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Abstract

We consider dynamic pricing strategies in a streamed longitudinal data set-up where
the objective is to maximize, over time, the cumulative profit across a large number of
customer segments. We consider a dynamic model with the consumers’ preferences as well
as price sensitivity varying over time. Building on the well-known finding that consumers
sharing similar characteristics act in similar ways, we consider a global shrinkage structure,
which assumes that the consumers’ preferences across the different segments can be well
approximated by a spatial autoregressive (SAR) model. In such a streamed longitudinal set-
up, we measure the performance of a dynamic pricing policy via regret, which is the expected
revenue loss compared to a clairvoyant that knows the sequence of model parameters in
advance. We propose a pricing policy based on penalized stochastic gradient descent (PSGD)
and explicitly characterize its regret as functions of time, the temporal variability in the
model parameters as well as the strength of the auto-correlation network structure spanning
the varied customer segments. Our regret analysis results not only demonstrate asymptotic
optimality of the proposed policy but also show that for policy planning it is essential to
incorporate available structural information as policies based on unshrunken models are
highly sub-optimal in the aforementioned set-up. We conduct simulation experiments across
a wide range of regimes as well as real-world networks based studies and report encouraging
performance for our proposed method.
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1. Introduction

Due to the ubiquitous reach of digital marketing, dynamic pricing settings are extensively
studied by firms that sell a significant fraction of their inventories over online marketplaces
and through digital advertisements (see Cohen et al., 2020; Keskin and Zeevi, 2016; Ban and
Keskin, 2021; Bimpikis et al., 2019; Javanmard, 2017; Leme and Schneider, 2018; Javanmard
and Nazerzadeh, 2019 and the references therein). As such it is a vibrant topic of research in
online machine-learning (Zhou et al., 2019; Cesa-Bianchi et al., 2015), operations research
(Golrezaei et al., 2020; Cheung et al., 2017), information (Cui et al., 2021), marketing
(Schwartz et al., 2017; Choi et al., 2020) and management sciences (Farias and Van Roy,
2010; Broder and Rusmevichientong, 2012; den Boer and Zwart, 2013). For fuller references
see Sec 1.3.

In this work, we study the problem of a firm selling a product to customers who arrive
over time. The firm has the opportunity to set different prices not only over time t but also for
different customer segments l = 1, . . . , L. We consider setting the prices across these customer
segments in a dynamic manner such that the expected cumulative revenue, aggregated over
the customer segments as well as time is maximized. As a motivational example, consider
the digital marketing problem (Liu-Thompkins, 2019) where an advertisement of a product
priced at plt is shown to nlt customers in segment l at time t. Let yltk, k = 1, . . . , nlt denote
the binary variables corresponding to conversion based on the advertisement, i.e., yltk = 1 if
the k-th advertisement in the l-th segment at time t led to a purchase, and yltk = 0 otherwise.
Often in these problems, the firm also has the opportunity to access other covariates xlt such
as demographic information for the customer segment l at time t.

As time t progresses, the goal is to explore and set prices plt optimally based on the
current covariates xlt as well as on the previous customer responses {ylsk : 1 ≤ s < t} and
their associated prices and covariate information. The goal is to optimize the cumulative
revenue

T∑
t=1

L∑
l=1

ylt plt where, ylt =

nl∑
k=1

yltk. (1)

1.1 Streamed Longitudinal Probit Set-up

Demand heterogeneity (Bimpikis et al., 2019; Chintagunta et al., 2002) is traditionally
tackled by segmenting consumers who have similar purchasing propensity as well as similar
responses to price changes. Though truly homogeneous segments of consumers do not exist,
the approximation provides a reasonable interface to design differential pricing strategies that
optimally target each customer segments. Modern online trading platforms, marketplaces
and lead generation systems, facilitate implementing price differential strategies across a wide
range of segments. Often advertisers have access to the geographical location of the consumer
and these segments based on zip-codes of the consumers (Train, 2009). Another popular
choice is segmenting customers based on the different marketing channels by which they were
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approached (Berman and Thelen, 2018). In accordance with these modern applications, we
consider the number of segments L to be large. In the existing literature (Javanmard, 2017),
the overall revenue in (1) is optimized for probability models based on rational choice theory,
which assumes that consumers are rational and make choices that maximize their utility.

Let the utility function Ultk for the kth customer in the lth segment at time t be given
by the following additive model:

Ultk = αlt + βt plt + x′ltµt + σZltk (2)

where k = 1, . . . , nlt; αs are the preferences of the customers that vary across both time
and segments; βs are the price-sensitivities of the customer. Vectors µ are coefficients
corresponding to the non-priced covariates and vary over time but invariant across segments.
Zs are independent and identically from Gaussian distribution with mean 0 and has variance
1. Based on rational choice theory, if Ultk > 0 then a sale occurs, i.e., Yltk = 1; else, Yltk = 0.
Let Ylt =

∑nl
k=1 Yltk be the count of sales for segment l at time t. Then,

Ylt ∼ Binomial(nlt, qlt) ,

where qlt = Φ(σ−1(αlt + βtplt + x′ltµt)) and Φ is the cumulative distribution function of
standard Gaussian distribution. Note, that qlt is not only a function of the model parameters
but also depends on the price. We use capital letters for random variables, small letters for
the values a random variable takes, and boldface letters for vectors and matrices.

Note that at each time t we advertise the product at price plt based on the covariates
xlt and observe the total sales across the segment Ylt. It is crucial to note that we do not
directly observe the utilities associated with each segment. This diverges from the classical
bandit framework, where complete losses, or utilities in this case, are observed. Instead, in
our scenario, we only receive partial information, specifically whether the utility was positive
or negative depending on whether a sale was made. Based on the sales information, the joint
log-likelihood across all segments at time t is given by

`t(λ) =

L∑
l=1

ylt log qlt + (nlt − ylt) log(1− qlt), (3)

where λ = {λt := (αt, βt,µt) : t = 1, . . . , T} and αt = (α1t, . . . , αLt). The expected revenue
from segment l subjected to price plt at time t is,

Rev(λ, l, t, plt) = plt Eλ(Ylt) = nlt plt qlt

= nltpltΦ
(
σ−1(αlt + βtplt + x′ltµt)

)
,

and the goal is to maximize the cumulative revenue

Rev(λ,p) =

L∑
l=1

T∑
t=1

Rev(λ, l, t, plt)

over the prices p = {plt : 1 ≤ l ≤ L, 1 ≤ t ≤ T} that the firm can set. Conditioned on the
parameters λ, maximizing Rev(λ,p) decouples into separate maximization of the revenue of
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each segment at each time point. The first-order condition for optimal price p∗lt conditional
on the set of parameters is

p∗lt = −σ β−1
t

Φ(σ−1(αlt + βt p
∗
lt + x′ltµt))

φ(σ−1(αlt + βt p∗lt + x′ltµt))
. (4)

As p∗lt depends on the unknown model parameters λt, we call this the oracle price and
Rev(λ,p∗) imposes the highest theoretically achievable upper bound on the revenue. For
any other pricing policy p we define its regret over the oracle strategy as:

R(λ,p) =
L∑
l=1

T∑
t=1

Rlt(λ,p), where

Rlt(λ,p) = Rev(λ, l, t, p∗lt)− Rev(λ, l, t, p̂lt).

1.2 SAR based global Shrinkage Structures

We impose the following regularity condition on the temporal changes in the price sensitivity
and the covariate effects:

T−1∑
t=1

|βt+1 − βt| ≤ C∗β and
T−1∑
t=1

‖µt+1 − µt‖2 ≤ C∗µ. (5)

Note that these cumulative temporal changes in price sensitivity and covariate effects C∗β
and C∗µ are not constant and can grow over time. Unlike the price sensitivity, the preference
coefficients αt however greatly depends on the state of the current inventory and can highly
fluctuate over time. However, it is well known that people who are close to each other in
some networks often reflect highly corrected preferences (Bradlow et al., 2005; Ma et al.,
2015). Spatial models provide a natural way to model this correlation between different units
of analysis based on their contiguity in a network (Banerjee et al., 2014; Gelfand et al., 2010;
LeSage, 2004). Geographic closeness is a proxy for many socio-demographic variables like
income, education, wealth and property values, which are also related to consumer purchase
behavior, and has been the primary focus of a large number of existing pricing models (Yang
and Allenby, 2003; Jank and Kannan, 2005; Bimpikis et al., 2019). Networks based on
non-geographic metrics can also capture preference similarities among customers (Karmakar
et al., 2021). Consider the following Spatially Autoregressive (SAR) structure (see ch. 6 of
Anselin, 2013 and ch. 2 of Banerjee et al., 2014) on the αlt:

αlt = ρt

L∑
j=1

wljαjt + τεlt, (6)

where wlj ≥ 0, εlt are i.i.d N(0, 1) and τ > 0. In its most basic form, (6) imposes a global
hierarchical structure with the auto-correlation parameter ρt regulating the level of global
spillovers (and hence connectedness) among the units. Relation (6) implies having the
following hierarchical prior on the preference parameters:

αt ∼ NL(0, τ2 (I − ρtW )−2) . (7)
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We consider the network structure and its associated contiguity matrix W to be invariant
over time. SAR models such as above have been very successful in assimilating spatial
network information in real-world datasets (Manski, 1993; Anselin, 2013). In Bramoullé
et al. (2009), SAR is used in modeling recreational services consumption by secondary school
students, whereas Hsieh and Lee (2016) used SAR to incorporate friendship networks of
high school students in predicting their academic performances. In Zhou et al. (2017), SAR
is used to model user activity on social media regarding transportation services in China.
We allow the auto-correlation parameter ρt to vary over time while satisfying the regularity
condition

T−1∑
t=1

|ρt+1 − ρt| ≤ C∗ρ . (8)

Since αt is a random variable, our defined regret R(λ,p) is also random. We define a
parameter set θ = {θt := (ρt, βt,µt) : t = 1, . . . , T} which we utilize to establish a Bayes
regret, based on the prior on αt in equation (7) as follows:

B(θ,p) = E{R(λ,p)}, (9)

where the expectation is over randomess associated with the distribution of αt governed by
(7). Let Θ be a set of parameter θ satisfying (5) and (8). For this set of parameters, we
consider developing dynamic pricing strategies p that minimize the Bayes regret in (9).

1.3 Our Contributions and Related Work

We develop a Projected Stochastic Gradient Descent (PSGD) algorithm based on the
logarithm of the marginal likelihood `t(θ) = log{E{exp `t(λ)}} which is the convolution of
the likelihood in (3) with the prior in (7). We show that the proposed algorithm controls the
Bayes regret at the order of O(

√
T ). We also show that for any data-driven pricing strategy

the Bayes regret can not be of the lower order of O(
√
T ). Thus, as T →∞, the proposed

algorithm is asymptotically rate-optimal. Our main result, Theorem 2 is provided in Section
3.

An important attribute of Theorem 2 is that, we provide an explicit characterization of
the Bayes regret of the proposed PSGD algorithm in terms of not only time T but also as
functions of the model parameters and the underlying heterogeneity (difference in the nlt) in
the data. We show how the regret of the proposed algorithm depends on temporal variability
in the model parameters as well as on the strength of correlation among the segments. Our
upper-bound on the regret of the prescribed method (see (23)) depends on the spectral radius
of the SAR structure in (9). It is sensitive to the magnitude of the autocorrelation parameter
and greatly contracts as the correlation increases.

In Corollary 6, we show that any unshrunken pricing policy that does not borrow strength
across the customer segments is highly sub-optimal with respect to the proposed strategy.
This is in accordance with classical statistical shrinkage theory results (Fourdrinier et al.,
2018) that are based on non-dynamic set-ups. To see the connections consider the penalized
likelihood criterion:
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Figure 1: Schematic on the working principle of proposed PSGD. The red path are the
PSGD updates on the marginal likelihood with penalty.

PL(λ;ω) =

T∑
t=1

{
`t(λ) + ω‖(I − ρtW )αt‖22

}
. (10)

Running a vanilla stochastic gradient descent (with projection on Θ) based on this
penalized criteria is asymptotically equivalent to applying the proposed PSGD algorithm on
the marginal log-likelihood. However, the same algorithm based on the unpenalized likelihood
PL(λ; 0) will have higher estimation error in the estimates of αt when L is large, which
would in turn yield a significantly higher regret. In this context, it is crucial for any decent
pricing policy to shrink its αt estimates towards the ellipsoids {αt : ‖(I − ρtW )αt‖2 ≤ sω}.
Figure 1 shows the schematic for this essential shrinkage effect on the αt. The rigorous
mathematical proof is provided in Corollary 6.

Our research is connected to and builds on recent works in statistical shrinkage theory,
online machine learning and econometrics theory on demand modeling. Next, we list the
relevant literature in these research and also briefly mention our contributions.

1) Dynamic Pricing with Online Learning There exists a growing body of research on
dynamic pricing with learning (den Boer, 2015; Farias and Van Roy, 2010; Harrison et al.,
2012; Cesa-Bianchi et al., 2015; Ferreira et al., 2018; Cheung et al., 2017). The classical
formulations of this problem Broder and Rusmevichientong (2012); den Boer and Zwart
(2013); Besbes and Zeevi (2009) consider parametric model for the demand-price curve, which
is unknown and the learner aims to learn, via exploration-exploitation of prices, while aiming
to obtain a low regret in revenue. These works focus on non-contextual settings (no features
for customers), and are relevant to applications where a seller is offering an unlimited supply of
a single product to the market. Recently, there was significant interest in contextual-models,
which use the customers and products attributes to model willingness-to-pay of the buyers
for the products, potentially in a heterogeneous way and offer personalized pricing (Leme
and Schneider, 2018; Cohen et al., 2020; Ban and Keskin, 2021; Javanmard and Nazerzadeh,
2019; Lobel et al., 2016; Golrezaei et al., 2021). In addition, some of the recent works in
this area (Javanmard, 2017; Keskin and Zeevi, 2017) aim to model the temporal behavior of
buyers, by considering time-dependent demand models.
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Closer to our analysis is the notion of dynamic regret, which has been used in online convex
optimization to evaluate the performance of a learner against a dynamic target Zinkevich
(2003); Yang et al. (2016); Jadbabaie et al. (2015); Besbes et al. (2015). However, the general
framework of online optimization does not directly apply to our setting, since in the former
framework, after taking an action each step the learner observes the incurred loss (or some
first order information on it), which can be used in next rounds. In contrast, in our setting
the firm only observes the count of sales at each segment, and not the utility of customers.
Our work is the first to propose and analyze a dynamic contextual demand model, which
accounts for temporal behavior of consumers as well as the network effect among them via
spatially autoregressive structure.

2) Dynamic Hierarchical modeling. Hierarchical modeling provides an effective tool for
pooling information across similar units and is one of the most popular approaches for
modeling large and complex data sets (Fourdrinier et al., 2018; Banerjee et al., 2014; Kou and
Yang, 2017). Here, (7) imposes a dynamic hierarchical structure on the customer preference
coefficients that are linked through a time-invariant non-exchangeable network structure
in the second-level prior on (2). Recent applications of hierarchical modeling to consumer
responses in digital products Banerjee et al. (2022); Mukhopadhyay et al. (2022); Banerjee
et al. (2021) have been very successful in analyzing structured longitudinal data-sets abet in
a non-dynamic set-up. Here, we provide an extensive characterization on the operational
characteristics of PSGD in a streamed longitudinal set-up and thereby provide theoretical
support for the popular PSGD approach for hierarchical modeling in dynamic set-ups.

3) Modeling Demand Heterogeneity. Spatial models are very popular in operations
management and information sciences to capture non-stationarity in demand (Karmakar
et al., 2021; Bimpikis et al., 2019; Jank and Kannan, 2005). In (2)-(7) we have a dynamic
spatial model that is governed by changes in the auto-correlation parameter. An important
feature of our contributions is that we show PSGD is able to track the variation of the auto-
correlation parameter over time and yield asymptotically rate-optimal regret in a dynamic
spatial model.

4) Shrinkage prediction under heterogeneity. It is now commonplace to use notions
of shrinkage to improve predictive performances of algorithms in multi-parametric set-ups
(Hastie et al., 2009; Efron and Hastie, 2021). Recent results in (Xie et al., 2012; Tan, 2015;
Weinstein et al., 2018; Brown et al., 2018) have brought to light new shrinkage phenomena
in heteroscedastic models. Here, we study shrinkage prediction in a heteroscedastic dynamic
set-up; nlt – the number of customers in segment l approached at time t can greatly vary
over l and t. This is an important aspect of our model. It entertains high imbalance
across the design matrix but greatly increases applicability. Particularly, in “pull” marketing
systems unlike “push” systems (Peter et al., 2000) the firm has no control on the number
of customers who visits the site/store and does a price check. Thus, nlt will be large in
some zip-codes/demographics and quite low in others. Due to the SAR structure in (7) it is
possible to learn the preferences αlt with high precision even in segments with very low nlts.
In Section 3 and 4, we illustrate the impact of the heterogeneous nlts on the regret bounds.

5) Spatial models and applications. Spatial models provide a natural way to model the
correlation between different units of analysis based on how close they are in a similarity
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space. Spatial models based on correlated customer preferences have been successfully
employed in marketing and economics to model real-world sales data with high predictive
accuracy. Jank and Kannan (2005) used a spatially correlated preference model to model
consumer choices of two product forms of a book –print or PDF. Yang and Allenby (2003)
estimate a binary choice model akin to ours in which consumer preferences for a vehicle’s
country-of-origin (Japanese/non-Japanese) are spatially correlated based on the distance and
demographic similarity between consumers. Ma et al. (2015) models consumers’ decision of
whether or not to purchase a callback ringtone. In several non-marketing data applications
also, spatial autoregressive (SAR) models have been very successful in assimilating spatial
network information in real-world datasets (Manski, 1993; Anselin, 2013). Bramoullé et al.
(2009) used SAR to model consumption of recreational services such as participation in
artistic, sports and social activities by secondary school students, whereas Hsieh and Lee
(2016) used SAR to incorporate the friendship networks of high school students to predict
academic performance. Zhou et al. (2017) used SAR to model user activity on social media
regarding transportation services in China. Based on this existing literature which shows
that SAR can well capture the correlation among customers and users in economic and social
real-world data, we feel that the proposed model will be good for real-world applications in
dynamic set-up.

2. Proposed PSGD Algorithm

2.1 Assumptions

We make some assumptions on the covariate and the parameter space to simplify the
presentation of our results. The covariates are normalized such that ‖xlt‖ ≤ 1. Similarly the
parameters µt are such that ‖µt‖ ≤ Cµ where Cµ is a known constant. This gives a ball of
radius Cµ in which the parameters reside. We can even allow the parameter to belong in
any convex set Θµ. The results would then depend on the size of the parameter space up to
a constant factor.

Based on (2), we also assume that the price sensitivity βt should be negative i.e. an
increment in price decreases the utility of the product for the consumer. We also make
an assumption on the lower and the upper bound on the magnitude of price sensitivity
cβ ≤ |βt| ≤ Cβ . These restrictions inherently create the restricted space Θµ and Θβ for our
model parameters.

We also make two key assumptions on the SAR structure and auto-correlation parameter.

Assumption 2.1. W is a symmetric, positive semidefinite (PSD) kernel e.g. radial basis
function (RBF) kernel.

Since W denotes a distance matrix across the L segments, it is natural that W is
a symmetric matrix. It is also worth noting that the common choices of kernels in non-
parametric estimation are PSD (see Tsybakov (2008), Section 1.2).

Assumption 2.2. The interaction parameter ρt for all time periods is positive and uniformly
bounded away from the reciprocal of the maximum eigenvalue of the interaction matrix
i.e. ∃ ε > 0, such that ρt ≤ (1− ε)/ω∗, where ω∗ is the largest eigenvalue of the known
interaction matrix W .
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The spatial autoregressive structure of the preference coefficients αt in equation (6) with
the Gaussian noises implies the joint Gaussian nature of the preference coefficient with
variance (I − ρtW )−2 in (7). Since covariance matrices are always positive semi definite, so
I − ρtW is positive, hence, ρt ≤ 1/ω∗. With this assumption, we imply the inequality to be
strict. Otherwise, the model becomes degenerate (i.e. covariance of Gaussian distribution
becomes rank-deficient) and in that case one can work with the lower-dimensional space
where the SAR covariance is full-rank.

2.2 Reparameterization

The hierarchical prior in (7) can be used to write the explicit value of αlt in terms of prior
hyperparameters ρt, τ and standard multivariate normal noise ε as αlt = τ〈el, (I−ρtW )−1ε〉,
where el denotes the lth basis vector. Substituting αlt in the utility model , we can rewrite
(2) in terms of θ as

Ultk = βt plt + x′ltµt + σZltk + τ〈el, (I − ρtW )−1ε〉. (11)

This produces a marginal model, where the utility for each segment l can be described as a
normal distribution with variance V 2

lt = ‖(I − ρtW )−1el‖2τ2 + σ2. Next, normalizing the
utility to have unit variance we consider the following reparameterized utility model

Ũltk = blt plt + x′ltmlt + Zltk, (12)

where, blt = βt/Vlt and mlt = µt/Vlt. We use this marginal utility model for describing our
policy.

2.3 Optimal Pricing

Since the noises in (4) are distributed as standard Gaussian, it follows that the optimal price
p∗lt is the solution to the equation:

p∗lt = −b−1
lt

Φ (blt p
∗
lt + x′ltmlt)

φ
(
blt p

∗
lt + x′ltmlt

) . (13)

The optimality condition in (13) can be restructured as ϕ(−blt p∗lt − x′ltmlt) + x′ltmlt = 0
where ϕ(v) = v − Φ(−v)/φ(v) is the virtual valuation function (Myerson, 1981). With the
use of the valuation function, we can explicitly describe the optimal price p∗lt as a function of
the utility model parameters

p∗lt := g(blt,mlt) = −
ϕ−1(−x′ltmlt) + x′ltmlt

blt
. (14)

Proposition 1 Consider the definition of marginal variance V 2
lt = ‖(I−ρtW )−1el‖2τ2 +σ2.

Under Assumptions 2.1 and 2.2, the variance V 2
lt satisfies

cV ≤ Vlt ≤ CV ,

where c2
V = τ2 + σ2 and C2

V = τ2/ε2 + σ2. Additionally, the optimal prices satisfy p∗lt ≤M ,
where M = cβ

−1CV (Cµc
−1
V − 0.5φ(0)).

9
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Algorithm 1 PSGD based Dynamic Pricing Policy
Data W : known segment structure
Initialize pl1 = c, , b̂l1 ∈ Θb and m̂1t ∈ Θm ∀l
for t = 1, 2, . . . do

Data ylt, xl,t+1 : Longitudinal data stream
1. Compute the gradient L′lt(m̂lt, b̂lt) (16) for each segment l
2. Update parameters by moving in the opposite direction of gradient with step size ηt
and then projecting onto the restricted space (19)

b̂l,t+1 = ΠΘb(b̂lt − ηt∇L
b
lt); m̂l,t+1 = ΠΘm(m̂lt − ηt∇Lmlt )

3. Set price pl,t+1 using the optimal pricing function pl,t+1 = g(b̂l,t+1, m̂l,t+1)

2.4 Proposed Pricing Policy

We propose a pricing policy based on a projected stochastic gradient descent on the loss
function described in (15). With the PSGD, we aim to estimate the reparameterized
parameter set (blt,mlt) for every segment.

Based on the assumptions ‖µt‖ ≤ Cµ and |βt| ≤ Cβ we first define Θb := {β/cV : β ∈ Θβ}
and Θm := {µ/cV : µ ∈ Θµ}, the restricted space of the new parameters b,m. These are
natural extensions to the assumptions since blt = βt/Vlt and cV is the lower bound on Vlt.

Next, define the loss function as the negative of the log-likelihood function for the utility
model (12).

Lt(λ) = −
L∑
l=1

ylt log qlt + (nlt − ylt) log(1− qlt), (15)

with qlt = Φ(blt plt + x′ltmlt). Each summand in the loss (15) is the loss for a specific
segment l. Let Llt denote these losses,

Llt = −ylt log qlt − (nlt − ylt) log(1− qlt).

We compute the gradient of loss functions: L′lt(blt,mlt) = (∇L(b)
lt ,∇L

(m)
lt ) for each segment

as

∇L(b)
lt = −ylt

φ(u0
lt)

Φ(u0
lt)

+ (nlt − ylt)
φ(−u0

lt)

Φ(−u0
lt)
plt, (16)

∇L(m)
lt = −ylt

φ(u0
lt)

Φ(u0
lt)

+ (nlt − ylt)
φ(−u0

lt)

Φ(−u0
lt)
xlt. (17)

At time point t, we move in the opposite direction of the gradient with step size ηt. The
resultant estimates are then projected onto the restricted space Θb,Θm based on the
assumptions on the size of the parameters to get the successive estimates:

b̂l,t+1 = ΠΘb(b̂lt − ηt∇L
b
lt), (18)

m̂l,t+1 = ΠΘm(m̂lt − ηt∇Lmlt ), (19)
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where, ΠΘb(.) and ΠΘm(.) are the projection functions on to the convex set Θb and Θm

respectively. The policy finally uses these estimated parameters and the optimal pricing
function g(·, ·) defined in (14) to set the price for the next period. The method is summarized
in Algorithm 1.

Remark: Our valuation model assumes the knowledge of interaction matrix W , yet
in many real-world applications, access to such matrices is not readily available. In these
scenarios, we can utilize covariates that describe the segments to construct the interaction
matrix. However, please note that, these covariates however can not be used in the utility
model (2) again as that would make the covariates in the utility model and W correlated
which is not covered in the paper. An example of this is demonstrated in our simulations,
Section 5 (setups 3-7), where the segments consist of 48 US states, and we use 15 demographic
and socio-economic variables such as age, average income, and unemployment rates to create
the interaction matrix W .

Once we possess the covariates that define the segments, we can employ kernel functions on
these covariates to define a similarity matrix W . These kernel techniques require estimation
of a bandwidth (tuning parameter), which we can determine using cross-validation. To
perform cross-validation, we utilize past sales data where the prices were not dynamically
changed and create a train/test split. Next we select a fixed bandwidth to generate an
interaction matrix W̃ , and estimate our model on the training data based on W̃ . Finally,
based on the log-likelihood of our fitted model on the test split, we select the optimal
bandwidth.

3. Theoretical Results

In this section, we provide the bounds on the regret for the dynamic pricing policy we employ.
We show that under regularity conditions on the temporal nature of the parameters β, µ
and ρ, the regret as defined in (9) has order square root of the time horizon T . We also show
the optimality of the bound by showing that no policy can achieve a worst-case regret better
than the same rate.

3.1 Upper Bound on Regret of the Proposed Algorithm

We present an upper bound on the regret of the proposed pricing policy in terms of the
reparameterized model parameters in (12). Later, through lemma 3, we create a link between
the actual parameters and the reparameterized ones. Finally, we show that when the step
sizes ηt ∝ 1/

√
t, we achieve O(

√
T ) regret.

Theorem 2 For any θ ∈ Θ defined below (9), the regret of our proposed policy satisfies:

B(θ,p) ≤ R1 +R2 +R3 +R4 +O(log T ),where, (20)

11



Bhuyan, Javanmard, Kim, Mukherjee, Rossi, Yu and Zhao

R1 = C1

T∑
t=1

L∑
l=1

η−1
t |bl,t+1 − blt|,

R2 = C2

T∑
t=1

L∑
l=1

η−1
t ‖ml,t+1 −ml,t‖2,

R3 = C3

T∑
t=1

L∑
l=1

ηtn
2
lt ≤ C3

T∑
t=1

ηtn
2
t , and,

R4 = C4 η
−1
T+1 L.

C1, C2, C3 and C4 are constants independent of T , n, L and the model parameters.

The detailed proof of the theorem is presented in the Appendix. We present a brief overview
of its proof in Section 4. We next concentrate on further explaining the terms on the right
side of (20). We simplify the first two terms R1, R2 in Theorem 2 and provide a key lemma
3. For ease of notation we define δtν = ‖νt+1 − νt‖ for any parameter ν. This helps us
transform our regret from the reparameterized quantities b, m to the original parameters β,
µ and ρ.

Lemma 3 Let ω∗ be the smallest eigenvalue of W , then under Assumptions 2.1 and 2.2,
the variation across the parameters in the utility model (12), can be bounded as

|bl,t+1 − blt| ≤ τ−1(1− ρtω∗)δtβ + C5δtρ , (21)

‖ml,t+1 −mlt‖2 ≤ τ−1(1− ρtω∗)δtµ + C5δtρ. (22)

Next, we demonstrate the implications of the above result in a simplified setup with any
network structure W . The goal is to understand the effect of the network structure and the
auto-correlation (ρt) on the upper bound of the regret in (20). We provide the following
corollary that explicitly shows the relation of regret with the auto-correlation parameter.

Corollary 4 If ηt ∝ 1/
√
t, and ρt = ρ for all t, then the dynamic pricing policy based on

Algorithm 1 has regret

B(θ,p) ≤ C6τ
−1(1− ρω∗)

T∑
t=1

√
t(δtβ + δtµ) +O(

√
T ). (23)

Corollary 4 shows that the regret has two parts, one with order
√
T , while the other

part depends on the temporal nature of price sensitivity and customer preferences. The
regret occurred in this part depends on the strength of the network inversely, i.e, higher the
strength of the network (higher the ρ) lower the regret and vice-versa.

Note that if ρt was varying across time, we can extend the bound in Corollary 4. Assume
that ρ∗ = mint ρt, then the bound on regret can be modified as

B(θ,p) ≤C6τ
−1(1− ρ∗ω∗)

T∑
t=1

√
t(δtβ + δtµ) + C7

T∑
t=1

√
tδtρ +O(

√
T ), (24)

where C6 and C7 are constants. The bound above behaves similarly to Corollary 4 if the
temporal changes across auto-correlation is small.

12
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3.2 Lower Bound on Regret of Any Data-driven Policy

We show that the bound in corollary 4 is indeed tight in terms of dependence on the time
horizon. In the next theorem we show that there exists parameters in the space Θ such that
under the demand model with these parameters, the regret of any policy is of the order at
least

√
T . The detailed proof is provided in the Appendix.

Theorem 5 Consider the utility model (12) and let NT :=
∑T

t=1

∑L
l=1 nlt be the total

number of costumers across all segment and times up to T . For any fixed graph W , the
worst-case risk of any data driven pricing policy p̂ satisfies

min
p̂

max
θ∈Θ
B(θ,p) ≥ C8

√
T (1 + log(NT /T )) ,

for some constant C8. In particular, if nlt ≥ 1 for all l, t, we have

min
p̂

max
θ∈Θ
B(θ,p) ≥ C8

√
T (1 + log(L)) .

Theorem 5 along with (24) implies that our pricing policy in algorithm 1, is optimal, if
the temporal changes across the price sensitivity, customer preferences and auto-correlation
is of the order

√
T , i.e. if

∑T
t=1

√
t(δtβ + δtµ+ δtρ) = O(

√
T ), then our policy is order optimal.

Below we give examples of two such scenarios where our pricing policy is order optimal. The
first example illustrates a scenario with smooth variations, and the second one illustrates a
scenario with bursty changes.

Consider a case where the core parameters µ, β and ρ are perturbed at each time t such
that δtµ ∝ 1/t, δtβ ∝ 1/t and δtρ ∝ 1/t. In such a scenario, the upper bound on regret using
(24) is of the order

∑T
t=1

√
t(δtβ + δtµ + δtρ) + O(

√
T ). Since the perturbations across all

the parameters is inversely proportional to t, the sum
∑T

t=1

√
t(δtβ + δtµ + δtρ) simplifies

to
∑T

t=1 1/
√
t which is O(

√
T ). In this case, both the upper bound and lower bound are

of O(
√
T ) showing optimality. Please note that, in this setting we can replace the order of

perturbations to any function of t smaller than 1/t and the regret of our policy will still be
optimal.

Next, consider a case where δtµ = c, δtβ = c and δtρ = c for some constant c whenever
t ∈ {20, 21, 22, · · · } and 0 otherwise. In this discrete case, the size of perturbations is
the same while the duration across the perturbations keeps increasing. Again, using (24),
the upper bound on regret is of the order

∑T
t=1

√
t(δtβ + δtµ + δtρ) + O(

√
T ). The sum∑T

t=1

√
t(δtβ + δtµ + δtρ) can be bounded by c

∫ log2 T
0 2x/2dx which is O(

√
T ). Thus, our

pricing policy is optimal in this discrete case as well.

3.3 Sub-optimality of Unshrunken Pricing Policies

Next, we consider unshrunken policies that do not incorporate the structure (7) on the αts.
Such unshrunken policies suffer from severe noise accumulation in estimating αt as free
parameters at every time point. The following result whose proof is provided in Section C.4
of the appendix shows that the Bayes regret from any unshrunken pricing policies based on
the unpenalized likelihood is highly sub-optimal as compared to the proposed strategy p.
Consider a parametric space Θ̄ such that any θ ∈ Θ̄ satisfies that

∑T
t=1

√
tδtβ,

∑T
t=1

√
tδtµ

13
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and
∑T

t=1

√
tδtρ are O(

√
T ). The following result shows sub-optimality of unshrunken pricing

policies over Θ̄.

Lemma 6 For any θ ∈ Θ̄, the regret of any data-driven policy pU based on the unpenalized
likelihood in (10) satisfies

B(θ,pU )
/
B(θ,p) = Ω(

√
T ).

4. Outline of Proofs and Overview of Techniques

For the detailed proofs of all the results, we refer to the appendix. In this section, we
delve into the intuition and the intermediate steps used in proving the two main results in
Section 3.

4.1 Proof Sketch of Theorem 2

The crucial idea is to bound the revenue loss (regret) with the parameters in the model. To
achieve that consider the revenue function with the utility model (12)

Revlt(plt) = nltpltΦ(bltplt + x′ltmlt). (25)

The revenue loss using our policy is then the difference between Revlt(p∗lt) and Revlt(plt)
where p∗lt is the optimal price for the model true parameters and plt is the price posted with
the dynamic pricing policy.

Proposition 7 There exists a constant C9 such that the regret of our policy on segment l at
time t can be bounded as

Rlt = Revlt(p
∗
lt)− Revlt(plt) ≤ C9nlt(plt − p∗lt)2 , (26)

where plt is our posted price and p∗lt is the optimal price that maximizes the revenue under
known parameters.

We simplify the regret bound term (plt − p∗lt)2 on the right hand side of (26) in our next
lemma. The idea is to use the optimal pricing function g(·, ·) defined in section 2.3. The
prices p∗lt and plt can then be defined as p∗lt = g(blt,mlt), the optimal price based on the true
parameters and plt = g(b̂lt, m̂lt), the optimal price with respect to the estimated parameters
that our proposed policy posts. The lemma then hinges on the fact that the function g(·, ·)
defined in (14) is Lipschitz.

Lemma 8 For model (12), under the true parameters blt,mlt and the output b̂lt, m̂lt from
our PSGD pricing policy, the following holds true:

(plt − p∗lt)2 ≤ C10〈xlt,mlt − m̂lt〉2 + C10p
2
lt(blt − b̂lt)2 (27)

for some constant C10 > 0.

The Rlt terms in (26) are the building blocks for our total regret B(θ,p) as in (9) where
B(θ,p) =

∑T
t=1

∑L
l=1Rlt. The above two lemmas relate the revenue regret occurred by the

policy with the estimation error of the parameters in the model (12). The final step involves
creating a link between this estimation error and the temporal nature of the parameters to
achieve the regret bound as in Theorem 2.

14
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4.2 Proof Sketch of Theorem 5

For the lower bound, we want to find worst case scenarios in terms of parameters. In this
case, we use the idea of “uninformative prices” (Broder and Rusmevichientong, 2012). These
are prices where the purchase probability curves for all different sets of parameters intersect.
Such prices do not reveal any information about the parameters since all the purchase curves
contain the point. These uninformative prices become an issue when they are also the optimal
prices for some set of parameters. If a policy wants to learn the parameters fast, they need to
do exploration away from these uninformative prices. But during the process of exploration
it chooses parameters farther from the actual parameters and thus increases regret.

The general idea of such proofs is to create a setting where these optimal prices are indeed
uninformative. In the proof, we show existence of such parameters and their corresponding
optimal “uninformative prices”. Calling these parameters γ0, the proof hinges on two relations,
one showing that learning the utility model parameters closely is expensive in terms of regret:

Regπ,γ0T ≥ C12

(γ0 − γ)2
KL
(
fπ,γ0T ; fπ,γT

)
(28)

where fπ,γt is the density of purchases for all consumers until time t, provided that the policy
π is employed. An interpretation of the KL-divergence KL (fπ,γ0t ; fπ,γt ) is the certainty level of
the policy π about the true model parameters γ0, over some other counterfactual parameter
γ. So the above bound implies that increasing certainty about the underlying model is costly.

The next bound shows that if the policy can not differentiate between two parameters
that are “close” to each other (in other words to increase its confidence in one), then again it
incurs a large regret. Specifically, if γ1 = γ0 + 1/(4T 1/4),

Regπ,γ0T + Regπ,γ1T ≥ C13

√
Te−KL(f

π,γ0
T ;f

π,γ1
T ). (29)

Intuitively, the first equation shows that exploitation is necessary (choosing the optimal
parameter γ0 to have small KL-divergence) and the second one asks for exploration to stay
away from uninformative prices, so as to gain information about the model parameters and
increase the certainty about it, as measured by KL-divergence.

5. Numerical Experiments

We study the performance of the proposed algorithm using numerical experiments based
on synthetic as well as real-world based networks. We consider a wide range of regimes
with varying (a) temporal variation of the model parameters (b) strength and nature of the
network (c) sampling heterogeneity across sectors, and (d) noise distributions.

Set-up 1. Consider L = 10 segments and a time-invariant sampling policy with different
sampling rates across two segment groups: for any t ≥ 1, nlt = 50 for l = 1, . . . , 5 and
nlt = 200 for l = 6, . . . , 10. We use a time-invariant network W that was generated
using radial basis function (RBF) kernel of width one on independent standard Gaussian
feature vectors, drawn from input space R10. We use bivariate covariates xlt generated from
standard exponential distribution and set τ = 1, σ = 1 in (2)-(6). The price sensitivity and the
customer preferences are assumed as β1 = −0.4 and µ1 = (0.1, 0.15). With change in time the
parameters change as follows, βt+1 = βt + δtβ ; µt+1 = µt + δtµ, where δtβ = t−bZ̃t/(10|Z̃t|)
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Figure 2: Regret plots of the proposed policy in Set-up 1 as b which governs the shift in
the model parameters over time changes. The plots for b = 0.5, 1,∞ are in red,
green and blue respectively. In panels (a) Regret in original scale (b) log(Regret)
vs log(T). The dotted lines in panel (b) are the best fitted line with slope 0.5.

and δtµ = t−bZ̄t/(10‖Z̄t‖) where Z̃t and Z̄t are standard Gaussian random variables of
dimension 1 and 2 respectively.

We set ρt to 0.5 for all t ≥ 1 and consider three cases, b = 0.5, 1,∞, for the temporal
variations across βt and µt. Note that the case of b =∞ corresponds to the scenario where
the parameters do not change over time.

Recall from Corollary 4 that the regret is upper bounded as

B(θ,p) ≤ C6τ
−1(1− ρω∗)

T∑
t=1

√
t(δtβ + δtµ) +O(

√
T ).

For b =∞, the first two terms equate to 0 and the regret is thus O(
√
T ). In the second case

when b = 1, then δtµ ∝ 1/t, δtβ ∝ 1/t. The second term in the sum is thus O(
∑T

t=1 1/
√
t)

which is O(
√
T ) as well. Finally, when we set b = 0.5, δtµ ∝ 1/

√
t, δtβ ∝ 1/

√
t and the

second term is O(
∑T

t=1

√
T/
√
T ) = O(T ).

In Figure 2, we plot the regret (cumulative revenue lost to the oracle policy) over time
for the three cases. From the figures it is evident that when b = 0.5, the regret from the
proposed method eventually grows linearly where as in the other two cases its is controlled
at O(

√
T ).

Set-up 2. Here, we aim to study the performance of the proposed method as the strength
of the network varies due to change in auto-correlation parameter. We consider a simpler
setting than set-up 1 with L = 4 segments with a homogeneous sampling rate nlt = 50 for all
l, t. We consider b = 1, ρt = ρ for all t ≥ 1 and vary ρ = 0.1, 0.3 and 0.5 across 3 experiments.
Note that, the first two terms R1 and R2 in Theorem 2 depend on ρ while the third term
R3 increases with nlt. This means that as nlts increase, R3 grows very large and the effect
of R1 and R2 (effect of ρ) on the regret is significantly less. Hence, to see the effect of ρt,
we consider moderate nlts here. We plot the regret in Figure 3 (a) and see a significant
improvement in terms of regret as ρ increases gradually. In Figure 3 (b) we fix ρ = 0.5 and
compare the regret of our policy with the unshrunken policy based on (10). We see that the
regret of the unshrunken policy has linear trend and is quite sub-optimal as T exceeds 20000.

Set-up 3. In this set-up, unlike set-up 1 and 2, we do not consider a randomly generated
synthetic network but consider a real-network based on US census data Bureau (2008). Here,
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Figure 3: Regret plots for Set-up 2 (a) Regret of proposed policy for ρ =
0.5 (blue), 0.3 (green), 0.1 (red) varies (b) Regret of proposed policy (continuous
line) and an unshrunken policy (dotted line) for ρ = 0.5.

we consider L = 48 segments. Each segments constitute a US state. For ease of analysis and
presentation, we remove Hawaii and Alaska from the analysis. We choose 15 demographic
and socio-economic variables such as percentage of residents in the age group 5-65, average
income, unemployement rates, etc for making the network matrix W among the L segments.
We use an RBF kernel of width two and threshold the resultant network at 0.05 level, i.e.,
edges with weight less than 0.05 are deleted from the network. Figure 4 shows the network.

We generate the covariates xlt using standard exponential distribution. We apply model
(1)–(2) in the main paper in the context of conversion from leads. Consider the problem where
at time t, the firm purchases leads nlt for segment l from other lead generation companies
and shows pricing plt which lead to conversion Ylt. We consider that the number of leads nlt
is fixed over time t. Let nt = n. For this set-up, we vary n = 1000, 2500, 5000, 10000, 20000.
We set

nlt ∝ Population sizel ×Median Incomel,

i.e., the number of leads in each state is proportional to the population of the state as well as
the median disposable income per household in the state. Similar to the analysis in Section 5,
we consider the three cases , b = 0.5, 1,∞, for the temporal variations across βt and µt. In
Figure 5, we plot the regret for the three cases. We see that the results perfectly match the
results in Set-up 1 where we had a random network: with b = 0.5, the regret grows linearly,
whereas with b = 1 and b =∞, the regret is O(

√
T ).

Set-up 4. In the previous setting we assumed that the number of leads in each segment
is proportional to the population and the income levels. But for most firms it is highly
unlikely that they have good penetration and market share in all the US states. We consider
the scenario where the firm has a stronger customer base in some states compared to others.
Thus, there will be difference in leads across states. Particularly, in states l where the firm
has low penetration, nlts will be very low. An interesting attribute of this exercise is that
the presence of the network structure in (1)-(8) makes the preferences correlated and the
preference coefficients from states with low nlts can also be efficiently learnt by the prescribed
method by leveraging the information from states with high penetration.

To study this through numerical experiments, we create an imbalanced design. We divide
the states into two groups L1 and L2 of equal sizes. Here, nlt are not only proportional to
population and income as in Set-up 3 but states in L1 are given more weightage that those
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Table 1: Performance of the prescribed method relative to Unshrunken policy in Set-up 4 as
υ1(1− υ1) varies across columns. (negative implies worse performance)

n T 0.7 0.8 0.9

1000

100 -1.3% -4.4% -0.8%
500 3.2% -0.8% -0.8%

1000 15.0% 13.9% 12.5%
5000 50.5% 50.5% 48.5%

2500

100 -2.9% -5.0% -5.3%
500 2.2% 0.8% -1.4%

1000 17.1% 14.8% 11.8%
5000 51.2% 50.3% 48.2%

5000

100 -2.2% -5.4% -3.1%
500 5.1% 1.7% -0.1%

1000 18.0% 15.0% 12.0%
5000 52.3% 49.8% 48.1%

10000

100 -2.4% -4.9% -3.8%
500 3.0% 1.1% -1.4%

1000 16.3% 15.0% 10.8%
5000 51.3% 50.3% 47.5%

20000

100 -1.9% -4.9% -4.4%
500 4.5% 1.1% -1.5%

1000 17.3% 15.0% 10.9%
5000 51.8% 50.3% 47.7%
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Figure 4: A network on L = 48 US states barring Hawaii and Alaska. This network is based
on similarity between states across 15 demographic and economic variables and is
thresholded at 0.05. The network is used in experiments for set-ups 3 and 4.

in L2, i.e., υ1 =
∑

l∈L1
nlt(
∑

l∈L2
nlt)

−1 > 1. With the same network structure as in set-up
3, we compare the regret of the proposed policy compared to an unshrunken policy at three
different levels of υ1. The first level is 0.7 : 0.3. The second and third level of imbalance is
0.8 : 0.2 and 0.9 : 0.1.

We compute the cumulative regret for all three imbalanced cases for different values of
total number of customers nt = n and time horizon T . We report the relative regret (in
terms of percentage) by our proposed policy against the cannonical unshrunken policy in
Table 1. Relative to the unshrunken policy, the performance of our PSGD based policy is
always observed to be superior for moderately large T . The relative performance at higher
imbalances is still very high.
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Figure 5: Regret of the proposed policy in Set-up 3 for different values of b.

We also report the performance of our policy in these imbalanced design compared to an
unshrunken policy in a balanced design regime. We compute the regret of the unshrunken
policy in the balanced setting as nt varies and compare with the efficacy of the prescribed
PSGD based policy in the imbalanced setting in Table 2. We see that with this imbalanced
design our policy still outperforms the unshrunken policy in a balanced design regime.

Set-up 5. Next, we want to study the regret behaviour under a different network on the
segments. Unlike Set-ups 3 and 4, we create a network on the US states based only on the
demographic variables. Based on the demographic variables, we create the similarity matrix
W using an RBF kernel of width two and threshold the edges at 0.05. Figure 6 shows the
network.

We study the regret of the imbalanced design in this network regime. Similar to the
set-up 4, we compare our policy in the imbalanced setting against (a) unshrunken policy in
the balanced setup and (b) unshrunken policy in the imbalanced setting. The results are
presented in Table 3. At smaller T ’s our policy performs worse than an unshrunken policy,
but as T grows larger, our policy performs significantly better (more than 50%) compared to
the unshrunken policy, both with balanced and imbalanced design.

Set-up 6. We use a network that is based on the similarity across economic variables
only. We create the network of the US states based only on the economic variables using an
RBF kernel of width two and thresholding the edges at 0.05. Figure 7 shows the network.

We study the performance under this network regime in the imbalanced setting with
the two scenarios as above. The results are reported in Table 4. We see that overall, in
all imbalanced settings our policy performs much better than the unshrunken policy in the
imbalanced as well as the balanced setting.

Set-up 7. With the W used in Set-ups 3 and 4, we setup an extremely unbalanced
design with total number of customers fixed at nt = 1000. In this setting, 10 states have 5
leads each, while the remaining 950 leads are distributed similarly among the remaining 38
states. We specifically study the regret from the 10 states with very low leads.

Consider the two cases here (a) the ten states with very-low-leads are chosen such that
they are least connected states (sum of the edge weights is least) in the network (b) the ten
states with very-low-leads are chosen such that they are are the most connected 10 states
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Table 2: Performance of the prescribed method in imbalanced designs relative to Unshrunken
policy in balanced design in Set-up 4 as υ1(1− υ1) varies across columns. (negative
implies worse performance)

n T 0.7 0.8 0.9

1000

100 -6.6% -7.6% -16.3%
500 -1.9% -9.2% -22.0%

1000 10.5% 6.1% -6.4%
5000 47.9% 44.9% 35.8%

2500

100 -8.3% -18.2% -35.9%
500 -2.9% -12.8% -32.1%

1000 12.8% 4.1% -13.6%
5000 48.7% 43.4% 31.8%

5000

100 -7.6% -20.1% -40.1%
500 0.1% -19.1% -36.9%

1000 13.7% -2.4% -19.1%
5000 49.8% 38.4% 28.8%

10000

100 -7.8% -128.6% -36.1%
500 -2.1% -127.6% -33.7%

1000 11.9% -95.8% -17.2%
5000 48.8% -16.8% 29.9%

20000

100 -7.2% -16.5% -39.3%
500 -0.5% -16.6% -36.4%

1000 13.0% -0.1% -19.0%
5000 49.3% 40.3% 29.1%
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Table 3: Performance of PSGD in Set-up 5 relative to (a) unshrunken policy in the balanced
designs and (b) unshrunken policy in the imbalanced designs (negative implies
worse performance)

n T
0.7 0.8 0.9

Balanced Imbalanced Balanced Imbalanced Balanced Imbalanced

1000

100 -9.1% -12.4% -8.2% -21.7% -6.1% -34.0%

500 -13.5% -16.9% -18.0% -35.5% -20.8% -59.1%

1000 -1.0% -4.1% -3.2% -20.5% -4.4% -42.7%

5000 54.8% 53.4% 54.3% 50.0% 55.7% 49.8%

2500

100 -5.4% -8.6% -2.1% -21.1% 3.2% -32.5%

500 -13.8% -17.2% -10.2% -27.4% -10.8% -53.6%

1000 -3.9% -7.0% 0.5% -13.8% 0.9% -40.0%

5000 45.1% 43.4% 48.7% 49.9% 51.5% 48.8%

5000

100 -8.0% -11.2% -7.3% -19.3% -2.3% -31.3%

500 -15.6% -19.0% -15.9% -27.9% -13.2% -45.5%

1000 -3.8% -6.9% -3.3% -13.9% 0.7% -30.3%

5000 46.8% 45.2% 48.3% 49.7% 52.2% 52.3%

10000

100 -7.9% -11.2% -4.3% -22.1% 0.6% -30.0%

500 -12.4% -15.8% -12.0% -30.1% -10.4% -47.9%

1000 -0.4% -3.4% 1.3% -15.7% 3.3% -34.5%

5000 48.5% 47.0% 51.0% 50.6% 54.0% 51.5%

20000

100 -6.9% -10.1% -2.4% -21.0% 1.8% -31.3%

500 -13.9% -17.3% -10.4% -29.6% -10.8% -49.6%

1000 -2.1% -5.2% 1.9% -16.0% 2.2% -36.2%

5000 46.2% 44.6% 49.9% 48.8% 52.5% 50.6%
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Table 4: Performance of prescribed method in Set-up 6 compared to (a) unshrunken policy
in the balanced setup and (b) unshrunken policy in the imbalanced setup (negative
implies worse performance)

n T
0.7 0.8 0.9

Balanced Imbalanced Balanced Imbalanced Balanced Imbalanced

1000

100 -4.2% -2.1% -7.3% -2.3% -4.3% -3.8%

500 4.9% 6.8% 2.0% 6.6% 3.6% 4.3%

1000 10.7% 12.5% 8.8% 12.6% 10.3% 10.3%

5000 29.3% 30.7% 27.7% 30.8% 29.1% 29.2%

2500

100 -6.2% -4.0% -6.2% -3.0% -9.4% -5.9%

500 4.8% 6.7% 3.4% 6.9% -1.1% 3.0%

1000 11.7% 13.5% 10.1% 12.9% 6.4% 9.4%

5000 30.8% 32.2% 28.9% 31.2% 25.9% 28.5%

5000

100 -7.4% -5.2% -6.1% -2.5% -9.8% -5.6%

500 3.7% 5.6% 3.4% 6.9% -1.0% 3.0%

1000 10.2% 12.0% 10.2% 13.0% 6.2% 9.5%

5000 29.9% 31.3% 29.1% 31.4% 25.9% 28.7%

10000

100 -6.5% -4.4% -2.4% -2.8% -4.7% -6.1%

500 4.5% 6.4% 7.0% 6.7% 3.7% 2.9%

1000 11.0% 12.8% 13.4% 12.8% 10.8% 9.4%

5000 30.0% 31.4% 31.4% 31.0% 29.8% 28.9%

20000

100 -5.8% -3.7% -3.5% -2.8% -6.8% -5.7%

500 4.6% 6.5% 6.1% 6.9% 1.6% 3.0%

1000 11.0% 12.8% 12.7% 13.1% 8.7% 9.3%

5000 30.2% 31.6% 31.0% 31.4% 28.0% 28.6%
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Figure 6: A network on 48 US states (barring Hawaii and Alaska) based on demographic
variables. It is used in set-up 5.

in the network. In Figure 8, we plot the relative regret of the prescribed policy from the
very-low-leads states with respect to an unshrunken pricing policy.

From the figure we see that in the case (b), the prescribed policy pools information from
the other connected states and perform much better compared to an unshrunken policy. On
the other hand in case (a) as the low-lead-states are not very well connected with the other
states, the prescribed policy perform on a similar level compared to the unshrunken policy
and does not provide any benefit.

Set-up 8. Throughout our experiments so far, we have assumed that the noises are
Gaussian. Here, we study the performance of our proposed algorithm when the noise in
model (2) follows Laplace distribution.

We consider the same synthetic data regime as in setup-1. We have L = 10 segments
where for any t ≥ 1, nlt = 50 for l = 1, . . . , 5 and nlt = 200 for l = 6, . . . , 10. The network
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Figure 7: A network on 48 US states (barring Hawaii and Alaska) based on economic variables.
It is used in set-up 6.

matrix W is generated using an RBF kernel of width one on independent standard Gaussian
feature vectors, drawn from input space R10. The covariates xlt are generated from standard
exponential distribution and set υt to 0.5 for all t ≥ 1. The price sensitivity and the customer
preferences are assumed as β1 = −0.4 and µ1 = (0.1, 0.15). We simply generate Zlt in (2)
as standard Laplace observations rather than Gaussian observations.

We study effects of the temporal variations across βt and µt by varying b as before. Recall
that the case of b =∞ corresponds to the scenario where the parameters do not change over
time. Since the noise distribution is Laplace (log-concave), following from Corollary 4, the
regret for the two cases of b = 1,∞ should be of order O(

√
T ), while the regret for b = 0.5

should be O(T ). In Figure 9, we plot the regret (cumulative revenue lost to the oracle policy)
over time for the three cases. From the figures it is evident that when b = 0.5, is linear where
as in the other two cases its is controlled at O(

√
T ).
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Figure 8: Relative regret of the prescribed policy (red) compared to unshrunken policy
(green) in Set-up 7. Panel (a) corresponds to case (a) where the very low lead
states are not very well connected with other states. Panel (b) corresponds to case
(b) where the very low lead states are very well connected with other states.
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Figure 9: Regret plots of the proposed policy in Set-up 8 as b which governs the shift in
the model parameters over time changes. The plots for b = 0.5, 1,∞ are in red,
green and blue respectively. In panels (a) Regret in original scale (b) log(Regret)
vs log(T). The dotted lines in panel (b) are the best fitted line with slope 0.5.

Set-up 9. We extend our study to a setup where the noises are i.i.d. from Student’s t
distribution. The setup of this experiment is same as set-up 8, with the only change being
the distribution of the noise terms. Here, noises follow Student’s t distribution in place of
the Laplace distribution. We study the regret of our proposed policy under this setting by
varying b. We see the effect of the temporal variations of parameters in Figure 10. We see
similar growth of regret, where for b = 1,∞, the regret is O(

√
T ) and for b = 0.5 the regret

grows linearly. While theoretically the results hold for Gaussian noises, these experiments
show that our policy is applicable to a broader family of noise distributions.

6. Discussion and Future Work

This work studied dynamic pricing strategies in the streaming longitudinal data setting where
the goal is to maximize the cumulative profit over time across a large number of customer
segments. We proposed a pricing policy based on penalized stochastic gradient descent and
provided regret bounds demonstrating the asymptotic optimality of the proposed policy. In
particular, we showed that our PSGD algorithm controls the regret at the order of O(

√
T )
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Figure 10: Regret plots of the proposed policy in Set-up 9 as b which governs the shift in
the model parameters over time changes. The plots for b = 0.5, 1,∞ are in red,
green and blue respectively. In panels (a) Regret in original scale (b) log(Regret)
vs log(T). The dotted lines in panel (b) are the best fitted line with slope 0.5.

and that for any pricing policy, the Bayes regret cannot be of the lower order of O(
√
T ).

Hence, as T →∞, the proposed algorithm is asymptotically rate-optimal. Our results show
that for policy planning it is essential to incorporate available structural information as
policies given by unshrunken models are highly sub-optimal.

There are several important future directions of our work. In future work, it will be
useful to derive the regret of the proposed algorithm when the noise is non Gaussian, e.g.
heavy-tailed distributions as such noise characteristics are often associated with observed
demand data. Theoretically, it will be interesting to calculate the benefits of a batched
version of the proposed algorithm 1 that is equipped for price exploration within segments
though it might not be practically feasible due to spill-over effects. Also, here we have
considered global spatial structure in the form of the SAR model in (7). In the future, it will
be interesting to study the performance of PSGD in the presence of local shrinkage structures
such as geographically weighted regression models (Fotheringham et al., 2003). Finally, it
will be useful to evaluate the optimal regret in time-varying networks where the contiguity
matrix W also changes over time.
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Appendix A. Organization of the Appendix

Here, we first present the proofs of results discussed in Section 3 of the main paper. The
detailed proofs of the main results, Theorems 2 and 5, are provided in Section B of the
appendix. All the other proofs of the intermediary results is provided in Section C of the
Appendix.

Appendix B. Detailed Proofs of Theorem 2 and 5

B.1 Proof of Theorem 2

The total regret B(θ,p) can be written down as the sum of regrets over all the segments and
time period:

B(θ,p) =
T∑
t=1

L∑
l=1

Rlt .

Using Proposition 7 and Lemma 8, we can bound the regret as

B(θ,p) = C9C10

T∑
t=1

L∑
l=1

nlt〈xlt,mlt − m̂lt〉2 + C9C10

T∑
t=1

L∑
l=1

nlt
(
plt(blt − b̂lt)

)2
.

Taking a maximum on the constants, we can rather bound the sum of the two terms∑T
t=1

∑L
l=1 nlt〈xlt,mlt−m̂lt〉2 and

∑T
t=1

∑L
l=1 nlt

(
plt(blt− b̂lt)

)2 to get a final bound on the
regret.

We do the analysis for a fixed segment l first and then combine the regret across all the
segments.

Lemma 9 Consider model (12), true parameters mlt, blt and the output m̂lt, b̂lt from our
PSGD pricing policy, the following holds with probability at least 1− T−2

T∑
t=1

nlt

(
〈xlt,mlt − m̂lt〉2 +

(
plt(blt − b̂lt)

)2)
≤ C1

T∑
t=1

1

ηt
‖ml,t+1 −mlt‖2 + C2

T∑
t=1

1

ηt
|bl,t+1 − blt|+ C3

T∑
t=1

ηtn
2
lt +

C4

ηT+1
+O(log T ) .

With this lemma we have with probability at least 1− L/T 2,

T∑
t=1

L∑
l=1

nlt

(
〈xlt,mlt − m̂lt〉2 +

(
plt(blt − b̂lt)

)2)
≤ C1

T∑
t=1

L∑
l=1

1

ηt
‖ml,t+1 −mlt‖2 + C2

T∑
t=1

L∑
l=1

1

ηt
|bl,t+1 − blt|+ C3

T∑
t=1

L∑
l=1

ηtn
2
lt +

C4L

ηT+1
+O(log T ) .

Define the RHS as I.
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Consider G to be the probabilistic event that the above is true, then P(GC) = L/T 2.
Also, since the maximum price is M and we set a positive price, hence the maximum

revenue lost on the event GC is
∑T

t=1 ntM . Assuming that nmax
T = maxt≤T nt, we have the

maximum regret in the event GC is TMnmax
T .

The total regret is thus,

B(θ,p) = B(θ,p|G) + B(θ,p|GC) ≤ IP(G) + Tnmax
T P(GC) ≤ A+

MLnmax
T

T
.

Since the last term is O(1/T ), we have the required terms of the regret bound.

B.1.1 Proof of Lemma 9

Let ψlt = (mlt, blt) be the combined parameter space and Qlt = (xlt, plt) be the covariates
and the price posted.

By Taylor expansion of the loss function we get, for some ψ̃lt between ψ̂lt and ψlt,

Llt(ψ̂lt)− Llt(ψlt) = 〈∇Llt(ψ̂lt), ψ̂lt −ψlt〉 −
1

2
〈ψ̂lt −ψlt,∇2Llt(ψ̃lt)(ψ̂lt −ψlt)〉 . (30)

Simplifying the loss function in terms of ψlt and Qlt gives us

Llt(ψ) = − (ylt log Φ(Qltψ) + ỹlt log Φ(−Qltψ)) ,

where ỹlt = nlt − ylt. The second derivative of the loss function can thus be computed as

∇2Llt(ψ) = −
(
yltQltQ

T
lt

∂

∂ζ2
log Φ(ζ)|ζ=Qltψ + ỹltQltQ

T
lt

∂

∂ζ2
log Φ(ζ)|ζ=−Qltψ

)
.

Let cL = min
{
− ∂
∂ζ2

log Φ(ζ)|ζ=Qltψ,−
∂
∂ζ2

log Φ(ζ)|ζ=−Qltψ
}
. Based on our assumptions,

Qlt and ψ are bounded and so there exists c such that |Qltψ| < c. Since Φ is log-concave
hence the second derivative is negative and − ∂

∂ζ2
log Φ(ζ) > 0. Particularly since the second

derivative only approaches 0 when ζ goes to ∞ or −∞, hence on the bounded set with
|ζ| < c, second derivative is bounded away from zero implying cL > 0.

Then,

∇2Llt(ψ) = −
(
yltQltQ

T
lt

∂

∂ζ2
log Φ(ζ)|ζ=Qltψ + ỹltQltQ

T
lt

∂

∂ζ2
log Φ(ζ)|ζ=−Qltψ

)
=

(
yltQltQ

T
lt

(
− ∂

∂ζ2
log Φ(ζ)|ζ=Qltψ

)
+ ỹltQltQ

T
lt

(
− ∂

∂ζ2
log Φ(ζ)|ζ=−Qltψ

))
≥ (ylt + ỹlt)QltQ

T
lt min

{
− ∂

∂ζ2
log Φ(ζ)|ζ=Qltψ,−

∂

∂ζ2
log Φ(ζ)|ζ=−Qltψ

}
= nltQltQ

T
ltcL .

Where the last equality follows since ylt + ỹlt = nlt.
Using this in (30)
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Llt(ψ̂lt)− Llt(ψt) ≤ 〈∇Llt(ψ̂lt), ψ̂lt −ψlt〉 −
1

2
〈ψ̂lt −ψlt, nltcLQltQ

T
lt(ψ̂lt −ψlt)〉

= 〈∇Llt(ψ̂lt), ψ̂lt −ψlt〉 −
nltcL

2
〈ψ̂lt −ψlt,Qlt〉2

= 〈∇Llt(ψ̂lt), ψ̂l,t+1 −ψlt〉+ 〈∇Llt(ψ̂lt), ψ̂lt − ψ̂l,t+1〉 −
nltcL

2
〈ψ̂lt −ψlt,Qlt〉2 .

(31)

Our update rules in (19), gives us

b̂l,t+1 = ΠΘb(b̂lt − ηt∇L
b
lt) ,

m̂l,t+1 = ΠΘm(m̂lt − ηt∇Lmlt ) .

The updates defined are common OMD updates and can be rewritten as

ψ̂l,t+1 = arg min
ψ
〈∇Llt(ψ̂lt),ψ〉+

1

2ηt
‖ψ − ψ̂lt‖2 .

Since the above loss function is convex and ψ̂l,t+1 is the minimizer, we get

〈ψ − ψ̂l,t+1, ηt∇Llt(ψ̂lt) + ψ̂l,t+1 − ψ̂lt〉 ≥ 0 .

Putting ψ = ψlt above, we get 〈ψ̂l,t+1 −ψlt, ηt∇Llt(ψ̂lt)〉 ≤ 〈ψlt − ψ̂l,t+1, ψ̂l,t+1 − ψ̂lt〉.
Also, note that

〈ψlt − ψ̂l,t+1, ψ̂l,t+1 − ψ̂lt〉 =
1

2

(
‖ψlt − ψ̂lt‖2 − ‖ψlt − ψ̂l,t+1‖2 − ‖ψ̂l,t+1 − ψ̂lt‖2

)
.

With the above two equations the first term in (31) is bounded as:

〈∇Llt(ψ̂lt), ψ̂l,t+1 −ψlt〉 ≤
1

2ηt

(
‖ψlt − ψ̂lt‖2 − ‖ψlt − ψ̂l,t+1‖2 − ‖ψ̂l,t+1 − ψ̂lt‖2

)
.

Using the inequality ab ≤ (a2 + b2)/2, the second term in (31) can be bounded as,

〈∇Llt(ψ̂lt), ψ̂lt − ψ̂l,t+1〉 ≤
1

2ηt
‖ψ̂lt − ψ̂l,t+1‖2 +

ηt
2
‖∇Llt(ψ̂lt)‖2 . (32)

Also, ∇Llt(ψ) = −
(
yltQlt

∂
∂ζ2

log Φ(ζ)|ζ=Qltψ − ỹltQlt
∂
∂ζ2

log Φ(ζ)|ζ=−Qltψ
)
.

Let CL = max{− ∂
∂ζ2

log Φ(ζ)|ζ=Qltψ,
∂
∂ζ2

log Φ(ζ)|ζ=−Qltψ} in the restricted space. Hence,
‖∇Llt(ψ̂lt)‖2 ≤ C2

Ln
2
lt‖Qlt‖2.

Combining all the parts we have,

Llt(ψ̂lt)−Llt(ψt) ≤
1

2ηt
‖ψlt−ψ̂lt‖2−

1

2ηt
‖ψlt−ψ̂l,t+1‖2+

ηt
2
C2
Ln

2
lt‖Qlt‖2−

nltcL
2
〈ψ̂lt−ψlt,Qlt〉2 .
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Adding and subtracting ‖ψl,t+1 − ψ̂l,t+1‖2 to above we get

Llt(ψ̂lt)− Llt(ψt) ≤
1

2ηt

(
‖ψlt − ψ̂lt‖2 − ‖ψl,t+1 − ψ̂l,t+1‖2

)
+

1

2ηt

(
‖ψl,t+1 − ψ̂l,t+1‖2 − ‖ψlt − ψ̂l,t+1‖2

)
+
ηt
2
C2
Ln

2
lt‖Qlt‖2 −

nltcL
2
〈ψ̂lt −ψlt,Qlt〉2 . (33)

The second term can be simplified as

‖ψl,t+1−ψ̂l,t+1‖2−‖ψlt−ψ̂l,t+1‖2 = 〈ψl,t+1+ψlt−2ψ̂l,t+1,ψl,t+1−ψlt〉 ≤ 4Cψ‖ψl,t+1−ψlt‖2 ,

where Cψ is max ‖ψ‖ and Cψ ≤ 2Cb + 2Cm, since ψ = (m, b).
Summing both sides of (33) over t = 1, . . . , T , we get

∑T
t=1

(
Llt(ψ̂lt)− Llt(ψt)

)
is

bounded above by:

‖ψl1 − ψ̂l1‖2

2η1
+

T∑
t=2

‖ψlt − ψ̂lt‖2
(

1

2ηt+1
− 1

2ηt

)
+ 4Cψ

T∑
t=1

1

2ηt
‖ψl,t+1 −ψlt‖2

+
T∑
t=1

ηt
2
C2
Ln

2
lt‖Qlt‖2 −

T∑
t=1

nltcL
2
〈ψ̂lt −ψlt,Qlt〉2 .

Under the assumption that ηt are non-decreasing,

‖ψl1 − ψ̂l1‖2

2η1
+

T∑
t=2

‖ψlt−ψ̂lt‖2
(

1

2ηt+1
− 1

2ηt

)
≤

4C2
ψ

2η1
+4C2

ψ

T∑
t=2

(
1

2ηt+1
− 1

2ηt

)
=

4C2
ψ

2ηT+1
.

Hence, we finally have

T∑
t=1

(
Llt(ψ̂lt)− Llt(ψt)

)
≤

4C2
ψ

2ηT+1
+ 4Cψ

T∑
t=1

1

2ηt
‖ψl,t+1 −ψlt‖2

+
T∑
t=1

ηt
2
C2
Ln

2
lt‖Qlt‖2 −

T∑
t=1

nltcL
2
〈ψ̂lt −ψlt,Qlt〉2 .

Define

A :=
4C2

ψ

2ηT+1
+ 4Cψ

T∑
t=1

1

2ηt
‖ψl,t+1 −ψlt‖2 +

T∑
t=1

ηt
2
C2
Ln

2
lt‖Qlt‖2. (34)

Since, ‖ψl,t+1 − ψlt‖2 ≤ 2(‖ml,t+1 −mlt‖2 + |bl,t+1 − blt|) and ‖Qlt‖2 is bounded, we
can simplify A as

A := C̃1

T∑
t=1

1

ηt
‖ml,t+1 −mlt‖2 + C̃2

T∑
t=1

1

ηt
|bl,t+1 − blt|+ C̃3

T∑
t=1

ηtn
2
lt +

C̃4

ηT+1
.
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Note that in order to prove the lemma we need to show a bound on
∑T

t=1 nlt

(
〈xlt,mlt −

m̂lt〉2 +
(
plt(blt − b̂lt)

)2) which is same as showing a bound on
∑T

t=1 nlt〈ψ̂lt − ψlt,Qlt〉2,
since ψlt = (mlt, blt) and Qlt = (xlt, plt).

We next provide a lower bound on the cumulative difference
∑T

t=1

(
Llt(ψ̂lt)− Llt(ψt)

)
.

Write

Lltk(ψlt)− Lltk(ψ̂lt) ≤ 〈∇Lltk(ψlt), ψ̂lt −ψlt〉 := Dtk , (35)

using convexity of the loss Lltk. We also have

∇Lltk(ψ) = −(yltk
∂

∂ψ
log Φ(Qltψ)− (1− yltk)

∂

∂ψ
log Φ(−Qltψ))

= Qlt

(
−yltk

φ(Qltψ)

Φ(Qltψ)
+ (1− yltk)

φ(−Qltψ)

Φ(−Qltψ)

)
.

Let Ft be the σ-field generated by the noise till time t. Then, since ψ̂lt only depends on
noise till time t, E[Dtk|Ft−1] = 〈E[∇Lltk|Ft−1], ψ̂lt − ψlt〉. In addition, E[∇Lltk|Ft−1] = 0
using the fact that P(Yltk = 1) = Φ(Qltψ) and P(Yltk = 0) = Φ(−Qltψ)). Therefore, the
partial sums of Dtk is a martingale with respect to the filtration Ft.

Also, as described above
(
−yltk φ(Qltψ)

Φ(Qltψ) + (1− yltk) φ(−Qltψ)
Φ(−Qltψ)

)
is bounded above with CL.

Hence |Dtk| ≤ βt := CL|〈Qlt, ψ̂lt −ψlt〉|. Using convexity of eλz, for any λ ∈ R we have

E
[
eλDtk | Ft−1

]
≤ E

[
βt −Dtk

2βt
e−λβt +

βt +Dtk

2βt
eλβt | Ft−1

]
= E

[
e−λβt + eλβt

2

]
+ E [Dtk | Ft−1]

(
e−λβt + eλβt

2βt

)
= cosh (λβt) ≤ eλ

2β2
t /2 .

where βt = CL|〈Qlt, ψ̂lt −ψlt〉|. We next use the following result from (Javanmard, 2017,
Proposition C.1).

Proposition 10 (Javanmard, 2017, Proposition C.1) Consider a martingale difference
sequence Dt adapted to a filtration Ft, such that for any λ ≥ 0,E

[
eλDt | Ft−1

]
≤ eλ

2σ2
t /2.

Then, for D(T ) =
∑T

t=1Dt, the following holds true:

P(D(T ) ≥ ξ) ≤ e−ξ2/(2
∑T
t=1 σ

2
t ) .

We apply the above theorem with D(T ) =
∑T

t=1

∑nlt
k=1Dtk. Invoking (35), this gives us,

P

 T∑
t=1

(
Llt(ψ̂lt)− Llt(ψt)

)
≤ −2CL

√
log T

{
T∑
t=1

nlt

〈
Qlt,ψlt − ψ̂lt

〉2
}1/2

 ≤ 1

T 2
.

Hence with probability at least 1− 1/T 2,

T∑
t=1

(
Llt(ψ̂lt)− Llt(ψt)

)
≥ −2CL

√
log T

{
T∑
t=1

nlt

〈
Qlt,ψlt − ψ̂lt

〉2
}1/2

.
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Let B =
∑T

t=1 nlt〈ψ̂lt −ψlt,Qlt〉2, then with the complete analysis till now we have

−2CL
√
B log T ≤

T∑
t=1

(
Llt(ψ̂lt)− Llt(ψt)

)
≤ A− cL

2
B .

Hence, B − (4CL/cL)
√
B log T ≤ (2/cL)A. Consider two cases:

Case 1:
√
B log T ≤ (cL/8CL)B, then B ≤ 4A/cL.

Case 2:
√
B log T ≥ (cL/8CL)B, then B ≤ (8CL/cL)2 log T .

Combining the two cases, we have

B ≤ 4A

cL
+O(log T ) .

Substituting for

B =

T∑
t=1

nlt〈ψ̂lt −ψlt,Qlt〉2 =

T∑
t=1

nlt

(
〈xlt,mlt − m̂lt〉2 + p2

lt(blt − b̂lt)2
)
,

and A from (34) we obtain the desired result.

B.2 Proof of Theorem 5

Recall the varaince of segment l in the utility model given by V 2
lt = ‖(I−ρtW )−1el‖2τ2 +σ2.

We assume that we have a known fixed ρ, the auto-correlation parameter, and so the variances
do not change over time.

Indicate the variances of segments by V1, V2, · · · , VL. Our utility model is thus

Ũltk =
βt
Vl
plt + x′lt

µt
Vl

+ Zltk .

Without loss of generality, assume that xlt is of dimension one. We would give a small
variation that would work for any dimension as well. Let v1, v2, · · · , vL be the inverse of the
fixed variances. The model is thus,

Ũltk = βtvl plt + xltµtvl + Zltk .

Assume that −βt = µt = γ, i.e. the parameters do not change over time and are negative
of each other. In this setup U0

ltk = vlγ(xlt − plt), the noiseless utility. Here setting plt = xlt
would be uninformative since we would just observe noise, and we cannot get any information
about the unknown parameter γ. In addition, in our model a price p∗lt is optimum if it
satisfies

p∗lt = − 1

βtvl

Φ(βtvl p
∗
lt + xltµtvl)

φ(βtvl p
∗
lt + xltµtvl)

.

Under the assumption that −βt = µt = γ, this reduces to

p∗lt =
1

γvl

Φ(vlγ(xlt − p∗lt))
φ(vlγ(xlt − p∗lt))

.
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Therefore, for γ0 := (vlxlt)
−1Φ(0)/φ(0), the uninformative price is optimal prices, i.e.,

p∗lt(γ0) = xlt.
Note that if xlt was of higher dimension, we could set xlt = (a/d, a/d, a/d, · · · , a/d) with

d the dimension of xlt and set µt = (γ, γ, γ, · · · , γ) to get the exactly same result: p∗lt(γ0) = a
for γ0 = (vla)−1Φ(0)/φ(0) is an uniformative price.

Now that we know the existence of a setting where the uninformative prices are optimal
prices, we can show that the regret is at least of the order of

√
T .

We construct a problem class (Γ, {Plt}), for l = 1, . . . , L, t = 1, . . . , T as follows. Recall
γ0 the parameter for which the optimal price is uninformative. We use the shorthand rlt(p, γ)
to denote the expected revenue obtained from a typical customer from segment l at time t, if
the model parameter is γ. Therefore, recalling our utility model Ultk = vlγ(xlt − plt) + Zltk,
we have rlt(p, γ) = p(Φ(vlγ(xlt−p))). By optimality of p∗lt(γ0), we have r′′lt(p

∗
lt(γ0), γ0) < −2c

for some constant c > 0, and by continuity of r′′lt we can find a neighborhood Plt around
p∗lt(γ0) such that r′′lt(p, γ0) < −c for all p ∈ Plt. We next consider the mapping γ 7→ p∗lt(γ).
By continuity of this mapping, we can find a small enough neighborhood Γlt around γ0 such
that the optimal prices p∗lt(γ) ∈ Plt for all γ ∈ Γlt. Finally, we take Γ := ∩Tt=1 ∩Ll=1 Γlt. Note
that Γ is non-empty because γ0 ∈ Γ. Furthermore, by our construction we have the following
properties for the problem class (Γ, {P}lt), for l = 1, . . . , L and t = 1, . . . , T :

• For all γ ∈ Γ, we have p∗lt(γ) ∈ Plt.

• For all prices p ∈ Plt, we have r′′lt(p, γ0) < −c .

For any pricing policy π and a parameter γ ∈ Γ, let fπ,γt : {0, 1}Nt → [0, 1] be the
probability distribution function for all the consumers purchase responses Y = (Yljk, ` =

1, . . . , L, j = 1, . . . , t, k = 1, . . . , nlj) until time t. Here, Nt =
∑t

j=1

∑L
l=1 nlj , under policy π

and model parameter γ. The pricing policy uses all the sales data till time t− 1 to give a
price p∗lt. We use yt ∈ {0, 1}Nt to denote all sales data till time t. So, if the pricing policy
gives the prices plt := π(yt−1) for all the time periods, then

fπ,γt (yt) =

t∏
j=1

L∏
l=1

nlj∏
k=1

qlj(plj , γ)yljk(1− qlj(plj , γ))1−yljk ,

where qlj(plj , γ) = Φ(vlγ(xlj − plj)). We next want to show that for γ0, the parameter for
which the uninformative price is optimal, any policy incurs a large regret if it tries to learn
γ0. Formally, we aim to show that

Rπt (γ0) ≥ C 1

(γ0 − γ)2
KL(fπ,γ0t , fπ,γt ) .

We employ the chain rule for KL divergence (Cover and Thomas, 1991),

34



Structured Dynamic Pricing: Optimal Regret in a Global Shrinkage Model

KL (fπ,γ0t ; fπ,γt ) =
t∑

s=1

KL (fπ,γ0t ; fπ,γt |Ys−1)

=
t∑

s=1

∑
ys∈{0,1}Ns

fπ,γ0s (ys) log

(
fπ,γ0s (ylsk | ys−1)

fπ,γs (ylsk | ys−1)

)

=
t∑

s=1

∑
ys−1∈{0,1}Ns−1

fπ,γ0s−1 (ys−1)
L∑
l=1

nls∑
k=1

∑
ylsk∈{0,1}

fπ,γ0s (ylsk | ys−1) log

(
fπ,γ0s (ylsk | ys−1)

fπ,γs (ylsk | ys−1)

)

=

t∑
s=1

∑
ys−1∈{0,1}Ns−1

fπ,γ0s−1 (ys−1)

L∑
l=1

nls∑
k=1

KL
(
fπ,γ0s (ylsk | ys−1) ; fπ,γs (ylsk | ys−1)

)
.

Based on the definition of fπ,γt , fπ,γ0s (ylsk) is distributed as Bernoulli qls(pls, γ0) and
fπ,γs (ylsk) is distributed as Bernoulli qls(pls, γ). Using the fact that for Bernoulli random
variables B1 ∼ Bern(q1), B2 ∼ Bern(q2), we have KL(B1, B2) ≤ (q1−q2)2

q2(1−q2) , we get

KL (fπ,γ0t ; fπ,γt ) ≤
t∑

s=1

∑
ys−1∈{0,1}Ns−1

fπ,γ0s−1 (ys−1)
L∑
l=1

nls∑
k=1

(qls(pls, γ0)− qls(pls, γ))2

qls(pls, γ)(1− qls(pls, γ))

=
t∑

s=1

∑
ys−1∈{0,1}Ns−1

fπ,γ0s−1 (ys−1)
L∑
l=1

nls
(qls(pls, γ0)− qls(pls, γ))2

qls(pls, γ)(1− qls(pls, γ))
. (36)

Since the prices and the parameters are bounded, and qlt is the normal distribution
function, qlt is bounded away from zero. Hence, there exists constant C such that qls(1−qls) ≥
C.

Also, qls(p∗ls, γ) = Φ(vlγ(xls − p∗ls)) and qls(p
∗
ls, γ0) = Φ(vlγ0(xls − p∗ls)). Since we are

working on a bounded set, the distribution function Φ is Lipschitz as well. Hence,

qls(pls, γ0)− qls(pls, γ) = Φ(vlγ0(xls − pls))− Φ(vlγ(xls − pls))
≤ C(vlγ0(xls − pls)− vlγ(xls − pls))
= Cvl(γ0 − γ)(xls − pls)
= Cvl(γ0 − γ)(p∗ls(γ0)− pls) ,

where p∗ls(γ0) is the optimal price for when the parameter is γ0. Recall that by the
definition of γ0, the optimal price for γ0 is xlt. We thus have

(qls(pls, γ0)− qls(pls, γ))2 ≤ C(γ0 − γ)2(p∗ls(γ0)− pls)2 .

Using the above bound in (36), we get

KL (fπ,γ0t ; fπ,γt ) ≤ C(γ − γ0)2
t∑

s=1

L∑
l=1

nls
∑

ys−1∈{0,1}Ns−1

fπ,γ0s−1 (ys−1) (p∗ls(γ0)− pls)2 .
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The inner summation is indeed the expectation with respect to γ0, by noting that pls is
a measurable function of ys−1. Hence, we have

KL (fπ,γ0t ; fπ,γt ) ≤ C(γ − γ0)2
t∑

s=1

L∑
l=1

nlsEγ0(p∗ls(γ0)− pls)2 . (37)

By the construction of problem class (Γ, {Plt}), we have r′′lt(p, γ0) ≤ −c, for γ ∈ Γ and
p ∈ Plt. Therefore, by Taylor expansion of rls(p, γ) around p∗ls, we obtain

rls(pls, γ0) = rls(p
∗
ls(γ0), γ0) + r′ls(p

∗
ls(γ0), γ0)(pls − p∗ls(γ0)) +

1

2
r′′ls(p̃, γ0)(pls − p∗ls(γ0))2 ,

for some p̃ between pls and p∗ls. By optimality of p∗ls we have r′ls(p
∗
ls(γ0), γ0) = 0. In addition,

since p̃ ∈ Pls, we have r′′ls(p̃, γ0) < −c, which implies that

(pls − p∗ls(γ0))2 ≤ 2

c

(
rls(p

∗
ls(γ0), γ0)− rls(pls, γ0)

)
.

Using the above bound in (37), we arrive at

KL (fπ,γ0t ; fπ,γt ) ≤ C(γ − γ0)2
t∑

s=1

L∑
l=1

nlsEγ0 [rls(p
∗
ls(γ0), γ0)− rls(pls, γ0)] ≤ C(γ − γ0)2 Regt ,

(38)

which completes the proof (28).
We next proceed with our proof for bound (29). Recall the optimality condition

vlγp
∗
lt(γ) =

Φ(vlγ(xlt − p∗lt(γ)))

φ(vlγ(xlt − p∗lt(γ)))
.

Differentiating with respect to γ on both sides we get,

vlp
∗
lt(γ) + vlγ

d

dγ
p∗lt(γ) = vl

(
xlt − p∗lt(γ)− γ d

dγ
p∗lt(γ)

)
κ(γ) ,

where

κ(γ) =
φ2(vlγ(xlt − p∗lt(γ)))− Φ(vlγ(xlt − p∗lt(γ)))φ′(vlγ(xlt − p∗lt(γ)))

φ2(vlγ(xlt − p∗lt(γ)))
.

By rearranging the terms we have

d

dγ
p∗lt(γ) =

1

γ

(
−p∗lt(γ) +

k(γ)

1 + k(γ)

)
.

Since we are working on finite sets, we can restrict the problem class Γ, such that | ddγ p(γ)| > C,
for some constant C and all γ ∈ Γ. Therefore, by an application of the Mean Value Theorem,
we have

|p∗lt(γ)− p∗lt(γ0)| ≥ C|γ − γ0| .
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Let γ1 := γ0 + 1/(4T 1/4). Using the above bound, the optimal prices for γ0 and γ1 are apart
by at least C/(4T 1/4).

Consider two disjoint sets D1 and D0 of prices, as follows:

Dγ0 :=

{
p : |p− p∗lt(γ0)| ≤ C

10T 1/4

}
, Dγ1 :=

{
p : |p− p∗lt(γ1)| ≤ C

10T 1/4

}
.

Note that Dγ0 and Dγ1 are disjoint since |p∗lt(γ1)− p∗lt(γ0)| ≥ C/(4T 1/4).
For γ ∈ {γ0, γ1}, if the posted price plt is not in the set Dγ , then the instantaneous regret

is at least

rlt(p
∗
lt(γ), γ)− rlt(plt, γ) ≥ c

2
(p∗lt(γ)− plt) ≥

(
cC

20

)2 1√
T
.

Hence following a similar proof strategy as in (Broder and Rusmevichientong, 2012, Lemma
3.4), we have

Regπ,γ0T + Regπ,γ1T ≥
(
cC

20

)2 1√
T

T∑
t=1

L∑
l=1

nlt (Pγ0(plt /∈ Dγ0) + Pγ1(plt /∈ Dγ1)) .

Note that plt is measurable with respect to measure fπ,γt−1 under the model γ. Therefore, by
using a standard result on the minimum error in a simple hypothesis test (Tsybakov, 2004,
Theorem 2.2), we have

Regπ,γ0T + Regπ,γ1T ≥ C1√
T

T∑
t=1

L∑
l=1

nlte
−KL(fπ,γ0t−1 ;f

π,γ1
t−1 )

≥ C1√
T
NT e

−KL(fπ,γ0T ;f
π,γ1
T ) , (39)

where in the second step we used the fact that KL (fπ,γ0t ; fπ,γ1t ) is non-decreasing in t and
NT :=

∑T
t=1

∑L
l=1 nlt. Previously we established the lower bound (38), which reads as

Regπ,γ0T ≥ C2

(γ0 − γ)2
KL (fπ,γ0t ; fπ,γt ) .

Putting, γ = γ1 = γ0 + 1/4T 1/4 we get Regπ,γ0T ≥ C2

√
TKL (fπ,γ0t ; fπ,γ1t ). Combining this

bound with (39), we get

max
γ∈{γ0,γ1}

Regπ,γT ≥ 1

2

(
Regπ,γ0T + Regπ,γ1T

)
≥ C
√
T

(
KL (fπ,γ0t ; fπ,γ1t ) +

NT

T
e−KL(f

π,γ0
T ;f

π,γ1
T )

)
≥ C
√
T (1 + log(NT /T )) ,

where in the last step we used the inequality ae−b + b ≥ 1 + log(a).
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Appendix C. Proofs of all other results and intermediate steps

C.1 Proof of Proposition 1

Recall that V 2
lt = ‖(I−ρtW )−1el‖2τ2 +σ2. Since W � 0, and ρt ≥ 0, we have I−ρtW � I.

In addition, by Assumption 2.2, we have I − ρtW � εI. Therefore, since ‖el‖ = 1,

1 ≤ ‖(I − ρtW )−1el‖ ≤
1

ε
,

from which we obtain the result.
Next, to prove the upper bound on the optimal prices, we recall that

0 ≤ x′ltmlt ≤ ‖xlt‖‖mlt‖ ≤
‖µt‖
Vlt
≤ Cµ
cV

.

Invoking relation (14), and noting that βt and so bt are negative, we arrive at

p∗lt =
1

−blt
(
ϕ−1(−x′ltmlt) + x′ltmlt

)
≤ c−1

β CV (Cµc
−1
V − 0.5φ(0)) ,

where we used that ϕ−1 is increasing, xlt ≥ 0, and ϕ−1(0) = −0.5/φ(0).

C.2 Proof of Lemma 3

By definition, V 2
lt = ‖(I − ρtW )−1el‖2τ2 + σ2. Hence, if ω∗ is the smallest eigenvalue of W ,

then V 2
lt ≥ τ2/(1− ρtω∗)2.

We want to bound the |bl,t+1 − blt| and ‖ml,t+1 −mlt‖2.

‖ml,t+1 −mlt‖2 =

∥∥∥∥ µt+1

Vl,t+1
− µt
Vlt

∥∥∥∥
2

≤
∥∥∥∥µt+1 − µt

Vl,t+1

∥∥∥∥
2

+ µt

{
1

Vl,t+1
− 1

Vlt

}
≤ δtµ
τ/(1− ρtω∗)

+ Cµ

{
1

Vl,t+1
− 1

Vlt

}
.

Further, the second term can be simplified as{
1

Vl,t+1
− 1

Vlt

}
=
Vlt − Vl,t+1

Vl,t+1Vlt
=

V 2
lt − V 2

l,t+1

Vl,t+1Vlt(Vlt + Vl,t+1)

≤ 1

2c3
V

(V 2
lt − V 2

l,t+1)

≤ τ2

2c3
V

(‖(I − ρtW )−1el‖2 − ‖(I − ρt+1W )−1el‖2) ≤ Cδtρ .

The same analysis can be done for |bl,t+1 − blt| as well.
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C.3 Proof of Corollary 4

The corollary follows directly by applying the results from Lemma 3 in Theorem 2. Since
ρt = ρ for all t, hence δtρ = 0.

Since ηt ∝ 1/
√
t, we get

• R1 = LC1Cτ
−1(1− ρω∗)

∑T
t=1

√
tδtβ ,

• R2 = LC1Cτ
−1(1− ρω∗)

∑T
t=1

√
tδtµ,

• R3 = C3C
∑T

t=1 n
2
t /
√
t = O(

√
T ),

• R4 = C4CL(Cb + Cm)
√
T + 1 = O(

√
T ) .

Changing the constants appropriately gives us the corollary.

C.4 Proof of Lemma 6

Consider the particular set-up when µt = 0, βt = β, ρt = ρ and σ = 1 in (2). Further,
assume nlt = n for all l, t and n→∞. The proof can easily be extended to the generic set-up.
Under these parametric assumptions, first note that, Rev(λ, l, t, plt) = npltΦ(αlt +βplt). The
optimal pricing strategy p∗lt maximizes Rev(λ, l, t, plt) over plt for any fixed λ.

Now, consider an arbitrary pricing policy p based on the unpenalized likelihood PL(λ, 0).
Such a policy will be dominated by its oracle counter-part por which already knows the price
coefficient β and also, knows the latent utility Ult. Note that, the revenue of any pricing
policy p based on the unpenalized likelihood is always dominated by the revenue of this
oracle strategy, i.e., Rev(λ,p) ≤ Rev(λ,por). Subsequently, the oracle strategy por will have
a lower regret. Next, we concentrate on the regret of por.

For this calculation note that based on model (2), the only unknown parameters for the
oracle strategy por are the αlts. Under this framework consider αlts being best estimated by
α̂or
lt .
Now, note that as we do not have any structural assumption between αt and αt+1 over

t = 1, . . . , T , for any t, α̂or
lt will be estimated based on {Ultk : l = 1, . . . , L; k = 1, . . . , n}.

As the prices plt are known (based on the filtration Ft−1 which contains all information
upto time t− 1) this further reduces to estimating the the L means αt from uncorrelated L
dimensional Gaussian location model where we observe n−1

∑n
k=1 Ultk − βplt for l = 1, . . . , L.

From the Cramer-Rao lower bound for Gaussian family, it follows that for all l = 1, . . . , L,
we will have the following error bound on any estimate α̂lt:

Eλ(α̂lt − αlt)2 ≥ n−1.

As such consider the αlts under the oracle framework to be estimated by the MLE. Let
δ̂lt = α̂or

lt − αlt. Then, noting that the MLE is asymptotically rotation invariant in this case,
we have for any λ:

Eλ δ̂tδ̂Tt = n−1IL and Eλ δ̂t → 0 as n→∞. (40)

Now, note that for the oracle strategy,

Rev(λ, l, t, por
lt ) = max

p≥0
npΦ(α̂or

lt + βp) = max
p≥0

npΦ(δ̂lt + αlt + βp) .
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Let f(l, t, p) = npΦ(δ̂lt + αlt + βp). Consider Taylor-Series expansion:

f(l, t, p) = npΦ(αlt + βp) + n δ̂lt p φ(αlt + βp) + 2−1np δ̂2
ltφ
′(αlt + βp) + r(l, t, p),

where r(l, t, p) contains third and higher order terms. Now, we have L−1
∑

l f(l, t, plt)
converges in probability to

1

L

∑
l

nplt Φ(αlt + βplt) +
1

L

∑
l

n pltφ(αlt + βplt)Eλδ̂lt +
1

2L

∑
l

npltφ
′(αlt + βplt)Eλδ̂2

lt,

as L−1
∑

l r(l, t, plt) → 0 in probability as nEλδ̂2+m
lt = O(n−m/2), for m ≥ 1. Using (40),

the second term in the above expression vanishes and the third term gets further simplified,
resulting in the following asymptotic result:

1

L

∑
l

f(l, t, plt) = n

[
1

L

∑
l

plt Φ(αlt + βplt)

]
+

1

2L

∑
l

pltφ
′(αlt + βplt) + o(1) .

Thus, the regret of por at time t is given by

L−1
L∑
l=1

Rlt(λ,por) ≥ (A− B)/L+ o(1), (41)

where,

A = max
plt:l=1,...,L

[∑
l

nplt Φ(αlt + βplt)

]
, and

B = max
plt:l=1,...,L

[∑
l

nplt Φ(αlt + βplt)− 2−1
∑
l

plt(αlt + βplt)φ(αlt + βplt)

]
.

Note that, the expression in B is simplified using φ′(u) = −uφ(u). Now recall that β, being
the price sensitivity, is negative. Based on model (2), for the utilities to be positive we have
the following assumption of the price: αlt +βplt > 0 for all l and t. Let the prices be selected
such that inf l αlt + βplt > ε0 for some prefixed small ε0 > 0. By Proposition 1, the optimal
prices are bounded and so are supl αlt + βplt < M0. Then,

A− B ≥ 2−1ε
∑
l

p∗lt,

where p∗lt is the optimal price based on criterion B, and ε = minε0<|u|<M ′ uφ(u). Thus, the
cumulative regret of por over time is given by

R(λ,por) =
T∑
t=1

L∑
l=1

Rlt(λ,por) = Ω(LT ).

Thus, we have,

B(θ,pU ) = Ω(LT ).
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Now, consider the regret from the proposed strategy. Based on (24), we have

B(θ,p) ≤C6τ
−1(1− ρ∗ω∗)

T∑
t=1

√
t(δtβ + δtµ) + C7

T∑
t=1

√
tδtρ +O(

√
T ) = O(

√
T ),

where, the second asymptotic result follows as
∑T

t=1

√
tδtβ ,

∑T
t=1

√
tδtµ and

∑T
t=1

√
tδtρ are

all bounded above by O(
√
T ). Comparing the above two displays the result follows.

C.5 Proof of Proposition 7

Consider the revenue function given by (25), Revlt(p) = nltpΦ(bltp+ x′ltmlt). By definition,
p∗lt is the maximizer of Revlt(p) and hence Rev′lt(p∗lt) = 0. Using Taylor series expansion
around p∗lt, we get

Rlt = Revlt(p∗lt)− Revlt(plt) =
1

2
Rev′′lt(p)(plt − p∗lt)2,

for some p between plt and p∗lt. The second derivative can be bounded as

1

2
Rev′′lt(p) = nlt

2bltφ(bltp+ x′ltmlt) + pb2ltφ
′(bltp+ x′ltmlt)

2
≤
(
Cbφ(0) +MC2

b

φ(0)√
2

)
nlt.

Setting C9 = Cbφ(0) +MC2
b
φ(0)√

2
completes the proof.

C.6 Proof of Lemma 8

We have the true parameters blt,mlt and the output b̂lt, m̂lt from our PSGD pricing policy.
Also, plt and p∗lt are the price based on our policy and the optimal price based on the true
parameters, respectively.

As discussed in section 2, we can write the prices in terms of the utility model parameters
using the function g(·, ·), as follows:

p∗lt := g(blt,mlt) = −
ϕ−1(−x′ltmlt) + x′ltmlt

blt
,

plt := g(b̂lt, m̂lt) = −
ϕ−1(−x′ltm̂lt) + x′ltm̂lt

b̂lt
.

Now, note that,

(plt − p∗lt)2 =
{

(ϕ−1(−x′ltmlt) + x′ltmlt) blt
−1 − (ϕ−1(−x′ltm̂lt) + x′ltm̂lt) b̂lt

−1
}2

= {A+B}2,

where, the right side above is decomposed as

A = (ϕ−1(−x′ltmlt) + x′ltmlt) blt
−1 − (ϕ−1(−x′ltm̂lt) + x′ltm̂lt) blt

−1, and,

B =
(
ϕ−1(−x′ltm̂lt) + x′ltm̂lt

)
(1/blt − 1/b̂lt).
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Using the naive bound {A+B}2 ≤ 2(A2 +B2) first and then the bound |blt| = |βt|/Vlt ≥
cβ/CV and the policy rule plt = g(b̂lt, m̂lt), it follows that (plt − p∗lt)2 is bounded above by

2C2
V c
−2
β

{
(ϕ−1(−x′ltmlt) + x′ltmlt)− (ϕ−1(−x′ltm̂lt) + x′ltm̂lt)

}2
+ 2p2

ltblt
−2(blt − b̂lt)2 ,

Since, ϕ−1(−v) + v is 1-Lipschitz, we have(
(ϕ−1(−x′ltmlt) + x′ltmlt)− (ϕ−1(−x′ltm̂lt) + x′ltm̂lt)

)2 ≤ 〈xlt,mlt − m̂lt〉2 .

Therefore, we have

(plt − p∗lt)2 ≤ 2C2
V c
−2
β 〈xlt,mlt − m̂lt〉2 + 2C2

V c
−2
β p2

lt(blt − b̂lt)2 .

Setting C10 = 2C2
V c
−2
β proves the lemma.
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