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Abstract
We consider stochastic bilevel optimization problems involving minimizing an upper-level
(UL) function that is dependent on the arg-min of a strongly-convex lower-level (LL) function.
Several algorithms utilize Neumann series to approximate certain matrix inverses involved
in estimating the implicit gradient of the UL function (hypergradient). The state-of-the-art
StOchastic Bilevel Algorithm (SOBA) (Dagréou et al., 2022) instead uses stochastic gradient
descent steps to solve the linear system associated with the explicit matrix inversion.
This modification enables SOBA to obtain a sample complexity of O(1/ε2) for finding an
ε-stationary point. Unfortunately, the current analysis of SOBA relies on the assumption of
higher-order smoothness for the UL and LL functions to achieve optimality. In this paper,
we introduce a novel fully single-loop and Hessian-inversion-free algorithmic framework for
stochastic bilevel optimization and present a tighter analysis under standard smoothness
assumptions (first-order Lipschitzness of the UL function and second-order Lipschitzness
of the LL function). Furthermore, we show that a slight modification of our algorithm can
handle a more general multi-objective robust bilevel optimization problem. For this case,
we obtain the state-of-the-art oracle complexity results demonstrating the generality of both
the proposed algorithmic and analytic frameworks. Numerical experiments demonstrate the
performance gain of the proposed algorithms over existing ones.
Keywords: bilevel optimization, optimal complexity, relaxed smoothness, stochastic
optimization, non-convex optimization

1. Introduction

Bilevel optimization is gaining increasing popularity within the machine learning community
due to its extensive range of applications, including meta-learning (Bertinetto et al., 2019;
Franceschi et al., 2018; Rajeswaran et al., 2019; Ji et al., 2020), hyperparameter optimiza-
tion (Bengio, 2000; Franceschi et al., 2018; Bertrand et al., 2020), data augmentation (Cubuk
et al., 2019; Rommel et al., 2022), and neural architecture search (Liu et al., 2019; Zhang
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et al., 2022). The objective of bilevel optimization is to minimize a function that is dependent
on the solution of another optimization problem. Formally, we have

min
x∈X⊆Rdx

Φ(x) := f(x, y∗(x)) s.t. y∗(x) = arg min
y∈Rdy

g(x, y) (1)

where the upper-level (UL) function f (a.k.a. outer function) and the lower-level (LL) function
g (a.k.a. inner function) are two real-valued functions defined on Rdx × Rdy . The set X is
either Rdx or a closed convex set in Rdx , and the LL function g is strongly convex. We call x
the outer variable and y the inner variable. The objective function Φ(x) is called the value
function. In this paper, we consider the stochastic setting in which the f and g are expressed
in the form of expectations, i.e., f(x, y) = Eξ∼Df [F (x, y; ξ)] , g(x, y) = Eφ∼Dg [G(x, y;φ)] .
Stochastic bilevel optimization can be considered as an extension of bilevel empirical risk
minimization (Dagréou et al., 2023), allowing to effectively handle streaming data (ξ, φ).

In many instances, the analytical expression of y∗(x) is unknown and can only be
approximated using an optimization algorithm. This adds to the complexity of problem (1)
compared to its single-level counterpart. Under regular conditions such that Φ is differentiable,
the hypergradient ∇Φ(x) derived by chain rule and implicit function theorem is given by

∇Φ(x) = ∇1f(x, y∗(x))−∇2
12g(x, y∗(x))z∗(x), (2)

where z∗(x) ∈ Rdy is the solution of a linear system:

z∗(x) =
[
∇2

22g(x, y∗(x))
]−1∇2f(x, y∗(x)). (3)

Solving (1) using only stochastic oracles poses significant challenges since there is no direct
unbiased estimator available for

[
∇2

22g(x, y∗(x))
]−1 and also for ∇Φ(x) as a consequence.

To mitigate the estimation bias, many existing methods (Ghadimi and Wang, 2018;
Ji et al., 2021; Yang et al., 2021; Hong et al., 2023; Guo et al., 2021b; Khanduri et al.,
2021; Chen et al., 2021a; Akhtar et al., 2022) employ a Hessian Inverse Approximation
(HIA) subroutine, which involves drawing a mini-batch of stochastic Hessian matrices and
computing a truncated Neumann series (Stewart, 1998). However, this subroutine comes
with an increased computational burden and introduces an additional factor of log(ε−1)
in the sample complexity. Alternative methods proposed by Chen et al. (2022) and Guo
et al. (2021a) calculate the explicit inverse of the stochastic Hessian matrix with momentum
updates. To circumvent the need for explicit Hessian inversion and the HIA subroutine, Arbel
and Mairal (2022); Dagréou et al. (2022) propose running Stochastic Gradient Descent
(SGD) steps to approximate the solution z∗(x) of the linear system (3). In particular, the
state-of-the-art Stochastic Bilevel Algorithm (SOBA) only utilizes SGD steps to simultaneously
update three variables: the inner variable y, the outer variable x, and the auxiliary variable
z. It was claimed that SOBA achieves the same complexity lower bound of its single-level
counterpart (Φ ∈ C1,1

L
‡‡) in the non-convex setting (Arjevani et al., 2023).

Despite the superior computational and sample efficiency of SOBA, there is crucial short-
coming as the current theoretical framework assumes high-order smoothness for the UL
function f and the LL function g such that z∗(x) has Lipschitz gradient. Specifically, unlike
‡‡ Cp,pL denotes p-times differentiability with Lipschitz k-th order derivatives for 0 < k ≤ p.
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the typical assumptions in stochastic bilevel optimization that state f ∈ C1,1
L and g ∈ C2,2

L

(A1), the current theory of SOBA requires f ∈ C2,2
L and g ∈ C3,3

L (A2). The necessity of (A2)
is counter-intuitive as the partial gradients of x, y, z utilized in constructing SGD steps are
already Lipschitz continuous under (A1). Furthermore, assuming g is strongly convex and
the partial gradient of the UL function with respect to the inner variable y is bounded for all
pairs of (x, y∗(x)), (i.e., ‖∇2f(x, y∗(x))‖ ≤ Lf for all x ∈ X ), there exists a subset relation
among three function classes as indicated by Ghadimi and Wang (2018, Lemma 2.2) that

(A2) {f ∈ C2,2
L , g ∈ C3,3

L } ⊂ (A1) {f ∈ C1,1
L , g ∈ C2,2

L } ⊂ {Φ ∈ C
1,1
L }.

In light of this, it can be concluded that (A1) is sufficient to ensure the first-order Lipschitzness
of Φ, which is the standard assumption in the single-level setting. On the other hand, it
is worth noting that under (A2) it can be shown that Φ ∈ C2,2

L , i.e., ∇Φ(x) and ∇2Φ(x)
are both Lipschitz continuous. It is known that higher order smoothness (e.g., Lipschitz
continuity of ∇2Φ(x)) will lead to better sample complexity (Carmon et al., 2017; Arjevani
et al., 2020). This indicates that the sample complexity O(ε−2) obtained in Dagréou et al.
(2022) may not be optimal under the set of assumptions made in their work.

Therefore, a natural question follows: Is it possible to develop a fully single-loop and
Hessian-inversion-free algorithm for solving stochastic bilevel optimization problems that
achieves an optimal sample complexity of O(ε−2) under standard smoothness assumptions
{f ∈ C1,1

L , g ∈ C2,2
L }‡‡? In this paper, we provide an affirmative answer to the aforementioned

question. Our contributions can be summarized as follows.

• We propose a class of fully single-loop and Hession-inversion-free algorithm, named
Moving-Average SOBA (MA-SOBA), which builds upon the SOBA algorithm by incorporating
an additional sequence of average hypergradients. Unlike SOBA, MA-SOBA achieves an
optimal sample complexity of O(ε−2) under standard smoothness assumptions, without
relying on high-order smoothness. In particular, in Section 7.1.1 we explain how the
introduced MA updates help reduce the order of bias in hypergradient estimation, and
avoid higher order Taylor expansion (which requires higher-order smoothness of f
and g) used in Dagréou et al. (2022). Moreover, the introduced sequence of average
hypergradients converges to ∇Φ(x), thus offering a reliable termination criterion in the
stochastic setting.

• We expand the scope of MA-SOBA to tackle a broader class of problems, specifically the
min-max multi-objective bilevel optimization problem with significant applications in
robust machine learning. We introduce MORMA-SOBA, an algorithm that can find an
ε-first-order stationary point of the µλ-strongly-concave regularized formulation while
achieving a sample complexity of O(n5µ−4

λ ε−2), which fills a gap (in terms of the order
of ε-dependency) in the existing literature.

• We conduct experiments on several machine learning problems. Our numerical results
show the efficiency and superiority of our algorithms.

‡ All methods also assume ‖∇2f(x, y∗(x))‖ ≤ Lf <∞ for all x ∈ X .
¶ ALSET can achieve convergence without the need for double loops, but it comes at the cost of a worse

dependence on κ in sample complexity. The mechanisms of single-loop ALSET and TTSA are essentially the
same, except that ALSET employs single time-scale stepsizes while TTSA employs two time-scales.
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Method
(double-loop)

Sample
Complexity (UL) f ‡ (LL) g Hession

Inversion Inner Loop Batch Size

BSA (Ghadimi and Wang, 2018) Õ(ε−3) C1,1
L SC and C2,2

L Neumann approx. SGD on inner Õ(1)

stocBiO (Ji et al., 2021) Õ(ε−2) C1,1
L SC and C2,2

L Neumann approx. SGD on inner Õ(ε−1)

¶ALSET (Chen et al., 2021a) Õ(ε−2) C1,1
L SC and C2,2

L Neumann approx. SGD on inner Õ(1)

AmIGO (Arbel and Mairal, 2022) O(ε−2) C1,1
L SC and C2,2

L SGD SGD on inner O(ε−1)

Method
(single-loop)

Sample
Complexity (UL) f ‡ (LL) g Hession

Inversion Inner Step Batch Size

¶TTSA (Hong et al., 2023) Õ(ε−2.5) C1,1
L SC and C2,2

L Neumann approx. SGD Õ(1)

STABLE (Chen et al., 2022) O(ε−2) C1,1
L SC and C2,2

L Direct SGD O(1)

SOBA (Dagréou et al., 2022) O(ε−2) C2,2
L SC and C3,3

L SGD SGD O(1)

MA-SOBA (Alg. 1) O(ε−2) C1,1
L SC and C2,2

L SGD SGD O(1)

Table 1: Comparison of the stochastic bilevel optimization solvers in the nonconvex-strongly-
convex setting under smoothness assumptions ‡‡ on f and g. We omit the com-
parison with variance reduction-based methods (VRBO, MRBO (Yang et al., 2021);
SUSTAIN (Khanduri et al., 2021); SABA (Yang et al., 2021); SRBA (Dagréou et al.,
2023); SVRB (Guo et al., 2021a); FLSA (Li et al., 2022); SBFW (Akhtar et al., 2022))
that may achieve O(ε−1.5) sample complexity and under mean-squared smoothness
assumptions on stochastic functions Fξ and Gφ, and SBMA (Guo et al., 2021b) that
achieves O(ε−4) sample complexity. The sample complexity corresponds to the
number of calls to stochastic gradients and Hessian(Jacobian)-vector products to
get an ε-stationary point. The Õ notation hides a factor of log(ε−1). “SC” means
“strongly-convex”.

Related Work. The concept of bilevel optimization was initially introduced in the
work of Bracken and McGill (1973). Since then, numerous gradient-based bilevel opti-
mization algorithms have been proposed, broadly categorized into two groups: ITerative
Differentiation (ITD) based methods (Domke, 2012; Maclaurin et al., 2015; Franceschi et al.,
2018; Grazzi et al., 2020; Ji et al., 2021) and Approximate Implicit Differentiation (AID)
based methods (Domke, 2012; Pedregosa, 2016; Gould et al., 2016; Ghadimi and Wang,
2018; Grazzi et al., 2020; Ji et al., 2021; Arbel and Mairal, 2022; Grazzi et al., 2023). The
ITD-based algorithms typically involve approximating the solution of the inner problem using
an iterative algorithm and then computing an approximate hypergradient through automatic
differentiation. However, a major drawback of this approach is the necessity of storing each
iterate of the inner optimization algorithm in memory. The AID-based algorithms leverage
the implicit gradient given by (2), which requires the solution of a linear system characterized
by (3). Extensive research has been conducted on designing and analyzing deterministic
bilevel optimization algorithms with strongly-convex LL functions; see Ji et al. (2021) and
references therein.

In recent years, there has been a growing interest in stochastic bilevel optimization,
especially in the setting of a non-convex UL function and a strongly-convex LL function. To
address estimation bias, one set of methods uses SGD iterations for the inner problem and
employs truncated stochastic Neumann series to approximate the inverse of the Hessian
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matrix in z∗(x) (Ghadimi and Wang, 2018; Ji et al., 2021; Yang et al., 2021; Hong et al.,
2023; Guo et al., 2021b; Khanduri et al., 2021; Chen et al., 2021a; Akhtar et al., 2022).
The analysis of such methods was refined by (Chen et al., 2021a) to achieve convergence
rates similar to those of SGD. However, Neumann approximation subroutine introduces an
additional factor of log(ε−1) in the sample complexity. Some alternative approaches Arbel
and Mairal (2022); Chen et al. (2022); Guo et al. (2021a) calculate the explicit inverse of the
stochastic Hessian matrix with momentum updates. Nevertheless, these methods encounter
challenges related to computational complexity in matrix inversion and numerical stability.

To avoid the need for explicit Hessian inversion and Neumann approximation, recent
algorithms (Arbel and Mairal, 2022; Dagréou et al., 2022) propose running SGD steps to
approximate the solution z∗(x) of the linear system (3). One such algorithm called AmIGO
(Arbel and Mairal, 2022) employs a double-loop approach with warm-start strategy and
achieves an optimal sample complexity of O(ε−2) under regular assumptions. However, AmIGO
requires a growing batch size inversely proportional to ε. Following AmIGO, Grazzi et al.
(2023) proposes BSGM, which avoids using large batch size in the LL problem and warm-start
strategy, but still requires double-loop framework and large batch sizes in the UL problem.
On the other hand, the single-loop algorithm SOBA (Dagréou et al., 2022) achieves the same
complexity lower bound but with constant batch size. Unfortunately, the current analysis of
SOBA relies on the assumption of higher-order smoothness for the UL and LL functions. In
this work, we introduce a novel algorithm framework that differs slightly from SOBA but can
achieve optimal sample complexity in theory without higher-order smoothness assumptions.
A summary of our results and comparison to prior work is provided in Table 1.

In addition, there exist several variance reduction-based methods following the line of
research by Yang et al. (2021); Khanduri et al. (2021); Yang et al. (2021); Dagréou et al.
(2023); Guo et al. (2021a); Li et al. (2022). Some of these methods achieve an improved
sample complexity of O(ε−1.5) and match the lower bounds of their single-level counterparts
when stochastic functions Fξ and Gφ satisfy mean-squared smoothness assumptions and the
algorithm is allowed simultaneous queries at the same random seed (Arjevani et al., 2023).
However, since we are specifically considering smoothness assumptions on f and g, we will
not delve into the comparison with these methods.

The most recent advancements in (stochastic) bilevel optimization focus on several new
ideas: (i) addressing constrained lower-level problems (Shen and Chen, 2023; Xiao et al.,
2023; Tsaknakis et al., 2022; Giovannelli et al., 2021), (ii) handling lower-level problems that
lack strong convexity (Chen et al., 2023a; Huang, 2023; Liu et al., 2023, 2021; Sow et al.,
2022a; Jiang et al., 2023), (iii) developing fully first-order (Hessian-free) algorithms (Liu
et al., 2022; Kwon et al., 2023; Sow et al., 2022b), (iv) establishing convergence to the
second-order stationary point (Huang et al., 2023), and (v) expanding the framework to
encompass multi-objective optimization problems (Giovannelli et al., 2023; Gu et al., 2023; Hu
et al., 2022). It is promising to apply some of these advancements to our specific framework.
Moreover, in this work, we also contribute to multi-objective bilevel problems with a slight
modification of our approach. Other directions are left as future work.

Notation. We use ‖ · ‖ for `2 norm. 1n denotes the all-one vector in Rn. ∆n = {λ |
λi ≥ 0,

∑n
i=1 λi = 1} denotes the probability simplex. ΠX (·) denotes the projection onto X .
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2. Proposed Framework: the MA-SOBA Algorithm

Similar to Dagréou et al. (2022); Arbel and Mairal (2022), our algorithm initiates with
inexact hypergradient descent techniques and seeks to offer an alternative in the stochastic
setting. To provide a clear illustration, let us initially consider the deterministic setting. The
SOBA framework keeps track of three sequences, denoted as {xk, yk, zk}, and updates them
using Dx, Dy, Dz as follows:

(inner) yk+1 = yk − βk ∇2g(xk, yk) = yk − βkDy(x
k, yk, zk) (4)

(aux) zk+1 = zk − γk
{
∇2

22g(xk, y∗(xk))zk −∇2f(xk, y∗(xk))
}

bias→ ≈ zk − γk
{
∇2

22g(xk, yk)zk −∇2f(xk, yk)
}

= zk − γkDz(x
k, yk, zk) (5)

(outer) xk+1 = xk − αk
{
∇1f(xk, y∗(xk))−∇2

12g(xk, y∗(xk))z∗(xk)
}

= xk − αk∇Φ(xk)

bias→ ≈ xk − αk
{
∇1f(xk, yk)−∇2

12g(xk, yk)zk
}

= xk − αkDx(xk, yk, zk) (6)

where (4) is the GD step to minimize g(xk, ·), (6) is the inexact hyper gradient descent step,
and (5) is the GD step to minimize a quadratic function with z∗(xk) being the solution, i.e.,

z∗(xk) = arg min
z

1

2

〈
∇2

22g(xk, y∗(xk))z, z
〉
−
〈
∇2f(xk, y∗(xk)), z

〉
.

Given that the above update rule, highlighted in blue, does not involve the Hessian matrix
inversion, SOBA can directly utilize the stochastic oracles of ∇1f,∇2f,∇2g,∇2

22g,∇2
12g to

obtain unbiased estimators of Dx, Dy, Dz in Eq.(4), (5), (6). This approach circumvents the
requirement for a Neumann approximation subroutine or a direct matrix inversion. However,
due to the update rule for y, which only utilizes one-step SGD at each iteration k, the value
of yk does not coincide with y∗(xk). As a result, a certain bias is introduced in the partial
gradient of z in Eq.(5). Similarly, when estimating the hypergradient ∇Φ(x), another bias
term arises in Eq.(6). Although the bias decreases to zero as yk → y∗(xk) and zk → z∗(xk)
under standard smoothness assumptions as indicated by Lemma 3.4 in Dagréou et al. (2022),
the current analysis of SOBA requires more regularity on f and g to carefully handle the bias;
it assume that f has Lipschitz Hessian and g has Lipschitz third-order derivative.

The inability to obtain an unbiased gradient estimator is a common characteristic in
stochastic optimization involving nested structures; see, for example, stochastic compositional
optimization (Wang et al., 2017; Yang et al., 2019; Ghadimi et al., 2020; Balasubramanian
et al., 2022; Chen et al., 2021b) as a specific case of (1). One popular approach is to
introduce a sequence of dual variables that approximates the true gradient by aggregating all
past biased stochastic gradients using a moving averaging technique (Ghadimi et al., 2020;
Balasubramanian et al., 2022; Xiao et al., 2022). Motivated by this approach, we introduce
another sequence of variables, denoted as {hk}, and update it at k-th iteration given the past
iterates Fk as hk+1 = (1− θk)hk + θkw

k+1, where E[wk+1|Fk] = Dx(xk, yk, zk), θk ∈ (0, 1].
Following the update rule in the constrained setting (X ⊂ Rdx) (Ghadimi et al., 2020), the
outer variable is updated as xk+1 = xk+αk

(
ΠX (xk − τhk)− xk

)
, which is reduced to the GD

step when X ≡ Rdx . Denote the stochastic oracles of ∇1f(xk, yk),∇2f(xk, yk),∇2g(xk, yk),
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Algorithm 1: Moving-Average SOBA

Input: x0, y0, z0, h0 = 0, {αk}, {βk}, {γk}, {θk}
1 for k = 0, 1, . . . ,K − 1 do
2 xk+1 = xk + αk

(
ΠX (xk − τhk)− xk

)
# update xk via average hypergradient hk

3 yk+1 = yk − βkvk+1 # update yk by one-step SGD based on (4)
4 zk+1 = zk − γk(Hk+1zk − uk+1

y ) # update zk by one-step SGD based on (5)
5 hk+1 = (1− θk)hk + θk

(
uk+1
x − Jk+1zk

)
# update average hypergradient hk

6 end

∇2
22g(xk, yk),∇2

12g(xk, yk) at k-th iteration as uk+1
x , uk+1

y , vk+1, Hk+1, Jk+1 respectively. We
present our method, referred to as Moving-Average SOBA (MA-SOBA), in Algorithm 1.

3. Theoretical Analysis

In this section, we provide convergence rates of MA-SOBA under standard smoothness conditions
on f, g and regular assumptions on stochastic oracles. We also present a proof sketch and
have detailed discussions about assumptions made in the literature. The complete proofs are
deferred in Section 7.

3.1 Preliminaries and Assumptions

As we consider the general setting in which X can be either Rdx or a closed convex set in
Rdx , we use the notion of gradient mapping to characterize the first-order stationarity, which
is a classical measure widely used in the literature as a convergence criterion when solving
nonconvex constrained problems (Nesterov, 2018). For τ > 0, we define the gradient mapping
of at point x̄ ∈ X as GX (x̄,∇Φ(x̄), τ) := 1

τ (x̄ − ΠX (x̄ − τ∇Φ(x̄))). When X ≡ Rd, the
gradient mapping simplifies to ∇Φ(x̄). Our main goal in this work is to find an ε-stationary
solution to (1), in the sense of E[‖GX (x̄,∇Φ(x̄), τ)‖2] ≤ ε.

We first state some regularity assumptions on the functions f and g.

Assumption 1 The functions f and g satisfy: (a) f ∈ C1,1
L , g ∈ C2,2

L and ∇f,∇g,∇2g
are L∇f , L∇g, L∇2g Lipschitz continuous respectively, (b) g is µg-strongly convex, and (c)
‖∇2f(x, y∗(x))‖ ≤ Lf <∞ for all x ∈ X .

Remark 1 The above assumption serves as a sufficient condition for the Lipschitz continuity
of ∇Φ, y∗(x), and z∗(x), as well as Dx, Dy, and Dz in Eq. (4), (5), (6). The inclusion of
high-order smoothness assumptions (f ∈ C2,2

L and g ∈ C3,3
L ) in the current analysis of SOBA

(Dagréou et al., 2022) is primarily intended to ensure the Lipschitzness of ∇z∗(x). However,
the necessity of such assumptions is subject to doubt, given that ∇z∗(x) is not involved in
designing the algorithm. Furthermore, the Lipschitzness of f or uniformly boundedness of
∇2f made in several previous works is unnecessary. Instead, the boundedness assumption on
∇2f is only required for all pairs of (x, y∗(x)) as demonstrated by Assumption 1(c).

Next, we discuss assumptions made on the stochastic oracles.
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Assumption 2 For any k ≥ 0, denote by Fk the sigma algebra generated by all iterates
with superscripts not greater than k : Fk = σ

{
h1, . . . , hk, x1, . . . , xk, y1, . . . , yk, z1, . . . , zk

}
.

The stochastic oracles of ∇1f(xk, yk),∇2f(xk, yk),∇2g(xk, yk),∇2
22g(xk, yk),∇2

12g(xk, yk),
denoted as uk+1

x , uk+1
y , vk+1, Hk+1, Jk+1 respectively, used in Algorithm 2 at k-th itera-

tion are unbiased with bounded variance given Fk, i.e., there exist positive constants
σf,1, σf,2, σg,1, σg,2 such that

E[uk+1
x |Fk] = ∇1f(xk, yk), E

[
‖uk+1

x −∇1f(xk, yk)‖2|Fk

]
≤ σ2

f,1,

E
[
uk+1
y |Fk

]
= ∇2f(xk, yk), E

[
‖uk+1

y −∇2f(xk, yk)‖2|Fk

]
≤ σ2

f,2,

E
[
vk+1|Fk

]
= ∇2g(xk, yk), E

[
‖vk+1 −∇2g(xk, yk)‖2|Fk

]
≤ σ2

g,1,

E
[
Hk+1|Fk

]
= ∇2

22g(xk, yk), E
[
‖Hk+1 −∇2

22g(xk, yk)‖2|Fk

]
≤ σ2

g,2,

E
[
Jk+1|Fk

]
= ∇2

12g(xk, yk), E
[
‖Jk+1 −∇2

12g(xk, yk)‖2|Fk

]
≤ σ2

g,2.

In addition, they are conditionally independent conditioned on Fk.

Remark 2 The unbiasedness and bounded variance assumptions on stochastic oracles are
standard and typically satisfied in several practical stochastic optimization problems (Lan,
2020). It is important to highlight that we explicitly impose these assumptions on the stochastic
oracles, unlike Assumption 3.6 in Dagréou et al. (2022), which assumes E[‖vk+1‖2|Fk] ≤
B2
y(1 +‖Dy(x

k, yk, zk)‖2) and E[‖Hk+1zk−uk+1
y ‖2|Fk] ≤ B2

z (1 +‖Dz(x
k, yk, zk)‖2). In this

case, By and Bz represent constants in terms of the Lipschitz constants (L) and variance
bounds (σ2). Moreover, Assumption 3.7 in Dagréou et al. (2022) assumes E[‖wk+1‖2|Fk] ≤
B2
x holds for a constant Bx, which is considerably stronger than our assumptions and may

not hold for a broad class of problems.

3.2 Convergence Results

We have the following theorem characterizing the convergence results of MA-SOBA.

Theorem 3 Define xk+ = ΠX (xk−τhk). Suppose Assumptions 1 and 2 hold. Then there exist
positive constants c1, c2, c3, τ > 0 such that if αk ≡ Θ(1/

√
K), βk = c1αk, γk = c2αk, θk =

c3αk, in Algorithm 1, then the iterates in Algorithm 1 satisfy

1

K

K∑
k=1

1

τ2
E[‖xk+ − xk‖2] = O

(
1√
K

)
,

1

K

K∑
k=1

E[‖hk −∇Φ(xk)‖2] = O
(

1√
K

)
, (7)

which imply
1

K

K∑
k=1

1

τ2
E[‖
(
xk −ΠX (xk − τ∇Φ(xk))

)
‖2] = O

(
1√
K

)
.

That is to say, when uniformly randomly selecting a solution xR from {x1, . . . , xK}, the
sample complexity of Algorithm 1 for finding an ε-stationary point is O(ε−2).
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Remark 4 In contrast to most existing methods, in MA-SOBA, the introduced sequence of
dual variables {hk} converges to the exact hypergradient ∇Φ(x), even in the presence of
estimation bias. This attribute provides reliable terminating criteria in practice. In addition,
similar results with an extra factor of log(K) in the convergence rate can be established under
decreasing αk (Dagréou et al., 2022). We also note that Algorithm 1 only requires stochastic
gradient and Hessian(Jacobian)-vector product oracles, whose computational complexity are
typically O(max(dx, dy)) with the help of automatic differentiation techniques (Pearlmutter,
1994; ?). Moreover, the sample complexity of fully first-order methods for bilevel optimization
usually have worse dependency on ε (Kwon et al., 2023).

3.3 Proof Sketch of Theorem 3

Define Vk = 1
τ2 ‖xk+ − xk‖2 + ‖hk −∇Φ(xk)‖2. To obtain (7), we consider the merit function:

Wk = Φ(xk)− ηX (xk, hk, τ) + ‖yk − yk∗‖2 + ‖zk − zk∗‖2,

where ηX (x, h, τ) = 〈h, x+ − x〉+ 1
2τ ‖x+ − x‖2. By leveraging the moving-average updates

of xk (line 2 of Algorithm 1), we can obtain

K∑
k=0

αkE [Vk] = O
( K∑
k=0

(
αkE[‖E[wk+1|Fk]−∇Φ(xk)‖2] + α2

k

))
,

which reduces the error analysis to controlling the hypergradient estimation bias, i.e.,
‖E[wk+1|Fk]−∇Φ(xk)‖2. This term, by the construction of wk+1, satisfies

∑K
k=0 αkE

[
‖E[wk+1|Fk]−∇Φ(xk)‖2

]
= O

(∑K
k=0 αkE

[
‖xk+ − xk‖2 + ‖yk − yk∗‖2 + ‖zk − zk∗‖2

])
.

It is worth noting that Dagréou et al. (2022) requires the existence and Lipschitzness of
∇2f and ∇3g to ensure the Lipschitzness of ∇z∗(x) (see (3)) which is used in proving the
sufficient decrease of ‖zk − zk∗‖2. In contrast, based on the moving-average updates of xk

and hk, our refined analysis does not necessitate such assumptions to obtain that

K∑
k=0

αkE[‖yk − yk∗‖2 + ‖zk − zk∗‖2] = O
( K∑
k=0

αkE[‖xk+ − xk‖2]

)
.

The proof of Theorem 3 can then be completed by choosing appropriate αk, c1, c2, c3, τ > 0.

4. Min-Max Bilevel Optimization

To incorporate robustness in the multi-objective setting where each objective can be expressed
as a bilevel optimization problem in (1), the following mini-max bilevel problem formulation
was proposed in Gu et al. (2023):

min
x∈X

max
1≤i≤n

Φi(x) := fi(x, y
∗
i (x)) s.t. y∗i (x) = arg min

yi∈Rdyi
gi(x, yi), 1 ≤ i ≤ n. (8)

9
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Note that (8) can be reformulated as a general nonconvex-concave min-max optimization
problem (with a bilevel substructure):

min
x∈X

max
λ∈∆n

Φ(x, λ) :=
n∑
i=1

λiΦi(x). (9)

Instead of solving (9) directly, in this work, we focus on solving the regularized version,

min
x∈X

max
λ∈∆n

Φµλ(x, λ) := Φ(x, λ)− µλ
2
‖λ− 1

n
1n‖2. (10)

Note that in (10), we include an `2 regularization term that penalizes the discrepancy between
λ and 1n

n . When µλ = 0, it corresponds to equation (8), and as µλ → +∞, it enforces λ = 1n
n ,

leading to direct minimizing of the average loss. It is important to note that minimizing
the worst-case loss (i.e., max1≤i≤n fi(x, y∗i (x))) does not necessarily imply the minimization
of the average loss (i.e., 1

n

∑n
i=1 fi(x, y

∗
i (x))). Therefore, in practice, it may be preferable

to select an appropriate µλ > 0 (Qian et al., 2019; Wang et al., 2021) to strike a balance
between these two types of losses. Hu et al. (2022) considered solving a similar problem
under stronger assumptions. We defer a detailed discussion to Section A.2.

4.1 Proposed Framework: the MORMA-SOBA Algorithm

The proposed algorithm, which we refer as toMulti-ObjectiveRobust MA-SOBA (MORMA-SOBA),
for solving (10) is presented in Algorithm 2. In addition to the basic framework of Algorithm
1, we also maintain a moving-average step in the updates of λk for solving the max part of
problem 6. It is worth noting that in its single-level counterpart without the inner variable y,
the proposed MORMA-SOBA algorithm is fundamentally similar to the single-timescale averaged
SGDA algorithm proposed in the general nonconvex-strongly-concave setting (Qiu et al., 2020).
Moreover, our algorithmic framework can be leveraged to solve the distributionally robust
compositional optimization problem as discussed in Gao et al. (2021).

Remark 5 (Comparison with MORBiT (Gu et al., 2023)) In contrast to our approach
in (10), the work of Gu et al. (2023), for the min-max bilevel problem, attempted to combine
TTSA (Hong et al., 2023) and SGDA (Lin et al., 2020a) to solve the nonconvex-concave problem
as (9). However, we identified an issue in Gu et al. (2023) related to the ambiguity and
inconsistency in the expectation and filtration, which may not be easily resolved within their
current proof framework. As a consequence, their current proof is unable to demonstrate
E[maxi∈[n] ‖yki − y∗i (x(k−1))‖2] ≤ Õ(

√
nK−2/5) as claimed in Theorem 1 (10b) of Gu et al.

(2023). Thus, the subsequent arguments made regarding the convergence analysis of x and λ
are incorrect (at least in its current form); see Section A for further discussions. Moreover,
the practical implementation of MORBiT incorporates momentum and weight decay techniques
to optimize the simplex variable λ. This approach can be seen as a means of solving the
regularized formulation in (10).

4.2 Convergence Results

We first present additional assumptions required in the analysis of MORMA-SOBA.

10
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Algorithm 2: Multi-Objective Robust Moving-Average SOBA

Input: x0, λ0, {y0
i }, {z0

i }, h0
x = 0, h0

λ = 0, {αk}, {βk}, {γk}, {θk}
1 for k = 0, 1, . . . ,K − 1 do
2 xk+1 = xk + αk

(
ΠX (xk − τxhkx)− xk

)
# update xk via average hypergradient hkx

3 λk+1 = λk + αk
(
Π∆n(λk + τλh

k
λ)− λk

)
# update λk via average gradient hkλ

4 for i = 1, . . . , n (in parallel) do
5 yk+1

i = yki − βkvk+1
i # update yki by one-step SGD based on (4)

6 zk+1
i = zki − γk

(
Hk+1
i zki − uk+1

y,i

)
# update zki by one-step SGD based on (5)

7 end
8 hk+1

x = (1− θk)hkx + θk
∑n

i=1 λ
k
i

(
uk+1
x,i − Jk+1

i zki
)

9 # update average hypergradient hkx
10 hk+1

λ = (1− θk)hkλ + θk
(
sk+1 − µλ

(
λk − 1n

n

))
# update average gradient hkλ

11 end

Assumption 3 For any k ≥ 0, functions Φ(x),∇Φi(x) are bounded, functions fi are Lf -
Lipschitze continuous in the second input, and their stochastic versions are unbiased with
bounded variance, i.e., there exists LΦ, Lf , σf,0 ≥ 0 such that

|Φi(x)| ≤ bΦ, ‖∇Φi(x)‖ ≤ LΦ, |fi(x, y)− fi(x, ỹ)| ≤ Lf‖y − ỹ‖, for all x, y, ỹ, 1 ≤ i ≤ n,
sk+1 =

(
sk+1

1 , ..., sk+1
n

)>
, E

[
sk+1
i |Fk

]
= fi(x

k, yki ), E
[
‖sk+1
i − fi(xk, yki )‖2|Fk

]
≤ σ2

f,0.⋃n
i=1

{
uk+1
x,i , u

k+1
y,i , v

k+1
i , Hk+1

i , Jk+1
i

}
∪
{
sk+1

}
are conditionally independent under Fk.

We have the following convergence theorem of MORMA-SOBA.

Theorem 6 Suppose Assumptions 1, 2 (for all fi, gi) and Assumption 3 hold. Then there
exist positive constants c1, c2, c3, τx, τλ > 0 such that if αk ≡ Θ(1/

√
nK), βk = c1αk, γk =

c2αk, θk = c3αk, µλ < 1 in Algorithm 2, then the iterates in Algorithm 2 satisfy

1

K

K∑
k=0

1

τ2
x

E[‖
(
xk −ΠX

(
xk − τx∇Ψµλ(xk)

))
‖2] = O

(
n2

µ2
λ

√
K

)
,

where Ψµλ(x) := maxλ∈∆n Φµλ(x, λ). That is to say, when uniformly randomly selecting a
solution xR from {x1, . . . , xK}, the sample complexity (the total number of calls to stochastic
oracles) of finding an ε-stationary point by Algorithm 2 is O(n5µ−4

λ ε−2).

Theorem 6 indicates that Algorithm 2 is capable of generating an ε-first-order stationary
point of minx Ψµλ(x) with K & n5µ−4

λ ε−2. As µλ → 0, the problem (10) changes towards the
nonconvex-concave problem (9) and the sample complexity becomes worse, which to some
extent implies the difficulty of directly solving (9). We defer the proof details to Section 7.2.
For Problem (9), we adopt the definition of ε-stationary point in Definition 3.5 in Lin et al.
(2020b), and choose µλ = O(

√
ε) to help shed light on the sample complexity.

Corollary 7 Under the same setup of Theorem 6, setting µλ = O(
√
ε), the sample complexity

of finding an ε-stationary point of Problem (9) via Algorithm 2 is O(n5ε−4).
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Remark 8 Note that in Theorem 6 we explicitly characterize the dependency on n and µλ
in the convergence rate and the sample complexity. It is worth noting that two variants
of stochastic gradient descent ascent (SGDA) algorithms for solving the nonconvex-strongly-
concave min-max optimization problems (without bilevel substructures), have been studied
in Lin et al. (2020a); Qiu et al. (2020). While such algorithms are not immediately applicable
to solve (10) due to the presence of the additional bilevel substructure, it is instructive to
compare to those methods assuming direct access to y∗i (x) in (8). Specifically, we observe
that the sample complexity of SGDA with batch size M = Θ(n1.5ε−1) in Lin et al. (2020a) and
moving-average SGDA with O(1) batch size in Qiu et al. (2020) for solving (10) assuming
direct access to y∗i (x) will be O

(
n4µ−2

λ ε−2
)
and O

(
n5µ−4

λ ε−2
)∗ respectively. Our results

in Theorem 6 indicate that the sample complexity of the proposed algorithm MORMA-SOBA
for solving min-max bilevel problems has the same dependency on n and µλ as the sample
complexity of the moving-average SGDA introduced in Qiu et al. (2020) for solving min-max
single-level problems, while also computing y∗i (x) instead of assuming direct access.

5. Experiments

While our contributions primarily focus on theoretical aspects, we also conducted experiments
to validate our results. We first compare the performance of MA-SOBA with other benchmark
methods on two common tasks proposed in previous works (Ji et al., 2021; Hong et al.,
2023; Dagréou et al., 2022), hyperparameter optimization for `2 penalized logistic regression
and data hyper-cleaning on the corrupted MNIST data set. To demonstrate the practical
performance of MORMA-SOBA, we then conduct experiments in robust multi-task representation
learning introduced in Gu et al. (2023) on the FashionMNIST data set (Xiao et al., 2017).

5.1 Experimental Details for MA-SOBA

Our experiments for MA-SOBA are performed with the aid of the recently developed package
Benchopt (Moreau et al., 2022) and the open-sourced bilevel optimization benchmark†. For
a fair comparison, we exclusively consider benchmark methods that do not utilize variance
reduction techniques in Table 1: (i) BSA (Ghadimi and Wang, 2018); (ii) stocBiO (Ji et al.,
2021); (iii) TTSA (Hong et al., 2023)/ALSET (Chen et al., 2021a); (iv) SOBA (Dagréou et al.,
2022). Noting that ALSET only differs from TTSA regarding time scales, we use TTSA to
represent this class of approach. Also, we omit the comparison with AmIGO (Arbel and Mairal,
2022) below, given that it is essentially a double-loop SOBA with increasing batch sizes. The
tunable parameters in benchmark methods are selected in the same manner as those in
benchmark_bilevel†.

Setup. We strictly adhere to the settings provided in benchmark_bilevel, as detailed in
Appendix B.1 of Dagréou et al. (2022). The previous results and setups of Dagréou et al. (2022)
have also been available in https://benchopt.github.io/results/benchmark_bilevel.
html. For completeness, we provide a summary of the setup below.

∗Note that Φµλ(x, λ) in (9) is quadratic in λ, and these two sample complexities are obtained under this
special case, i.e., ∇2

2f(x, y) = −µI applied to Lin et al. (2020a); Qiu et al. (2020).
†https://github.com/benchopt/benchmark_bilevel
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Figure 1: Comparison of MA-SOBA with other stochastic bilevel optimization methods without
using variance reduction techniques. For each algorithm, we plot the median
performance over 10 runs. Left: Hyperparameter optimization for `2 penalized
logistic regression on IJCNN1 data set. Right. Data hyper-cleaning on MNIST
with p = 0.5 (corruption rate).

• To avoid redundant computations, we utilize oracles for functions Fξ, Gφ, which provide
access to quantities such as ∇1Fξ(x, y), ∇2Fξ(x, y), ∇2Gφ(x, y), ∇2

22Gφ(x, y)v, and
∇2

12Gφ(x, y)v, although this may violate the independence assumption in Assumption 2.
• In all our experiments, we employ a batch size of 64 for all methods, even for BSA and
AmIGO that theoretically require increasing batch sizes.
• For methods involving an inner loop (stocBiO, BSA, AmIGO), we perform 10 inner steps

per each outer iteration as proposed in those papers.
• For methods that involve Neumann approximation for Hessian-vector product (such as
BSA, TTSA, SUSTAIN, and MRBO), we perform 10 steps of the subroutine per outer iteration.
For AmIGO, we perform 10 steps of SGD to approximate the inversion of the linear system.
• The step sizes and momentum parameters used in all benchmark algorithms are directly

adopted from the fine-tuned parameters provided by Dagréou et al. (2022). From a grid
search, we select the best constant step sizes for MO-SOBA.

We have excluded SRBA (Dagréou et al., 2023) from the benchmark due to its limited reported
improvement over SABA.

5.1.1 Hyperparameter Optimization on IJCNN1

In the first task, we fit a multi-regularized logistic regression model (for binary classification),
and select the regularization parameters (one hyperparameter per feature) on the IJCNN1
data set‡. The functions f and g of the problem (1) are the average logistic loss on the
validation set and training set respectively, with `2 regularization for g. Specifically, the
problem can be formulated as:

‡https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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min
ν∈Rd

Φ(ν) := E
(X,Y )∼Dval

[` (〈ω∗(ν), X〉 , Y )]︸ ︷︷ ︸
f(ν,ω∗(ν))

s.t. ω∗(ν) = arg min
ω∈Rd

E
(X,Y )∼Dtrain

[` (〈ω,X〉 , Y )] +
1

2
ω>diag (eν1 , . . . , eνd)ω︸ ︷︷ ︸

g(ν,ω)

.

In this case, |Dtrain| = 49, 990, |Dval| = 91, 701, and d = 22. For each sample, the covariate
and label are denoted as (X,Y ), where X ∈ R22 and Y ∈ {0, 1}. The inner variable (ω ∈ R22)
is the regression coefficient. The outer variable (ν ∈ R22) is a vector of regularization
parameters. The loss function `(y′, y) = −y log(y′)− (1− y) log(1− y′) is the log loss.

In Figure 1(a), we plot the suboptimality gap against the runtime for each method.
Surprisingly, we observed that MA-SOBA achieves lower objective values after several iterations
compared to all benchmark methods. This improvement can be attributed to the convergence
of average hypergradients {hk}. These findings demonstrate the practical superiority of our
algorithm framework, even with the same sample complexity results.

To supplement the comparison, we conducted additional experiments that involved
comparing all benchmark methods, including the variance reduction based method. In Figure
2, we plot the suboptimality gap (Φ(x)− Φ∗) against runtime and the number of calls to
oracles. Unfortunately, the previous results obtained for MRBO and AmIGO on the IJCNN1 data
set are not reproducible at the moment due to some conflicts in the current developer version
of Benchopt. As reported in Dagréou et al. (2022), MRBO exhibits similar performance to
SUSTAIN, while the curve of AmIGO initially follows a similar trend as SUSTAIN and eventually
reaches a similar level as SABA towards the end. Following a grid search, we have selected
the parameters in MA-SOBA as αkτ = 0.02, βk = γk = 0.01, and θk = 0.1. As shown in Figure
2, our proposed method MA-SOBA outperforms SOBA significantly, achieving a slightly lower
suboptimality gap compared to the state-of-the-art variance reduction-based method SABA.

5.1.2 Data Hyper-Cleaning on MNIST

In the second task, we conduct data hyper-cleaning on the MNIST data set introduced in
Franceschi et al. (2017). Data cleaning aims to train a multinomial logistic regression model
on the corrupted training set and determine a weight for each training sample. These weights
should approach zero for samples with corrupted labels. The data set is partitioned into
a training set Dtrain, a validation set Dval, and a test set Dtest, where |Dtrain| = 20, 000,
|Dval| = 5, 000, and |Dtest| = 10, 000. Each sample is represented as a vector X of dimension
784, where the input image is flattened. The corresponding label takes values from the set
{0, 1, . . . , 9}. We use Y ∈ R10 to denote its one-hot encoding. Each sample in the training
set is corrupted with probability p by replacing its label with a random label {0, 1, . . . , 9}.

The task can be formulated into the bilevel optimization problem (1) with the inner
variable y being the regression coefficients and the outer variable x being the sample weight.
The LL function g is the sample-weighted cross-entropy loss on the corrupted training set
with `2 regularization. The UL function f is the cross-entropy loss on the validation set.
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Figure 2: Comparison of MA-SOBA with other stochastic bilevel optimization methods in the
problem of hyperparameter optimization for `2 regularized logistic regression on
the IJCNN1 data set. We plot the median performance over 10 runs for each
method. Left: Performance in runtime; Right: Performance in the number of
gradient/Hessian(Jacobian)-vector products sampled.

Precisely, the task can be formulated into the bilevel optimization problem as below:

min
ν∈R|Dtrain|

Φ(ν) := E
(X,Y )∼Dval

[`(W ∗(ν)X,Y )]︸ ︷︷ ︸
f(ν,W ∗(ν))

s.t. W ∗(ν) = arg min
ω∈Rd

1

|Dtrain|
∑

(Xi,Yi)∼Dtrain

σ(νi)`(WXi,

corrupted︷︸︸︷
Ỹi ) + Cr‖W‖2︸ ︷︷ ︸

g(ν,W )

,

where the outer variable (ν ∈ R20,000) is a vector of sample weights for the training set, the
inner variable W ∈ R10×784, and ` is the cross entropy loss and σ is the sigmoid function.
The regularization parameter Cr = 0.2 following Dagréou et al. (2022). The objective of
data hyper-cleaning is to train a multinomial logistic regression model on the training set
and determine a weight for each training sample using the validation set. The weights are
designed to approach zero for corrupted samples, thereby aiding in the removal of these
samples during the training process.

We report the test error in Figure 1(b). We observe that MA-SOBA outperforms other
benchmark methods by achieving lower test errors faster.

To supplement the comparison, we conducted additional experiments that involved
comparing all benchmark methods, including the variance reduction-based method. Following
a grid search, we have selected the parameters in MA-SOBA as αkτ = 103, βk = γk = 10−2,
and θk = 10−1. In Figure 3, we plot the test error against runtime and the number of calls
to oracles with different corruption probability p ∈ {0.5, 0.7, 0.9}. We observe that MA-SOBA
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has comparable performance to the state-of-the-art method SABA. Remarkably, MA-SOBA is
the fastest algorithm to reach the best test accuracy when p = 0.5.
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Figure 3: Comparison of MA-SOBA with other stochastic bilevel optimization methods in
the problem of data hyper-cleaning on the MNIST data set when the corruption
probability p ∈ {0.5, 0.7, 0.9}. We plot the median performance over 10 runs
for each method. Top: Performance in runtime; Bottom: Performance in the
number of gradient/Hessian(Jacobian)-vector products sampled.

5.2 Experimental Details for MORMA-SOBA

To demonstrate the practical performance of MORMA-SOBA as compared to MORBiT (Gu et al.,
2023), we conduct experiments in robust multi-task representation learning introduced in Gu
et al. (2023) on the FashionMNIST data set (Xiao et al., 2017). We adopt the same setup as
described in Gu et al. (2023), which can be summarized as follows.

Setup. We consider binary classification tasks generated from FashionMNIST where we
select 8 “easy” tasks (lowest loss ∼ 0.3 from independent training) and 2 “hard” tasks (lowest
loss ∼ 0.45 from independent training) for multi-objective robust representation learning:

• “easy” tasks: (0, 9), (1, 7), (2, 7), (2, 9), (4, 7), (4, 9), (3, 7), (3, 9)
• “hard” tasks: (0, 6), (2, 4)

For each task i ∈ [10] above, we partition its data set into the training set Dtrain
i , validation

set Dval
i , and test set Dtest

i . We also generate 7 (unseen) binary classification tasks for testing:
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• “easy” tasks: (1, 9), (2, 5), (4, 5), (5, 6) • “hard” tasks: (2, 6), (3, 6), (4, 6)

We train a shared representation network that maps the 784-dimensional (vectorized
28x28 images) input to a 100-dimensional space. To learn a shared representation and
per-task models that generalize well on each task, we aim to solve the following problem:

min
E∈R100×784

max
1≤i≤n

Φi(E) := E
(X,Y )∼Dval

i

`
W ∗i (E) ◦

representation︷ ︸︸ ︷
ReLU(EX) +b∗i (E), Y


︸ ︷︷ ︸

fi(E,(W ∗i ,b
∗
i ))

s.t.
(
W ∗i (E)
b∗i (E)

)
=

arg min
Wi∈R10×100,bi∈R10

E
(X,Y )∼Dtrain

i

`
weight︷︸︸︷

Wi ◦ReLU(EX) +

bias︷︸︸︷
bi , Y

+ ρ‖Wi‖2F︸ ︷︷ ︸
gi(E,(Wi,bi))

, 1 ≤ i ≤ n.

Each bilevel objective Φi in this setup represents a distinct binary classification “task” i ∈ [n]
with its own training and validation sets. The optimization variable is engaged in a shared
representation network, parameterized by the outer variable E ∈ R100×784, along with per-
task linear models parameterized by each inner variable (Wi, bi). The UL function fi is the
average cross-entropy loss over the Dval

i , and the LL function gi is the `2 regularized cross-
entropy loss over Dtrain

i . Each sample is represented as a vector X of dimension 784, where
the input image is flattened. The corresponding label takes values from the set {0, 1, . . . , 9}.
We use Y ∈ R10 to denote its one-hot encoding.

In the experiment, the regularization parameter in the LL function ρ = 5× 10−4. The
implementation of MORBiT follows the same manner described in Gu et al. (2023). Specifically,
the code of MORBiT (Gu et al., 2023) uses vanilla SGD with a learning rate scheduler and
incorporates momentum and weight decay techniques to optimize each variable:

• Outer variable: learning rate = 0.01, momentum = 0.9, weight_decay = 10−4

• Inner variable: learning rate = 0.01, momentum = 0.9, weight_decay = 10−4

• Simplex variable: learning rate = 0.3, momentum = 0.9, weight_decay = 10−4

In addition, MORBiT adopts a straightforward iterative auto-differentiation to calculate
the hypergradient without using Neumann approximation of the Hession inversion.

For the implementation of MORMA-SOBA, the regularization parameter µλ in 10 is set to
be 0.01. All remaining parameters are chosen as constant values, as listed below:

• Outer variable: τx = 1, αk = 0.02,
• Inner variable: βk = 0.02
• Auxiliary variable: γk = 0.02

• Simplex variable: τλ = 1, αk = 0.02
• Average gradient: θk = 0.6

Both evaluated methods use batch sizes of 8 and 128 to compute gi for each inner step
and fi for each outer iteration, respectively.
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Figure 4: MORMA-SOBA (µλ = 0.01) vs.
MORBiT on robust multi-task rep-
resentation learning.

In Figure 4, we compare our algorithm
with the existing min-max bilevel algorithm
MORBiT (Gu et al., 2023) in terms of the av-
erage loss ((1/n)

∑
i Φi) and maximum loss

(maxi Φi). The results demonstrate the supe-
riority of MORMA-SOBA over MORBiT in terms of
lowering both the max loss and average loss at a
faster rate. In addition to Figure 4, which show-
cases the performance on 10 seen tasks used
for representation learning, we present Figure
5. This figure displays the maximum/average
loss values against the number of iterations on
test sets consisting of 10 seen tasks and 7 unseen
tasks. Our approach, MORMA-SOBA, demonstrates
superior performance in terms of faster reduction
of both maximum and average loss.
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Figure 5: Comparison of MORMA-SOBA with MORBiT in the problem of multi-objective robust
representation learning for binary classification tasks on the FashionMNIST data
set. We aggregate the results over 10 runs for each method. Left: Performance
on test sets of seen tasks; Right: Performance on unseen tasks.

5.3 Moving Average vs. Variance Reduction

Through empirical studies, we have demonstrated that our proposed method, MA-SOBA,
achieves comparable performance to the state-of-the-art variance reduction-based approach
SABA using SAGA updates (Defazio et al., 2014). In this context, we would like to highlight
the key difference and relationship between these two methods.

We start with presenting the update rules of the sequence of estimated gradients {gk}
for the variance reduction techniques SAGA (Defazio et al., 2014) and our moving-average
method (MA) for the single-level problem:
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SAGA (finite-sum:) min 1
n

∑n
i=1 fi(x)

gk = ∇fik(xk)−∇fik(x̄ik) +
1

n

n∑
j=1

∇fj(x̄j)

The SAGA update is designed for finite-sum problems with offline batch data. At each
iteration k, the algorithm randomly selects an index ik ∈ [n] and updates the gradient
variable gk using a reference point x̄ik , which corresponds to the last evaluated point for ∇fik .
However, it should be noted that SAGA requires storing the previously evaluated gradients
∇fj(x̄j) in a table, which can be memory-intensive when sample size n or dimension d is
large. In the finite-sum setting, there exist several other variance reduction methods, such
as SARAH (Dagréou et al., 2023), that can be employed to further enhance the dependence
on the number of samples, n, for bilevel optimization problems. However, the SARAH-type
method requires double gradient evaluations on each iteration of xk and xk−1:

MA (expectation): min Eξ[f(x; ξ)]

gk = (1− αk)gk−1 + αk∇f(xk; ξk+1)

Unlike variance reduction techniques, the moving-average methods can solve the general
expectation-form problem with online and streaming data using a simple update per iteration.
In addition, the moving-average techniques offer two more advantages:

Theoretical Assumption. All variance reduction methods, including SVRG (Reddi et al.,
2016), SAGA (Defazio et al., 2014), SARAH (Nguyen et al., 2017), STORM (Cutkosky and Orabona,
2019), and others, typically rely on assuming mean-squared smoothness assumptions. In
particular, for stochastic optimization problems in the form of minx{f(x) = E[F (x, ξ)]}, the
definition of mean-squared smoothness (MSS) is: (MSS) Eξ[‖∇F (x, ξ) − ∇F (x′, ξ)‖2] ≤
L2‖x−x′‖2. However, MSS is a stronger assumption than the general smoothness assumption
on f : ‖∇f(x)−∇f(x′)‖ ≤ L‖x− x′‖. By Jensen’s inequality, we have that MSS is stronger
than the general smoothness assumption on f : ‖∇f(x) − ∇f(x′)‖2 ≤ Eξ[‖∇F (x, ξ) −
∇F (x′, ξ)‖2]. In this work, the theoretical results of the proposed methods are only built
on the smoothness assumption on the UL and LL functions f, g without further assuming
MSS on Fξ and Gφ. It is worth noting that a clear distinction in the lower bounds of sample
complexity for solving the single-level stochastic optimization has been proven in Arjevani
et al. (2023). Specifically, they establish a separation under the MSS assumption on Fξ and
smoothness assumptions on f (O(ε−1.5) vs. O(ε−2)). Thus, it is important to emphasize
that MA-SOBA achieves the optimal sample complexity O(ε−2) under our weaker assumptions.

Practical Implementation. Variance reduction methods often entail additional space
complexity, require double-loop implementation or double oracle computations per iteration.
These requirements can be unfavorable for large-scale problems with limited computing
resources. For instance, in the second task, the runtime improvement achieved by using SABA
is limited. This limitation can be attributed to the dimensionality of the variables ν (with a
dimension of 20, 000) and W (with a dimension of 10× 784). The benefit of using variance
reduction methods is expected to be less significant for more complex problems involving
computationally expensive oracle evaluations.
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6. Conclusion

In this work, we propose a novel class of algorithms (MA-SOBA) for solving stochastic bilevel
optimization problems in (1) by introducing the moving-average step to estimate the hyper-
gradient. We present a refined convergence analysis of our algorithm, achieving the optimal
sample complexity without relying on the high-order smoothness assumptions employed in
the literature. Furthermore, we extend our algorithm framework to tackle a generic min-max
bilevel optimization problem within the multi-objective setting, identifying and addressing
the theoretical gap present in the literature.
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7. Proofs

We will prove Theorems 3 and 6 in Section 7.1 and 7.2 respectively. In each section we
will first establish the relations between the optimality measure (see Vk in Section 3.3) and
the gradient mapping, which reduce the proof of main theorems to proving the convergence
of primal variables (xk in Theorem 3 or (xk, λk) in Theorem 6) and dual variables (hk in
Theorem 3 or (hkx, h

k
λ) in Theorem 6). Then we will prove the hypergradient estimation

error, primal convergence and dual convergence separately. In our notation convention, the
superscript k usually denotes the iteration number and the subscript i represents variables
related to functions fi, gi. L# with being a function # denotes its Lipschitz constant.

Next we state some technical lemmas that will be used in both sections.

Lemma 9 (Lemma 10 in Qu and Li (2017).) Suppose f(x) is µ-strongly convex and
L-smooth. For any x and γ < 2

µ+L , define x
+ = x− γ∇f(x), x∗ = arg min f(x). Then we

have ‖x+ − x∗‖ ≤ (1− γµ)‖x− x∗‖.

Lemma 10 Define κ = max(L∇f , L∇g)/µg, z∗(x) =
(
∇2

22g(x, y∗(x))
)−1∇2f(x, y∗(x)). Sup-

pose Assumption 1 holds. Then Φ(x) is differentiable and ∇Φ(x) is given by Then Φ(x), y∗(x),
z∗(x) are differentiable and ∇Φ(x), y∗(x), z∗(x) are L∇Φ, Ly∗ , Lz∗-Lipschitz continuous, and

∇Φ(x) = ∇1f(x, y∗(x))−∇2
12g(x, y∗(x))

(
∇2

22g(x, y∗(x))
)−1∇2f(x, y∗(x)), (11)

∇y∗(x) = −∇2
12g(x, y∗(x))

(
∇2

22g(x, y∗(x))
)−1

. (12)

The constants are given by

Ly∗ =
L∇g
µg

= O (κ) , Lz∗ =
√

1 + L2
y∗

(
L∇f
µg

+
LfL∇2

22g

µ2
g

)
= O

(
κ3
)
,

L∇Φ = L∇f +
2L∇fL∇g + L2

fL∇2g

µg
+

2LfL∇gL∇2g + L∇fL2
∇g

µ2
g

+
LfL∇2gL

2
∇g

µ3
g

= O
(
κ3
)
.
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Moreover, we have

‖z∗(x)‖ ≤ Lf
µg
. (13)

Proof See Lemma 2.2 in Ghadimi and Wang (2018) for the proof of (11) and (12), Lipschitz
continuity of ∇Φ and y∗. For the Lipschitz continuity of z∗ we have for any x, x̃, we know

‖z∗(x)− z∗(x̃)‖
=‖
(
∇2

22g(x, y∗(x))
)−1∇2f(x, y∗(x))−

(
∇2

22g(x̃, y∗(x̃))
)−1∇2f(x̃, y∗(x̃))‖

≤‖
(
∇2

22g(x, y∗(x))
)−1∇2f(x, y∗(x))−

(
∇2

22g(x̃, y∗(x̃))
)−1∇2f(x, y∗(x))‖

+ ‖
(
∇2

22g(x̃, y∗(x̃))
)−1∇2f(x, y∗(x))−

(
∇2

22g(x̃, y∗(x̃))
)−1∇2f(x̃, y∗(x̃))‖

≤Lf‖
(
∇2

22g(x, y∗(x))
)−1 ‖‖∇2

22g(x, y∗(x))−∇2
22g(x̃, y∗(x̃))‖‖

(
∇2

22g(x, y∗(x))
)−1 ‖

+
1

µg
‖∇2f(x, y∗(x))−∇2f(x̃, y∗(x̃))‖

≤
LfL∇2

22g

µ2
g

√
‖x− x̃‖2 + ‖y∗(x)− y∗(x̃)‖2 +

L∇f
µg

√
‖x− x̃‖2 + ‖y∗(x)− y∗(x̃)‖2

≤Lz∗‖x− x̃‖,

where the first inequality uses triangle inequality, the second and third inequalities use
Assumption 1, and the fourth inequality uses Lipschitz continuity of y∗(x). The inequality in
(13) holds since g(x, ·) is µg-strongly convex and ‖∇2f(x, y∗(x))‖ ≤ Lf (Assumption 1).

Lemma 11 (Lemma 3.2 in Ghadimi et al. (2020)) For any closed convex set X , and
the function ηX (x, h, τ) defined in Section 3.3 is differentiable and ∇ηX is L∇ηX -Lipschitz
continuous, with the closed form expression and constant given by

∇1ηX (x, h, τ) = −h+
1

τ
(x− d̄),∇2ηX (x, h, τ) = d̄− x, L∇ηX = 2

√
(1 + 1/τ)2 + (1 + τ/2)2,

where d̄ is defined as d̄ = arg min d∈X {〈h, d− x〉+ 1
2τ ‖d−x‖2} = ΠX (x− τh), which satisfies〈

h+
1

τ
(d̄− x), d− d̄

〉
≥ 0, for all d ∈ X . (14)

7.1 Proof of Theorem 3

For simplicity, we summarize the notations that will be used in Section 7.1 as follows.

κ = max(L∇f , L∇g)/µg, w
k+1 = uk+1

x − Jk+1zk,

yk∗ = y∗(xk) = arg min
y∈Rdy

g(xk, y), zk∗ =
(
∇2

22g(xk, yk∗ )
)−1∇2f(xk, yk∗ ),

Φ(x) = f(x, y∗(x)), ηX (x, h, τ) = min
d∈X

{
〈h, d− x〉+

1

2τ
‖d− x‖2

}
. (15)
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In this section we suppose Assumptions 1 and 2 hold. We assume stepsizes in Algorithm 1
satisfy βk = c1αk, γk = c2αk, θk = c3αk, where c1, c2, c3 > 0 are constants to be determined.
We will utilize the following merit function in our analysis:

Wk = Φ(xk)− inf
x∈X

Φ(x)− 1

c3
ηX (xk, hk, τ)︸ ︷︷ ︸

Wk,1

+
1

c1
‖yk − yk∗‖2 +

1

c2
‖zk − zk∗‖2︸ ︷︷ ︸

Wk,2

.

By definition of ηX , we can verify that Wk,1 ≥ 0. Moreover, as discussed in Section 3.3, we
consider the following optimality measure:

Vk =
1

τ2
‖xk+ − xk‖2 + ‖hk −∇Φ(xk)‖2. (16)

Next we characterize the relation between Vk and gradient mapping of problem 1.

Lemma 12 Suppose Assumptions 1 and 2 hold. In Algorithm 1 we have

1

τ2
‖xk −ΠX

(
xk − τ∇Φ(xk)

)
‖2 ≤ 2Vk.

Proof Note that we have

‖xk −ΠX
(
xk − τ∇Φ(xk)

)
‖2 ≤2

(
‖xk+ − xk‖2 + ‖ΠX

(
xk − τhk

)
−ΠX

(
xk − τ∇Φ(xk)

)
‖2
)

≤2
(
‖xk+ − xk‖2 + τ2‖hk −∇Φ(xk)‖2

)
= 2τ2Vk,

where the first inequality uses Cauchy-Schwarz inequality and the second inequality uses the
non-expansiveness of projection onto a closed convex set. This completes the proof.

Then we bound the variance of wk+1 and ‖hk+1 − hk‖.

Lemma 13 Suppose Assumptions 1 and 2 hold. In Algorithm 1 we have

E
[
‖wk+1 − E[wk+1|Fk]‖2

]
≤ σ2

w,k+1

σ2
w,k+1 := σ2

w + 2σ2
g,2E[‖zk − zk∗‖2], σ2

w = σ2
f,1 +

2σ2
g,2L

2
f

µ2
g

, (17)

E[‖hk+1 − hk‖2] ≤ σ2
h,k,

σ2
h,k := 2θ2

kE
[
‖hk −∇Φ(xk)‖2 + ‖E[wk+1|Fk]−∇Φ(xk)‖2

]
+ θ2

kσ
2
w,k+1. (18)

Proof We first consider wk. Note that

wk+1 − E[wk+1|Fk] = uk+1
x − E[uk+1

x |Fk]−
(
Jk+1 − E

[
Jk+1|Fk

])
zk.

Hence we know

E
[
‖wk+1 − E[wk+1|Fk]‖2|Fk

]
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=E
[
‖uk+1

x − E[uk+1
x |Fk]‖2|Fk

]
+ E

[
‖Jk+1 − E

[
Jk+1|Fk

]
‖2|Fk

]
‖zk‖2

≤σ2
f,1 + 2σ2

g,2‖zk∗‖2 + 2σ2
g,2‖zk − zk∗‖2 ≤ σ2

f,1 +
2σ2

g,2L
2
f

µ2
g

+ 2σ2
g,2‖zk − zk∗‖2,

where the first equality uses independence, the first inequality uses Cauchy-Schwarz inequality,
and the second inequality uses (13). This proves (17). Next for ‖hk+1 − hk‖ we have

E
[
‖hk+1 − hk‖2|Fk

]
=θ2

kE
[
‖hk − E[wk+1|Fk]‖2|Fk

]
+ θ2

kE
[
‖wk+1 − E[wk+1|Fk]‖2|Fk

]
≤2θ2

kE
[
‖hk −∇Φ(xk)‖2|Fk

]
+ 2θ2

kE
[
‖E[wk+1|Fk]−∇Φ(xk)‖2|Fk

]
+ θ2

kσ
2
w,k+1,

which proves of (18) by taking expectation on both sides.

Remark 14 We would like to highlight that in (17), we explicitly characterize the upper
bound of the variance of wk+1, which contains E

[
‖zk − zk∗‖2

]
and requires further analysis.

In contrast, Assumption 3.7 in Dagréou et al. (2022) directly assumes the second moment of
Dt
x is uniformly bounded, i.e., E

[
‖Dt

x‖2
]
≤ B2

x for some constant Bx ≥ 0. Note that Dt
x in

Dagréou et al. (2022) is the same as our wk+1 (see (6), line 5 of Algorithm 1 and definition
of wk+1 in (15)). The second moment bound can directly imply the variance bound, i.e.,
E
[
‖Dt

x − E
[
Dt
x

]
‖2
]
≤ E

[
‖Dt

x‖2
]
≤ B2

x. This implies that some stronger assumptions are
needed to guarantee Assumption 3.7 in Dagréou et al. (2022), as also pointed out by the
authors (see discussions right below it). Instead, our refined analysis does not require that.

7.1.1 Hypergradient Estimation Error

Note that Assumptions 3.1 and 3.2 in Dagréou et al. (2022) state that the upper-level function
f is twice differentiable, the lower-level function g is three times differentiable and ∇2f,∇3g
are Lipschitz continuous so that zk∗ , as a function of xk (see (15)), is smooth, which is a
crucial condition for (31) and (81) in Dagréou et al. (2022) (v∗(xt) in their notation), which
follows the analysis in Equation (49) in Chen et al. (2021a). In this section we show that,
by incorporating the moving-average technique recently introduced to decentralized bilevel
optimization (Chen et al., 2023b), we can remove this additional assumption. We have the
following lemma characterizing the error induced by yk and zk.

Lemma 15 Suppose Assumptions 1 and 2 hold. If the stepsizes satisfy

βk <
2

µg + L∇g
, γk ≤ min

(
1

4µg
,

0.06µg
σ2
g,2

)
, (19)

then in Algorithm 1 we have
K∑
k=0

αkE[‖yk − yk∗‖2] ≤ Cyx
K∑
k=0

αkE[‖xk+ − xk‖2] + Cy,0 + Cy,1

( K∑
k=0

α2
k

)
K∑
k=0

αkE[‖zk − zk∗‖2] ≤ Czx
K∑
k=0

αkE[‖xk+ − xk‖2] + Cz,0 + Cz,1

( K∑
k=0

α2
k

)
.

(20)
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where the constants are defined as

Cyx =
2L2

y∗

c2
1µ

2
g

, Cy,0 =
1

c1µg
E
[
‖y0 − y0

∗‖2
]
, Cy,1 =

2c1σ
2
g,1

µg
,

Czx =
5L2

f

µ2
g

(L2
∇2

22g

µ2
g

+ 1

)
2L2

y∗

c2
1µ

2
g

+
4L2

z∗

c2
2µ

2
g

,

Cz,0 =
5L2

f

µ2
g

(L2
∇2

22g

µ2
g

+ 1

)
· 1

c1µg
E
[
‖y0 − y0

∗‖2
]

+
1

c2µg
E
[
‖z0 − z0

∗‖2
]
,

Cz,1 =
5L2

f

µ2
g

(L2
∇2

22g

µ2
g

+ 1

)
·

2c1σ
2
g,1

µg
+

2c2σ
2
w

µg
.

Proof We first consider the error induced by yk. We have

‖yk+1 − yk+1
∗ ‖2 ≤ (1 + βkµg) ‖yk+1 − yk∗‖2 +

(
1 +

1

βkµg

)
‖yk+1
∗ − yk∗‖2

≤ (1 + βkµg) ‖yk+1 − yk∗‖2 +

(
α2
k

βkµg
+ α2

k

)
L2
y∗‖xk+ − xk‖2, (21)

where the first inequality uses Cauchy-Schwarz inequality: ‖u + v‖2 ≤ (1 + c)
(
‖u‖2 +

1
c‖v‖2

)
, for any vectors u, v and constant c > 0. Thanks to the moving-average step of xk,

our analysis of ‖yk+1
∗ − yk∗‖ is simplified comparing to that in Chen et al. (2021a). Also,

E
[
‖yk+1 − yk∗‖2|Fk

]
= E

[
‖yk − βk∇2g(xk, yk)− yk∗ − βk(vk+1 −∇2g(xk, yk))‖2|Fk

]
≤‖yk − βk∇2g(xk, yk)− yk∗‖2 + β2

kσ
2
g,1 ≤ (1− βkµg)2‖yk − yk∗‖2 + β2

kσ
2
g,1, (22)

where the first inequality uses Assumption (2) and Lemma 9, and the second inequality uses
Lemma 9 (which requires strong convexity of g, Lipschtiz continuity of ∇2g, and the first
inequality in (19)). Combining (21) and (22), we know

E
[
‖yk+1 − yk+1

∗ ‖2|Fk

]
≤ (1 + βkµg) (1− βkµg)2‖yk − yk∗‖2 +

(
α2
k

βkµg
+ α2

k

)
L2
y∗‖xk+ − xk‖2 + (1 + βkµg)β

2
kσ

2
g,1

≤(1− βkµg)‖yk − yk∗‖2 +
2α2

kL
2
y∗

βkµg
‖xk+ − xk‖2 + 2β2

kσ
2
g,1.

where the second inequality uses βk < 2
µg+L∇g

≤ 1
µg
. Taking summation (k from 0 to K) on

both sides and taking expectation, we know
K∑
k=0

βkµgE[‖yk − yk∗‖2] ≤ E
[
‖y0 − y0

∗‖2
]

+
K∑
k=0

2α2
kL

2
y∗

βkµg
E[‖xk+ − xk‖2] +

K∑
k=0

2β2
kσ

2
g,1,

which proves the first inequality in (20) by dividing c1µg on both sides. Next we analyze the
error induced by zk. Our analysis is substantially different from Dagréou et al. (2022):

‖zk+1 − zk+1
∗ ‖2 ≤

(
1 +

γkµg
3

)
‖zk+1 − zk∗‖2 +

(
1 +

3

γkµg

)
‖zk+1
∗ − zk∗‖2
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≤
(

1 +
γkµg

3

)
‖zk+1 − zk∗‖2 +

(
3α2

k

γkµg
+ α2

k

)
L2
z∗‖xk+ − xk‖2 (23)

where we use Cauchy-Schwarz inequality in the first and second inequality, we use the facts
that ∇y∗ is Lipschitz continuous. For ‖zk+1 − zk∗‖, we may follow the analysis of SGD under
the strongly convex setting:

zk+1 − zk∗ = zk − γk(Hkzk − uky)− zk∗ = zk − γk∇2
22g(xk, yk)zk + γk∇2f(xk, yk)− zk∗

− γk(Hk+1 −∇2
22g(xk, yk))zk + γk(u

k
y −∇2f(xk, yk))

which gives

E
[
‖zk+1 − zk∗‖2|Fk

]
≤‖zk − γk∇2

22g(xk, yk)zk + γk∇2f(xk, yk)− zk∗‖2 + γ2
kσ

2
g,2‖zk‖2 + γ2

kσ
2
f,1

=‖(I − γk∇2
22g(xk, yk))(zk − zk∗ )− γk(∇2

22g(xk, yk)zk∗ −∇2f(xk, yk))‖2 + γ2
kσ

2
g,2‖zk‖2 + γ2

kσ
2
f,1

≤
(

1 +
γkµg

2

)
‖(I − γk∇2

22g(xk, yk))(zk − zk∗ )‖2

+

(
1 +

2

γkµg

)
‖γk

(
∇2

22g(xk, yk)zk∗ −∇2
22g(xk, yk∗ )z

k
∗ +∇2f(xk, yk∗ )−∇2f(xk, yk)

)
‖2

+ 2γ2
kσ

2
g,2

(
‖zk − zk∗‖2 + ‖zk∗‖2

)
+ γ2

kσ
2
f,1

≤
((

1 +
γkµg

2

)
(1− γkµg)2 + 2γ2

kσ
2
g,2

)
‖zk − zk∗‖2

+

(
4γk
µg

+ 2γ2
k

)(
L2
∇2

22g
‖zk∗‖2 + L2

∇2f

)
‖yk − yk∗‖2 + 2γ2

kσ
2
g,2‖zk∗‖2 + γ2

kσ
2
f,1.

≤
(

1− 4γkµg
3

)
‖zk − zk∗‖2 +

(
4γk
µg

+ 2γ2
k

)(L2
∇2

22g
L2
f

µ2
g

+ L2
f

)
‖yk − yk∗‖2 +

(
2σ2

g,2L
2
f

µ2
g

+ σ2
f,1

)
γ2
k,

(24)

where the first inequality uses Assumption 2, the second inequality uses Cauchy-Schwarz
inequality and the definition of zk∗ , the third inequality uses Cauchy-Schwarz inequality
and the fact that g is µg-strongly convex, and the fourth inequality uses Cauchy-Schwarz

inequality, (13) and −γkµg
6 + 2γ2

kσ
2
g,2 +

γ3
kµ

3
g

2 ≤ 0, which is a direct result from the bound of
γk in (19). It is worth noting that our estimation can be viewed as a refined version of (72) -
(75) in Dagréou et al. (2022) Combining (23) and (24) we may obtain

E
[
‖zk+1 − zk+1

∗ ‖2|Fk

]
≤
(

1 +
γkµg

3

)
E
[
‖zk+1 − zk∗‖2|Fk

]
+

(
3α2

k

γkµg
+ α2

k

)
L2
z∗‖xk+ − xk‖2

≤
(

1 +
γkµg

3

)[(
1− 4γkµg

3

)
‖zk − zk∗‖2 +

(
4γk
µg

+ 2γ2
k

)(L2
∇2

22g
L2
f

µ2
g

+ L2
f

)
‖yk − yk∗‖2

]

+
(

1 +
γkµg

3

)(2σ2
g,2L

2
f

µ2
g

+ σ2
f,1

)
γ2
k +

(
3α2

k

γkµg
+ α2

k

)
L2
z∗‖xk+ − xk‖2

= (1− γkµg) ‖zk − zk∗‖2 +

(
4γk
µg

+
10γ2

k

3
+

2γ3
kµg
3

)(L2
∇2

22g
L2
f

µ2
g

+ L2
f

)
‖yk − yk∗‖2

+ σ2
w

(
γ2
k +

γ3
kµg
3

)
+

(
3α2

k

γkµg
+ α2

k

)
L2
z∗‖xk+ − xk‖2
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≤ (1− γkµg) ‖zk − zk∗‖2 +
5γkL

2
f

µg

(L2
∇2

22g

µ2
g

+ 1

)
‖yk − yk∗‖2 + 2σ2

wγ
2
k +

4α2
kL

2
z∗

γkµg
‖xk+ − xk‖2,

where the equality uses the definition of σ2
w in (17) and the third inequality uses γkµg ≤ 1

4 .
Taking summation (k from 0 to K) and expectation, we know

K∑
k=0

γkµgE[‖zk − zk∗‖2] ≤E
[
‖z0 − z0

∗‖2
]

+

K∑
k=0

5γkL
2
f

µg

(L2
∇2

22g

µ2
g

+ 1

)
E[‖yk − yk∗‖2]

+
K∑
k=0

2σ2
wγ

2
k +

K∑
k=0

4α2
kL

2
z∗

γkµg
E[‖xk+ − xk‖2].

This completes the proof of the second inequality in (20) by dividing c2µg on both sides and
replacing

∑K
k=0 αkE[‖yk − yk∗‖2] with its upper bound in (20).

Lemma 16 Suppose Assumptions 1 and 2 hold. We have

‖E[wk+1|Fk]−∇Φ(xk)‖2 ≤3
((
L2
∇f + L2

∇2g

)
‖yk − yk∗‖2 + L2

∇g‖zk − zk∗‖2
)
,

Proof Note that we have the following decomposition:

E[wk+1|Fk]−∇Φ(xk)

=E[uk+1
x |Fk]−∇1f(xk, yk∗ )−

(
E
[
Jk+1|Fk

]
zk −∇2

12g(xk, yk∗ )z
k
∗
)

=∇1f(xk, yk)−∇1f(xk, yk∗ )−∇2
12g(xk, yk)

(
zk − zk∗

)
−
(
∇2

12g(xk, yk)−∇2
12g(xk, yk∗ )

)
zk∗ .

which, together with Cauchy-Schwarz inequality, implies the conclusion:

‖E[wk+1|Fk]−∇Φ(xk)‖2 ≤3‖∇1f(xk, yk)−∇1f(xk, yk∗ )‖2 + 3‖∇2
12g(xk, yk)(zk − zk∗ )‖2

+ 3‖
(
∇2

12g(xk, yk)−∇2
12g(xk, yk∗ )

)
zk∗‖2

≤3
((
L2
∇f + L2

∇2g

)
‖yk − yk∗‖2 + L2

∇g‖zk − zk∗‖2
)
.

7.1.2 Primal Convergence

Lemma 17 Suppose Assumptions 1 and 2 hold. If

αk ≤ min

(
τ2

20c3
,

c3

2τ (c3L∇Φ + L∇ηX )
, 1

)
, τ < 1, c3 ≤

1

10
, (25)

then in Algorithm 1 we have

K∑
k=0

αk
τ2

E[‖xk+ − xk‖2] ≤2

τ
E [W0,1] + 3

K∑
k=0

αkE
[
‖∇Φ(xk)− E[wk+1|Fk]‖2

]
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+
1

2

K∑
k=0

αkE[‖hk −∇Φ(xk)‖2] +
K∑
k=0

(
α2
kσ

2
g,2E[‖zk − zk∗‖2] + α2

kσ
2
w

)
.

(26)

Proof The L∇Φ-smoothness of Φ(x) and L∇ηX -smoothness of ηX (Lemmas 10, 11) imply

Φ(xk+1)− Φ(xk) ≤ αk
〈
∇Φ(xk), xk+ − xk

〉
+
L∇Φ

2
‖xk+1 − xk‖2 (27)

and

ηX (xk, hk, τ)− ηX (xk+1, hk+1, τ)

≤
〈
−hk +

1

τ
(xk − xk+), xk − xk+1

〉
+
〈
xk+ − xk, hk − hk+1

〉
+
L∇ηX

2

(
‖xk+1 − xk‖2 + ‖hk+1 − hk‖2

)
=αk

〈
hk, xk+ − xk

〉
+
αk
τ
‖xk+ − xk‖2 + θk

〈
hk, xk+ − xk

〉
− θk

〈
wk+1, xk+ − xk

〉
+
L∇ηX

2

(
‖xk+1 − xk‖2 + ‖hk+1 − hk‖2

)
≤− θk

τ
‖xk+ − xk‖2 − θk

〈
wk+1, xk+ − xk

〉
+
L∇ηX

2

(
‖xk+1 − xk‖2 + ‖hk+1 − hk‖2

)
, (28)

where the first inequality uses L∇ηX -smoothness of ∇ηX , and the second inequality uses the
optimality condition (14) (with d = xk). Hence by computing (27) + (28)/c3 and taking
conditional expectation with respect to Fk we know

αk
τ
‖xk+ − xk‖2

≤ 1

c3

(
E
[
ηX (xk+1, hk+1, τ)|Fk

]
− ηX (xk, hk, τ)

)
+ Φ(xk)− E

[
Φ(xk+1)|Fk

]
+ αk

〈
∇Φ(xk)− E[wk+1|Fk], x

k
+ − xk

〉
+

(c3L∇Φ + L∇ηX )

2c3
‖xk+1 − xk‖2

+
L∇ηX
2c3

E
[
‖hk+1 − hk‖2|Fk

]
=Wk,1 − E [Wk+1,1|Fk] + αk

〈
∇Φ(xk)− E[wk+1|Fk], x

k
+ − xk

〉
+

(c3L∇Φ + L∇ηX )

2c3
‖xk+1 − xk‖2 +

L∇ηX
2c3

E
[
‖hk+1 − hk‖2|Fk

]
≤Wk,1 − E [Wk+1,1|Fk] + αk

(
τ‖∇Φ(xk)− E[wk+1|Fk]‖2 +

1

4τ
‖xk+ − xk‖2

)
+
αk
4τ
‖xk+ − xk‖2 +

5

2c3τ
E
[
‖hk+1 − hk‖2|Fk

]
, (29)

where the second inequality uses Young’s inequality and α2
k(c3L∇Φ+L∇ηX )

2c3
≤ αk

4τ , L∇ηX <
5
τ

when (25) holds. Note that by (18) we know

5

c3τ2
E[‖hk+1 − hk‖2] ≤10c3α

2
k

τ2
E
[
‖hk −∇Φ(xk)‖2 + ‖E[wk+1|Fk]−∇Φ(xk)‖2

]
27
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+
5c3α

2
k

τ2
σ2
w +

10c3α
2
kσ

2
g,2

τ2
E[‖zk − zk∗‖2].

≤αk
2
E[‖hk −∇Φ(xk)‖2] + αkE

[
‖E[wk+1|Fk]−∇Φ(xk)‖2

]
+ α2

kσ
2
w + α2

kσ
2
g,2E[‖zk − zk∗‖2], (30)

where the second inequality uses (25). Taking summation and expectation on both sides
of (29) and using (30), we obtain (26).

7.1.3 Dual Convergence

Lemma 18 Suppose Assumptions 1 and 2 hold. In Algorithm 1 we have

K∑
k=0

αkE[‖hk −∇Φ(xk)‖2]

≤ 1

c3
E
[
‖h0 −∇Φ(x0)‖2

]
+ 2

K∑
k=0

αkE
[
‖E[wk+1|Fk]−∇Φ(xk)‖2

]
+

2L2
∇Φ

c2
3

K∑
k=0

αkE[‖xk+ − xk‖2] + 2c3σ
2
g,2

K∑
k=0

α2
kE[‖zk − zk∗‖2] +

K∑
k=0

c3α
2
kσ

2
w. (31)

Proof Note that by moving-average update of hk, we have

hk+1 −∇Φ(xk+1)

=(1− θk)hk + θk(w
k+1 − E[wk+1|Fk]) + θkE[wk+1|Fk]−∇Φ(xk+1)

=(1− θk)(hk −∇Φ(xk)) + θk(E[wk+1|Fk]−∇Φ(xk)) +∇Φ(xk)−∇Φ(xk+1)

+ θk(w
k+1 − E[wk+1|Fk])

Hence we know

E
[
‖hk+1 −∇Φ(xk+1)‖2|Fk

]
=‖(1− θk)(hk −∇Φ(xk)) + θk(E[wk+1|Fk]−∇Φ(xk)) +∇Φ(xk)−∇Φ(xk+1)‖2

+ θ2
kE
[
‖wk+1 − E[wk+1|Fk]‖2|Fk

]
≤(1− θk)‖hk −∇Φ(xk)‖2 + θk‖E[wk+1|Fk]−∇Φ(xk) +

1

θk
(∇Φ(xk)−∇Φ(xk+1))‖2 + θ2

kσ
2
w,k+1

≤(1− θk)‖hk −∇Φ(xk)‖2 + 2θk‖E[wk+1|Fk]−∇Φ(xk)‖2 +
2

θk
‖∇Φ(xk)−∇Φ(xk+1)‖2 + θ2

kσ
2
w,k+1

≤(1− θk)‖hk −∇Φ(xk)‖2 + 2θk‖E[wk+1|Fk]−∇Φ(xk)‖2 +
2α2

kL
2
∇Φ

θk
‖xk+ − xk‖2 + θ2

kσ
2
w,k+1,

(32)

where the first equality uses the fact that xk, hk, xk+1, are all Fk-measurable and are
independent of wk+1 given Fk, the first inequality uses the convexity of ‖ · ‖2 and (17), the
second inequality uses Cauchy-Schwarz inequality, the third inequality uses the Lipschitz
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continuity of ∇Φ in Lemma 19, and the update rules of xk+1. Taking summation, expectation
on both sides of (32), dividing c3 and using (17), we know (31) holds.

7.1.4 Proof of Theorem 3

Now we are ready to prove Theorem 3. From Lemma 12 we know it suffices to bound Vk.
By definition of Vk in (16), (26) and (31) we have

K∑
k=0

αkE [Vk] =

K∑
k=0

(αk
τ2

E[‖xk+ − xk‖2] + αkE[‖hk −∇Φ(xk)‖2]
)

(33)

≤2L2
∇Φ

c2
3

K∑
k=0

αkE[‖xk+ − xk‖2] +
1

2

K∑
k=0

αkE[‖hk −∇Φ(xk)‖2]

+ 5

K∑
k=0

αkE
[
‖∇Φ(xk)− E[wk+1|Fk]‖2

]
+ (1 + 2c3)σ2

g,2

K∑
k=0

α2
kE[‖zk − zk∗‖2]

+
2

τ
E [W0,1] +

1

c3
E
[
‖h0 −∇Φ(x0)‖2

]
+ (1 + c3)σ2

w

( K∑
k=0

α2
k

)
,

≤2L2
∇Φ

c2
3

K∑
k=0

αkE[‖xk+ − xk‖2] +
1

2

K∑
k=0

αkE[‖hk −∇Φ(xk)‖2]

+ 15
K∑
k=0

αkE
[(
L2
∇f + L2

∇2g

)
‖yk − yk∗‖2 + L2

∇g‖zk − zk∗‖2
]

+ L2
∇g

K∑
k=0

αkE[‖zk − zk∗‖2]

+
2

τ
E [W0,1] +

1

c3
E
[
‖h0 −∇Φ(x0)‖2

]
+ (1 + c3)σ2

w

( K∑
k=0

α2
k

)

≤Cvxτ2
K∑
k=0

αk
τ2

E[‖xk+ − xk‖2] + Cvh

K∑
k=0

αkE[‖hk −∇Φ(xk)‖2] + Cv,0 + Cv,1

( K∑
k=0

α2
k

)
,

where we assume
(1 + 2c3)σ2

g,2αk ≤ L2
∇g, (34)

in the second inequality. The constants are defined as

Cvx = 15
(
L2
∇f + L2

∇2g

)
Cyx + 16L2

∇gCzx +
2L2
∇Φ

c2
3

, Cvh =
1

2
,

Cv,0 = 15
(
L2
∇f + L2

∇2g

)
Cy,0 + 16L2

∇gCz,0 +
2

τ
E [W0,1] +

1

c3
E
[
‖h0 −∇Φ(x0)‖2

]
,

Cv,1 = 15
(
L2
∇f + L2

∇2g

)
Cy,1 + 16L2

∇gCz,1 + (1 + c3)σ2
w.

Using constants defined in Lemma 15, we know

Cvx = O
(
κ8

c2
1

+
κ4

c2
2

+
κ6

c2
3

)
, Cvh = O(1), Cv,0 = O

(
κ5

c1
+
κ2

c2
+

1

τ

)
, Cv,1 = O

(
c1κ

5 + c2κ
2
)
.
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Hence we can pick αk ≡ Θ(1/
√
K), τ = Θ

(
κ−4

)
, c1 = O(1), c2 = O(1), c3 = O(1) so that

the conditions ((19), (25) and (34)) in previous lemmas hold, and τ = Θ(κ−4) such that

Cvxτ
2 = O(κ8τ2) ≤ 1

2
.

Plugging in all the constants in (33), we have

1

K

K∑
k=0

E[Vk] ≤
1

2K

( K∑
k=0

1

τ2
E[‖xk+ − xk‖2] +

K∑
k=0

E[‖hk −∇Φ(xk)‖2]
)

+O
( κ5

√
K

)
.

Then we have 1
K

∑K
k=0 E [Vk] = O(κ5/

√
K). which, together with Lemma 12, proves

Theorem 3.

7.2 Proof of Theorem 6

In this section we present our proof of Theorem 6. For simplicity, we summarize the notations
that will be used in our proof as follows.

L∇f = max
1≤i≤n

L∇fi , L∇g = max
1≤i≤n

L∇gi , L∇2gi = max
1≤i≤n

L∇2gi , µg = max
1≤i≤n

µgi ,

κ = max(L∇f , L∇g)/µg, u
k+1
x =

n∑
i=1

uk+1
x,i , w

k+1 =

n∑
i=1

λki
(
uk+1
x,i − Jk+1

i zki
)
,

λk∗ = λ∗(xk) = arg max
λ∈∆n

Φµλ(xk, λ), yk∗,i = y∗i (x
k) = arg min

y∈Rdy
gi(x

k, y),

Φi(x) = fi(x, y
∗
i (x)), Φk =

(
Φ1(xk), ...,Φn(xk)

)>
, zk∗,i =

(
∇2

22gi(x
k, yk∗,i)

)−1∇2fi(x
k, yk∗,i),

Ψ(x) = max
λ∈∆n

Φµλ(x, λ) = max
λ∈∆n

( n∑
i=1

λiΦi(x)− µλ
2
‖λ− 1n

n
‖2
)
,

ηX(x, h, τ) = min
d∈X

{
〈h, d− x〉+

1

2τ
‖d− x‖2

}
, where X = X or ∆n.

In this subsection we suppose Assumptions 1, 2 hold for all fi, gi and Assumption 3 holds. We
suppose stepsizes in Algorithm 2 satisfy βk = c1αk, γk = c2αk, θk = c3αk, where c1, c2, c3 > 0
are constants to be determined. We will utilize the following merit function in our analysis:

W̃k = W̃k,1 + W̃k,2, W̃k,1 = W̃
(1)
k,1 + W̃

(2)
k,1 , W̃

(1)
k,1 = Ψ(xk)− Φµλ(xk, λk)− 1

c3
η∆n(λk,−hkλ, τλ)

W̃
(2)
k,1 = Ψ(xk)− inf

x∈X
Ψ(x)− 1

c3
ηX (xk, hkx, τx), W̃k,2 =

n∑
i=1

( 1

c1
‖yki − yk∗,i‖2 +

1

c2
‖zki − zk∗,i‖2

)
.

By definition of Ψ, ηX , η∆n , we can verify that W̃ (1)
k,1 ≥ 0, W̃

(2)
k,1 ≥ 0. Moreover, as discussed

in Section 4.2, we consider the following optimality measure:

Ṽk =
1

τ2
x

‖xk+ − xk‖2 + ‖hkx −∇1Φµλ(xk, λk)‖2︸ ︷︷ ︸
Ṽk,1: Optimality of min problem

+
1

τ2
λ

‖λk+ − λk‖2 + ‖hkλ −∇2Φµλ(xk, λk)‖2︸ ︷︷ ︸
Ṽk,2: Optimality of max problem

.

(35)
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The following lemma provides some smoothness of functions that we will use in our proof.

Lemma 19 Functions ∇Ψ(·),∇1Φµλ(·, λ),∇1Φ(·, λ),∇1Φµλ(x, ·),∇1Φ(x, ·),∇2Φµλ(·, λ),
∇2Φµλ(x, ·) are L∇Ψ, L∇Φ, L∇Φ, L∇1Φµλ

, L∇1Φµλ
, L∇2Φµλ

, µλ-Lipschitz continuous respec-
tively, with constants given by L∇Ψ = n

µλ

(
L2

Φ + bΦL∇Φ

)
+L∇Φ, L∇1Φµλ

= L∇2Φµλ
=
√
nLΦ.

Proof For ∇Ψ we first notice that the nonconvex-strongly-concave problem in (10) can be
reformulated as a bilevel problem:

min
x∈X

Ψ(x) = Φµλ(x, λ∗(x)) s.t. λ∗(x) = arg min
λ∈∆n

(−Φµλ(x, λ)) =
µλ
2
‖λ− 1n

n
‖2 −

n∑
i=1

λiΦi(x).

By Lemma 10 we know

∇Ψ(x) =∇1Φµλ(x, λ∗(x))−∇2
12Φµλ(x, λ∗(x))

(
∇2

22Φµλ(x, λ∗(x))
)−1∇2Φµλ(x, λ∗(x))

=
n∑
i=1

λ∗i (x)∇Φi(x) +
1

µλ
(∇Φ1(x), ...,∇Φn(x))


Φ1(x)

...
Φn(x)

− µλ(λ∗(x)− 1n
n

)
=

1

µλ

n∑
i=1

Φi(x)∇Φi(x) +
1

n

n∑
i=1

∇Φi(x),

from which we know ∇Ψ(·) is L∇Ψ-Lipschitz continuous since

‖Φi(x)∇Φi(x)− Φi(x̃)∇Φi(x̃)‖
≤‖Φi(x)∇Φi(x)− Φi(x)∇Φi(x̃)‖+ ‖Φi(x)∇Φi(x̃)− Φi(x̃)∇Φi(x̃)‖
≤
(
L2

Φ + bΦL∇Φ

)
‖x− y‖.

Note that for any fixed λ ∈ ∆n and x, x̃ ∈ X , we have

∇1Φµλ(x, λ) = ∇1Φ(x, λ) =
n∑
i=1

λi∇Φi(x), (36)

‖∇1Φµλ(x, λ)−∇1Φµλ(x̃, λ)‖ = ‖
n∑
i=1

λi (∇Φi(x)−∇Φi(x̃)) ‖ ≤ L∇Φ‖x− x̃‖. (37)

Similarly, for any fixed x ∈ X and λ, λ̃ ∈ ∆n we know

‖∇1Φµλ(x, λ)−∇1Φµλ(x, λ̃)‖ = ‖
n∑
i=1

(λi − λ̃i)∇Φi(x)‖ ≤ √nLΦ‖λ− λ̃‖. (38)

(36), (37) and (38) imply ∇1Φµλ(·, λ),∇1Φ(·, λ) are L∇Φ-Lipschitz continuous and ∇1Φ(x, ·),
∇1Φµλ(x, ·) are L∇1Φµλ

-Lipschitz continuous. Finally, for ∇2Φµλ(x, λ) we have ∇2Φµλ(x, λ)

= (Φ1(x), ...,Φn(x))>−µλ
(
λ− 1n

n

)
, and thus functions ∇2Φµλ(·, λ),∇2Φµλ(x, ·) are √nLΦ,

µλ-Lipschitz continuous respectively.

Next we present a technical lemma that will be used in analyzing the strongly convex
function over a closed convex set.
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Lemma 20 Suppose f(x) is µ-strongly convex and L-smooth over a closed convex set X .
For any τ ≤ 1

L define x+ = ΠX (x − τ∇f(x)) and x∗ = arg min x∈X f(x), we have
(
1 −√

1− τµ
)
‖x− x∗‖ ≤ ‖x− x+‖.

Proof By Corollary 2.2.4 in Nesterov (2018) we know

1

τ
〈x− x+, x− x∗〉 ≥

1

2τ
‖x− x+‖2 +

µ

2
‖x− x∗‖2 +

µ

2
‖x+ − x∗‖2

=

(
1

2τ
+
µ

2

)
‖x− x+‖2 + µ‖x− x∗‖2 − µ 〈x− x+, x− x∗〉

which implies ‖x − x+‖‖x − x∗‖ ≥ 〈x− x+, x− x∗〉 ≥ 1
2‖x − x+‖2 + r‖x − x∗‖2, where

r = µ
1
τ

+µ
≤ 1

2 . Applying Young’s inequality to the left hand side of the above inequality,

we know 1+
√

1−2r
4r ‖x − x+‖2 + r

1+
√

1−2r
‖x − x∗‖2 ≥ 1

2‖x − x+‖2 + r‖x − x∗‖2, which gives
‖x− x+‖ ≥

(
1−
√

1− 2r
)
‖x− x∗‖ ≥

(
1−√1− τµ

)
‖x− x∗‖. This completes the proof.

The next lemma shows the relation between the stationarity used in Theorem 6 and our
measure of optimality Ṽk in (35).

Lemma 21 Suppose Assumptions 1, 2 hold for all fi, gi and Assumption 3 holds. If τλµλ = 1,
then in Algorithm 2 we have

1

τ2
x

‖xk −ΠX
(
xk − τx∇1Φµλ(xk, λk)

)
‖2 ≤ 2

(
1

τ2
x

‖xk+ − xk‖2 + ‖hkx −∇1Φµλ(xk, λk)‖2
)
,

‖λk − λk∗‖2 ≤
2

µ2
λ

(
1

τ2
λ

‖λk+ − λk‖2 + ‖hkλ −∇2Φµλ(xk, λk)‖2
)
,

which imply ‖ 1
τx

(
xk −ΠX

(
xk − τx∇1Φµλ(xk, λk)

))
‖2 + ‖λk − λk∗‖2 ≤ max

(
2, 2

µ2
λ

)
Ṽk.

Proof The first inequality follows (12):

‖xk −ΠX
(
xk − τx∇1Φµλ(xk, λk)

)
‖2

≤2
(
‖xk+ − xk‖2 + ‖ΠX

(
xk − τxhkx

)
−ΠX

(
xk − τx∇1Φµλ(xk, λk)

)
‖2
)

≤2
(
‖xk+ − xk‖2 + τ2

x‖hkx −∇1Φµλ(xk, λk)‖2
)
,

where the first inequality uses Cauchy-Schwarz inequality and the second inequality uses the
non-expansiveness of projection onto a closed convex set. Note λk∗ = arg min λ∈∆n

Φµλ(xk, λ)
is a minimizer (over the probability simplex) of a µλ-smooth and µλ-strongly convex function
Φµλ(xk, ·). Hence we know from Lemma 20 that

µ2
λ‖λk∗ − λk‖2

≤τ−2
λ

(
1 +

√
1− τλµλ

)2‖λk −Π∆n

(
λk + τλ∇2Φµλ(xk, λk)

)
‖2

≤2τ−2
λ

(
1 +

√
1− τλµλ

)2(‖λk+ − λk‖2 + ‖Π∆n(λk + τλh
k
λ)−Π∆n(λk + τλ∇2Φµλ(xk, λk))‖2

)
≤2τ−2

λ

(
1 +

√
1− τλµλ

)2(‖λk+ − λk‖2 + τ2
λ‖hkλ −∇2Φµλ(xk, λk)‖2

)
,
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where the second inequality uses Cauchy-Schwarz inequality and the third inequality uses
non-expansiveness of the projection operator. Setting τλµλ = 1 completes the proof.

Lemma 22 Suppose Assumptions 1, 2 hold for all fi, gi and Assumption 3 holds. In
Algorithm 2 we have

E
[
‖wk+1 − E[wk+1|Fk]‖2

]
≤ σ2

w,k+1 (39)

E[‖hk+1
x − hkx‖2] ≤ σ2

hx,k, E[‖hk+1
λ − hkλ‖2] ≤ σ2

hλ,k
, (40)

σ2
w,k+1 := σ2

w + 2σ2
g,2

n∑
i=1

E[λki ‖zki − zk∗,i‖2], σ2
w = σ2

f,1 +
2σ2

g,2L
2
f

µ2
g

σ2
hx,k := 2θ2

kE[‖hkx −∇1Φµλ(xk, λk)‖2 + ‖E[wk+1|Fk]−∇1Φµλ(xk, λk)‖2] + θ2
kσ

2
w,k+1

σ2
hλ,k

:= θ2
kE[‖hkλ −∇2Φµλ(xk, λk)‖2] + nθ2

kσ
2
f,0.

Proof We first consider wk. Note that

wk+1 − E[wk+1|Fk] =
n∑
i=1

λki

(
uk+1
x,i − E[uk+1

x,i |Fk]−
(
Jk+1
i − E[Jk+1

i |Fk]
)
zki

)
.

Hence we know

E
[
‖wk+1 − E[wk+1|Fk]‖2|Fk

]
=

n∑
i=1

(
λki
)2 (E [‖ukx,i − E[ukx,i|Fk]‖2|Fk

]
+ E

[
‖Jk+1

i − E[Jk+1
i |Fk]‖2|Fk

]
‖zki ‖2

)
≤

n∑
i=1

λki

(
σ2
f,1 + 2σ2

g,2‖zk∗,i‖2 + 2σ2
g,2‖zki − zk∗,i‖2

)
≤σ2

f,1 +
2σ2

g,2L
2
f

µ2
g

+ 2σ2
g,2

n∑
i=1

λki ‖zki − zk∗,i‖2.

Taking expectation on both sides proves (39). Next for ‖hk+1
x − hkx‖ we have

E
[
‖hk+1

x − hkx‖2|Fk

]
= θ2

kE
[
‖hkx − E[wk+1|Fk]‖2|Fk

]
+ θ2

kE
[
‖wk+1 − E[wk+1|Fk]‖2|Fk

]
≤ 2θ2

kE
[
‖hkx −∇1Φ(xk, λk)‖2|Fk

]
+ 2θ2

kE
[
‖E[wk+1|Fk]−∇1Φ(xk, λk)‖2|Fk

]
+ θ2

kσ
2
w,k+1,

which proves the first inequality of (40). Similarly we have

E
[
‖hk+1

λ − hkλ‖2|Fk

]
=θ2

kE
[
‖hkλ − E[sk+1|Fk] + µλ

(
λk − 1n

n

)
‖2|Fk

]
+ θ2

kE
[
‖sk+1 − E[sk+1|Fk]‖2|Fk

]
≤θ2

kE
[
‖hkλ −∇2Φµλ(xk, λk)‖2|Fk

]
+ nθ2

kσ
2
f,0,

which proves the second inequality of (40).
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7.2.1 Hypergradient Estimation Error

Lemma 23 Suppose Assumptions 1, 2 hold for all fi, gi and Assumption 3 holds. In
Algorithm 2 if the stepsizes satisfy

βk <
2

µg + L∇g
, γk ≤ min

(
1

4µg
,

0.06µg
σ2
g,2

)
, (41)

then we have

K∑
k=0

αkE
[ n∑
i=1

‖yki − yk∗,i‖2
]
≤ nCyx

K∑
k=0

αkE[‖xk+ − xk‖2] +
n∑
i=1

Cyi,0 + nCy,1

( K∑
k=0

α2
k

)
K∑
k=0

αkE
[ n∑
i=1

‖zki − zk∗,i‖2
]
≤ nCzx

K∑
k=0

αkE[‖xk+ − xk‖2] +

n∑
i=1

Czi,0 + nCz,1

( K∑
k=0

α2
k

)
where constants Cyx, Cy,1, Czx, Cz,1 are defined in Lemma 15. Cyi,0, Czi,0 are defined as

Cyi,0 =
1

c1µg
E
[
‖y0
i − y0

∗,i‖2
]
, Czi,0 =

5L2
f

µ2
g

(L2
∇2

22g

µ2
g

+ 1

)
Cyi,0 +

1

c2µg
E
[
‖z0
i − z0

∗,i‖2
]
.

Proof Note that the proof follows almost the same reasoning in Lemma 15. Since Assump-
tions 1 and 2 hold for all fi, gi, by replacing yk, yk∗ , zk, zk∗ with yki , y

k
∗,i, z

k
i , z

k
∗,i respectively,

we have similar results hold for each 1 ≤ i ≤ n,
K∑
k=0

αkE[‖yki − yk∗,i‖2] ≤ Cyx
K∑
k=0

αkE[‖xk+ − xk‖2] + Cyi,0 + Cy,1

( K∑
k=0

α2
k

)
,

K∑
k=0

αkE[‖zki − zk∗,i‖2] ≤ Czx
K∑
k=0

αkE[‖xk+ − xk‖2] + Czi,0 + Cz,1

( K∑
k=0

α2
k

)
. (42)

Taking summation on both sides of (42), we complete the proof.

The next lemma shows that the inequalities above will be used in the error analysis of
‖E[wk+1|Fk]−∇1Φ(xk, λk)‖.

Lemma 24 Suppose Assumptions 1, 2 hold for all fi, gi and Assumption 3 holds. We have

‖E[wk+1|Fk]−∇1Φµλ(xk, λk)‖2 ≤
n∑
i=1

3λki

{(
L2
∇f + L2

∇2g

)
‖yki − yk∗,i‖2 + L2

∇g‖zki − zk∗,i‖2
}
,

‖E[wk+1|Fk]−∇Ψ(xk)‖2 ≤
n∑
i=1

4λki

{(
L2
∇f + L2

∇2g

)
‖yki − yk∗,i‖2 + L2

∇g‖zki − zk∗,i‖2
}

+ 8nL2
Φ

{
‖λk+ − λk‖2 +

1

µ2
λ

‖hkλ −∇2Φµλ(xk, λk)‖2
}
.

Proof Note that we have the following decomposition:

E[wk+1|Fk]−∇1Φµλ(xk, λk)

34



Stochastic Bilevel Optimization

=E[uk+1
x |Fk]−

n∑
i=1

λki∇1fi(x
k, yk∗,i)−

n∑
i=1

λki

(
E[Jk+1

i |Fk]z
k
i −∇2

12gi(x
k, yk∗,i)z

k
∗,i
)

=

n∑
i=1

λki

{
∇1fi(x

k, yki )−∇1fi(x
k, yk∗,i)−∇2

12gi(x
k, yki )

(
zki − zk∗,i

)
−
[
∇2

12gi(x
k, yki )−∇2

12gi(x
k, yk∗,i)

]
zk∗,i

}
. (43)

which, together with Cauchy-Schwarz inequality, implies

‖E[wk+1|Fk]−∇1Φµλ(xk, λk)‖2

≤3‖
n∑
i=1

λki
(
∇1fi(x

k, yki )−∇1fi(x
k, yk∗,i)

)
‖2 + 3‖

n∑
i=1

λki∇2
12gi(x

k, yki )
(
zki − zk∗,i

)
‖2

+ 3‖
n∑
i=1

(
∇2

12gi(x
k, yki )−∇2

12gi(x
k, yk∗,i)

)
zk∗,i‖2

≤
n∑
i=1

3λki
((
L2
∇f + L2

∇2g

)
‖yki − yk∗,i‖2 + L2

∇g‖zki − zk∗,i‖2
)
.

Similarly we have E[wk+1|Fk]−∇Ψ(xk) = E[wk+1|Fk]−∇1Φµλ(xk, λk) +∇1Φµλ(xk, λk)−
∇1Φµλ(xk, λk∗). Applying Cauchy-Schwarz inequality, Assumption 1 and Lemma 19 to the
above equation and (43), we know

‖E[wk+1|Fk]−∇Ψ(xk)‖2

≤4‖
n∑
i=1

λki
(
∇1fi(x

k, yki )−∇1fi(x
k, yk∗,i)

)
‖2 + 4‖

n∑
i=1

λki∇2
12gi(x

k, yki )
(
zki − zk∗,i

)
‖2

+ 4‖
n∑
i=1

(
∇2

12gi(x
k, yki )−∇2

12gi(x
k, yk∗,i)

)
zk∗,i‖2 + 4‖∇1Φ(xk, λk)−∇1Φ(xk, λk∗)‖2

≤
n∑
i=1

4λki

{(
L2
∇f + L2

∇2g

)
‖yki − yk∗,i‖2 + L2

∇g‖zki − zk∗,i‖2
}

+ 4nL2
Φ‖λk − λk∗‖2,

which together with Lemma 21 completes the proof.

7.2.2 Primal Convergence

Lemma 25 Suppose Assumptions 1, 2 hold for all fi, gi and Assumption 3 holds. If

αk ≤ min

(
τ2
x

20c3
,

c3

2τx (c3L∇Φ + L∇ηX )
,

c3

4τλ(L∇η∆n
+ c3µλ)

,
nτλL

2
Φ

LΨ + L∇Φ
, 1

)
,

τx < 1, τλµλ = 1, c3 ≤ min

(
1

10
,

1

8(µλ + 1)2

)
, (44)
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then in Algorithm 2 we have

K∑
k=0

αk
τ2
x

E[‖xk+ − xk‖2]

≤ 2

τx
E
[
W̃

(1)
0,1

]
+ 2

K∑
k=0

αkE[‖E[wk+1|Fk]−∇Ψ(xk)‖2]

+

K∑
k=0

αkE
[
‖E[wk+1|Fk]−∇1Φµλ(xk, λk)‖2

]
+

1

2

K∑
k=0

αkE[‖hkx −∇1Φµλ(xk, λk)‖2]

+ σ2
g,2

K∑
k=0

α2
kE
[ n∑
i=1

λki ‖zki − zk∗,i‖2
]

+ σ2
w

K∑
k=0

α2
k,

K∑
k=0

αk
τ2
λ

E[‖λk+ − λk‖2]

≤ 2

τλ
E
[
W̃

(2)
0,1

]
+

1

2

K∑
k=0

αkE[‖hkλ −∇2Φµλ(xk, λk)‖2] + 4L2
f

K∑
k=0

αkE
[ n∑
i=1

‖yki − yk∗,i‖2
]

+ 13nL2
Φ

K∑
k=0

αkE[‖xk+ − xk‖2] + nσ2
f,0

K∑
k=0

α2
k. (45)

Proof The proof of the first inequality in (45) is almost the same as that in (17). Note that
by replacing Φ, hk,Wk,1 with Ψ, hkx, W̃k,1, we know

αk
τx
‖xk+ − xk‖2

≤W̃ (1)
k,1 − E

[
W̃

(1)
k+1,1|Fk

]
+ αk

(
τx‖∇Ψ(xk)− E[wk+1|Fk]‖2 +

1

4τx
‖xk+ − xk‖2

)
+
αk
4τx
‖xk+ − xk‖2 +

5

2c3τx
E
[
‖hk+1

x − hkx‖2|Fk

]
, (46)

Similar to (30), from (40) we have that

5

c3τ2
x

E[‖hk+1
x − hkx‖2]

≤10c3α
2
k

τ2
x

E
[
‖hkx −∇1Φµλ(xk, λk)‖2 + ‖E[wk+1|Fk]−∇1Φµλ(xk, λk)‖2

]
+

5c3α
2
k

τ2
x

σ2
w

+
10c3α

2
kσ

2
g,2

τ2
x

E
[ n∑
i=1

λki ‖zki − zk∗,i‖2
]
.

≤αk
2
E[‖hkx −∇1Φµλ(xk, λk)‖2] + αkE

[
‖E[wk+1|Fk]−∇1Φµλ(xk, λk)‖2

]
+ α2

kσ
2
w

+ α2
kσ

2
g,2E

[ n∑
i=1

λki ‖zki − zk∗,i‖2
]
, (47)
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where the second inequality uses (44). Taking summation and expectation on both sides of
(46) and using (47), we obtain the first inequality in (45). For the second inequality in (45),
the L∇Ψ-smoothness of Ψ(x) and L∇ηX -smoothness of ηX in Lemma 19 imply

Ψ(xk+1)−Ψ(xk) ≤ αk
〈
∇Ψ(xk), xk+ − xk

〉
+
L∇Ψ

2
‖xk+1 − xk‖2, (48)

η∆n(λk,−hkλ, τλ)− η∆n(λk+1,−hk+1
λ , τλ)

≤
〈
hkλ +

1

τλ
(λk − λk+), λk − λk+1

〉
+
〈
λk+ − λk,−hkλ + hk+1

λ

〉
+
L∇η∆n

2

(
‖λk+1 − λk‖2 + ‖ − hk+1

λ + hkλ‖2
)

=αk

〈
−hkλ, λk+ − λk

〉
+
αk
τλ
‖λk+ − λk‖2 + θk

〈
λk+ − λk, sk+1 − hkλ − µλ

(
λk − 1n

n

)〉
+
L∇η∆n

2

(
‖λk+1 − λk‖2 + ‖hk+1

λ − hkλ‖2
)

≤− θk
τλ
‖λk+ − λk‖2 + θk

〈
sk+1 − µλ

(
λk − 1n

n

)
, λk+ − λk

〉
+
L∇η∆n

2

(
‖λk+1 − λk‖2 + ‖hk+1

λ − hkλ‖2
)
. (49)

We also have

Φµλ(xk, λk)− Φµλ(xk+1, λk+1)

=

n∑
i=1

(
λki Φi(x

k)− λk+1
i Φi(x

k+1)
)

+
µλ
2
‖λk+1 − 1n

n
‖2 − µλ

2
‖λk − 1n

n
‖2

=
〈
λk,Φk

〉
−
〈
λk+1,Φk+1

〉
+
µλ
2

(
‖λk+1 − λk + λk − 1n

n
‖2 − ‖λk − 1n

n
‖2
)

=
〈
λk − λk+1,Φk

〉
+
〈
λk+1,Φk − Φk+1

〉
+ µλαk

〈
λk − 1n

n
, λk+ − λk

〉
+
µλ
2
‖λk+1 − λk‖2

=αk

〈
λk − λk+,E[sk+1|Fk]− µλ

(
λk − 1n

n

)〉
+ αk

〈
λk − λk+,Φk − E[sk+1|Fk]

〉
+
µλ
2
‖λk+1 − λk‖2 +

〈
λk+1,Φk − Φk+1

〉
≤αk

〈
λk − λk+,E[sk+1|Fk]− µλ

(
λk − 1n

n

)〉
+ αk

〈
λk − λk+,Φk − E[sk+1|Fk]

〉
+
µλ
2
‖λk+1 − λk‖2 − αk

〈
∇1Φ(xk, λk), xk+ − xk

〉
+
√
nLΦ‖λk+1 − λk‖‖xk+ − xk‖

+
L∇Φ

2
‖xk+1 − xk‖2. (50)

where the inequality uses Lemma 19 and (c) in Assumption 1 to obtain

〈
λk+1,Φk − Φk+1

〉
=

n∑
i=1

λk+1
i (Φi(x

k)− Φi(x
k+1))
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≤
n∑
i=1

λk+1
i

( 〈
∇Φi(x

k), xk − xk+1
〉

+
L∇Φ

2
‖xk − xk+1‖2

)
≤− αk

〈
∇1Φ(xk, λk), xk+ − xk

〉
+
√
nLΦ‖λk+1 − λk‖‖xk+ − xk‖+

L∇Φ

2
‖xk+1 − xk‖2.

Taking conditional expectation with respect to Fk on (48) + (49)/c3 + (50), we know
αk
τλ
‖λk+ − λk‖2

≤W̃ (2)
k,1 − E

[
W̃

(2)
k+1,1|Fk

]
+ αk

〈
∇Ψ(xk)−∇1Φ(xk, λk), xk+ − xk

〉
+ αk

〈
λk − λk+,Φk − E[sk+1|Fk]

〉
+

(L∇Ψ + L∇Φ)

2
‖xk+1 − xk‖2

+
(L∇η∆n

+ c3µλ)

2c3
‖λk+1 − λk‖2 +

√
nLΦ‖λk+1 − λk‖‖xk+ − xk‖+

L∇η∆n

2c3
E
[
‖hk+1

λ − hkλ‖2|Fk

]
≤W̃ (2)

k,1 − E
[
W̃

(2)
k+1,1|Fk

]
+ αk

√
nLΦ‖λk − λk∗‖‖xk+ − xk‖

+ αkLf‖λk+ − λk‖
(

n∑
i=1

‖yki − yk∗,i‖2
) 1

2

+ αk
√
nLΦ‖λk+ − λk‖‖xk+ − xk‖

+
α2
k(L∇Ψ + L∇Φ)

2
‖xk+ − xk‖2 +

α2
k(L∇η∆n

+ c3µλ)

2c3
‖λk+ − λk‖2 +

L∇η∆n

2c3
E
[
‖hk+1

λ − hkλ‖2|Fk

]
≤W̃ (2)

k,1 − E
[
W̃

(2)
k+1,1|Fk

]
+ αk

(
1

16τλ
‖λk − λk∗‖2 + 4nτλL

2
Φ‖xk+ − xk‖2

)
+ αk

(
1

8τλ
‖λk+ − λk‖2 + 2τλL

2
f

n∑
i=1

‖yki − yk∗,i‖2
)

+ αk

(
1

8τλ
‖λk+ − λk‖2 + 2nτλL

2
Φ‖xk+ − xk‖2

)
+
αknτλL

2
Φ

2
‖xk+ − xk‖2 +

αk
8τλ
‖λk+ − λk‖2 +

L∇η∆n

2c3
E
[
‖hk+1

λ − hkλ‖2|Fk

]
, (51)

where the second inequality uses Lemma 19, and the third inequality uses Young’s inequality

and the conditions on αk (see (44)): αk
8τλ
− α2

k(L∇η∆n
+c3µλ)

2c3
≥ 0, α2

k(L∇Ψ +L∇Φ) ≤ αknτλL2
Φ.

Recall that in Lemma 21 we have

‖λk − λk∗‖2 ≤ 2‖λk+ − λk‖2 +
2

µ2
λ

‖hkλ −∇2Φµλ(xk, λk)‖2, (52)

and by (40) we know

L∇η∆n

c3τλ
E[‖hk+1

λ − hkλ‖2] ≤ 2c3α
2
k(µλ + 1)2

(
E[‖hkλ −∇2Φµλ(xk, λk)‖2] + nσ2

f,0

)
≤ αk

4
E[‖hkλ −∇2Φµλ(xk, λk)‖2] + nα2

kσ
2
f,0. (53)

where the second inequality uses 2c3(µλ + 1)2 ≤ 1
4 , αk ≤ 1 in (44). By (51), (52), and (53):

αk
τ2
λ

E[‖λk+ − λk‖2] ≤ 2

τλ
E
[
W̃

(2)
k,1 − W̃

(2)
k+1,1

]
+
αk
2
E[‖hkλ −∇2Φµλ(xk, λk)‖2]

+ 4αkL
2
fE
[ n∑
i=1

‖yki − yk∗,i‖2
]

+ 13αknL
2
ΦE[‖xk+ − xk‖2] + nα2

kσ
2
f,0,
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which implies the second inequality in (45) by taking summation.

7.2.3 Dual Convergence

Lemma 26 Suppose Assumptions 1, 2 hold for all fi, gi and Assumption 3 holds. In
Algorithm 2 we have

K∑
k=0

αkE[‖hkx −∇1Φµλ(xk, λk)‖2]

≤ 1

c3
E
[
‖h0

x −∇1Φµλ(x0, λ0)‖2
]

+ 3
K∑
k=0

αkE
[
‖E[wk+1|Fk]−∇1Φµλ(xk, λk)‖2

]
+

3L2
∇Φ

c2
3

K∑
k=0

αkE[‖xk+ − xk‖2] +
3nL2

Φ

c2
3

K∑
k=0

αkE[‖λk+ − λk‖2]

+ 2c3σ
2
g,2

K∑
k=0

α2
kE
[ n∑
i=1

λki ‖zki − zk∗,i‖2
]

+ c3σ
2
w

K∑
k=0

α2
k,

K∑
k=0

αkE[‖hkλ −∇2Φµλ(xk, λk)‖2]

≤ 1

c3
E
[
‖h0

λ −∇2Φµλ(x0, λ0)‖2
]

+ 3αkL
2
f

n∑
i=1

E[‖yki − yk∗,i‖2]

+
3nL2

Φ

c2
3

K∑
k=0

αkE[‖xk+ − xk‖2] +
3µ2

λ

c2
3

K∑
k=0

αkE[‖λk+ − λk‖2] + nc3σ
2
f,0

K∑
k=0

α2
k. (54)

Proof The proof is similar to that of Lemma 18, except that we now have another λk

to handle. Since ∇1Φ(x, λ) = ∇1Φµλ(x, λ) for all (x, λ) (see (10)), for simplicity we omit
subscript µλ in ∇1Φµλ(x, λ) in proof. Note that by moving-average update of hkx, we have

hk+1
x −∇1Φ(xk+1, λk+1)

=(1− θk)hkx + θk(w
k+1 − E[wk+1|Fk]) + θkE[wk+1|Fk]−∇1Φ(xk+1, λk+1)

=(1− θk)(hkx −∇1Φ(xk, λk)) + θk(E[wk+1|Fk]−∇1Φ(xk, λk))

+∇1Φ(xk, λk)−∇1Φ(xk+1, λk+1) + θk(w
k+1 − E[wk+1|Fk])

Hence we know

E
[
‖hk+1

x −∇1Φ(xk+1, λk+1)‖2|Fk

]
=
∥∥∥(1− θk)(hkx −∇1Φ(xk, λk)) + θk(E[wk+1|Fk]−∇1Φ(xk, λk))

+ ∇1Φ(xk, λk)−∇1Φ(xk+1, λk+1)
∥∥∥2

+ θ2
kE
[
‖wk+1 − E[wk+1|Fk]‖2|Fk

]
≤(1− θk)‖hkx −∇1Φ(xk, λk)‖2 + θ2

kσ
2
w,k+1
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+ θk‖(E[wk+1|Fk]−∇1Φ(xk, λk)) +
1

θk
(∇1Φ(xk, λk)−∇1Φ(xk+1, λk+1))‖2

≤(1− θk)‖hkx −∇1Φ(xk, λk)‖2 + 3θk‖E[wk+1|Fk]−∇1Φ(xk, λk)‖2 + θ2
kσ

2
w,k+1

+
3

θk
‖∇1Φ(xk, λk)−∇1Φ(xk+1, λk)‖2 +

3

θk
‖∇1Φ(xk+1, λk)−∇1Φ(xk+1, λk+1)‖2

≤(1− θk)‖hkx −∇1Φ(xk, λk)‖2 + 3θk‖E[wk+1|Fk]−∇1Φ(xk, λk)‖2

+
3α2

k

θk

(
L2
∇Φ‖xk+ − xk‖2 + nL2

Φ‖λk+ − λk‖2
)

+ θ2
kσ

2
w,k+1, (55)

where the first equality uses the fact that xk, λk, hkx, xk+1, λk+1 are all Fk-measurable and
are independent of wk+1 given Fk, the first inequality uses the convexity of ‖ · ‖2 and (39),
the second inequality uses Cauchy-Schwarz inequality, the third inequality uses the Lipschitz
continuity of ∇1Φ in Lemma 19, and the update rules of xk+1 and λk+1. Taking summation,
expectation on both sides of (55), dividing c3, and applying (39), we know the first inequality
in (54) holds. Similarly we have

hk+1
λ −∇2Φµλ(xk+1, λk+1)

=(1− θk)hkλ + θk
(
sk+1 − µλλk + µλ

1n
n

)
−∇2Φµλ(xk+1, λk+1)

=(1− θk)(hkλ −∇2Φµλ(xk, λk)) + θ
(
E[sk+1|Fk]−∇2Φ(xk, λk)

)
+∇2Φµλ(xk, λk)−∇2Φµλ(xk+1, λk+1) + θk(s

k+1 − E[sk+1|Fk]).

where the second equality uses ∇2Φµλ(xk, λk) = ∇2Φ(xk, λk)− µλ
(
λk − 1n

n

)
. So we know

E
[
‖hk+1

λ −∇2Φµλ(xk+1, λk+1)‖2|Fk

]
=
∥∥∥(1− θk)(hkλ −∇2Φµλ(xk, λk)) + θ

(
E[sk+1|Fk]−∇2Φ(xk, λk)

)
+ ∇2Φµλ(xk, λk)−∇2Φµλ(xk+1, λk+1)

∥∥∥2
+ θ2

kE
[
‖sk+1 − E[sk+1|Fk]‖2|Fk

]
≤(1− θk)‖hkλ −∇2Φµλ(xk, λk)‖2 + nθ2

kσ
2
f,0

+ θk‖E[sk+1|Fk]−∇2Φ(xk, λk) +
1

θk
(∇2Φµλ(xk, λk)−∇2Φµλ(xk+1, λk+1))‖2

≤(1− θk)‖hkλ −∇2Φµλ(xk, λk)‖2 + 3θk‖E[sk+1|Fk]−∇2Φ(xk, λk)‖2 + nθ2
kσ

2
f,0

+
3

θk
(‖∇2Φµλ(xk, λk)−∇2Φµλ(xk+1, λk)‖2 + ‖∇2Φµλ(xk+1, λk)−∇2Φµλ(xk+1, λk+1)‖2)

≤(1− θk)‖hkλ −∇2Φµλ(xk, λk)‖2 + 3θkL
2
f

n∑
i=1

‖yki − yk∗,i‖2

+
3α2

k

θk

(
nL2

Φ‖xk+ − xk‖2 + µ2
λ‖λk+ − λk‖2

)
+ nθ2

kσ
2
f,0, (56)

where the third inequality uses Lemma 19 and the fact that

E[sk+1|Fk] =
(
f1(xk, yk1 ), ..., fn(xk, ykn)

)>
,∇2Φ(xk, λk) =

(
f1(xk, yk∗,1), ..., fn(xk, yk∗,n)

)>
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Taking summation, expectation on both sides of (56), and dividing c3, we know the second
inequality in (54) holds.

7.2.4 Proof of Theorem 6 and Corollary 7

Now we are ready to present our main convergence results. Note that by Lemmas (25) and
(26), for Ṽk,1 we have

K∑
k=0

αkE
[
Ṽk,1

]
=

K∑
k=0

αk
τ2
x

E[‖xk+ − xk‖2] +
K∑
k=0

αkE[‖hkx −∇1Φµλ(xk, λk)‖2]

≤3L2
∇Φ

c2
3

K∑
k=0

αkE[‖xk+ − xk‖2] +
1

2

K∑
k=0

αkE[‖hkx −∇1Φµλ(xk, λk)‖2]

+
2

τx
E
[
W̃

(1)
0,1

]
+

1

c3
E
[
‖h0

x −∇1Φµλ(x0, λ0)‖2
]

+ 2
K∑
k=0

αkE[‖E[wk+1|Fk]−∇Ψ(xk)‖2]

+ 4
K∑
k=0

αkE
[
‖E[wk+1|Fk]−∇1Φµλ(xk, λk)‖2

]
+

3nL2
Φ

c2
3

K∑
k=0

αkE[‖λk+ − λk‖2]

+ (1 + 2c3)σ2
g,2

K∑
k=0

α2
kE
[ n∑
i=1

λki ‖zki − zk∗,i‖2
]

+ (1 + c3)σ2
w

( K∑
k=0

α2
k

)
. (57)

By Lemma 24 we know

4

K∑
k=0

αkE
[
‖E[wk+1|Fk]−∇1Φµλ(xk, λk)‖2

]
+ 2

K∑
k=0

αkE[‖E[wk+1|Fk]−∇Ψ(xk)‖2]

≤
K∑
k=0

αkE
[ n∑
i=1

20
((
L2
∇f + L2

∇2g

)
‖yki − yk∗,i‖2 + L2

∇g‖zki − zk∗,i‖2
)]

+

K∑
k=0

16nL2
ΦαkE

[
‖λk+ − λk‖2 +

1

µ2
λ

‖hkλ −∇2Φµλ(xk, λk)‖2
]
. (58)

Choosing
(1 + 2c3)σ2

g,2αk ≤ L2
∇g (59)

in (57), and using (58), we know

K∑
k=0

αkE[Ṽk,1] ≤Cv1,xτ
2
x

K∑
k=0

αk
τ2
x

E[‖xk+ − xk‖2] + Cv1,hx

K∑
k=0

αkE[‖hkx −∇1Φµλ(xk, λk)‖2]

+ Cv1,λτ
2
λ

K∑
k=0

αk
τ2
λ

E[‖λk+ − λk‖2] + Cv1,hλ

K∑
k=0

αkE[‖hkλ −∇2Φµλ(xk, λk)‖2]

+ Cv1,0 + Cv1,1

( K∑
k=0

α2
k

)
, (60)
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where the constants are defined as

Cv1,x =20n
(
L2
∇f + L2

∇2g

)
Cyx + 21nL2

∇gCzx +
3L2
∇Φ

c2
3

, Cv1,hx =
1

2
,

Cv1,λ =

(
16 +

3

c2
3

)
nL2

Φ, Cv1,hλ =
16nL2

Φ

µ2
λ

,

Cv1,0 =20
(
L2
∇f + L2

∇2g

)( n∑
i=1

Cyi,0

)
+ 21L2

∇g

(
n∑
i=1

Czi,0

)
+

2

τx
E
[
W̃

(1)
0,1

]
+

1

c3
E
[
‖h0

x −∇1Φµλ(x0, λ0)‖2
]
,

Cv1,1 =20n
(
L2
∇f + L2

∇2g

)
Cy,1 + 21nL2

∇gCz,1.

For Ṽk,2 we have

K∑
k=0

αkE
[
Ṽk,2

]
=

K∑
k=0

αk
τ2
λ

E[‖λk+ − λk‖2] +

K∑
k=0

αkE[‖hkλ −∇2Φµλ(xk, λk)‖2]

≤3µ2
λ

c2
3

K∑
k=0

αkE[‖λk+ − λk‖2] +
1

2

K∑
k=0

αkE[‖hkλ −∇2Φµλ(xk, λk)‖2]

+
2

τλ
E
[
W̃

(2)
0,1

]
+

1

c3
E
[
‖h0

λ −∇2Φµλ(x0, λ0)‖2
]

+ 7L2
f

K∑
k=0

αkE
[ n∑
i=1

‖yki − yk∗,i‖2
]

+

(
13 +

3

c2
3

)
nL2

Φ

K∑
k=0

αkE[‖xk+ − xk‖2] + n(1 + c3)σ2
f,0

( K∑
k=0

α2
k

)
,

which implies

K∑
k=0

αkE
[
Ṽk,2

]
≤Cv2,xτ

2
x

K∑
k=0

αk
τ2
x

E[‖xk+ − xk‖2] + Cv2,hx

K∑
k=0

αkE[‖hkx −∇1Φµλ(xk, λk)‖2]

+ Cv2,λτ
2
λ

K∑
k=0

αk
τ2
λ

E[‖λk+ − λk‖2] + Cv2,hλ

K∑
k=0

αkE[‖hkλ −∇2Φµλ(xk, λk)‖2]

+ Cv2,0 + Cv2,1

( K∑
k=0

α2
k

)
(61)

where the constants are defined as

Cv2,x =7nL2
fCyx +

(
13 +

3

c2
3

)
nL2

Φ, Cv2,hx = 0, Cv2,λ =
3µ2

λ

c2
3

, Cv2,hλ =
1

2
,

Cv2,0 =7L2
f

(
n∑
i=1

Cyi,0

)
+

2

τλ
E
[
W̃

(2)
0,1

]
+

1

c3
E
[
‖h0

λ −∇2Φµλ(x0, λ0)‖2
]

Cv2,1 =7nL2
fCy,1 + n(1 + c3)σ2

f,0.

42



Stochastic Bilevel Optimization

According to the definition of the constants in Lemmas 15 and 23, we could obtain (for
simplicity we omit the dependency on κ here)

Cv1,x = O
(
n

c2
1

+
n

c2
2

+
1

c2
3

)
, Cv1,hx =

1

2
= O (1) , Cv1,λ = O

(
n+

n

c2
3

)
, Cv1,hλ = O

(
n

µ2
λ

)
,

Cv1,0 = O
(
n

c1
+
n

c2
+

1

c3
+

1

τx
+

1

c3τx

)
, Cv1,1 = O (nc1 + nc2) ,

Cv2,x = O
(
n

c2
1

+ n+
n

c2
3

)
, Cv2,hx = 0, Cv2,λ = O

(
1

c2
3

)
, Cv2,hλ =

1

2
= O (1) ,

Cv2,0 = O
(
n

c1
+

1

c3

)
, Cv2,1 = O (nc1 + n+ nc3) .

Hence we can pick αk, c1, c2, c3, τx, τλ such that αk ≡ Θ(1/
√
nK), c1 = c2 =

√
n, c3 =

Θ(1), τx = O (µλ/n) , τλ = 1/µλ, which leads to Cv1,xτ
2
x ≤ 1

2 , Cv2,xCv1,λτ
2
xτ

2
λ ≤ 1

8 , Cv2,λτ
2
λ ≤

1
2 , and the conditions ((41), (44), and (59)) in previous lemmas hold. Moreover, using the
above conditions in (60) and (61), we can get

K∑
k=0

αkE
[
Ṽk,1

]
≤ 1

2

K∑
k=0

αkE
[
Ṽk,1

]
+ Cv1,λτ

2
λ

K∑
k=0

αkE
[
Ṽk,2

]
+O (n)

K∑
k=0

αkE
[
Ṽk,2

]
≤ 1

2

K∑
k=0

αkE
[
Ṽk,2

]
+ Cv2,xτ

2
x

K∑
k=0

αkE
[
Ṽk,1

]
+O

(√
n
)
.

Combining the above two inequalities, we have 1
K

∑K
k=0 E

[
Ṽk,1

]
= O(n2/µ2

λ

√
K) and

1
K

∑K
k=0 E

[
Ṽk,2

]
= O(n/

√
K), which completes the proof of Theorem 6 since we have

1

τ2
x

E[‖xk −ΠX
(
xk − τx∇Ψµλ(xk)

)
‖2]

≤ 2

τ2
x

E[‖xk −ΠX
(
xk − τx∇1Φµλ(xk, λk)

)
‖2]

+
2

τ2
x

E[‖ΠX
(
xk − τx∇Ψµλ(xk)

)
−ΠX

(
xk − τx∇1Φµλ(xk, λk)

)
‖2]

≤ 2

τ2
x

E[‖xk −ΠX
(
xk − τx∇1Φµλ(xk, λk)

)
‖2] + 2nL2

ΦE[‖λk − λk∗‖2] ≤ 4E[Ṽk,1] +
4nL2

Φ

µ2
λ

E[Ṽk,2]

where the second inequality uses non-expansiveness of projection operator and
√
nLΦ-

Lipschitz continuity of ∇1Φµλ(x, ·) in Lemma 19. Note that we have n2 in the numerator
since we explicitly write out the Lipschitz constant L∇1Φµλ

.
To prove Corollary 7, we notice that by choosing µλ = O(

√
ε), we have ‖∇Φµλ(x, λ)−

∇Φ(x, λ)‖2 ≤ µ2
λ‖λ− 1n

n ‖2 ≤ µ2
λ = O(ε), and thus under the same setup of Theorem 6, we

know from Section D.2 of Lin et al. (2020b) that any ε-stationary point of Problem (10) is an
ε-stationary point of Problem (9). Hence the corresponding sample complexity is O(n5ε−4).
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Appendix A. Discussions on the prior works

A.1 Regarding Gu et al. (2023)

In this section, we discuss several issues in the current form of Gu et al. (2023), which intro-
duces a Multi-Objective Robust Bilevel Two-timescale optimization algorithm (MORBiT).

The primary issue in the current analysis of MORBiT arises from the ambiguity and
inconsistency regarding the expectation and filtration. As a consequence, the current form of
the paper was unable to demonstrate E[maxi∈[n] ‖yki − y∗i (x(k−1))‖2] ≤ Õ(

√
nK−2/5) claimed

in Theorem 1 (10b) of Gu et al. (2023). The subsequent arguments are incorrect. We discuss
some mistakes made in Gu et al. (2023) as follows.

We start by looking at Lemma 8 (informal) and Lemma 14 (formal) in Gu et al. (2023)
that characterize the upper bound of L(k+1) − L(k) where L(k) = E[

∑n
i=1 λ

(k)
i `i(x

(k))]. Here,
the function `i is the function Φi(x) in our notation. The paper incorrectly asserted that
Lk =

∑n
i=1 λ

(k)
i E[`i(x

(k))]. To see why, let Fk denote the sigma algebra generated by all
iterates (x, y, λ) with superscripts not greater than k. It is important to note that both {λ(k)

i }
and x(k) are random objectives given the filtration Fk. The ambiguity lies in the lack of
clarity regarding the randomness over which the expectation operation is performed. In fact,
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we can rewrite the claim of Lemma 14 in Gu et al. (2023) without hiding the randomness.
Let L(k) =

∑n
i=1 λ

(k)
i `i(x

(k)). Then, we have

L(k+1) − L(k) ≤O(α)

(
n∑
i=1

λki ‖yk+1
i − y∗i (x(k))‖

)2

︸ ︷︷ ︸
≤maxi∈[n] ‖yk+1

i −y∗i (x(k))‖2

(62)

− 1

α
‖xk+1 − xk‖2 +O(γn) +O(α)‖h(k)

x − E[h(k)
x | Fk]‖2,

where α, β, γ are step sizes for x, y, and λ respectively. We hide the dependency for constants
in their assumptions for simplicity. In addition, we want to emphasize that, unlike our
notation, h(k)

x and h(k)
λ are stochastic gradients at step k. Therefore, h(k)

x and h(k)
λ are random

objects given Fk. By taking expectations over all the randomness above, we can see that
Lemma 14 in Gu et al. (2023) is incorrect because it writes in the form of maxE[·] instead
of E[max(·)]. Therefore, the subsequent arguments regarding the convergence of x, y, λ are
incorrect, at least in the current form.

Regardless of the error, one may be able to proceed with the proof by utilizing Eq.(62)
since our ultimate goal is to demonstrate the convergence of E[maxi∈[n] ‖yki − y∗i (x(k−1))‖2].
One possible direction is to utilize the basic recursive inequality of maxi∈[n] ‖yk+1

i −y∗i (x(k))‖2.
Observe that for each i ∈ [n], we can establish the following inequality similar to Lemma 13
in Gu et al. (2023) without hiding the randomness:

‖y(k+1)
i − y∗i (x(k))‖2 ≤ (1−O(µgβ)) ‖y(k)

i − y∗i (x(k−1))‖2 +O
(

1

µgβ

)
‖xk − xk−1‖2

+O(β2)‖h(k)
y,i − E[h

(k)
y,i |Fk]‖2 +O(β)

〈
y

(k)
i − y∗i (x(k−1)), h

(k)
y,i − E[h

(k)
y,i |Fk]

〉
However, the order of taking the expectation over the randomness and the maximum over
i ∈ [n] adds complexity to the problem. The last inner-product term can only be zero when
first taking expectation given Fk. When applying Young’s inequality to bound this term, it
inevitably introduces terms such as O(β)‖h(k)

y,i − E[h
(k)
y,i |Fk]‖2 or O(1)‖y(k)

i − y∗i (x(k−1))‖2,
which make it challenging to proceed further with the convergence analysis.

Finally, we remark about the choice of the stationarity condition used in Gu et al. (2023).
Although the algorithmic aspect in Gu et al. (2023) is motivated by Lin et al. (2020a), the
notion of stationarity for λ in Gu et al. (2023) is different from Lin et al. (2020a). Under the
notion of stationarity in Lin et al. (2020a) (Definition 3.7) Φ1/2`(·) is the Moreau envelope of
Φ(·), which is defined after taking the max over y (i.e., λ in our notation) in Definition 3.5
in Lin et al. (2020a), and a point x is ε-stationarity when ‖∇Φ1/2`(x)‖ ≤ ε. It is unclear if
(10a) and (10c) in Gu et al. (2023) will imply similar convergence results under the notion of
stationarity in Definition 3.7 in Lin et al. (2020a).

A.2 Regarding Hu et al. (2022)

Hu et al. (2022) considered a multi-block min-max bilevel optimization, which shares similarity
with Problem (10) we consider. However, we note that their Assumption 2.2 on the LL
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function gi requires ∇2
22gi(x, y; ζ) � µgI, and is much stronger than ours and that in Gu

et al. (2023). For example, for any 0 < µg < Lg and

∇2
22gi(x, yi; ζ) =

(
2Lg 0

0 0

)
or
(

0 0
0 2µg

)
with equal probability

indicates that ∇2
22gi(x, yi) = diag(Lg, µg) � µgI can hold even if ∇2

22gi(x, yi; ζ) � µgI does
not hold for any ζ. Further, they do not characterize the dependence on µg in the final
complexity. Hence we omit a detailed comparison with Hu et al. (2022).

51


	Introduction
	Proposed Framework: the MA-SOBA Algorithm
	Theoretical Analysis
	Preliminaries and Assumptions
	Convergence Results
	Proof Sketch of Theorem 3

	Min-Max Bilevel Optimization
	Proposed Framework: the MORMA-SOBA Algorithm
	Convergence Results

	Experiments
	Experimental Details for MA-SOBA
	Hyperparameter Optimization on IJCNN1
	Data Hyper-Cleaning on MNIST

	Experimental Details for MORMA-SOBA
	Moving Average vs. Variance Reduction

	Conclusion
	Proofs
	Proof of Theorem 3
	Hypergradient Estimation Error
	Primal Convergence
	Dual Convergence
	Proof of Theorem 3

	Proof of Theorem 6
	Hypergradient Estimation Error
	Primal Convergence
	Dual Convergence
	Proof of Theorem 6 and Corollary 7


	Discussions on the prior works
	Regarding gu2022min
	Regarding hu2022multi


