
Journal of Machine Learning Research 8 (2007) 891-933 Submitted 1/06; Revised 12/06; Published 5/07

Anytime Learning of Decision Trees

Saher Esmeir ESAHER@CS.TECHNION.AC.IL

Shaul Markovitch SHAULM@CS.TECHNION.AC.IL

Department of Computer Science
Technion—Israel Institute of Technology
Haifa 32000, Israel

Editor: Claude Sammut

Abstract

The majority of existing algorithms for learning decision trees are greedy—a tree is induced top-
down, making locally optimal decisions at each node. In most cases, however, the constructed tree
is not globally optimal. Even the few non-greedy learners cannot learn good trees when the concept
is difficult. Furthermore, they require a fixed amount of time and are not able to generate a better
tree if additional time is available. We introduce a framework for anytime induction of decision
trees that overcomes these problems by trading computation speed for better tree quality. Our
proposed family of algorithms employs a novel strategy for evaluating candidate splits. A biased
sampling of the space of consistent trees rooted at an attribute is used to estimate the size of the
minimal tree under that attribute, and an attribute with the smallest expected tree is selected. We
present two types of anytime induction algorithms: a contract algorithm that determines the sample
size on the basis of a pre-given allocation of time, and an interruptible algorithm that starts with
a greedy tree and continuously improves subtrees by additional sampling. Experimental results
indicate that, for several hard concepts, our proposed approach exhibits good anytime behavior and
yields significantly better decision trees when more time is available.

Keywords: anytime algorithms, decision tree induction, lookahead, hard concepts, resource-bounded
reasoning

1. Introduction

Assume that a medical center has decided to use medical records of previous patients in order to
build an automatic diagnostic system for a particular disease. The center applies the C4.5 algorithm
on thousands of records, and after few seconds receives a decision tree. During the coming months,
or even years, the same induced decision tree will be used to predict whether patients have or do
not have the disease. Obviously, the medical center is willing to wait much longer to obtain a better
tree—either more accurate or more comprehensible.

Consider also a planning agent that has to learn a decision tree from a given set of examples,
while the time at which the model will be needed by the agent is not known in advance. In this case,
the agent would like the learning procedure to learn the best tree it can until it is interrupted and
queried for a solution.

In both of the above scenarios, the learning algorithm is expected to exploit additional time
allocation to produce a better tree. In the first case, the additional time is allocated in advance. In
the second, it is not. Similar resource-bounded reasoning situations may occur in many real-life

c©2007 Saher Esmeir and Shaul Markovitch.

ESMEIR AND MARKOVITCH

a1 a2 a3 a4 label

1 0 0 1 +
0 1 0 0 +
0 0 0 0 -
1 1 0 0 -
0 1 1 1 +
0 0 1 1 -
1 0 1 1 +

(a) A set of training instances.

���

���

���

- +

+

���

���

- +

-

(b) ID3’s performance.

Figure 1: Learning the 2-XOR concept a1⊕a2, where a3 and a4 are irrelevant

applications such as game playing, planning, stock trading and e-mail filtering. In this work, we
introduce a framework for exploiting extra time, preallocated or not, in order to learn better models.

Despite the recent progress in advanced induction algorithms such as SVM (Vapnik, 1995),
decision trees are still considered attractive for many real-life applications, mostly due to their
interpretability (Hastie et al., 2001, chap. 9). Craven (1996) lists several reasons why the under-
standability of a model by humans is an important criterion for evaluating it. These reasons include,
among others, the possibility for human validation of the model and generation of human-readable
explanations for the classifier predictions. When classification cost is important, decision trees may
be attractive in that they ask only for the values of the features along a single path from the root to
a leaf. In terms of accuracy, decision trees have been shown to be competitive with other classifiers
for several learning tasks.

The majority of existing methods for decision tree induction build a tree top-down and use
local measures in an attempt to produce small trees, which, by Occam’s Razor (Blumer et al.,
1987), should have better predictive power. The well-known C4.5 algorithm (Quinlan, 1993) uses
the gain ratio as a heuristic for predicting which attribute will yield a smaller tree. Several other
alternative local greedy measures have been developed, among which are ID3’s information gain,
Gini index (Breiman et al., 1984), and chi-square (Mingers, 1989). Mingers (1989) reports an
empirical comparison of several measures, and concludes that the predictive accuracy of the induced
trees is not sensitive to the choice of split measure and even random splits do not significantly
decrease accuracy. Buntine and Niblett (1992) present additional results on further domains and
conclude that while random splitting leads to inferior trees, the information gain and Gini index
measures are statistically indistinguishable.

The top-down methodology has the advantage of evaluating a potential attribute for a split in
the context of the attributes associated with the nodes above it. The local greedy measures, how-
ever, consider each of the remaining attributes independently, ignoring potential interaction between
different attributes (Mingers, 1989; Kononenko et al., 1997; Kim and Loh, 2001). We refer to the
family of learning tasks where the utility of a set of attributes cannot be recognized by examining
only subsets of it as tasks with a strong interdependency. When learning a problem with a strong
interdependency, greedy measures can lead to a choice of non-optimal splits. To illustrate the above,
let us consider the 2-XOR problem a1⊕a2 with two additional irrelevant attributes, a3 and a4. As-

892

ANYTIME LEARNING OF DECISION TREES

sume that the set of examples is as listed in Figure 1(a). We observe that gain-1 of the irrelevant
attribute a4 is the highest:

0.13 = gain1(a4) > gain1(a1) = gain1(a2) = gain1(a3) = 0.02,

and hence ID3 would choose attribute a4 first. Figure 1(b) gives the decision tree as produced by
ID3. Any positive instance with value 0 for a4 would be misclassified by this decision tree. In the
general case of parity concepts, the information gain measure is unable to distinguish between the
relevant and irrelevant attributes because neither has a positive gain. Consequently, the learner will
grow an overcomplicated tree with splits on irrelevant variables that come either in addition to or
instead of the desired splits.

The problem of finding the smallest consistent tree1 is known to be NP-complete (Hyafil and
Rivest, 1976; Murphy and McCraw, 1991). In many applications that deal with hard problems,
we are ready to allocate many more resources than required by simple greedy algorithms, but still
cannot afford algorithms of exponential complexity. One commonly proposed approach for hard
problems is anytime algorithms (Boddy and Dean, 1994), which can trade computation speed for
quality. Quinlan (1993, chap. 11) recognized the need for this type of anytime algorithm for decision
tree learning: “What is wanted is a resource constrained algorithm that will do the best it can within
a specified computational budget and can pick up threads and continue if this budget is increased.
This would make a challenging thesis topic!”

There are two main classes of anytime algorithms, namely contract and interruptible (Russell
and Zilberstein, 1996). A contract algorithm is one that gets its resource allocation as a parameter.
If interrupted at any point before the allocation is completed, it might not yield any useful results.
An interruptible algorithm is one whose resource allocation is not given in advance and thus must be
prepared to be interrupted at any moment. While the assumption of preallocated resources holds for
many induction tasks, in many other real-life applications it is not possible to allocate the resources
in advance. Therefore, in our work, we are interested both in contract and interruptible decision tree
learners.

In this research, we suggest exploiting additional time resources by performing lookahead.
Lookahead search is a well-known technique for improving greedy algorithms (Sarkar et al., 1994).
When applied to decision tree induction, lookahead attempts to predict the profitability of a split at
a node by estimating its effect on deeper descendants of the node. One of the main disadvantages
of the greedy top-down strategy is that the effect of a wrong split decision is propagated down to
all the nodes below it (Hastie et al., 2001, chap. 9). Lookahead search attempts to predict and avoid
such non-contributive splits during the process of induction, before the final decision at each node
is made.

Lookahead techniques have been applied to decision tree induction by several researchers. The
reported results vary from lookahead produces better trees (Norton, 1989; Ragavan and Rendell,
1993; Dong and Kothari, 2001) to lookahead does not help and can hurt (Murthy and Salzberg,
1995). One problem with these works is their use of a uniform, fixed low-depth lookahead, therefore
disqualifying the proposed algorithms from serving as anytime algorithms. Another problem is
the data sets on which the lookahead methods were evaluated. For simple learning tasks, such as
induction of conjunctive concepts, greedy methods perform quite well and no lookahead is needed.
However, for more difficult concepts such as XOR, the greedy approach is likely to fail. Few other

1. A consistent decision tree is a tree that correctly classifies all training examples.

893

ESMEIR AND MARKOVITCH

Procedure TDIDT(E,A)
If E = /0 Return Leaf(nil)
If ∃c such that ∀e ∈ E Class(e) = c

Return Leaf(c)
a← CHOOSE-ATTRIBUTE(A,E)
V ← domain(a)
Foreach vi ∈V

Ei←{e ∈ E | a(e) = vi}
Si← TDIDT(Ei,A−{a})

Return Node(a,{〈vi,Si〉 | i = 1 . . . |V |})

Figure 2: Procedure for top-down induction of decision trees. E stands for the set of examples and
A stands for the set of attributes.

non-greedy decision tree learners have been recently introduced (Bennett, 1994; Utgoff et al., 1997;
Papagelis and Kalles, 2001; Page and Ray, 2003). These works, however, are not capable to handle
high-dimensional difficult concepts and are not designed to offer anytime behavior.2 The main
challenge we face in this work is to make use of extra resources to induce better trees for hard
concepts. Note that in contrast to incremental induction (Utgoff, 1989), we restrict ourselves in this
paper to batch setup where all the training instances are available beforehand.

2. Contract Anytime Induction of Decision Trees

TDIDT (top-down induction of decision trees) methods start from the entire set of training examples,
partition it into subsets by testing the value of an attribute, and then recursively call the induction
algorithm for each subset. Figure 2 formalizes the basic algorithm for TDIDT. We focus first on
consistent trees for which the stopping criterion for the top-down recursion is when all the examples
have the same class label. Later, we consider pruning, which allows simpler trees at the cost of
possible inconsistency with the training data (Breiman et al., 1984; Quinlan, 1993).

In this work we propose investing more time resources for making better split decisions. We
first discuss tree size as a desired property of the tree to be learned and then we describe an anytime
algorithm that uses sampling methods to obtain smaller trees.

2.1 Inductive Bias in Decision Tree Induction

The hypothesis space of TDIDT is huge and a major question is what strategy should be followed
to direct the search. In other words, we need to decide what our preference bias (Mitchell, 1997,
chap. 3) will be. This preference bias will be expressed in the CHOOSE-ATTRIBUTE procedure that
determines which tree is explored next.

Ultimately, we would like to follow a policy that maximizes the accuracy of the tree on unseen
examples. However, since these examples are not available, a heuristic should be used. Motivated
by Occam’s Razor, a widely adopted approach is to prefer smaller trees. The utility of this principle

2. In Section 5 we discuss related works in details.

894

ANYTIME LEARNING OF DECISION TREES

to machine learning algorithms has been the subject of a heated debate. Several studies attempted
to justify Occam’s razor with theoretical and empirical arguments (Blumer et al., 1987; Quinlan and
Rivest, 1989; Fayyad and Irani, 1990). But a number of recent works have questioned the utility of
Occam’s razor, and provided theoretical and experimental evidence against it.

Quinlan and Cameron-Jones (1995) provided empirical evidence that oversearching might result
in less accurate rules. Experimental results with several UCI data sets indicate that the complexity
of the produced theories does not correlate well with their accuracy, a finding that is inconsistent
with Occam’s Razor. Schaffer (1994) proved that no learning bias can outperform another bias over
the space of all possible learning tasks. This looks like theoretical evidence against Occam’s razor.
Rao et al. (1995), however, argued against the applicability of this result to real-world problems by
questioning the validity of its basic assumption about the uniform distribution of possible learning
tasks. Webb (1996) presented C4.5X, an extension to C4.5 that uses similarity considerations to
further specialize consistent leaves. Webb reported an empirical evaluation which shows that C4.5X
has a slight advantage in a few domains and argued that these results discredit Occam’s thesis.

Murphy and Pazzani (1994) reported a set of experiments in which all the possible consistent
decision trees were produced and showed that, for several tasks, the smallest consistent decision
tree had higher predictive error than slightly larger trees. However, when the authors compared the
likelihood of better generalization for smaller vs. more complex trees, they concluded that simpler
hypotheses should be preferred when no further knowledge of the target concept is available. The
small number of training examples relative to the size of the tree that perfectly describes the concept
might explain why, in these cases, the smallest tree did not generalize best. Another reason could
be that only small spaces of decision trees were explored. To verify these explanations, we use a
similar experimental setup where the data sets have larger training sets and attribute vectors of higher
dimensionality. Because the number of all possible consistent trees is huge, we use a Random Tree
Generator (RTG) to sample the space of trees obtainable by TDIDT algorithms. RTG builds a tree
top-down and chooses the splitting attribute at random.

We report the results for three data sets: XOR-5, Tic-tac-toe, and Zoo (See Appendix A for
detailed descriptions of these data sets). For each data set, the examples were partitioned into a
training set (90%) and a testing set (10%), and RTG was used to generate a sample of 10 million
consistent decision trees. The behavior in the three data sets is similar: the accuracy monotonically
decreases with the increase in the size of the trees (number of leaves), confirming the utility of
Occam’s Razor. Further experiments with a variety of data sets indicate that the inverse correlation
between size and accuracy is statistically significant (Esmeir and Markovitch, 2007).

It is important to note that smaller trees have several advantages aside from their probable greater
accuracy, such as greater statistical evidence at the leaves, better comprehensibility, lower storage
costs, and faster classification (in terms of total attribute evaluations).

Motivated by the above discussion, our goal is to find the smallest consistent tree. In TDIDT,
the learner has to choose a split at each node, given a set of examples E that reach the node and a
set of unused attributes A. For each attribute a, let Tmin(a,A,E) be the smallest tree rooted at a that
is consistent with E and uses attributes from A−{a} for the internal splits. Given two candidate
attributes a1 and a2, we obviously prefer the attribute whose associated Tmin(a) is the smaller. For
a set of attributes A, we define Ã to be the set of attributes whose associated Tmin(a) is the smaller.
Formally, Ã = argmina∈A Tmin (a). We say that a splitting attribute a is optimal if a ∈ Ã. Observe
that if the learner makes an optimal decision at each node, then the final tree is necessarily globally
optimal.

895

ESMEIR AND MARKOVITCH

Procedure ENTROPY-K(E,A,a,k)
If k = 0

Return I(PE(c1), . . . ,PE(cn))
V ← domain(a)
Foreach vi ∈V

Ei←{e ∈ E | a(e) = vi}
Foreach a′ ∈ A

A′← A−{a′}
hi(a′)← ENTROPY-K(Ei,A′,a′,k−1))

Return ∑|V |i=1
|Ei|
|E| mina′∈A (hi(a′))

Procedure GAIN-K(E,A,a,k)
Return I(PE(c1), . . . ,PE(cn))−

ENTROPY-K(E,A,a,k)

Figure 3: Procedures for computing entropyk and gaink for attribute a

2.2 Fixed-depth Lookahead

One possible approach for improving greedy TDIDT algorithms is to lookahead in order to examine
the effect of a split deeper in the tree. ID3 uses entropy to test the effect of using an attribute one
level below the current node. This can be extended to allow measuring the entropy at any depth k
below the current node. This approach was the basis for the IDX algorithm (Norton, 1989). The
recursive definition minimizes the k−1 entropy for each child and computes their weighted average.
Figure 3 describes an algorithm for computing entropyk and its associated gaink. Note that the gain
computed by ID3 is equivalent to gaink for k = 1. We refer to this lookahead-based variation of ID3
as ID3-k. At each tree node, ID3-k chooses the attribute that maximizes gaink.3

ID3-k can be viewed as a contract anytime algorithm parameterized by k. However, despite its
ability to exploit additional resources when available, the anytime behavior of ID3-k is problematic.
The run time of ID3-k grows exponentially as k increases.4 As a result, the gap between the points
of time at which the resulting tree can improve grows wider, limiting the algorithm’s flexibility.
Furthermore, it is quite possible that looking ahead to depth k will not be sufficient to find an op-
timal split. Entropyk measures the weighted average of the entropy in depth k but does not give a
direct estimation of the resulting tree size. Thus, when k < |A|, this heuristic is more informed than
entropy1 but can still produce misleading results. In most cases we do not know in advance what
value of k would be sufficient for correctly learning the target concept. Invoking exhaustive looka-
head, that is, lookahead to depth k = |A|, will obviously lead to optimal splits, but its computational
costs are prohibitively high. In the following subsection, we propose an alternative approach for
evaluating attributes that overcomes the above-mentioned drawbacks of ID3-k.

3. If two attributes yield the same decrease in entropy, we prefer the one whose associated lookahead tree is shallower.
4. For example, in the binary case, ID3-k explores ∏k−1

i=0 (n− i)2i
combinations of attributes.

896

ANYTIME LEARNING OF DECISION TREES

Procedure SID3-CHOOSE-ATTRIBUTE(E,A)
Foreach a ∈ A

p(a)← gain1(E,a)
If ∃a such that entropy1(E,a) = 0

a∗← Choose attribute at random from
{a ∈ A | entropy1(E,a) = 0}

Else
a∗← Choose attribute at random from A;

for each attribute a, the probability
of selecting it is proportional to p(a)

Return a∗

Figure 4: Attribute selection in SID3

2.3 Estimating Tree Size by Sampling

Motivated by the advantages of smaller decision trees, we introduce a novel algorithm that, given an
attribute a, evaluates it by estimating the size of the minimal tree under it. The estimation is based
on Monte-Carlo sampling of the space of consistent trees rooted at a. We estimate the minimum
by the size of the smallest tree in the sample. The number of trees in the sample depends on the
available resources, where the quality of the estimation is expected to improve with the increased
sample size.

One way to sample the space of trees is to repeatedly produce random consistent trees using
the RTG procedure. Since the space of consistent decision trees is large, such a sample might be
a poor representative and the resulting estimation inaccurate. We propose an alternative sampling
approach that produces trees of smaller expected size. Such a sample is likely to lead to a better
estimation of the minimum.

Our approach is based on a new tree generation algorithm that we designed, called Stochastic
ID3 (SID3). Using this algorithm repeatedly allows the space of “good” trees to be sampled semi-
randomly. In SID3, rather than choose an attribute that maximizes the information gain, we choose
the splitting attribute randomly. The likelihood that an attribute will be chosen is proportional to
its information gain.5 However, if there are attributes that decrease the entropy to zero, then one of
them is picked randomly. The attribute selection procedure of SID3 is listed in Figure 4.

To show that SID3 is a better sampler than RTG, we repeated our sampling experiment (Section
2.1) using SID3 as the sample generator. Figure 5 compares the frequency curves of RTG and SID3.
Relative to RTG, the graph for SID3 is shifted to the left, indicating that the SID3 trees are clearly
smaller. Next, we compared the average minimum found for samples of different sizes. Figure 6
shows the results. For the three data sets, the minimal size found by SID3 is strictly smaller than the
value found by RTG. Given the same budget of time, RTG produced, on average, samples that are
twice as large as that of SID3. However, even when the results are normalized (dashed line), SID3
is still superior.

Having decided about the sampler, we are ready to describe our proposed contract algorithm,
Lookahead-by-Stochastic-ID3 (LSID3). In LSID3, each candidate split is evaluated by the estimated

5. We make sure that attributes with gain of zero will have a positive probability of being selected.

897

ESMEIR AND MARKOVITCH

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 40 60 80 100 120 140 160 180

F
re

qu
en

cy

Size

RTG
SID3

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 150 200 250 300 350 400 450 500 550 600

F
re

qu
en

cy

Size

RTG
SID3

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 15 20 25 30 35 40 45 50 55

F
re

qu
en

cy

Size

RTG
SID3

Figure 5: Frequency curves for the XOR-5 (left), Tic-tac-toe, and Zoo (right) data sets

 80

 90

 100

 110

 120

 130

 140

 0 5 10 15 20 25 30

M
in

im
um

Size

SID3
N-SID3

RTG

 250

 300

 350

 400

 450

 500

 0 5 10 15 20 25 30

M
in

im
um

Size

SID3
N-SID3

RTG

 10

 12

 14

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30

M
in

im
um

Size

SID3
N-SID3

RTG

Figure 6: The minimum as estimated by SID3 and RTG as a function of the sample size. The data
sets are XOR5 (left), Tic-tac-toe and Zoo (right). The dashed line describes the results for
SID3 normalized by time.

size of the subtree under it. To estimate the size under an attribute a, LSID3 partitions the set of
examples according to the values a can take and repeatedly invokes SID3 to sample the space of trees
consistent with each subset. Summing up the minimal tree size for each subset gives an estimation
of the minimal total tree size under a.

LSID3 is a contract algorithm parameterized by r, the sample size. LSID3 with r = 0 is defined
to choose the splitting attribute using the standard ID3 selection method. Figure 7 illustrates the
choice of splitting attributes as made by LSID3. In the given example, SID3 is called twice for each
subset and the evaluation of the examined attribute a is the sum of the two minima: min(4,3) +
min(2,6) = 5. The method for choosing a splitting attribute is formalized in Figure 8.

To analyze the time complexity of LSID3, let m be the total number of examples and n be the
total number of attributes. For a given node y, we denote by ny the number of candidate attributes
at y, and by my the number of examples that reach y. ID3, at each node y, calculates gain for ny

attributes using my examples, that is, the complexity of choosing an attribute is O(ny ·my). At level i
of the tree, the total number of examples is bounded by m and the number of attributes to consider is
n− i. Thus, it takes O(m · (n− i)) to find the splits for all nodes in level i. In the worst case the tree
will be of depth n and hence the total runtime complexity of ID3 will be O(m · n2) (Utgoff, 1989).
Shavlik et al. (1991) reported for ID3 an empirically based average-case complexity of O(m ·n).

It is easy to see that the complexity of SID3 is similar to that of ID3. LSID3(r) invokes SID3 r
times for each candidate split. Recalling the above analysis for the time complexity of ID3, we can

898

ANYTIME LEARNING OF DECISION TREES

�

� �������	�
��

� �������	�

�

� � � �
� ����

� �������	�
��

Figure 7: Attribute evaluation using LSID3. The estimated subtree size for a is min(4,3) +
min(2,6) = 5.

Procedure LSID3-CHOOSE-ATTRIBUTE(E,A,r)
If r = 0

Return ID3-CHOOSE-ATTRIBUTE(E, A)
Foreach a ∈ A

Foreach vi ∈ domain(a)
Ei←{e ∈ E | a(e) = vi}
mini← ∞
Repeat r times

mini←min(mini, |SID3(Ei,A−{a})|)
totala← ∑|domain(a)|

i=1 mini

Return a for which totala is minimal

Figure 8: Attribute selection in LSID3

write the complexity of LSID3(r) as

n−1

∑
i=0

r · (n− i) ·O(m · (n− i)2) =
n

∑
i=1

O(r ·m · i3) = O(r ·m ·n4).

In the average case, we replace the runtime of SID3 by O(m · (n− i)), and hence we have

n−1

∑
i=0

r · (n− i) ·O(m · (n− i)) =
n

∑
i=1

O(r ·m · i2) = O(r ·m ·n3). (1)

According to the above analysis, the run-time of LSID3 grows at most linearly with r (under
the assumption that increasing r does not result in larger trees). We expect that increasing r will
improve the classifier’s quality. To understand why, let us examine the expected behavior of the
LSID3 algorithm on the 2-XOR problem used in Figure 1(b). LSID3 with r = 0, which is equivalent
to ID3, prefers to split on the irrelevant attribute a4. LSID3 with r ≥ 1 evaluates each attribute a by

899

ESMEIR AND MARKOVITCH

calling SID3 to estimate the size of the trees rooted at a. The attribute with the smallest estimation
will be selected. The minimal size for trees rooted at a4 is 6 and for trees rooted at a3 is 7. For
a1 and a2, SID3 would necessarily produce trees of size 4.6 Thus, LSID3, even with r = 1, will
succeed in learning the right tree. For more complicated problems such as 3-XOR, the space of
SID3 trees under the relevant attributes includes trees other than the smallest. In that case, the larger
the sample is, the higher the likelihood is that the smallest tree will be drawn.

2.4 Evaluating Continuous Attributes by Sampling the Candidate Cuts

When attributes have a continuous domain, the decision tree learner needs to discretize their values
in order to define splitting tests. One common approach is to partition the range of values an attribute
can take into bins, prior to the process of induction. Dougherty et al. (1995) review and compare
several different strategies for pre-discretization. Using such a strategy, our lookahead algorithm
can operate unchanged. Pre-discretization, however, may be harmful in many domains because the
correct partitioning may differ from one context (node) to another.

An alternative approach is to determine dynamically at each node a threshold that splits the
examples into two subsets. The number of different possible thresholds is at most |E| − 1, and
thus the number of candidate tests to consider for each continuous attribute increases to O(|E|).
Such an increase in complexity may be insignificant for greedy algorithms, where evaluating each
split requires a cheap computation (like information gain in ID3). In LSID3, however, the dynamic
method may present a significant problem because evaluating the usefulness of each candidate split
is very costly.

The desired method would reduce the number of splits to evaluate while avoiding the disadvan-
tages of pre-discretization. We devised a method for controlling the resources devoted to evaluating
a continuous attribute by Monte Carlo sampling of the space of splits. Initially, we evaluate each
possible splitting test by the information gain it yields. This can be done in linear time O(|E|).
Next, we choose a sample of the candidate splitting tests where the probability that a test will be
chosen is proportional to its information gain. Each candidate in the sample is evaluated by a single
invocation of SID3. However, since we sample with repetitions, candidates with high information
gain may have multiple instances in the sample, resulting in several SID3 invocations.

The resources allocated for evaluating a continuous attribute using the above method are deter-
mined by the sample size. If our goal is to devote a similar amount of resources to all attributes,
then we can use r as the size of the sample. Such an approach, however, does not take into account
the size of the population to be sampled. We use a simple alternative approach of taking samples
with size p · |E| where p is a predetermined parameter, set by the user according to the available
resources.7 Note that p can be greater than one because we sample with repetition.

We name this variant of the LSID3 algorithm LSID3-MC, and formalize it in Figure 9. LSID3-
MC can serve as an anytime algorithm that is parameterized by p and r.

2.5 Multiway vs. Binary Splits

The TDIDT procedure, as described in Figure 2, partitions the current set of examples into subsets
according to the different values the splitting attribute can take. LSID3, which is a TDIDT algo-
rithm, inherits this property. While multiway splits can yield more comprehensible trees (Kim and

6. Neither a3 nor a4 can be selected at the 2nd level since the remaining relevant attribute reduces the entropy to zero.
7. Similarly to the parameter r, a mapping from the available time to p is needed (see Section 2.7).

900

ANYTIME LEARNING OF DECISION TREES

Procedure MC-EVALUATE-CONTINUOUS-ATTRIBUTE(E,A,a, p)
Foreach e ∈ E

E≤←{e′ | a(e′)≤ a(e)}
E>←{e′ | a(e′) > a(e)}
entropye← |E≤|

|E| entropy(E≤)+ |E>|
|E| entropy(E>)

gaine← entropy(E)− entropye

sampleSize← p · |E|
min← ∞
Repeat sampleSize times

e← Choose an example at random from E; for each example e,
the probability of selecting it is proportional to gaine

E≤←{e′ | a(e′)≤ a(e)}
E>←{e′ | a(e′) > a(e)}
totale← |SID3(E≤,A)|+ |SID3(E>,A)|
If totale < min

min← totale
bestTest← a(e)

Return 〈min,bestTest〉

Figure 9: Monte Carlo evaluation of continuous attributes using SID3

Loh, 2001), they might fragment the data too quickly, decreasing its learnability (Hastie et al., 2001,
chap. 9).

To avoid the fragmentation problem, several learners take a different approach and consider
only binary splits (e.g., CART and QUEST, Loh and Shih, 1997). One way to obtain binary splits
when an attribute a is categorical is to partition the examples using a single value v: all the examples
with a = v are bagged into one group and all the other examples are bagged into a second group.
Therefore, for each attribute a there are |domain(a)| candidate splits. While efficient, this strategy
does not allow different values to be combined, and therefore might over-fragment the data. CART
overcomes this by searching over all non-empty subsets of domain(a). We denote by BLSID3 a
variant of LSID3 that yields binary trees and adopts the CART style exhaustive search. Observe
that the complexity of evaluating an attribute in BLSID3 is O(2|domain(a)|) times that in LSID3.

A second problem with LSID3’s multiway splits is their bias in attribute selection. Consider
for example a learning task with four attributes: three binary attributes a1,a2,a3, and a categorical
attribute a4 whose domain is {A,C,G,T}. Assume that the concept is a1⊕a2 and that a4 was created
from the values of a2 by randomly and uniformly mapping every 0 into A or C and every 1 into G
or T . Theoretically, a2 and a4 are equally important to the class. LSID3, however, would prefer to
split a2 due to its smaller associated total tree size.8 BLSID3 solves this problem by considering the
binary test ∈ {A,C}.

Loh and Shih (1997) pointed out that exhaustive search tends to prefer features with larger
domains and proposed QUEST, which overcomes this problem by dealing with attribute selection
and with test selection separately: first an attribute is chosen and only then is the best test picked.

8. Note that this bias is opposite to that of favoring attributes with a large domain (Quinlan, 1993, chap. 2).

901

ESMEIR AND MARKOVITCH

���������
	���
���������� 	���� ��������	����������

!
"$#�% & % '$(
'

)+*�,

- �)+*.,

/0
10
/

2 3�4
5
6�7 8 9 :

9 ;

- �)+*.,�< �

Figure 10: The space of decision trees over a set of attributes A and a set of examples E

This bias, and its reduction by QUEST, were studied in the context of greedy attribute evaluation,
but can potentially be applied to our non-greedy approach.

2.6 Pruning the LSID3 Trees

Pruning tackles the problem of how to avoid overfitting the data, mainly in the presence of classifi-
cation noise. It is not designed, however, to recover from wrong greedy decisions. When there are
sufficient examples, wrong splits do not significantly diminish accuracy, but result in less compre-
hensible trees and costlier classification. When there are fewer examples the problem is intensified
because the accuracy is adversely affected. In our proposed anytime approach, this problem is tack-
led by allotting additional time for reaching trees unexplored by greedy algorithms with pruning.
Therefore, we view pruning as orthogonal to lookahead and suggest considering it as an additional
phase in order to avoid overfitting.

Pruning can be applied in two different ways. First, it can be applied as a second phase after
each LSID3 final tree has been built. We denote this extension by LSID3-p (and BLSID3-p for
binary splits). Second, it is worthwhile to examine pruning of the lookahead trees. For this purpose,
a post-pruning phase will be applied to the trees that were generated by SID3 to form the lookahead
sample, and the size of the pruned trees will be considered. The expected contribution of pruning in
this case is questionable since it has a similar effect on the entire lookahead sample.

Previous comparative studies did not find a single pruning method that is generally the best
and conclude that different pruning techniques behave similarly (Esposito et al., 1997; Oates and
Jensen, 1997). Therefore, in our experiments we adopt the same pruning method as in C4.5, namely
error-based pruning (EPB), and examine post-pruning of the final trees as well as pruning of the
lookahead trees.

Figure 10 describes the spaces of decision trees obtainable by LSID3. Let A be a set of attributes
and E be a set of examples. The space of decision trees over A can be partitioned into two: the space
of trees consistent with E and the space of trees inconsistent with E. The space of consistent trees
includes as a subspace the trees inducible by TDIDT.9 The trees that ID3 can produce are a subspace
of the TDIDT space. Pruning extends the space of ID3 trees to the inconsistent space. LSID3

9. TDIDT is a strict subspace because it cannot induce trees that: (1) contain a subtree with all leaves marked with the
same class, and (2) include an internal node that has no associated training examples.

902

ANYTIME LEARNING OF DECISION TREES

can reach trees that are obtainable by TDIDT but not by the greedy methods and their extensions.
LSID3-p expands the search space to trees that do not fit the training data perfectly, so that noisy
training sets can be handled.

2.7 Mapping Contract Time to Sample Size

LSID3 is parameterized by r, the number of times SID3 is invoked for each candidate. In real-life
applications, however, the user supplies the system with the time she is willing to allocate for the
learning process. Hence, a mapping from the contract time to r is needed.

One way to obtain such a mapping is to run the algorithm with r = 1. Since the runtime grows
linearly with r, one can now, given the remaining time and the runtime for r = 1, easily find the
corresponding value of r. Then, the whole induction process is restarted with the measured r as
the contract parameter. The problem with this method is that, in many cases, running the algorithm
with r = 1 consumes many of the available resources while not contributing to the final classifier.

Another possibility is mapping time to r on the basis of previous experience on the same domain
or a domain with similar properties. When no such knowledge exists, one can derive the runtime
from the time complexity analysis. However, in practice, the runtime is highly dependent on the
complexity of the domain and the number of splits that in fact take place. Hence it is very difficult
to predict.

3. Interruptible Anytime Learning of Decision Trees

As a contract algorithm, LSID3 assumes that the contract parameter is known in advance. In many
real-life cases, however, either the contract time is unknown or mapping the available resources
to the appropriate contract parameter is not possible. To handle such cases, we need to devise an
interruptible anytime algorithm.

We start with a method that converts LSID3 to an interruptible algorithm using the general
sequencing technique described by Russell and Zilberstein (1996). This conversion, however, uses
the contract algorithm as a black box and hence cannot take into account specific aspects of decision
tree induction. Next, we present a novel iterative improvement algorithm, Interruptible Induction
of Decision Trees (IIDT), that repeatedly replaces subtrees of the current hypothesis with subtrees
generated with higher resource allocation and thus expected to be better.

3.1 Interruptible Induction by Sequencing Contract Algorithms

By definition, every interruptible algorithm can serve as a contract algorithm because one can stop
the interruptible algorithm when all the resources have been consumed. Russell and Zilberstein
(1996) showed that the other direction works as well: any contract algorithm A can be converted
into an interruptible algorithm B with a constant penalty. B is constructed by running A repeatedly
with exponentially increasing time limits. This general approach can be used to convert LSID3 into
an interruptible algorithm. LSID3 gets its contract time in terms of r, the sample size. When r = 0,
LSID3 is defined to be identical to ID3. Therefore, we first call LSID3 with r = 0 and then continue
with exponentially increasing values of r, starting from r = 1. Figure 11 formalizes the resulting
algorithm. It can be shown that the above sequence of runtimes is optimal when the different runs
are scheduled on a single processor (Russell and Zilberstein, 1996).

903

ESMEIR AND MARKOVITCH

Procedure SEQUENCED-LSID3(E,A)
T ← ID3(E,A)
r← 1
While not-interrupted

T ← LSID3(E,A,r)
r← 2 · r

Return T

Figure 11: Conversion of LSID3 to an interruptible algorithm by sequenced invocations

One problem with the sequencing approach is the exponential growth of the gaps between the
times at which an improved result can be obtained. The reason for this problem is the generality of
the sequencing approach, which views the contract algorithm as a black box. Thus, in the case of
LSID3, at each iteration the whole decision tree is rebuilt. In addition, the minimal value that can
be used for τ is the runtime of LSID3(r = 1). In many cases we would like to stop the algorithm
earlier. When we do, the sequencing approach will return the initial greedy tree. Our interruptible
anytime framework, called IIDT, overcomes these problems by iteratively improving the tree rather
than trying to rebuild it.

3.2 Interruptible Induction by Iterative Improvement

Iterative improvement approaches that start with an initial solution and repeatedly modify it have
been successfully applied to many AI domains, such as CSP, timetabling, and combinatorial prob-
lems (Minton et al., 1992; Johnson et al., 1991; Schaerf, 1996). The key idea behind iterative
improvement techniques is to choose an element of the current suboptimal solution and improve
it by local repairs. IIDT adopts the above approach for decision tree learning and iteratively re-
vises subtrees. It can serve as an interruptible anytime algorithm because, when interrupted, it can
immediately return the currently best solution available.

As in LSID3, IIDT exploits additional resources in an attempt to produce better decision trees.
The principal difference between the algorithms is that LSID3 uses the available resources to in-
duce a decision tree top-down, where each decision made at a node is final and does not change.
IIDT, however, is not allocated resources in advance and uses extra time resources to modify split
decisions repeatedly.

IIDT receives a set of examples and a set of attributes. It first performs a quick construction of
an initial decision tree by calling ID3. Then it iteratively attempts to improve the current tree by
choosing a node and rebuilding its subtree with more resources than those used previously. If the
newly induced subtree is better, it will replace the existing one. IIDT is formalized in Figure 12.

Figure 13 illustrates how IIDT works. The target concept is a1⊕ a2, with two additional irrel-
evant attributes, a3 and a4. The leftmost tree was constructed using ID3. In the first iteration, the
subtree rooted at the bolded node is selected for improvement and replaced by a smaller tree (sur-
rounded by a dashed line). Next, the root is selected for improvement and the whole tree is replaced
by a tree that perfectly describes the concept. While in this particular example IIDT first chooses to
rebuild a subtree at depth 2 and then at depth 1, it considers all subtrees, regardless of their level.

904

ANYTIME LEARNING OF DECISION TREES

Procedure IIDT(E,A)
T ← ID3(E,A)
While not-interrupted

node← CHOOSE-NODE(T,E,A)
t← subtree of T rooted at node
Anode←{a ∈ A | a /∈ ancestor of node}
Enode←{e ∈ E | e reaches node}
r← NEXT-R(node)
t ′← REBUILD-TREE(Enode,Anode,r)
If EVALUATE(t) > EVALUATE(t ′)

replace t with t ′

Return T

Figure 12: Interruptible induction of decision trees

���

���

���

��� ���

���

��� ���

���

���

��� ���

���

��� ���

� � � � � � � � � � �� �� ��

a 4

a 3

a 2

a 1 a 1

a 2

a 1 a 1

a 1

a 2 a 2

- + + - - + + -

-++-

a 2

a 1 a 1

- + + -

Figure 13: Iterative improvement of the decision tree produced for the 2-XOR concept a1 ⊕ a2

with two additional irrelevant attributes, a3 and a4. The leftmost tree was constructed
using ID3. In the first iteration the subtree rooted at the bolded node is selected for
improvement and replaced by a smaller tree (surrounded by a dashed line). Next, the
root is selected for improvement and the whole tree is replaced by a tree that perfectly
describes the concept.

IIDT is designed as a general framework for interruptible learning of decision trees. It can use
different approaches for choosing which node to improve, for allocating resources for an improve-
ment iteration, for rebuilding a subtree, and for deciding whether an alternative subtree is better.

After the subtree to be rebuilt is chosen and the resources for a reconstruction iteration allo-
cated, the problem becomes a task for a contract algorithm. A good candidate for such an algorithm
is LSID3, which is expected to produce better subtrees when invoked with a higher resource al-
location. In what follows we focus on the different components of IIDT and suggest a possible
implementation that uses LSID3 for revising subtrees.

905

ESMEIR AND MARKOVITCH

3.2.1 CHOOSING A SUBTREE TO IMPROVE

Intuitively, the next node we would like to improve is the one with the highest expected marginal
utility, that is, the one with the highest ratio between the expected benefit and the expected cost
(Hovitz, 1990; Russell and Wefald, 1989). Estimating the expected gain and expected cost of re-
building a subtree is a difficult problem. There is no apparent way to estimate the expected im-
provement in terms of either tree size or generalization accuracy. In addition, the resources to be
consumed by LSID3 are difficult to predict precisely. We now show how to approximate these
values, and how to incorporate these approximations into the node selection procedure.

Resource Allocation. The LSID3 algorithm receives its resource allocation in terms of r, the
number of samplings devoted to each attribute. Given a tree node y, we can view the task of re-
building the subtree below y as an independent task. Every time y is selected, we have to allocate
resources for the reconstruction process. Following Russell and Zilberstein (1996), the optimal
strategy in this case is to double the amount of resources at each iteration. Thus, if the resources
allocated for the last attempted improvement of y were LAST-R(y), the next allocation will be
NEXT-R(y) = 2 ·LAST-R(y).

Expected Cost. The expected cost can be approximated using the average time complexity of the
contract algorithm used to rebuild subtrees. Following Equation 1, we estimate NEXT-R(y) ·m ·n3 to
be the expected runtime of LSID3 when rebuilding a node y, where m is the number of examples that
reach y and n is the number of attributes to consider. We observe that subtrees rooted in deeper levels
are preferred because they have fewer examples and attributes to consider. Thus, their expected
runtime is shorter. Furthermore, because each time allocation for a node doubles the previous one,
nodes that have already been selected many times for improvement will have higher associated costs
and are less likely to be chosen again.

Expected benefit. The whole framework of decision tree induction rests on the assumption that
smaller consistent trees are better than larger ones. Therefore, the size of a subtree can serve as
a measure for its quality. It is difficult, however, to estimate the size of the reconstructed subtree
without actually building it. Therefore, we use instead an upper limit on the possible reduction in
size. The minimal size possible for a decision tree is obtained when all examples are labelled with
the same class. Such cases are easily recognized by the greedy ID3. Similarly, if a subtree were
replaceable by another subtree of depth 1, ID3 (and LSID3) would have chosen the smaller subtree.
Thus, the maximal reduction of the size of an existing subtree is to the size of a tree of depth 2.
Assuming that the maximal number of values per attribute is b, the maximal size of such a tree is
b2. Hence, an upper bound on the benefit from reconstructing an existing tree t is SIZE(t)− b2.
Ignoring the expected costs and considering only the expected benefits results in giving the highest
score to the root node. This makes sense: assuming that we have infinite resources, we would
attempt to improve the entire tree rather than parts of it.

Granularity. Considering the cost and benefit approximations described above, the selection pro-
cedure would prefer deep nodes (that are expected to have low costs) with large subtrees (that are
expected to yield large benefits). When no such large subtrees exist, our algorithm may repeatedly
attempt to improve smaller trees rooted at deep nodes because these trees have low associated costs.
In the short term, this behavior would indeed be beneficial but can be harmful in the long term. This
is because when the algorithm later improves subtrees in upper levels, the resources spent on deeper

906

ANYTIME LEARNING OF DECISION TREES

Procedure CHOOSE-NODE(T,E,A,g)
max-cost ← NEXT-R(root) · |E| · |A|3
Foreach node ∈ T

Anode←{a ∈ A | a /∈ ancestor of node}
Enode←{e ∈ E | e reaches node}
rnode← NEXT-R(node)
costnode← rnode · |Enode| · |Anode|3
If (costnode/max-cost) > g

l-bound ← (mina∈Anode |DOMAIN(a)|)2

∆q← LEAVES(node)− l-bound
unode← ∆q/costnode

best← node that maximizes unode

Return 〈best,rbest〉

Procedure NEXT-R(node)
If LAST-R(node) = 0

Return 1
Else

Return 2 ·LAST-R(node)

Figure 14: Choosing a node for reconstruction

nodes will have been wasted. Had the algorithm first selected the upper level trees, this waste would
have been avoided, but the time gaps between potential improvements would have increased.

To control the tradeoff between efficient resource use and anytime performance flexibility, we
add a granularity parameter 0 ≤ g ≤ 1. This parameter serves as a threshold for the minimal time
allocation for an improvement phase. A node can be selected for improvement only if its normalized
expected cost is above g. To compute the normalized expected cost, we divide the expected cost by
the expected cost of the root node. Note that it is possible to have nodes with a cost that is higher
than the cost of the root node, since the expected cost doubles the cost of the last improvement
of the node. Therefore, the normalized expected cost can be higher than 1. Such nodes, however,
will never be selected for improvement, because their expected benefit is necessarily lower than the
expected benefit of the root node. Hence, when g = 1, IIDT is forced to choose the root node and
its behavior becomes identical to that of the sequencing algorithm described in Section 3.1.

Figure 14 formalizes the procedure for choosing a node for reconstruction. Observe that IIDT
does not determine g but expects the user to provide this value according to her needs: more frequent
small improvements or faster overall progress.

3.2.2 EVALUATING A SUBTREE

Although LSID3 is expected to produce better trees when allocated more resources, an improved
result is not guaranteed. Thus, to avoid obtaining an induced tree of lower quality, we replace an
existing subtree with a newly induced alternative only if the alternative is expected to improve the
quality of the complete decision tree. Following Occam’s Razor, we measure the usefulness of a

907

ESMEIR AND MARKOVITCH

subtree by its size. Only if the reconstructed subtree is smaller does it replace an existing subtree.
This guarantees that the size of the complete decision tree will decrease monotonically.

Another possible measure is the accuracy of the decision tree on a set-aside validation set of
examples. In this case the training set is split into two subsets: a growing set and a validation
set. Only if the accuracy on the validation set increases is the modification applied. This measure
suffers from two drawbacks. The first is that putting aside a set of examples for validation results
in a smaller set of training examples, making the learning process harder. The second is the bias
towards overfitting the validation set, which might reduce the generalization abilities of the tree.
Several of our experiments, which we do not report here, confirmed that relying on the tree size
results in better decision trees.

4. Empirical Evaluation

A variety of experiments were conducted to test the performance and behavior of the proposed
anytime algorithms. First we describe our experimental methodology and explain its motivation.
We then present and discuss our results.

4.1 Experimental Methodology

We start our experimental evaluation by comparing our contract algorithm, given a fixed resource
allocation, with the basic decision tree induction algorithms. We then compare the anytime behavior
of our contract algorithm to that of fixed lookahead. Next we examine the anytime behavior of
our interruptible algorithm. Finally, we compare its performance to several modern decision tree
induction methods.

Following the recommendations of Bouckaert (2003), 10 runs of a 10-fold cross-validation ex-
periment were conducted for each data set and the reported results averaged over the 100 individual
runs.10 For the Monks data sets, which were originally partitioned into a training set and a test-
ing set, we report the results on the original partitions. Due to the stochastic nature of LSID3, the
reported results in these cases are averaged over 10 different runs.

In order to evaluate the studied algorithms, we used 17 data sets taken from the UCI repository
(Blake and Merz, 1998).11 Because greedy learners perform quite well on easy tasks, we looked for
problems that hide hard concepts so the advantage of our proposed methods will be emphasized.
The UCI repository, nevertheless, contains only few such tasks. Therefore, we added 7 artificial
ones.12 Several commonly used UCI data sets were included (among the 17) to allow compari-
son with results reported in literature. Table 1 summarizes the characteristics of these data sets
while Appendix A gives more detailed descriptions. To compare the performance of the different
algorithms, we will consider two evaluation criteria over decision trees: (1) generalization accu-
racy, measured by the ratio of the correctly classified examples in the testing set, and (2) tree size,
measured by the number of non-empty leaves in the tree.

10. An exception was the Connect-4 data set, for which only one run of 10-fold CV was conducted because of its
enormous size.

11. Due to the time-intensiveness of the experiments, we limited ourselves to 17 UCI problems.
12. The artificial data sets are available at http://www.cs.technion.ac.il/∼esaher/publications/datasets.

908

ANYTIME LEARNING OF DECISION TREES

ATTRIBUTES MAX ATTRIBUTE

DATA SET INSTANCES NOMINAL (BINARY) NUMERIC DOMAIN CLASSES

AUTOMOBILE - MAKE 160 10 (4) 15 8 22
AUTOMOBILE - SYMBOLING 160 10 (4) 15 22 7
BALANCE SCALE 625 4 (0) 0 5 3
BREAST CANCER 277 9 (3) 0 13 2
CONNECT-4 68557 42 (0) 0 3 3
CORRAL 32 6 (6) 0 2 2
GLASS 214 0 (0) 9 - 7
IRIS 150 0 (0) 4 - 3
MONKS-1 124+432 6 (2) 0 4 2
MONKS-2 169+432 6 (2) 0 4 2
MONKS-3 122+432 6 (2) 0 4 2
MUSHROOM 8124 22 (4) 0 12 2
SOLAR FLARE 323 10 (5) 0 7 4
TIC-TAC-TOE 958 9 (0) 0 3 2
VOTING 232 16 (16) 0 2 2
WINE 178 0 (0) 13 - 3
ZOO 101 16 (15) 0 6 7
NUMERIC XOR 3D 200 0 (0) 6 - 2
NUMERIC XOR 4D 500 0 (0) 8 - 2
MULTIPLEXER-20 615 20 (20) 0 2 2
MULTIPLEX-XOR 200 11 (11) 0 2 2
XOR-5 200 10 (10) 0 2 2
XOR-5 10% NOISE 200 10 (10) 0 2 2
XOR-10 10000 20 (20) 0 2 2

Table 1: Characteristics of the data sets used

4.2 Fixed Time Comparison

Our first set of experiments compares ID3, C4.5 with its default parameters, ID3-k(k = 2), LSID3(r =
5) and LSID3-p(r = 5). We used our own implementation for all algorithms, where the results of
C4.5 were validated with WEKA’s implementation (Witten and Frank, 2005). We first discuss the
results for the consistent trees and continue by analyzing the findings when pruning is applied.

4.2.1 CONSISTENT TREES

Figure 15 illustrates the differences in tree size and generalization accuracy of LSID3(5) and ID3.
Figure 16 compares the performance of LSID3 to that of ID3-k. The full results, including signifi-
cance tests, are available in Appendix B.

When comparing the algorithms that produce consistent trees, namely ID3, ID3-k and LSID3,
the average tree size is the smallest for most data sets when the trees are induced with LSID3. In
all cases, as Figure 15(a) implies, LSID3 produced smaller trees than ID3 and these improvements
were found to be significant. The average reduction in size is 26.5% and for some data sets, such
as XOR-5 and Multiplexer-20, it is more than 50%. ID3-k produced smaller trees than ID3 for most
but not all of the data sets (see Figure 16, a).

In the case of synthetic data sets, the optimal tree size can be found in theory.13 For instance,
the tree that perfectly describes the n XOR concept is of size 2n. The results show that in this sense,
the trees induced by LSID3 were almost optimal.

13. Note that a theoretically optimal tree is not necessarily obtainable from a given training set.

909

ESMEIR AND MARKOVITCH

 0

 0.2

 0.4

 0.6

 0.8

 1

X
O

R
10

X
O

R
5N

X
O

R
5

M
U

X
O

R
M

U
X

20
X

O
R

4D
X

O
R

3DZ
oo

W
in

e
V

ot
in

g
T

ic
S

ol
ar

M
us

hr
M

on
k3

M
on

k2
M

on
k1Ir
is

G
la

ss
C

or
ra

l
C

on
ne

ct
B

re
as

t
B

al
an

ce
A

ut
oS

A
ut

oM

LS
ID

3
T

re
e

S
iz

e
/ I

D
3

T
re

e
S

iz
e

(a) Tree Size

 40

 50

 60

 70

 80

 90

 100

 40 50 60 70 80 90 100

LS
ID

3
A

cc
ur

ac
y

ID3 Accuracy

(b) Accuracy

Figure 15: Illustration of the differences in performance between LSID3(5) and ID3. The left-side
figure gives the relative size of the trees produced by LSID3 in comparison to ID3. The
right-side figure plots the accuracy achieved by both algorithms. Each point represents
a data set. The x-axis represents the accuracy of ID3 while the y-axis represents that of
LSID3. The dashed line indicates equality. Points are above it if LSID3 performs better
and below it if ID3 is better.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

LS
ID

3
T

re
e

S
iz

e
/ I

D
3

T
re

e
S

iz
e

ID3-k Tree Size / ID3 Tree Size

(a) Tree Size

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 50 55 60 65 70 75 80 85 90 95 100

LS
ID

3
A

cc
ur

ac
y

ID3-k Accuracy

(b) Accuracy

Figure 16: Performance differences for LSID3(5) and ID3-k. The left-side figure compares the
size of trees induced by each algorithm, measured relative to ID3 (in percents). The
right-side figure plots the absolute differences in terms of accuracy.

Reducing the tree size is usually beneficial only if the associated accuracy is not reduced. Ana-
lyzing the accuracy of the produced trees shows that LSID3 significantly outperforms ID3 for most
data sets. For the other data sets, the t-test values indicate that the algorithms are not significantly

910

ANYTIME LEARNING OF DECISION TREES

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

LS
ID

3-
p

T
re

e
S

iz
e

/ I
D

3
T

re
e

S
iz

e

C4.5 Tree Size / ID3 Tree Size

(a) Tree Size

 40

 50

 60

 70

 80

 90

 100

 40 50 60 70 80 90 100

LS
ID

3-
p

A
cc

ur
ac

y

C4.5 Accuracy

(b) Accuracy

Figure 17: Performance differences for LSID3-p(5) and C4.5. The left-side figure compares the
size of trees induced by each algorithm, measured relative to ID3 (in percents). The
right-side figure plots the absolute differences in terms of accuracy.

different. The average absolute improvement in the accuracy of LSID3 over ID3 is 11%. The
Wilcoxon test (Demsar, 2006), which compares classifiers over multiple data sets, indicates that the
advantage of LSID3 over ID3 is significant, with α = 0.05.

The accuracy achieved by ID3-k, as shown in Figure 16(b), is better than that of ID3 on some
data sets. ID3-k achieved similar results to LSID3 for some data sets, but performed much worse
for others, such as Tic-tac-toe and XOR-10. For most data sets, the decrease in the size of the
trees induced by LSID3 is accompanied by an increase in predictive power. This phenomenon is
consistent with Occam’s Razor.

4.2.2 PRUNED TREES

Pruning techniques help to avoid overfitting. We view pruning as orthogonal to our lookahead
approach. Thus, to allow handling noisy data sets, we tested the performance of LSID3-p, which
post-prunes the LSID3 trees using error-based pruning.

Figure 17 compares the performance of LSID3-p to that of C4.5. Applying pruning on the
trees induced by LSID3 makes it competitive with C4.5 on noisy data. Before pruning, C4.5 out-
performed LSID3 on the Monks-3 problem, which is known to be noisy. However, LSID3 was
improved by pruning, eliminating the advantage C4.5 had. For some data sets, the trees induced
by C4.5 are smaller than those learned by LSID3-p. However, the results indicate that among the
21 tasks for which t-test is applicable,14 LSID3-p was significantly more accurate than C4.5 on 11,
significantly worse on 2, and similar on the remaining 8. Taking into account all 24 data sets, the
overall improvement by LSID3-p over C4.5 was found to be statistically significant by a Wilcoxon
test with α = 0.05. In general, LSID3-p performed as well as LSID3 on most data sets, and signifi-
cantly better on the noisy ones.

14. The t-test is not applicable for the Monk data sets because only 1 train-test partition was used.

911

ESMEIR AND MARKOVITCH

These results confirm our expectations: the problems addressed by LSID3 and C4.5’s pruning
are different. While LSID3 allots more time for better learning of hard concepts, pruning attempts
to simplify the induced trees to avoid overfitting the data. The combination of LSID3 and pruning
is shown to be worthwhile: it enjoys the benefits associated with lookahead without the need to
compromise when the training set is noisy.

We also examined the effect of applying error-based pruning not only to the final tree, but to
the lookahead trees as well. The experiments conducted on several noisy data sets showed that
the results of this extra pruning phase were very similar to the results without pruning. Although
pruning results in samples that better represent the final trees, it affects all samples similarly and
hence does not lead to different split decisions.

4.2.3 BINARY SPLITS

By default, LSID3 uses multiway splits, that is, it builds a subtree for each possible value of a
nominal attribute. Following the discussion in Section 2.5, we also tested how LSID3 performs if
binary splits are forced. The tests in this case are found using exhaustive search.

To demonstrate the fragmentation problem, we used two data sets. The first data set is Tic-
tac-toe. When binary splits were forced, the performance of both C4.5 and LSID3-p improved
from 85.8 and 87.2 to 94.1 and 94.8 respectively. As in the case of multiway splits, the advantage
of LSID3-p over C4.5 is statistically significant with α = 0.05. Note that binary splits come at a
price: the number of candidate splits increases and the runtime becomes significantly longer. When
allocated the same time budget, LSID3-p can afford larger samples than BLSID3-p. The advantage
of the latter, however, is kept.

The second task is a variant on XOR-2, where there are 3 attributes a1,a2,a3, each of which can
take one of the values A,C,G,T . The target concept is a∗1⊕a∗2. The values of a∗i are obtained from
ai by mapping each A and C to 0 and each G and T to 1. The data set, referred to as Categorial
XOR-2, consists of 16 randomly drawn examples. With multiway splits, both LSID3-p and C4.5
could not learn Categorial XOR-2 and their accuracy was about 50%. C4.5 failed also with binary
splits. BLSID3-p, on the contrary, was 92% accurate.

We also examined the bias of LSID3 toward binary attributes. For this purpose we used the
example described in Section 2.5. An artificial data set with all possible values was created. LSID3
with multiway and with binary splits were run 10000 times. Although a4 is as important to the
class as a1 and a2, LSID3 with multiway splits never chose it at the root. LSID3 with binary splits,
however, split the root on a4 35% of the time. These results were similar to a1 (33%) and a2 (32%).
They indicate that forcing binary splits removes the LSID3 bias.

4.3 Anytime Behavior of the Contract Algorithms

Both LSID3 and ID3-k make use of additional resources for generating better trees. However, in
order to serve as good anytime algorithms, the quality of their output should improve with the
increase in their allocated resources. For a typical anytime algorithm, this improvement is greater
at the beginning and diminishes over time. To test the anytime behavior of LSID3 and ID3-k, we
invoked them with successive values of r and k respectively. In the first set of experiments we
focused on domains with nominal attributes, while in the second set we tested the anytime behavior
for domains with continuous attributes.

912

ANYTIME LEARNING OF DECISION TREES

 50

 55

 60

 65

 70

 75

 80

 85

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 A
cc

ur
ac

y

Time [seconds]

r=5
r=10

k=3

LSID3
ID3k
ID3

C4.5

 20

 30

 40

 50

 60

 70

 80

 90

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 S
iz

e

Time [seconds]

r=5
r=10

k=3

LSID3
ID3k
ID3

C4.5

Figure 18: Anytime behavior of ID3-k and LSID3 on the Multiplex-XOR data set

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 0 50 100 150 200 250 300 350

A
ve

ra
ge

 A
cc

ur
ac

y

Time [sec]

r=10
r=15

k=3

ID3
C4.5

LSID3
ID3-k

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 50 100 150 200 250 300 350

A
ve

ra
ge

 s
iz

e

Time [sec]

r=10

k=3
LSID3

ID3
C4.5
ID3-k

Figure 19: Anytime behavior of ID3-k and LSID3 on the 10-XOR data set

4.3.1 NOMINAL ATTRIBUTES

Figures 18, 19 and 20 show the average results over 10 runs of 10-fold cross-validation experiments
for the Multiplex-XOR, XOR-10 and Tic-tac-toe data sets respectively. The x-axis represents the run
time in seconds.15 ID3 and C4.5, which are constant time algorithms, terminate quickly and do not
improve with time. Since ID3-k with k = 1 and LSID3 with r = 0 are defined to be identical to ID3,
the point at which ID3 yields a result serves also as the starting point of these anytime algorithms.

The graphs indicate that the anytime behavior of LSID3 is better than that of ID3-k. For ID3-
k, the gaps between the points (width of the steps) increase exponentially, although successive
values of k were used. As a result, any extra time budget that falls into one of these gaps cannot be
exploited. For example, when run on the XOR-10 data set, ID3-k is unable to make use of additional
time that is longer than 33 seconds (k = 3) but shorter than 350 seconds (k = 4). For LSID3, the
difference in the time required by the algorithm for any 2 successive values of r is almost the same.

For the Multiplex-XOR data set, the tree size and generalization accuracy improve with time
for both LSID3 and ID3-k, and the improvement decreases with time. Except for a short period of
time, LSID3 dominates ID3-k. For the XOR-10 data set, LSID3 has a great advantage: while ID3-k

15. The algorithms were implemented in C++, compiled with GCC, and run on Macintosh G5 2.5 GHz.

913

ESMEIR AND MARKOVITCH

 78

 80

 82

 84

 86

 88

 90

 92

 0 0.2 0.4 0.6 0.8 1 1.2

A
ve

ra
ge

 A
cc

ur
ac

y

Time [seconds]

r=2 r=10

k=3

LSID3
ID3k
ID3

C4.5
 80

 100

 120

 140

 160

 180

 200

 0 0.2 0.4 0.6 0.8 1 1.2

A
ve

ra
ge

 S
iz

e

Time [seconds]

r=2

r=10

k=3

LSID3
ID3k
ID3

C4.5

Figure 20: Anytime behavior of ID3-k and LSID3 on the Tic-tac-toe data set

 40

 50

 60

 70

 80

 90

 100

 0 200 400 600 800 1000 1200

A
ve

ra
ge

 a
cc

ur
ac

y

Time [sec]

LSID3
ID3

C4.5
ID3k

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200

A
ve

ra
ge

 s
iz

e

Time [sec]

LSID3
ID3

C4.5
ID3k

Figure 21: Anytime behavior of ID3-k, LSID3 on the Numeric-XOR 4D data set

produced trees whose accuracy was limited to 55%, LSID3 reached an average accuracy of more
than 90%.

In the experiment with the Tic-tac-toe data set, LSID3 dominated ID3-k consistently, both in
terms of accuracy and size. ID3-k performs poorly in this case. In addition to the large gaps
between successive possible time allocations, a decrease in accuracy and an increase in tree size
are observed at k = 3. Similar cases of pathology caused by limited-depth lookahead have been
reported by Murthy and Salzberg (1995). Starting from r = 5, the accuracy of LSID3 does not
improve over time and sometimes slightly declines (but still dominates ID3-k). We believe that the
multiway splits prevent LSID3 from further improvements. Indeed, our experiments in Section 4.2
indicate that LSID3 can perform much better with binary splits.

4.3.2 CONTINUOUS ATTRIBUTES

Our next anytime-behavior experiment uses the Numeric-XOR 4D data set with continuous at-
tributes. Figure 21 gives the results for ID3, C4.5, LSID3, and ID3-k. LSID3 clearly outperforms
all the other algorithms and exhibits good anytime behavior. Generalization accuracy and tree size
both improve with time. ID3-k behaves poorly in this case. For example, when 200 seconds are
allocated, we can run LSID3 with r = 2 and achieve accuracy of about 90%. With the same allo-
cation, ID3-k can be run with k = 2 and achieve accuracy of about 52%. The next improvement of

914

ANYTIME LEARNING OF DECISION TREES

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300

A
ve

ra
ge

 a
cc

ur
ac

y

Time [sec]

LSID3
LSID3-MC

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 50 100 150 200 250 300

A
ve

ra
ge

 s
iz

e

Time [sec]

LSID3
LSID3-MC

Figure 22: Anytime behavior of LSID3-MC on the Numeric-XOR 4D data set

ID3-k (with k = 3) requires 10,000 seconds. But even with such a large allocation (not shown in the
graph since it is off the scale), the resulting accuracy is only about 66%.

In Section 2.4 we described the LSID3-MC algorithm which, instead of uniformly distributing
evaluation resources over all possible splitting points, performs biased sampling towards points with
high information gain. Figure 22 compares the anytime behavior of LSID3-MC to that of LSID3.
The graph of LSID3 shows, as before, the performance for successive values of r. The graph of
LSID3 shows the performance for p = 10%,20%, . . . ,150%. A few significant conclusions can be
drawn from these results:

1. The correlation between the parameter p and the runtime is almost linear: the steps in the
graph are of almost constant duration.16 We can easily increase the granularity of the anytime
graph by smaller gaps between the p values.

2. It looks as if the runtime for LSID3-MC with p = 100% should be the same as LSID3(r = 1)
without sampling where all candidates are evaluated once. We can see, however, that the
runtime of LSID3(r = 1) is not sufficient for running LSID3-MC with p = 50%. This is
due to the overhead associated with the process of ordering the candidates prior to sample
selection.

3. LSID3-MC with p = 100% performs better than LSID3(r = 1). This difference can be ex-
plained by the fact that we performed a biased sample with repetitions, and therefore more
resources were devoted to more promising tests rather than one repetition for each point as in
LSID3(r = 1).

4. When the available time is insufficient for running LSID3(r = 1) but more than sufficient for
running ID3, LSID3-MC is more flexible and allows these intermediate points of time to be
exploited. For instance, by using only one-fifth of the time required by LSID3(r = 1), an
absolute accuracy improvement of 20% over ID3 was achieved.

915

ESMEIR AND MARKOVITCH

 62

 64

 66

 68

 70

 72

 0 50 100 150 200 250 300 350

A
ve

ra
ge

 A
cc

ur
ac

y

Time [sec]

ID3
C4.5

IIDT(1)
IIDT(0.1)

 24

 26

 28

 30

 32

 34

 36

 38

 40

 0 50 100 150 200 250 300

A
ve

ra
ge

 S
iz

e

Time [sec]

ID3
C4.5

IIDT(1)
IIDT(0.1)

Figure 23: Anytime behavior of IIDT on the Glass data set

 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100

 0 100 200 300 400 500 600

A
ve

ra
ge

 A
cc

ur
ac

y

Time [sec]

ID3
C4.5

IIDT(1)
IIDT(0.1)

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 100 200 300 400 500 600

A
ve

ra
ge

 s
iz

e

Time [sec]

ID3
C4.5

IIDT(1)
IIDT(0.1)

Figure 24: Anytime behavior of IIDT on the 10-XOR data set

4.4 Anytime Behavior of IIDT

IIDT was presented as an interruptible decision tree learner that does not require advanced knowl-
edge of its resource allocation: it can be stopped at any moment and return a valid decision tree.
We tested two versions of IIDT, the first with granularity threshold g = 0.1 and the second with
g = 1. Figures 23, 24, and 25 show the anytime performance of IIDT in terms of tree size and
accuracy for the Glass, XOR-10, and Tic-tac-toe data sets. Each graph represents an average of 100
runs (for the 10× 10 cross-validation). Unlike the graphs given in the previous section, these are
interruptible anytime graphs, that is, for each point, the y coordinate reflects the performance if the
algorithm was interrupted at the associated x coordinate. In the contract algorithm graphs, however,
each point reflects the performance if the algorithm was initially allocated the time represented by
the x coordinate.

In all cases, the two anytime versions indeed exploit the additional resources and produce both
smaller and more accurate trees. Since our algorithm replaces a subtree only if the new one is
smaller, all size graphs decrease monotonically. The most interesting anytime behavior is for the
difficult XOR-10 problem. There, the tree size decreases from 4000 leaves to almost the optimal
size (1024), and the accuracy increases from 50% (which is the accuracy achieved by ID3 and C4.5)

16. Some steps look as though they require durations that are twice as long. However, these durations actually represent
two p values with identical results.

916

ANYTIME LEARNING OF DECISION TREES

 76

 78

 80

 82

 84

 86

 88

 90

 0 0.5 1 1.5 2 2.5 3

G
en

er
al

iz
at

io
n

A
cc

ur
ac

y

Time [sec]

ID3
C4.5

IIDT(1)
IIDT(0.1)

 80

 100

 120

 140

 160

 180

 0 0.5 1 1.5 2 2.5 3

A
ve

ra
ge

 S
iz

e

Time [sec]

ID3
C4.5

IIDT(1)
IIDT(0.1)

Figure 25: Anytime behavior of IIDT on the Tic-tac-toe data set

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 100 200 300 400 500 600

A
ve

ra
ge

 S
iz

e

Time [sec]

IIDT(1)
IIDT(0.1)

Figure 26: Time steps for a single run on 10-XOR

to almost 100%. The shape of the graphs is typical to those of anytime algorithms with diminishing
returns. The improvement in the accuracy of IIDT (at the latest point it was measured) over ID3
and C4.5 was found by t-test (α = 0.05) to be significant for the Glass and XOR-10 data sets. The
performance of IIDT on Tic-tac-toe slightly degrades over time. We believe that similarly to LSID3,
IIDT can perform much better if binary splits are used.

The difference in performance of the two anytime algorithms is interesting. IIDT(0.1), with
the lower granularity parameter, indeed produces smoother anytime graphs (with lower volatility),
which allows for better control and better predictability of return. Moreover, in large portions of the
time axis, the IIDT(0.1) graph shows better performance than that of IIDT(1). This is due to more
sophisticated node selection in the former. Recall that g = 1 means that the algorithm always selects
the entire tree for improvement.

The smoothness of the IIDT(0.1) graphs is somehow misleading because it represents an average
of 100 runs, with each step taking place at a different time (this is in contrast to the graph for
IIDT(1), where the steps are at roughly the same times). Figure 26 illustrates the significance of this
smoothing effect on a single anytime graph (out of the 100). We can see that although the IIDT(0.1)
graph is less smooth than the average graph, it is still much smoother than the corresponding IIDT(1)
graph.

917

ESMEIR AND MARKOVITCH

4.5 Comparison with Modern Decision Tree Learners

During the last decade, several modern decision tree learners were introduced. Although these
learners were not presented and studied as anytime algorithms, some of them can be viewed as such.
In what follows we compare our proposed anytime framework to three such algorithms: bagging,
skewing and GATree. We first give a brief overview of the studied methods and then compare their
performance to that of our anytime approach.

4.5.1 OVERVIEW OF THE COMPARED METHODS

Page and Ray (2003) introduced skewing as an alternative to lookahead for addressing problematic
concepts such as parity functions. At each node, the algorithm skews the set of examples and
produces several versions of it, each with different weights for the instances. The algorithm chooses
to split on the attribute that exceeds a pre-set gain threshold for the greatest number of weightings.
Skewing was reported to perform well on hard concepts such as XOR-n, mainly when the data set
is large enough relative to the number of attributes. Skewing can be viewed as a contract algorithm
parameterized by w, the number of weightings. In order to convert skewing into an interruptible
algorithm, we apply the general conversion method described in Section 3.1.

Two improvements to the original skewing algorithm were presented, namely sequential skew-
ing (Page and Ray, 2004), which skews one variable at a time instead of all of them simultaneously,
and generalized skewing (Ray and Page, 2005), which can handle nominal and continuous attributes.
Nominal attributes are skewed by randomly reordering the possible values and assigning a weight
for a value proportional to its rank. Continuous attributes are handled by altering the input distri-
bution for every possible split point. We test the sequential skewing algorithm on the binary XOR
and Multiplexer data sets. This version is not parameterized and hence is not anytime by nature. To
convert it into an anytime algorithm, we added a parameter k that controls the number of skewing
iterations. Thus, instead of skewing each variable once, we skew it k times. For the Tic-tac-toe data
set, where the attributes are ternary, we used only the generalized skewing algorithm, parameterized
by the number of random orderings by which the nominal attributes are reweighed.

Papagelis and Kalles (2001) presented GATree, a learner that uses genetic algorithms to evolve
decision trees. The initial population consists of randomly generated 1-level depth decision trees,
where both the test and the class labels are drawn randomly. Mutation steps choose a random node
and replaces its test with a new random one. If the chosen node is a leaf, the class label is replaced
by a random label. Crossover chooses two random nodes, possibly from different trees, and swaps
their subtrees. When tested on several UCI data sets, GATree was reported to produce trees as
accurate as C4.5 but of significantly smaller size. GATree was also shown to outperform C4.5 on
the XOR-2 and XOR-3 problems. GATree can be viewed as an interruptible anytime algorithm that
uses additional time to produce more and more generations. In our experiments we used the GATree
full original version with the same set of parameters as reported by Papagelis and Kalles, with one
exception: we allowed a larger number of generations.

The third algorithm we tested is bagging (Breiman, 1996). Bagging is an ensemble-based
method, and as such, it is naturally an interruptible anytime learner. Additional resources can be
exploited by bagging to generate larger committees. In our experiments we consider 3 different
bagging methods that use ID3, C4.5, and RTG (Random Tree Generator) as base learners. In ad-
dition, we tested a committee of trees produced by our LSID3. Since the latter takes significantly
more time to run, the LSID3 committees are expected to be smaller than the greedy committees for

918

ANYTIME LEARNING OF DECISION TREES

 50

 60

 70

 80

 90

 100

 0 0.05 0.1 0.15 0.2 0.25

A
ve

ra
ge

 A
cc

ur
ac

y

Time [sec]

IIDT(0.1)
Skewing

Sequential Skewing
Bagging-ID3

Bagging-LSID3

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.05 0.1 0.15 0.2 0.25

A
ve

ra
ge

 S
iz

e

Time [sec]

IIDT(0.1)
Skewing

Sequential Skewing

Figure 27: Anytime behavior of various modern algorithms on the XOR-5 data set

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6 7

A
ve

ra
ge

 A
cc

ur
ac

y

Time [sec]

IIDT(0.1)
Skewing

Sequential Skewing
Bagging-ID3

Bagging-LSID3
 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 1 2 3 4 5 6 7

A
ve

ra
ge

 S
iz

e

Time [sec]

IIDT(0.1)
Skewing

Sequential Skewing

Figure 28: Anytime behavior of various modern algorithms on the Multiplexer-20 data set

the same allocated time. Note that bagging is not a direct competitor to our method. We defined our
goal as inducing a single “good” decision tree while bagging generates a set of trees. Generating
a set of trees rather than a single good tree eliminates one of the greatest advantages of decision
trees—their comprehensibility.

4.5.2 EMPIRICAL COMPARISON

We used our own implementation for IIDT, skewing, and bagging, and the commercial version
for GATree.17 The skewing and sequential skewing versions were run with linearly increasing
parameters. The generalized skewing algorithm was run with exponentially increasing parameters.
The performance of the ensemble method was tested for exponentially increasing committee sizes
(1,2,4,8, . . .).

Figures 27, 28, and 29 compare IIDT to bagging with ID3 as a base learner, bagging with
LSID3(r = 1), and skewing on the XOR-5, Multiplexer-20, and Tic-tac-toe tasks respectively. Note
that the results for ID3 are identical to those of bagging-ID3 with a single tree in the committee and

17. The experiments with GATree were run on a Pentium IV 2.8 GHz machine with the Windows XP operating system.
The reported times are as output by the application itself.

919

ESMEIR AND MARKOVITCH

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5

A
ve

ra
ge

 A
cc

ur
ac

y

Time [sec]

IIDT(0.1)
Generalized Skewing

Bagging-ID3
Bagging-LSID3

 140

 150

 160

 170

 180

 190

 0 1 2 3 4 5

A
ve

ra
ge

 S
iz

e

Time [sec]

IIDT(0.1)
Generalized Skewing

Figure 29: Anytime behavior of various modern algorithms on the Tic-tac-toe data set

hence are not plotted independently. Since GATree was run on a different machine, we report its
results separately later in this section.

The graphs for the first 2 problems, which are known to be hard, show that IIDT clearly outper-
forms the other methods both in terms of tree size and accuracy. In both cases IIDT reaches almost
perfect accuracy (99%), while bagging-ID3 and skewing topped at 55% for the first problem and
75% for the second.

The inferior performance of bagging-ID3 on the XOR-5 and Multiplexer-20 tasks is not surpris-
ing. The trees that form the committee were induced greedily and hence could not discover these
difficult concepts, even when they were combined. Similar results were obtained when running bag-
ging over C4.5 and RTG. However, when our LSID3(r = 1) was used as a base learner, performance
was significantly better than that of the greedy committees. Still, IIDT performed significantly bet-
ter than bagging-LSID3, indicating that for difficult concepts, it is better to invest more resources
for improving a single tree than for adding more trees of lower quality to the committee.

The inferior results of the skewing algorithms are more difficult to interpret, since skewing was
shown to handle difficult concepts well. One possible explanation for this is the small number
of examples with respect to the difficulty of the problem. To verify that this indeed explains the
inferior results, we repeated the experiment with simpler XOR problems such as XOR-2 and XOR-
3. In these cases skewing indeed did much better and outperformed ID3, reaching 100% accuracy
(as IIDT). When we increased the size of the training set for the XOR-5 domain, skewing also
performed better, yet IIDT outperformed it by more than 9%. For a deeper analysis of the difference
between IIDT and skewing, see Section 5.

The average accuracy of GATree, after 150 generations, was 49.5%. It took more than 3 seconds
on average to reach 150 generations. Thus, even when GATree was allocated much more time than
IIDT, it could not compete with the latter. We repeated the experiment, allowing GATree to have a
larger initial population and to produce more generations. The accuracy on the testing set, even after
thousands of generations, remained very low. Similar results were obtained for the Multiplexers-20
data set.

The above set of experiments was repeated on the much more difficult XOR-10 data set. The
advantage of IIDT over the other methods was even more evident. While IIDT was able to reach

920

ANYTIME LEARNING OF DECISION TREES

accuracy of 100%, bagging-ID3, skewing, and GATree performed as poorly as a random guesser,
with accuracy of only 50%.

The next experiment was with the Tic-tac-toe data set. In this case, as shown in Figure 29, both
ensemble-based methods have a significant advantage over the single tree inducers. We speculate
that this is because ensemble methods were able to overcome the quick-fragmentation problem
associated with multiway splits by combining several classifiers. We are still looking for ways to
verify this hypothesis. Bagging-ID3 outperforms the other methods until the fifth second, where
bagging-LSID3 overtakes it slightly. In contrast to the XOR-5 domain, building larger committees
is worthwhile in this case, even at the expense of less accurate base classifiers. However, if the time
allocation permits, large ensembles of LSID3 trees are shown to be the most accurate. We believe
that the general question of tradeoff between the resources allocated for each tree and the number
of trees forming the ensemble should be addressed by further research with extensive experiments
on various data sets. The performance of generalized skewing and IIDT was similar in this case,
with a slight advantage for skewing in terms of accuracy and an advantage for IIDT in terms of tree
size. GATree was run on the data set for 150 generations (30 seconds). The average accuracy was
76.42%, much lower than that of the other methods.

5. Related Work

While to the best of our knowledge no other work has tried to design an anytime algorithm for
decision tree induction in particular, there are several related works that warrant discussion here. We
consider first works that deal with decision tree inducers. We then discuss algorithms for induction
of other models, and finally we consider methods that focus on aspects of the learning process other
than the model-induction phase.

5.1 Single Tree Inducers

The goal of our research was to develop anytime algorithms for inducing a single decision tree. Sev-
eral other algorithms for single decision-tree induction can either be considered anytime algorithms
or can be converted into them with relative ease. We view the recently introduced skewing approach
as the most relevant to our work. Therefore, we focus first on the differences between skewing and
our anytime framework, and then we consider other decision tree learners.

5.1.1 SKEWING

The skewing approach was presented as an efficient alternative to lookahead (Page and Ray, 2003).
In our discussion, we analyze the original skewing algorithm, which is applicable only to binary
attributes. This analysis, however, holds also for the other versions of skewing (see Section 4.5),
since they are based on the same ideas.

Skewing relies on the hypothesis that, when learning a hard concept, it may be easier for a greedy
decision tree inducer to pick a relevant attribute if the distribution over the data is significantly
different from the uniform distribution. Therefore, at each node, skewing repeatedly attempts to
produce, from the existing set of examples, skewed versions that represent different distributions.
Several different weight vectors are repeatedly assigned to the examples for this purpose. Then, the
information gain of each attribute is calculated on the basis of each weight vector. The attribute
that exceeds a pre-determined gain threshold for the greatest number of times is chosen. In order

921

ESMEIR AND MARKOVITCH

to generate the weight vectors, a favored value vi is randomly drawn for each candidate attribute ai.
Then, the weight of each example in which ai takes the value vi is increased.

This process can be viewed as a stochastic clustering of the examples according to the values
they take for a subset of the attributes: examples that most agree with the favored value for a large
number of attributes are assigned the highest weight. Therefore, the calculation of the information
gain will be most affected by sets of examples that share the same values for different subsets of the
attributes.

In regular k-steps lookahead, for each tuple of k attributes we divide the set of examples into
2k subsets, each of which is associated with a different k-tuple of binary values, that is, a different
sub-path of length k in the lookahead tree. Then, we calculate the information gain for each subset
and compute the average gain weighted by subset sizes.

In skewing, each iteration assigns a high weight to a few subsets of the examples that have
common values for some of the attributes. These subsets have the greatest influence on the gain
calculation at that skewing iteration. Hence, skewing iterations can be seen as sampling the space
of lookahead sub-paths and considering a few of them at a time.

The great advantage of skewing over our proposed framework is efficiency. While LSID3 sam-
ples full decision trees, skewing samples only single sub-paths. When there are many examples but
relatively few attributes, skewing improves greatly over the greedy learners at a low cost. The ef-
fectiveness of skewing, however, noticeably degrades when the concept hides a mutual dependency
between a large number of attributes. When the number of attributes increases, it becomes harder
to create large clusters with common values for some of the relevant ones, and hence the resulting
lookahead is shallower.

Consider, for example, the n-XOR problem with n additional irrelevant attributes. For n = 2, a
reweighting that assigns a high weight to examples that agree only on 1 of the 2 relevant attributes
results in a high gain for the second attribute because it decreases the entropy of the cluster to 0.
Nevertheless, in order to have a positive gain for a relevant attribute when n = 10, we should cluster
together examples that agree on 9 of the 10 relevant attributes. Obviously, the probability for a good
cluster in the first case is high while in the second case it is almost 0. The experiments reported in
Section 4.5 provide an empirical backup for this argument.

5.1.2 OTHER SINGLE TREE INDUCERS

Papagelis and Kalles (2001) studied GATree, a learner that uses genetic algorithms for building
decision trees. GATree does not adopt the top-down scheme. Instead, it starts with a population of
random trees and uses a mutation operation of randomly changing a splitting test and a crossover
operation of exchanging subtrees. Unlike our approach, GATree is not designed to generate con-
sistent decision trees and searches the space of all possible trees over a given set of attributes.
Thus, it is not appropriate for applications where a consistent tree is required. Like most genetic
algorithms, GATree requires cautious parameter tuning and its performance depends greatly on the
chosen setting. Comparing GATree to our algorithm (see Section 4.5) shows that, especially for
hard concepts, it is much better to invest the resources in careful tuning of a single tree than to
perform genetic search over the large population of decision trees.

Utgoff et al. (1997) presented DMTI, an induction algorithm that chooses an attribute by build-
ing a single decision tree under each candidate attribute and evaluates it using various measures.
Several possible tree measures were examined and the MDL (Minimum Description Length) mea-

922

ANYTIME LEARNING OF DECISION TREES

sure performed best. DMTI is similar to LSID3(r = 1) but, unlike LSID3, it can only use a fixed
amount of additional resources and hence cannot serve as an anytime algorithm. When the user can
afford using more resources than required by DMTI, the latter does not provide means to improve
the learned model further. Furthermore, DMTI uses a single greedy lookahead tree for attribute
evaluation, while we use a biased sample of the possible lookahead trees. Our experiments with
DMTI (as available online) show that while it can solve simpler XOR and multiplexer problems, its
limited lookahead is not sufficient for learning complex concepts such as XOR-10: DMTI achieved
an accuracy of 50%. IIDT and LSID3, by producing larger samples, overcame this problem and
reached high accuracies.

Kim and Loh (2001) introduced CRUISE, a bias-free decision tree learner that attempts to pro-
duce more compact trees by (1) using multiway splits—one subnode for each class, and (2) exam-
ining pair-wise interactions among the variables. CRUISE is able to learn XOR-2 and Chess-board
(numeric XOR-2) concepts. Much like ID3-k with k = 2, it cannot recognize more complex inter-
actions.

Bennett (1994) presented GTO, a non-greedy approach for repairing multivariate decision trees.
GTO requires as input an initial tree. The algorithm retains the structure of the tree but attempts to
simultaneously improve all the multivariate decisions of the tree using iterative linear programming.
GTO and IIDT both use a non-greedy approach to improve a decision tree. The advantage of GTO
is its use of a well-established numerical method for optimization. Its disadvantages are its inability
to modify the initial structure and its inability to exploit additional resources (beyond those needed
for convergence).

5.2 Induction of Other Models

Ensemble-based methods, such as bagging and boosting (Schapire, 1999), can also be viewed as
anytime algorithms. However, the classifiers constructed by the bagging and boosting algorithms
consist of a committee of decision trees rather than a single tree. Therefore, the problem they face
is very different from the problem we face in this work—that of learning a single tree. A major
problem with ensemble-based methods is that the induced ensemble is often large, complex, and
difficult to interpret (Freund and Mason, 1999). Therefore, these methods cannot be used when
comprehensible models are required. Another problem is that greedy trees are unable to discover
any knowledge about hard-to-learn target concepts. Therefore, combining them cannot improve
performance. In our experiments, reported in Section 4.5, we provide empirical support for this
claim by comparing our proposed anytime algorithms to bagging.

Dietterich (2000) presented the randomized-C4.5 algorithm, where a randomized version of
C4.5 that chooses the split attribute at random from among the 20 best candidates is repeatedly
invoked to produce an ensemble of decision trees. The experimental results indicate that ensembles
of randomized-C4.5 were competitive with bagging but not as accurate as boosting. As in the case
of the traditional bagging and boosting methods, our framework differs from randomized-C4.5 in
that the latter produces an ensemble of trees that is obviously not as comprehensible as a single
decision trees is.

The SVM algorithm usually depends on several parameters—kernel parameters for example.
Several works, such as Chapelle et al. (2002), proposed iterative methods for automatic tuning of
SVM parameters. These iterative methods can exploit additional time resources for better tuning.

923

ESMEIR AND MARKOVITCH

Opitz (1995) introduced an anytime approach for theory refinement. This approach starts by
generating a neural network from a set of rules that describe what is currently known about the
domain. The network then uses the training data and the additional time resources to try to improve
the resulting hypothesis.

5.3 Other Learning Components

In addition to the induction procedure, the learning process involves other components, where ad-
ditional resources can be invested. Many algorithms for active learning (Lindenbaum et al., 2004),
feature generation (Markovitch and Rosenstein, 2002), and feature selection (Last et al., 2001) have
some level of anytime characteristics. All these methods are orthogonal to our induction methods
and can complement them. An interesting research direction is to determine resource distribution
between the various learning stages.

The related problem of budgeted learning was defined by Lizotte et al. (2003). There is a cost
associated with obtaining each attribute value of a training example, and the task is to determine
what attributes to test given a budget.

6. Conclusions

With the increased popularity of Machine Learning techniques, induction algorithms are being ap-
plied to more complex problems. Recently, much research effort has been spent on developing
advanced induction algorithms, such as SVM. However, these algorithms do not provide compre-
hensible models and therefore are not appropriate when understandability is crucial, such as in
medical tasks. Decision trees, on the contrary, are considered easy to interpret. In order to allow
induction of better decision trees for hard-to-learn concepts, we presented a framework for anytime
induction of decision trees that makes use of additional resources for producing better hypotheses.

Existing greedy algorithms for learning decision trees require a fixed small amount of time. We
showed that for several real-world and synthetic data sets, our proposed anytime algorithms can
exploit larger time budgets. This is shown to be worthwhile especially for hard concepts where
existing greedy methods fail.

The major contributions of this paper are:

• A better understanding of the space of consistent decision trees: Using sampling techniques,
we conducted experiments that support the application of Occam’s Razor for decision trees
and showed that smaller trees are clearly preferable.

• LSID3: We presented and empirically evaluated LSID3, a contract anytime algorithm for
learning decision trees. On the data sets studied in this paper, LSID3 was shown to exhibit
good anytime behavior and to produce better decision trees.

• IIDT: Motivated by the need for interruptible learners, we introduced IIDT, an interruptible
anytime algorithm for inducing decision trees. In our experiments on hard concepts, IIDT
produced significantly better decision trees when run for longer time.

• Comparison with modern learners: Our proposed framework was compared to several mod-
ern decision tree learners and shown to outperform them significantly. The advantage of
LSID3 and IIDT is most evident when applied on problems with a strong interdependency.

924

ANYTIME LEARNING OF DECISION TREES

When one can afford allocating extra resources, both LSID3 and IIDT are considered among
the best choices for inducing a decision tree.

To the best of our knowledge, this is the first work that proposes anytime algorithms for learning
decision trees. This research is only a first step in this direction. We are currently in the process of
designing and implementing many variations of our proposed algorithms, including algorithms that
combine ID3-k and LSID3, algorithms that allow different resource distribution for different sub-
concepts, and algorithms that allow pruning as an improvement phase in the interruptible learner.
In addition, we intend to adapt our anytime framework for incremental tasks, where new examples
arrive after the learning process has been initiated. This will allow the classifier to exploit both
additional time resources and additional data that becomes available with time.

Acknowledgments

This work was partially supported by funding from the EC-sponsored MUSCLE Network of Excel-
lence (FP6-507752).

Appendix A. Data Sets

Below we give a more detailed description of the data sets used in our experiments:

1. Automobile: This problem, taken from the UCI Repository, consists of three types of enti-
ties: (1) the specification of an automobile, (2) its assigned insurance risk rating, and (3) its
normalized losses in use as compared to other cars. Several of the attributes in the database
could be used as class attributes: we chose to use both the make (model) and the symbolling
(risk degree).

2. Balance Scale: This data set is taken from the UCI Repository and was generated to model
psychological experimental results. Each example is classified as having the balance scale tip
to the right, tip to the left, or be balanced. The attributes are the left weight, the left distance,
the right weight and the right distance.

3. Breast Cancer (Ljubljana): This problem is taken from the UCI Repository. Each instance
represents the characteristics of a patient and the class is whether or not there are recurrence
events.

4. Connect-4: This data set, taken from the UCI Repository, contains all legal 8-ply positions in
the connect-4 game in which neither player has won yet and the next move is not forced.

5. Corral: An artificial data set first used by John et al. (1994).

6. Glass: In this domain, taken from the UCI Repository, the goal is to determine the type of
glass from its characteristics.

7. Iris: This data set is taken from the UCI Repository and contains 3 classes of 50 instances
each, where each class refers to a type of iris plant.

925

ESMEIR AND MARKOVITCH

8. Monks problems: This set, taken from the UCI Repository, contains three problems. Each
example is represented by 5 nominal attributes in the range 1,2,3,4. The problems are:

• Monks-1: (a1 = a2)or(a5 = 1).

• Monks-2: exactly two of (a1 = 1,a2 = 1,a3 = 1,a4 = 1,a5 = 1).

• Monks-3: ((a5 = 3)and(a4 = 1))or((a5 6= 4)and(a2 6= 3)), with an added 5% class
noise.

The original data sets are already partitioned into training and testing sets.

9. Mushroom: This data set, taken from the UCI Repository, includes descriptions of hypothet-
ical samples corresponding to 23 species of gilled mushrooms in the Agaricus and Lepiota
family. Each species is identified as edible or poisonous.

10. Solar Flare: This problem is taken from the UCI Repository. Each instance represents cap-
tured features for one active region on the sun. Among the three possible classes, we consid-
ered the C-class flare where the instances are more distributed.

11. Tic-Tac-Toe: The problem, taken from the UCI Repository, deals with the classification of
legal tic-tac-toe end games, as wins or non-wins for the x player. Each example is represented
by 9 nominal attributes, which represent the slot values.

12. Voting: This data set, taken from the UCI repository, includes votes for each member of the
U.S. House of Representatives on the 16 key votes identified by the CQA. The class of each
record is Democrat or Republican.

13. Wine: This problem, taken from the UCI Repository, deals with the classification of wines
into 3 class types. Each example is represented by 13 continuous attributes, which represent
measures of chemical elements in the wine.

14. Zoo: In this domain, taken from the UCI Repository, the goal is to determine the type of the
animal from several attributes.

15. Multiplexer: The multiplexer task was used by several researchers for evaluating classifiers,
for example, Quinlan (1993). An instance is a series of bits of length a + 2a, where a is a
positive integer. The first a bits represent an index into the remaining bits and the label of the
instance is the value of the indexed bit. In our experiments we considered the 20-Multiplexer
(a = 4). The data set contains 500 randomly drawn instances.

16. Boolean XOR: Parity-like functions are known to be problematic for many learning algo-
rithms. However, they naturally arise in real-world data, such as the Drosophila survival
concept (Page and Ray, 2003). We considered XOR of five and ten variables with additional
irrelevant attributes.

17. Numeric XOR: A XOR based numeric data set that has been used to evaluate learning al-
gorithms, for example, Baram et al. (2003). Each example consists of values for x and y
coordinates. The example is labelled 1 if the product of x and y is positive, and−1 otherwise.
We generalized this domain for three and four dimensions and added irrelevant variables to
make the concept harder.

926

ANYTIME LEARNING OF DECISION TREES

18. Multiplex-XOR: Another XOR based concept that is defined over 11 binary attributes. The
concept is a composition of two XOR terms, where the first attribute determines which one
should be considered. The other 10 attributes are used to form the XOR terms. The size of
each term is drawn randomly between 2 and 5.

Appendix B. Full Results

Table 2 shows the size of the trees induced by the above mentioned algorithms, lists the differences
between the algorithms, and states whether these differences were found to have t-test significance
with α = 0.05. Similarly, Table 3 compares the produced trees in terms of their generalization
accuracy.

927

ESMEIR AND MARKOVITCH

ID
3-K

L
S

ID
3

L
S

ID
3-P

L
S

ID
3

V
S.

ID
3

L
S

ID
3

V
S.

C
4.5

L
S

ID
3-P

V
S.

C
4.5

D
A

T
A

S
E

T
ID

3
C

4.5
(k

=
2)

(r
=

5)
(r

=
5)

D
IFF

S
IG

?
D

IFF
S

IG
?

D
IFF

S
IG

?

A
U

T
O

S
M

A
K

E
53.6

±
4.2

26.6
±

1.4
56.5

±
2.4

36.6
±

2.0
37.1

±
2.0

-17.1
±

4.8
√

9.9
±

2.4
×

10.4
±

2.2
×

A
U

T
O

S
S

Y
M

.
46.7

±
1.8

20.1
±

4.1
47.0

±
1.8

26.8
±

1.7
26.5

±
2.1

-19.9
±

2.2
√

6.6
±

4.1
×

6.3
±

4.3
×

B
A

L
A

N
C

E
353.9

±
6.9

34.8
±

5.5
351.6

±
7.3

347.7
±

7.7
40.1

±
6.5

-6.2
±

5.0
√

312.8
±

9.8
×

5.2
±

7.7
×

B
R

.
C

A
N

C
E

R
129.6

±
5.9

6.1
±

4.0
124.0

±
4.9

100.3
±

4.4
7.7
±

7.1
-29.3

±
5.6

√
94.2

±
5.4

×
1.7
±

8.5
∼

C
O

N
N

E
C

T-4
18507

±
139

3329
±

64
16143

±
44

14531
±

168
6614

±
173

-3976
±

265
√

11201
±

183
×

3284
±

186
×

C
O

R
R

A
L

9.2
±

2.1
5.3
±

1.2
7.0
±

0.6
6.7
±

0.5
6.3
±

0.8
-2.5

±
2.2

√
1.4
±

1.3
×

1.0
±

1.3
×

G
L

A
S

S
38.7

±
2.3

23.9
±

2.6
32.3

±
2.3

34.2
±

2.1
35.5

±
2.4

-4.4
±

3.0
√

10.3
±

3.1
×

11.6
±

3.7
×

IR
IS

8.5
±

1.0
4.7
±

0.5
9.1
±

0.9
7.6
±

0.8
6.6
±

1.6
-0.9

±
0.7

√
2.9
±

1.0
×

1.9
±

1.6
×

M
O

N
K

S-1
62.0

±
0.0

11.0
±

0.0
27.0

±
0.0

27.0
±

0.0
21.0

±
0.0

-35.0
±

0.0
-

16.0
±

0.0
-

10.0
±

0.0
-

M
O

N
K

S-2
109.0

±
0.0

20.0
±

0.0
105.0

±
0.0

92.4
±

3.4
18.3

±
5.0

-16.6
±

3.4
-

72.4
±

3.4
-

-1.7
±

5.0
-

M
O

N
K

S-3
31.0

±
0.0

9.0
±

0.0
34.0

±
0.0

26.8
±

1.6
9.9
±

1.4
-4.2

±
1.6

-
17.8

±
1.6

-
0.9
±

1.4
-

M
U

S
H

R
O

O
M

24.0
±

0.0
19.0

±
0.2

24.9
±

0.2
16.2

±
0.9

16.2
±

0.9
-7.8

±
0.9

√
-2.8

±
0.9

√
-2.9

±
0.9

√

S
O

L
A

R
-F

L
A

R
E

68.9
±

2.9
2.0
±

1.0
68.4

±
3.2

63.2
±

2.9
1.2
±

0.8
-5.6

±
2.5

√
61.2

±
3.1

×
-0.8

±
1.4

√

T
IC

-T
A

C
-T

O
E

189.0
±

13.6
83.4

±
7.8

176.7
±

9.0
151.7

±
5.6

112.6
±

8.9
-37.3

±
15.1

√
68.3

±
9.3

×
29.1

±
10.9

×
V

O
T

IN
G

13.6
±

2.2
2.8
±

1.5
12.3

±
1.6

13.0
±

2.0
3.5
±

2.1
-0.6

±
2.1

√
10.2

±
2.5

×
0.7
±

2.4
×

W
IN

E
7.9
±

1.0
5.3
±

0.7
7.3
±

0.9
6.2
±

0.7
7.4
±

1.3
-1.7

±
1.2

√
0.9
±

1.0
×

2.1
±

1.6
×

Z
O

O
13.8

±
0.4

8.3
±

0.8
13.8

±
0.5

9.9
±

0.8
9.8
±

0.9
-3.9

±
0.9

√
1.6
±

1.2
×

1.5
±

1.2
×

N
U

M
E

R
IC

X
O

R
-3D

43.0
±

5.1
1.0
±

0.1
15.6

±
6.8

9.2
±

1.0
11.7

±
1.7

-33.8
±

5.1
√

8.2
±

1.0
×

10.7
±

1.7
×

N
U

M
E

R
IC

X
O

R
-4

D
104.7

±
4.5

2.7
±

1.8
75.5

±
14.0

26.8
±

4.7
30.9

±
5.9

-77.9
±

6.0
√

24.1
±

4.8
×

28.1
±

6.3
×

M
U

L
T

IP
L

E
X

E
R

-20
142.8

±
8.3

66.1
±

6.5
67.1

±
29.0

46.6
±

20.0
41.2

±
16.8

-96.1
±

21.6
√

-19.4
±

20.4
√

-24.9
±

17.4
√

M
U

L
T

IP
L

E
X

-X
O

R
84.0

±
5.6

26.0
±

5.2
70.2

±
5.3

43.9
±

5.7
31.6

±
4.8

-40.1
±

7.3
√

17.9
±

8.1
×

5.7
±

7.0
×

X
O

R
-5

92.3
±

7.8
21.9

±
5.3

82.1
±

9.3
32.0

±
0.0

32.0
±

0.0
-60.3

±
7.8

√
10.1

±
5.3

×
10.1

±
5.3

×
X

O
R

-5
N

O
IS

E
93.6

±
6.0

23.2
±

5.9
82.4

±
7.3

58.2
±

6.1
40.4

±
5.0

-35.4
±

8.3
√

35.0
±

8.9
×

17.2
±

8.1
×

X
O

R
-10

3901
±

34
1367

±
39

3287
±

37
2004

±
585

1641
±

524
-1897

±
587

√
637
±

577
×

273
±

524
×

Table
2:

T
he

size
of

the
induced

trees
on

various
data

sets.
T

he
num

bers
represent

the
average

and
standard

deviation
over

the
individual

runs.T
he

lastcolum
ns

listthe
average

differences
betw

een
the

algorithm
s

and
their

t-testsignificance,w
ith

α
=

0.05
(√

indicates
a

significantadvantage
and×

a
significantdisadvantage).

T
he

t-testis
notapplicable

for
the

M
onk

data
sets

because
only

1
train-test

partition
w

as
used.

928

ANYTIME LEARNING OF DECISION TREES

ID
3-

K
L

S
ID

3
L

S
ID

3-
P

L
S

ID
3

V
S
.

ID
3

L
S

ID
3

V
S
.

C
4.

5
L

S
ID

3-
P

V
S
.

C
4.

5
D

A
T

A
S

E
T

ID
3

C
4.

5
(k

=
2)

(r
=

5)
(r

=
5)

D
IF

F
S

IG
?

D
IF

F
S

IG
?

D
IF

F
S

IG
?

A
U

T
O

S
M

A
K

E
79

.1
±

9.
8

79
.4
±

10
.5

78
.0
±

9.
7

80
.3
±

9.
9

79
.2
±

10
.2

1.
2
±

9.
9

∼
0.

8
±

10
.3

∼
-0

.2
±

10
.6

∼
A

U
T

O
S

S
Y

M
.

81
.9
±

9.
8

77
.4
±

10
.6

81
.2
±

9.
5

81
.3
±

10
.2

81
.1
±

9.
5

-0
.6
±

11
.4

∼
3.

9
±

12
.3

√
3.

7
±

12
.2

√

B
A

L
A

N
C

E
68

.8
±

5.
4

63
.8
±

4.
9

69
.7
±

5.
0

70
.3
±

5.
7

67
.9
±

5.
5

1.
5
±

4.
5

√
6.

5
±

5.
6

√
4.

1
±

5.
5

√

B
R

.
C

A
N

C
E

R
67

.0
±

8.
8

74
.7
±

8.
1

64
.4
±

8.
4

66
.9
±

9.
1

71
.1
±

8.
2

-0
.2
±

9.
1

∼
-7

.8
±

9.
1

×
-3

.6
±

6.
0

×
C

O
N

N
E

C
T
-4

75
.6
±

0.
5

81
.3
±

0.
4

77
.9
±

0.
5

78
.6
±

0.
5

80
.4
±

0.
5

3.
0
±

0.
6

√
-2

.7
±

0.
5

×
-0

.9
±

0.
4

×
C

O
R

R
A

L
69

.7
±

25
.4

65
.3
±

19
.8

89
.0
±

19
.9

83
.5
±

20
.9

79
.6
±

19
.8

13
.8
±

25
.4

√
18

.2
±

25
.1

√
14

.2
±

24
.1

√

G
L

A
S

S
66

.1
±

10
.2

67
.4
±

10
.3

70
.6
±

11
.0

70
.5
±

10
.7

69
.5
±

10
.4

4.
3
±

11
.6

√
3.

0
±

12
.7

√
2.

0
±

11
.5

∼
IR

IS
93

.3
±

5.
9

95
.3
±

4.
8

93
.1
±

6.
7

94
.5
±

6.
0

94
.3
±

6.
2

1.
1
±

4.
0

√
-0

.8
±

7.
8

∼
-0

.9
±

7.
9

∼
M

O
N

K
S
-1

82
.9
±

0.
0

75
.7
±

0.
0

10
0.

0
±

0.
0

10
0.

0
±

0.
0

94
.4
±

0.
0

17
.1
±

0.
0

-
24

.3
±

0.
0

-
18

.8
±

0.
0

-
M

O
N

K
S
-2

69
.2
±

0.
0

65
.0
±

0.
0

63
.0
±

0.
0

67
.1
±

0.
5

63
.6
±

1.
1

-2
.2
±

0.
5

-
2.

0
±

0.
5

-
-1

.5
±

1.
1

-
M

O
N

K
S
-3

94
.4
±

0.
0

97
.2
±

0.
0

91
.7
±

0.
0

91
.5
±

1.
5

98
.1
±

1.
3

-3
.0
±

1.
5

-
-5

.7
±

1.
5

-
0.

8
±

1.
3

-
M

U
S

H
R

O
O

M
10

0.
0
±

0.
0

10
0.

0
±

0.
0

10
0.

0
±

0.
0

10
0.

0
±

0.
0

10
0.

0
±

0.
0

0.
0
±

0.
0

∼
0.

0
±

0.
0

∼
0.

0
±

0.
0

∼
S

O
L

A
R

F
L

A
R

E
86

.6
±

6.
1

88
.9
±

5.
2

86
.6
±

6.
0

86
.5
±

6.
4

88
.9
±

5.
1

-0
.2
±

3.
0

∼
-2

.4
±

8.
0

×
0.

0
±

7.
6

∼
T

IC
-T

A
C

-T
O

E
85

.5
±

3.
8

85
.8
±

3.
3

84
.2
±

3.
4

87
.0
±

3.
2

87
.2
±

3.
1

1.
5
±

4.
5

√
1.

2
±

4.
8

√
1.

4
±

4.
6

√

V
O

T
IN

G
95

.1
±

4.
1

96
.4
±

3.
8

95
.9
±

4.
5

95
.6
±

4.
9

96
.5
±

3.
5

0.
4
±

4.
6

∼
-0

.9
±

4.
4

∼
0.

1
±

1.
8

∼
W

IN
E

92
.6
±

6.
9

92
.9
±

6.
9

91
.4
±

6.
3

92
.5
±

6.
2

92
.3
±

6.
2

-0
.1
±

7.
4

∼
-0

.4
±

8.
7

∼
-0

.6
±

10
.0

∼
Z

O
O

95
.2
±

7.
7

92
.2
±

8.
0

94
.3
±

7.
9

94
.3
±

6.
6

93
.5
±

6.
9

-1
.0
±

8.
0

∼
2.

1
±

10
.7

∼
1.

3
±

10
.1

∼
N

U
M

E
R

IC
X

O
R

-3
D

57
.7
±

11
.1

43
.0
±

5.
4

89
.5
±

11
.7

96
.1
±

4.
3

93
.4
±

5.
5

38
.4
±

12
.0

√
53

.1
±

7.
1

√
50

.4
±

7.
6

√

N
U

M
E

R
IC

X
O

R
-4

D
49

.8
±

7.
0

52
.1
±

4.
7

62
.3
±

11
.8

93
.2
±

4.
4

91
.9
±

4.
7

43
.4
±

7.
8

√
41

.1
±

6.
2

√
39

.8
±

5.
9

√

M
U

L
T

IP
L

E
X

E
R

-2
0

61
.3
±

7.
2

62
.1
±

7.
5

87
.2
±

14
.2

95
.5
±

8.
5

94
.5
±

9.
5

34
.1
±

11
.8

√
33

.4
±

11
.0

√
32

.3
±

12
.1

√

M
U

L
T

IP
L

E
X

-X
O

R
58

.2
±

12
.0

55
.4
±

11
.5

61
.2
±

12
.2

76
.5
±

11
.8

80
.1
±

9.
6

18
.3
±

16
.2

√
21

.1
±

15
.1

√
24

.7
±

14
.7

√

X
O

R
-5

55
.5
±

12
.2

54
.1
±

12
.8

55
.8
±

13
.2

10
0.

0
±

0.
0

10
0.

0
±

0.
0

44
.5
±

12
.2

√
45

.9
±

12
.8

√
45

.9
±

12
.8

√

X
O

R
-5

N
O

IS
E

54
.1
±

12
.5

51
.7
±

11
.9

56
.6
±

12
.6

74
.4
±

11
.4

78
.2
±

14
.0

20
.3
±

17
.2

√
22

.7
±

15
.9

√
26

.5
±

18
.2

√

X
O

R
-1

0
49

.9
±

1.
8

49
.8
±

1.
8

50
.3
±

1.
6

77
.4
±

14
.9

79
.4
±

16
.5

27
.5
±

14
.7

√
27

.7
±

14
.8

√
29

.6
±

16
.7

√

Ta
bl

e
3:

T
he

ge
ne

ra
liz

at
io

n
ac

cu
ra

cy
of

th
e

in
du

ce
d

tr
ee

s
on

va
ri

ou
s

da
ta

se
ts

.
T

he
nu

m
be

rs
re

pr
es

en
t

th
e

av
er

ag
e

an
d

st
an

da
rd

de
vi

at
io

n
ov

er
th

e
in

di
vi

du
al

ru
ns

.
T

he
la

st
co

lu
m

ns
lis

t
th

e
av

er
ag

e
di

ff
er

en
ce

s
be

tw
ee

n
th

e
al

go
ri

th
m

s
an

d
th

ei
r

t-
te

st
si

gn
ifi

ca
nc

e,
w

ith
α

=
0.

05
(√

in
di

ca
te

s
a

si
gn

ifi
ca

nt
ad

va
nt

ag
e

an
d
×

a
si

gn
ifi

ca
nt

di
sa

dv
an

ta
ge

).
T

he
t-

te
st

is
no

ta
pp

lic
ab

le
fo

r
th

e
M

on
k

da
ta

se
ts

be
ca

us
e

on
ly

1
tr

ai
n-

te
st

pa
rt

iti
on

w
as

us
ed

.

929

ESMEIR AND MARKOVITCH

References

Y. Baram, R. El-Yaniv, and K. Luz. Online choice of active learning algorithms. In Proceedings
of the Twentieth International Conference on Machine Learning, pages 19–26, Washington, DC,
USA, 2003.

K. Bennett. Global tree optimization: A non-greedy decision tree algorithm. Computing Science
and Statistics, 26:156–160, 1994.

C. L. Blake and C. J. Merz. UCI repository of machine learning databases, 1998. URL
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Occam’s Razor. Information Pro-
cessing Letters, 24(6):377–380, 1987.

M. Boddy and T. L. Dean. Deliberation scheduling for problem solving in time constrained envi-
ronments. Artificial Intelligence, 67(2):245–285, 1994.

R. R. Bouckaert. Choosing between two learning algorithms based on calibrated tests. In Proceed-
ings of the Twentieth International Conference on Machine Learning, pages 51–58, Washington,
DC, USA, 2003.

L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Wadsworth
and Brooks, Monterey, CA, 1984.

W. Buntine and T. Niblett. A further comparison of splitting rules for decision-tree induction.
Machine Learning, 8(1):75–85, 1992.

O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple parameters for support
vector machines. Machine Learning, 46(1-3):131–159, 2002.

M. W. Craven. Extracting Comprehensible Models from Trained Neural Networks. PhD thesis,
Department of Computer Sciences, University of Wisconsin, Madison, 1996.

J. Demsar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learn-
ing Research, 7:1–30, 2006.

T. Dietterich. An experimental comparison of three methods for constructing ensembles of decision
trees: Bagging, boosting, and randomization. Machine Learning, 40(2):139–157, 2000.

M. Dong and R. Kothari. Look-ahead based fuzzy decision tree induction. IEEE-FS, 9:461–468,
June 2001.

J. Dougherty, R. Kohavi, and M. Sahami. Supervised and unsupervised discretization of continuous
features. In Proceedings of the Twelfth International Conference on Machine Learning, pages
194–202, Tahoe City, California, USA, 1995.

S. Esmeir and S. Markovitch. Occam’s Razor just got sharper. In Proceedings of The Twentieth
International Joint Conference on Artificial Intelligence, India, 2007.

930

ANYTIME LEARNING OF DECISION TREES

F. Esposito, D. Malerba, and G. Semeraro. A comparative analysis of methods for pruning decision
trees. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(5):476–491, 1997.

U. M. Fayyad and K. B. Irani. What should be minimized in a decision tree? In Proceedings of the
Eighth National Conference on Artificial Intelligence, pages 749–754, Boston, Massachusetts,
USA, 1990. AAAI Press / The MIT Press.

Y. Freund and L. Mason. The alternating decision tree learning algorithm. In Proceedings of the
Sixteenth International Conference on Machine Learning, pages 124–133, Bled, Slovenia, 1999.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining,
Inference, and Prediction. New York: Springer-Verlag, 2001.

E. Hovitz. Computation and Action under Bounded Resources. PhD thesis, Computer Science
Department, Stanford University, 1990.

L. Hyafil and R. L. Rivest. Constructing optimal binary decision trees is NP-complete. Information
Processing Letters, 5(1):15–17, 1976.

G. H. John, R. Kohavi, and K. Pfleger. Irrelevant features and the subset selection problem. In
Proceedings of the Eleventh International Conference on Machine Learning, pages 121–129,
1994.

D.S. Johnson, C.R. Aragon, L.A. McGeoch, and C. Schevon. Optimization by simulated anneal-
ing: An experimental evaluation; part ii, graph coloring and number partitioning. Operations
Research, 39(3):378–406, 1991.

H. Kim and W. Loh. Classification trees with unbiased multiway splits. Journal of the American
Statistical Association, 96:589–604, 2001.

I. Kononenko, E. Simec, and M. Robnik-Sikonja. Overcoming the myopia of inductive learning
algorithms with RELIEFF. Applied Intelligence, 7(1):39–55, 1997.

M. Last, A. Kandel, O. Maimon, and E. Eberbach. Anytime algorithm for feature selection. In
Revised Papers from the Second International Conference on Rough Sets and Current Trends in
Computing, pages 532–539. Springer-Verlag, 2001.

M. Lindenbaum, S. Markovitch, and D. Rusakov. Selective sampling for nearest neighbor classi-
fiers. Machine Learning, 54(2):125–152, 2004.

D. Lizotte, O. Madani, and R. Greiner. Budgeted learning of naive bayes classifiers. In Proceedings
of the Nineteenth Conference on Uncertainty in Artificial Intelligence, Acapulco, Mexico, 2003.

W. Loh and Y. Shih. Split selection methods for classification trees. Statistica Sinica, 7:815–840,
1997.

S. Markovitch and D. Rosenstein. Feature generation using general constructor functions. Machine
Learning, 49:59–98, 2002.

J. Mingers. An empirical comparison of selection measures for decision-tree induction. Machine
Learing, 3(4):319–342, 1989.

931

ESMEIR AND MARKOVITCH

S. Minton, M. D. Johnston, A. B. Philips, and P. Laird. Minimizing conflicts: A heuristic repair
method for constraint satisfaction and scheduling problems. Artificial Intelligence, 58(1-3):161–
205, 1992.

T. Mitchell. Machine Learning. McGraw Hill, 1997.

O. J. Murphy and R. L. McCraw. Designing storage efficient decision trees. IEEE Transactions on
Computers, 40(3):315–320, 1991.

P. M. Murphy and M. J. Pazzani. Exploring the Decision Forest: An empirical investigation of
Occam’s Razor in decision tree induction. Journal of Artificial Intelligence Research, 1:257–
275, 1994.

S. K. Murthy and S. Salzberg. Lookahead and pathology in decision tree induction. In Proceedings
of the Fourteenth International Joint Conference on Artificial Intelligence, pages 1025–1033,
Montreal, Canada, 1995.

S. W. Norton. Generating better decision trees. In N. S. Sridharan, editor, Proceedings of the
Eleventh International Joint Conference on Artificial Intelligence, pages 800–805, Detroit, Michi-
gan, USA, 1989.

T. Oates and D. Jensen. The effects of training set size on decision tree complexity. In Proceed-
ings of the Fourteenth International Conference on Machine Learning, pages 254–262. Morgan
Kaufmann, 1997.

D. Opitz. An Anytime Approach to Connectionist Theory Refinement: Refining the Topologies of
Knowledge-Based Neural Networks. PhD thesis, Department of Computer Sciences, University
of Wisconsin-Madison, 1995.

D. Page and S. Ray. Skewing: An efficient alternative to lookahead for decision tree induction.
In Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence, Aca-
pulco, Mexico, 2003.

D. Page and S. Ray. Sequential Skewing: An improved skewing algorithm. In Proceedings of the
Twenty-First International Conference on Machine Learning, Banff, Canada, 2004.

A. Papagelis and D. Kalles. Breeding decision trees using evolutionary techniques. In Proceedings
of the Eighteenth International Conference on Machine Learning, pages 393–400, San Francisco,
CA, USA, 2001. Morgan Kaufmann Publishers Inc.

J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, CA, 1993.

J. R. Quinlan and R. M. Cameron-Jones. Oversearching and layered search in empirical learning.
In Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, pages
1019–1024, 1995.

J. R. Quinlan and R. L. Rivest. Inferring decision trees using the minimum description length
principle. Information and Computation, 80(3):227–248, 1989.

932

ANYTIME LEARNING OF DECISION TREES

H. Ragavan and L. Rendell. Lookahead feature construction for learning hard concepts. In Pro-
ceedings of the Tenth International Conference on Machine Learning, pages 252–259, Amherst,
MA, USA, 1993.

R. Rao, D. Gordon, and W. Spears. For every generalization action, is there really an equal or
opposite reaction? In Proceedings of Twelfth International Conference on Machine Learning,
pages 471–479, 1995.

S. Ray and D. Page. Generalized Skewing for functions with continuous and nominal attributes. In
Proceedings of the Twenty-Second International Conference on Machine Learning, Bonn, Ger-
many, 2005.

S. J. Russell and E. Wefald. Principles of metareasoning. In Proceedings of the First International
Conference on Pronciples of Knowledge Representation and Reasoning, pages 400–411, San
Mateo, California, 1989.

S. J. Russell and S. Zilberstein. Optimal composition of real-time systems. Artificial Intelligence,
82(1-2):181–213, 1996.

U. K. Sarkar, P. Chakrabarti, S. Ghose, and S. C. DeSarkar. Improving greedy algorithms by look-
ahead search. Journal of Algorithms, 16:1–23, 1994.

A. Schaerf. Tabu search techniques for large high-school timetabling problems. In Proceedings of
the Thirteenth National Conference on Artificial Intelligence, pages 363–368, OR, USA, 1996.

C. Schaffer. A conservation law for generalization performance. In Proceedings of Eleventh Inter-
national Conference on Machine Learning, pages 259–265, 1994.

R. Schapire. A brief introduction to boosting. In Proceedings of the Sixteenth International Joint
Conference on Artificial Intelligence, pages 1401–1406, Stockholm, Sweden, 1999.

Jude W. Shavlik, Raymond J. Mooney, and Geoffrey Towell G. Symbolic and neural learning
algorithm: An experimental comparison. Machine Learning, 6:111–143, 1991.

P. E. Utgoff. Incremental induction of decision trees. Machine Learning, 4(2):161–186, 1989.

P. E. Utgoff, N. C. Berkman, and J. A. Clouse. Decision tree induction based on efficient tree
restructuring. Machine Learning, 29(1):5–44, 1997.

V. Vapnik. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995.

G. I. Webb. Further experimental evidence against the utility of Occam’s Razor. Journal of Artificial
Intelligence Research, 4:397–417, 1996.

I. Witten and E. Frank. Data Mining: Practical machine learning tools and techniques. Morgan
Kaufmann, San Francisco, CA, 2005.

933

