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Abstract

Discount regularization, using a shorter planning horizon when calculating the optimal
policy, is a popular choice to avoid overfitting when faced with sparse or noisy data. It
is commonly interpreted as de-emphasizing or ignoring delayed effects. In this paper, we
prove two alternative views of discount regularization that expose unintended consequences
and motivate novel regularization methods. In model-based RL, planning under a lower
discount factor acts like a prior with stronger regularization on state-action pairs with
more transition data. This leads to poor performance when the transition matrix is esti-
mated from data sets with uneven amounts of data across state-action pairs. In model-free
RL, discount regularization equates to planning using a weighted average Bellman update,
where the agent plans as if the values of all state-action pairs are closer than implied by the
data. Our equivalence theorems motivate simple methods that generalize discount regular-
ization by setting parameters locally for individual state-action pairs rather than globally.
We demonstrate the failures of discount regularization and how we remedy them using our
state-action-specific methods across empirical examples with both tabular and continuous
state spaces.
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1. Introduction

In reinforcement learning (RL), planning under a shorter horizon is a common form of
regularization with a straightforward interpretation: restricting policy class complexity by
optimizing for shorter term rewards (Jiang et al., 2015). In the most extreme case, planning
with a discount factor of zero results in a contextual bandit algorithm. Using a reduced
or zero discount factor for planning is common in real-world applications such as mobile
health (Liao et al., 2020; Trella et al., 2022), medicine (Oh et al., 2022; Awasthi et al.,
2022; Durand et al., 2018), and education (Cai et al., 2021; Qi et al., 2018), particularly in
low-data settings.

In this paper, we demonstrate the equivalence between discount regularization and other
common regularization techniques. These connections provide a deeper understanding of
discount regularization that reveals its limitations. We first prove that in model-based
tabular RL, discount regularization produces the same optimal policy as averaging the
transition matrix with a regularization matrix that is the same for all states and actions.
In this view, discount regularization forces the agent to plan as if the distribution over next
state is more similar to one another across different states and actions than was observed
in the data. This can also be viewed in terms of a prior on the transition matrix. We prove
an analogous result for model-free RL: discount regularization produces the same optimal
policy as a modified Q-function update rule of a specific weighted-average form. In this
form, we see that discount regularization acts similarly to a penalty on the value function,
forcing the state-action values to be more similar. Finally, we demonstrate mathematically
that discount regularization approximates a A-return.

Reframing discount regularization in these ways exposes unintended consequences. One
consequence is that the magnitude of the prior implied by discount regularization is higher
for state-action pairs with more transition observations in the data and vice versa. This
is generally not desirable as we want stronger regularization on state-action pairs that we
have observed less, and to rely on the data in those that we have observed more. Another
negative effect is that the implied prior has the same transition distribution for all state-
action pairs. This is inappropriate in many contexts, where it is better to replace this
implicit prior with an informed prior that reflects knowledge about the environment.

Our equivalence theorems motivate model-free and model-based offline regularization
methods that offer solutions to the problems exposed above. In the model-based setting,
we apply certainty-equivalence RL, where the agent takes the estimated model as true when
calculating the optimal policy (Goodwin and Sin, 1984). We take a simple estimate of
the transition model (MLE for a tabular state space or kernel regression if continuous) and
regularize the estimate to use within simple RL methods. Our methods tailor regularization
to the task at hand, which includes both the data set and the environment. To mitigate
the issue of inconsistent prior magnitudes in data sets with uneven exploration, we derive
a state-action specific formula for the regularization parameter. The method we use to
derive this parameter can be adapted to other priors to match the transition dynamics of
the environment.

Finally, we demonstrate our results empirically. First, we confirm our equivalence theo-
rems in a tabular setting. We then demonstrate that a uniform prior with fixed magnitude
across state-action pairs outperforms discount regularization across environments. We com-
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pare our model-based and model-free state-action-specific regularization methods to each
other as well as to regularization with a fixed global parameter. Then, we demonstrate that
our model-based method extends successfully to a continuous state space.

This paper extends previous work published in Rathnam et al. (2023). The major
extensions are (1) a model-free analysis that connects discount regularization to a pe-
nalized Q-function, (2) analysis of how discount regularization approximates a truncated
lambda-return, (3) introduction, analysis and simulations of a novel model-free regulariza-
tion method, including its relationship to pessimism, and (4) application of novel regular-
ization methods to a continuous state space.

2. Related Works

Discount Regularization. Jiang et al. (2015) demonstrate that the optimal policy generated
using a “planning discount factor” that is shorter than the true discount factor of the MDP
often outperforms the policy learned using the true discount factor when both policies are
evaluated in the true environment (using the true discount factor). They prove that using a
lower planning discount factor to calculate the optimal policy controls model complexity by
restricting the number of possible policies considered, thereby avoiding overfitting. They
further demonstrate that the benefit of a lower planning discount factor is increasingly
pronounced in cases where the model is estimated from a smaller data set. Amit et al.
(2020) refer to this concept as “discount regularization,” a term which we use here. Unlike
these works, we provide means to connect discount regularization with placing a prior on
the transition matrix.

Previous works also discuss the limitations of a fixed discount factor and present ap-
proaches for more flexible discounting, for example state-dependent (Wei and Guo, 2011;
Yoshida et al., 2013), state-action-dependent (Pitis, 2019), and transition-based discounting
(White, 2017). We add to this work by demonstrating that discount regularization carries
implicit assumptions of equal transition distributions for all state-action pairs and stronger
regularization on those with more transition data.

Bayesian RL. While a Bayesian prior encodes expert knowledge, information from
previous studies, or other outside information, we can also view a prior as a form of regular-
ization since it forces the model not to overfit when data is limited (Poggio and Girosi, 1990;
Ghavamzadeh et al., 2015). This is a flexible tool that allows us to regularize in a way that
matches our prior knowledge and beliefs about the environment. In model-based Bayesian
RL, the problem is often framed as a Bayes-Adaptive MDP (BAMDP), an MDP where
the states are replaced by “hyperstates” that reflect the original state space combined with
the posterior parameters of the transition function (Duff, 2002). In general, Bayesian RL
algorithms do not explicitly address planner overfitting; rather they incorporate the prob-
ability distribution over models, causing the planner not to overfit to an uncertain model.
For example, model-based Bayesian RL methods draw sample models from the posterior
(Asmuth et al., 2012), sample hyperstates (Poupart et al., 2006), or apply an exploration
bonus based on the amount of data (Kolter and Ng, 2009a) or based on the variance of the
parameters (Sorg et al., 2012). The BAMDP framework can also be extended to the case
of partial observability (Ross et al., 2007, 2011). In this paper, we discuss planning using
the posterior mean of the transition matrix under a Dirichlet prior as a regularized form
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of the transition matrix, which is a common choice in model-based RL, e.g. Vlassis et al.
(2012); O’Donoghue et al. (2020). In contrast to Bayesian methods, the methods that we
propose regularize the model to get a point estimate which can be used directly in simple
non-Bayesian RL methods.

Penalized Value Function. In the model-free setting, we relate discount regularization
to a modified value function. Previous RL regularization methods work by adding a bonus
or penalty to the value function. For example, an L; (Kolter and Ng, 2009b; Liu et al.,
2012; Ghavamzadeh et al., 2011) or Lo (Farebrother et al., 2018; Cobbe et al., 2019) penalty
is commonly added to the value function. Entropy regularization can function by adding
an entropy bonus to the gradient of the Q-function (O’Donoghue et al., 2016) or the reward
(Nachum et al., 2017). Another use of a value function bonus is to encourage exploration
by adding a bonus to the value of unseen states (Kolter and Ng, 2009a). Conversely, offline
methods often employ pessimism penalize the value of states and actions not well-explored
in the data. We analyze our method in the context of point-wise pessimism Jin et al. (2021)
and Bellman-consistent pessimism Xie et al. (2021) in Sec. 5.2.3.

Connecting Regularization Methods. Several previous works have established con-
nections between regularization methods, as we do here. For example, Wu et al. (2019)
introduce a framework that connects a penalty on value function with policy regularization,
Neu et al. (2017) connect entropy-regularized algorithms, and Li et al. (2006) present a uni-
fied view of state aggregation schemes. Liu et al. (2019) empirically compare a wider range
of regularizers. More recently, Eysenbach et al. (2023) prove that one-step RL and critic
regularization methods result in the same policy under certain assumptions. Most similar
to our work, Amit et al. (2020) connect discount regularization with Lo regularization in
TD learning. We discuss the connection to this work in Section 4.3.

3. Background and Notation

Markov Decision Process. We consider a finite, discrete Markov decision process (MDP).
An MDP M is characterized by < S, A, R,T,~v >, defined as follows. S: State space of size
Ns. A: Action space of size N,. R(s,a): Reward, as a function of state s and action a.
T(s,a,-): Transition function, mapping each state-action pair to a probability distribution
over successor states, assumed unknown and estimated from the data. ~: True discount
factor for the MDP, 0 < ~ < 1, under which a policy 7 is evaluated. We also use the
following notation: 7,: Planning discount factor 0 < «, < 7. 7, is not used to evaluate
the policy; it is used for planning only, where replacing v with ~, serves as a regularizer ;
c; jk: count of transition observations in data set starting at state s;, taking action a; and
transitioning to state sy.

Certainty Fquivalence. The model-based portion of our analysis is in the context of
certainty-equivalence RL. Certainty equivalence is a useful approach to model-based RL
where the agent takes the estimated model as accurate when finding the optimal policy.
It separates the estimation of the model from the policy optimization (Goodwin and Sin,
1984). The maximum likelihood estimate (MLE) is a natural choice for the model estimate,
however maximum likelihood solutions can overfit, particularly in the case of small data
sets (Murphy, 2012). Often, a better policy is obtained by regularizing the MDP before
learning the certainty-equivalence policy.
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4. Alternative Views of Discount Regularization and Connections to
Other Regularization Methods

Discount regularization is a simple concept—the agent finds an optimal policy using a
shorter horizon than the environment’s true horizon y—yet analyzing its relationship to
other methods provides new insights on regularization. In the sections that follow, we will
demonstrate how discount regularization relates to different methods and interpretations:
a weighted average T', a Bayesian prior on T, a penalized Q-function, and A-returns.

4.1 Discount Regularization as a Weighted Average Transition Matrix

We begin with a reframing of discount regularization as a weighted average transition ma-
trix. This form illustrates the classic view of discounting as partial termination and moti-
vates our first equivalence theorem.

4.1.1 DISCOUNT REGULARIZATION AS PARTIAL TERMINATION

First, we show that discount regularization is mathematically equivalent to replacing the
transition matrix with the weighted average between that transition matrix and a matrix of
zeros. The form is unusual as the matrix of zeros is not a transition matrix, however it gives
intuition on discount regularization and motivates the equivalence theorem and Bayesian
formulation that follow.

To cast discount regularization in certainty-equivalence RL as a weighted average tran-
sition matrix, consider the Bellman equation for the value of each state under policy ,
V™ = Ry +~T;V™, where the vector V" is the value of each state, R, is the vector of
rewards, and T} is the transition matrix, all under policy 7. Let 7, < 7 be the plan-
ning discount factor, the lower discount factor used for regularization when calculating the
certainty-equivalence policy. (This policy will be evaluated under the true discount factor
7.) Then we have the Bellman equation V™ = R, 4+ ,T:V™. We rewrite the product ~,Tx
from the Bellman equation as the product of true discount factor v and a weighted average
matrix: v Tr = Y[(1 — €)Tr + €L eros), Where Teros is an appropriately sized matrix of zeros
and e = 12,

Using this insight, when estimating the transition matrix from data, we can use the
following weighted average transition matrix and the true discount factor « for planning in
place of the MLE transition matrix and lower discount factor ~,.!

Taise (55, a4,-) = (1 — ) TMLE(Si, @5, ) + €Theros, where ¢ = 1 W,Yp. (1)
reg
In Theorem 1, we will broaden the relationship between discount regularization and a
weighted average transition matrix demonstrated here. We prove that discount regulariza-
tion generates the same optimal policy as replacing the transition matrix with a weighted
average matrix of a specific form.

Eq. 1 provides another way to view discounting as “partial termination” (Sutton and
Barto, 2018). According to this classic interpretation, the sum of discounted rewards can
be viewed as the sum of undiscounted rewards partially terminating with degree 1 minus

1. See Appendix A.2 for details.
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Figure 1: River Swim MDP described in Sec 6.1. Planning with lower discount rate or
weighted average T yield different values (colors), but the same optimal policy
(arrows).

the discount factor at each step. This can also be viewed as the agent transitioning to
an absorbing state with probability 1 minus the discount factor at each step. To see this,
observe that setting v = 1, Eq. 1 represents the agent terminating with probability 1 — ~,
at each step.

4.1.2 EQUIVALENT POLICIES REGULARIZING THE HORIZON AND TRANSITION MATRIX

The relationship between discount regularization and a weighted average transition matrix
is in fact more general than discussed in the previous section. Eq. 1 shows that discount
regularization is mathematically equivalent to averaging the transition matrix with a matrix
of zeros, but in fact it also produces the same optimal policy as averaging the transition
matrix with any regularization matrix that is the same for all states and actions when
both methods use the same value of €. This result is stated more precisely in Thm. 1 and
illustrated in Fig. 1.

Theorem 1 Let My and My be finite-state, infinite horizon MDPs with identical state
space, action space, reward function. Let 0 < v <1, 0 < e <1, and let Trey(s,a,-) be any
matriz used for reqularization that is the same for all (s,a), i.e. Treq(s,a,-) =T V(s,a).

If My has transition function T and uses discount rate (1 —€)y in planning and Ms has
transition function (1 —€)T + €Tyeq, and uses discount rate v in planning, then My and Mo
have the same optimal policy.

Proof

(1) The optimal policy for all MDPs whose Bellman optimality equations differ only
by added constant ¢ to the reward are the same. Consider Bellman’s optimality equation
for any arbitrary state s and action a for an MDP in which constant ¢ is added to every
reward R(s,a):

Q"(s,a) = R(s,a) + c+ 7Y T(s,a,5) max Q"(s', ).

s/

It is known that the optimal policy of an MDP is not affected by adding the same
constant c to all rewards R(s,a). (See, for example, Ng et al. (1999): “constant offsets of
the reward do not affect the optimal policy when v < 1”.) Proof of this step in Appendix
B.
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It follows that the optimal policy mopt(s) = argmax,Q*(s,a) is the same for all values
of c. So for all values of constant ¢, the MDP with the Bellman optimality equation above
has the same optimal policy.

(2)  The Bellman optimality equation for an MDP in which the transition matriz is
reqularized by taking its weighted average with a matriz Ty, can be written in terms of a
lower discount factor and an added constant. Let Tp.cq4(s, a,-) be a transition matrix that is
the same for all (s,a),

Q*(s,a) = R(s,a) + ’yZ[((l —e)T(s,a,s") + €lyeq(s,a, ")) max Q*(s',ad)]

= R(s,a) +vy(1 —¢) Z T(s,a,s) max Q*(s',d) + 'yeZTreg(s, a,s') max Q*(s',d).

s’ s’

Letting c(s,a) = ve Yy Treg(s, a, s') max, Q*(s',a’), Bellman’s optimality equation is:

Q*(s,a) = R(s,a) + c(s,a) +v(1 —¢) ZT(S, a,s') max Q*(s',d").

s/

By the assumptions of Thm. 1, Tc4(s,a,s’) is the same for all (s,a) and is therefore
a function of s’ only. max, Q*(s',d’) is also a function of s’ only. Therefore ¢(s,a) is a
number, which we can call c,

c = e Z Treg(s,a,s) max Q*(s',d') = constant.
/ v

func. of s only func. of s’ only

(8) Setting constant ¢ to 0 does not change the optimal policy of the resulting MDP.
By (1), replacing ¢ with 0, the resulting new MDP with Bellman optimality equation

Q*(s,a) = R(s,a) +v(1 —¢) Z T(s,a,s) max Q*(s',d)

Sl

has the same optimal policy as the MDP whose Bellman optimality equation has constant
¢ added to the reward.

(4) The resulting Bellman equation is that of an MDP with the original unregular-
ized transition matriz T(s,a,s') and reduced discount factor (1 — €)7y. Therefore, the MDP
with discount rate v and transition matrix (1 — €)T'(s,a,s") + €I¢4(s,a,s’) and the MDP
with discount rate y(1—¢) and transition matrix T'(s, a, s’) have identical optimal policies. B

Thm. 1 provides a deeper understanding of how discount regularization functions. At
maximum regularization, v, = 0 or equivalently € = 1, it unites two views of the relationship
between bandit and MDP algorithms. An MDP algorithm with v = 0 creates a (non-
adversarial) contextual bandit algorithm (Agarwal et al., 2019). Alternatively, when “the
transition probability is identical... for all states and actions” in an MDP algorithm, it also
forms a contextual bandit algorithm (Zanette and Brunskill, 2018). Our proof extends this
equivalence beyond the bandit setting to all amounts of regularization.

Thm. 1 also reveals the limitations of discount regularization. First, the regularization
matrix is the same for all state-action pairs, so it will be biased in environments where
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the distribution over next state varies greatly across state-action pairs. Furthermore, as
we demonstrate in Sec. 4.2, this theorem leads to the result that discount regularization
provides stronger regularization on state-action pairs with more data.

4.2 Discount Regularization Implies a Dirichlet Prior on the Transition
Function

As discussed in Sec. 2, a Dirichlet prior on the transition matrix T functions as a flexible
form of regularization. Given a prior on T for state-action pair (s;,a;), Tprior(Si, aj, ) ~
Dirichlet (o j 1, .., @ j,N, ), the posterior mean represents a regularized form. Though simple,
this generates several important insights that deepen our understanding and facilitate better
regularization.

4.2.1 POSTERIOR MEAN AS A WEIGHTED AVERAGE

Let (¢ 1, .-, ¢ij,n,) be the transition count data observed from state s; to states 1 through
Ny under action aj. Then the posterior mean of the transition matrix, T pest , is equal to a

weighted average of the MLE transition matrix and the mean of the priorf2

Tpost (Si, aj, ) = (1 - ﬁi,j)TMLE(S’ia aj, ) + E’i,ijrior (8i7 aj, ')7

mean mean

SRSy @ik (2)

61'7]' = N N .
D ko1 Cigk t D ks gk

4.2.2 DERIVING THE PRIOR MAGNITUDE

In Thm. 1, we proved that discount regularization produces the same optimal policy as
averaging the transition matrix with any regularization matrix that is the same for all
states and actions. We also know from Eq. 2 that a weighted average transition matrix can
be written in terms of the MLE transition matrix and a Dirichlet prior. In this section, we
combine these two relationships to show that using state-action visitation rates from the
data allows us to produce an empirical Bayes prior on T'(s,a,-) that results in the same
optimal policy as discount regularization.

Adapting the form of Thm. 1 to the setting where T is estimated as the MLE of the
transition data, discount regularization with planning discount factor 7, < v produces the
same optimal policy as replacing TMLE(S, a,-) with (1 — e)TMLE + €T}y, where e = 12
and T4 is the same for all (s,a). Using Eq. 2, we can view this weighted average transition
matrix as a posterior mean. Viewing (1 — e)TMLE + €l¢4 as a Bayesian posterior mean,
the weight € = 7;7” equates to ¢; ; in Eq. 2.

Since discount regularization employs the same planning discount rate and consequently
the same value of € for every state-action pair, the prior that produces an equivalent policy
also has the same value of € at every state-action pair. Setting the formulas for € from Eq. 1
and Eq. 2 equal and solving for the sum of the prior magnitude Z,ivil «; ;) reveals the
relationship between the planning discount factor 7, and the prior magnitude. We see that
a lower planning discount factor implies a prior whose magnitude depends on the number

2. See Appendix A.1 for derivation.
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Figure 2: Smaller planning discount factor =y, implies larger magnitude of a uniform Dirich-
let prior for an MDP with 10 states, 20 transition observations per state, and -y
= 0.99.

of transitions from (s;, a;) in the data,

N Ny N
D k= ( p) D ik (3)
k=1

Yp k=1

In the case of a uniform prior, which we use in our simulations, the magnitude simplifies to

N5 ..
Yp N,

The relationship between uniform prior magnitude «; ;5 and planning discount factor -,
for an individual state-action pair is illustrated in Fig. 2 where a smaller planning discount
factor «y, implies a larger uniform prior magnitude «. Furthermore, Eq. 3 shows us that, for
any planning discount factor v,, the magnitude of the corresponding Dirichlet prior is higher
for state-action pairs with more data. In other words, those (s,a) with more observations
in the data are regularized more. Especially for data sets with uneven distribution of
transition data, it may be better to use a more flexible regularization method. In Sec. 5.1,
we introduce state-action-specific regularization to mitigate this issue. Note that the special
case of v, = 0, a type of contextual bandit, presents an exception as the implied priors for
all (s,a) are of infinite magnitude. This case is fundamentally different as the future is not
just discounted but rather completely ignored.

Next we demonstrate that the same equivalence relationship from Thm. 1 holds in the
model-free setting. We will see that by changing the setting from model-based to model-
free, discount regularization can be viewed as a modified Q-function update rule instead of
a prior on the transition matrix.

4.3 Discount Regularization as a Modified Q-Function

The equivalence between regularizing the horizon and regularizing the transition matrix
arises when viewed in the model-based setting, however, this relationship extends to model-

3. See Appendix A.3 for details.
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free algorithms as well. Restated in the model-free context, discount regularization functions
like an added penalty or bonus on the Q-function.

Theorem 2 Let My and My be finite-state, infinite horizon MDPs with identical state
space, action space, and reward function. Let discount factor 0 < v < 1, regqularization
parameter 0 < € < 1, and let Qrey(s,a) be a function used to reqularize the Q-function that
is constant in (s, a), i.e. Qreg(s,a) = Qreg-

If My uses discount rate v1 = (1 — €)y and state-action value function

Q"(s,0) = R(s,a) + nBynr(s.a,)maxQ"(s',d)[5 = 5, A = a
in planning, and Mo uses discount rate vy and state-action value function
Q*(s,a) = R(s,0) + VEgr(s.a,) [max[(1 = )Q™(s', ') + Qreg(s,0)]|5 = 5, A = a]  (4)
in planning, then My and My have the same optimal policy.
Proof (1) Qrey(s,a) does not depend on 7', so Eq. 4 is equal to:

Q*(s,a) = R(s,a) + ¥€Qreg(s,a) + YEy 15,4, [HZE}X(l —6)Q*(s,d)|S=5,A=al.

(2) Qreg(s,a) is constant by construction, therefore ¢ = yeQreq(s,a) = y€Qyeq is con-
stant,

Q*(s,a) = R(s,0) + ¢+ 7By p(s.a.) [max(l — Q" (s, a)|S = 5, A = a].

(3) By step (1) of the proof of Thm. 1, setting ¢ = 0 does not change the optimal policy.
Therefore the MDP with the following Q-function has the same optimal policy as Mo,

Q*(s, CL) = R(S, (L) + VES’NT(S,A;) [IIZE/LX(]_ — E)Q*(S,, a/)‘S = s, A= CL]

R(s,a) +7(1 = €)Eyr(s,a,) [max Q*(s',d')|S = s, A = a
R(s,a) + 1 Egr(s,4,) [mz}x Q*(s',a")|S =s5,A= a].

This is the Q-function for MDP Mj. |

The model-based (Thm. 1) and model-free (Thm. 2) versions of the discount regular-
ization equivalence theorem make the same assumption: the agent plans as if it transitions
according to a distribution Tye4(s, a,s’) that is the same for all (s,a) with probability € at
each step. This is clear in the model-based version. In the model-free setting, transitioning
according to Ty, at each step with probability € equates to averaging the expected value
of next state with Qreg = Eg1,.,(5,A,)[MaXy Q*(s',a’)]. Despite the same assumptions,
the model-based and model-free versions lead to distinct interpretations. We showed above
that when viewed in the model-based setting, discount regularization functions by restrict-
ing model complexity, or acting like a prior on the transition matrix. In the model-free

10
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setting, discount regularization relates to regularization methods that penalize the value
function.

As mentioned in Sec. 2, previous works have proven equivalences between different reg-
ularization methods that place a penalty or bonus on the value function. The equivalence
in Thm. 2 is comparable to Proposition 1 in Amit et al. (2020). They showed that discount
regularization in TD learning methods functions equivalently to a regularization term added
to the objective. The formula for the regularization term differs from ours given the dif-
ferent setting and assumptions, however the insights are consistent. First, they note that,
“This term penalizes large value estimates and therefore encourages consistent value esti-
mates across state-action pairs which may encourage generalization by reducing the effect
of spurious approximation errors.” In our Thm. 2, the modified Q-function averages the
state-action value with a constant, pushing all value estimates closer together. They also
conclude that “...states that are visited less often are less regularized” because the regu-
larization term depends on the distribution of states in the data. This is exactly what we
observed from the empirical Bayes prior in the model-based setting as discussed in Sec. 4.2.

4.4 Discount Regularization as a Truncated Lambda Return

A final interpretation of discount regularization is as an approximation to the lambda return,
which is another common form of regularization in RL.

Discount regularization calculates an approximate value equal to a truncated
lambda return. Unlike the A-return, discount regularization does not give the exact
return for a fixed v, < 7. By expanding out the terms of the A-return, we show that
the approximate return under discount regularization is equal to a A-return with truncated
k-step returns.

To see this, first, expand both sums in the definition of the A-return.

R =(1-A)) iR
k=1

0o k—1
= (1= XN A Ry YV (Sea)]
k=1 j=0

(1= MNA Y ORi1 + 4 VT (Se41)]

+ (1= MMM Rt + 7 Rego + Y2V (Si40)]

+ (1= N[ Ris1 + ' Reyo + Y Riys + vV (Siy3)]
+ .

Truncating each k-step return after the k rewards (or equivalently setting V™ (Six) =
0VEk), we recover discount regularization. To see this, group the terms for each reward
together then set V™ (S;1x) = 0.
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First grouping terms:

R} =(1-X2O_ MRy +(1- Z/\ )Riya+ (1= XV N)Reps+ -
k=0 k=1 k=2

=X N A =N N Ry

AP NN = A= X N - )Ry

+ PP+ XM =N =X =M — )Ry

4.

+ (1= VA VT (Sep1) + (1= DAYV (Spp2) + (1 - )\)/\2 SV (Sys) +

= (YN Reg1 + (YA Revz + (YA Regg + -+ (1 = VZ M)V (Styrs)
R} = (VN Riprpr + (1= N7 D> (O V™ (Stpar1) (5)
k=0 k=0

Set V™(Six) = 0 to get a truncated A-return: R} = S°7° ((YA)* Ry p11. Let planning
discount factor v, = yA. Then our truncated lambda return is equal to the return under
discount regularization, Rt = pe o’YpRt+k+1

Bias of the discount regularized value Since Ri‘ is equal to the true return, Eq. 5,
decomposes the return into the discount regularized return and a bias term. Taking the
expectation over policy 7 to get value, the bias of the discount regularized estimate of value
is Bias(Vaise (8)) = —Ex[(1 — Ay 352 o(AY)* V™ (Stik+1)|St = s]. The bias is the weighted
average V.;lgue of states expected to be visited when following policy 7 starting at state s,
with weight decaying over time. As expected, the discount regularized value is most biased
for states from which it is expected to reach high-value states soon.

The truncated lambda return also provides another illustration of the interpretation of
discounting as partial termination or transitioning to an absorbing state with probability
1 minus the discount factor at each step, as we saw in Sec. 4.1.1. Setting all state values
in the bias term to 0 represents a partial termination at each step. In the undiscounted
setting, v = 1 and the bias term reflects partially terminating with degree 1 — A at each
time step.

5. State-Action-Specific Regularization

We exposed in Eq. 3 that discount regularization functions like an empirical Bayes prior
with the undesirable property of stronger regularization strength on state-action pairs with
more data. To address this problem, we apply the model-free and model-based equivalence
theorems to motivate methods that tailor the amount of regularization to each state-action
pair rather than setting a global regularization parameter.

5.1 Model-Based Regularization Method

To avoid the issue of mismatched regularization strengths across state-action pairs, we
return to the weighted average form introduced in Sec. 4.1.1 to derive a formula for state-

12
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action-specific regularization. Using this form, we calculate the MSE of the estimated
transition matrix and identify the value of regularization parameter ¢ that minimizes this
error separately for each (s,a). While we recognize that a low-MSE transition matrix
estimate does not guarantee a good policy (since some errors in 1" affect the optimal policy
more than others),? it is a reasonable step towards that goal.

We derive a closed-form expression for the MSE for the case of a uniform Dirichlet
prior. We take MSE(T'(s, a,-)) to be the sum of the MSE of the individual elements. The
derivation using the bias-variance decomposition of MSE is provided in Appendix C and the
resulting form is below. Letting Tunie be the posterior mean of T' under a uniform Dirichlet
prior,

N
MSE[Tunit(si aj,-)] = > (1 - Ei,j)2%T(Si, aj, sk)(1 —T(si, a5, sk))
k=1 Zkil Ci,jk
variance (6)
+é2 <1 —T(s;,a; sk)>2.
i,j NS 19 g,
bias?

Let ¢ ; be the value of the regularization parameter ¢; ; that minimizes the MSE equation.
Then,

N
K(ss,a;) T(si, a5, s6)(1 = T(si; a5, sk))
;(,j = K = JN , where K(si,aj) _ k=1 ~ . (7)
(51205) + L i > (N% — T(siya;,sk))?

k=1

The first term of Eq. 6 is the contribution of the MLE’s variance to the error, in this
case the only source of variance. The second term is the bias introduced by regularization.
The strength of regularization ¢; ; controls the trade-off between the bias and variance. The
variance is driven by the amount of data 21&1 ¢; jk both through its role in setting the
amount of regularization and as a factor inversely impacting the variance term. Both bias
and variance are impacted by the true transition distribution 7'(s;,a;,-). A deterministic
T'(si,aj,-) maximizes bias for a given € j, but results in € ; = 0 (since T'(s;, aj, s})(1 —
T(s;,a4,5;)) = 0 for all ;). At the other extreme, if T'(s;,a;,-) is uniform, variance is
maximized for a given €; ; but there is no bias, so we default to €/ ; = 1. Intermediate values
of € ; trade off between bias and variance. A uniform prior on T'(s;, a;, ) with state-action-
specific parameter e;j improves upon discount regularization by setting the parameters
locally for each state-action pair rather than forcing one global regularization parameter.

Furthermore, there is no parameter tuning required, simply a plugin estimate for T (e.g.
the MLE). In practice, the true transition matrix 7" is not known and must be estimated. We

4. Consider, for example, the case of the River Swim Environment described in Sec. 6.1. Under the optimal
policy, the agent goes right towards the large reward. Overestimating the probability of going right
under the solid line action results in the agent preferring the correct action more and hence results
in learning the correct optimal policy. Conversely, underestimating the probability of going right by a
smaller amount could result in learning the wrong optimal policy despite lower MSE.

13



RATHNAM, PARBHOO, SWAROOP, PAN, MURPHY, AND DOSHI-VELEZ

may worry that in the low data regimes in which regularization is required, the estimate
of T" will not be good enough to estimate € ;. Nonetheless, our empirical examples in
Sec. 6.3 demonstrate that our formula for € ; leads to a reduction in loss over a single
global regularization parameter.

Note that the state-action-specific parameter e; j combined with regularization matrix
Treq does not map directly to a state-action-specific discount factor. Step (2) of the proof of
Thm. 1 depends on ¢ = e > Trey(s, a, s") maxy Q*(s', a’) being constant. Otherwise, we
cannot set ¢ = 0 and expect the resulting MDP (which represents discount regularization) to
have the same optimal policy. A state-action-specific discount factor breaks this equivalence.

5.2 Model-Free Regularization Methods

In the model-free setting, as in the model-based setting, a fixed universal regularization
parameter like the on used in discount regularization can cause a mismatch in regularization
strengths when the count data is uneven across state-action pairs. To address this problem,
we set regularization strength separately for each (s;,a;) based on the Q-function and
amount of data. A natural choice for state-action specific parameter e,f,j in the model-
free setting is the value that minimizes the mean squared error in Q separately for each
state-action pair. We investigate this approach, calculating the analytical solution by two
different methods.

We demonstrate the performance of these two calculations for € ; on fitted Q-iteration
(FQIL, Ernst et al. 2005). In FQI, Q(s,a) is estimated for each observation {s,a, s'}4 in the
data set, qg = R(sdl ag) + ymax, Q(s&, a).5 FQI alternates between using Q to calculate
{q}4 and updating ) to minimize the MSE across {q}4. To regularize, we use the weighted
average Q-function from Eq. 4 in calculating {¢}q4, with Q,¢q equal to the average value
across states. This is equivalent to the case of a uniform regularization matrix T}.eq(ss, aj, )
in the model-based setting. We update €; ; at each iteration, minimizing the sum of errors
in estimates of Q(s;,a;) across the data. The procedure is detailed in Algorithm 1.

5.2.1 REGULARIZATION PARAMETER CALCULATION: METHOD 1

To derive €; ;, we first calculate the sum of squared errors (SSE). Given the iterative proce-
dure, we derive the SSE and resulting expression for ez j for a fixed policy 7 and associated
Q-function Q™ (s;,a;), which is updated at every step.

The SSE is the sum across all data tuples of the squared errors incurred by estimating
the Q-function for tuple {s;,a;,s)} with weighted-average Q-function R(s;,a;) + v(1 —
€,;)Q™ (si,m(s;)) + ’yem-N% Zg‘;l Q™ (sg, m(skr)). Therefore, the contribution of each state-
action pair to the error calculation is weighted by how frequently it appears in the data.
This results in the expression,

Ns
SSE = Z Z Cijk (R(Si, aj) + ’Y(l - Ei,j)Qﬂ(ska W(Sk))
i k=1 (8)

N
g D Qs mlsw)) - Q(sia)

S k=1

5. For simplicity, assume rewards are known.
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Algorithm 1 FQI with State-Action-Specific Regularization

1: Initialize Q(s,a) = 0V(s, a)
2: Initialize €*(s, a) randomly
3: for i in num_iters do
4: Start with P = {}

5 Step 1: Estimate @ for each (s,a) data observation

6 for every tuple {s,a,s’} in data set do

7 q=R(s,a) +~(1 - €;,) max, Q(s',a) + yes qaveragey, (maxy Q(s",a"))

8 Add {(s,a),q} to P

9 end for

10: Step 2: Learn @)

11: Fit linear regression model with one-hot (s,a) encoding as features and q as depen-
dent variable

12: Set Q(s,a) equal to the coefficient for (s,a) from the regression model

13: Step 3: Update €5 ,. Set € , equal to the diagonal values of matrix £ calculated by
Eq 9, using Q from Step 2 and T™(s) = argmaxaQ(s,a).

14: end for

15: return value, optimal policy based on learned Q

For each (s;,a;), we solve for the value € ; that minimizes Eq. 8 by setting the derivative
equal to zero. Then we re-write the expression in matrix form to solve for all € ; simultane-
ously. We use the following notation for the matrix equation: £ is an NgN, x Ny, matrix
with € ; across the main diagonal, vg,, is the average state value under policy m, C'is the
N¢N, x N matrix of transition counts (one row for every (s, a), one column for every s),
IT is a matrix mapping Q™ to V™ for fixed policy w. We get,

27, T 2 : T 2 2, -1
& = [12Diag(C [07Q7sy )~ 24%05,, Diag(CTIT Q") + 42 (v, )2 Diag(Cly, x1)|
—

elementwise square
[’yDiag(R)CHTQ” + v Diag(C [HTQ’T]SQ JIN. N, x1 — ’yDz’ag(C’HTQ”)Q’r
———
elementwise square
— VangDiag(R)CLN, x1 — 'y2nggDiag(CHTQ”)1NSNE x1 + Vg Diag(Cly, Xl)Q”} .
9)

Derivations for both SSE and £ are in Appendix D.

5.2.2 REGULARIZATION PARAMETER CALCULATION: METHOD 2

We also calculate the MSE of Q7(s,a) using the assumption that the transition count
data follows a multinomial distribution, similar to the model-based case. For each (s,a),
we separately calculate the bias and variance resulting from estimating the Q-function for
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tuple {s;,a;, s} with weighted-average Q-function

N N,
S 1 S
R(si,aj) +v(1 —¢€5) ;T(si, aj, sk)Q™ (s, m(sk)) + ’yemﬁs ,; Q™ (s, m(sk))-

Like in the model-based case, T is estimated from the transition counts in the data, which
is assumed to be multinomially distributed. In this case, each state-action pair contributes
equally to the error, rather than each data tuple contributing equally as method 1. The
MSE derivation for this method is in Appendix D.3.

These methods perform similarly to each other in our simulations, but do not perform
as well as the model-based approach or even a fixed global regularization parameter. We
discuss the reasons in Sec. 6.4.3.

5.2.3 CONNECTIONS TO PESSIMISM

By setting regularization strength inversely proportional to the transition count in the data,
our method resembles pessimism however, it does not satisfy the definitions of point-wise
or Bellman-consistent pessimism in Jin et al. (2021) and Xie et al. (2021), respectively.

Point-wise Pessimism. In the pessimistic value iteration meta-algorithm introduced in
Jin et al. (2021), pessimism is encoded as a state-action-specific penalty applied to the
Bellman operator at each step of value iteration. Specifically, this penalty is instantiated
by subtracting a -uncertainty quantifier I'(s, a), a function that bounds the absolute value
of the difference between the true Bellman operator and its estimate using the data with
probability 1 — £.9

The Bellman operator BV (s, a) in our method can be framed similarly. In the model-
free setting, we have:

A~

BV (s,a) = R(s,a) + max((1 — €:2)Q(s,d') + € 4 Qreg)

= R(s,a) +7 max Q(Sla a') + 7€:7a(Qreg — max Q(Sla a'))
a a

BV (s,a) penalty/bonus

We must have I'(s,a) > 0 in order to be an uncertainty quantifier because it upper
bounds an absolute value. This would equate to a negative or zero “penalty/bonus” term
in the equation above. Our penalty term, however, can be either positive or negative,
pushing estimated Q-values towards .y rather than strictly decreasing them based on
uncertainty. Thus it does not fit the definition and our method is not pointwise pessimistic.
Furthermore, because the penalty term in our method is not a £-uncertainty quantifier, we
cannot apply the sub-optimality guarantee in Theorem 4.2 of Jin et al. (2021).

The performance of pessimistic value iteration depends on finding an uncertainty quan-
tifier that tightly bounds the error in the Bellman operator, but in practice this may be
difficult to find. While our method does not come with performance guarantees, it provides
a methodology for how to compute a penalty or bonus for the value equation. We do note,

6. Please see Def. 4.1 of Jin et al. (2021) for formal definition.
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however, that a weakness of our method is that it requires a plugin or bootstrapping to
estimate T', which is required to compute the value of € ,.

Bellman-consistent Pessimism. Our algorithm is also not pessimistic under the weaker
assumptions of Bellman-consistent pessimism. In this approach from Xie et al. (2021), the
value of the starting state under any policy is estimated using the most pessimistic function
in the space of value functions with low Bellman error. Then the policy that maximizes this
pessimistic value estimate of the starting state is chosen. In our method, it is not required
that the choice of Q¢4 and the resulting value of €* that minimizes the MSE at the initial
state be pessimistic.

Bellman-consistent pessimism applies to arbitrary function approximation and is well-
suited for complex, higher-data settings, while our method provides simple approach appro-
priate for the low-data settings where discount regularization is generally beneficial. The
main theoretical guarantee in Xie et al. (2021) requires searching over the policy space as
well as evaluating each policy over all functions in the value function class with low Bell-
man error, which is not practical to implement. The version of the algorithm adapted for
practical implementation avoids searching over the policy space, but still requires “access to
a (regularized) loss minimization oracle over the value function class.” They demonstrate
that this can be efficiently implemented in linear function approximation, making Bellman-
consistent pessimism a reasonable choice for settings where linear function approximation is
used. Our method is more appropriate for small-data settings where function approximation
is not appropriate, albeit without theoretical guarantees on the resulting performance.

6. Simulations

In this section, we empirically confirm our equivalence theorems and demonstrate the per-
formance of our regularization methods in an offline setting.

6.1 Tabular Environments

We demonstrate our results on three common environments from the RL literature. The first
comes from the initial work proposing discount regularization. We choose this environment
to demonstrate the limitations of discount regularization even in an environment where it
is known to be beneficial. We choose the other two because of their differences in structure,
connectivity, and rewards to ensure that our results hold in diverse environments.

10-State Random Chain. The first environment is a distribution over MDPs and we
sample one before generating each data set in the examples that follow. Jiang et al. (2015)
empirically demonstrated the benefits of discount regularization on this randomly generated
10-state, 2-action MDP. For each state-action pair, 5 successor states are chosen at random
to have nonzero transition probability. These probabilities are drawn independently from
Uniform|[0,1] and normalized to sum to one. The rewards are sampled independently from
Uniform|0,1].

River Swim.  This common tabular environment described in Osband et al. (2013)
consists of six states and two actions, as illustrated in Figure 3. The agent can attempt to
swim right “against the current” towards the larger reward, or swim left with probability 1
towards the smaller reward.
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Figure 3: River Swim. Image from Osband et al. (2013).

GridWorld. The “GridWorld” environment is a modification of the environment with
the same name from Amit et al. (2020). Like the 10-State Random Chain, it is a distribution
over MDPs. The state space is a 4x4 grid where the agent’s actions are left, right, up, or
down. To construct the MDP, a probability ps is drawn uniformly at random from [0,1]
for each state s. With probability ps, the agent moves in the desired direction if possible
and otherwise remains in the same state. With probability 1 — ps, the agent transitions to
a successor state that is randomly chosen for each state when the MDP is constructed. A
single high-reward state is chosen at random to have a reward of 1, while all other states
have rewards drawn uniformly at random from [-0.5,0.50].

6.2 Cancer Simulator Environment

We confirm our analysis in a larger, more realistic setting, using a cancer simulator developed
by Ribba et al. (2012), as implemented by Gottesman et al. (2020). The simulator is based
on data from patients with a type of tumor called low-grade gliomas (LGG). We use the
version for chemotherapy drug TMZ. The structure of the model is based on 21 patients
and parameters for the TMZ version are fit using data from 24 patients, with the remaining
96 held out for validation.

The state space consists of four dimensions: measurements for three different tumor tis-
sue types and the drug concentration. We discretize the states by dividing each dimension
into quartiles. The two actions represent whether or not to administer the chemotherapy
drug TMZ at each time step, which represents one month. The reward at each time step
is the reduction in total tumor size from the previous time step, minus a penalty for ad-
ministering treatment at that time step. In the batch data, treatment at each time step
is determined by a draw from the binomial distribution with treatment probability p. We
compare regularization methods across a range of parameter choices: amount of stochastic-
ity in the transition between states, magnitude of penalty to the reward for administering
chemotherapy, noise in the starting state, and probability p of treatment in the batch data.

6.3 Model-Based Method Simulations

We showed analytically that planning under a reduced discount factor functions as a prior
on the transition matrix with higher magnitude for state-action pairs with more transition
observations. We then proposed a better way to regularize by deriving an explicit formula
for a uniform prior that minimizes that transition matrix MSE locally for each state-action
pair. Next we confirm our results empirically.

First we demonstrate that the equality in Thm. 1 holds. We then compare the perfor-
mance of (1) discount regularization, (2) a uniform prior on 7" with equal magnitude for
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all state-action pairs, and (3) our state-action-specific regularization on the three simple
tabular examples and the medical cancer simulator.

6.3.1 PROCEDURE

To assess performance in each environment, we follow the procedure in Jiang et al. (2015).
We repeatedly sample data sets from the true MDP. (A new MDP is sampled every time
in the case of the 10-State Random Chain and GridWorld.) For each, we estimate the
transition matrix from the data and assume the reward function is known. Then for a range
of regularization strengths (e or ) we regularize the transition matrix separately using (1)
discount regularization or (2) a uniform prior with constant magnitude across state-action
pairs. We also regularize by (3) a uniform prior with state-action specific parameter. We
then calculate the optimal policy. We compute the loss by taking the difference between the
value of the true optimal policy in the true MDP and the value of the policy found in the
estimated, regularized MDP, evaluated in the true MDP, and then averaging across states.
The state-action-specific uniform prior is not dependent on a regularization parameter so
we plot the single average loss value horizontally.

6.3.2 EMPIRICAL DEMONSTRATION OF EQUIVALENCE THEOREM: DISCOUNT
REGULARIZATION AND UNIFORM PRIOR ON TRANSITION MATRIX YIELD
IDENTICAL OPTIMAL POLICIES

First, we empirically confirm our result from Thm. 1. When the implied value of € is the
same for all state-action pairs, a uniform prior on T yields the same optimal policy as a
planning discount factor of (1 — €). As per Eq. 3, we enforce equal € across state-action
pairs by sampling data sets with equal numbers of transition observations across state-
action pairs. As demonstrated for the 10-State Random Chain environment in Fig. 4, loss
is identical for both methods, as is expected for identical policies.

2.40

\ Uniform Prior
\ . ——
2.36 “ Discount Regularization
\
A
0 2.32 N\ 7
wn \ 4
o N\ y,
- 0’ y,
2.28 N\ 4
o’ '0
O’ ’0
2.24 N y
........ -
0.00 0.25 0.50 0.75 1.00
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Figure 4: Discount regularization and a uniform prior on the transition matrix yield iden-
tical policies in model-based RL when transition count data are equal for all
state-action pairs.

In the examples that follow, we relax the requirement of equal data across state-action
pairs to compare methods under a more realistic data distribution.
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Figure 5: A uniform prior on the transition matrix performs equally to or better than
discount regularization in all three environments. A state-action-specific uniform
prior performs close to or better than a uniform prior with global regularization
parameter €. “Oracle” represents state-action specific €* calculated using the true
T. Calculated for 5,000 data sets.

6.3.3 RESULTS: PROBLEMS WITH DISCOUNT REGULARIZATION

Discount Regularization performs poorly on data sets with uneven coverage
across state-action pairs. In real-world conditions, it is unlikely that a data set will have
equal numbers of transition observations across state-action pairs. In this case, recall that
discount regularization functions as a prior with higher magnitude for state-action pairs
with more data (Eq. 3). We compare this with a uniform prior on the transition matrix
with equal magnitude for all state-action pairs. Fig. 5 shows the loss for each method across
a range of values of € (regularization strengths) for the three tabular environments. In these
examples, the transition data is generated with starting state and action chosen uniformly
at random, but transition counts are not enforced to be equal across state-action pairs.
Even with transition data that is not heavily skewed away from uniform, the uniform prior
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Figure 6: River Swim Environment. When we have knowledge about the environment, a
prior chosen based on expert knowledge (the ‘Left/Right Prior’) can perform
better.

with fixed magnitude generates policies that generally perform better (lower loss) in the
true environment across a range of regularization strengths. Loss is significantly lower for
a uniform prior compared to discount regularization in first two environments and similar
in the case of the GridWorld environment.

Discount regularization performs poorly when the transition distribution
differs greatly across states and/or actions. In addition to poor performance in
skewed data sets, discount regularization does not perform well in cases where the implied
prior, which has the same distribution for all (s,a), does not match the ground truth. For
example, a domain expert may have knowledge that some state transitions are likely or
others are impossible. Consider the case of River Swim. If a domain expert knows that
Action 1 generally causes the agent to go left and Action 2 generally causes the agent to
go right, we may choose a different prior on each action. For example, consider a prior
on Action 1 that deterministically moves the agent left and the prior on Action 2 that
deterministically moves the agent right. Fig. 6 compares the loss for this deterministic
“left /right prior” with the other methods. Unsurprisingly, this hand-chosen prior results in
lower loss than the methods which assume equal transition distributions for all states and
actions.

6.3.4 REsuLTS: OUR METHOD PROVIDES SIMPLE AND FLEXIBLE
STATE-ACTION-SPECIFIC REGULARIZATION

Performance depends not only on choosing an appropriate regularizer for the data set and
environment, but also on setting the parameters correctly.

Our method avoids parameter tuning. Minimizing the transition matrix MSE
equation with respect to regularization parameter ¢;; yields an explicit formula for the
parameter € ;» Eq. 7. This expression for e;j depends inversely on the number of transition
observations in the data, which allows for reduction in regularization with increased data.
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Figure 7: Cancer Simulator. State-action-specific regularization achieves near-minimum
loss while avoiding the high loss resulting from incorrectly-set parameters.

The only quantity we lack is an estimate for T', which can be approximated by the MLE.
Alternatively, we can model T" from the data then sample from the posterior, choosing ¢; ;
to minimize the MSE (Eq. 6) across the sampled estimates of 7. Figures in this section
reflect this approach. This is preferable to cross validation not only because it provides a
simple, analytic form, but also because the situations in which regularization is beneficial
generally involve few transition observations per state-action pair, resulting in insufficient
amounts of data to divide into training and validation sets.

The gap between “state-action specific €” loss and the “state-action specific oracle” loss
in Fig. 5 is the difference in performance when using an estimate of T versus the true
value. As expected, loss is higher when estimating T, however it still achieves loss near the
minimum that can be achieved with a global regularization parameter without the risk of
incurring the higher loss values that can result from an incorrectly-set global parameter.

The benefit of avoiding parameter tuning is also illustrated in the results from the
cancer simulator in Fig. 7. Across variations in parameters, the two methods with global
parameters performed similarly. However with both global methods, if € is set incorrectly
then the loss can be significantly higher. This makes state-action specific regularization
particularly appealing, achieving loss near the minimum of all methods with the parameters
set globally, but without tuning.

Our method remedies the issue of stronger regularization for state-action pairs
with more data. Because the formula for e’{,j is state-action-specific, it allows the flexi-
bility to adjust the regularization amount separately across state-action pairs with different
amounts of data and different transition distributions. This is particularly important as
most real-world data sets have uneven distributions, and enforcing equal regularization
across state-action pairs in that case impedes performance.

Returning to Fig. 5, we demonstrate that our state-action-specific regularization reduces
loss without parameter tuning. The horizontal line for “State-action-specific €” represents

the loss when regularization parameter ¢; ; is set separately for each state-action pair. A
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state-action-specific regularization parameter yields loss that outperforms discount regular-
ization and is close to or outperforms a uniform prior of constant magnitude.

6.4 Model-Free Method Simulations

Discount regularization is used in both model-based and model-free settings, so we extend
our simulations to a model-free setting. As in the model-based setting, we first demon-
strate the equivalence theorem, then compare the performance of discount regularization
with our state-action specific methodology. We then discuss the reasons that model-based
outperforms model-free in the low-data settings that we consider.

6.4.1 PROCEDURE

We follow an analogous procedure as in the model-based case, adapted to the model-free
RL method FQI. As above, we repeatedly sample data from the true MDP. For each data
set, for a range of regularization strengths (e or v), we run FQI using either (1) a lower
discount factor or (2) a weighted average Q-function update reflecting Eq. 4. The reward
function is assumed known. Loss is the difference between the value of the true optimal
policy and the value of the policy found with the regularized version of FQI, both evaluated
in the true MDP, averaged across states. The state-action-specific method is not dependent
on a regularization parameter so we plot the single average loss value horizontally in Fig. 9.

Note that unlike the model-based setting where any planning discount factor -y, maps to
a prior on the transition matrix, there is no simple mapping between the planning discount
factor and an implied prior in the model-free case. Consequently our simulations lack an
equivalent comparison between discount regularization and a fixed prior of equal magnitude
for all state-action pairs.

6.4.2 EMPIRICAL DEMONSTRATION OF EQUIVALENCE THEOREM: DISCOUNT
REGULARIZATION AND WEIGHTED AVERAGE Q-FUNCTION YIELD IDENTICAL
OPTIMAL POLICIES

\ Weighted Average Update
181 \ Discount Regularization

Loss
’ 4

1.24 \

.
0.9 N——— "“

0.00 0.25 0.50 0.75 1.00
Epsilon

Figure 8: Discount regularization and a weighted average Q-function produce identical poli-
cies in model-free RL, resulting in equal loss for both methods.
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Figure 9: River Swim Environment. — Comparison of model-free and model-based regu-
larization methods. State-action-specific methods show loss without estimation
error, using true value of T or Q).

As we did in the model-based case, we empirically confirm the model-free equivalence
result from Thm. 2. When regularization parameter ¢;; is the same for all state-action
pairs, discount regularization and regularization using the weighted average Q-function in
Eq. 4 yield the same optimal policy. Fig. 8 demonstrates that loss is identical for both
methods, as is expected for identical policies.

6.4.3 RESULTS: MODEL-FREE STATE-ACTION-SPECIFIC REGULARIZATION
UNDERPERFORMS MODEL-BASED

We evaluate the loss from policies using discount regularization and using our state-action-
specific regularization parameter € for a range of environments and data set sizes. We
found that our model-free method did not perform well, particularly in comparison to model-
based methods. One source of loss in the model-free method is estimation error from using
the current estimate of () in each step of FQI. To assess the best possible performance of the
method, without this estimation error, we computed ej’ ; using the true values of Q™ . The
loss for each of our methods without estimation error is illustrated in Figure 9, with results
for additional data set sizes and environments are in Appendix E. Although, after removing
the estimation error, our method resulted in lower loss compared to not regularizing in the
10-State Random Chain and GridWorld environments, loss was still higher than than of
model-based methods.

Another cause of underperformance stems from the choice to regularize () instead of
T. The model-based method chooses the value of ¢; ; that minimizes the error between
the regularized estimate of T'(s;,a;,-) and its true value. The values for both are on the
same scale: ranging from 0 to 1 and summing to 1. On the other hand, the model-free
method chooses the value of ¢; ; that minimizes the error between the regularized estimate
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of Q(s;,a;) and its true value, which can differ significantly. These differences push the
values of € ; towards 0 or 1. For example, the estimated Q-values could all be higher than

the true Q-values. In this case, the values of ¢; ; that minimizes the MSE in Q(si, a;) are all
either 1 (for estimated Q(s;,a;) above than average estimate) or 0 (for estimated Q(s;, a;)
below the average). Our goal in regularization is to obtain a policy that performs well in
the true environment, for which we must set epsilon for all (s;,a;) together in a way that
minimizes the error in relative values. Minimizing the absolute error for each Q(s;, a;) does
not achieve this goal.

7. Extension to Continuous States

Theorems 1 and 2 and our resulting regularization methods apply to any number of increas-
ingly smaller discrete states. It stands to reason, then, that we can extend our methodology
to a continuous state space. We demonstrate how our state-action-specific regularization
methodology can be successfully applied to a continuous state space below.

7.1 Methodology

We first describe how our continuous-state approach extends the ideas from the discrete-
state setting, and then apply these ideas to a continuous setting where the transition func-
tion is modeled using kernel regression.

7.1.1 CONNECTION TO DISCRETE-STATE METHODOLOGY

In discrete-state environments, discount regularization is commonly used with certainty-
equivalence RL. Certainty-equivalence RL uses a single estimate of the transition distribu-
tion, such as the MLE, rather than modeling the uncertainty in the transition distribution.
This estimate may be regularized to avoid overfitting. We showed that setting the regular-
ization amount separately for each state-action pair can result in better-performing policies
(lower loss). We extend this concept to a one-dimensional continuous state space by model-
ing T with a single estimate of next state given state and action, rather than using a more
complex transition model that reflects the uncertainty over next state, and then regularizing
this estimate before computing the optimal policy.

As discussed above, Theorems 1 and 2 imply that discount regularization pushes the
values of all state-action pairs closer together. In our state-action-specific regularization
method, we control the amount that the value of each state-action pair moves towards the
mean separately. The same concept applies in a continuous state space. We demonstrate
one way of applying these concepts to regularization with a continuous state space below.

7.1.2 KERNEL REGRESSION TRANSITION MODEL METHOD

To apply our insights from a tabular state space to a continuous state space, we take the
example of modeling the transition dynamics using kernel regression and then computing the
optimal policy by fitted value iteration (FVI, Szepesvari and Munos 2005). We first model
the expected next state (given state and action) s’ = E[T(s,a)] using a kernel regression
separately for each action (specifically the Nadaraya-Watson Kernel estimator; Nadaraya
1964, Watson 1964). As in the tabular case, we regularize by planning as if the agent
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transitions according to any chosen distribution that is the same for all state-action pairs
with probability €. In that case, our regularized estimator of the expected next state given
state and action is

D
> g1 Kn(s — sa)s;
D
Y1 Kn(s — sq) o
mean Of regularlzatlon

kernel regression estimate  transition distribution

Te(s,a;) = (1 —¢€)

€L req , (10)
—~—

where {sg4, SZl}c?:l are the state and next state observations in the data for action aj, Kj,
is a kernel function with bandwidth A and T, is the mean of the chosen regularization
transition distribution.

We select €*(s, a;), the value of ¢ that minimizes the MSE of 7.(s,a;) by using the
approximations of bias and variance of the Nadaraya-Watson Kernel estimator implied by
the kernel regression confidence bounds presented in Wasserman (2004, p. 323). This yields
the expression for €*(s, a;) below, derived in Appendix F,

se?(s, ay)

(Treg — Tnw (s, a))? + s€%(s, ap,)’

(11)

€*(s,ar) =

where:

Kp(s—si) 2
e se(s,ar) (s,ar) /S22, ZD Hon(o—a)

o 62 = ﬁ 1 (3d+1 s;)? where the data is ordered by the values of {s},

e Ty is the Nadaraya-Watson kernel estimator for the expected next state given cur-
25:1 Kp(s—sd)sy

rent state and action, 7' =
P SNW 5:1 Kh(s_sd) ’

e and values above are computed over the D data tuples {sq, ax, s’;}2_, separately for
each given discrete action ay.

We use this state-action-specific regularization parameter €*(s,ay) in FVI. The proce-
dure is detailed in Algorithm 2. We calculate €*(s, a) before all iterations of FVI. Then we
use a weighted average Bellman update like in the tabular model-free case: using €*(s, ax)
to average the value of the next state as predicted by kernel regression and the value of the
next state predicted by our fixed regularization transition distribution.

By modeling only the expected next state given state and action rather than the full
distribution over next state, Algorithm 2 is more efficient than sampling-based FVI where
the next state is repeatedly sampled from the model for 7" and Q(sy,an,) is estimated by
averaging over samples. Note that line 9 of the algorithm assumes the uniform distribu-
tion over states as the regularization distribution, but this can be modified to reflect any
transition distribution as appropriate for the environment.

7.2 Continuous-State Simulation

We demonstrate the regularization method described above on a simple continuous-state
environment. The environment, simulation procedure and results are described below.
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Algorithm 2 FVI with State-Action-Specific Regularization

1: Sample N states {s,}Y | from state space
2: Initialize value function model Vp(s)
3: Learn transition model for next state given state and action §'|s,a = T(s, a) using batch

data and kernel regression.
4: Predict next state 5;7k|3n,ak for all sampled states s, and all actions a; € A using
transition model from line 3.
Calculate €*(sy,, ay) for all sampled states and all actions (Eq. 11).
for i in num_iters do

for each sample state {s,}_; do

for each action a; € A do
Q(Sn, ak) = R(Sn’ ak) +’Y(1 - 6*(Sn’ ak))%(siz,k) +’Y€*(Sm ak)% 27]:{:1 ‘/9(5;1/)

10: end for

11: VUp = Maxg Q(Sn,ak)

12: end for

13 Update Vy(s) using supervised learning and {s,, v, }\_,
14: end for

7.2.1 ENVIRONMENT

Continuous River Swim. We demonstrate the performance of Algorithm 2 on a continuous
version of the River Swim environment. We take s € [0,1] to be the one-dimensional
continuous state space. We define a continuous reward function that produces a smaller
positive reward near the lower end of the state space and a larger positive reward at the
high end. As in the tabular version, there are two discrete actions. Action 0 moves the
agent “against the current” (i.e. with more stochasticity) towards the higher reward region
and action 1 moves the agent “with the current” (with less stochasticity) towards the lower
reward region. Stochasticity is introduced via random uniform noise. See Appendix G for
more details.

7.2.2 PROCEDURE

Like in the tabular cases, we repeatedly sample data sets of tuples {s,a, s’} from the true
MDP. We compute the optimal policy using Algorithm 2 with either discount regularization
(equivalent to a fixed value of € for all states and actions) or using the state-action specific
€*(s,ax) in Eq. 11. The loss is the difference between the value of the true optimal policy
and the value of the policy found using the regularized, estimated transition function, each
evaluated in the true environment and averaged across sampled states. We use randomized
decision trees (scikit-learn ExtraTreesRegressor; Pedregosa et al., 2011) to model value
function V (s).

7.2.3 RESULTS

Figure 10 displays the average loss across data sets for a range of values of € for discount
regularization, as well as loss for the state-action specific €*(s, ax) (single loss value plotted
horizontally). For this environment, the state-action specific regularization method results
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Figure 10: State-action specific regularization results in lower loss than discount regular-
ization in the continuous-state River Swim environment.

in lower loss than any fixed global value of €. T