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Abstract

Physics-informed neural networks have emerged as a prominent new method for solving
differential equations. While conceptually straightforward, they often suffer training dif-
ficulties that lead to relatively large discretization errors or the failure to obtain correct
solutions. In this paper we introduce invariant physics-informed neural networks for ordi-
nary differential equations that admit a finite-dimensional group of Lie point symmetries.
Using the method of equivariant moving frames, a differential equation is invariantized to
obtain a, generally, simpler equation in the space of differential invariants. A solution to
the invariantized equation is then mapped back to a solution of the original differential
equation by solving the reconstruction equations for the left moving frame. The invari-
antized differential equation together with the reconstruction equations are solved using
a physics-informed neural network, and form what we call an invariant physics-informed
neural network. We illustrate the method with several examples, all of which considerably
outperform standard non-invariant physics-informed neural networks.

1. Introduction

Physics-informed neural networks (PINNs) are an emerging method for solving differential
equations using deep learning, cf. Lagaris et al. (1998); Raissi et al. (2019). The main idea
behind this method is to train a neural network as an approximate solution interpolant
for the differential equation. This is done by minimizing a loss function that incorporates
both the differential equation and its initial and/or boundary conditions. The method has
a particular elegance as the derivatives in the differential equation can be computed using
automatic differentiation rather than numerical discretization, which greatly simplifies the
solution procedure, especially when solving differential equations on arbitrary surfaces, see,
e.g. Tang et al. (2022).
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The ease of the discretization procedure in physics-informed neural networks, however,
comes at the price of numerous training difficulties, and numerical solutions that are either
not particularly accurate, or fail to converge at all to the true solutions of the differential
equations. Since training a physics-informed neural network constitutes a non-convex op-
timization problem, an analysis of failure modes when physics-informed neural networks
fail to train accurately is a non-trivial endeavour. This is why several modified training
methodologies have been proposed, which include domain decomposition strategies, Jagtap
et al. (2020), modified loss functions, Wang et al. (2024), and custom optimization, Bihlo
(2024). While all of these strategies, sometimes substantially, improve upon vanilla physics-
informed neural networks, none of these modified approaches completely overcome all the
inherent training difficulties.

Here we propose a new approach for training physics-informed neural networks, which
relies on using Lie point symmetries of differential equations and the method of equiv-
ariant moving frames to simplify the form of the differential equations that have to be
solved. This is accomplished by first projecting the differential equation onto the space
of differential invariants to produce an invariantized differential equation. The solution to
the invariantized equation is then mapped back to the solution of the original equation by
solving a system of first order differential equations for the left moving frame, called recon-
struction equations. The invariant physics-informed neural network architecture proposed in
this paper consists of simultaneously solving the invariantized differential equation and the
reconstruction equations using a physics-informed neural network. The method proposed
is entirely algorithmic, and can be implemented for any system of differential equations
that is strongly invariant under the action of a group of Lie point symmetries. Since many
equations of physical relevance admit a non-trivial group of Lie point symmetries, the pro-
posed method is potentially a viable path for improving physics-informed neural networks
for many real-world applications. The idea of projecting a differential equation into the
space of invariants and then reconstructing its solution is reminiscent of the recent work by
Vaquero et al. (2023), where the authors consider Hamiltonian systems with symmetries,
although the tools used in our paper and in Vaquero et al. (2023) to achieve the desired
goals are very different. Moreover, in our approach we do not assume that our equations
have an underlying symplectic structure.

To simplify the theoretical exposition, we focus on the case of ordinary differential
equations in this paper. We show using several examples that the proposed approach
substantially improves upon the numerical results achievable with vanilla physics-informed
neural networks. Applications to partial differential equations will be considered elsewhere.

The paper is organized as follows. We first review relevant work on physics-informed
neural networks and symmetry-preserving numerical methods in Section 2. In Section 3 we
introduce the method of equivariant moving frames and review how it can be used to solve
ordinary differential equations that admit a group of Lie point symmetries. Building on
Section 3, we introduce a version of invariant physics-informed neural network in Section 4.
We illustrate our method with several examples in Section 5. The examples show that our
proposed invariant physics-informed neural network formulation can yield better numerical
results than its non-invariant version. A short summary and discussion about potential
future research avenues concludes the paper in Section 6.
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2. Previous work

Physics-informed neural networks were first proposed in Lagaris et al. (1998), and later
popularized through the work of Raissi et al. (2019). The main idea behind physics-informed
neural networks is to train a deep neural network to directly approximate the solution to a
system of differential equations. This is done by defining a loss function that incorporates
the given system of differential equations, along with any relevant initial and/or boundary
conditions. Crucially, this turns training physics-informed neural networks into a multi-task,
non-convex optimization problem that can be challenging to minimize, cf. Krishnapriyan
et al. (2021). There have been several solutions proposed to overcome the training difficulties
and improve the generalization capabilities of physics-informed neural networks. These
include modified loss functions, McClenny and Braga-Neto (2023); Wang et al. (2024), meta-
learned optimization, Bihlo (2024), domain decomposition methods, Bihlo and Popovych
(2022); Jagtap et al. (2020), and the use of operator-based methods, Brecht et al. (2023);
Lu et al. (2021).

The concepts of symmetries and transformation groups have also received considerable
attention in the machine learning community. Notably, the equivariance of convolutional
operations with respect to spatial translations has been identified as a crucial ingredient for
the success of convolutional neural networks, Cohen and Welling (2016). The generalization
of this observation for other types of neural network layers and other transformation groups
has become a prolific subfield of deep learning since. For example, see Finzi et al. (2021)
for some recent results.

Here we do not consider the problem of endowing a neural network with equivariance
properties but rather investigate the question of whether a better formulation of a given dif-
ferential equation can help physics-informed neural networks better learn a solution. As we
will be using symmetries of differential equations for this re-formulation, our approach falls
within the framework of geometric numerical integration, see e.g. Blanes and Casas (2016).
The problem of symmetry-preserving numerical schemes, in other words the problem of
designing discretization methods for differential equations that preserve the symmetries of
differential equations, has been studied extensively over the past several decades, see Dorod-
nitsyn (1991); Shokin (1983); Yanenko and Shokin (1973), for some early work on the topic.
Invariant discretization schemes have since been proposed for finite difference, finite volume,
finite element and meshless methods, see, for example, Bihlo (2013); Bihlo et al. (2022);
Bihlo and Nave (2014); Bihlo and Valiquette (2017, 2019); Budd and Dorodnitsyn (2001);
Kim (2007); Olver (2001); Rebelo and Valiquette (2013, 2015).

3. Method

In this section we introduce the theoretical foundations on which the invariant physics-
informed neural network framework is based. In order to fix some notation, we begin by
recalling certain well-known results pertaining to symmetries of differential equations, and
refer the reader to Bluman et al. (2010); Bluman and Kumei (1989); Hydon (2000); Olver
(1993) for a more thorough exposition. Within the field of group analysis, the use of mov-
ing frames to solve differential equations is not well-known. Therefore, the main purpose
of this section is to introduce this solution procedure. We note that, in contrast to the
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approach proposed in Mansfield (2010, Chapter 6), we avoid the introduction of computa-
tional variables. Instead, all computations are based on the differential invariants of the
prolonged group action. Our approach is a simplified version of the algorithm presented in
Thompson and Valiquette (2015), which deals with partial differential equations admitting
infinite-dimensional symmetry Lie pseudo-groups.

3.1 Invariant differential equations

As mentioned in the introduction, in this paper we limit our attention to the case of ordinary
differential equations. Thus, given a (q + 1)-dimensional manifold M , with q ≥ 1, let
J(n) = J(n)(M, 1) denote the nth order (extended) jet bundle consisting of equivalence
classes of 1-dimensional curves C ⊂M under the equivalence relation of nth order contact.
For a detailed exposition of jet spaces, we refer the reader to Olver (1995, Chapter 4).
Introducing the local coordinates z = (t, u) = (t, u1, . . . , uq) on M , we consider t to be
the independent variable and u = (u1, . . . , uq) to be the dependent variables. Accordingly,
the nth order jet space J(n) is parametrized by z(n) = (t, u(n)), where u(n) denotes all the
derivatives uαj = uα

tj
of order 0 ≤ j ≤ n, with α = 1, . . . , q.

Now, let G be an r-dimensional Lie group (locally) acting on M :

(T,U) = Z = g · z = g · (t, u), where g ∈ G. (1)

Since group transformations preserve contact, see Olver (1995, Chapter 4), the group ac-
tion (1) induces a prolonged action

Z(n) = g · z(n) (2)

on the nth order jet space J(n). Coordinate expressions for the prolonged action (2) are
obtained by applying the implicit total derivative operator

DT =
1

Dt(T )
Dt, where Dt =

∂

∂t
+

∞∑
j=0

q∑
α=1

uαj+1

∂

∂uαj

denotes the standard total derivative operator, to the transformed dependent variables Uα:

Uαj = UαT j = Dj
T (Uα), α = 1, . . . , q, j ≥ 0. (3)

We are primarily interested in the action of a Lie group on ordinary differential equa-
tions. In the following we use the notation ∆(z(n)) = ∆(t, u(n)) = 0 to denote a system of
differential equations, and use the index notation ∆i(z

(n)) = 0, i = 1, . . . , l, to label each
equation in the system of equations ∆(z(n)) = 0. If ∆(z(n)) = 0 is a single equation, then
we omit the indexing notation.

Definition 1 A nondegenerate1 ordinary differential equation ∆(z(n)) = 0 is said to be
strongly invariant under the prolonged action (2) of a connected local Lie group of transfor-
mations G if and only if

∆(g · z(n)) = 0 for all g ∈ G

near the identity element.

1. A differential equation is nondegenerate if at every point in its solution space it is both locally solvable
and of maximal rank, (Olver, 1993, Definition 2.70).
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Remark 2 Strong invariance is more restrictive than the usual notion of symmetry, where
invariance is only required to hold on the solution space. In the following, we require strong
invariance to guarantee that our differential equation is an invariant function.

Invariance is usually stated in terms of the infinitesimal generators of the group action.
To this end, let

vκ = ξκ(t, u)
∂

∂t
+

q∑
α=1

φακ(t, u)
∂

∂uα
, κ = 1, . . . , r, (4)

be a basis for the Lie algebra g of infinitesimal generators of the group action G. The
prolongation of the vector fields (4), induced from the prolonged action (3), is given by

v(n)
κ = ξκ(t, u)

∂

∂t
+

n∑
j=0

q∑
α=1

φα,jκ (t, u(j))
∂

∂uαj
, κ = 1, . . . , r, (5)

where the coefficients of the prolonged vector fields are computed using the prolongation
formula

φα,jκ = Dj
t (φ

α
κ − ξκuα1 ) + ξκu

α
j+1, κ = 1, . . . , r, α = 1, . . . , q, 0 ≤ j ≤ n,

which can be found in Olver (1993, Eq. 2.50). The vector fields (5) provide a basis for the
Lie algebra of prolonged infinitesimal generators g(n).

Let F : J(n) → R be a differential function. As explained in Olver (1993, Section 1.3),
the infinitesimal change of F under the flows generated by the prolonged vector fields (5)
is given by

v(n)
κ [F (z(n))] = ξκ

∂F

∂t
+

n∑
j=0

q∑
α=1

φα,jκ
∂F

∂uαj
, κ = 1, . . . , l.

Then, at the infinitesimal level, the strong invariance notion introduced in Definition 1 is
equivalent to the following proposition.

Proposition 3 A nondegenerate ordinary differential equation ∆(z(n)) = 0 is strongly in-
variant under the prolonged action of a connected local Lie group of transformations G if
and only if

v(n)
κ [∆i(z

(n))] = 0, κ = 1, . . . , r, i = 1, . . . , l,

where v1, . . . ,vr is a basis of infinitesimal generators for the group of transformations G.

Proposition 3 follows from the fact that for a strongly invariant system of differential
equations ∆(z(n)) = 0, each function ∆i(z

(n)), i = 1, . . . , l, is a differential invariant func-
tion (Olver, 1993, Thm 2.8).

Remark 4 As one may observe, we do not include the initial conditions

u(n−1)(t0) = u
(n−1)
0 (6)

when discussing the symmetry of the differential equation ∆(z(n)) = ∆(t, u(n)) = 0. This
is customary when studying symmetries of differential equations. Of course, the initial
conditions are necessary to select a particular solution and when implementing numerical
simulations.
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We finish the section with two definitions introducing regularity assumptions on the
prolonged group action that will guarantee that the solution procedure discussed in the
next sections is valid.

Definition 5 The (prolonged) group action of G on J(n) is said to be semi-regular if all
the orbits have the same dimension. A semi-regular group action is regular if, in addition,
each point z(n) ∈ J(n) has arbitrarily small neighborhoods whose intersection with each orbit
is a connected subset thereof.

Definition 6 The prolonged action of G is said to be transversed to the solution space

S(n) = {z(n) ∈ J(n) |∆(z(n)) = 0}

of the differential equation ∆(z(n)) = 0 if at every point z(n) ∈ S(n), the intersection of the
Lie algebra of prolonged infinitesimal generators g(n)|z(n) at z(n) intersects the tangent space
Tz(n)S

(n) trivially so that g(n) ∩ TS(n) = {0}.

3.2 Invariantization

In this section we assume that ∆(z(n)) = 0 is a nondegenerate differential equation, which
is strongly invariant under the prolonged action of an r-dimensional Lie group G acting
regularly on J(n). We now explain how to use the method of equivariant moving frames
to “project” the differential equation onto the space of differential invariants. For the
theoretical foundations of the method of equivariant moving frames, we refer the reader
to the foundational papers by Fels and Olver (1999); Kogan and Olver (2003), and the
textbook by Mansfield (2010).

Definition 7 A right moving frame is a map ρ : J(n) → G that satisfies the G-equivariance
condition

ρ(g · z(n)) = ρ(z(n)) · g−1 (7)

for all g ∈ G where the prolonged action is defined. Taking the group inverse of a right
moving frame yields the left moving frame

ρ(z(n)) = ρ(z(n))−1

satisfying the equivariance condition

ρ(g · z(n)) = g · ρ(z(n)).

To guarantee the existence of a moving frame, we need to introduce the notion of freeness
of the (prolonged) group action.

Definition 8 A Lie group G acting on J(n) is said to act freely if for all z(n) ∈ J(n) the
isotropy group at z(n) given by

Gz(n) = {g ∈ G | g · z(n) = z(n)}

is trivial, that is Gz(n) = {e}. The Lie group G is said to act locally freely if Gz(n) is a
discrete subgroup of G for all z(n) ∈ J(n).
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Theorem 9 A moving frame exists in some neighborhood of a point z(n) ∈ J(n) if and only
if the prolonged action of G is (locally) free and regular near z(n).

The proof of Theorem 9 can be found in Fels and Olver (1999, Thm 4.4).

Remark 10 In general, Theorem 9 might only hold on a G-invariant submanifold V(n) ⊂
J(n). In this case we would restrict Definitions 7 and 8 to V(n). To simplify the discussion,
we assume that V(n) = J(n) in the subsequent considerations.

A moving frame is obtained by selecting a (regular) cross-section K ⊂ J(n) to the orbits
of the prolonged action.

Definition 11 A (local) cross-section is a submanifold K ⊂ J(n) of codimension r = dim G
such that K intersects each orbit transversally. The cross-section is regular if K intersects
each orbit at most once.

Keeping with most applications, and to simplify the exposition, we assume K is a regular
coordinate cross-section obtained by setting r coordinates of the jet z(n) to constant values:

zaκ = cκ, κ = 1, . . . , r. (8)

Under the assumptions of Theorem 9, the right moving frame at z(n) is the unique group
element mapping z(n) onto the cross-section K specified by (8). This transformation is
obtained by solving the normalization equations

Zaκ = g · zaκ = cκ, κ = 1, . . . , r,

for the group parameters g = (g1, . . . , gr), yielding the right moving frame ρ. Given a right
moving frame, there is a systemic procedure for constructing differential invariant functions.

Definition 12 Let ρ : J(n) → G be a right moving frame. The invariantization of the
differential function F : J(n) → R is the differential invariant function

ι(F )(z(n)) = F (ρ(z(n)) · z(n)). (9)

Remark 13 The fact that (9) is a differential invariant function follows from the G-
equivariant property (7) for the right moving frame.

Applying the invariantization map ι introduced in Definition 12 to z(n) componentwise
yields the differential invariants

ι(z(n)) = ρ(z(n)) · z(n),

which can be used as coordinates for the cross-section K. In particular, the invariantization
of the coordinates used to define the cross-section in (8) are constant

ι(zaκ) = cκ, κ = 1, . . . , r,
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and are called phantom invariants. The remaining invariantized coordinates are called
normalized invariants.

In light of Theorem 5.32 in Olver (2009), assume there are q+1 independent normalized
invariants

H, I1, . . . , Iq, (10)

such that locally
Iα = Iα(H), α = 1, . . . , q,

are functions of the invariant H, and generate the algebra of differential invariants. This
means that any differential invariant function can be expressed in terms of (10) and their
invariant derivatives with respect to DH . In the following we let I(n) denote the derivatives
of I = (I1, . . . , Iq) with respect to H, up to order n.

Assuming the differential equation ∆(z(n)) = 0 is strongly invariant and its solutions are
transverse to the prolonged action, this equation, once invariantized, yields a differential
equation in the space of differential nvariants

ι(∆)(t, u(n)) = ∆Inv(H, I(k)) = 0, where k ≤ n. (11a)

Initial conditions for (11a) are obtained by invariantizing (6) to obtain

I(k−1)(H0) = I
(k−1)
0 . (11b)

Example 1 To illustrate the concepts introduced thus far, we use Schwarz’ equation

uttt
ut
− 3

2

(
utt
ut

)2

= F (t), (12)

where, for simplicity, we assume that F (t) is a continuous function. The general solution
to (12) can be found in Hille (1976, Section 10). According to Ovsienko and Tabachnikov
(2009), the Schwarz derivative {u, t} = uttt/ut− (3/2)(utt/ut)

2 first appeared in the treatise
by Lagrange (1779). Over time the Schwarz derivative has found applications in complex
analysis, one-dimensional dynamics, Teichmüller theory, integrable systems, and conformal
field theory. Equation (12) admits a three-dimensional Lie group of point transformations
given by

T = t, U =
αu+ β

γu+ δ
, where g =

[
α β
γ δ

]
∈ SL(2,R), (13)

so that αδ − βγ = 1. A cross-section to the prolonged group action

UT = Dt(U) =
ut

(γu+ δ)2
,

UTT = Dt(UT ) =
utt

(γu+ δ)2
− 2γu2

t

(γu+ δ)3
,

UTTT = Dt(UTT ) =
uttt

(γu+ δ)2
− 6γututt

(γu+ δ)3
+

6γ2u3
t

(γu+ δ)4
,

is given by
K = {u = 0, ut = σ, utt = 0} ⊂ V(n) ⊂ J(n), (14)
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where σ = sign(ut) and V(n) = {z(n) ∈ J(n) |ut 6= 0} with n ≥ 2. Solving the normalization
equations

U = 0, UT = σ, UTT = 0,

for the group parameters, taking into account the unitary constraint αδ−βγ = 1, yields the
right moving frame

α = ± 1√
|ut|

, β = ∓ u√
|ut|

, γ = ± utt

2|ut|3/2
, δ = ±2u2

t − uutt
2|ut|3/2

, (15)

where the sign ambiguity comes from solving the normalization UT = σ, which involves
the quadratic term (γu + δ)2. Invariantizing the third order derivative uttt produces the
normalized differential invariant

ι(uttt) =
uttt

(γu+ δ)2
− 6γututt

(γu+ δ)3
+

6γ2u3
t

(γu+ δ)4

∣∣∣∣
(15)

= σ

(
uttt
ut
− 3

2

(
utt
ut

)2)
. (16)

In terms of the general theory previously introduced, we have the invariants

H = t, I =
uttt
ut
− 3

2

(
utt
ut

)2

. (17)

Since the independent variable t is an invariant, instead of using H, we use t in the following
computations. The invariantization of Schwarz’ equation (12) yields the algebraic equation

I = F (t). (18)

Since the prolonged action is transitive on the fibers of each component {(t, u, ut, utt) |ut >
0} ∪ {(t, u, ut, utt) |ut < 0} = V(2), any initial conditions

u(t0) = u0, ut(t0) = u0
t , utt(t0) = u0

tt, (19)

is mapped, via the invariantization map ι, to the identities

0 = 0, σ = σ, 0 = 0.

3.3 Recurrence relations

In this section we introduce the recurrence relations for the normalized differential invari-
ants, and explain how the invariantized equation (11a) can be derived symbolically, without
requiring the coordinate expressions for the right moving frame ρ or the invariants (H, I(n)).

A key observation is that the invariantization map ι and the exterior differential, in
general, do not commute

ι ◦ d 6= d ◦ ι.

The extent to which these two operations fail to commute is encapsulated in the recurrence
relations. To state these equations we need to introduce the (contact) invariant one-form

$ = ι(dt) = ρ∗(Dt(T )) dt,

9
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which comes from invariantizing the horizontal one-form dt, and where ρ∗ denotes the right
moving frame pull-back. We refer the reader to Kogan and Olver (2003) for more details.

Given a Lie group G, assume its elements g ∈ G are given by a faithful representation.
Then the right Maurer–Cartan form is given by

µ = dg · g−1. (20)

The pull-back of the Maurer–Cartan form (20) by a right moving frame ρ yields the invariant
matrix

ν = dρ · ρ−1 =
[
Iij
]
$, (21)

where the invariants Iij are called Maurer–Cartan invariants.

Proposition 14 Let F : J(n) → R be a differential function and ρ : J(n) → G a right moving
frame. We then have the recurrence relation

d[ι(F )] = ι[dF ] +

r∑
κ=1

ι[v(n)
κ (F )] νκ, (22)

where ν1, . . . , νr is a basis of normalized Maurer–Cartan forms extracted from (21).

In particular, substituting for F in (22) the jet coordinates z(n) = (t, u(n)) yields the
recurrence relations

d[ι(t)] = $ +

r∑
κ=1

ι(ξκ)νκ,

d[ι(uαj )] = ι(uαj+1)$ +
r∑

κ=1

ι(φα,jκ )νκ,

(23)

where ξκ, φα,jκ are the coefficients of the prolonged vector fields in (5). The recurrence
relations for the jet coordinates (8) specifying the coordinate cross-section K lead to r linear
equations for the normalized Maurer–Cartan forms ν1, . . . , νr. Solving those equations and
substituting the result back in (23) yields symbolic expressions for the differential of the
normalized invariants without requiring the coordinate expressions for the moving frame ρ
or ι(t), ι(u(n)). More generally, substituting the expressions for the normalized Maurer–
Cartan forms in (22) gives the symbolic expression for the differential of any invariantized
differential function F .

Example 2 Continuing Example 1, we differentiate the group action (13) with respect to
the group parameters α, β, γ, respectively, recalling the unitary constraint αδ−βγ = 1, and
evaluate the result at the identity transformation α = δ = 1, γ = β = 0 to obtain the basis
of infinitesimal generators

v1 =
∂

∂u
, v2 = u

∂

∂u
, v3 = u2 ∂

∂u
. (24)

10
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The prolongation of those vector fields, up to order 2, is given by

v
(3)
1 =

∂

∂u
,

v
(3)
2 = u

∂

∂u
+ ut

∂

∂ut
+ utt

∂

∂utt
,

v
(3)
3 = u2 ∂

∂u
+ 2uut

∂

∂ut
+ 2(u2

t + uutt)
∂

∂utt
.

(25)

Computing the recurrence relations (23) for t, u, ut, and utt yields

d[ι(t)] = $,

d[ι(u)] = ι(ut)$ + ν1 + ι(u)ν2 + ι(u)2ν3,

d[ι(ut)] = ι(utt)$ + ι(ut)ν
2 + 2ι(u)ι(ut)ν

3,

d[ι(utt)] = ι(uttt)$ + ι(utt)ν
2 + 2[ι(ut)

2 + ι(u)ι(utt)]ν
3.

(26)

We note that the coefficients of the correction terms involving the normalized Maurer–
Cartan forms ν1, ν2, ν3 in the recurrence relations (26) are obtained by invariantizing the
coefficients of the prolonged vector fields (25).

Recalling the cross-section (14) and the invariants (16), (17), we make the substitutions
ι(t) = t, ι(u) = 0, ι(ut) = σ, ι(utt) = 0, ι(uttt) = σI into (26) and obtain

dt = $, 0 = $ + ν1, 0 = ν2, 0 = Iσ $ + 2ν3.

Solving the last three equations for the normalized Maurer–Cartan forms yields

ν1 = −σ$, ν2 = 0, ν3 = −Iσ
2
$.

In matrix form we have

ν =

[
2ν2 ν1

−ν3 −2ν2

]
=

[
0 −σ

1
2σI 0

]
$ =

[
0 −σ

1
2σF (t) 0

]
$, (27)

where we used the algebraic relationship (18) originating from the invariantization of Schwarz’
equation (12). The, perhaps, unexpected coefficients in the Maurer–Cartan matrix (27),
namely 2ν2 and −ν3, originate from the fact that when introducing the basis of infinitesi-
mal generators (24) we scaled v2 by 1/2 and v3 by −1.

3.4 Reconstruction

Let I(H) be a solution to the invariantized differential equation (11a) with initial conditions
(11b). In this section we explain how to reconstruct the solution to the original equation
∆(x, u(n)) = 0 with initial conditions (6). To do so, we introduce the reconstruction equa-
tions for the left moving frame ρ = ρ−1 given by

dρ = −ρ · dρ · ρ = −ρ ν, (28)

where ν is the normalized Maurer–Cartan form introduced in (21). As we have seen in
Section 3.3, the invariantized Maurer–Cartan matrix ν can be obtained symbolically using

11
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the recurrence relations for the phantom invariants. On the other hand, the Maurer–Cartan
invariants Iij in (21) can be expressed in terms of H, the solution I(H) to the invariantized
initial value problem (11), and its derivatives. Thus, equation (28) yields a first order system
of differential equations for the group parameters depending on the independent variable H.
Integrating (28), we obtain the left moving frame that sends the invariant curve (H, I(H))
to the original solution

(t(H), u(H)) = ρ(H) · ι(t, u)(H). (29)

The transversality of the prolonged group action implies that the derivative tH 6= 0. As-
suming tH > 0, the initial conditions to the reconstruction equations (28) are given by

ρ(H0) = ρ0 such that ρ0 · ι(t0, u
(n−1)
0 ) = (t0, u

(n−1)
0 ). (30)

If tH < 0, one can always reparametrize the solution so that the derivative becomes positive.

The solution (29) is a parametric curve with the invariant H serving as parameter. From
a numerical perspective, this is sufficient to graph the solution. Though, we note that since
tH 6= 0, it is possible, by the implicit function theorem, to invert t = t(H) to express the
invariant H = H(t) in terms of t and recover the solution u = u(H(t)) as a function of t.

Example 3 The left moving frame

ρ =

[
α β
γ δ

]
∈ SL(2,R)

that will send the invariant solution (18) to the original solution u(t) of Schwarz’ equation
(12) with initial conditions (19) must satisfy the reconstruction equations[

αt βt
γt δt

]
= −

[
α β
γ δ

] [
0 −σ

1
2σF (t) 0

]
=

[
α β
γ δ

] [
0 σ

−1
2σF (t) 0

]
, (31a)

with the initial conditions

δ0 = ± 1√
|u0
t |
, β0 = ± u0√

|u0
t |
, γ0 = ∓ u0

tt

2(u0
t )

3/2
, α0 = ±

√
|u0
t | ∓

u0u
0
tt

2(|u0
t |)3/2

.

(31b)
Once the reconstruction equations (31) are solved, the solution to Schwarz’ equation (12) is

u(t) = ρ · 0 =
β

δ
. (32)

3.5 Summary

Let us summarize the algorithm for solving an ordinary differential equation ∆(t, u(n)) = 0
admitting a group of Lie point symmetries G using the method of moving frames.

1. Select a cross-section K to the prolonged action.

2. Choose q + 1 independent invariants H, I1, . . . , Iq from ι(t, u(n)) that generate the
algebra of differential invariants, and assume I1(H), . . . , Iq(H) are functions of H.

12
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3. Invariantize the differential equation ∆(t, u(n)) = 0 and use the recurrence relations
(23) to write the result in terms of H and I(k) to obtain the differential equation
∆Inv(H, I(k)) = 0.

4. Solve the equation ∆Inv(H, I(k)) = 0 subject to the initial conditions (11b).

5. A parametric solution to the original equation ∆(t, u(n)) = 0 is given by ρ(H) ·
ι(t, u)(H), where the left moving frame ρ(H) is a solution of the reconstruction equa-
tion (28) subject to the initial conditions (30).

K

∆ In
v
(H
,I
(k
) ) =

0

∆
(t
, u

(n
) )

=
0

ρ(H)

ρ(t)

Figure 1: Solving a differential equation using moving frames.

4. Invariant physics-informed neural networks

Before introducing our invariant physics-informed neural network, we recall the definition
of the standard physics-informed loss function that needs to be minimized when solving or-
dinary differential equations. To this end, assume we want to solve the ordinary differential

equation ∆(t, u(n)) = 0 subject to the initial conditions u(n−1)(t0) = u
(n−1)
0 on the interval

[t0, tf ]. We recall that the ordinary differential equation ∆(t, u(n)) = 0 can also be a system
of differential equations.

First we introduce the collocation points {ti}Ni=0 sampled randomly over the interval
[t0, tf ] with t0 = t0 < t1 < · · · < tN = tf . Then, a neural network of the form uθ(t) = Nθ(t),
parameterized by the parameter vector θ, is trained to approximate the solution of the
differential equation, i.e. uθ(t) ≈ u(t), by minimizing the physics-informed loss function

L(θ) = L∆(θ) + αLI.C.(θ) (33a)

13
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with respect to θ, where

L∆(θ) =

N∑
i=0

∥∥∆(ti, u
(n)
θ (ti))

∥∥2

`2
(33b)

is the differential equation loss and ‖ · ‖`2 is the `2-norm,

LI.C.(θ) =
∥∥u(n−1)
θ (t0)− u(n−1)

0

∥∥2

`2
(33c)

is the initial condition loss, and α ∈ R+ is a hyper-parameter to re-scale the importance of
both loss functions. We note that the differential equation loss is the mean squared error of
the differential equation evaluated at the collocation points {ti}Ni=0 ⊂ [t0, tf ] over which the
numerical solution is sought. The initial condition loss is likewise the mean squared error
between the true initial conditions and the initial conditions approximated by the neural
network. We note in passage that the initial conditions could alternatively be enforced as
a hard constraint in the neural network, see, e.g. Brecht et al. (2023); Lagaris et al. (1998),
in which case the physics-informed loss function would reduce to L∆(θ) only.

The physics-informed loss function (33) is minimized using gradient descent, usually
using the Adam optimizer, Kingma and Ba (2014), but also more elaborate optimizers
can be employed, Bihlo (2024). The particular elegance of the method of physics-informed

neural networks lies in the fact that the derivatives u
(n)
θ of the neural network solution

approximation are computed using automatic differentiation, Baydin et al. (2018), which is
built into all modern deep learning frameworks such as JAX, PyTorch, or TensorFlow.

Similar to the above standard physics-informed neural network, an invariant physics-
informed neural network is a feed-forward neural network approximating the solution of
the invariantized differential equation and the reconstruction equations for the left moving
frame.

In light of the five step process given in Section 3.5, assume the invariantized equation
∆Inv(H, I(k)) = 0 and the reconstruction equation dρ = −ρν have been derived. Introduce
an interval of integration [H0, Hf ] over which the numerical solution is sought, and consider
the collocation points {Hi}Ni=0 ⊂ [H0, Hf ], such that HN = Hf . The neural network has to
learn a mapping between H and the functions

Iθ(H) and ρθ(H),

where Iθ(H) denotes the neural network approximation of the differential invariants I(H)
solving (11a), and ρθ(H) is the approximation of the left moving frame ρ(H) solving the
reconstruction equations (28). We note that the output size of the network depends on the
numbers of invariants I(H) and the size of the symmetry group via ρ(H).

The network is trained by minimizing the invariant physics-informed loss function con-
sisting of the invariantized differential equation loss and the reconstruction equations loss
defined as the sum of mean squared errors

L∆Inv,ρ(θ) =
N∑
i=0

(∥∥∆Inv(Hi, I
(k)
θ (Hi))

∥∥2

`2
+
∥∥dρθ(Hi) + ρθ(Hi) ν(Hi, I

(κ)
θ (Hi))

∥∥2

`2

)
. (34)
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We note that there is an abuse of notation in the mean squared error of the reconstruction
equations. Technically, dρ+ρν is a differential one-form in dH. Thus, when computing the
`2-norm, we implicitly only consider the components of that one-form.

We supplement the loss function (34) with the initial conditions (11b) and (30) by
considering the invariant initial conditions loss function

LI.C.(θ) =
∥∥I(k−1)
θ (H0)− I(k−1)

0

∥∥2

`2
+
∥∥ρθ(H0)− ρ0

∥∥2

`2
.

The final invariant physics-informed loss function is thus given by

LInv(θ) = L∆Inv,ρ(θ) + αLI.C.(θ),

where α ∈ R+ is again a hyper-parameter rescaling the importance of the equation and
initial condition losses.

5. Examples

In this section we implement the invariant physics-informed neural network procedure in-
troduced in Section 4 for several examples. We also train a standard physics-informed
neural network to compare the solutions obtained. For both models we use feed-forward
neural networks minimizing the invariant loss function and standard PINN loss function,
respectively. For the sake of consistency, all networks used throughout this section have
5 layers, with 40 nodes per layer, and use the hyperbolic tangent as activation functions.
For most examples, the loss stabilizes at fewer than 3,000 epochs, but for uniformity we
trained all models for 3,000 epochs. All examples use 200 collocation points. The numerical
errors of the two neural network solutions are obtained by comparing the numerical solu-
tions to the exact solution, if available, or to the numerical solution obtained using odeint

in scipy.integrate. We also compute the mean square error over the entire interval of
integration for all examples together with the standard deviation averaged over 5 runs.
These results are summarized in Table 1. Finally, the point-wise square error plots for each
example are provided to show the error varying over the interval of integration.

Example 4 As our first example, we consider the Schwarz equation (12), with F (t) = 2.
For the numerical simulations, we used the initial conditions

u0 = u0
tt = 0, u0

t = 1, (35)

in (19) with t0 = 0. According to (18) the invariantization of Schwarz’ equation yields the
algebraic constraint I = 2. Thus, the loss function (34) will only contain the reconstruction
equations (31a). Namely,

αt + β = βt − α = γt + δ = δt − γ = 0, (36a)

where we used the fact that σ = 1. Substituting (35) into (31b), yields the initial conditions

δ0 = α0 = ±1, β0 = γ0 = 0 (36b)
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for the reconstruction equations. In our numerical simulations we worked with the positive
sign. Once the reconstruction equations have been solved, the solution to the Schwarz equa-
tion is given by the ratio (32). The solution is integrated on the interval t ∈ [0, π]. Error
plots for the solutions obtained via the invariant PINN and the standard PINN implementa-
tions are given in Figure 2. These errors are obtained by comparing the numerical solutions
to the exact solution u(t) = tan(t). Clearly, the invariant implementation is substantially
more precise near the vertical asymptote at t = π/2. The reason for this improvement orig-
inates from the fact that the invariant PINN implementation seeks to solve the system of
linear ODEs (36) to approximate the exact solutions β(t) = sin(t) and δ(t) = cos(t), which
are bounded functions, while the standard PINN implementation attempts to approximates
the unbounded function u(t) = tan(t) = β(t)/δ(t) using the Schwarz equation (12).

(a) Invariant PINN error. (b) Standard PINN error.

Figure 2: Time series of the squared error for the Schwarz equation (12).

Example 5 As our second example, we consider the logistic equation

ut = u(1− u) (37)

occurring in population growth modeling. Equation (37) admits the one-parameter symmetry
group

T = t, U =
u

1 + ε ue−t
, where ε ∈ R.

Implementing the algorithm outlined in Section 3.5, we choose the cross-section K = {u =
1}. This yields the invariantized equation

I = ι(ut) = 0.

The reconstruction equation is
εt = I = 0, (38)

subject to the initial condition

ε(t0) =

(
1− u0

u0

)
et0 ,
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where u0 = 0.5 and our interval of integration is [0, π]. The solution to the logistic equation
is then given by

u(t) =
1

1 + ε e−t
. (39)

As Figure 3 illustrates, the error incurred by the invariant PINN model is significantly
smaller than the standard PINN implementation, by about a factor of more than 100, when
compared to the exact solution (39).

(a) Invariant PINN error. (b) Standard PINN error.

Figure 3: Time series of the squared error for the logistic equation (37).

Example 6 We now consider the driven harmonic oscillator

utt + u = sin(ta), (40)

which appears in inductor-capacitor circuits, Serway and Jewett (2003). In the following we
set a = 0.99, which yields bounded solutions close to resonance occurring when a = 1. The
differential equation (40) admits the two-dimensional symmetry group of transformations

T = t, U = u+ α sin(t) + β cos(t), where α, β ∈ R.

A cross-section to the prolonged action is given by K = {u = ut = 0}. The invarianti-
zation of (40) yields

I = ι(utt) = sin(ta).

The reconstruction equations are

αt = sin(ta) cos(t), βt = − sin(ta) sin(t), (41)

with initial conditions

α(t0) = u0 sin(t0) + u0
t cos(t0), β(t0) = u0 cos(t0)− u0

t sin(t0),
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where, in our numerical simulations, we set u0 = u0
t = 1 and integrate over the interval

[0, 10]. Given a solution to the reconstruction equations (41), the solution to the driven
harmonic oscillator (40) is

u(t) = α(t) sin(t) + β(t) cos(t).

Figure 4 shows the error for the invariant PINN implementation and the standard PINN
approach compared to the solution obtained using the Runge–Kutta method odeint as pro-
vided in scipy.integrate. As in the previous two examples, the invariant version yields
substantially better numerical results than the standard PINN method.

(a) Invariant PINN error (b) Standard PINN error

Figure 4: Time series of the squared error for the driven harmonic oscillator (40).

Example 7 We now consider the second order ordinary differential equation

utt = exp [−ut] (42)

with an exponential term. Equation (42) admits a three-dimensional symmetry group action
given by

T = eεt+ a, U = eεu+ ε eεx+ b,

where a, b, ε ∈ R. In the following, we only consider the one-dimensional group

T = eεt, U = eεu+ ε eεx.

We note that in this example the independent variable is not invariant as in the previous
examples. A cross-section to the prolonged action is given by K = {ut = 0}. Introducing
the invariants

H = ln

[
1

1− ι(t)

]
= ln

[
1

1− tut

]
, I = ι(u) = exp[−ut](u− tut),
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the invariantization of the differential equation (42) reduces to the first order linear equation

IH + I = e−H − 1. (43a)

The reconstruction equation for the left moving frame is simply

εH = 1. (43b)

In terms of ε and I, the parametric solution to the original differential equation (42) is

t = eε(1− e−H), u = eε(I + ε(1− e−H)). (44)

The solution to (42) is known and is given by

u(t) = (t+ c1) ln(t+ c1)− t+ c2, (45)

where c1, c2 are two integration constants. For the numerical simulations, we use the initial
conditions

I0 = exp[−u0
t ](u0 − t0u0

t ), ε0 = u0
t ,

where u0 = u(t0), u0
t = ut(t0) with t0 = 0, and c1 = exp(−5), c2 = 0 in (45). The interval

of integration [H0, Hf ] is given by

H0 = ln

[
1

1− t0u0
t

]
, Hf = ln

[
1

1− tfuft

]
, (46)

where uft = ut(tf ) and tf = 2. We choose the interval of integration given by (46), so that
when t is given by (44) it lies in the interval [0, 2].

Figure 5 shows the error obtained for the invariant PINN model when compared to the
exact solution (42), and similarly for the non-invariant PINN model. As in all previous
examples, the invariant version drastically outperforms the standard PINN approach.

Example 8 As our final example, we consider a system of first order ODEs

ut = −u+ (t+ 1)v, vt = u− tv. (47)

This system admits a two-dimensional symmetry group of transformations given by

T = t, U = αu+ βt, V = αv + β,

where α > 0 and β ∈ R. Working with the cross-section K = {u = 1, v = 0}, the invari-
antization of (47) yields

I = ι(ux) = −1, J = ι(vx) = 1.

The reconstruction equations are

αt = α(1 + t), βt = α (48)
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(a) Invariant PINN error. (b) Standard PINN error.

Figure 5: Time series of the squared error for the exponential equation (42).

subject to the initial conditions α0 = 1, β0 = 1, corresponding to the initial conditions
u0 = v0 = 1, when t0 = 0. In our numerical simulations we integrated over the interval
[0, 2]. The solution to (47) is then given by

u(t) = α(t) + t β(t), v(t) = β(t).

As in all previous examples, comparing the numerical solutions to the exact solution

u(t) =

√
2

π
c e−(t+1)2/2 + c t erf

(
t+ 1√

2

)
+ kt, v(t) = c erf

(
t+ 1√

2

)
+ k,

with c =
(√

2/π exp(−1/2)
)−1

and k = 1 − c erf(1/
√

2), where erf(t) = 2/
√
π
∫ t

0 e
−x2dx is

the standard error function, we observe in Figure 6 that the invariant version of the PINN
model considerably outperforms its non-invariant counterpart.

6. Summary and conclusions

In this paper we have introduced the notion of invariant physics-informed neural networks.
These combine physics-informed neural networks with symmetry methods for differential
equations to simplify the form of the differential equations that have to be solved. In
turn, this simplifies the loss function that has to be minimized. For example, in the case
of the Schwarz equation considered in Examples 4, the third order nonlinear differential
equation (12) with F (t) = 2, is replaced by the system of first order linear reconstruction
equations (36a). Similarly, the nonlinear logistic equation (37) in Example 5 is replaced
by the linear reconstruction equation (38). The same phenomenon occurs in Example 7,
where the nonlinear equation (42) is substituted by the system of linear equations (43).
Finally, in Example 8 the coupled system of linear differential equations (47) is replaced
by the triangular system of differential equations (48). Our numerical tests show that the
solutions obtained with the (simplified) invariant models outperformed their non-invariant
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(a) Invariant PINN error. (b) Standard PINN error.

Figure 6: Time series of the squared error for the system of equations (47).

counterparts. Table 1 summarizes the examples considered in the paper and shows that
the invariant PINNs drastically improve over vanilla PINNs for all examples considered.
Quoting Perlis (1982) “Symmetry is a complexity-reducing concept . . .” which in the context
of the current paper is, we conjecture, at the source of the numerical improvements.

Example Invariant PINN Vanilla PINN

Schwarz (12) 5.1 · 10−2 ± 4.1 · 10−2 96.89± 0.81

Logistic (37) 2.6 ·10−10±1.8 ·10−10 3 · 10−2 ± 4.6 · 10−5

Harmonic (40) 5.8 · 10−6 ± 4.8 · 10−6 1.4 · 10−5 ± 2.3 · 10−5

Exponential (42) 3.2 · 10−7 ± 2.2 · 10−7 2.6 · 10−5 ± 3.6 · 10−5

System (47) 9.4 · 10−7 ± 2.0 · 10−7 6.6 · 10−6 ± 7.9 · 10−6

Table 1: Mean square error with standard deviation averaged over five runs for all examples
considered in Section 5.

The proposed method is fully algorithmic and as such can be applied to any system of
differential equations that is strongly invariant under the prolonged action of a group of Lie
point symmetries. It is worth noting that the work proposed here parallels some of the work
on invariant discretization schemes which, for ordinary differential equations, also routinely
outperform their non-invariant counterparts. We have observed this to also be the case for
physics-informed neural networks.

Lastly, while we have restricted ourselves to the case of ordinary differential equations,
our method extends to partial differential equations as well. Though, when considering
partial differential equations, it is not sufficient to project the differential equation onto
the space of differential invariants as done in this paper. As explained in Thompson and
Valiquette (2015), integrability conditions among the differential invariants must also be
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added to the invariantized differential equation. In the multivariate case, the reconstruction
equations (28) will then form a system of first order partial derivatives for the left moving
frame. Apart from these modifications, invariant physics-informed neural networks can also
be constructed for partial differential equations, which will be investigated elsewhere.
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