i=1}^{K} g_i(x,y)$$

In theory:

$$\hat{\overline{g}}(x,y) = f(x,y)$$

Image Averaging – Example

Spatial Filtering

• Filtering operations performed directly on the pixels of an image

Weighted Averaging Filter

$$g(x,y) = \frac{\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)}{\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t)}$$

• Example: image corrupted by a salt-and-pepper noise

Median Filter

•
$$\hat{f}(x,y) = \text{median}_{(s,t) \in S_{xy}}(g(s,t))$$

Sharpening Spatial Filters

- Sharpening can be achieved by spatial differention
- Derivative operators:
 - first-order derivative
 - $^{\circ}$ second-order derivative
- emhance edges (and also noise...)
- deemphasize image areas with slow intensity variations
- first-order derivative:

$$\circ \quad \frac{\partial f}{\partial x} = f(x+1) - f(x)$$

• second-order derivative:

$$\circ \quad \frac{\partial^2 f}{\partial x^2} = f(x+1) + f(x-1) - 2f(x)$$

First- and Second-order Derivatives (1)

First- and Second-order Derivatives (2)

- First-order derivatives produce thick edges
- Second-order derivatives have a stronger response to fine detail
- First-order derivatives have a stronger response to a gray-level step
- Second-order derivatives produce a double response at step changes in gray level
- In general, second-order derivatives better suit for enhancement

First derivatives for Enhancement (1)

• The gradient:

$$\nabla \mathbf{f} = \left[\begin{array}{c} G_x \\ G_y \end{array} \right] = \left[\begin{array}{c} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{array} \right]$$

• The gradient magnitude:

$$\begin{aligned} \nabla \mathbf{f} &= [G_x^2 + G_y^2]^{\frac{1}{2}} \\ &= [(\frac{\partial f}{\partial x})^2 + (\frac{\partial f}{\partial y})^2]^{\frac{1}{2}} \end{aligned}$$

• Approximation:

 $\nabla \mathbf{f} \approx |G_x + G_y|$

First derivatives for Enhancement (2)

<i>z</i> ₁	z_2	Z3
Z4	Z5	Z6
z7	z_8	Z9

- simplest approximation:
 - ° $G_x = (z_8 z_5)$ ° $G_y = (z_6 - z_5)$
- cross difference:

•
$$G_x = (z_9 - z_5)$$

• $G_y = (z_8 - z_6)$

Then:

$$\nabla \mathbf{f} = |z_9 - z_5| + |z_8 - z_6|$$

Sobel Operator

$$\nabla \mathbf{f} \approx |(z_7 + 2z_8 + z_9) - (z_1 + 2z_2 + z_3)| + |(z_3 + 2z_6 + z_9) - (z_1 + 2z_4 + z_7)|$$

-1	-2	-1	-1	0	1
0	0	0	-2	0	2
1	2	1	-1	0	1

Laplacian

•
$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

•
$$\frac{\partial^2 f}{\partial x^2} = f(x+1,y) + f(x-1,y) - 2f(x,y)$$

•
$$\frac{\partial^2 f}{\partial y^2} = f(x,y+1) + f(x,y-1) - 2f(x,y)$$

•
$$\nabla^2 f = f(x+1,y) + f(x-1,y) + f(x,y+1)$$

•
$$\nabla^2 f = f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)$$

0	1	0	1	1	1
1	-4	1	1	-8	1
0	1	0	1	1	1

Laplacian for Image Enhancement (1)

- highlights gray level discontinuities
- deeamphasizes regions with slowy varying gray level

Laplacian for Image Enhancement (2)

 $g(x,y) = \begin{cases} f(x,y) - \nabla^2 f(x,y) \text{ if the center coefficient is negative} \\ f(x,y) + \nabla^2 f(x,y) \text{ if the center coefficient is positive} \end{cases}$

Mask Composition (1)

$$\nabla^2 f = f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)$$
$$g(x,y) = f(x,y) - [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1)] + 4f(x,y)$$
$$g(x,y) = 5f(x,y) - [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1)]$$

0	-1	0	-1	-1	-1
-1	5	-1	-1	9	-1
0	-1	0	-1	-1	-1

Mask Composition (2)

Unsharp Masking

• Substracting a blurred version of an image from the image itself:

$$\circ \quad f_s(x,y) = f(x,y) - \tilde{f}(x,y)$$

- $\circ f_s(x,y)$: sharpened image
- ° $\tilde{f}(x,y)$: blurred version of f(x,y)
- High-boost filtering:
 - $\circ f_{hb}(x,y) = A f(x,y) \tilde{f}(x,y)$
 - $\circ f_h b(x, y)$: high-boosted image
 - $^{\circ} \quad A \geq 1$

High-boost Filtering Using Laplacian (1)

• Combining the two equations:

$$\circ \ f_{hb}(x,y) = (A f(x,y) - 1) f(x,y) + f(x,y) - \tilde{f}(x,y)$$

- $\circ \ f_{hb}(x,y) = (A f(x,y) 1) f(x,y) + f_s(x,y)$
- Let say $f_s(x,y) = \nabla^2 f$ or $f_s(x,y) = -\nabla^2 f$

• Then:

 $f_{hb}(x,y) = \begin{cases} A f(x,y) - \nabla^2 f(x,y) \text{ if center coefficient negative} \\ A f(x,y) + \nabla^2 f(x,y) \text{ if center coefficient positive} \end{cases}$

Example

Spatial Domain Techniques: Summary

- Histogram equalization
- Histogram manipulation
- Basic statistics for image processing
- Filtering with spatial masks
- First-order and second-order derivatives
- Sobel filter

Frequency Domain – Background

- Jean Baptiste Joseph Fourier is the key!
- Frequency domain: space defined by values of the Fourier transform and its frequency variable (u, v)

Original image

Fourier spectrum of this image

Frequency Domain Filtering Operation

╈