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Abstract

Time series clustering is an active research area with applications in a wide range of
fields. One key component in cluster analysis is determining a proper dissimilarity mea-
sure between two data objects, and many criteria have been proposed in the literature
to assess dissimilarity between two time series. The R package TSclust is aimed to im-
plement a large set of well-established peer-reviewed time series dissimilarity measures,
including measures based on raw data, extracted features, underlying parametric models,
complexity levels, and forecast behaviors. Computation of these measures allows the user
to perform clustering by using conventional clustering algorithms. TSclust also includes
a clustering procedure based on p values from checking the equality of generating models,
and some utilities to evaluate cluster solutions. The implemented dissimilarity functions
are accessible individually for an easier extension and possible use out of the clustering
context. The main features of TSclust are described and examples of its use are presented.

Keywords: time series data, clustering, dissimilarity measure, validation indices.

1. Introduction

Clustering is an unsupervised learning task aimed to partition a set of unlabeled data objects
into homogeneous groups or clusters. Partition is performed in such a way that objects in the
same cluster are more similar to each other than objects in different clusters according to some
defined criterion. In many real applications, the cluster analysis must be performed on time
series data. Finding stocks that behave in a similar way, determining products with similar
selling patterns, identifying countries with similar population growth or regions with similar
temperature are some typical applications where the similarity searching between time series
is clearly motivated. In fact, the time series clustering problems arise in a natural way in a
wide variety of fields, including economics, finance, medicine, ecology, environmental studies,
engineering, and many others. Frequently, the grouping of series plays a central role in the
studied problem. These arguments motivate the growing interest in the literature on time
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series clustering, especially in the last two decades where a huge number of contributions on
this topic has been provided. An excellent survey on time series clustering can be seen in
Liao (2005) and references therein, although significant new contributions have been made
subsequently. Particularly important in the last decade has been the explosion of papers
on the topic coming from both data mining and pattern recognition communities. Fu (2011)
provides a complete and comprehensive overview on recent time series data mining directions,
including a range of key problems such as representation, indexing and segmentation of series,
measures of dissimilarity, clustering procedures and visualization tools.

A crucial question in cluster analysis is establishing what we mean by “similar” data objects,
i.e., determining a suitable similarity /dissimilarity measure between two objects. In the spe-
cific context of time series data, the concept of dissimilarity is particularly complex due to the
dynamic character of the series. Dissimilarities usually considered in conventional clustering
could not work adequately with time dependent data because they ignore the interdependence
relationship between values. This way, different approaches to define dissimilarity between
time series have been proposed in the literature and a short overview of them is presented
below.

If the objective is to compare profiles of series, then conventional distances between raw data
(Euclidean or Manhattan, among others) evaluating a one-to-one mapping of each pair of
sequences can produce satisfactory results. Sometimes, depending on the domain, the chosen
dissimilarity must satisfy properties of invariance to specific distortions of the data to obtain
proper results. Batista, Wang, and Keogh (2011) provide an interesting review of dissimilar-
ity measures designed to be invariant to features like local scaling (warping), uniform scaling,
offset, amplitude scaling, phase, complexity, and so on. Other times, dissimilarity is mea-
sured by comparing sequences of serial features extracted from the original time series, such
as autocorrelations, cross-correlations, spectral features, wavelet coefficients, and so on (see
Kovacié¢ 1998; Struzik and Siebes 1999; Galeano and Pena 2000; Caiado, Crato, and Pena 2006;
Douzal Chouakria and Nagabhushan 2007, among others). These feature-based approaches
are aimed to represent the dynamic structure of each series by a feature vector of lower dimen-
sion, thus allowing a dimensionality reduction (time series are essentially high-dimensionality
data) and a meaningful saving in computation time. In addition, the features commonly used
in the literature for the similarity matching problem can be obtained in a straightforward man-
ner and all of these properties result in more efficient clustering procedures. An alternative
approach consists in assuming specific underlying models and evaluating dissimilarity between
fitted models (some references following this approach are Piccolo 1990; Maharaj 1996, 2002;
Kakizawa, Shumway, and Taniguchi 1998; Vilar and Pértega 2004, among many others). The
most commonly considered criterion has been to assume that the time series are generated by
ARIMA processes, although researchers in speech recognition and machine learning have also
adopted alternative models as Markov chains (MC, see Ramoni, Sebastiani, and Cohen 2002)
or hidden Markov models (HMM, see Smyth 1997; Oates, Firoiu, and Cohen 1999, among
others). An interesting set of references on these approaches can be seen in Bagnall, Janacek,
de la Iglesia, and Zhang (2003). Other dissimilarity measures are aimed to compare levels of
complexity of time series (see, e.g., Li, Chen, Li, Ma, and Vitanyi 2004; Sculley and Brod-
ley 2006; Keogh, Lonardi, Ratanamahatana, Wei, Lee, and Handley 2007; Brandmaier 2011;
Batista et al. 2011). The complexity of a time series can be estimated by following different
approaches although, roughly speaking, most of them are based on the notion of Kolmogorov
complexity or algorithmic entropy (Li and Vitdnyi 2007). Kolmogorov complexity can be
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thought of as the ultimate lower bound of all measures of information, but unfortunately it
cannot be computed and must be approximated in practice. Two prominent approaches to
evaluate complexity differences between two time series are: (i) using algorithms based on
data compression (see, e.g., Li, Badger, Chen, Kwong, Kearney, and Zhang 2001; Li et al.
2004; Keogh, Lonardi, and Ratanamahatana 2004; Cilibrasi and Vitanyi 2005; Keogh et al.
2007), and (ii) considering differences between permutation distributions (Brandmaier 2011).
Beyond all these criteria to define dissimilarity between series, it is worth mentioning that
the dissimilarity measures are often tailored for the problem at hand, highlighting properties
of the time series that are of interest for the specific context. For instance, there are practical
situations where the real interest of the clustering relies on the properties of the predictions,
as in the case of any sustainable development problem or in situations where the concern is to
reach target values on a pre-specified future time. Works by Alonso, Berrendero, Hernandez,
and Justel (2006) and Vilar, Alonso, and Vilar (2010) focused on this idea and considered a
notion of dissimilarity governed by the performance of future forecasts. Specifically, two time
series are similar if their forecasts for a specific future time are close.

Summing up, there exist a broad range of measures to compare time series and the choice
of the proper dissimilarity measure depends largely on the nature of the clustering, i.e., on
determining what the purpose of the grouping is. Once the dissimilarity measure is deter-
mined, an initial pairwise dissimilarity matrix can be obtained and a conventional clustering
algorithm be then used to form groups of objects. In fact, most of the time series clustering
approaches reviewed by Liao (2005) are variations of general procedures (e.g., a k-means or
a hierarchical clustering) that use a range of dissimilarities specifically designed to deal with
time series. According to this consideration, our attention focused on the implementation of
these measures, and the package TSclust presented in this work is the result of integrating a
wide range of dissimilarity measures to perform time series clustering. The package contains
commonly used dissimilarity measures, including complexity-based measures, model-based
measures, feature-based measures and the prediction-based dissimilarity introduced by Vilar
et al. (2010). Some of these measures work in the time domain but others are developed in
the frequency domain, and as will be seen later, in many cases their implementation requires
a range of statistical techniques (autoregressive models estimation, kernel density estimation,
local polynomial regression, automatic bandwidth selectors, resampling procedures, wavelets,
among others). All dissimilarity measures included in TSclust have been previously studied
in the time series clustering literature and are properly referenced throughout this work. It
is worth stressing that some dissimilarity measures work under certain regularity conditions
while others are applicable in more general contexts. Indeed, TSclust users should carefully
analyze what specific measures are more suitable to capture similarity in their clustering
problem, and for it some considerations on how choosing the proper dissimilarity measure are
discussed in Section 4.

Although the intended spirit of TSclust is not to provide a self-contained tool to perform
time series clustering, some additional clustering utilities (not available in other R packages
to the best of our knowledge) have been incorporated into TSclust as useful complements. For
instance, a clustering algorithm based on checking the equality of generating models proposed
by Maharaj (2000), and two clustering validation indices used by different authors in time
series clustering are implemented in TSclust (see Section 3 for details).

In short, TSclust package is an attempt to integrate a wide set of dissimilarity measures
between time series so that the user can compare their performance and identify useful dis-
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similarity criteria in a given context. Clustering is indeed a typical scenario of applica-
tion of these measures, and in fact, all of them have been studied in the clustering frame-
work. Moreover, the package was designed to provide a flexible and extensible environ-
ment, with functions accessible individually for an easier extension and use out of the clus-
tering context. TSclust is available from the Comprehensive R Archive Network at http:
//CRAN.R-project.org/package=TSclust.

The remainder of this paper is organized as follows. The different dissimilarity measures
between time series implemented in TSclust are introduced in Section 2. The main features
of each measure are briefly discussed, and appropriate references are provided for those readers
interested in a more detailed analysis of each dissimilarity measure and its properties. Some
specific clustering tools included in the package and a quick overview of clustering utilities
available in R are presented in Section 3. Some general considerations on the choice of a proper
dissimilarity measure to perform time series clustering are given in Section 4. Section 5 is
devoted to illustrate the functionality of the package via a series of applications. Specifically,
the behavior in time series clustering of several dissimilarity measures is analyzed by using a
set of simulated series and several illustrative applications with real data. Finally, the main
conclusions are reported in Section 6.

2. Dissimilarity measures for time series in TSclust

Many dissimilarity measures between time series have been proposed in the literature and a
representative set of them has been implemented in TSclust. This section is devoted to briefly
describe the implemented measures, which have been grouped into four categories: model-
free measures (Section 2.1), model-based measures (Section 2.2), complexity-based measures
(Section 2.3) and prediction-based measures (Section 2.4).

In the remainder of this section, unless otherwise specified, X1 = (X1, ... ,XT)—r and Y =
(Y1,...,Yp)" denote partial realizations from two real-valued processes X = {X;,t € Z} and
Y = {Y},t € Z}, respectively. Note that serial realizations of the same length T are initially
assumed, although this limitation can be omitted in some cases.

2.1. Model-free approaches

A simple approach to measure the proximity between X and Y 7 is to consider conventional
metrics based on the closeness of their values at specific points of time. Some commonly used
raw-values-based dissimilarity measures are introduced below.

Minkowski distance

The Minkowski distance of order ¢, with ¢ a positive integer, also called Lg-norm distance, is
defined by

T 1/q
dr, (X7,YT) = (Z(Xt - Y;)q> .
t=1

The Minkowski distance is typically used with ¢ being 2 (Euclidean distance) or 1 (Manhattan
distance). This metric is very sensitive to signal transformations as shifting or time scaling
(stretching or shrinking of time axis). On the other hand, the proximity notion relies on the
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closeness of the values observed at corresponding points of time so that the observations are
treated as if they were independent. In particular, dr, is invariant to permutations over time.

Fréchet distance

This distance was introduced by Fréchet (1906) to measure the proximity between continuous
curves, but it has been extensively used on the discrete case (see Eiter and Mannila 1994) and
in the time series framework. A formal definition for the discrete case can be given as follows.
Let M be the set of all possible sequences of m pairs preserving the observations order in the
form

r= ((XaNY}n)a RS} (Xam7 }/;Jm)) ’
with a;,b; € {1,...,T} such that a1 = by =1, ay, = by, = T, and a;41 = a; or a; + 1 and
bit1 =b; or b; + 1, for i € {1,..,m — 1}. Then the Fréchet distance is defined by

dp (X7,Y7) = 71421{41( max |Xg, Ybl|) .

7 )

Unlike the Minkowski distance, the Fréchet distance does not just treat the series as two
points sets, but it has into account the ordering of the observations. Note that dr can be
computed on series of different length.

Dynamic time warping distance

The dynamic time warping (DTW) distance was studied in depth by Sankoff and Kruskal
(1983) and proposed to find patterns in time series by Berndt and Clifford (1994). As Fréchet
distance, DTW distance is aimed to find a mapping r between the series so that a specific
distance measure between the coupled observations (X,,, Y3,) is minimized. The definition of
the DTW distance is given by

dprw (X7,Y71) = Hélﬁ i:lz:m | Xa, — Ya,|

In TSclust, dr and dprw are computed by using the R packages longitudinalData (Genolini
2014) and dtw (Giorgino 2009), respectively. Both distances allow to recognize similar shapes,
even in the presence of signal transformations such as shifting and/or scaling. However, as
in the case of dr,, both dr and dprw ignore the temporal structure of the values as the
proximity is based on the differences |X,, — Y| regardless of the behavior around these
values. A dissimilarity index model including both behavior and values proximity estimation
is described below.

An adaptive dissimilarity index covering both proximity on values and on behavior

Douzal Chouakria and Nagabhushan (2007) introduce a dissimilarity measure addressed to
cover both conventional measures for the proximity on observations and temporal correlation
for the behavior proximity estimation. The proximity between the dynamic behaviors of the
series is evaluated by means of the first order temporal correlation coefficient, which is defined
by

(X — X)) (Vi — YY)

CORT (Xr1,Y1) = .
\/E Xt+1 X) \/Zt (Yig1 — Y3)?
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CORT (X1,Y 1) belongs to the interval [—1,1]. The value CORT (X1,Y 1) = 1 means
that both series show a similar dynamic behavior, i.e., their growths (positive or negative)
at any instant of time are similar in direction and rate. The value CORT (Xp,Y ) =
—1 implies a similar growth in rate but opposite in direction (opposite behavior). Finally,
CORT (X 1,Y 1) = 0 expresses that there is no monotonicity between X and Y7, and their
growth rates are stochastically linearly independent (different behaviors).

The dissimilarity index proposed by Douzal Chouakria and Nagabhushan (2007) modu-
lates the proximity between the raw-values of two series X1 and Y 7 using the coefficient
CORT (X1,Y ). Specifically, it is defined as follows.

dcort (X7,Y 1) = ¢ [CORT (X7,Y7)]-d(X7,YT),

where ¢ () is an adaptive tuning function to automatically modulate a conventional raw-
data distance d (X7,Y7) (e.g., dr,, dr or dprw) according to the temporal correlation.
The modulating function should work increasing (decreasing) the weight of the dissimilarity
between observations as the temporal correlation decreases from 0 to —1 (increases from 0 to
+1). In addition, dcorr (X1, Y 1) should approach the raw-data discrepancy as the temporal
correlation is zero. Instead of, for instance, a linear tuning function, Douzal Chouakria and
Nagabhushan propose to use an exponential adaptive function given by

2
k> 0.

Pk (u) = Thexp(hu)’ © =

Now, we focus on model-free dissimilarity measures based on particular features of the time
series. The idea is to replace the raw data by a reduced number of features characterizing the
time series, which allows us to take into account the temporal structure of the series.

Correlation-based distances

A first and simple dissimilarity criterion is to consider the Pearson’s correlation factor between
X7 and Y given by

ST (X —X7) (Y~ V)
VL, (X - X0)/SL, (Y- Vo)’

COR (X7,Y7) =

with X7 and Y7 the average values of the serial realizations X7 and Y 7 respectively. Golay,
Kollias, Stoll, Meier, Valavanis, and Boesiger (2005) construct a fuzzy k-means algorithm
using the following two cross-correlation-based distances:

dcor1 (X7,Y7) =+/2(1 - COR(X1,YT)),

and

1— COR(Xp,Y7T)\? .
dcor2 (X1, Y1) = \/(1+COREX; Y;;) , with g > 0.

Note that dcor.e becomes infinite when COR (X 1,Y 1) = —1 and the parameter 5 allows
regulation of the fast decreasing of the distance. Graphs of functions d; = dQCOR.1 and
dy = d%p o for some values of 3 are shown in Figure 1.
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Figure 1: Plots of dy = dQCO R and dy = dQCO r.o as function of the cross-correlation factor for
several values of f3.

Autocorrelation-based distances

Several authors have considered measures based on the estimated autocorrelation functions

(see e.g., Bohte, Cepar, and Kosmelj 1980; Galeano and Pena 2000; Caiado et al. 2006; D’Urso
and Maharaj 2009).

Let px,. = (P1,x75 PLxy) ! and Py; = (P1,vr; .»PLy,)" be the estimated autocorrelation
vectors of X7 and Y r respectively, for some L such that p; x,, = 0 and p; y, ~ 0 for i > L.
Galeano and Pena (2000) define a distance between X and Y1 as follows.

dace (X0, Y1) =/ (bxy — Pyy) " 2 By — Pry),

where (2 is a matrix of weights.

Some common choices of €2 are:

(i) Consider uniform weights by taking € = I. In such case dscr becomes the Euclidean
distance between the estimated autocorrelation functions:

L
dacru (X1, Y1) = \| Y (hixr — pive)
=1

(ii) Consider geometric weights decaying with the autocorrelation lag, so that d4cr takes the
form:

L
dacre (X, Y1) = | Y p(L = p)i (pixs — Piyy)’s with 0 <p < 1.
i=1

Analogous distances can be constructed by considering the partial autocorrelation functions
(PACFs) instead of the ACFs. Hereafter, notation dpacry and dpacrg will be used to denote
the Euclidean distance between the estimated partial autocorrelation coefficients with uniform
weights and with geometric weights decaying with the lag, respectively.
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So far all metrics work in the time domain, but the frequency domain approach also offers an
interesting alternative to measure the dissimilarity between time series. The key idea is to
assess the dissimilarity between the corresponding spectral representations of the series.

Periodogram-based distances

. 2 . 2
Let Ix, (\y) = T1 )Z;le Xy e*”"vt‘ and Iy (\,) =T~} ’Zthl Y: e*”"ft‘ be the periodograms
of X1 and Y7, respectively, at frequencies A\, = 27k/T, k=1,...,n, with n = [(T - 1)/2].
Three dissimilarity measures based on periodograms were analyzed by Caiado et al. (2006).

(i) The Euclidean distance between the periodogram ordinates:

n

dp (X1, Y1) = 1| S (D () = By )
k=1

(ii) If we are not interested in the process scale but only on its correlation structure, better
results can be obtained using the Euclidean distance between the normalized periodogram
ordinates:

n

dvp (X7, Y1) = % D (NIx, (M) = NIy (),
k=1

where NIXT ()\k) = IXT ()\k)//’)\/(LXT and NIYT ()\k) = IYT ()\k)/QO,YT with :Y\O,XT and 7)707YT being
the sample variances of X and Y, respectively.

(iii) As the variance of the periodogram ordinates is proportional to the spectrum value at the
corresponding frequencies, it makes sense to use the logarithm of the normalized periodogram:

n

1
dinp (X7, Y1) =~ > (log NIx, (M) — log NIyz.(Ar))?.
k=1

Casado de Lucas (2010) considers a distance measure based on the cumulative versions of
the periodograms, i.e., the integrated periodograms. Casado de Lucas argues that the ap-
proaches based on the integrated periodogram present several advantages over the ones based
on periodograms. In particular,

¢ The periodogram is an asymptotically unbiased but inconsistent estimator of the spec-
tral density while the integrated periodogram is a consistent estimator of the spectral
distribution.

e From a theoretical point of view, the spectral distribution always exists, but the spectral
density exists only under absolutely continuous distributions.

e The integrated periodogram completely determines the stochastic process.

The following distances based on the integrated periodogram, one normalized and other non-
normalized, are proposed in Casado de Lucas (2010).

™

dip (X, Y1) = [ 1Fe () = By 0]

—T
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WhereFXT( ) C E IXT( )andFyT( ) C z IYT( ),WithCXT ZZZ‘IX()‘Z')
and Cy,, = Z Iy, (A ) for the normalized version, and C Xp = C’YT = 1 for the non-normalized
version.

The normalized version gives more weight to the shape of the curves while the non-normalized
considers the scale. Casado de Lucas suggests using the normalized version when the graphs
of the functions tend to intersect, and the non-normalized when they do not.

Dissimilarity measures based on nonparametric spectral estimators

Kakizawa et al. (1998) proposed a general spectral disparity measure between two series given

by
dw (X1, Y7) = 417r /7r W(‘?féii)d)\, (1)

where fx, and fy, denote the spectral densities of X7 and Y7, respectively, and W(.) is
a divergence function satisfying appropriate regular conditions to ensure that dyy has the
quasi-distance property. If, for example, W (x) = log(az 4+ (1 — a)) — alog z, with 0 < a < 1,
then dyy corresponds to the limiting spectral approximation of the Chernoff information in
the time domain (Shumway and Unger 1974). Note that dy is not a real distance because
it is not symmetric and does not satisfy the triangle inequality. For clustering, it is more
convenient to modify the divergence function by setting W (z) = W (z) + W (z~1).

In practice, the spectra fx, and fy; are unknown and must be previously estimated. Vilar
and Pértega (2004) studied the asymptotic properties of dy when fx, and fy, are replaced
by nonparametric estimators constructed via local linear regression. These approximations
can be done in three different ways (Fan and Kreutzberger 1998), thus resulting three different
versions of the dy dissimilarity measure. Specifically,

® dw(prLs), when the spectra are replaced by local lineal smoothers of the periodograms,
obtained via least squares.

® dy(rs), when the spectra are replaced by the exponential transformation of local linear
smoothers of the log-periodograms, obtained via least squares.

e dw (1K), when the spectra are replaced by the exponential transformation of local linear
smoothers of the log-periodograms, here obtained by using the maximum local likelihood
criterion.

Due to the asymptotic inefficiency of dyy(rs) with respect to both dyw (prg)y and dyw (rk),
only these latter two metric are implemented in TSclust. In particular, the weighted least
squares smoother is obtained using the R package locpol (Ojeda Cabrera 2012). The default
value of the bandwidth is an automatic plug-in selector specifically designed for local linear
Gaussian kernel regression (see Ruppert, Sheather, and Wand 1995). This plug-in method is
implemented using the R package KernSmooth (Wand 2014).

Two alternative nonparametric spectral dissimilarity measures introduced by Pértega and
Vilar (2010) are also implemented in TSclust. In both cases, the discrepancy measure is given
by a nonparametric statistic originally introduced to check the equality of the log-spectra of
two processes.
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The first alternative comes from the generalized likelihood ratio test approach introduced by
Fan and Zhang (2004) to check whether the density of an observed time series belongs to
a parametric family. Pértega and Vilar (2010) introduce a slight modification of this test
statistic in order to check the equality of two log-spectra, resulting

n

darx (X1,Y7) = Z [Zk — f1(Ag) — 21og(1 + C{Z’“_ﬂ@’“)})} - Z [Zk — 2log(1 + e7*)]
k=1 k=1

where 7, = log(Ix, (M) — log(Iy, (Ak)), and fi(Ag) is the local maximum log-likelihood
estimator of p(Ag) = log(fx, (Ax)) — log(fy,(Ax)) computed by local linear fitting.

The second distance evaluates the integrated squared differences between nonparametric es-
timators of the log-spectra and it is given by

™

drsp (XT,YT)—/ (riox, (A) = iy (A)? dA,

—T

where mx,(A) and 7y, (\) are local linear smoothers of the log-periodograms obtained using
the maximum local likelihood criterion.

In all cases, local linear smoothing techniques were considered to approximate the unknown
log-spectra because of their good theoretical and practical properties, such as nice minimax
efficiency properties and absence of boundary effects, among others (Fan and Gijbels 1996).
Moreover, these properties are satisfied under very general regularity conditions of the spectral
densities, thus providing a great versatility to approximate spectra from different kinds of
processes. Hence, it is intuitively expected that these methods are more robust in cluster
analysis than other approaches based on ad hoc parametric modeling.

A dissimilarity measure based on the discrete wavelet transform

Discrete wavelet transform (DWT) is a useful feature extraction technique often used to
measure dissimilarity between time series. DW'T performs a scale-wise decomposing of the
time series in such a way that most of the energy of the time series can be represented by only a
few coefficients. The basic idea is to replace the original series by their wavelet approximation
coefficients in an appropriate scale, and then to measure the dissimilarity between the wavelet
approximations. A detailed description of wavelet methods for time series analysis can be
seen in Percival and Walden (2006) and some interesting references where wavelets are used
to clustering time series are Struzik and Siebes (1999), Chan and Fu (1999), Popivanov and
Miller (2002), Chan, Fu, and Yu (2003) and Zhang, Ho, Zhang, and Lin (2006), among others.

There is indeed a key point when we wish to use the DWT technique for clustering: the
choice of an appropriate scale to obtain an accurate clustering. In TSclust, an automatic
algorithm to determine this scale is implemented. The algorithm was proposed by Zhang
et al. (2006) and it is aimed to select the scale by levering two conflicting requirements: an
efficient reduction of the dimensionality and preserving as much information from the original
data as possible. Specifically, the algorithm works as follows.

Consider a set of time series {Xg}), . .,Xgﬂm)} located in a scale J = logy(7T). Denote

by H (X 53)) = {Ag-i), Dg-i), Dg-?_l, e D(Jill} the coefficients corresponding to the discrete
(%)

wavelet transform of X g,f) at the scale j. The Aj are called approximation coefficients
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(or smooth coefficients) and represent the smooth behavior of the data. The D,(;), k =
43+ 1,...,J — 1, are called the detail coefficients because they represent the finer, more
high-frequency nature, of the data. As feature vector, Zhang et al. propose to retain the
approximation coefficients Ag-z)
that satisfies:

for a particular scale j* corresponding to the highest scale

f;E( V) < ZE(D<a ). @

where E(Z) = Y7, zi denotes the energy associated with a vector Z € R®. Argument
i)

behind this criterion is that the sum of squared errors between X (T and the reconstructed

approximation series X gf) is given by

55 (x5, %3) = B (x1) - £ (4) =X 5 (D).
k=j

Therefore, removing the detail coefficients within a scale j* satisfying Equation 2 and higher
scales means to achieve a tradeoff between lower dimensionality and lower SSE (X (Z), X gp)>

(i.e., lower energy loss). Moreover, Zhang et al. show that the proposed algorithm is efficient
when using Haar wavelet. Once the appropriate scale j* is determined, the dissimilarity
between two series Xg?) and Xg?), with u,v € {1,...,m}, u # v, is given by

dpwr (X3, x§) \/Z ak]>2,

(w)

where a,, o and a,(cv;* are the elements of quj) and Agf), respectively.

In TSclust, the discrete wavelet transform of the time series is computed using the R package
wmtsa (Constantine and Percival 2014).

Dissimilarity based on the symbolic representation SAX

Symbolization involves transformation of time series into sequences of discretized symbols that
can be efficiently processed to extract information about the underlying processes. Although
different techniques to generate symbolic representations of time series have been introduced
in the literature (Daw, Finney, and Tracy 2003), many of them fail to define a dissimilarity
measure in the symbolic space due to several reasons, such as producing a poor dimension
reduction or showing little correlation with a dissimilarity measure in the original space. The
symbolic representation SAX (symbolic aggregate approximation) introduced by Lin, Keogh,
Lonardi, and Chiu (2003) does not suffer from these flaws. The SAX approach first transforms
the original data into the piecewise aggregate approximation (PAA) representation (Yi and
Faloutsos 2000; Keogh, Chakrabarti, Pazzani, and Mehrotra 2000) and then symbolizes the
PAA representation into a discrete string. The PAA intermediate representation guarantees
a high dimensionality reduction power, and furthermore, allows to prove that a dissimilarity
based on the symbolic strings lower bounds the true dissimilarity between the original time
series (Lin et al. 2003). As result, SAX representation is highly competitive to deal with a
variety of data mining problems, including indeed cluster analysis of time series. The SAX
approach is outlined below.

11
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1. Normalization Time series are transformed to have zero mean and unit variance.

2. PAA representation Each normalized series X is represented in a w-dimensional
space by the vector X ,, = (X . ¢ w), whose i-th element is calculated by

— w
Xi= X, (3)
i=L@-1)+1

Thus, data are first divided into w segments of equal-length. Then, the i-th component
of the PAA representation is given by the mean value of the data falling within the
i-th segment. Equation 3 assumes that 7'/w is an integer, but this assumption can be
relaxed by weighting the contribution of data points placed in adjacent segments (see
details on this generalization in Section 3.5 of Lin, Keogh, Wei, and Lonardi 2007).

3. SAX representation Once the number « of symbols (letters of the alphabet) is se-
lected, the set of a~!-quantiles of the N(0,1) density, {zl/a, Z2/ar - z(a,l)/a}, is com-
puted to determine equal-sized zones under Gaussian curve. Now, if [; denotes the i-th
letter of the alphabet, for i = 1,...,a, then each PAA representation X, is mapped to

a concatenation of a symbols (so-called “word”), let say X, = (X Tyenns Xa) , as follows.

Iy if X’ < Z1/a
Xi=q Ui Xi€[25-1)/a %j/a)
lo ifX;> Zla—1)/a

This way, each symbol of the resulting word X, i.e., of the SAX symbolic representa-
tion, is generated with approximately the same probability.

4. MINDIST dissimilarity measure Though many dissimilarities can be defined over
the SAX representation, one that approximates the Euclidean distance can be useful.
First, the distance between a pair of symbols /; and [, 4,5 € {1,...,a}, is defined by

0 if [i - j| <1
Z(max(i,j)—1)/a — Zmin(i,j)/c otherwise

de (li, 1) = {

Note that the square matrix containing all pairwise distances between symbols needs
only be computed once. Based on this matrix, the dissimilarity is directly calculated as
follows

w

L - T N2
AMINDIST.SAX (Xa,Ya> =/ =D [da <Xi,Yiﬂ :
Yo\ =

A complete information on the SAX approach and related issues can be seen at the web page
Keogh (2014) and references therein. TSclust incorporates routines to generate the PAA and
SAX representations and compute the dissimilarity da;nprsT.s4x -

2.2. Model-based approaches

Model-based dissimilarity measures assume that the underlying models are generated from
specific parametric structures. The main approach in the literature is to assume that the
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generating processes of X and Y 7 follow invertible ARIMA models. In such case, the idea
is fitting an ARIMA model to each series and then measuring the dissimilarity between the
fitted models. First step requires estimating the structure and the parameters of ARIMA
models. The structure is either assumed to be given or automatically estimated using, for
example, the Akaike’s information criterion (AIC) or the Schawartz’s Bayesian information
criterion (BIC). The parameter values are commonly fitted using generalized least squares
estimators. Some of the most relevant dissimilarity measures derived in the literature under
the assumption of underlying ARIMA models are provided below.

Piccolo distance

Piccolo (1990) defines a dissimilarity measure in the class of invertible ARIMA processes
as the Euclidean distance between the AR(oco) operators approximating the corresponding
ARIMA structures. Piccolo argues that the autoregressive expansions convey all the useful
information about the stochastic structure of this kind of processes (except for initial values).
If the series are non-stationary, differencing is carried out to make them stationary, and if the
series possess seasonality, then it should be removed before further analysis. Then, a definite
criterion such as AIC or BIC is used to fit truncated AR(co) models of orders k; and ko that
approximate the generating processes of X and Y 1, respectively. This approach allows us
to overcome the problem of obtaining ad hoc ARMA approximations for each of the series
subjected to clustering.

If fIXT = (M1, X7, - - ,frkl,XT)T and fIyT = (71, vps - - - ,fer’YT)T denote the vectors of AR(k1)
and AR(kq) parameter estimations for X and Y 7, respectively, then the Piccolo’s distance
takes the form

W

2
— ~/ =/
dprc (X1, Y1) = (Wj,XT - 7Tj,YT) ’

j=1
where k = max(ki, k2), 7%;’ Xp = Tjxps if 5 < k1, and fr; x, = 0 otherwise, and analogously
Tiyy = Tjye, if § < ko, and @)y, = 0 otherwise.
Besides satisfying the properties of a distance (non-negativity, symmetry and triangularity),
dprc always exists for any invertible ARIMA process since ) 7, Y ||7;|| and 7r]2- are well-
defined quantities.

Maharaj distance

For the class of invertible and stationary ARMA processes, Maharaj (1996, 2000) introduced
two discrepancy measures based on hypotheses testing to determine whether or not two time
series have significantly different generating processes. The first of these metrics is given by
the test statistic

~/ ~/ T o1 fay ~/
duan (X1, Yr) = VT (T, ~10y, ) V' (T, — 113, ),

where f[le and f[;/T are the AR(k) parameter estimations of X7 and Y 7, respectively, with k

. . . O . 2 -1 2 -1
selected as in the Piccolo’s distance, and V' is an estimator of V' = oy, Ry, (k) +o0y, Ry, (k),
with UE(T and O'%/T denoting the variances of the white noise processes associated with X
and Y7, and Ry, and Ry, the sample covariance matrices of both series.

13
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Maharaj demonstrated that dy4p is asymptotically x? distributed under the null hypothesis
of equality of generating processes, i.e., by assuming that IIx, = IIy,. Therefore, the

dissimilarity between fI/XT and ﬂ;/T can also be measured through the associated p value,
i.e., by considering

dyamp (X7,YT) =P (X3 > dyan (X7,Y7)) .

Both the test statistic dyray and the associated p value daap p satisfy the properties of non-
negativity and symmetry so that any of them can be used as dissimilarity measure between
X7 and Y. Although dyag and dpjo evaluate the dissimilarity between two series by
comparing their autoregressive approximations, there is a substantial difference between them:
the Piccolo’s distance does not take into account the variance of the white noise processes
associated with the observed series, while the Maharaj’s statistic involves these variances in
its definition. It is important to be aware of this fact when we use these dissimilarity measures
to carry out clustering because dj;4g will be affected by the scale unit.

It is also worth emphasizing that if an hierarchical algorithm starting from the pairwise matrix
of p values dyram,p is developed, then a clustering homogeneity criterion is implicitly provided
by pre-specifying a threshold significance level « (e.g., 5% or 1%). Those series with associated
p values greater than o will be grouped together, which implies that only those series whose
dynamic structures are not significantly different at level a will be placed in the same group.

Measures dyag and dyap,, come from a hypothesis testing procedure designed to compare
two independent time series. To overcome this limitation, Maharaj (2000) introduced a new
testing procedure that can be applied to time series that are not necessarily independent. In
this case, a pooled model including collectively the models fitted to X and Y 7 is considered,
and the combined vector of 2k AR parameters II = (HXT,HYT)T is estimated by using
generalized least squares. Assuming that the two models are correlated at the same points
in time but uncorrelated across observations, the proposed test statistic (say dasamest) is also
asymptotically distributed as x? with k degrees of freedom. As before, a dissimilarity measure
(say darAHest,p) based on the p values associated with this new test can be constructed.

Cepstral-based distance

Kalpakis, Gada, and Puttagunta (2001) propose the use of the linear predictive coding (LPC)
cepstrum for clustering ARIMA time series. The cepstrum is defined as the inverse Fourier
transform of the short-time logarithmic amplitude spectrum. The cepstrum constructed by
using the autoregression coefficients from linear model of the signal is referred to as the
LPC Cepstrum, since it is derived from the linear predictive coding of the signal. Kalpakis
et al. argue that LPC cepstral coefficients present good properties to discriminate between
ARIMA time series. In particular, only a few LPC cepstral coefficients retains high amount
of information on the underlying ARIMA model.

Consider a time series X7 following an AR(p) structure, i.e., X; = > F_; ¢, X¢—, + ¢, where
¢, are the autoregression coeflicients and ¢; is a white noise process with zero mean and
non-zero variance. Then the LPC cepstral coefficients can be derived from the autoregressive
coefficients ¢, as follows:

b1 ifh=1
=14 o+ X (b — nm) f1<h<p
(1= ) mth—m ifp<h
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In order to measure the distance between two time series X and Y 7, Kalpakis et al. (2001)
consider the Euclidean distance between their corresponding estimated LPC cepstral coeffi-
cients, taking the form

(i xr — V1y7)°

1

T
drpc.cep (X7, Y1) =

7

2.3. Complexity-based approaches

A representative group of dissimilarity measures based on comparing levels of complexity of
time series are presented in this section. Here, similarity of two time series does not rely
on specific serial features or the knowledge of underlying models, but on measuring the level
of shared information by both time series. The mutual information between two series can
be formally established using the Kolmogorov complexity concept, although this measure
cannot be computed in practice and must be approximated. A pair of approaches to measure
complexity differences between two time series are shortly described below.

Compression-based dissimilarity measures

The Kolmogorov complexity K (z) of an object x is the length of the shortest program capa-
ble to produce x on a universal computer, such as a Turing machine (Li and Vitanyi 2007).
Intuitively, K (z) is the minimal quantity of information required to generate x by an algo-
rithm, and therefore, the level of complexity of x is related to K(x). Analogously, given two
objects & and vy, the conditional Kolmogorov complexity K (x|y) of x given y is defined as
the length of the shortest program producing x when y is given as an auxiliary input on the
program. Therefore, K(x) — K(z|y) measures the amount of information that y produces
about x. Based on these concepts, Li et al. (2004) propose a normalized information distance
(NID) between two objects z and y given by

~ max{K(z|y), K(y|z)}
dnip(z,y) = max{K (z), K(y)}

Li et al. show that dyrp is a metric taking values in [0, 1] and it is universal in the following
sense: dyyp leads to the smallest values (up to constant precision) among a broad class of
normalized distances. Metric dyrp can be applied to different collections of objects such as
time series, images, texts, etc. From now on we assume that  and y represent times series
X7 and Y 7, respectively.

As Kolmogorov complexity is noncomputable, dy;p is approximated by replacing the quanti-
ties K (-) by the length of the compressed objects obtained from data compressors such as gzip,
bzip2, etc. Consider a specific data compression algorithm and denote by C'(X ) the com-
pressed size of X 7. The denominator of d;p is easy to approximate by max {C(Xr),C(Y 1)},
but the numerator involves conditional Kolmogorov complexities making more difficult to ob-
tain the approximation. Li et al. (2004) overcome this drawback by taking into account that
K (x|y) is roughly equal to K (zy) — K (y), where K (xy) is the length of the shortest program
to compute the concatenation of x and y. The resulting approximation by following this
approach is called “normalized compression distance” (NCD) and takes the form

C(X7Yr)—min{C(Xr), C(YT)}.

dyep (X1, Y1) = max {C(X7),C(Y )}
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The NCD dissimilarity takes nonnegative values ranging from 0 to 1 + €, where ¢ is due to
flaws in the compression techniques. The smaller the dycp (X7, Y 1), the more closely related
X7 and Y7 are. The optimality properties satisfied by the theoretical version dyrp do not
directly hold for dycp, although Cilibrasi and Vitanyi (2005) show that dycp satisfies the
metric properties and approximates optimality when a specific notion of “normal” compressor
is considered. The axiomatic notion of normal compressor includes symmetry as one of the
basic features, and the authors argue that all standard compressors are asymptotically normal.
The good performance of dycp has been illustrated in Cilibrasi and Vitdnyi (2005) on a wide
set of experiments in areas as diverse as genomics, virology, languages, literature, music,
handwritten digits and astronomy. Moreover, the dissimilarity turns out to be robust under
change of the underlying compressor-types: statistical (PPMZ), Lempel-Ziv based dictionary
(gzip) or block based (bzip2).

Keogh et al. (2004) (see also Keogh et al. 2007) use a simplified version of the NCD dissimi-
larity called “compression-based dissimilarity measure” (CDM) defined as

C(XrYr)

depm (X7, Y1) = X )CY )

The CDM dissimilarity ranges from 1/2 to 1, where 1/2 shows pure identity and 1 shows
maximum discrepancy. Although Keogh et al. (2004) do not provide a theoretical analysis
(depar is not a metric), they emphasize that their simpler proposal produces successful results
in clustering and anomaly detection.

Other compression-based dissimilarity measures have been proposed in the literature. In par-
ticular, four different compression-based measures, including NCD and CDM, are compared
in an experimental study carried out by Sculley and Brodley (2006), concluding that the four
examined methods lead to very similar results. In TSclust, dycp and deopys are implemented
using the compression function memCompress () included in the base package of R.

Permutation distribution clustering

Permutation distribution clustering (PDC) represents an alternative complexity-based ap-
proach to clustering time series. Dissimilarity between series is described in terms of diver-
gence between permutation distributions of order patterns in m-embedding of the original
series. Specifically, given X 7, an m-dimensional embedding is constructed by considering

X{mE {X{m:(Xt,Xt+1,...,Xt+m),t:1,...,T—m}.

Then, for each X/, € X, permutation II (X)) obtained by sorting X, in ascending or-
der (so-called codeword of X1,) is recorded, and the distribution of these permutations on
X! . P(Xr) (so-called codebook of Xr), is used to characterize the complexity of X 7. Fur-
thermore, dissimilarity between two time series X7 and Y is measured in terms of the
dissimilarity between their codebooks P (X ) and P (Y 1), respectively. Brandmaier (2011)
establishes this dissimilarity as the a-divergence between codebooks. The a-divergence con-
cept (Amari 2007) generalizes the Kullback-Leibler divergence and the parameter « can be
chosen to obtain a symmetric divergence. An interesting discussion on the use of different
divergence measures and the nice properties of the permutation distribution to perform clus-
tering (computational efficiency, robustness to drift, invariance to differences in mean and
variance, among others) can be seen in Brandmaier (2011).



Journal of Statistical Software

The choice of the embedding dimension m is the crucial point in PDC approach. A small
value of m might lead to a permutation distribution with a low representational power, while
a large value of m quickly leads to less reliable estimates of codeword frequencies. Brandmaier
(2011) proposes a heuristic procedure to automatically select the embedding dimension, thus
making a parameter-free clustering method.

A package specifically devoted to this approach, pde (Brandmaier 2014), is available on the
CRAN package repository. For it, the dissimilarity based on permutation distributions has
not been implemented in our package and it is directly computed by using the corresponding
function in pdc, which is automatically loaded when TSclust is installed.

A complexity-invariant dissimilarity measure

Batista et al. (2011) argue that, under many dissimilarity measures, pairs of time series with
high levels of complexity frequently tend to be further apart than pairs of simple series.
This way, complex series are incorrectly assigned to classes with less complexity. In order
to mitigate this effect, the authors propose to use information about complexity difference
between two series as a correction factor for existing dissimilarity measures. Specifically, a
general complexity-invariant dissimilarity measure called CID is defined as

demp (X7, Y7)=CF (X7, Y7r) -d(X7,Y7),

where d (X 7, Y 1) denotes a conventional raw-data distance and CF (X7, Y 1) is a complexity
correction factor given by

max {CE (Xr),CE (Y )}

CF(Xr,Yr7) = min {CE (X1), CE (Y1)}’

with CF (X 1) a complexity estimator of X . If all series have the same complexity, then
derp (X1, Y ) =d (X, Y ). Nevertheless, an important complexity difference between X
and Y7 turns into an increase of the dissimilarity between them. The complexity estimator
considered by Batista et al. is very simple and consists in computing

T-1

CE(X7) = | > (Xi— Xi41)%
t=1

The CID method is intuitive, parameter-free, invariant to the complexity of time series, com-
putationally efficient, and it has produced improvements in accuracy in several clustering
experiments carried out in Batista et al. (2011). In TSclust, dcrp has been implemented by
using the Euclidean distance as dissimilarity measure d.

2.4. Prediction-based approaches

Now we focus on a new dissimilarity notion governed by the performance of future forecasts,
i.e., two time series are similar if their forecasts at a specific future time are close. Obviously,
a clustering procedure based on this dissimilarity concept may produce results very different
to the ones generated from model-based or feature-based clustering methods. For instance,
two time series coming from the same generating process can produce different forecasts at
a pre-specified horizon, and hence these series might not be clustered together by using this

17
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new dissimilarity criterion. There are many practical situations where the real interest of
the clustering relies directly on the properties of the predictions, as in the case of any sus-
tainable development problem or in situations where the concern is to reach target values
on pre-specified future time periods. Alonso et al. (2006) proposed a dissimilarity measure
based on comparing the forecast densities for each series at a future horizon of interest. They
argue that using full forecast densities permits to take into account the variability of the
predictions, which is completely ignored when comparisons are based on pointwise forecasts.
In practice, the forecast densities are unknown and must be approximated from the data.
Alonso et al. construct this approximation using a smoothed sieve bootstrap procedure com-
bined with kernel density estimation techniques. This procedure requires assuming that the
time series admit an AR(1) representation because the sieve bootstrap is based on resampling
residuals from autoregressive approximations. Vilar et al. (2010) extend this methodology to
cover the case of nonparametric models of arbitrary autoregressions. In this new scenario,
the sieve bootstrap is not valid, and the forecast densities are approximated considering a
bootstrap procedure that mimics the generating processes without assuming any parametric
model for the true autoregressive structure of the series. The most general procedure pro-
posed by Vilar et al. (2010) has been implemented in TSclust, allowing thus the classification
of general autoregressive models, including extensively studied parametric models, such as
the threshold autoregressive (TAR), the exponential autoregressive (EXPAR), the smooth-
transition autoregressive (STAR) and the bilinear, among others (see Tong and Yeung 2000,
and references therein).

Specifically, let X7 and Y1 be realizations of stationary processes that admit a general
autoregressive representation of the form S; = ¢(S;—1) + &, with {e;} an i.i.d. sequence
and ¢(-) a smooth function not restricted to any pre-specified parametric model. Given a
particular future time 71"+ h, Vilar et al. introduce the following distance between X and
YT:

dprep.h (X1, Y1) = / ‘fxﬂh(u) — v ()| du, (4)

where fXT L, and fyT ., denote estimates of the forecast densities at horizon T'+ h for X
and Y 7, respectively.

By construction, dprgp,p (X 7, Y 1) measures the distance between X7 and Y7 in terms
of the disparity between the behaviors of their predicted values at horizon T+ h. The
true forecast densities are replaced by kernel-type estimators based on bootstrap predictions.
Although different resampling procedures can be used to obtain the bootstrap predictions,
we consider a bootstrap procedure based on generating a process

Si = @g(Sim1) + &7,

where ¢, is a nonparametric estimator of ¢ and {¢; } is a conditionally i.i.d. resample from the
nonparametric residuals. This bootstrap method, called autoregression bootstrap, completely
mimics the dependence structure of the underlying process. Actually autoregression bootstrap
uses an approach similar to that of the residual-based resampling of linear autoregressions,
but it takes advantage of being free of the linearity requirement, and hence, it can be applied
to a wider class of nonparametric models. A detailed description of the steps involved in
generating a set of bootstrap predictions can be seen in Vilar et al. (2010).
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3. Tools for time series clustering

The dissimilarity measures presented in Section 2 and included in TSclust are specially useful
to perform clustering on a given set of m time series {X (Tl ), X (Tm)}. Once the dissimilarity

measure is selected according to the desired clustering purpose, a pairwise dissimilarity matrix
D can be obtained and taken as starting point of a conventional clustering algorithm. Many
clustering tools are available through R packages and can be used with dissimilarities generated
from TSclust. Nevertheless, some additional tools often used in time series clustering but also
useful outside this domain have been implemented in TSclust. In this section, we begin
describing the clustering utilities implemented in TSclust and continue with a quick overview
of some available options in R to perform, validate and visualize clustering. This overview is
not intended to be a comprehensive list, but only a starting point to illustrate how to take
advantage of TSclust by interoperating with functions from other packages.

3.1. Clustering tools in TSclust

A hierarchical clustering algorithm based on p values

The algorithm, introduced by Maharaj (2000), takes as starting point the m x m matrix
P = (pi;), whose (i, j)-th entry, p; j, for i # j, corresponds to the p value obtained by testing

whether or not X g) and X (Tj) come from the same generating model. Then, the algorithm
proceeds in a similar way as an agglomerative hierarchical clustering based on P, although
in this case will only group together those series whose associated p values are greater than a

)

significance level « previously specified by the user. In other words, the i-th series X g,f will

merge into a specific cluster C} formed by the series {ngl), ceey Xgmk)} iff p; j, > «, for all

[=1,...,mg. Analogously, two clusters will be joined together iff the p values of all pairs of
series across the two clusters are greater than «. This algorithm behaves similar to the single
linkage procedure because the dissimilarity between two clusters is the smallest dissimilarity
(the greatest p value) between series in the two groups. Unlike the single linkage, two clusters
will not be joined with the Maharaj’s algorithm when a significant difference between a
pair of series of the candidate clusters is obtained. Note also that, unlike the conventional
hierarchical methods, this algorithm presents the advantage of providing automatically the
number of clusters, which obviously depends on the prefixed significance level. Furthermore,
the amount of compactness of each cluster can be evaluated by examining the p values within
each cluster. The flow chart of this clustering algorithm can be seen in Figure 3 of Maharaj
(2000), and it is available in TSclust by invoking the function pvalues.clust().

Cluster evaluation

Two clustering evaluation criteria based on known ground-truth have been implemented in
TSclust. One of them consists in calculating an index that measures the amount of agreement
between the true cluster partition G = {G1,...,G} (the “ground-truth”), assumed to be
known, and the experimental cluster solution A = {Ai,..., Ay} obtained by a clustering
method under evaluation. The similarity index Sim (G,.A) is defined by:

k
Sim (G, A) = 1 max Sim (G, Aj), (5)

k — 1<j<k
=1
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where

) ‘Gz N Aj’
Sim (G, Aj) = ————,

G ) = 1ar 4]

with |-| denoting the cardinality of the elements in the set. The index defined by Equation 5
has been used in different works on time series clustering (see Gavrilov, Anguelov, Indyk, and
Motwani 2000; Kalpakis et al. 2001; Liao 2005; Zhang et al. 2006; Pértega and Vilar 2010,
among others), and it is computed in TSclust with the function cluster.evaluation().

The other evaluation method implemented in TSclust uses a one-nearest-neighbour (1-NN)
classifier evaluated by leave-one-out cross-validation. Given the true cluster partition G =
{G1,...,Gk} and a particular dissimilarity matrix D (i.e., a dist object), the 1-NN classifier
assigns each series X gf) to the element of G containing the nearest series, X Sﬂ ), j # i, according
to the dissimilarities in D. Then the proportion of correctly classified series is calculated.
Note that this criterion directly evaluates the efficacy of the dissimilarity measure regardless
of the considered clustering algorithm. This clustering evaluation procedure is intuitive,
straightforward to implement, parameter-free and asymptotically optimal in the Bayes sense
(Tan, Steinbach, and Kumar 2006). These reasons support its intensive use in a broad range of
pattern recognition applications, including time series clustering (see, e.g., Keogh and Kasetty
2003). In TSclust, the evaluation based on the 1-NN classifier is available by invoking the
function loolnn.cv(), whose implementation allows us to deal with ties. Specifically, tied
dissimilarities are solved by majority vote. If ties occur in voting, then a candidate cluster is
selected at random and a warning is produced.

3.2. Some avaliable R clustering tools

As already mentioned, TSclust should not be seen as a stand-alone package but as an user-
extensible framework whose functionality is strengthened by interfacing with existing general
clustering methods. For it, a small sample of clustering utilities available in R system and
helpful to interact with outcomes from TSclust is summarized below.

First, time series dissimilarities integrated in TSclust will usually be the starting point to con-
duct a clustering algorithm. A wide range of functions to develop different cluster algorithms
are available in different R packages. For instance, primary functions to perform hierarchical
clustering are hclust () in the package stats (R Core Team 2014) and agnes () in the package
cluster (Maechler, Rousseeuw, Struyf, Hubert, and Hornik 2014). The cluster package also
includes the functions diana() and pam() to carry out divisive hierarchical clustering and
partitioning clustering around “medoids”, respectively.

On the other hand, a variety of measures aimed at validating the results of a cluster analysis
and comparing different cluster solutions are available in several R libraries. For example,
the function c1Valid() in the package clValid (Brock, Pihur, Datta, and Datta 2008) reports
a broad range of measures of clustering validation, and the function cluster.stats() in
the package fpc (Hennig 2014) provides a number of distance-based statistics, which can be
used for cluster validation, comparison between clustering solutions and decision about the
number of clusters. Additional cluster validation techniques can be also found in the package
clv (Nieweglowski 2013).

Some of the tools described in this section are used in the illustrative examples of Section 5.
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4. Considerations on the dissimilarity measure selection

As TSclust provides a broad range of dissimilarity measures to perform clustering of time
series, some considerations on the choice of a proper dissimilarity are given in the present
section. First of all, it is worth stressing that TSclust should not be used as a test bed where
all available dissimilarities are executed and the one reporting the “best” results is selected.
In particular, what constitutes a “good” clustering is often unclear as the perception of a
good clustering differs across users. Although interesting experimental comparisons of several
dissimilarity measures are available in the literature (see, e.g., Keogh and Kasetty 2003; Ding,
Trajcevski, Scheuermann, Wang, and Keogh 2008; Pértega and Vilar 2010), we recommend
users of TSclust to choose the proper criterion according to the nature and specific purpose
of the clustering task. Only by doing so, the cluster solution will admit an interpretation in
terms of the grouping target.

A first important issue is to decide whether clustering must be governed by a “shape-based”
or “structure-based” dissimilarity concept (see, e.g., Lin and Li 2009; Corduas 2010). Shape-
based dissimilarity is aimed to compare the geometric profiles of the series, or alternatively,
representations of them designed to reduce the dimensionality of the problem. Thus, shape-
based dissimilarity principle is mainly dominated by local comparisons. On the other hand,
structure-based dissimilarity is aimed to compare underlying dependence structures. Higher-
level dynamic structures describing the global performance of the series must be captured and
compared in this case. To shed some light on differences between both dissimilarity concepts,
consider a simple and intuitive synthetic dataset of 9 time series generated from three different
patterns, let us say P1, P2 and P3. All of them are displayed in Figure 2(a). The underlying
patterns are identified by colour and type of line: blue solid lines for P1, red dashed lines for
P2 and black dotted lines for P3. Profiles of P1 and P2 series move close within a narrow
band. Therefore P1 and P2 series are the closest ones if similarity is measured in terms of
proximity between geometric profiles. If, e.g., a shape-based dissimilarity like the Euclidean
distance is used to perform clustering on this dataset, then the P1 and P2 series are placed
together forming a mixed cluster (see Figure 2(b)). On the other hand, it can be seen that P1
and P3 have increasing/decreasing patterns closer to each other than to P2. This way P1 and
P3 series become the closest ones if similarity is understood in terms of underlying correlation
structures. In fact, P1 and P3 are first merged to form a cluster when clustering is carried
out using a structure-based dissimilarity like door or doorr with k& > 1 (see Figure 2(c)).

As the interest focuses on shape-based dissimilarity, conventional distances between raw data
(e.g., Ly type) or complexity-based measures (e.g., CID dissimilarity) can produce satisfac-
tory results, although sometimes measures invariant to specific distortions of the data could
be required. For instance, time series recorded in different scales will require previous nor-
malization to cancel differences in amplitude and then match well similar shapes. In fact,
conventional metrics like Minkowski, DTW or Fréchet distances may lead to common mis-
understandings if the time series are not previously normalized (see illustrative examples in
Rakthanmanon et al. 2012). Also, many biological series (e.g., recording motion capture data)
are efficiently compared using dissimilarities invariant to local scaling (warping). DTW-based
techniques will work specially well in these scenarios (Ding et al. 2008). Nevertheless, it is
worth remarking that the high computational cost of dynamic time warping makes it a less
desirable choice for large time series.

Overall, shaped-based dissimilarities work well with short time series but they can fail by
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Figure 2: Realizations of 9 time series generated from different patterns P1, P2 and P3 (a).
Dendrograms from clustering based on the Euclidean distance (shape-based dissimilarity, b),
and doogr dissimilarity with parameter k = 2 (structure-based dissimilarity, c).

working with long sequences, especially when a high amount of noise or anomalous records
are present. In these situations, a structure-based dissimilarity aimed to compare global un-
derlying structures can be more appropriate. This is frequently the case when performing
cluster analysis of economic or financial indicators. A range of feature- and model-based dis-
similarities are included in TSclust to be used when a structure-based dissimilarity is required.
Note that some of these dissimilarity measures assume regularity conditions for the series at
hand, and users must be aware of it. For example, the model-based measures included in
TSclust are just applicable on time series with stationary and linear underlying processes,
while the prediction-based measures are free of the linearity requirement but assuming au-
toregressive structures of lag one.

Prediction-based dissimilarity responds to a different and easily interpretable clustering target.
The real interest is not to group series showing similar shapes or underlying structures, but
series with similar forecasts at a specific future time. Figure 3 illustrates this idea. Cluster
analysis on the depicted time series aimed to a shape- or structure-based dissimilarity will
obviously produce an entirely different result to the one coming from the study of the forecasts
at a specific horizon.

Once the clustering objetives are made clear, the range of proper measures becomes more lim-
ited, and other suitable properties must be then considered. For example, most dissimilarity
measures introduced in TSclust require setting a number of input parameters, which might
produce an undesirable variability of results. Although implementation of some measures as
dpwT or dppc includes automatic procedures to determine these values, a careful adjustment
of these parameters is recommended to find the true underlying patterns. So, practitioners
should obtain background from key references to understand how adequate values can be
determined in each case.

Computational complexity is also an important point. Although all measures in TSclust have
been implemented using efficient algorithms available in R, some of them include procedures
with high computational cost. For instance, measure dyy(pf) involves numerical integration
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Figure 3: Tllustrative example showing the two clusters obtained with any shape- or structure-
based dissimilarity (evaluated on the period observation) and the two clusters derived from
cluster analysis based on point predictions at a specific future time. Note that both groupings
differs.

of differences between local linear smoothers computed by maximum local likelihood, which
implies to solve repeatedly an optimization problem in two variables. Prediction-based mea-
sures construct kernel density estimators based on bootstrap predictions, thus increasing the
computational complexity by a factor B, where B is the number of bootstrap samples. As
result, both dissimilarity measures suffer of a significantly high computational complexity and
could be unfeasible to perform clustering on databases including very long series. Note also
that the computing times of some measures can vary largely according to the values of the
dependent parameters. For instance, the autocorrelation-based distances and the Maharaj’s
distance have computing times O(T x lag.mazx) and O(T), respectively, but these times be-
come O(T3) when user specifies a matrix of weights €2 in the autocorrelation-based measures
or considers the extended version of the Maharaj’s distance.

Attention must be also placed on the choice of the clustering algorithm, which should not
distort the clustering process modifying the pre-established dissimilarity notion. In this sense,
some well-known clustering methods could not work properly. For instance, the popular
k-means algorithm moves each series to the cluster whose centroid is closest, recalculates
the cluster centroid and repeats the assignment procedure until no time series is reassigned.
Therefore k-means involves the computation of dissimilarity between time series and “centroids
of a set of time series”, which might not be properly defined. If for example the prediction-
based metric dprgp,p given in Equation 4 is considered, then a centroid would be a kernel
prediction density generated from an averaging of different series, and this is not reasonable
at all. Similar arguments apply to other dissimilarity measures introduced in Section 2. In
addition, if a hierarchical method is considered, then caution will be put when the Ward’s
method is chosen as linkage criterion because this algorithm is based on Euclidean distances
between objects.

5. Illustrative use of TSclust package

In this section, the use of TSclust is illustrated by working on several sets of real and synthetic
time series included in the own package. Note that the examples with real data are here

23
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considered to show the usefulness of the package TSclust and not to answer substantive
questions in the data. Since TSclust provides an important number of dissimilarity measures
between time series, first it is worth getting acquainted with the functions that compute these
dissimilarities, which are summarized in Table 1. Given a set of time series, functions in
Table 1 are mainly used to create a pairwise dissimilarity matrix (dist object) that is taken
as base of several R clustering utilities.

5.1. An example with a synthetic dataset

For testing and comparison purposes, TSclust includes a collection of eighteen synthetic time
series available by loading synthetic.tseries. More precisely, synthetic.tseries consists
of three partial realizations of length T" = 200 of each of the six first order autoregressive
models enumerated in Table 2.

In all cases, €; are i.i.d. Gaussian random variables with zero mean and unit variance. These
models have been selected to include both linear and non-linear structures. Model M1 is
an AR(1) process with moderate autocorrelation. Model M2 is a bilinear process with ap-
proximately quadratic conditional mean, and thus, strongly non-linear. Model M3 is an
exponential autoregressive model with a more complex non-linear structure although very
close to linearity. Model M4 is a self-exciting threshold autoregressive model with a relatively
strong non-linearity. Finally, Models M5, a general non-linear autoregressive model, and M6,
a smooth transition autoregressive model, present a weak non-linear structure. Therefore,
the selected models represent different nonlinear structures for the conditional mean, thus
providing a valuable scenario to examine the performance in clustering of the dissimilarity
measures implemented in TSclust. In fact, some of these models were previously considered
by Vilar et al. (2010) in a broad simulation study conducted to attain this objective. Here,
our interest is mainly illustrative and for this reason our analysis is limited to this set of series.
Indeed, a more extensive analysis including a large number of simulated replicates should be
required to state rigorous conclusions.

We proceed as follows. Series in synthetic.tseries are subjected to clustering by using
different dissimilarity measures and several clustering algorithms. Assuming that the clus-
tering is governed by the similarity between underlying models, the “true” cluster solution is
given by the six clusters involving the three series from the same generating model. Then,
the experimental cluster solutions are compared with the true cluster solution by using the
cluster similarity function cluster.evaluation() included in TSclust.

First steps are loading both the package and dataset and creating the true solution.

R> library("TSclust")
R> data("synthetic.tseries")
R> true_cluster <- rep(1:6, each = 3)

We start testing the dissimilarity measure d;p, that computes the Lo distance between in-
tegrated periodograms and can be evaluated in TSclust by invoking diss.INT.PER(). The
wrapper function diss() is provided as an easy way to apply any of the TSclust dissimilarity
functions to a matrix of time series data. Function diss() takes a dataset and a string spec-
ifying the TSclust dissimilarity to be used, and returns a dist object with all the pairwise
dissimilarities. A dataset can be introduced as a mts object, or alternatively as a matrix,



Journal of Statistical Software

Dissimilarity measures Function in TSclust
Model free approaches
Based on raw data

dr,(Euclidean) diss.EUCL
dp diss.FRECHET
dprw diss.DTW
Covering both proximity on values and on behavior
dcorr diss.CORT
Based on correlations
dcor.1 diss.COR, beta = NULL
dcor.2 diss.COR and a specified value for beta
Based on simple and partial autocorrelations
dacr diss.ACF
dacru diss.ACF without parameters
dacra diss.ACF,p #0
dpacF diss.PACF
dpacFru diss.PACF without parameters
dpacra diss.PACF,p #0
Based on periodograms
dp diss.PER
dnp diss.PER, normalize = TRUE
diNp diss.PER, normalize = TRUE, logarithm = TRUE
drp diss.INT.PER
Based on nonparametric spectral estimators
dw(Ls) diss.SPEC.LLR, method = "LS"
dw (LK) diss.SPEC.LLR, method = "LK"
dark diss.SPEC.GLK
drsp diss.SPEC.IDS
Based on the discrete wavelet transform
dpwT diss.DWT
Based on symbolic representation
A MINDIST.SAX diss.MINDIST.SAX
Model-based approaches
dpic diss.AR.PIC
dyar diss.AR.MAH
dMAHext diss.AR.MAH, dependence = TRUE
dLcp. Cep diss.AR.LPC.CEPS
Complezity-based approaches
domp diss.CID
dppo diss.PDC
dopm diss.CDM
dnNcp diss.NCD
Prediction-based approach
dPRED,h diss.PRED

Table 1: Dissimilarity measures implemented in TSclust (see Section 2 for details).
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M1 AR X =06X;1+¢e

M2 Bilinear X; = (0.3 — 0.25,_1) X;_1 + 1.0 + &

M3 EXPAR X;= (09exp(—X7 ) —0.6)X;1+1.0+¢

M4 SETAR X;= (0.3X;—1 + 1.0) I (Xs—1 > 0.2) — (0.3X;—1 — 1.0) I (X4—1 < 0.2) + &4
M5 NLAR X, =0.7|X;_1| (24 | Xee1]) H + &

M6 STAR  X; =0.8X;_; —0.8X;_1 (14 exp (—10X;_1)) " + &

Table 2: Generating models for time series in synthetic.tseries.

list or data.frame object. Additional arguments required by the particular dissimilarity
must be also passed to diss() function. In our example, diss() is used as follows.

R> IP.dis <- diss(synthetic.tseries, "INT.PER")

Now, the object IP.dis contains the dissimilarity matrix computed by applying d;p to each
pair of series in synthetic.tseries and can be taken as starting point for several conventional
clustering methods. For example, we use hclust() of the base package stats to conduct
a hierarchical clustering algorithm. We get the six cluster solution from the hierarchical
clustering using the cutree() function of stats.

R> IP.hclus <- cutree(hclust(IP.dis), k = 6)
R> cluster.evaluation(true_cluster, IP.hclus)

[1] 0.784127

As the correct number of clusters is known, a partitive clustering technique as the popular
Partitioning Around Medoids (PAM) algorithm is also considered. We use the function pam()
in package cluster.

R> library("cluster")
R> IP.pamclus <- pam(IP.dis, k = 6)$clustering
R> cluster.evaluation(true_cluster, IP.pamclus)

[1] 0.8888889

Recall that the output of cluster.evaluation() lies between 0 and 1 and admits a simple
interpretation: the closer it is to 1, the higher is the agreement between the true and experi-
mental partitions. Therefore, it can be concluded that the model-free measure d;p produces
good results in this case, showing the best performance as the PAM algorithm is used. In fact,
the cluster solution obtained with the PAM algorithm only classifies incorrectly two series.

R> IP.pamclus

AR.1 AR.2 AR.3 BILIN.1 BILIN.2 BILIN.3 EXPAR.1 EXPAR.2 EXPAR.3

1 1 1 2 2 3 4 4 4
SETAR.1 SETAR.2 SETAR.3 NLAR.1 NLAR.2 NLAR.3 STAR.1 STAR.2 STAR.3
5 5 5 3 3 2 6 6 6
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Any dissimilarity function can be tested in a similar way. Consider for example the dissimi-
larity based on the simple autocorrelations d4cr.

R> ACF.dis <- diss(synthetic.tseries, "ACF", p = 0.05)
R> ACF.hclus <- cutree(hclust(ACF.dis), k = 6)
R> cluster.evaluation(true_cluster, ACF.hclus)

[1] 0.7444444

R> ACF.pamclus <- pam(ACF.dis, k = 6)$clustering
R> cluster.evaluation(true_cluster, ACF.pamclus)

[1] 0.6666667
R> ACF.hclus

AR.1 AR.2 AR.3 BILIN.1 BILIN.2 BILIN.3 EXPAR.1 EXPAR.2 EXPAR.3

1 1 1 2 2 2 3 3 4
SETAR.1 SETAR.2 SETAR.3 NLAR.1 NLAR.2 NLAR.3 STAR.1 STAR.2 STAR.3
5 5 2 2 2 2 5 6 6

The ACF-based dissimilarity leads to worse results, with similarity indexes below 0.75. Here
the hierarchical algorithm outperforms the PAM algorithm, but only the group formed by the
AR(1) series is correctly identified.

Let us now consider the model-based dissimilarity dyag , introduced by Maharaj (2000)
which is implemented in the function diss.AR.MAH(). As dyram,, produces p values obtained
by testing the equality of generating ARMA-models, we can use the hierarchical algorithm
pvalues.clust () based on p values described in Section 3.

R> AR.MAH.PVAL.dis <- diss(synthetic.tseries, "AR.MAH")$p_value
R> AR.MAH.PVAL.clus <- pvalues.clust(AR.MAH.PVAL.dis, significance = 0.05)
R> cluster.evaluation(true_cluster, AR.MAH.PVAL.clus)

[1] 0.6901515
R> AR.MAH.PVAL.clus
(1] 2221113314411 11444

The number of clusters is automatically established by the clustering algorithm depending on
the threshold significance specified in significance. Using a 0.05 significance level only four
clusters are identified. The AR(1) series are correctly placed forming one group, the expo-
nential autoregressive series (EXPAR) form other group although one of them is erroneously
not included, and the two remaining groups mainly place together the SETAR and STAR
structures and the bilinear and NLAR series, respectively. Indeed, this poor result is expected
because dyam p is aimed to assume that the generating processes are ARMA models. Note
that by increasing the threshold significance, the pairwise equality tests become less conserva-
tive, and thus a greater number of clusters can be found. For instance, setting significance
= 0.6 in our example, six clusters are found.
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R> pvalues.clust(AR.MAH.PVAL.dis, significance = 0.6)
1] 4441115523331116686

Finally, we consider a dy-type dissimilarity measure based on nonparametric spectral ap-
proximations such as defined in Equation 1.

R> LLR.dis <- diss(synthetic.tseries, "SPEC.LLR", method = "LK", n = 500)
R> LLR.pam <- pam(LLR.dis, k = 6)$clustering
R> cluster.evaluation(true_cluster, LLR.pam)

[1] 0.8333333
R> LLR.pam

AR.1 AR.2 AR.3 BILIN.1 BILIN.2 BILIN.3 EXPAR.1 EXPAR.2 EXPAR.3

1 1 1 2 2 3 4 4 4
SETAR.1 SETAR.2 SETAR.3 NLAR.1 NLAR.2 NLAR.3 STAR.1 STAR.2 STAR.3
5 5 5 5 2 2 6 6 6

As expected, a reasonably good result (only three series are misclassified) is obtained because
of dw (k) is free of the linearity assumption, and hence it is especially robust to perform
clustering in the present framework.

5.2. Clustering interest rate series

Our second example deals with long-term interest rate data included in TSclust and available
by loading interest.rates. This dataset is formed by 18 time series of length T' = 215
representing monthly long-term interest rates (10-year bonds), issued in percentages per an-
num, for seventeen countries and the Economic and Monetary Union (EMU). The observation
period goes from January 1995 to November 2012 (OECD source: http://www.oecd.org/).
Long-term government bonds are the instrument whose yield is used as the representative
“interest rate” for each area, and hence these indicators are a vital tool of monetary policy
and are taken into account when dealing with variables like investment, inflation, and unem-
ployment. In particular, one of the convergence criteria required for all countries in the euro
area is related to this indicator. A lattice plot of the series in interest.rates is shown in
Figure 4.

Data in interest.rates are here used to perform clustering from two different points of view.
First, the original series are clustered in accordance with the performance of the predictions
at a given horizon. Identifying groups of countries with similar predictions for their long-
term interest rates is a meaningful objective due to the influence of these indicators on the
monetary policy actions. In any case, our application just intends illustrating the usefulness
of TSclust to achieve this objective without studying this interesting issue in depth. The
proper function to carry out prediction-based clustering is diss.PRED(), which computes
the L distance between bootstrap approximations of the h-steps-ahead forecast densities for
two given time series (see dpgrgp,s in Equation 4). Suppose we wish to group together the
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Figure 4: Monthly long-term interest rate series (10-year bonds), issued in percentages per
annum, over the period January 1995 to November 2012.

countries with similar six-months-ahead predictions (h = 6). As the bootstrap mechanism
requires stationarity and the time series under study are clearly non-stationary, the original
series are previously transformed by using logarithms (if required) and taking an appropriate
number of regular differences. Bootstrap prediction-paths are generated from the transformed
series, and then the prediction-paths are back-transformed to obtain bootstrap predictions
for the original series. All these steps are automatically carried out by diss.PRED(). The
required arguments for this function are the horizon of interest, h, the number of bootstrap
resamples, B, and how transformation must be carried out, that is if logarithms are or not
taken (logarithms.x and logarithms.y) and the number of regular differences to be applied
(differences.x and differences.y). We start comparing the predictions for Finland and
USA (columns 13 and 16 of interest.rates, respectively).

R> data("interest.rates")

R> diss.PRED(interest.rates[, 13], interest.rates[, 16], h =
+ logarithm.x = TRUE, logarithm.y = TRUE, differences.x
+ differences.y = 1, plot = TRUE)$L1dist

, B = 2000,

I
~ O

[1] 0.2248442

The plot generated by diss.PRED() is shown on the right part of Figure 6. Note that the
prediction densities have similar means, but differ in their shapes (the forecast density of
Finland presents a higher kurtosis), and this feature is captured by using the L; distance
between prediction densities (taking the value 0.2248442 in this particular case).

When diss.PRED() is used from the wrapper diss(), arguments indicating the transforma-
tion features are passed from two new arguments, logarithms and differences, where the
proper transformation values for all series are gathered together preserving the order in the
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Figure 5: Dendrogram for interest.rate dataset based on the six-months-ahead prediction
density estimates by using the complete linkage.

original dataset. For instance, assume that the recommended transformation for all series
in interest.rates is to take one difference of the logarithm, then the dissimilarity matrix
based on the six-months-ahead prediction density estimates can be obtained as follows.

R> diffs <- rep(1, ncol(interest.rates))

R> logs <- rep(TRUE, ncol(interest.rates))

R> dpred <- diss(interest.rates, "PRED", h = 6, B = 1200, logarithms = logs,
+ differences = diffs, plot = TRUE)

Matrix dpred$dist is now used to perform clustering.

R> hc.dpred <- hclust(dpred$dist)
R> plot(hc.pred)

Figure 5 shows the resulting dendrogram. The four cluster solution seems to determine groups
reasonably well-separated, namely C; = {Ireland, Italy, Spain, Portugal}, C; = {Germany,
Sweden, Denmark}, C3 = {Switzerland, Japan}, and the fourth cluster C4 formed by the
remaining countries. Indeed, if a finer partition identifying more compact groups is required,
then C4 can be split into two homogeneous subclusters, and Portugal (and in a lesser extension
Spain and Denmark) would leave their groups to appear like isolated points. To gain insight
into the clustering, all the estimated forecast densities have been jointly depicted in Figure 6
by using the option plot = TRUE in the function call.

Figure 6 allows us to characterize the clusters in terms of the prediction densities for their
memberships. Cluster C; brings together the four countries more affected by the Eurozone
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Figure 6: Six-months-ahead prediction density estimates for long-term interest rates. Densi-
ties for Finland and USA are zoomed at the right part.

crisis, presenting the largest predictions for their long-term interest rates. All of them show a
high amount of variability in their prediction densities (especially Portugal), thus increasing
the uncertainty for their future interest rates. By contrast, Japan and Switzerland, forming
C3, are the countries with the lowest predictions and less uncertainty. C; and Cs3 are perfectly
separated and constitute very stable clusters because no overlaps are given between densities
from these two groups. Clusters Co and C4 collect countries with intermediate predictions,
also well-separated from C; and C3. Denmark, Germany and Sweden, forming Cy, present
predictions close to the lowest ones from Cs, especially Denmark, and the countries in Cy4
show somewhat higher predictions, but in any case significantly lower than the countries in
C;. It is worthy to remark that a classification based on pointwise predictions differs from
the classification aimed to prediction densities. For example, Portugal and Spain are clearly
isolated points if a pointwise prediction approach is considered, while they are in the same
cluster with the density criterion.

Now, a different clustering problem based on the same interest rate dataset is posed. Specif-
ically, we are interested in performing cluster analysis with the series transformed by tak-

ing the first difference of the logarithms, i.e., by using series Ygf), i =1,...,24, given by

log Xt(i) — log Xt(i)l, t = 2,...,7T. Actually Yg) approximately measures the percentage
changes in the interest rates from month to month, and therefore this new cluster analy-
sis intends to group together those countries with similar monthly increases in their interest
rates. A lattice plot of the new time series is shown in Figure 7.

The clustering aim is now to identify similar dependence structures hidden behind the wiggly
and noisy profiles observed in Figure 7. Note that nonstationarity of the original series has
been removed by taking differences, and therefore dissimilarity measures constructed under
the stationarity assumption can be used. For illustrative purposes, we perform hierarchi-
cal clustering with complete linkage and use several dissimilarity measures implemented in
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Figure 7: Long-term interest rates transformed by taking the first difference of the logarithms.

TSclust, namely the dissimilarities based on the simple autocorrelation functions, the loga-
rithm of the normalized periodograms and the AR-metric introduced by Piccolo. The average
Silhouette coefficients were examined for several k-cluster solutions and it was observed that
a number of k£ = 5 groups yields a reasonably compact solution. First, the time series are

transformed and a matrix for storing the 5-cluster solutions is created.

R> relative.rate.change <- diff(log(interest.rates), 1)

R> Five.cluster.sol <- matrix(0, nrow = 18, ncol = 3)

R> colnames(Five.cluster.sol) <- c("ACF'", "LNP", "PIC")

R> rownames (Five.cluster.sol) <- colnames(relative.rate.change)

The following code leads to the 5-cluster solutions for the three dissimilarity measures.

R> Five.cluster.sol[, 1] <- cutree(hclust(diss(relative.rate.change,

+ "ACF", p = 0.05)), k = 5)

R> Five.cluster.sol[, 2] <- cutree(hclust(diss(relative.rate.change, "PER",
+ TRUE, logarithm = TRUE)), k = 5)

R> Five.cluster.sol[, 3] <- cutree(hclust(diss(relative.rate.change,

+ "AR.PIC")), k = 5)

R> Five.cluster.sol

normalize

ACF LNP PIC
EMU 1 1 1
Spain 1 1 1
Germany 2 2 1
France 2 1 2
Italy 1 1 1
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Netherlands 2 2 1
UK 2 2 3
Ireland 1 3 1
Denmark 2 2 2
Portugal 3 3 4
Austria 2 1 2
Sweden 2 2 1
Finland 2 2 2
Switzerland 4 4 4
Norway 2 2 1
USA 2 2 3
Canada 2 2 3
Japan 5 5 b

Similar results are obtained with the three dissimilarities. Japan, Switzerland and Portugal
are isolated objects. Japan clearly shows the greatest variability in the relative changes of
their interest rates. Switzerland also presents an important variability and a large sequence of
months with substantial negative growth. Portugal is closer to the rest of countries although
presents very few months of large decay. With respect to the remaining countries, it is complex
to find out substantial differences, although it is worth pointing out that four sets of countries
are located together with the three considered dissimilarity criteria, namely {Spain, Italy,
EMU}, {Germany, Netherlands, Sweden, Norway}, {Finland, Denmark} and {USA, Canada,
UK}.

5.3. Matching pairs of times series from different domains

Now, we consider a dataset formed by a collection of 18 pairs of time series covering different
domains, including finance, science, medicine, industry, etc. This dataset was presented by
Keogh et al. (2004) to evaluate different clustering procedures and has been later consid-
ered by other authors (Lin and Li 2009; Brandmaier 2011, among others). The dataset is
freely available at http://www.cs.ucr.edu/~eamonn/SIGKDD2004/, and included in TSclust
as paired.tseries. Each pair of series was selected from a different domain in datasets from
the University of California Riverside (UCR) Time Series Archive (Keogh et al. 2011). For
example, the dataset includes the series thoracic and abdominal from the Fetal-ECG archive,
annual power demand series for two different months Power: April-June and Power: Jan-
March, from the Italy-Power-Demand archive, and so on. The 36 time series are displayed in
Figure 8, where a different colour is used to identify each pair. Note that some of the distinct
pairs present clearly different profiles.

One of the experiments described by Keogh et al. (2004) consisted in performing agglomerative
hierarchical cluster analysis starting from different pairwise dissimilarities. The main objective
was to identify the 18 pairs at the lowest level of the tree, assuming that a clustering in which
each pair of time series is closest to each other is the ground truth. For this purpose, the
quality of clustering is evaluated with a measure () defined by the number of correct pairings
at the lowest clustering level divided by 18. A perfect result is attained when @ = 1, while
the authors argue that Q = 0 would be expected for a random clustering due to the high
number of possible dendrograms with 36 objects (greater than 3 x 10%9),

Package TSclust is a useful tool to carry out this type of experiments in a simple way. For
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Figure 8: Eighteen pairs of time series from the UCR Time Series Archive (Keogh et al. 2011)
subjected to hierarchical clustering in Keogh et al. (2004).

illustrative purposes, some of the dissimilarity measures are evaluated using functions of
TSclust. We begin by loading the dataset and creating the “ground-truth” solution. Since
hclust () will be used to perform hierarchical clustering, the i-th row of the output merge
describes the merging of clusters at step ¢ of the hierarchical process. A negative element j
in the row means that observation —; was merged at this stage. Hence, a row with negative
entries indicates agglomeration of singletons, and regarding the order of the series in the
database, this row represents one of the desired pairings when takes the form (—j, —(j + 1)),
with j odd. For this reason, true_pairs is defined as the 2 x 36 matrix whose j-th column is
the pair (—j,—(j + 1)). The @Q-measure introduced by Keogh et al. (2011) is then evaluated
by counting the number of matches between true_pairs and hclust$merge.

R> data("paired.tseries")
R> true_pairs <- data.frame(-matrix(1:36, nrow = 2, byrow = FALSE))

A glance at Figure 8 suggests substantial differences between shapes and complexity levels of
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some pairs of series. Thus, a conventional shape-based dissimilarity or some complexity-based
dissimilarity could produce good results. We begin examining up to three dissimilarities,
namely the Euclidean distance, evaluating point-to-point discrepancy and so emphasizing
local shape differences, d¢rp, addressed to compare shape complexities, and dppc, measuring
divergence between permutation distributions of the series.

R> deucl <- diss(paired.tseries, "EUCL")

R> hceucl <- hclust(deucl, "complete")

R> Qeucl <- sum(true_pairs 7inj, data.frame(t(hceucl$merge)))/18
R> Qeucl

[1] 0.2777778

R> dcid <- diss(paired.tseries, "CID")

R> hccid <- hclust(dcid, "complete")

R> Qcid <- sum(true_pairs 7in}, data.frame (t(hccid$merge)))/18
R> Qcid

(1] 0.6111111

R> dpdc <- diss(paired.tseries, "PDC")

R> hcpdc <- hclust(dpdc, "complete")

R> Qpdc <- sum(true_pairs 7inj, data.frame (t(hcpdc$merge)))/18
R> (Qpdc

[1] 0.7222222

Five pairs of series (@ = 0.27) are successfully clustered together at the lowest level of the
tree by using the Euclidean distance. Notice that this performance is significantly better
than a random clustering (@ = 0), thereby showing the difficulty to separate correctly all
the pairs. In fact, Keogh et al. (2004) argue that more than 3/4 of the tested clustering
approaches yielded the worst possible score Q = 0. It is relevant that the parameter-free
CID dissimilarity substantially improves the result, identifying correctly 11 pairs. The best
result, 13 out of 18 pairs, corresponds to the PDC approach using the embedding dimension
automatically chosen by the heuristic procedure proposed by Brandmaier (2011), m = 5 in
this case.

Next, the compression-based dissimilarity diss.CDM is examined using gzip as compression
algorithm. Alternative options in TSclust to determine the compression algorithm are bzip2,
xzip, and min. If min is selected, the other three options will be tested, selecting the one that
gives the best compression.

R> dcdm <- diss(paired.tseries, "CDM", "gz")

R> hccdm <- hclust(dcdm, "complete")

R> Qcdm <- sum(true_pairs 7inj, data.frame (t(hccdm$merge)))/18
R> Qcdm

[1] 0.5
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Figure 9: Plot produced by plot.SAX showing both PAA reduction and SAX symbolization
for two series in paired.tseries. Dotted lines indicate the breakpoints producing equal-sized
areas under a standard Gaussian curve. Based on these breakpoints, PAA coefficients (hori-
zontal segments) are mapped into symbols (letters from “a” to “e”) with equiprobability. Here,
the reduced dimension w = 20 and the alphabet size o = 4 produce the SAX representations
eeeeeedbbbbbbababcaa and bcbcacbecbccecdbebdbed for series 16 and 28, respectively.

Dissimilarity diss.CDM with gzip compression gets 9 out of 18 pairs correctly. Nevertheless,
the compression-based procedures can be affected by numerical issues (Keogh et al. 2004) and
a symbolic representation of the series can help overcome these problems. Although there
are many different symbolic approximations of time series in the literature (see, e.g., the
review of symbolic analysis of experimental data provided by Daw et al. 2003), the Symbolic
Aggregate ApproXimation (SAX) representation has been implemented in TSclust because
allows both dimensionality reduction and lower bounding (Lin et al. 2003). SAX consists of a
z-normalization, a PAA reduction, and a further transformation where PAA representations
are mapped to symbols with equiprobability, thus obtaining the SAX representation (see
Section 2.1). Both PAA representation and SAX symbolization are performed in TSclust
using the routines PAA and convert.to.SAX.symbol, respectively. A graphical illustration
of the combined result of these procedures is provided by SAX.plot function. See Figure 9
generated by the code below.

R> testseries <- as.ts(cbind(paired.tseries[, 16], paired.tseries[, 28]))
R> colnames(testseries) <- c("Series 16", "Series 28")
R> SAX.plot(testseries, w = 20, alpha = 5)

To illustrate how the compression-based dissimilarity diss.CDM can substantially improve by
using the symbolic SAX representation, a prior search for the input parameters was conducted.
As result, a perfect clustering @ = 1 (as in Keogh et al. 2004) is attained if the following code
lines are executed.

R> tsersax <- apply(paired.tseries, 2, function(x) {
+ x <- (x - mean(x)) / sd(x)

+ x <- PAA(x, w = 343)

+ convert.to.SAX.symbol (x, alpha = 27)})
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R> tsersax <- as.ts(tsersax)

R> dcdmsymb <- diss(tsersax, "CDM", "gz")

R> hccdmsymb <- hclust(dcdmsymb, "ward")

R> Qcdmsymb <- sum(true_pairs /inj data.frame(t(hccdmsymb$merge)))/18
R> (cdmsymb

(1] 1

Note that other dissimilarities may attain a Q-optimal classification if a search of hyperpa-
rameters is performed. In particular, @) = 1 is also retrieved using PDC as follows.

R> dpdc_m5t8 <- diss(paired.tseries, "PDC", m = 5, t = 8)

R> hcpdc_m5t8 <- hclust(dpdc_m5t8, "complete')

R> (pdc_m5t8 <- sum(true_pairs 7inj, data.frame(t(hcpdc_m5t8$merge)))/18
R> (pdc_mb5t8

(1] 1

6. Conclusions

A key issue in time series clustering is the choice of a suitable measure to assess the dissim-
ilarity between two time series data. A large number of well-established and peer-reviewed
dissimilarity measures between time series have been proposed in the literature, and a wide
range of them are included in the R package TSclust presented in this work. TSclust is mainly
an attempt to integrate different time series dissimilarity criteria in a single software package
to check and compare their behavior in clustering. The main motivation behind this package
is that, to our knowledge, no previous packages are available targeting the problem of clus-
tering time series, except for the pde package (Brandmaier 2014), which is mainly focused on
the permutation distribution clustering. Nevertheless, demand for a package of these features
is supported by the increasing number of references and applications in different fields. A
brief description and key references of the dissimilarity measures implemented in TSclust are
included in the first part of this paper to give insight into their rationale. By using some
real and synthetic dataset examples, the capabilities and usefulness of the package are illus-
trated. Several scenarios with different clustering objectives have been proposed to support
the need of considering different dissimilarity measures. In this sense, some general consid-
erations on how to choose the proper dissimilarity are also discussed. The package TSclust
is under continuous development with the purpose of incorporating new dissimilarity criteria
and clustering utilities in time series framework.
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