Image Enhancement

Laurent Najman

laurent.najman@esiee.fr

ESIEE Paris

Université Paris-Est, Laboratoire d'Informatique Gaspard-Monge, Équipe A3SI

Book

- \bullet Digital Image Processing, Second Edition
	- authors: Rafael C. Gonzalez and Richard E.Woods \bigcirc
	- \bigcirc editor: Prentice Hall

What is image enhancement?

We try to improve an image so that it looks **subjectively** better!

Which one of these images looks "better"?

Domain Methods**Spatial Domain** \bullet

- \bigcirc refers to the aggregate of ^pixels composing an image
- \circ direct manipulation of the ^pixels
- • Frequency Domain
	- \bigcirc Fourier transfrom is the key
	- \circ Consists of variations on low- and high-pass filtering

Original image **Fourier spectrum of this image**

Spatial Domain – Background

- •Spatial domain: aggregate of ^pixels/voxels composing an image.
- • Spatial domain method: procedures that operate directly on these pixels.
- \bullet • We use masks (say, 3×3) for enhancement techniques: mask processing or filtering

$$
g(x,y) = T[f(x,y)]
$$

Intensity Mapping

$$
s=T(r)
$$

- \bullet • T is of size 1×1
- \bullet ^T is ^a gray-level transformation function
- \bullet • gray level in the range $[0, L - 1]$

a b FIGURE 3.2 Graylevel transformation functions for contrast enhancement.

Basic Gray Level Transformations

- •linear
- \bullet • logarithmic: $s = c \log(1 + r)$
- power-law: $s = c r^{\gamma}$ \bullet

Application of Linear Transforation

Negative image: $s=L-1-r$

a b

FIGURE 3.4 (a) Original digital mammogram. (b) Negative image obtained using the negative transformation in Eq. (3.2-1). (Courtesy of G.E. Medical Systems.)

Log Transformations (1)

 $s = c \ log(+1 + r)$

a b

FIGURE 3.5 (a) Fourier spectrum. (b) Result of applying the log transformation given in Eq. $(3.2-2)$ with $c = 1$.

Log Transformations (2)

Power-law Transformation

 $s = cr^{\gamma}$

FIGURE 3.6 Plots of the equation $s = cr^{\gamma}$ for various values of γ (c = 1 in all cases).

CRT Monitor: Gamma Correction

 \bullet Gamma Correction: transformation to display an image accurately on ^acomputer screen

Application of Power-law Transformation

FIGURE 3.8

(a) Magnetic resonance (MR) image of a fractured human spine. (b) - (d) Results of applying the transformation in Eq. (3.2-3) with $c = 1$ and $y = 0.6, 0.4,$ and 0.3, respectively. (Original image for this example courtesy of Dr. David R. Pickens. Department of Radiology and Radiological Sciences. Vanderbilt University Medical Center.)

Contrast Stretching

- • Piecewise-linear transformations
	- gray level in the range $[0, L 1]$
	- \circ (r_1, s_1) and (r_2, s_2) control the shape of the transformation

Contrast Stretching

- • Three cases:
	- \degree $r_1 = s_1$ and $r_2 = s_2$: linear function
	- [○] $r_1 = r_2$, $s_1 = 0$ and $s_2 = L 1$: thresholding function (binary image)
	- intermediate value
- In general: $r_1 \leq r_2$, $s_1 \leq s_2$
- \bullet Stretch value linearly

Histogram

- •• Histogram: discrete function $h(r_k) = n_k$
	- \circ r_k : k^{th} gray level
	- \circ n_k : # pixels in the image having gray level r_k
	- \degree gray level in the range $[0, L 1]$
	- \circ n: total number of pixels

Histogram normalization

$$
norm(r_k) = (r_k - r_{\min}) \frac{V_{\max} - V_{\min}}{r_{\max} - r_{\min}} + V_{\min}
$$

where

- r_{min} is the lowest gray-value
- • $r_{\rm max}$ is the highest gray-value
- • $V_{\rm min}$ is the new desired lowest gray value
- • $V_{\rm max}$ is the new desired highest gray value

Histogram Equalization (1)

•we make all gray values in an image equally probable

- probability density function
	- $p_r(r)$: probability density function (PDF) of random variable r
	- $p_r(r)dr$: # pixels with gray level values in the range $[r, r+dr]$

Histogram Equalization (2)

- $s=T(r)$ with $0\leqslant r\leqslant1$
	- ◦ \circ r has been normalized between 0 and 1
- \bullet assumptions:
	- \circ $T(r)$ is single-valued
	- monotonically increasing
	- \circ 0 $\leqslant T(r) \leqslant 1$ for $0 \leqslant r \leqslant 1$

$$
\circ \ \ r = T^{-1}(s) \text{ with } 0 \leq s \leq 1
$$

FIGURE 3.16 A

gray-level transformation function that is both single valued and monotonically increasing.

Histogram Equalization (3)

- $p_r(r)$ and $p_s(s)$ PDF of two random variables
- $s=T(r)$ with $0\leqslant r\leqslant1$

$$
p_r(r) dr = p_s(s) ds
$$

We want $p_r(r)$ transformed into $p_s(s)$ to look like constant

Proove that $s = T(r) = \int_0^r$ $\int_0^{\tau} p_r(w) dw$ does the job.

Histogram Equalization (4)

Hences= $=\int_0^r$ 0 \boldsymbol{p} $r\,$ \sqrt{r} $r\,$ $r) dr$ = $\, T \,$ $T($ $r\,$ $r)$

- • we deal with image: discrete value
	- \circ summation instead of integrals
	- \circ probabilities instead of PDF
- probability of occurence of gray level r_k is:

$$
p_r(r_k) = \frac{n_k}{n} \text{ with } k = 0, 1, ..., L - 1
$$

$$
s_k = T(r_k) = \sum_{j=0}^k p_r(r_j)
$$

$$
s_k = \sum_{j=0}^k \frac{n_j}{n} \text{ with } k = 0, 1, ..., L - 1
$$

Histogram Equalization – Example (5)

Histogram Equalization (6)

•Why Histogram Equalization does not produce flat histograms?

Histogram Equalization

a b

FIGURE 3.20 (a) Image of the Mars moon Photos taken by NASA's Mars Global Surveyor. (b) Histogram. (Original image courtesy of NASA.)

╈

Histogram Equalization (8)

 $\begin{array}{cc} a & b \\ c \end{array}$

FIGURE 3.21 (a) Transformation function for histogram equalization. (b) Histogramequalized image (note the washedout appearance). (c) Histogram $of (b)$.

Histogram Matching (1)

• we specify the shape of the histogram that we wish the processed imageto have

Histogram Matching (2)

- Let assume we want to have the PDF $p_z(z)$
	- $s=T(r)=\int_0^r$ $\int\limits_0^\tau p_r(w)\,dw$

$$
G(z) = \int_0^z p_r(t) dt = s
$$

- $G(z) = T(r)$ (1) $z=G^{-1}$ (1) $z = G^{-1}(s) = G^{-1}[T(r)]$
- \bullet Algorithm:
	- \circ (1) Obtain $T(r)$
	- (2) Compute $G(z)$
	- (3) Compute G^{-1} $^{1}(z)$
	- \circ (4) Obtain output image by applying eq. (1)

Histogram Matching (3)

Local Enhancement \bullet

 $\textcolor{blue}\bullet\textcolor{blue}\text{-}$ local histogram equalization

- \bigcirc \circ using a $N \times N$ masks
- \bigcirc applying the equalization only to the ^pixel at the center of the mask
- repea^t the process to all the ^pixel (convolution)

a b c

FIGURE 3.23 (a) Original image. (b) Result of global histogram equalization. (c) Result of local histogram equalization using a 7×7 neighborhood about each pixel.

Using Histogram Statistics

- • we use some statistical parameters
	- ^global:

•
$$
p(r_i) = \frac{n_i}{n}
$$

\n• $m(r) = \sum_{i=0}^{L-1} p(r_i) r_i$
\n• $\sigma^2(r) = \sum_{i=0}^{L-1} (r_i - m)^2 p(r_i)$

 \circ local:

> • $p(r_{s,t})$: neighborhood normalized histogram at coordinates (s, t) using a mask centered at (x, y)

$$
\bullet \quad m_{S_{xy}} = \sum_{(s,t) \in S_{xy}} p(r_{s,t}) \, r_{s,t}
$$

•
$$
\sigma^2(S_{xy}) = \sum_{(s,t) \in S_{xy}} [r_{s,t} - m_{S_{xy}}]^2 p(r_{s,t})
$$

Local Statistics – Example (1)

 \bullet How to enhance this image?

FIGURE 3.24 SEM image of a tungsten filament and support, magnified approximately $130\times$ (Original image courtesy of Mr. Michael Shaffer. Department of Geological Sciences. University of Oregon, Éugene).

Local Statistics – Example (2)

Image Analysis!

- •What do we want to achieve?
	- ◦We want to enhance dark areas while leaving light areas unchanged
- • Can we use local statistic to obtain it?
	- \circ where the image is dark: local mean \ll global mean
	- \circ \circ enhance area with only low contrast: local standard deviation \ll global standard deviation
	- \circ avoiding to enhance constant areas: local standard deviationhigher than ^a fixed minimum value

Local Statistics – Example (3)

Mathematical translation

- $g(x, y) = E.f(x, y)$
	- $^{\circ}~~\hbox{if}~m_{S_{xy}}\leqslant k_{0}\,M_{G}$
	- \circ and $k_1 D_G \leqslant \sigma_{S_{xy}} \leqslant k_2 D_G$
- $g(x, y) = f(x, y)$ otherwise
- E_0, k_0, k_1, k_2 : specified parameters •
- M_G : global mean of the input image \bullet
- • $D_G\!\!:\,$ global standard deviation

Local Statistics – Example (4)

Image Substraction

$$
g(x, y) = f(x, y) - h(x, y)
$$

Image Averaging

- $g(x, y) = f(x, y) + \eta(x, y)$
	- \circ $g(x, y)$: noisy image
	- \circ $f(x, y)$: original image
	- σ $\eta(x, y)$: uncorrelated noise with zero average value
- •• We reduce the noise content by adding a set of noisy images $g_i x, y$
- $\overline{g}(x, y)$ is formed by:

$$
\overline{g}(x, y) = \frac{1}{K} \sum_{i=1}^{K} g_i(x, y)
$$

In theory:

$$
\hat{\overline{g}}(x,y) = f(x,y)
$$

Image Averaging – Example

Spatial Filtering

 \bullet Filtering operations performed directly on the ^pixels of an image

Weighted Averaging Filter

$$
g(x,y) = \frac{\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s, y+t)}{\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t)}
$$

 \bullet Example: image corrupted by ^a salt-and-pepper noise

Median Filter

 \bullet ˆ $f(x,y) = \text{median}_{(s,t) \in S_{xy}}(g(s,t))$

Sharpening Spatial Filters

- •Sharpening can be achieved by spatial differention
- \bullet Derivative operators:
	- \bigcirc first-order derivative
	- \circ second-order derivative
- \bullet emhance edges (and also noise...)
- \bullet deemphasize image areas with slow intensity variations
- •first-order derivative:

$$
\circ \ \frac{\partial f}{\partial x} = f(x+1) - f(x)
$$

 second-order derivative: •

$$
\circ \frac{\partial^2 f}{\partial x^2} = f(x+1) + f(x-1) - 2f(x)
$$

First- and Second-order Derivatives (1)

First- and Second-order Derivatives (2)

- •First-order derivatives produce thick edges
- •Second-order derivatives have ^a stronger response to fine detail
- •First-order derivatives have ^a stronger response to ^a gray-level step
- \bullet Second-order derivatives produce ^a double response at step changes in gray level
- \bullet In general, second-order derivatives better suit for enhancement

First derivatives for Enhancement (1)

 \bullet The gradient:

$$
\nabla \mathbf{f} = \left[\begin{array}{c} G_x \\ G_y \end{array} \right] = \left[\begin{array}{c} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{array} \right]
$$

•The gradient magnitude:

$$
\nabla \mathbf{f} = [G_x^2 + G_y^2]^{\frac{1}{2}}
$$

=
$$
[(\frac{\partial f}{\partial x})^2 + (\frac{\partial f}{\partial y})^2]^{\frac{1}{2}}
$$

 \bullet Approximation:

 $\nabla \mathbf{f} \approx |G_x+G_y|$

First derivatives for Enhancement (2)

- simplest approximation:
	- $^{\circ}$ G_x $G_y = (z_6 - z_5)$ $x = (z_8 - z_5)$
- cross difference: \bullet

$$
\begin{array}{cc} \circ & G_x = (z_9 - z_5) \\ \circ & G_y = (z_8 - z_6) \end{array}
$$

Then:

$$
\nabla \mathbf{f} = |z_9 - z_5| + |z_8 - z_6|
$$

Sobel Operator

$$
\nabla \mathbf{f} \approx |(z_7 + 2z_8 + z_9) - (z_1 + 2z_2 + z_3)|
$$

+|(z_3 + 2z_6 + z_9) - (z_1 + 2z_4 + z_7)|

Laplacian

•
$$
\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}
$$

\n•
$$
\frac{\partial^2 f}{\partial x^2} = f(x+1, y) + f(x-1, y) - 2f(x, y)
$$

\n•
$$
\frac{\partial^2 f}{\partial y^2} = f(x, y+1) + f(x, y-1) - 2f(x, y)
$$

\n•
$$
\nabla^2 f = f(x+1, y) + f(x-1, y) + f(x, y+1)
$$

•
$$
\nabla^2 f = f(x+1, y) + f(x-1, y) + f(x, y+1) + f(x, y-1) - 4f(x, y)
$$

Laplacian for Image Enhancement (1)

- •highlights gray level discontinuities
- •deeamphasizes regions with slowy varying gray level

Laplacian for Image Enhancement (2)

 $g(x,y) =$ $\begin{cases}\nf(x,y) - \nabla \\
f(x,y) + \nabla\n\end{cases}$ 2 $f^2 f(x,y)$ if the center coefficient is negative $f(x, y) + \nabla^2$ $f^2f(x,y)$ if the center coefficient is positive

Mask Composition (1)

$$
\nabla^2 f = f(x+1, y) + f(x-1, y) + f(x, y+1) + f(x, y-1) - 4f(x, y)
$$

\n
$$
g(x, y) = f(x, y) - [f(x+1, y) + f(x-1, y) + f(x, y+1) + f(x, y-1)] + 4f(x, y)
$$

\n
$$
g(x, y) = 5f(x, y) - [f(x+1, y) + f(x-1, y) + f(x, y+1) + f(x, y-1)]
$$

Mask Composition (2)

Unsharp Masking

- • Substracting ^a blurred version of an image from the image itself:
	- $f_s(x, y) = f(x, y) \tilde{f}(x, y)$
	- \circ $f_s(x, y)$: sharpened image
	- \circ $\tilde{f}(x, y)$: blurred version of $f(x, y)$
- • High-boost filtering:
	- $f_{hb}(x, y) = A f(x, y) \tilde{f}(x, y)$
	- \circ $f_h b(x, y)$: high-boosted image
	- \degree $A \geq 1$

High-boost Filtering Using Laplacian (1)

- • Combining the two equations:
	- \circ $f_{hb}(x, y) = (A f(x, y))$ $(-1)f(x, y) + f(x, y)$ − $\tilde{f}(x,y)$
	- $f_{hb}(x, y) = (A f(x, y) 1)f(x, y) + f_s(x, y)$ $(-1)f(x, y) + f_s(x, y)$
	- \circ Let say $f_s(x, y) = \nabla^2 f$ or $f_s(x, y)$ ² f or $f_s(x,y) = -\nabla^2$ ^{2}f

•Then:

> $f_{hb}(x,y) =$ $\left\{ \begin{array}{l} A\,f(x,y)-\nabla \cr A\,f(x,y)+\nabla \end{array} \right.$ 2 ${}^{2}f(x,y)$ if center coefficient negative $A f(x, y) + \nabla^2$ $^2f(x,y)$ if center coefficient positive

Example

Spatial Domain Techniques: Summary

- •Histogram equalization
- \bullet Histogram manipulation
- \bullet Basic statistics for image processing
- \bullet Filtering with spatial masks
- \bullet First-order and second-order derivatives
- •Sobel filter

Frequency Domain – Background

- •Jean Baptiste Joseph Fourier is the key!
- • Frequency domain: space defined by values of the Fourier transformand its frequency variable (u, v)

Original image Fourier spectrum of this image

Frequency Domain Filtering Operation

FIGURE 4.5 Basic steps for filtering in the frequency domain.

╄