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Abstract

Gaussian denoising has emerged as a powerful method for constructing simulation-free
continuous normalizing flows for generative modeling. Despite their empirical successes,
theoretical properties of these flows and the regularizing effect of Gaussian denoising have
remained largely unexplored. In this work, we aim to address this gap by investigating
the well-posedness of simulation-free continuous normalizing flows built on Gaussian de-
noising. Through a unified framework termed Gaussian interpolation flow, we establish
the Lipschitz regularity of the flow velocity field, the existence and uniqueness of the flow,
and the Lipschitz continuity of the flow map and the time-reversed flow map for several
rich classes of target distributions. This analysis also sheds light on the auto-encoding and
cycle consistency properties of Gaussian interpolation flows. Additionally, we study the
stability of these flows in source distributions and perturbations of the velocity field, using
the quadratic Wasserstein distance as a metric. Our findings offer valuable insights into
the learning techniques employed in Gaussian interpolation flows for generative modeling,
providing a solid theoretical foundation for end-to-end error analyses of learning Gaussian
interpolation flows with empirical observations.

Keywords: Continuous normalizing flows, Gaussian denoising, generative modeling,
Lipschitz transport maps, stochastic interpolation.

1. Introduction

Generative modeling, which aims to learn the underlying data generating distribution from a
finite sample, is a fundamental task in the field of machine learning and statistics (Salakhut-
dinov, 2015). Deep generative models (DGMs) find wide-ranging applications across diverse
domains such as computer vision, natural language processing, drug discovery, and recom-
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mendation systems. The core objective of DGMs is to learn a nonlinear mapping, either
deterministic or stochastic (with outsourcing randomness), which transforms latent samples
drawn from a simple reference distribution into samples that closely resemble the target dis-
tribution.

Generative adversarial networks (GANs) have emerged as a prominent class of DGMs
(Goodfellow et al., 2014; Arjovsky et al., 2017; Goodfellow et al., 2020). Through an ad-
versarial training process, GANs learn to approximately generate samples from the data
distribution. Variational auto-encoders (VAEs) are another category of DGMs (Kingma
and Welling, 2014; Rezende et al., 2014; Kingma and Welling, 2019). In VAEs, the encod-
ing and decoding procedures produce a compressed and structured latent representation,
enabling efficient sampling and interpolation. Score-based diffusion models are a promising
approach to deep generative modeling that has evolved rapidly since its emergence (Song
and Ermon, 2019, 2020; Ho et al., 2020; Song et al., 2021b,a). The basis of score-based
diffusion models lies in the notion of the score function, which characterizes the gradient of
the log-density function of a given distribution.

In addition, normalizing flows have gained attention as another powerful class of DGMs
(Tabak and Vanden-Eijnden, 2010; Tabak and Turner, 2013; Kobyzev et al., 2020; Papa-
makarios et al., 2021). In normalizing flows, an invertible mapping is learned to transform
a simple source distribution into a more complex target distribution by a composition of
a series of parameterized, invertible and differentiable intermediate transformations. This
framework allows for efficient sampling and training by maximum likelihood estimation
(Dinh et al., 2014; Rezende and Mohamed, 2015). Continuous normalizing flows (CNFs)
pursue this idea further by performing the transformation over continuous time, enabling
fine-grained modeling of dynamic systems from the source distribution to the target distri-
bution. The essence of CNFs lies in defining ordinary differential equations (ODEs) that
govern the evolution of CNFs in terms of continuous trajectories. Inspired by the Gaussian
denoising approach, which learns a target distribution by denoising its Gaussian smoothed
counterpart, many authors have considered simulation-free estimation methods that have
shown great potential in large-scale applications (Song et al., 2021a; Liu et al., 2023; Al-
bergo and Vanden-Eijnden, 2023; Lipman et al., 2023; Neklyudov et al., 2023; Tong et al.,
2023; Chen and Lipman, 2023; Albergo et al., 2023b; Shaul et al., 2023; Pooladian et al.,
2023). However, despite the empirical success of simulation-free CNFs based on Gaussian
denoising, a rigorous theoretical analysis of these CNFs has received limited attention thus
far.

In this work, we explore an ODE flow-based approach for generative modeling, which we
refer to as Gaussian Interpolation Flows (GIFs). This method is derived from the Gaussian
stochastic interpolation detailed in Section 3. GIFs represent a straightforward extension of
the stochastic interpolation method (Albergo and Vanden-Eijnden, 2023; Liu et al., 2023;
Lipman et al., 2023). They can be considered a class of CNFs and encompass various ODE
flows as special cases. According to the classical Cauchy-Lipschitz theorem, also known
as the Picard-Lindelöf theorem (Hartman, 2002b, Theorem 1.1), a unique solution to the
initial value problem for an ODE flow exists if the velocity field is continuous in the time
variable and uniformly Lipschitz continuous in the space variable. In the case of GIFs,
the velocity field depends on the score function of the push-forward measure. Therefore,
it remains to be shown that this velocity field satisfies the regularity conditions stipulated
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by the Cauchy-Lipschitz theorem. These regularity conditions are commonly assumed in
the literature when analyzing the convergence properties of CNFs or general neural ODEs
(Chen et al., 2018; Biloš et al., 2021; Marion et al., 2023; Marion, 2023; Marzouk et al.,
2023). However, there is a theoretical gap in understanding how to translate these regularity
conditions on velocity fields into conditions on target distributions.

The main focus of this work is to study and establish the theoretical properties of
Gaussian interpolation flow and its corresponding flow map. We show that the regularity
conditions of the Cauchy-Lipschitz theorem are satisfied for several rich classes of proba-
bility distributions using variance inequalities. Based on the obtained regularity results,
we further expose the well-posedness of GIFs, the Lipschitz continuity of flow mappings,
and applications to generative modeling. The well-posedness results are crucial for study-
ing the approximation and convergence properties of GIFs learned with the flow or score
matching method. When applied to generative modeling, our results further elucidate the
auto-encoding and cycle consistency properties exhibited by GIFs.

Geometric regularity (Assumption 2.2) Gaussian interpolation flows

Lipschitz velocity fields (Proposition 4.1) Well-posedness (Theorems 5.1, 5.2)

Lipschitz flow maps (Propositions 5.1, 5.2) Auto-encoding, cycle consistency

Stability in source distributions, stability in velocity fields (Propositions 6.1, 6.2)

Lemma 4.1

Lemma C.1

Lemma C.2

Lemma B.1

Lemma 5.1
Corollary 5.1

Lemma 6.1

Corollary 6.3

Corollary B.1

Figure 1: Roadmap of the main results.

1.1 Our main contributions

We provide an overview of the main results in Figure 1, in which we indicate the assumptions
used in our analysis and the relationship between the results. We also summarize our main
contributions below.

• In Section 3, we extend the framework of stochastic interpolation proposed in Albergo
and Vanden-Eijnden (2023). Various ODE flows can be considered special cases of
the extended framework. We prove that the marginal distributions of GIFs satisfy
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the continuity equation converging to the target distribution in the weak sense. Sev-
eral explicit formulas of the velocity field and its derivatives are derived, which can
facilitate computation and regularity estimation.

• In Sections 4 and 5, we establish the spatial Lipschitz regularity of the velocity field
for a range of target measures with rich structures, which is sufficient to guarantee the
well-posedness of GIFs. Additionally, we deduce the Lipschitz regularity of both the
flow map and its time-reversed counterpart. The well-posedness of GIFs is an essential
attribute, serving as a foundational requirement for investigating numerical solutions
of GIFs. It is important to note that while the flow maps are demonstrated to be
Lipschitz continuous transport maps for generative modeling, the Lipschitz regularity
for optimal transport maps has only been partially established to date.

• In Section 6, we show that the auto-encoding and cycle consistency properties of
GIFs are inherently satisfied when the flow maps exhibit Lipschitz continuity with
respect to the spatial variable. This demonstrates that exact auto-encoding and cycle
consistency are intrinsic characteristics of GIFs. Our findings lend theoretical support
to the findings made by Su et al. (2023), as illustrated in Figures 3 and 4.

• In Section 6, we conduct the stability analysis of GIFs, examining how they respond
to changes in source distributions and to perturbations in the velocity field. This
analysis, conducted in terms of the quadratic Wasserstein distance, provides valuable
insights that justify the use of learning techniques such as Gaussian initialization and
flow or score matching.

2. Preliminaries

In this section, we include several preliminary setups to show notations, basic assumptions,
and several useful variance inequalities.

Notation. Here we summarize the notation. The space Rd is endowed with the Euclidean
metric and we denote by ‖ · ‖ and 〈·, ·〉 the corresponding norm and inner product. Let
Sd−1 := {x ∈ Rd : ‖x‖ = 1}. For a matrix A ∈ Rk×d, we use A> for the transpose, and
the spectral norm is denoted by ‖A‖2,2 := supx∈Sd−1 ‖Ax‖. For a square matrix A ∈ Rd×d,
we use det(A) for the determinant and Tr(A) for the trace. We use Id to denote the d× d
identity matrix. For two symmetric matrices A,B ∈ Rd×d, we denote A � B or B � A
if A − B is positive semi-definite. For two vectors x, y ∈ Rd, we denote x ⊗ y := xy>.
For Ω1 ⊂ Rk,Ω2 ⊂ Rd, n ≥ 1, we denote by Cn(Ω1; Ω2) the space of continuous functions
f : Ω1 → Ω2 that are n times differentiable and whose partial derivatives of order n are
continuous. If Ω2 ⊂ R, we simply write Cn(Ω1). For any f(x) ∈ C2(Rd), let∇xf,∇2

xf,∇x·f ,
and ∆xf denote its gradient, Hessian, divergence, and Laplacian, respectively. We use
X . Y to denote X ≤ CY for some constant C > 0. The function composition operation
is marked as g ◦ f := g(f(x)) for functions f and g.

The Borel σ-algebra of Rd is denoted by B(Rd). The space of probability measures
defined on (Rd,B(Rd)) is denoted as P(Rd). For any Rd-valued random variable X, we use
E[X] and Cov(X) to denote its expectation and covariance matrix, respectively. We use µ∗ν
to denote the convolution for any two probability measures µ and ν, and we use

d
= to indicate
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two random variables have the same probability distribution. For a random variable X, let
Law(X) denote its probability distribution. Let g : Rk → Rd be a measurable mapping and
µ be a probability measure on Rk. The push-forward measure f#µ of a measurable set A
is defined as f#µ := µ(f−1(A)). Let N(m,Σ) denote a d-dimensional Gaussian random
variable with mean vector m ∈ Rd and covariance matrix Σ ∈ Rd×d. For simplicity, let
γd,σ2 := N(0, σ2Id), and let ϕm,σ2(x) denote the probability density function of N(m,σ2Id)
with respect to the Lebesgue measure. If m = 0, σ = 1, we abbreviate these as γd and ϕ(x).
Let Lp(Rd;R`, µ) denote the Lp space with the Lp norm for p ∈ [1,∞] w.r.t. a measure µ.
To simplify the notation, we write Lp(Rd, µ) if ` = 1, Lp(Rd;R`) if the Lebesgue measure is
used, and Lp(Rd) if both hold.

2.1 Assumptions

We focus on the probability distributions satisfying several types of assumptions of weak
convexity, which offer a geometric notion of regularity that is dimension-free in the study
of high-dimensional distributions (Klartag, 2010). On the one hand, weak-convexity regu-
larity conditions are useful in deriving dimension-free guarantees for generative modeling
and sampling from high-dimensional distributions. On the other hand, they accommodate
distributions with complex shapes, including those with multiple modes.

Definition 2.1 (Cattiaux and Guillin, 2014) A probability measure µ(dx) = exp(−U)dx
is κ-semi-log-concave for some κ ∈ R if its support Ω ⊆ Rd is convex and its potential func-
tion U ∈ C2(Ω) satisfies

∇2
xU(x) � κId, ∀x ∈ Ω.

The κ-semi-log-concavity condition is a relaxed notion of log-concavity, since here κ < 0
is allowed. When κ ≥ 0, we are considering a log-concave probability measure that is proved
to be unimodal (Saumard and Wellner, 2014). However, when κ < 0, a κ-semi-log-concave
probability measure can be multimodal.

Definition 2.2 (Eldan and Lee, 2018) A probability measure µ(dx) = exp(−U)dx is β-
semi-log-convex for some β > 0 if its support Ω ⊆ Rd is convex and its potential function
U ∈ C2(Ω) satisfies

∇2
xU(x) � βId, ∀x ∈ Ω.

The following definition of L-log-Lipschitz continuity is a variant of L-Lipschitz continu-
ity. It characterizes a first-order condition on the target function rather than a second-order
condition such as κ-semi-log-concavity and β-semi-log-convexity in Definitions 2.1 and 2.2.

Definition 2.3 A function f : Rd → R+ is L-log-Lipschitz continuous if its logarithm is
L-Lipschitz continuous for some L ≥ 0.

Based on the definitions, we present two assumptions on the target distribution. As-
sumption 2.1 concerns the absolute continuity and the moment condition. Assumption 2.2
imposes geometric regularity conditions.

Assumption 2.1 The probability measure ν is absolutely continuous with respect to the
Lebesgue measure and has a finite second moment.
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Assumption 2.2 Let D := (1/
√

2)diam(supp(ν)). The probability measure ν satisfies one
or more of the following conditions:

(i) ν is β-semi-log-convex for some β > 0 and κ-semi-log-concave for some κ > 0 with
supp(ν) = Rd;

(ii) ν is κ-semi-log-concave for some κ ∈ R with D ∈ (0,∞);

(iii) ν = γd,σ2 ∗ ρ where ρ is a probability measure supported on a Euclidean ball of radius
R on Rd;

(iv) ν is β-semi-log-convex for some β > 0, κ-semi-log-concave for some κ ≤ 0, and dν
dγd

(x)

is L-log-Lipschitz in x for some L ≥ 0 with supp(ν) = Rd.

Multimodal distributions. Assumption 2.2 enumerates scenarios where probability
distributions are endowed with geometric regularity. We examine the scenarios and clarify
whether they cover multimodal distributions. Scenario (i) is referred to as the classical
strong log-concavity case (κ > 0), and thus, describes unimodal distributions. Scenario (ii)
allows κ ≤ 0 and requires that the support is bounded. Mixtures of Gaussian distributions
are considered in Scenario (iii), and typically are multimodal distributions. Scenario (iv)
also allows κ ≤ 0 when considering a log-Lipschitz perturbation of the standard Gaussian
distribution. Both Scenario (ii) and Scenario (iv) incorporate multimodal distributions due
to the potential negative lower bound κ.

Lipschitz score. Lipschitz continuity of the score function is a basic regularity as-
sumption on target distributions in the study of sampling algorithms based on Langevin
and Hamiltonian dynamics. Even for high-dimensional distributions, this assumption en-
dows a great source of regularity. For an L-Lipschitz score function, its corresponding
distribution is both L-semi-log-convex and (−L)-semi-log-concave for some L ≥ 0.

2.2 Variance inequalities

Variance inequalities like the Brascamp-Lieb inequality and the Cramér-Rao inequality
are fundamental inequalities for explaining the regularizing effect of Gaussian denoising.
Combined with κ-semi-log-concavity and β-semi-log-convexity, these inequalities are crucial
for deducing the Lipschitz regularity of the velocity fields of GIFs in Proposition 4.1-(b)
and (c).

Lemma 2.1 (Brascamp-Lieb inequality) Let µ(dx) = exp(−U(x))dx be a probability
measure on a convex set Ω ⊆ Rd whose potential function U : Ω → R is of class C2 and
strictly convex. Then for every locally Lipschitz function f ∈ L2(Ω, µ),

Varµ(f) ≤ Eµ
[
〈∇xf, (∇2

xU)−1∇xf〉
]
. (2.1)

When applied to functions of the form f : x 7→ 〈x, e〉 for any e ∈ Sd−1, the Brascamp-
Lieb inequality yields an upper bound of the covariance matrix

Covµ(X) � Eµ
[
(∇2

xU(x))−1
]

(2.2)
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with equality if X ∼ N(m,Σ) with Σ positive definite.
Under the strong log-concavity condition, that is, µ is κ-semi-log-concave with κ >

0, and if the Euclidean Bakry-Émery criterion is satisfied (Bakry and Émery, 1985), the
Brascamp-Lieb inequality instantly recovers the Poincaré inequality (see Definition G.2).

The Brascamp-Lieb inequality originally appeared in (Brascamp and Lieb, 1976, Theo-
rem 4.1). Alternative proofs are provided in Bobkov and Ledoux (2000); Bakry et al. (2014);
Cordero-Erausquin (2017). The dimension-free inequality (2.1) can be further strengthened
to obtain several variants with dimensional improvement.

Lemma 2.2 (Cramér-Rao inequality) Let µ(dx) = exp(−U(x))dx be a probability mea-
sure on Rd whose potential function U : Rd → R is of class C2. Then for every f ∈ C1(Rd),

Varµ(f) ≥ 〈Eµ[∇xf ],
(
Eµ[∇2

xU ]
)−1 Eµ[∇xf ]〉. (2.3)

When applied to functions of the form f : x 7→ 〈x, e〉 for any e ∈ Sd−1, the Cramér-Rao
inequality yields a lower bound of the covariance matrix

Covµ(X) �
(
Eµ[∇2

xU(x)]
)−1

(2.4)

with equality as well if X ∼ N(m,Σ) with Σ positive definite.
The Cramér-Rao inequality plays a central role in asymptotic statistics as well as in

information theory. The inequality (2.4) has an alternative derivation from the Cramér-
Rao bound for the location parameter. For detailed proofs of the Cramér-Rao inequality,
readers are referred to Chewi and Pooladian (2022); Dai et al. (2023), and the references
therein.

3. Gaussian interpolation flows

Simulation-free CNFs represent a potent class of generative models based on ODE flows.
Albergo and Vanden-Eijnden (2023) and Albergo et al. (2023b) introduce an innovative CNF
that is constructed using stochastic interpolation techniques, such as Gaussian denoising.
They conduct a thorough investigation of this flow, particularly examining its applications
and effectiveness in generative modeling.

We study the ODE flow and its associated flow map as defined by the Gaussian denois-
ing process. This process has been explored from various perspectives, including diffusion
models and stochastic interpolants. Building upon the work of Albergo and Vanden-Eijnden
(2023) and Albergo et al. (2023b), we expand the stochastic interpolant framework by relax-
ing certain conditions on the functions at and bt, offering a more comprehensive perspective
on the Gaussian denoising process.

In our generalization, we introduce an adaptive starting point to the stochastic interpo-
lation framework, which allows for greater flexibility in the modeling process. By examining
this modified framework, we aim to demonstrate that the Gaussian denoising principle is
effectively implemented within the context of stochastic interpolation.

Definition 3.1 (Vector interpolation) Let z ∈ Rd, x1 ∈ Rd be two vectors in the Eu-
clidean space and let x0 := a0z+b0x1 with a0 > 0, b0 ≥ 0. Then we construct an interpolant
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between x0 and x1 over time t ∈ [0, 1] through It(x0, x1), defined by

It(x0, x1) = atz + btx1, (3.1)

where at, bt satisfy

ȧt ≤ 0, ḃt ≥ 0, a0 > 0, b0 ≥ 0, a1 = 0, b1 = 1,

at > 0 for any t ∈ (0, 1), bt > 0 for any t ∈ (0, 1),

at, bt ∈ C2([0, 1)), a2
t ∈ C1([0, 1]), bt ∈ C1([0, 1]).

(3.2)

Remark 3.1 Compared with the vector interpolant defined by Albergo and Vanden-Eijnden
(2023) (a.k.a. one-sided interpolant in Albergo et al. (2023b)), we extend its definition by
relaxing the requirements that a0 = 1, b0 = 0 with a0 > 0, b0 ≥ 0. This consideration is
largely motivated by analyzing the probability flow ODEs of the variance-exploding (VE)
SDE and the variance-preserving (VP) SDE (Song et al., 2021b). We illustrate examples
of interpolants incorporated by Definition 3.1 in Table 1.

Remark 3.2 We have eased the smoothness conditions for the functions at and bt required
in Albergo and Vanden-Eijnden (2023). Specifically, we consider the case where at, bt ∈
C2([0, 1)), a2

t ∈ C1([0, 1]), and bt ∈ C1([0, 1]). This relaxation enables us to include the
Föllmer flow into our framework, characterized by at =

√
1− t2 and bt = t. It is evident that

at =
√

1− t2 does not fulfill the condition at ∈ C2([0, 1]), but it does meet the requirements
at ∈ C2([0, 1)) and a2

t ∈ C1([0, 1]).

Remark 3.3 The C2 regularity of at, bt is necessary to derive the regularity of the velocity
field v(t, x) in Eq. (3.5) concerning the time variable t. In addition, the C1 regularity of
a2
t , bt is sufficient to ensure the Lipschitz regularity of the velocity field v(t, x) in Eq. (3.5)

concerning the space variable x.

A natural generalization of the vector interpolant (3.1) is to construct a set interpolant
between two convex sets through Minkowski sum, which is common in convex geometry. A
set interpolant stimulates the construction of a measure interpolant between a structured
source measure and a target measure.

As noted, we can construct a measure interpolation using a Gaussian convolution path.
The measure interpolation is particularly relevant to Gaussian denoising and Gaussian chan-
nels in information theory as elucidated in Remark 3.8. Because of this connection with
Gaussian denoising, we call the measure interpolation a Gaussian stochastic interpolation.
The Gaussian stochastic interpolation can be understood as a collection of linear com-
binations of a standard Gaussian random variable and the target random variable. The
coefficients of the linear combinations vary with time t ∈ [0, 1] as shown in Definition 3.1.
Later in this section, we will show this Gaussian stochastic interpolation can be transformed
into a deterministic ODE flow.

Gaussian stochastic interpolation has been investigated from several perspectives in the
literature. The rectified flow has been proposed in Liu et al. (2023), and its theoretical
connection with optimal transport has been investigated in Liu (2022). The formulation of
the rectified flow is to learn the ODE flow defined by stochastic interpolation with linear

8



Gaussian Interpolation Flows

time coefficients. In Appendix C of Liu et al. (2023), there is a nonlinear extension of the
rectified flow in which the linear coefficients are replaced by general nonlinear coefficients.
Albergo et al. (2023b) extends the stochastic interpolant framework proposed in (Albergo
and Vanden-Eijnden, 2023) by considering a linear combination among three random vari-
ables. In Section 3 of Albergo et al. (2023b), the original stochastic interpolant framework
is recovered as a one-sided interpolant between the Gaussian distribution and the target
distribution. Moreover, Lipman et al. (2023) propose a flow matching method which di-
rectly learns a Gaussian conditional probability path with a neural ODE. In Section 4.1 of
Lipman et al. (2023), the velocity fields of the variance exploding and variance preserving
probability flows are shown as special instances of the flow matching framework. We sum-
marize these formulations as Gaussian stochastic interpolation by slightly extending the
original stochastic interpolant framework.

Type VE VP Linear Föllmer Trigonometric

at αt αt 1− t
√

1− t2 cos(π2 t)

bt 1
√

1− α2
t t t sin(π2 t)

a0 α0 α0 1 1 1

b0 1
√

1− α2
0 0 0 0

Source Convolution Convolution γd γd γd

Table 1: Summary of various measure interpolants including VE interpolant (Song et al.,
2021b), VP interpolant (Song et al., 2021b), linear interpolant (Liu et al., 2023),
Föllmer interpolant (Dai et al., 2023), and trigonometric interpolant (Albergo
and Vanden-Eijnden, 2023). There are two types of source measures including a
standard Gaussian distribution γd and a convoluted distribution consisting of the
target distribution and γd.

Definition 3.2 (Measure interpolation) Let µ = Law(X0) and ν = Law(X1) be two
probability measures satisfying X0 = a0Z + b0X1 where Z ∼ γd := N(0, Id) is independent
from X1. We call (Xt)t∈[0,1] a Gaussian stochastic interpolation from the source measure µ
to the target measure ν, which is defined through It over time interval [0, 1] as follows

Xt = It(X0,X1), X0 = a0Z + b0X1, Z ∼ γd, X1 ∼ ν. (3.3)

Remark 3.4 It is obvious that the marginal distribution of Xt satisfies Xt
d
= atZ + btX1

with Z ∼ γd,X1 ∼ ν.

Motivated by the time-varying properties of the Gaussian stochastic interpolation, we
derive that its marginal flow satisfies the continuity equation. This result characterizes the
dynamics of the marginal density flow of the Gaussian stochastic interpolation.

Theorem 3.1 Suppose that Assumption 2.1 holds. Then the marginal flow (pt)t∈[0,1] of the
Gaussian stochastic interpolation (Xt)t∈[0,1] between µ and ν satisfies the continuity equation
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∂tpt +∇x · (ptv(t, x)) = 0, (t, x) ∈ [0, 1]× Rd, p0(x) = dµ
dx (x), p1(x) = dν

dx(x) (3.4)

in the weak sense with the velocity field

v(t, x) := E[ȧtZ + ḃtX1|Xt = x], t ∈ (0, 1), (3.5)

v(0, x) := lim
t↓0

v(t, x), v(1, x) := lim
t↑1

v(t, x). (3.6)

Remark 3.5 We notice that x = atE[Z|Xt = x] + btE[X1|Xt = x] due to Eq. (3.3). Then it
holds that

v(t, x) = ȧt
at
x+

(
ḃt − ȧt

at
bt

)
E[X1|Xt = x], t ∈ (0, 1). (3.7)

We also notice that, according to Tweedie’s formula (cf. Lemma G.1 in the appendix), it
holds that

s(t, x) = bt
a2t
E [X1|Xt = x]− 1

a2t
x, t ∈ (0, 1), (3.8)

where s(t, x) is the score function of the marginal distribution of Xt ∼ pt.
Combining (3.7) and (3.8), it follows that the velocity field is a gradient field and its

nonlinear term is the score function s(t, x), namely, for any t ∈ (0, 1),

v(t, x) = ḃt
bt
x+

(
ḃt
bt
a2
t − ȧtat

)
s(t, x). (3.9)

Remark 3.6 A relevant result has been provided in the proof of (Albergo and Vanden-
Eijnden, 2023, Proposition 4) in a restricted case that a0 = 1, b0 = 0. In this case, if
ȧ0, ȧ1, ḃ0, ḃ1 are well-defined, the velocity field reads

v(0, x) = ȧ0x+ ḃ0Eν [X1], v(1, x) = ḃ1x+ ȧ1Eγd [Z]

at time 0 and 1. Otherwise, if any one of ȧ0, ȧ1, ḃ0, ḃ1 is not well-defined, the velocity field
v(0, x) or v(1, x) should be considered on a case-by-case basis. In addition, we provide an
alternative viewpoint of the relationship between the velocity field associated with stochastic
interpolation and the score function of its marginal flow using Tweedie’s formula in Lemma
G.1.

Remark 3.7 (Diffusion process) The marginal flow of the Gaussian stochastic interpo-
lation (3.3) coincides with the time-reversed marginal flow of a diffusion process (Xt)t∈[0,1)

(Albergo et al., 2023b, Theorem 3.5) defined by

dXt = − ḃ1−t
b1−t

Xt +

√
2
(
ḃ1−t
b1−t

a2
1−t − ȧ1−ta1−t

)
dW t.

Remark 3.8 (Gaussian denoising) The Gaussian stochastic interpolation has an information-
theoretic interpretation as a time-varying Gaussian channel. Here a2

t and b2t /a
2
t stand for

the noise level and signal-to-noise ratio (SNR) for time t ∈ [0, 1], respectively. As time
t→ 1, we are approaching the high-SNR regime, that is, the SNR b2t /a

2
t grows to ∞. More-

over, the SNR b2t /a
2
t is monotonically increasing in time t over [0, 1]. The Gaussian noise

level gets reduced through this Gaussian denoising process.

10
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Figure 2: Snapshots of a Gaussian interpolation flow based on the Föllmer interpolant. The
source distribution is the standard two-dimensional Gaussian distribution γ2, and
the target distribution is a mixture of six two-dimensional Gaussian distributions
as the shape of a circle. The image panels are placed sequentially from time t = 0
to time t = 1.

We are now ready to define Gaussian interpolation flows by representing the conti-
nuity equation (3.4) with Lagrangian coordinates (Ambrosio and Crippa, 2014). A basic
observation is that GIFs share the same marginal density flow with Gaussian stochastic
interpolations. The continuity equation (3.4) plays a central role in the derandomization
procedure from Gaussian stochastic interpolations to GIFs. We additionally illustrate GIFs
using a two-dimensional example as in Figure 2.

Definition 3.3 (Gaussian interpolation flow) Suppose that probability measure ν sat-
isfies Assumption 2.1. If (Xt)t∈[0,1] solves the initial value problem (IVP)

dXt

dt
(x) = v(t,Xt(x)), X0(x) ∼ µ, t ∈ [0, 1], (3.10)

where µ is defined in Definition 3.2 and the velocity field v is given by Eq. (3.5) and (3.6),
we call (Xt)t∈[0,1] a Gaussian interpolation flow associated with the target measure ν.

4. Spatial Lipschitz estimates for the velocity field

We have explicated the idea of Gaussian denoising with the procedure of Gaussian stochastic
interpolation or a Gaussian channel with increasing SNR w.r.t. time. By interpreting the
process as an ODE flow, we derive the framework of Gaussian interpolation flows. First
and foremost, an intuition is that the regularizing effect of Gaussian denoising would ensure

11
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the Lipschitz smoothness of the velocity field. Since the standard Gaussian distribution is
both 1-semi-log-concave and 1-semi-log-convex, its convolution with a target distribution
will maintain its high regularity as long as the target distribution satisfies the regularity
conditions. We rigorously justify this intuition by establishing spatial Lipschitz estimates
for the velocity field. These estimates are established based on the upper bounds and lower
bounds regarding the Jacobian matrix of the velocity field v(t, x) according to the Cauchy-
Lipschitz theorem, which are given in Proposition 4.1 below. To deal with the Jacobian
matrix ∇xv(t, x), we introduce a covariance expression of it and present the associated
upper bounds and lower bounds.

The velocity field v(t, x) is decomposed into a linear term and a nonlinear term, the score
function s(t, x). To analyze the Jacobian ∇xv(t, x), we only need to focus on ∇xs(t, x), that
is, ∇2

x log pt(x). To ease the notation, we would henceforth use Y for X1. Correspondingly,
we replace p1(x) with p1(y) for the density function of Y.

According to Bayes’ theorem, the marginal density pt of Xt satisfies

pt(x) =

∫
p(t, x|y)p1(y)dy

where Y ∼ p1(y) and p(t, x|y) = ϕbty,a2t (x) is a conditional distribution induced by the
Gaussian noise. Due to the factorization pt(x)p(y|t, x) = p(t, x|y)p1(y), the score function
s(t, x) and its derivative ∇xs(t, x) have the following expressions

s(t, x) = −∇x log p(y|t, x)− x−bty
a2t

, ∇xs(t, x) = −∇2
x log p(y|t, x)− 1

a2t
Id.

Thanks to the expressions above, a covariance matrix expression of ∇xs(t, x) is endowed by
the exponential family property of p(y|t, x).

Lemma 4.1 The conditional distribution p(y|t, x) is an exponential family distribution and
a covariance matrix expression of the log-Hessian matrix ∇2

x log p(y|t, x) for any t ∈ (0, 1)
is given by

∇2
x log p(y|t, x) = − b2t

a4t
Cov(Y|Xt = x), (4.1)

where Cov(Y|Xt = x) is the covariance matrix of Y|Xt = x ∼ p(y|t, x). Moreover, for any
t ∈ (0, 1), it holds that

∇xs(t, x) =
b2t
a4t

Cov(Y|Xt = x)− 1
a2t

Id, (4.2)

and that

∇xv(t, x) =
b2t
a2t

(
ḃt
bt
− ȧt

at

)
Cov(Y|Xt = x) + ȧt

at
Id. (4.3)

Remark 4.1 Since ∂t

(
b2t
a2t

)
=

2b2t
a2t

(
ḃt
bt
− ȧt

at

)
, it follows from (4.3) that the derivative of the

SNR with respect to time t controls the dependence of ∇xv(t, x) on Cov(Y|Xt = x).

The representation (4.3) can be used to upper bound and lower bound ∇xv(t, x). This
technique has been widely used to deduce the regularity of the score function concerning
the space variable (Mikulincer and Shenfeld, 2021, 2023; Chen et al., 2023b; Lee et al., 2023;

12
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Chen et al., 2023a). The covariance matrix expression (4.2) of the score function has a close
connection with the Hatsell-Nolte identity in information theory (Hatsell and Nolte, 1971;
Palomar and Verdú, 2005; Wu and Verdú, 2011; Cai and Wu, 2014; Wibisono et al., 2017;
Wibisono and Jog, 2018a,b; Dytso et al., 2023a,b).

Employing the covariance expression in Lemma 4.1, we establish several bounds on
∇xv(t, x) in the following proposition.

Proposition 4.1 Let ν(dy) = p1(y)dy be a probability measure on Rd with
D := (1/

√
2)diam(supp(ν)).

(a) For any t ∈ (0, 1),

ȧt
at

Id � ∇xv(t, x) �

{
bt(atḃt − ȧtbt)

a3
t

D2 +
ȧt
at

}
Id.

(b) Suppose that p1 is β-semi-log-convex with β > 0 and supp(p1) = Rd. Then for any
t ∈ (0, 1],

∇xv(t, x) � βatȧt + btḃt
βa2

t + b2t
Id.

(c) Suppose that p1 is κ-semi-log-concave with κ ∈ R. Then for any t ∈ (t0, 1],

∇xv(t, x) � κatȧt + btḃt
κa2

t + b2t
Id,

where t0 is the root of the equation κ +
b2t
a2t

= 0 over t ∈ (0, 1) if κ < 0 and t0 = 0 if

κ ≥ 0.

(d) Fix a probability measure ρ on Rd supported on a Euclidean ball of radius R, and let
ν := γd,σ2 ∗ ρ with σ > 0. Then for any t ∈ (0, 1),

ȧtat + σ2ḃtbt
a2
t + σ2b2t

Id � ∇xv(t, x) �

{
atbt(atḃt − ȧtbt)

(a2
t + σ2b2t )

2
R2 +

ȧtat + σ2ḃtbt
a2
t + σ2b2t

}
Id.

(e) Suppose that dν
dγd

(x) is L-log-Lipschitz for some L ≥ 0. Then for any t ∈ (0, 1),{(
ḃt
bt
a2
t − ȧtat

)(
−Bt − L2

(
bt

a2t+b
2
t

)2
)

+ ȧtat+ḃtbt
a2t+b

2
t

}
Id

� ∇xv(t, x) �
{(

ḃt
bt
a2
t − ȧtat

)
Bt + ȧtat+ḃtbt

a2t+b
2
t

}
Id,

where Bt := 5Lbt(a
2
t + b2t )

− 3
2 (L+ (log(

√
a2
t + b2t /bt))

− 1
2 ).

Comparing part (a) with part (d) in Proposition 4.1, we can see that the bounds in (a)
are consistent with those in (d) in the sense that (a) is a limiting case of part (d) as σ → 0.
The lower bound in part (a) blows up at time t = 1 owing to a1 = 0, while in part (d) it
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behaves well since the lower bound in part (d) coincides with a lower bound indicated by
the 1

σ2 -semi-log-convex property. It reveals that the regularity of the velocity field v(t, x)
with respect to the space variable x improves when the target random variable is bounded
and is subject to Gaussian perturbation.

The lower bound in part (b) and the upper bound in part (c) are tight in the sense that
both of them are attainable for a Gaussian target distribution, that is,

∇xv(t, x) =
βatȧt + btḃt
βa2

t + b2t
Id if ν = γd,1/β.

The upper and lower bounds in Proposition 4.1-(a) and (e) become vacuous as they both
blow up at time t = 1. The intuition behind is that the Jacobian matrix of the velocity field
can be both lower and upper bounded at time t = 1 only if the score function of the target
measure is Lipschitz continuous in the space variable x. Under an additional Lipschitz score
assumption (equivalently, β-semi-log-convex and κ-semi-log-concave for some β = −κ ≥ 0),
the upper and lower bounds in part (a) and part (e) can be strengthened at time t = 1
based on the lower bound in (b) and the upper bound in part (c).

According to Proposition 4.1-(a) and (c), there are two upper bounds available that
shall be compared with each other. One is the D2-based bound in part (a), and the other
is the κ-based bound in part (c). According to the proof of Proposition 4.1 given in the
Appendix, these two upper bounds are equal if and only if the corresponding upper bounds
on Cov(Y|Xt = x) are equal, that is,

D2 =

(
κ+

b2t
a2
t

)−1

. (4.4)

Then the critical case is κD2 = 1 since simplifying Eq. (4.4) reveals that

D−2 − κ =
b2t
a2
t

. (4.5)

We note that b2t /a
2
t , ranging over (0,∞), is monotonically increasing w.r.t. t ∈ (0, 1).

Suppose that κD2 > 1. Then (4.5) has no root over t ∈ (0, 1), which implies that the
κ-based bound is tighter over [0, 1), i.e.,

D2 >

(
κ+

b2t
a2
t

)−1

, ∀t ∈ [0, 1).

Otherwise, suppose that κD2 < 1. Then (4.5) has a root t1 ∈ (0, 1), which implies that the
D2-based bound is tighter over [0, t1), i.e.,

D2 <

(
κ+

b2t
a2
t

)−1

, ∀t ∈ [0, t1),

and that the κ-based bound is tighter over [t1, 1), i.e.,

D2 ≥
(
κ+

b2t
a2
t

)−1

, ∀t ∈ [t1, 1).
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Next, we present several upper bounds on the maximum eigenvalue of the Jacobian
matrix of the velocity field λmax(∇xv(t, x)) and its exponential estimates for studying the
Lipschitz regularity of the flow maps as noted in Lemma 5.1.

Corollary 4.1 Let ν be a probability measure on Rd with D := (1/
√

2)diam(supp(ν)) and
suppose that ν is κ-semi-log-concave with κ ≥ 0.

(a) If κD2 ≥ 1, then

λmax(∇xv(t, x)) ≤ θt :=
κatȧt + btḃt
κa2

t + b2t
, t ∈ [0, 1]. (4.6)

(b) If κD2 < 1, then

λmax(∇xv(t, x)) ≤ θt :=


b2t
a2t

(
ḃt
bt
− ȧt

at

)
D2 + ȧt

at
, t ∈ [0, t1),

κatȧt+btḃt
κa2t+b

2
t
, t ∈ [t1, 1],

(4.7)

where t1 solves (4.5).

Corollary 4.2 Let ν be a probability measure on Rd with D := (1/
√

2)diam(supp(ν)) <∞
and suppose that ν is κ-semi-log-concave with κ < 0. Then

λmax(∇xv(t, x)) ≤ θt :=


b2t
a2t

(
ḃt
bt
− ȧt

at

)
D2 + ȧt

at
, t ∈ [0, t1),

κatȧt+btḃt
κa2t+b

2
t
, t ∈ [t1, 1],

(4.8)

where t1 solves (4.5).

Corollary 4.3 Fix a probability measure ρ on Rd supported on a Euclidean ball of radius
R and let ν := γd,σ2 ∗ ρ with σ > 0. Then

λmax(∇xv(t, x)) ≤ θt :=
ȧtat + σ2ḃtbt
a2
t + σ2b2t

+
atbt(atḃt − ȧtbt)

(a2
t + σ2b2t )

2
R2. (4.9)

Corollary 4.4 Suppose that ν is κ-semi-log-concave for some κ ≤ 0, and dν
dγd

(x) is L-log-
Lipschitz for some L ≥ 0. Then

λmax(∇xv(t, x)) ≤ θt :=


(
ḃt
bt
a2
t − ȧtat

)
Bt + ȧtat+ḃtbt

a2t+b
2
t
, t ∈ [0, t2),

κatȧt+btḃt
κa2t+b

2
t
, t ∈ [t2, 1],

(4.10)

where Bt := 5Lbt(a
2
t + b2t )

− 3
2 (L+ (log(

√
a2
t + b2t /bt))

− 1
2 ) and t2 ∈ (t0, 1).
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5. Well-posedness and Lipschtiz flow maps

In this section, we study the well-posedness of GIFs and the Lipschitz properties of their
flow maps. We also show that the marginal distributions of GIFs satisfy the log-Sobolev
inequality and the Poincaré inequality if Assumptions 2.1 and 2.2 are satisfied.

Theorem 5.1 (Well-posedness) Suppose Assumptions 2.1 and 2.2-(i), (iii), or (iv) are
satisfied. Then there exists a unique solution (Xt)t∈[0,1] to the IVP (3.10). Moreover, the
push-forward measure satisfies Xt#µ = Law(atZ + btX1) with Z ∼ γd,X1 ∼ ν.

Theorem 5.2 Suppose Assumptions 2.1 and 2.2-(ii) are satisfied. For any t ∈ (0, 1), there
exists a unique solution (Xt)t∈[0,1−t] to the IVP (3.10). Moreover, the push-forward measure
satisfies Xt#µ = Law(atZ + btX1) with Z ∼ γd,X1 ∼ ν.

Corollary 5.1 (Time-reversed flow) Suppose Assumptions 2.1 and 2.2-(i), (iii), or (iv)
are satisfied. Then the time-reversed flow (X∗t )t∈[0,1] associated with ν is a unique solution
to the IVP:

dX∗t
dt

(x) = −v(1− t,X∗t (x)), X∗0 (x) ∼ ν, t ∈ [0, 1]. (5.1)

The push-forward measure satisfies X∗t #ν = Law(a1−tZ + b1−tX1) where Z ∼ γd,X1 ∼ ν.

Moreover, the flow map satisfies X∗t (x) = X−1
t (x).

Corollary 5.2 Suppose Assumptions 2.1 and 2.2-(ii) are satisfied. For any t ∈ (0, 1), the
time-reversed flow (X∗t )t∈[t,1] associated with ν is a unique solution to the IVP:

dX∗t
dt

(x) = −v(1− t,X∗t (x)), X∗t (x) ∼ Law(a1−tZ + b1−tX1), t ∈ [t, 1], (5.2)

where Z ∼ γd,X1 ∼ ν. The push-forward measure satisfies X∗t #ν = Law(a1−tZ + b1−tX1).

Moreover, the flow map satisfies X∗t (x) = X−1
t (x).

Based on the well-posedness of the flow, we can provide an upper bound on the Lipschitz
constant of the induced flow map.

Lemma 5.1 Suppose that a flow (Xt)t∈[0,1] is well-posed with a velocity field v(t, x) : [0, 1]×
Rd → Rd of class C1 in x, and that for any (t, x) ∈ [0, 1] × Rd, it holds ∇xv(t, x) � θtId.
Let the flow map Xs,t : Rd → Rd be of class C1 in x for any 0 ≤ s ≤ t ≤ 1. Then the flow
map Xs,t is Lipschitz continuous with an upper bound of its Lipschitz constant given by

‖∇xXs,t(x)‖2,2 ≤ exp

(∫ t

s
θudu

)
. (5.3)

Using Lemma 5.1, we show that the flow map of a GIF is Lipschitz continuous in the
space variable x.

Proposition 5.1 (Lipschitz mappings) Suppose that Assumptions 2.1 and 2.2-(i) hold.
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(i) If ν is κ-semi-log-concave for some κ > 0, then the flow map X1(x) is a Lipschitz
mapping, that is,

‖∇xX1(x)‖2,2 ≤
1√

κa2
0 + b20

, ∀x ∈ Rd.

In particular, if a0 = 1 and b0 = 0, then

‖∇xX1(x)‖2,2 ≤
1√
κ
, ∀x ∈ Rd.

(ii) If ν is β-semi-log-convex for some β > 0, then the time-reversed flow map X∗1 (x) is a
Lipschitz mapping, that is,

‖∇xX∗1 (x)‖2,2 ≤
√
βa2

0 + b20, ∀x ∈ supp(ν).

In particular, if a0 = 1 and b0 = 0, then

‖∇xX∗1 (x)‖2,2 ≤
√
β, ∀x ∈ supp(ν).

Proposition 5.2 (Gaussian mixtures) Suppose that Assumptions 2.1 and 2.2-(iii) hold.
Then the flow map X1(x) is a Lipschitz mapping, that is,

‖∇xX1(x)‖2,2 ≤
σ√

a2
0 + σ2b20

exp

(
a2

0

a2
0 + σ2b20

· R
2

2σ2

)
, ∀x ∈ Rd.

In particular, if a0 = 1 and b0 = 0, then

‖∇xX1(x)‖2,2 ≤ σ exp

(
R2

2σ2

)
, ∀x ∈ Rd.

Moreover, the time-reversed flow map X∗1 (x) is a Lipschitz mapping, that is,

‖∇xX∗1 (x)‖2,2 ≤
√
σ−2a2

0 + b20, ∀x ∈ supp(ν).

In particular, if a0 = 1 and b0 = 0, then

‖∇xX∗1 (x)‖2,2 ≤
1

σ
, ∀x ∈ supp(ν).

Remark 5.1 Well-posed GIFs produce diffeomorphisms that transport the source measure
onto the target measure. The diffeomorphism property of the transport maps are relevant to
the auto-encoding and cycle consistency properties of their generative modeling applications.
We defer a detailed discussion to Section 6.

Early stopping implicitly mollifies the target measure with a small Gaussian noise. For
image generation tasks (with bounded pixel values), the mollified target measure is indeed a
Gaussian mixture distribution considered in Theorem 5.2. The regularity of the target mea-
sure largely gets enhanced through such mollification, especially when the target measure
is supported on a low-dimensional manifold in accordance with the data manifold hypoth-
esis. Therefore, although such a diffeomorphism X1(x) may not be well-defined for general
bounded target measures, an off-the-shelf solution would be to perturb the target measure
with a small Gaussian noise or to employ the early stopping technique. Both approaches
will smooth the landscape of the target measure.
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Proposition 5.3 Suppose the target measure ν satisfies the log-Sobolev inequality with con-
stant CLS(ν). Then the marginal distribution of the GIF (pt)t∈[0,1] satisfies the log-Sobolev
inequality, and its log-Sobolev constant CLS(pt) is bounded as

CLS(pt) ≤ a2
t + b2tCLS(ν).

Moreover, suppose the target measure ν satisfies the Poincaré inequality with constant
CP (ν). Then the marginal distribution of the GIF (pt)t∈[0,1] satisfies the Poincaré inequality,
and its Poincaré constant CP(pt) is bounded as

CP(pt) ≤ a2
t + b2tCP(ν).

The log-Sobolev and Poincaré inequalities (see Definitions G.1 and G.2) are fundamental
tools for establishing convergence guarantees for Langevin Monte Carlo algorithms. From
an algorithmic viewpoint, the predictor-corrector algorithm in score-based diffusion models
and the corresponding probability flow ODEs essentially combine the ODE numerical solver
(performing as the predictor) and the overdamped Langevin diffusion (performing as the
corrector) to simulate samples from the marginal distributions (Song et al., 2021b). Propo-
sition 5.3 shows that the marginal distributions all satisfy the log-Sobolev and Poincaré
inequalities under mild assumptions on the target distribution. This conclusion suggests
that Langevin Monte Carlo algorithms are certified to have convergence guarantees for
sampling from the marginal distributions of GIFs. Furthermore, the target distributions
covered in Assumption 2.2 are shown to satisfy the log-Sobolev and Poincaré inequalities
(Mikulincer and Shenfeld, 2021; Dai et al., 2023; Fathi et al., 2023), which suggests that
the assumptions of Proposition 5.3 generally hold.

6. Applications to generative modeling

Auto-encoding is a primary principle in learning a latent representation with generative
models (Goodfellow et al., 2016, Chapter 14). Meanwhile, the concept of cycle consistency
is important to unpaired image-to-image translation between the source and target do-
mains (Zhu et al., 2017). The recent work by Su et al. (2023) propose the dual diffusion
implicit bridges (DDIB) for image-to-image translation, which shows a strong pattern of
exact auto-encoding and image-to-image translation. DDIBs are built upon the denoising
diffusion implicit models (DDIM), which share the same probability flow ODE with VESDE
(considered as VE interpolant in Table 1), as pointed out by (Song et al., 2021a, Proposi-
tion 1). First, DDIBs attain latent embeddings of source images encoded with one DDIM
operating in the source domain. The encoding embeddings are then decoded using another
DDIM trained in the target domain to construct target images. The whole process consist-
ing of two DDIMs seems to be cycle consistent up to numerical errors. Several phenomena of
auto-encoding and cycle consistency are observed in the unpaired data generation procedure
with DDIBs.

We replicate the two-dimensional experiments by Su et al. (2023) in Figures 3 and 4
to show the phenomena of approximate auto-encoding and cycle consistency of GIFs1. To
elucidate the empirical auto-encoding and cycle consistency for measure transport, we derive

1. The implementation is based on the GitHub repository at https://github.com/suxuann/ddib.
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Figure 3: An illustration of auto-encoding using DDIBs. The Concentric Rings data in the
source domain (the first panel) is encoded into the latent domain (the second
panel), and then decoded into the source domain (the third panel). According to
the consistent color pattern and pointwise correspondences across the domains,
both the learned encoder mapping and the learned decoder mapping exhibit ap-
proximate Lipschitz continuity with respect to the space variable. One justifi-
cation of such auto-encoding observation is presented in Corollary 6.1 where we
prove that the composition of the encoder map and the decoder map yields an
identity map.

Corollaries 6.1 and 6.2 below and analyze the transport maps defined by GIFs (covering
the probability flow ODE of VESDE used by DDIBs). We consider the continuous-time
framework and the population level, which precludes learning errors including the time
discretization errors and velocity field estimation errors, and show that the transport maps
naturally possess the exact auto-encoding and cycle consistency properties at the population
level.

Corollary 6.1 (Auto-encoding) Suppose Assumptions 2.1 and 2.2-(i), (iii), or (iv) hold
for a target measure ν. The Gaussian interpolation flow (Xt)t∈[0,1] and its time-reversed
flow (X∗t )t∈[0,1] form an auto-encoder with a Lipschitz encoder X∗1 (x) and a Lipschitz decoder
X1(x). The auto-encoding property holds in the sense that

X1 ◦X∗1 = Id. (6.1)

Corollary 6.2 (Cycle consistency) Suppose Assumptions 2.1 and 2.2-(i), (iii), or (iv)
hold for the target measures ν1 and ν2. For the target measure ν1, we define the Gaus-
sian interpolation flow (X1,t)t∈[0,1] and its time-reversed flow (X∗1,t)t∈[0,1]. We also define
the Gaussian interpolation flow (X2,t)t∈[0,1] and its time-reversed flow (X∗2,t)t∈[0,1] for the
target measure ν2 using the same at and bt. Then the transport maps X1,1(x), X∗1,1(x),
X2,1(x), and X∗2,1(x) are Lipschitz continuous in the space variable x. Furthermore, the
cycle consistency property holds in the sense that

X1,1 ◦X∗2,1 ◦X2,1 ◦X∗1,1 = Id. (6.2)

Corollaries 6.1 and 6.2 show that the auto-encoding and cycle consistency properties
hold for the flows at the population level. These results provide insights to the approximate
auto-encoding and cycle consistency properties at the sample level.

19



Gao, Huang, and Jiao

Figure 4: An illustration of cycle consistency using DDIBs. The cycle consistency property
is manifested through the consistency of color patterns across the transformations.
We transform the Moons data in the source domain onto the Concentric Squares
data in the target domain, and then complete the cycle by mapping the target
data back to the source domain. The latent spaces play a central role in the
bidirectional translation. We provide a proof in Corollary 6.2 accounting for the
cycle consistency property.

There are several types of errors introduced in the training of GIFs. On the one hand,
the approximation in specifying source measures would exert influence on modeling the
distribution. On the other hand, the approximation in the velocity field also affects the
distribution learning error. We use the stability analysis method in the differential equations
theory to address the potential effects of these errors.

Corollary 6.3 Suppose Assumptions 2.1 and 2.2-(i), (iii), or (iv) hold. It holds that

C1 := sup
x∈Rd

‖∇xX1(x)‖2,2 <∞, C2 := sup
(t,x)∈[0,1]×Rd

‖∇xv(t, x)‖2,2 <∞.

Proposition 6.1 (Stability in the source distribution) Suppose Assumptions 2.1 and
2.2-(i), (iii), or (iv) hold. If the source measure µ = Law(a0Z + b0X1) is replaced with the
Gaussian measure γd,a20, then the stability of the transport map X1 is guaranteed by the W2

distance between the push-forward measure X1#γd,a20 and the target measure ν = Law(X1)
as follows

W2(X1#γd,a20 , ν) ≤ C1b0
√
Eν [‖X1‖2] exp(C2d). (6.3)

The stability analysis in Proposition 6.1 provides insights into the selection of source
measures for learning probability flow ODEs and GIFs. The error bound (6.3) demonstrates
that when the signal intensity is reasonably small in the source measure, that is, b0 � 1, the
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distribution estimation error, induced by the approximation with a Gaussian source mea-
sure, is small as well in the sense of the quadratic Wasserstein distance. Using a Gaussian
source measure to replace the true convolution source measure is a common approximation
method for learning probability flow ODEs and GIFs. Our analysis shows this replacement
is reasonable for the purpose of distribution estimation.

The Alekseev-Gröbner formula and its stochastic variants (Del Moral and Singh, 2022)
have been shown effective in quantifying the stability of well-posed ODE and SDE flows
against perturbations of its velocity field or drift (Bortoli, 2022; Benton et al., 2023). We
state these results below for convenience.

Lemma 6.1 (Hairer et al., 1993, Theorem 14.5) Let (Xt)t∈[0,1] and (Yt)t∈[0,1] solve the
following IVPs, respectively

dXt

dt
= v(t,Xt), X0 = x0, t ∈ [0, 1],

dYt
dt

= ṽ(t, Yt), Y0 = x0, t ∈ [0, 1],

where v(t, x) : [0, 1]× Rd → Rd and ṽ(t, x) : [0, 1]× Rd → Rd are the velocity fields.

(i) Suppose that v is of class C1 in x. Then the Alekseev-Gröbner formula for the differ-
ence Xt(x0)− Yt(x0) is given by

Xt(x0)− Yt(x0) =

∫ t

0
(∇xXs,t)(Ys(x0))> (v(s, Ys(x0))− ṽ(s, Ys(x0))) ds (6.4)

where ∇xXs,t(x) satisfies the variational equation

∂t(∇xXs,t(x)) = (∇xv)(t,Xs,t(x))∇xXs,t(x), ∇xXs,s(x) = Id. (6.5)

(ii) Suppose that ṽ is of class C1 in x. Then the Alekseev-Gröbner formula for the differ-
ence Yt(x0)−Xt(x0) is given by

Yt(x0)−Xt(x0) =

∫ t

0
(∇xYs,t)(Xs(x0))> (ṽ(s,Xs(x0))− v(s,Xs(x0))) ds (6.6)

where ∇xYs,t(x) satisfies the variational equation

∂t(∇xYs,t(x)) = (∇xṽ)(t, Ys,t(x))∇xYs,t(x), ∇xYs,s(x) = Id. (6.7)

Exploiting the Alekseev-Gröbner formulas in Lemma 6.1 and uniform Lipschitz proper-
ties of the velocity field, we deduce two error bounds in terms of the quadratic Wasserstein
(W2) distance to show the stability of the ODE flow when the velocity field is not accurate.

Proposition 6.2 (Stability in the velocity field) Suppose Assumptions 2.1 and 2.2 hold.
Let q̃t denote the density function of Yt#µ.
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(i) Suppose that ∫ 1

0

∫
Rd
‖v(t, x)− ṽ(t, x)‖2q̃t(x)dxdt ≤ ε. (6.8)

Then

W 2
2 (Y1#µ, ν) ≤ ε

∫ 1

0
exp

(
2

∫ 1

s
θudu

)
ds. (6.9)

(ii) Suppose that
sup

(t,x)∈[0,1]×Rd
‖∇xṽ(t, x)‖2,2 ≤ C3.

Then

W 2
2 (Y1#µ, ν) ≤ exp(2C3)− 1

2C3

∫ 1

0

∫
Rd
‖v(t, x)− ṽ(t, x)‖2pt(x)dxdt. (6.10)

Proposition 6.2 provides a stability analysis against the estimation error of the velocity
field using the W2 distance. The estimation error originates from the flow matching or score
matching procedures and the approximation error rising from using deep neural networks
in estimating the velocity field or the score function. These two W2 bounds imply that the
distribution estimation error is controlled by the L2 estimation error of flow matching and
score matching. Indeed, this point justifies the soundness of the approximation method
through flow matching and score matching. The first W2 bound (6.9) relies on the L2

control (6.8) of the perturbation error of the velocity field. The second W2 bound (6.10)
is slightly better than that provided in (Albergo and Vanden-Eijnden, 2023, Proposition 3)
but still has exponential dependence on the Lipschitz constant of ṽ(t, x).
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Figure 5: An approximately linear relation between b0 and the Wasserstein-2 distance.

To demonstrate the bounds presented in Propositions 6.1 and 6.2, we conducted fur-
ther experiments with a mixture of eight two-dimensional Gaussian distributions. These
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propositions provide bounds for the stability of the flow when subjected to perturbations
in either the source distribution or the velocity field. Let the target distribution be the
following two-dimensional Gaussian mixture

p(x) =
8∑
j=1

φ(x;µj ,Σj),

where φ(x;µj ,Σj) is the probability density function for the Gaussian distribution with
mean µj = 12(sin(2(j − 1)π/8), cos(2(j − 1)π/8))> and covariance matrix Σj = 0.032I2

for j = 1, · · · , 8. For Gaussian mixtures, the velocity field has an explicit formula, which
facilitates the perturbation analysis.

To illustrate the bound in Proposition 6.1, we consider a perturbation of the source
distribution for the following model:

Xt = atZ + btX with at = 1− t+ ζ

1 + ζ
, bt =

t+ ζ

1 + ζ
,

where ζ ∈ [0, 0.3] is a value controlling the perturbation level. It is easy to see a0 =
1/(1 + ζ), b0 = ζ/(1 + ζ). Thus, the source distribution Law(a0Z + b0X) is a mixture of
Gaussian distributions. Practically, we can use a Gaussian distribution γ2,a20

to replace this
source distribution. In Proposition 6.1, we bound the error between the distributions of
generated samples due to the replacement, that is,

W2(X1#γd,a20 , ν) ≤ Cb0,

where C is a constant. We illustrate this theoretical bound using the mixture of Gaussian
distributions and the Gaussian interpolation flow given above. We consider a mesh for the
variable ζ and plot the curve for b0 and W2(X1#γd,a20 , ν) in Figure 5. Through Figure 5,

an approximate linear relation between b0 and W2(X1#γd,a20 , ν) is observed, which supports
the results of Proposition 6.1.

We now consider perturbing the velocity field vt by adding random noise. Let ε ∈
[0.5, 5.5]. The random noise is generated using a Bernoulli random variable supported on
{−ε, ε}. Let ṽt denote the perturbed velocity field. Then we can compute

∆vt := ‖vt − ṽt‖2 = 2ε2.

We use the velocity field vt and the perturbed velocity field t to generate samples and
compute the squared Wasserstein-2 distance between the sample distributions. According
to Proposition 6.2, the squared Wasserstein-2 distance should be linearly upper bounded as
O(∆vt), that is,

W 2
2 (Y1#µ, ν) ≤ C̃

∫ 1

0

∫
R2

ε2pt(x)dxdt = C̃ε2,

where C̃ is a constant. This theoretical insight is illustrated in Figure 6, where a linear
relationship between these two variables is observed.
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Figure 6: A linear relation between ∆vt and the squared Wasserstein-2 distance.

7. Related work

GIFs and the induced transport maps are related to CNFs and score-based diffusion mod-
els. Mathematically, they interrelate with the literature on Lipschitz mass transport and
Wasserstein gradient flows. A central question in developing the ODE flow or transport
map method for generative modeling is how to construct an ODE flow or transport map
that are sufficiently smooth and enable efficient computation. Various approaches have been
proposed to answer the question.

CNFs construct invertible mappings between an isotropic Gaussian distribution and a
complex target distribution (Chen et al., 2018; Grathwohl et al., 2019). They fall within
the broader framework of neural ODEs (Chen et al., 2018; Ruiz-Balet and Zuazua, 2023).
A major challenge for CNFs is designing a time-dependent ODE flow whose marginal dis-
tribution converges to the target distribution while allowing for efficient estimation of its
velocity field. Previous work has explored several principles to construct such flows, includ-
ing optimal transport, Wasserstein gradient flows, and diffusion processes. Additionally,
Gaussian denoising has emerged as an effective principle for constructing simulation-free
CNFs in generative modeling.

Liu et al. (2023) propose the rectified flow, which is based on a linear interpolation
between a standard Gaussian distribution and the target distribution, mimicking the Gaus-
sian denoising procedure. Albergo and Vanden-Eijnden (2023) study a similar formulation
called stochastic interpolation, defining a trigonometric interpolant between a standard
Gaussian distribution and the target distribution. Albergo et al. (2023b) extend this idea
by proposing a stochastic bridge interpolant between two arbitrary distributions. Under
a few regularity assumptions, the velocity field of the ODE flow modeling the stochastic
bridge interpolant is proven to be continuous in the time variable and smooth in the space
variable.
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Lipman et al. (2023) introduce a nonlinear least squares method called flow matching
to directly estimate the velocity field of probability flow ODEs. All of these models are
encompassed within the framework of simulation-free CNFs, which have been the focus of
numerous ongoing research efforts (Neklyudov et al., 2023; Tong et al., 2023; Chen and
Lipman, 2023; Albergo et al., 2023b; Shaul et al., 2023; Pooladian et al., 2023; Albergo
et al., 2023a,c). Furthermore, Marzouk et al. (2023) provide the first statistical convergence
rate for the simulation-based method by placing neural ODEs within the nonparametric
estimation framework.

Score-based diffusion models integrate the time reversal of stochastic differential equa-
tions (SDEs) with the score matching technique (Sohl-Dickstein et al., 2015; Song and
Ermon, 2019; Ho et al., 2020; Song and Ermon, 2020; Song et al., 2021b,a; De Bortoli et al.,
2021). These models are capable of modeling highly complex probability distributions and
have achieved state-of-the-art performance in image synthesis tasks (Dhariwal and Nichol,
2021; Rombach et al., 2022). The probability flow ODEs of diffusion models can be consid-
ered as CNFs, whose velocity field incorporates the nonlinear score function (Song et al.,
2021b; Karras et al., 2022; Lu et al., 2022b,a; Zheng et al., 2023). In addition to the score
matching method, Lu et al. (2022a) and Zheng et al. (2023) explore maximum likelihood
estimation for probability flow ODEs. However, the regularity of these probability flow
ODEs has not been studied and their well-posedness properties remain to be established.

A key concept in defining measure transport is Lipschitz mass transport, where the
transport maps are required to be Lipschitz continuous. This ensures the smoothness and
stability of the measure transport. There is a substantial body of research on the Lipschitz
properties of transport maps. The celebrated Caffarelli’s contraction theorem (Caffarelli,
2000, Theorem 2) establishes the Lipschitz continuity of optimal transport maps that push
the standard Gaussian measure onto a log-concave measure. Colombo et al. (2017) study
a Lipschitz transport map between perturbations of log-concave measures using optimal
transport theory.

Mikulincer and Shenfeld (2021) demonstrate that the Brownian transport map, defined
by the Föllmer process, is Lipschitz continuous when it pushes forward the Wiener measure
on the Wiener space to the target measure on the Euclidean space. Additionally, Neeman
(2022) and Mikulincer and Shenfeld (2023) prove that the transport map along the reverse
heat flow of certain target measures is Lipschitz continuous.

Beyond studying Lipschitz transport maps, significant effort has been devoted to ap-
plying optimal transport theory in generative modeling. Zhang et al. (2018) propose the
Monge-Ampe‘re flow for generative modeling by solving the linearized Monge-Amper̀e equa-
tion. Optimal transport theory has been utilized as a general principle to regularize the
training of continuous normalizing flows or generators for generative modeling (Finlay et al.,
2020; Yang and Karniadakis, 2020; Onken et al., 2021; Makkuva et al., 2020). Liang (2021)
leverage the regularity theory of optimal transport to formalize the generator-discriminator-
pair regularization of GANs under a minimax rate framework.

In our work, we study the Lipschitz transport maps defined by GIFs, which differ from
the optimal transport map. GIFs naturally fit within the framework of continuous normal-
izing flows, and their flow mappings are examined from the perspective of Lipschitz mass
transport.
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Wasserstein gradient flows offer another principled approach to constructing ODE flows
for generative modeling. A Wasserstein gradient flow is derived from the gradient descent
minimization of a certain energy functional over probability measures endowed with the
quadratic Wasserstein metric (Ambrosio et al., 2008). The Eulerian formulation of Wasser-
stein gradient flows produces the continuity equations that govern the evolution of marginal
distributions. After transferred into a Lagrangian formulation, Wasserstein gradient flows
define ODE flows that have been widely explored for generative modeling (Johnson and
Zhang, 2018; Gao et al., 2019; Liutkus et al., 2019; Johnson and Zhang, 2019; Arbel et al.,
2019; Mroueh et al., 2019; Ansari et al., 2021; Mroueh and Nguyen, 2021; Fan et al., 2022;
Gao et al., 2022; Duncan et al., 2023; Xu et al., 2022). Wasserstein gradient flows are shown
to be connected with the forward process of diffusion models. The variance preserving SDE
of diffusion models is equivalent to the Langevin dynamics towards the standard Gaussian
distribution that can be interpreted as a Wasserstein gradient flow of the Kullback–Leibler
divergence for a standard Gaussian distribution (Song et al., 2021b). In the meantime, the
probability flow ODE of the variance preserving SDE conforms to the Eulerian formulation
of this Wasserstein gradient flow. However, when assigning a general distribution instead
of the standard Gaussian distribution, it remains unclear whether the ODE formulation of
Wasserstein gradient flows possesses well-posedness.

The main contribution of our work lies in establishing the theoretical properties of
GIFs and their associated flow maps in a unified way. Our theoretical results encompass
the Lipschitz continuity of both the flow velocity field and the flow map, addressing the
existence, uniqueness, and stability of the flow. We also demonstrate that both the flow
map and its inverse possess Lipschitz properties.

Our proposed framework for Gaussian interpolation flow builds upon previous research
on probability flow methods in diffusion models (Song et al., 2021b,a) and stochastic inter-
polation methods for generative modeling (Liu et al., 2023; Albergo and Vanden-Eijnden,
2023; Lipman et al., 2023). Rather than adopting a methodological perspective, we fo-
cus on elucidating the theoretical aspects of these flows from a unified standpoint, thereby
enhancing the understanding of various methodological approaches. Our theoretical re-
sults are derived from geometric considerations of the target distribution and from analytic
calculations that exploit the Gaussian denoising property.

8. Conclusions and discussion

Gaussian denoising as a framework for constructing continuous normalizing flows holds
great promise in generative modeling. Through a unified framework and rigorous analysis,
we have established the well-posedness of these flows, shedding light on their capabilities and
limitations. We have examined the Lipschitz regularity of the corresponding flow maps for
several rich classes of probability measures. When applied to generative modeling based on
Gaussian denoising, we have shown that GIFs possess auto-encoding and cycle consistency
properties at the population level. Additionally, we have established stability error bounds
for the errors accumulated during the process of learning GIFs.

The regularity properties of the velocity field established in this paper provide a solid
theoretical basis for end-to-end error analyses of learning GIFs using deep neural networks
with empirical data. Another potential application is to perform rigorous analyses of consis-
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tency models, a nascent family of ODE-based deep generative models designed for one-step
generation (Song et al., 2023; Kim et al., 2023; Song and Dhariwal, 2023). We intend to
investigate these intriguing problems in our subsequent work. We expect that our analytical
results will facilitate further studies and advancements in applying simulation-free CNFs,
including GIFs, to a diverse range of generative modeling tasks.

Acknowledgements

The authors wish to thank the action editor and reviewers for their valuable and constructive
comments, which have significantly improved the quality of this paper. The work of J.
Huang is supported by the research grants (1-BDCC, 4-ZZ4B, 1-WZ3P, and 4-ZZPN) from
The Hong Kong Polytechnic University and the National Natural Science Foundation of
China (Grant No. 72331005). The work of Y. Jiao is supported by the National Nature
Science Foundation of China (Grant No.12371441), “the Fundamental Research Funds for
the Central Universities”, and the research fund of KLATASDSMOE of China.

27



Gao, Huang, and Jiao

Appendix

In the appendices, we prove the results stated in the paper and provide necessary technical
details and discussions.

Appendix A. Proofs of Theorem 3.1 and Lemma 4.1

Dynamical properties of Gaussian interpolation flow (Xt)t∈[0,1] form the cornerstone of the
measure interpolation method. Following Albergo and Vanden-Eijnden (2023); Albergo
et al. (2023b), we leverage an argument of characteristic functions to quantify the dynamics
of its marginal flow, and in result, to prove Theorem 3.1.
Proof [Proof of Theorem 3.1] Let ω ∈ Rd. For the Gaussian stochastic interpolation
(Xt)t∈[0,1], we define the characteristic function of Xt by

Ψ(t, ω) := E[exp(i〈ω,Xt〉)] = E[exp(i〈ω, atZ + btX1〉)] = E[exp(iat〈ω,Z〉)]E[exp(ibt〈ω,X1〉)],

where the last equality is due to the independence of between Z ∼ γd and X1 ∼ ν. Taking
the time derivative of Ψ(t, ω) for t ∈ (0, 1), we derive that

∂tΨ(t, ω) = i〈ω, ψ(t, ω))

where
ψ(t, ω) := E[exp(i〈ω,Xt〉)(ȧtZ + ḃtX1)].

We first define

v(t,Xt) := E[ȧtZ + ḃtX1|Xt]. (A.1)

Using the double expectation formula, we deduce that

ψ(t, ω) = E[exp(i〈ω,Xt〉)E[ȧtZ + ḃtX1|Xt]] = E[exp(i〈ω,Xt〉)v(t,Xt)].

Applying the inverse Fourier transform to ψ(t, ω), it holds that

j(t, x) := (2π)−d
∫
Rd

exp(−i〈ω, x〉)ψ(t, ω)dω = pt(x)v(t, x),

where v(t, x) := E[ȧtZ + ḃtX1|Xt = x]. Then it further yields that

∂tpt +∇x · j(t, x) = 0,

that is,
∂tpt +∇x · (ptv(t, x)) = 0.

Next, we study the property of v(t, x) at t = 0 and t = 1. Notice that

x = atE[Z|Xt = x] + btE[X1|Xt = x]. (A.2)

Combining Eq. (A.1) and (A.2), it implies that

v(t, x) = ȧt
at
x+

(
ḃt − ȧt

at
bt

)
E[X1|Xt = x], t ∈ (0, 1). (A.3)
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According to Tweedie’s formula in Lemma G.1, it holds that

s(t, x) = bt
a2t
E [X1|Xt = x]− 1

a2t
x, t ∈ (0, 1), (A.4)

where s(t, x) is the score function of the marginal distribution of Xt ∼ pt.
Combining Eq. (A.3), (A.4), it holds that the velocity field is a gradient field and its

nonlinear term is the score function s(t, x), namely, for any t ∈ (0, 1),

v(t, x) = ḃt
bt
x+

(
ḃt
bt
a2
t − ȧtat

)
s(t, x). (A.5)

By the regularity properties that at, bt ∈ C2([0, 1)), a2
t ∈ C1([0, 1]), bt ∈ C1([0, 1]), we have

that ȧ0, ḃ0, ȧ1a1, and ḃ1 are well-defined. Then by Eq. (A.3), we define that

v(0, x) := lim
t↓0

v(t, x) = ȧ0
a0
x+

(
ḃ0 − ȧ0

a0
b0

)
E[X1|X0 = x]

Using Eq. (A.5) yields that

v(1, x) := lim
t↑1

v(t, x) = ḃ1
b1
x− ȧ1a1s(1, x). (A.6)

This completes the proof.

Lemma 4.1 presents several standard properties of Gaussian channels in information
theory (Wibisono and Jog, 2018a,b; Dytso et al., 2023b) that will facilitate our proof.
Proof [Proof of Lemma 4.1] By Bayes’ rule, Law(Y|Xt = x) = p(y|t, x) can be represented
as

p(y|t, x) = ϕbty,a2t (x)p1(y)/pt(x)

= (2π)−d/2a−dt exp

(
−‖x− bty‖

2

2a2
t

)
p1(y)/pt(x)

= (2π)−d/2a−dt exp

(
−‖x‖

2

2a2
t

+
bt〈x, y〉
a2
t

− b2t ‖y‖2

2a2
t

)
p1(y)/pt(x)

=

{
exp

(
bt〈x, y〉
a2
t

− b2t ‖y‖2

2a2
t

)
p1(y)

}
/

{
(2π)d/2adt exp

(
‖x‖2

2a2
t

)
pt(x)

}
.

Let θ = btx
a2t
, h(y) = p1(y) exp(− b2t ‖y‖2

2a2t
), and the logarithmic partition function

A(θ) = log

∫
Rd
h(y) exp(〈y, θ〉)dy,

then by the definition of exponential family distributions, we conclude that

p(y|t, x) = h(y) exp(〈y, θ〉 −A(θ))

is an exponential family distribution of y. By simple calculation, it follows that

∇2
x log p(y|t, x) = − b

2
t

a4
t

∇2
θA(θ).
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For an exponential family distribution, a basic equality shows that

∇2
θA(θ) = Cov(Y|Xt = x),

which further yields that ∇2
x log p(y|t, x) = − b2t

a4t
Cov(Y|Xt = x).

Appendix B. Auxiliary lemmas for Lipschitz flow maps

The following lemma, due to G. Peano (Hartman, 2002a, Theorem 3.1), describes several
meaningful differential equations associated with well-posed flows and supports the deriva-
tion of Lipschitz continuity of their flow maps.

Lemma B.1 (Ambrosio et al., 2023, Lemma 3.4) Suppose that a flow (Xt)t∈[0,1] is well-

posed and its velocity field v(t, x) : [0, 1] × Rd → Rd is of class C1. Then the flow map
Xs,t : Rd → Rd is of class C1 for any 0 ≤ s ≤ t ≤ 1. Fix (s, x) ∈ [0, 1] × Rd and set the
following functions defined with t ∈ [s, 1]

y(t) := ∇xXs,t(x), J(t) := (∇xv)(t,Xs,t(x)),

w(t) := det(∇xXs,t(x)), b(t) := (∇x · v)(t,Xs,t(x)) = Tr(J(t)).

Then y(t) and w(t) are the unique C1 solutions of the following IVPs

ẏ(t) = J(t)y(t), y(s) = Id, (B.1)

ẇ(t) = b(t)w(t), w(s) = 1. (B.2)

We present an upper bound of the Lipschitz constant of its flow map Xs,t(x) in Lemma
5.1. The upper bound has been deduced in Mikulincer and Shenfeld (2023); Ambrosio et al.
(2023); Dai et al. (2023). For completeness, we derive it as a direct implication of Eq. (B.1)
in Lemma B.1 and an upper bound of the Jacobian matrix of the velocity field.
Proof [Proof of Lemma 5.1] Let y(u) = ∇xXs,u(x), J(u) = (∇xv)(u,Xs,u(x)). Owing to
Lemma B.1, y(u) is of class C1, and the function u 7→ ‖y(u)‖2,2 is absolutely continuous
over [s, t]. By Lemma B.1, it follows that

∂u‖y(u)‖22,2 = 2〈y(u), ẏ(u)〉 = 2〈y(u), J(u)y(u)〉 ≤ 2θu‖y(u)‖22,2.

Applying Grönwall’s inequality yields that ‖y(t)‖2,2 ≤ exp(
∫ t
s θudu) which concludes the

proof.

Another result is concerning the theorem of instantaneous change of variables that is
widely deployed in studying neural ODEs (Chen et al., 2018, Theorem 1). We also exploit
the instantaneous change of variables to prove Proposition 6.1. To make the proof self-
contained, we show that the instantaneous change of variables directly follows Eq. (B.2)
in Lemma B.1. Compared with the original proof in (Chen et al., 2018, Theorem 1), we
illustrate that the well-posedness of a flow is sufficient to ensure the instantaneous change
of variables property, without a boundedness condition on the flow.
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Corollary B.1 (Instantaneous change of variables) Suppose that a flow (Xt)t∈[0,1] is

well-posed with a velocity field v(t, x) : [0, 1] × Rd → Rd of class C1 in x. Let X0(x) ∼
π0(X0(x)) be a distribution of the initial value. Then the law of Xt(x) satisfies the following
differential equation

∂t log πt(Xt(x)) = −Tr((∇xv)(t,Xt(x))).

Proof Let δ(t) := det(∇xXt(x)). Thanks to Eq. (B.2) in Lemma B.1, it holds that

δ̇(t) = Tr((∇xv)(t,Xt(x)))δ(t), δ(0) = 1,

which implies δ(t) > 0 for t ∈ [0, 1]. Notice that log πt(Xt(x)) = log π0(X0(x)) − log |δ(t)|
by change of variables. Then it follows that ∂t log πt(Xt(x)) = −Tr((∇xv)(t,Xt(x))).

Appendix C. Proofs of spatial Lipschitz estimates for the velocity field

The main results in Section 4 are proved in this appendix. We first present some ancillary
lemmas before proceeding to give the proofs.

Lemma C.1 (Fathi et al., 2023) Suppose that f : Rd → R+ is L-log-Lipschitz for some
L ≥ 0. Let Pt be the Ornstein–Uhlenbeck semigroup defined by Pth(x) := EZ∼γd [h(e−tx +√

1− e−2tZ)] for any h ∈ C(Rd) and t ≥ 0. Then it holds that{
−5Le−t(L+ t−

1
2 )− L2e−2t

}
Id � ∇2

x logPtf(x) �
{

5Le−t(L+ t−
1
2 )
}

Id.

Proof This is a restatement of known results. See Proposition 2, Proposition 6, Theorem
6, and their proofs in Fathi et al. (2023).

Corollary C.1 Suppose that f : Rd → R+ is L-log-Lipschitz for some L ≥ 0. Let Qt be an
operator defined by

Qth(x) := EZ∼γd [h(βtx+ αtZ)] (C.1)

for any h ∈ C(Rd) and t ∈ [0, 1] where 0 ≤ αt ≤ 1, βt ≥ 0 for any t ∈ [0, 1]. Then it holds
that (

−At − L2β2
t

)
Id � ∇2

x logQtf(x) � AtId,

where At := 5Lβ2
t (1− α2

t )
− 1

2 (L+ (−1
2 log(1− α2

t ))
− 1

2 ).

Proof It is easy to notice that Qtf(x) = Psf(βte
sx) where s = −1

2 log(1 − α2
t ). Then it

follows that ∇2
x logQtf(x) = (βte

s)2(∇2
x logPsf)(βte

sx) which yields(
−At − L2β2

t

)
Id � ∇2

x logQtf(x) � AtId,

where At := 5Lβ2
t (1− α2

t )
− 1

2 (L+ (−1
2 log(1− α2

t ))
− 1

2 ).
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Lemma C.2 The Jacobian matrix of the velocity field (3.5) has an alternative expression
over time t ∈ (0, 1), that is,

∇xv(t, x) =
(
ḃt
bt
a2
t − ȧtat

)(
∇2
x log Q̃tf(x)− 1

a2t+b
2
t
Id

)
+ ḃt

bt
Id,

where f(x) := dν
dγd

(x) and Q̃tf(x) := EZ∼γd [f( bt
a2t+b

2
t
x+ at√

a2t+b
2
t

Z)].

Proof By direct calculations, it holds that

pt(x) = a−dt

∫
Rd
p1(y)ϕ

(
x− bty
at

)
dy = a−dt

∫
Rd
f(y)ϕ(y)ϕ

(
x− bty
at

)
dy

= a−dt ϕ
(

(a2
t + b2t )

− 1
2x
)∫

Rd
f(y)ϕ

( at√
a2
t + b2t

)−1(
y − bt

a2
t + b2t

x

)dy

= a−dt ϕ
(

(a2
t + b2t )

− 1
2x
)( at√

a2
t + b2t

)d ∫
Rd
f

(
bt

a2
t + b2t

x+
at√
a2
t + b2t

z

)
dγd(z)

= (a2
t + b2t )

−d/2ϕ
(

(a2
t + b2t )

− 1
2x
)
Q̃tf(x).

Taking the logarithm and then the second-order derivative of the equation above, it yields

∇xs(t, x) = ∇2
x log Q̃tf(x)− 1

a2t+b
2
t
Id.

Recalling that ∇xv(t, x) =
(
ḃt
bt
a2
t − ȧtat

)
∇xs(t, x) + ḃt

bt
Id, it further yields that

∇xv(t, x) =
(
ḃt
bt
a2
t − ȧtat

)
∇2
x log Q̃tf(x) + ȧtat+ḃtbt

a2t+b
2
t

Id,

which completes the proof.

Corollary C.2 Suppose that f(x) := dν
dγd

(x) is L-log-Lipschitz for some L ≥ 0. Then for
t ∈ (0, 1), it holds that{(

ḃt
bt
a2
t − ȧtat

)(
−Bt − L2

(
bt

a2t+b
2
t

)2
)

+ ȧtat+ḃtbt
a2t+b

2
t

}
Id

� ∇xv(t, x) �
{(

ḃt
bt
a2
t − ȧtat

)
Bt + ȧtat+ḃtbt

a2t+b
2
t

}
Id,

where Bt := 5Lbt(a
2
t + b2t )

− 3
2 (L+ (log(

√
a2
t + b2t /bt))

− 1
2 ).

Proof Let αt = at√
a2t+b

2
t

and βt = bt
a2t+b

2
t
. Then these bounds hold according to Corollary

C.1 and Lemma C.2.

Then we are prepared to prove Proposition 4.1. The proof is mainly based on the tech-
niques for bounding conditional covariance matrices that are developed in a series of work
(Wibisono and Jog, 2018a,b; Mikulincer and Shenfeld, 2021, 2023; Chewi and Pooladian,
2022; Dai et al., 2023).
Proof [Proof of Proposition 4.1]
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(a) By Jung’s theorem (Danzer et al., 1963, Theorem 2.6), there exists a closed Euclidean
ball with radius less than D := (1/

√
2)diam(supp(ν)) that contains supp(ν) in Rd.

Then the desired bounds hold due to 0Id � Cov(Y|Xt = x) � D2Id and Eq. (4.3).

(b) Let p1 be β-semi-log-convex for some β > 0 on Rd. Then for any t ∈ [0, 1), the

conditional distribution p(y|t, x) is
(
β +

b2t
a2t

)
-semi-log-convex because

−∇2
y log p(y|t, x) = −∇2

y log p1(y)−∇2
y log p(t, x|y) �

(
β +

b2t
a2
t

)
Id.

By the Cramér-Rao inequality (2.4), we obtain

Cov(Y|Xt = x) �
(
β +

b2t
a2
t

)−1

Id.

Therefore, by Eq. (4.3), we obtain

∇xv(t, x) �

{(
ḃt
bt
− ȧt
at

)
b2t

βa2
t + b2t

+
ȧt
at

}
Id,

which implies

∇xv(t, x) � βatȧt + btḃt
βa2

t + b2t
Id.

In addition, the bound above can be verified at time t = 1 by the definition (A.6).

(c) Let p1 be κ-semi-log-concave for some κ ∈ R. Then for any t ∈ [0, 1), the conditional

distribution p(y|t, x) is
(
κ+

b2t
a2t

)
-semi-log-concave because

−∇2
y log p(y|t, x) = −∇2

y log p1(y)−∇2
y log p(t, x|y) �

(
κ+

b2t
a2
t

)
Id.

When t ∈
{
t : κ+

b2t
a2t
> 0, t ∈ (0, 1)

}
, by the Brascamp-Lieb inequality (2.2), we ob-

tain

Cov(Y|Xt = x) �
(
κ+

b2t
a2
t

)−1

Id.

Therefore, by Eq. (4.3), we obtain

∇xv(t, x) �

{(
ḃt
bt
− ȧt
at

)
b2t

κa2
t + b2t

+
ȧt
at

}
Id,

which implies

∇xv(t, x) � κatȧt + btḃt
κa2

t + b2t
Id.

Moreover, the bound above can be verified at time t = 1 by the definition (A.6).
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(d) Notice that

p(y|t, x) =
p(t, x|y)

pt(x)

d(γd,σ2 ∗ ρ)

dy

= Ax,t

∫
Rd
ϕz,σ2(y)ϕ

x
bt
,
a2t
b2t

(y)ρ(dz),

where the prefactor Ax,t only depends on x and t. Then it follows that

p(y|t, x) =

∫
Rd
ϕa2t z+σ

2btx

a2t+σ
2b2t

,
σ2a2t

a2t+σ
2b2t

(y)ρ̃(dz)

where ρ̃ is a probability measure on Rd whose density function is a multiple of ρ by a
positive function. It also indicates that ρ̃ is supported on the same Euclidean ball as
ρ. To further illustrate p(y|t, x), let Q ∼ ρ̃ and Z ∼ γd be independent. Then it holds
that

a2
t

a2
t + σ2b2t

Q +

√
σ2a2

t

a2
t + σ2b2t

Z +
σ2bt

a2
t + σ2b2t

x ∼ p(y|t, x).

Thus, it holds that

Cov(Y|Xt = x) =

(
a2
t

a2
t + σ2b2t

)2

Cov(Q) +
σ2a2

t

a2
t + σ2b2t

Id

�

{(
a2
t

a2
t + σ2b2t

)2

R2 +
σ2a2

t

a2
t + σ2b2t

}
Id.

By Eq. (4.3), it holds that

∇xv(t, x) � b2t
a2
t

(
ḃt
bt
− ȧt
at

)((
a2
t

a2
t + σ2b2t

)2

R2 +
σ2a2

t

a2
t + σ2b2t

)
Id +

ȧt
at

Id,

which implies

∇xv(t, x) �

{
atbt(atḃt − ȧtbt)

(a2
t + σ2b2t )

2
R2 +

ȧtat + σ2ḃtbt
a2
t + σ2b2t

}
Id.

Analogously, due to Cov(Q) � 0Id, a lower bound would be yielded as follows

∇xv(t, x) � ȧtat + σ2ḃtbt
a2
t + σ2b2t

Id.

Then the results follow by combining the upper and lower bounds.

(e) The result follows from Corollary C.2.
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We complete the proof.

Proof [Proof of Corollary 4.1] Let us consider that κ > 0 which is divided into two cases
where κD2 ≥ 1 and κD2 < 1. On the one hand, suppose that the first case κD2 ≥ 1 holds.
By Proposition 4.1, the κ-based upper bound is tighter, that is,

λmax(∇xv(t, x)) ≤ θt :=
κatȧt + btḃt
κa2

t + b2t
.

On the other hand, suppose that the second case κD2 < 1 holds. Let t1 be defined in Eq.
(4.5). Again, by Proposition 4.1, the D2-based upper bound is tighter over [0, t1) and the
κ-based upper bound is tighter over [t1, 1], which is denoted by

λmax(∇xv(t, x)) ≤ θt :=


b2t
a2t

(
ḃt
bt
− ȧt

at

)
D2 + ȧt

at
, t ∈ [0, t1),

κatȧt+btḃt
κa2t+b

2
t
, t ∈ [t1, 1].

This completes the proof.

Proof [Proof of Corollary 4.2] Let κ < 0, D < ∞ such that κD2 < 1 is fulfilled. Then an
argument similar to the proof of Corollary 4.1 yields the desired bounds.

Proof [Proof of Corollary 4.3] The result follows from Proposition 4.1-(d).

Proof [Proof of Corollary 4.4] The L-based upper and lower bounds in Proposition 4.1-(e)

would blow up at time t = 1 because the term (log(
√
a2
t + b2t /bt))

− 1
2 in Bt goes to ∞ as

t→ 1. To ensure the spatial derivative of the velocity field v(t, x) is upper bounded at time
t = 1, we additionally require the target measure is κ-semi-log-concave with κ ≤ 0. Hence,
a κ-based upper bound is available for t ∈ (t0, 1] as shown in Proposition 4.1-(c). Next,
these two upper bounds are combined by choosing any t2 ∈ (t0, 1) first. Then we exploit
the L-based bound over [0, t2) and κ-based bound over [t0, 1]. This completes the proof.

Appendix D. Proofs of well-posedness and Lipschitz flow maps

The proofs of main results in Section 5 are offered in the following. Before proceeding,
let us introduce some definitions and notations about function spaces that are collected in
(Evans, 2010, Chapter 5). Let L1

loc(Rd;R`) := {locally integrable function u : Rd → R`}.
For integers k ≥ 0 and 1 ≤ p ≤ ∞, we define the Sobolev space W k,p(Rd) := {u ∈
L1

loc(Rd)|Dαu exists and Dαu ∈ Lp(Rd) for |α| ≤ k}, where Dαu is the weak derivative of

u. Then the local Sobolev space W k,p
loc (Rd) is defined as the function space such that for any

u ∈W k,p
loc (Rd) and any compact set Ω ⊂ Rd, u ∈W k,p(Ω). As a result, we denote the vector-

valued local Sobolev space by W k,p
loc (Rd;R`). Provided that v(t, x) : [0, 1]×Rd → Rd, we use

v ∈ L1([0, 1];W 1,∞
loc (Rd;Rd)) to indicate that v has a finite L1 norm over (t, x) ∈ [0, 1]× Rd
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and v(t, ·) ∈ W 1,∞
loc (Rd;Rd) for any t ∈ [0, 1]. Similarly, we say v ∈ L1([0, 1];L∞(Rd;Rd))

when v has a finite L1 norm over (t, x) ∈ [0, 1] × Rd and v(t, ·) ∈ L∞(Rd;Rd) for every
t ∈ [0, 1]. We will use the definitions and notations in the following proof.

Proof [Proof of Theorem 5.1] Under Assumptions 1 and 2, we claim that the velocity field
v(t, x) satisfies

v ∈ L1([0, 1];W 1,∞
loc (Rd;Rd)),

‖v‖2
1 + ‖x‖2

∈ L1([0, 1];L∞(Rd;Rd)).

where the first condition indicates the velocity field v is locally bounded and locally Lip-
schitz continuous in x, and the second condition is a growth condition on v. According
to the Cauchy-Lipschitz theorem (Ambrosio and Crippa, 2014, Remark 2.4), we have the
representation formulae for solutions of the continuity equation. As a result, there exists a
flow (Xt)t∈[0,1] uniquely solves the IVP (3.10). Furthermore, the marginal flow of (Xt)t∈[0,1]

satisfies the continuity equation (3.4) in the weak sense. Then it remains to show the veloc-
ity field v is locally bounded and locally Lipschitz continuous in x, and satisfies the growth
condition. By the lower and upper bounds given in Proposition 4.1, we know that v is
globally Lipschitz continuous in x under Assumptions 1 and 2. Indeed, the global Lipschitz
continuity leads to local boundedness and linear growth properties by simple arguments.
More concretely, for any t ∈ (0, 1), it holds that

v(t, 0) =

(
ḃt −

ȧt
at
bt

)
E[X1|Xt = 0] =

(
ḃt −

ȧt
at
bt

)∫
Rd
yp(y|t, 0)dy

.

(
ḃt −

ȧt
at
bt

)∫
Rd
yp1(y)a−dt exp

(
−b

2
t ‖y‖22
2a2

t

)
dy,

which implies ‖v(t, 0)‖2 < ∞ due to fast growth of the exponential function. Besides, it
holds that v(0, 0) = (ḃ0 − ȧ0

a0
b0)E[X1|X0 = x] < ∞, v(1, 0) = ȧ1a1s(1, 0) < ∞. Then by the

boundedness of ‖v(t, 0)‖2 and the global Lipschitz continuity in x over t ∈ [0, 1], we bound
v(t, x) as follows

‖v(t, x)‖2 ≤ ‖v(t, 0)‖2 + ‖v(t, x)− v(t, 0)‖2

≤ ‖v(t, 0)‖2 +

{
sup

(t,y)∈[0,1]×Rd
‖∇yv(t, y)‖2,2

}
‖x‖2

. max{‖x‖2, 1}.

Hence, the local boundedness and linear growth properties of v are proved. This completes
the proof.

Proof [Proof of Theorem 5.2] The proof is similar to that of Theorem 5.1.

Proof [Proof of Corollary 5.1] A well-posed ODE flow has the time-reversal symmetry
(Lamb and Roberts, 1998). By Theorem 5.1, the desired results are proved.
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Proof [Proof of Corollary 5.2] The proof is similar to that of Corollary 5.1.

Proof [Proof of Proposition 5.1] Combining Proposition 4.1-(b), (c), and Lemma 5.1, we
complete the proof.

Proof [Proof of Proposition 5.2] Combining Proposition 4.1-(d) and Lemma 5.1, we com-
plete the proof.

Proof [Proof of Corollary 6.1] By Theorem 5.1 and Corollary 5.1, it holds that

X1 ◦X∗1 = X1 ◦X−1
1 = Id.

This completes the proof.

Proof [Proof of Corollary 6.2] By Theorem 5.1 and Corollary 5.1, it holds that

X1,1 ◦X∗2,1 ◦X2,1 ◦X∗1,1 = X1,1 ◦X−1
2,1 ◦X2,1 ◦X−1

1,1 = Id.

This completes the proof.

Proof [Proof of Corollary 6.3] Let Assumptions 2.1 and 2.2 hold. According to Propo-
sitions 5.1 and 5.2, ‖∇xX1(x)‖2,2 is uniformly bounded for Case (i)-(iii) in Assumption
2.2. For Case (iv), the boundedness of ‖∇xX1(x)‖2,2 holds by combining Corollary 4.4 and
Lemma 5.1. Using Proposition 4.1, we know that ‖∇xv(t, x)‖2,2 is uniformly bounded.

Proof [Proof of Proposition 5.3] The proof idea is similar to those of (Ball et al., 2003,
Proposition 1) and (Cattiaux and Guillin, 2014, Proposition 18). Let f : Ω→ R be of class
C1 and Xt ∼ pt. First, we consider the case of log-Sobolev inequalities. Using that Z ∼ γd
and X1 ∼ ν both satisfy the log-Sobolev inequalities in Definition G.1, we have

E[(f2 log f2)(Xt)] = E[(f2 log f2)(atZ + btX1)]

≤
∫ (∫

f2(atz + btx)dγd(z)

)
log

(∫
f2(atz + btx)dγd(z)

)
dν(x)

+

∫ (
2CLS(γd)

∫
a2
t (‖∇f‖22)(atz + btx)dγd(z)

)
dν(x)

≤
(∫ ∫

f2(atz + btx)dγd(z)dν(x)

)
log

(∫ ∫
f2(atz + btx)dγd(z)dν(x)

)
+ 2CLS(ν)

∫ ∥∥∥∇x(∫ f2(atz + btx)dγd(z)
) 1

2
∥∥∥2

2
dν(x)

+ 2a2
tCLS(γd)

∫ ∫
(‖∇f‖22)(atz + btx)dγd(z)dν(x)

≤ E[f2(Xt)] log
(
E[f2(Xt)]

)
+ 2a2

tCLS(γd)E[‖∇f(Xt)‖22]

+ 2CLS(ν)

∫ ∥∥∥∇x(∫ f2(atz + btx)dγd(z)
) 1

2
∥∥∥2

2
dν(x).
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By Jensen’s inequality and the Cauchy-Schwartz inequality, it holds that∫ ∥∥∥∇x(∫ f2(atz + btx)dγd(z)
) 1

2
∥∥∥2

2
dν(x)

≤ b2t

∫ (∫
(‖f∇f‖2)(atz + btx)dγd(z)

)2
dν(x)∫ ∫

f2(atz + btx)dγd(z)dν(x)

≤ b2t
∫ ∫

(‖∇f‖22)(atz + btx)dγd(z)dν(x)

≤ b2tE[‖∇f(Xt)‖22].

Hence, combining the equations above and the fact that CLS(γd) ≤ 1 (Gross, 1975), it
implies that

E[(f2 log f2)(Xt)]− E[f2(Xt)] log
(
E[f2(Xt)]

)
≤ 2

[
a2
t + b2tCLS(ν)

]
E[‖∇f(Xt)‖22],

that is, CLS(pt) ≤ a2
t + b2tCLS(ν).

Next, we tackle the case of Poincaré inequalities by similar calculations. Using that
Z ∼ γd and X1 ∼ ν both satisfy the Poincaré inequalities in Definition G.2, we have

E[f2(Xt)] = E[f2(atZ + btX1)]

≤
∫ (∫

f(atz + btx)dγd(z)

)2

dν(x)

+

∫ (
CP(γd)

∫
a2
t (‖∇f‖22)(atz + btx)dγd(z)

)
dν(x)

≤
(∫ ∫

f(atz + btx)dγd(z)dν(x)

)2

+ CP(ν)

∫ ∥∥∥∇x(∫ f(atz + btx)dγd(z)
)∥∥∥2

2
dν(x)

+ a2
tCP(γd)

∫ ∫
(‖∇f‖22)(atz + btx)dγd(z)dν(x)

≤ (E[f(Xt)])
2 +

[
a2
tCP(γd) + b2tCP(ν)

]
E[‖∇f(Xt)‖22].

Combining the expression above and CP(γd) ≤ 1, it implies that

E[f2(Xt)]− (E[f(Xt)])
2 ≤

[
a2
t + b2tCP(ν)

]
E[‖∇f(Xt)‖22],

that is, CP(pt) ≤ a2
t + b2tCP(ν). This completes the proof.

Appendix E. Proofs of the stability results

We provide the proofs of the stability results in Section 6.
Proof [Proof of Proposition 6.1] Let x0 = a0z + b0x1 and suppose X0(x0) ∼ µ,X0(a0z) ∼
γd,a20 . According to Corollary 6.3, the Lipschitz property of X1(x) implies that ‖X1(x0) −
X1(a0z)‖ ≤ C1‖x0 − a0z‖. We consider an integral defined by

It :=

∫
‖x0 − a0z‖2dπt(Xt(x0), Xt(a0z)),
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where πt is a coupling made of the joint distribution of (Xt(x0), Xt(a0z)). In particular, the
initial value I0 is computed by

I0 =

∫
‖x0 − a0z‖2p0(x0)ϕ(z)dx0dz =

∫
‖b0x1‖2p1(x1)dx1 = b20Eν [‖X1‖2].

Since (Xt)t∈[0,1] is well-posed with X0(x0) ∼ µ or X0(a0z) ∼ γd,a20 , according to Corollary
B.1, the coupling πt satisfies the following differential equation

∂t log πt(Xt(x0), Xt(a0z)) = −Tr((∇xv)(t,Xt(x0)))− Tr((∇xv)(t,Xt(a0z))). (E.1)

Taking the derivative of It and using Eq. (E.1), it implies that

dIt
dt
≤ 2

(
sup

(s,x)∈[0,1]×Rd
‖Tr(∇xv(s, x))‖

)
It.

Thanks to ‖Tr(∇xv(s, x))‖ ≤ d‖∇xv(s, x)‖2,2, it follows that

dIt
dt
≤ 2C2dIt, I0 = b20Eν [‖X1‖2].

By Grönwall’s inequality, it holds that It ≤ b20Eν [‖X1‖2] exp(2C2dt). Therefore, we obtain
the following W2 bound

W2(X1#γd,a20 , ν) = W2(X1#γd,a20 , X1#µ) ≤ C1

√
I1 ≤ C1b0

√
Eν [‖X1‖2] exp(C2d),

which completes the proof.

Proof [Proof of Proposition 6.2]

(i) On the one hand, by Corollary 6.3, v(t, x) is Lipschitz continuous in x uniformly over
(t, x) ∈ [0, 1]× Rd with Lipschitz constant C2. By the variational equation (6.5) and
Lemma 5.1, it follows that

‖∇xXs,t(x)‖22,2 ≤ exp

(
2

∫ t

s
θudu

)
.

Due to the equality (6.4), we deduce that

‖X1(x0)− Y1(x0)‖2

≤
(∫ 1

0
‖(∇xXs,1)(Ys(x0))‖2,2‖v(s, Ys(x0))− ṽ(s, Ys(x0))‖ds

)2

≤
(∫ 1

0
‖(∇xXs,1)(Ys(x0))‖22,2ds

)(∫ 1

0
‖v(s, Ys(x0))− ṽ(s, Ys(x0))‖2ds

)
≤
∫ 1

0
exp

(
2

∫ 1

s
θudu

)
ds

∫ 1

0
‖v(s, Ys(x0))− ṽ(s, Ys(x0))‖2ds.
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Take expectation and it follows that

W 2
2 (Y1#µ, ν) ≤ Ex0∼µ

[
‖Y1(x0)−X1(x0)‖2

]
≤
∫ 1

0
exp

(
2

∫ 1

s
θudu

)
ds

∫ 1

0

∫
Rd
‖v(t, x)− ṽ(t, x)‖2q̃t(x)dxdt

≤ ε
∫ 1

0
exp

(
2

∫ 1

s
θudu

)
ds

where q̃t denotes the density function of Yt#µ, and we use the assumption that∫ 1

0

∫
Rd
‖v(t, x)− ṽ(t, x)‖2q̃t(x)dxdt ≤ ε

in the last inequality.

(ii) On the other hand, suppose that ṽ(t, x) is Lipschitz continuous in x uniformly over
(t, x) ∈ [0, 1]× Rd with Lipschitz constant C3. Applying Grönwall’s inequality to the
variational equation (6.7), it follows that

‖∇xYs,t(x)‖22,2 ≤ exp(2C3(t− s)).

By the equality (6.6), it holds that

‖Y1(x0)−X1(x0)‖2

≤
(∫ 1

0
‖(∇xYs,1)(Xs(x0))‖2,2‖v(s,Xs(x0))− ṽ(s,Xs(x0))‖ds

)2

≤
(∫ 1

0
‖(∇xYs,1)(Xs(x0))‖22,2ds

)(∫ 1

0
‖v(s,Xs(x0))− ṽ(s,Xs(x0))‖2ds

)
≤exp(2C3)− 1

2C3

∫ 1

0
‖v(s,Xs(x0))− ṽ(s,Xs(x0))‖2ds.

Taking expectations, it further yields that

W 2
2 (Y1#µ, ν) ≤ Ex0∼µ

[
‖Y1(x0)−X1(x0)‖2

]
≤ exp(2C3)− 1

2C3

∫ 1

0

∫
Rd
‖v(t, x)− ṽ(t, x)‖2pt(x)dxdt

where Xt(x0) ∼ pt.

Appendix F. Time derivative of the velocity field

In this appendix, we are interested in representing the time derivative of the velocity field
via moments of Y|Xt = x. The result is efficacious for controlling the time derivative with
moment estimates, though the computation is somehow tedious.
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Proposition F.1 The time derivative of the velocity field v(t, x) has an expression with
moments of X1|Xt for any t ∈ (0, 1) as follows

∂tv(t, x) =

(
ät
at
− ȧ2

t

a2
t

)
x+

(
a2
t

b̈t
bt
− ȧtat

ḃt
bt
− ätat + ȧ2

t

)
bt
a2
t

M1

+
b2t
a2
t

(
ḃt
bt
− ȧt
at

)(
ḃt
bt
− 2

ȧt
at

)
M c

2x−
b3t
a2
t

(
ḃt
bt
− ȧt
at

)2

(M3 −M2M1) ,

where M1 := E[X1|Xt = x],M2 := E[X>1 X1|Xt = x],M c
2 := Cov(X1|Xt = x),M3 :=

E[X1X
>
1 X1|Xt = x].

Proof By direct differentiation, it implies that

∂tv(t, x) = ∂t

(
ḃt
bt

)
x+ ∂t

(
ḃt
bt
a2
t − ȧtat

)
s(t, x) +

(
ḃt
bt
a2
t − ȧtat

)
∂ts(t, x)

=
b̈tbt − ḃ2t

b2t
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(
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b2t
a2
t +

ḃt
bt

2ȧtat − ätat − ȧ2
t

)
s(t, x) +

(
ḃt
bt
a2
t − ȧtat

)
∂ts(t, x).

We first focus on ∂ts(t, x). Since pt satisfies the continuity equation (3.4), it holds that

∂ts(t, x) = ∇x(∂t log pt(x))

= −∇x
(
∇x · (pt(x)v(t, x))

pt(x)

)
= −∇x

(
(∇xpt(x))>v(t, x) + pt(x)(∇x · v(t, x))

pt(x)

)
= −∇x

(
s(t, x)>v(t, x) +∇x · v(t, x)

)
= −

(
(∇xs(t, x))>v(t, x) + (∇xv(t, x))>s(t, x) +∇x(∇x · v(t, x))

)
= − (∇xs(t, x)v(t, x) +∇xv(t, x)s(t, x) +∇x Tr(∇xv(t, x))) .

By direct computation, it holds that

∇xs(t, x)v(t, x) +∇xv(t, x)s(t, x)

= ∇xs(t, x)
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ḃt
bt
a2
t − ȧtat
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=
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Then we focus on the trace term

∇x Tr(∇xv(t, x))

= ∇x Tr

((
ḃt
bt
− ȧt
at

)
b2t
a2
t
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ḃt
bt
− ȧt
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,

where we notice that
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.

For ease of presentation, we introduce the following notations to denote several moments
of Y|Xt = x

M1 := E[Y|Xt = x], M2 := E[Y>Y|Xt = x],

M c
2 := Cov(Y|Xt = x), M3 := E[YY>Y|Xt = x].

By Tweedie’s formula in Lemma G.1, it yields s(t, x) = bt
a2t
M1 − 1

a2t
x. By this expression of

s(t, x), it yields
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ḃt
bt
s(t, x) +

ḃt
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ḃt
bt

(
b2t
a4
t

M c
2 −

1

a2
t

Id

)
x

+ 2

(
ḃt
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and ∇xp(y|t, x) = bt
a2t

(y −M1) p(y|t, x). Therefore, we obtain
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Combining the equations above, we obtain
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ḃt
bt
− ȧt
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Then we complete the proof.

Appendix G. Functional inequalities and Tweedie’s formula

This appendix is devoted to an exposition of functional inequalities and Tweedie’s formula
that would assist in our proof.

For a probability measure µ on a compact set Ω ⊂ Rd, we define the variance of a
function f ∈ L2(Ω, µ) as

Varµ(f) :=

∫
Ω
f2dµ−

(∫
Ω
fdµ

)2

.
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Moreover, for a probability measure µ on a compact set Ω ⊂ Rd and any positive integrable
function f : Ω→ R such that

∫
Ω f‖ log f‖dν <∞, we define the entropy of f as

Entµ(f) :=

∫
Ω
f log fdµ−

∫
Ω
fdµ log

(∫
Ω
fdµ

)
.

Definition G.1 (Log-Sobolev inequality) A probability measure µ ∈ P(Ω) is said to
satisfy a log-Sobolev inequality with constant C > 0, if for all functions f : Ω→ R, it holds
that

Entµ(f2) ≤ 2C

∫
Ω
‖∇f‖22dµ.

The best constant C > 0 for which such an inequality holds is referred to as the log-Sobolev
constant CLS(µ).

Definition G.2 (Poincaré inequality) A probability measure µ ∈ P(Ω) is said to satisfy
a Poincaré inequality with constant C > 0, if for all functions f : Ω→ R, it holds that

Varµ(f) ≤ C
∫

Ω
‖∇f‖22dµ.

The best constant C > 0 for which such an inequality holds is referred to as the Poincaré
constant CP(µ).

Finally, for ease of reference, we present Tweedie’s formula that was first reported in
Robbins (1956), and then was used as a simple empirical Bayes approach for correcting
selection bias (Efron, 2011). Here, we use Tweedie’s formula to link the score function with
the expectation conditioned on an observation with Gaussian noise.

Lemma G.1 (Tweedie’s formula) Suppose that X ∼ µ and ε ∼ γd,σ2. Let Y = X+ ε and
p(y) be the marginal density of Y. Then E[X|Y = y] = y + σ2∇y log p(y).
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lation formulae. Stochastic Processes and their Applications, 154:197–250, 2022.

46



Gaussian Interpolation Flows

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat GANs on image synthesis.
In Advances in Neural Information Processing Systems, volume 34, pages 8780–8794,
2021.

Laurent Dinh, David Krueger, and Yoshua Bengio. NICE: Non-linear independent compo-
nents estimation. arXiv preprint arXiv:1410.8516, 2014.
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