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Abstract

Recent experiments have shown that, often, when training a neural network with gradient
descent (GD) with a step size η, the operator norm of the Hessian of the loss grows until
it approximately reaches 2/η, after which it fluctuates around this value.

The quantity 2/η has been called the “edge of stability” based on consideration of a
local quadratic approximation of the loss. We perform a similar calculation to arrive at an
“edge of stability” for Sharpness-Aware Minimization (SAM), a variant of GD which has
been shown to improve its generalization. Unlike the case for GD, the resulting SAM-edge
depends on the norm of the gradient. Using three deep learning training tasks, we see
empirically that SAM operates on the edge of stability identified by this analysis.

Keywords: Sharpness-aware minimization, edge of stability, optimization, deep learning,
wide minima.

1. Introduction

Sharpness-aware Minimization (SAM) (Foret et al., 2020) is a new gradient-based neural
network training algorithm that advanced the state-of-the-art test accuracy on a number of
prominent benchmark datasets. As its name suggests, it explicitly seeks to find a solution
that not only fits the training data, but that avoids “sharp” minima, for which nearby
parameter vectors perform poorly. SAM is an incremental algorithm that updates its pa-
rameters using a gradient computed at a neighbor of the current solution. The neighbor is
the point in parameter space found by taking a step of length ρ “uphill” in the gradient
direction. The practical success of SAM has motivated theoretical research (Bartlett et al.,
2023; Wen et al., 2023; Andriushchenko et al., 2023), including results highlighting senses
in which SAM’s update may be viewed, under certain conditions, as including a component
that performs gradient descent on the operator norm of the Hessian (Bartlett et al., 2023;
Wen et al., 2023).

Meanwhile, Cohen et al. (2021), building on the work of Jastrzebski et al. (2019) and
others, exposed a striking phenomenon regarding neural network training with the original
gradient descent (GD) method: for many initialization schemes and learning rates η, the
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operator norm of the Hessian eventually settles in the neighborhood of 2/η. This has been
termed the “edge of stability”, in part because a convex quadratic trained by gradient de-
scent with a learning rate η will only converge if the operator norm of its Hessian (which is
the same everywhere) is less than 2/η. This phenomenon also inspired substantial theoret-
ical research (see Arora et al., 2022; Damian et al., 2023; Ma et al., 2022; Zhu et al., 2022;
Ahn et al., 2022; Chen and Bruna, 2022). One result identified conditions under which,
when training approaches the edge of stability, the dynamics includes a self-stabilization
mechanism that tends to drive the operator norm of the Hessian back down (Damian et al.,
2023).

In this paper, we investigate whether SAM operates at the edge of stability. First, we
perform a derivation, analogous to the one that identifies 2/η as the edge of stability for
GD, that yields a formula for the operator norm of the Hessian that may be viewed as the
edge of stability for SAM. As expected, SAM’s edge of stability depends on the radius ρ of
its neighborhood. It also depends on the norm of the gradient of the training error at the
current solution, unlike the case of GD. As the norm of the gradient gets smaller, the edge
of stability for SAM also gets smaller.

Next, we evaluate experimentally whether SAM operates at the edge of stability iden-
tified by our analysis. Our first experiments are with fully connected networks on MNIST.
Here, it is feasible to experiment with a version of SAM that uses a batch gradient, albeit
computed at the neighbor uphill of the current iterate at a distance ρ. For many combina-
tions of the step size η and the radius ρ, the operator norm of the Hessian at SAM’s iterates
closely matches the value arising from our analysis. Next, we experiment with a convolu-
tional neural network training on 1000 examples from CIFAR10. Here again, we see SAM
operating on the edge of stability. Finally, we experiment with a standard Transformer
architecture training a language model on tiny_shakespeare using the more practical ver-
sion of SAM that uses stochastic gradients. Here, we also see substantial agreement with
our theoretical analysis.

In our experiments with SAM, its edge of stability is often much smaller than 2/η, even
early in training. Rather than first driving the training error to a very small value, and
then drifting along a manifold of near-optimal solutions to wider minima, SAM’s process
drives solutions toward smooth regions of parameter space early in training, while the loss
is still large.

The derivation of SAM’s edge of stability is in Section 2. The experiments are described
in detail in Section 3. The results are in Section 4. Section 5 includes further description
of related work. We conclude in Section 6.

2. Derivation

The Sharpness-Aware Minimization algorithm is defined by the update

wt+1 = wt − η∇`
(
wt + ρ

∇`(wt)
‖∇`(wt)‖

)
. (1)

This is like gradient descent, except using a gradient evaluated at wt + ρ ∇`(wt)
‖∇`(wt)‖ instead of

wt.
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In this section, we calculate an “edge of stability” for SAM analogous to the 2/η value
for GD.

Before analyzing SAM, however, let us review the standard analysis that identifies the
edge of stability for GD, assuming for simplicity that the quadratic approximation around
an iterate is exact.

Proposition 1 For wt ∈ Rd, η > 0, if

• g = ∇`(wt) 6= 0, H = ∇2`(wt), wt+1 = wt − ηg, and

• for all w ∈ Rd, `(w) = `(wt) + gT (w − wt) + (w−wt)>H(w−wt)
2 ,

then

• if ||H||op < 2
η , then `(wt+1) < `(wt), and

• this condition on ||H||op is the weakest possible of its type: if

– g is aligned with a principal eigenvector of H whose eigenvalue is non-negative,
then

– sign(`(wt+1)− `(wt)) = sign
(
||H||op − 2

η

)
.

Proof Substituting wt+1 − wt into the formula for `, we have

`(wt+1) = `(wt)− ηg>g +
η2g>Hg

2

≤ `(wt)− ηg>g +
η2g>||H||opg

2

= `(wt)− η
(

1− η||H||op
2

)
||g||2.

If ||H||op < 2
η , since g 6= 0, this implies `(wt+1) < `(wt).

When g is aligned with a principal eigenvector of H whose eigenvalue is non-negative,
we have Hg = ||H||opg, which implies, as above, that

`(wt+1) = `(wt)− η
(

1− η||H||op
2

)
||g||2,

which, again since g 6= 0, implies sign(`(wt+1)− `(wt)) = sign
(
||H||op − 2

η

)
.

We can think of Proposition 1 as formalizing the statement that 2/η is the edge of stability
for GD: if ||H||op < 2/η, GD is guaranteed to make progress, and no larger bound suffices.

Even in the convex quadratic case, the dynamics of SAM are much more complex than
GD (see Bartlett et al., 2023). However, if we bound ||H||op in terms of ||g|| as well as η
and ρ, an analogous result holds.

Proposition 2 For wt ∈ Rd, η > 0, ρ > 0, if

• g = ∇`(wt) 6= 0, H = ∇2`(wt) � 0, wt+1 = wt − η∇`
(
wt + ρ ∇`(wt)

‖∇`(wt)‖

)
, and
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• for all w ∈ Rd, `(w) = `(wt) + gT (w − wt) + (w−wt)>H(w−wt)
2 ,

then

• if ||H||op < ||g||
2ρ

(√
1 + 8ρ

η||g|| − 1
)
, then `(wt+1) < `(wt), and

• this condition on ||H||op is the weakest possible of its type: if

– g is aligned with a principal eigenvector of H, then

– sign(`(wt+1)− `(wt)) = sign
(
||H||op − ||g||2ρ

(√
1 + 8ρ

η||g|| − 1
))

.

Proposition 2 is an immediate consequence of the following stronger, but somewhat
more technical, proposition.

Proposition 3 For wt ∈ Rd, η > 0, ρ > 0, if

• g = ∇`(wt) 6= 0 and H = ∇2`(wt) has eigenvalues λ1, ..., λd and unit-length eigenvec-
tors v1, ..., vd,

• wt+1 = wt − η∇`
(
wt + ρ ∇`(wt)

‖∇`(wt)‖

)
,

• for all w ∈ Rd, `(w) = `(wt) + gT (w − wt) + (w−wt)>H(w−wt)
2

then

• if, for all i,

−||g||
ρ
≤ λi ≤

||g||
2ρ

(√
1 +

8ρ

η||g||
− 1

)
,

and there is an i such that

g · vi 6= 0 and − ||g||
ρ

< λi <
||g||
2ρ

(√
1 +

8ρ

η||g||
− 1

)
,

then `(wt+1) < `(wt), and

• if

– g is aligned with a principal eigenvector of H whose eigenvalue is non-negative,
then

– sign(`(wt+1)− `(wt)) = sign
(
||H||op − ||g||2ρ

(√
1 + 8ρ

η||g|| − 1
))

.

Proof Substituting wt+1−wt into the formula for `, in part since H is symmetric, we have

`(wt+1) = `(wt)− ηg>
(
g + ρH

g

||g||

)
+
η2
(
g + ρH g

||g||

)>
H
(
g + ρH g

||g||

)
2

= `(wt)− ηg>

I +
ρH

||g||
− η


(
I + ρH

||g||

)2
H

2


 g.
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Using the fact that, since H is symmetric, any matrix polynomial of H has the same
eigenvectors as H, we have

`(wt+1) = `(wt)− η
n∑
i=1

(vi · g)2

1 +
ρλi
||g||
− η


(

1 + ρλi
||g||

)2
λi

2




= `(wt)− η
n∑
i=1

(vi · g)2
(

1 +
ρλi
||g||

)1−
η
(

1 + ρλi
||g||

)
λi

2

 . (2)

Recalling that each λi ≥ − ||g||ρ , let us focus on the last factor of one term in the sum of (2)

for which λi > − ||g||ρ and (vi · g)2 6= 0. We have

1−
η
(

1 + ρλi
||g||

)
λi

2
≥ 0

⇔ ηρλ2i + ηλi||g|| − 2||g|| ≤ 0.

The convex quadratic on the LHS has two solutions, one that is negative, and one that is
positive:

±
√
η2||g||2 + 8ηρ||g|| − η||g||

2ηρ

=
||g||
2ρ

(
±

√
1 +

8ρ

η||g||
− 1

)
.

Thus, given that λi > − ||g||ρ , the ith term of the sum in (2) is positive iff

−||g||
2ρ

(√
1 +

8ρ

η||g||
+ 1

)
< λi <

||g||
2ρ

(√
1 +

8ρ

η||g||
− 1

)
, (3)

for which

−||g||
ρ

< λi <
||g||
2ρ

(√
1 +

8ρ

η||g||
− 1

)
,

suffices. Thus each term in the sum of (2) is non-negative, and at least one is positive, so
`(wt+1) < `(wt).

If g is aligned with a principal eigenvector of H whose eigenvalue is non-negative, as-
suming wlog that this principal eigenvector is v1, we have (v1 · g)2 > 0, and (vi · g)2 = 0 for
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all i 6= 1. In this case, all of the terms in the sum in (2) are zero except the first, thus

sign(`(wt+1)− `(wt)) = −sign

1−
η
(

1 + ρλ1
||g||

)
λ1

2


= sign

(
λ1 −

||g||
2ρ

(√
1 +

8ρ

η||g||
− 1

))

= sign

(
||H||op −

||g||
2ρ

(√
1 +

8ρ

η||g||
− 1

))
,

where we have used the equivalent bounds on λ1 given by (3).

We refer to the threshold ||g||
2ρ

(√
1 + 8ρ

η||g|| − 1
)

identified in Proposition 2 as SAM’s

edge of stability, or the SAM-edge for short.

The ratio
||H||op
2/η between the edge of stability for SAM, and the edge for GD, is

||H||op
2/η

=
η‖g‖
4ρ

(√
1 +

8ρ

η‖g‖
− 1

)
.

This ratio depends on η, ρ and ||g|| through η‖g‖/(2ρ); let us refer to this intermediate
quantity as α. Figure 1 shows the function

α 7→ α

2

(√
1 +

4

α
− 1

)
,

that, at SAM’s edge of stability, gives ‖H‖op/(2/η) as a function of α = η‖g‖/(2ρ). Notice
that as α→∞, this function approaches 1, and it approaches zero like

√
α.
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Figure 1: The ratio of SAM’s edge of stability to 2/η, the edge of stability for GD, as a
function of α = η‖g‖/(2ρ).

Proposition 3 focuses on the case where the largest eigenvalue is positive. This is mo-
tivated in part by the work of Ghorbani et al. (2019), who found that, often, after a small
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amount of training of a neural network, any negative eigenvalues in the Hessian are very
small.

3. Methods

We performed experiments in three settings. In each setting, we trained for a variety of
combinations of hyperparameters, and tracked various quantities, including the operator
norm of the Hessian, and the SAM edge. Code is available (Long and Bartlett, 2024).

3.1 Settings

First, we trained a depth-four fully connected network, with 1000 nodes in each hidden
layer, on MNIST using the quadratic loss with batch gradient descent. We trained for eight
hours of wallclock time on a V100 GPU. The weights were initialized using Glorot normal
initialization. Prior to training, the data was centered.

Next, we trained a CNN on CIFAR10 using the quadratic loss. To make batch gradients
feasible, we only trained on the first 1000 examples. The CNN architecture was standard:
there were two blocks comprised of a convolutional layer with a ReLU nonlinearity followed
by layer normalization, then 2 × 2 max pooling with a 2 × 2 stride. In the first block the
convolutional layer had 16 channels, and in the second block, it had 32 channels. Training
was performed for 12 hours on a V100 GPU. Here again, the weights were initialized using
Glorot normal initialization, and data was centered before training.

For the final setting, we modified the sample implementation of Transformers distributed
with the Haiku package (see Hennigan et al., 2023), training an autoregressive character
language model using the tiny_shakespeare dataset, using minibatches of size 128. The
operator norm of the Hessian, and its principal directions, were also estimated using mini-
batches. The architecture was as in the Haiku distribution, with 6 layers, 8 heads, a key
size of 32, “model size” of 128, and sequence length of 64. Because it introduces noise,
Dropout was removed. The last 10000 lines of tiny_shakespeare were set aside as a test
set, and the remaining data was used for training.

3.2 Hyperparameters

We trained once for each combination of the following hyperparameters:

• For MNIST,

– learning rates η: 0.03, 0.1, 0.3,

– SAM offsets ρ (see (1)): 0.0, 0.1, 0.3, 1.0.

• For CIFAR10,

– learning rates: 0.0003, 0.001, 0.003, 0.01,

– ρ values: 0.0, 0.1, 0.3, 1.0

• For tiny_shakespeare,

– learning rates: 0.01, 0.02, 0.05, 0.1, 0.2, 0.5

7
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Figure 2: Magnitudes of the largest eigenvalues of the Hessian when an MLP is trained
with GD on MNIST.

– ρ values: 0.0, 0.1, 0.3, 1.0.

Results were discarded whenever training diverged.

3.3 Implementation

We coded our experiments using Jax (Bradbury et al., 2018), along with Flax (Heek et al.,
2023) (for the image classification experiments), and Haiku (Hennigan et al., 2020) (for the
language model experiments).

3.4 Unreported preliminary experiments

During an exploration phase, we conducted a number of preliminary experiments, during
which we identified new statistics to collect, what hyperparameter combinations to try, etc.
(For example, we wanted to minimize the fraction of runs with learning rates too small
to bring about the edge of stability, and those with learning rates so large that training
diverged.) The results reported in this paper were one series of final runs for the last
combinations of hyperparameters.

4. Results

All of the results from every run that did not diverge may be found in a supplementary
folder. (In all of the plots, the training time in seconds is plotted along the horizontal axis.)
In this section, we go over some of the most noteworthy results.

4.1 MNIST

Figure 2 contains plots of the magnitudes of the top three eigenvalues of the Hessian, along
with 2/η and the SAM-edge, when an MLP was trained on MNIST using gradient descent.
There is a plot for each learning rate η. As reported by Cohen et al. (2021), if the learning
rate is large enough, the operator norm of the Hessian stabilizes near 2/η. We can think of
GD as a special case of SAM with ρ = 0; the SAM-edge is of course 2/η in that case.

Figure 3 contains the analogous plots when ρ = 0.1. Despite the fact that gradients are

8
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(b) η = 0.1
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Figure 3: Magnitudes of the largest eigenvalues of the Hessian when an MLP is trained
with SAM on MNIST, with ρ = 0.1.
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Figure 4: Magnitudes of the largest eigenvalues of the Hessian when an MLP is trained
with SAM on MNIST, with ρ = 0.1.

taken from locations at a distance just 0.1 from each of the iterates, the cumulative effect
results in solutions with Hessians an order of magnitude smaller than those seen with GD.

Figure 4 contains the analogous plots, but without 2/η, and with the axis rescaled to
zoom in on the SAM edge and the magnitudes of the principal eigenvalues of the Hessian.
The operator norm closely tracks the SAM edge derived in Section 2. SAM operates at the
edge of stability for a wider variety of learning rates than GD. We also see the SAM edge
decreasing over time, as the gradients get smaller. The top three principal components are
very close to one another. This is consistent with the view that SAM effectively performs
gradient descent on the operator norm of the Hessian – if it did, a step would reduce the
principal eigenvalue, while leaving the others at their old values, bringing the top eigenvalue
closer to the others.

In Figure 5, we plot the training losses, when ρ = 0.0 and ρ = 0.1. SAM achieves flatter
minima with similar loss. We also see that SAM drives training toward smoother regions
in parameter space while the training error is still fairly high.

In Figure 6, we examine alignments between the gradients and the principal eigenvector
of the Hessian, again where ρ = 0.1. We evaluate both the gradient at the iterate, and the
gradient evaluated by SAM, at a distance ρ uphill. Since there are millions of parameters,
random directions would have a tiny amount of alignment. We see a significant alignment
between both gradients and the principal eigenvector of the Hessian, though the gradient
used by SAM is aligned more closely. Recall that there are a number of eigenvectors whose
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Figure 5: Training loss with GD and SAM on MNIST.
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Figure 6: Alignments between gradients and the principal eigenvector of the Hessian with
SAM on MNIST when ρ = 0.1.
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(c) η = 0.003
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(d) η = 0.01

Figure 7: Magnitudes of the largest eigenvalues of the Hessian when a CNN is trained with
GD on 1000 examples from CIFAR10.
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(c) η = 0.003

Figure 8: Magnitudes of the largest eigenvalues of the Hessian when a CNN is trained with
SAM, with ρ = 0.1, on CIFAR10.

eigenvalues are nearly equal to the largest value. Reducing their eigenvalues can also make
progress toward ultimately reducing the operator norm of the Hessian.

4.2 CIFAR10

In this section, we report on experiments with convolutional neural networks trained on
1000 examples from CIFAR10.

As before, we start with the case of GD in Figure 7. At the larger learning rates, training
is reaching the edge of stability.

Next, we plot the same quantities when the network is trained with SAM, with ρ = 0.1,
in Figure 8. Here, the eigenvalues are multiple orders of magnitude smaller than 2/η.
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Figure 9: Magnitudes of the largest eigenvalues of the Hessian when a CNN is trained with
SAM, with ρ = 0.1, on CIFAR10.
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Figure 10: Training loss with SGD and SAM (with ρ = 0.1) on CIFAR10.

Next, in Figure 9 we no longer plot 2/η, and zoom in on the region where the SAM
edge and the eigenvalues are. Here, as with MNIST, we once again see SAM operating at
the edge of stability identified in Section 2, even at learning rates where GD did not.

Figure 10 contains plots of the training loss on CIFAR10, for ρ = 0.0 and ρ = 0.1. In
this task, SAM achieves wider minima without sacrificing training error. In fact, for the
larger step sizes, its training error is better.

In Figure 11, we examine alignments between the gradients and the principal eigenvector
of the Hessian in the case where ρ = 0.1 and a CNN is trained on CIFAR10. Again, we
see significant alignment, especially at the higher learning rates. As in MNIST, we also
see stronger alignment with the principal direction for the gradients evaluated at the uphill
location used by SAM.
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Figure 11: Alignments between gradients and the principal eigenvector of the Hessian with
SAM on CIFAR10.
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Figure 12: Magnitudes of the largest eigenvalues of the Hessian when a language model is
trained with SGD.

4.3 Language modeling

Next, we report on experiments training a language model. As before, we start with SGD,
here in Figure 12.

Next, we plot the same quantities when the network is trained with SAM, with ρ = 0.3,
in Figure 13. Here, the operator norm of the Hessian is significantly less than when SGD is
used, and we see evidence that training in SAM operates at the edge of stability analyzed
in Section 2. In Figure 14, we zoom in on the lower part of the curve, and plot the operator
norm of the Hessian, to examine the relationship between this quantity and the SAM edge
in more detail.

Figure 15 contains plots of the training loss, once again estimated per-minibatch. We
included these mainly to motivate the combinations of hyperparameters where we examined
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Figure 13: Magnitudes of the largest eigenvalues of the Hessian when a language model is
trained with SAM, with ρ = 0.3.
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Figure 14: Magnitudes of the largest eigenvalues of the Hessian when a language model is
trained with SAM, with ρ = 0.3.
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Figure 15: Training loss in the language modeling experiments.

15



Long and Bartlett

0 10000 20000 30000 40000 50000 60000
0.0

0.1

0.2

0.3

0.4

0.5
original gradient alignments
SAM gradient alignments

(a) ρ = 0.3, η = 0.01

0 10000 20000 30000 40000 50000 60000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 original gradient alignments
SAM gradient alignments

(b) ρ = 0.3, η = 0.02

0 10000 20000 30000 40000 50000 60000
0.0

0.1

0.2

0.3

0.4
original gradient alignments
SAM gradient alignments

(c) ρ = 0.3, η = 0.05

0 10000 20000 30000 40000 50000 60000
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
original gradient alignments
SAM gradient alignments

(d) ρ = 0.3, η = 0.1

0 10000 20000 30000 40000 50000 60000
0.00

0.05

0.10

0.15

0.20

0.25

0.30 original gradient alignments
SAM gradient alignments

(e) ρ = 0.3, η = 0.2

0 10000 20000 30000 40000 50000 60000
0.0

0.1

0.2

0.3

0.4

0.5 original gradient alignments
SAM gradient alignments

(f) ρ = 0.3, η = 0.5

Figure 16: Alignments between gradients and the principal direction of the Hessian in the
language modeling experiments.

other aspects of the dynamics of SAM. As expected, while SAM does take longer to achieve
a certain loss, it ultimately achieves training error similar to SGD, but with less sharpness.

Figure 16 contains plots of the alignment, once again estimated per-minibatch. For the
large learning rates, late in training, despite the sampling noise arising from the use of
minibatches, we see a systematic tendency for the SAM gradients to align more closely with
the principal eigenvector of the Hessian than the gradients at the initial solution. However,
for the smallest learning rates, the opposite holds.

5. Related work

In this section, we describe some previously mentioned related work in more detail, and
also go over some additional papers.

Bartlett et al. (2023) analyzed the dynamics of SAM applied to a convex quadratic
objective, and showed that it converges to oscillating in the direction of the principal eigen-
vector. Then they analyzed one step of SAM in more generality, starting at a solution near
a local minimum, analogous to one of the steady-state solutions in the convex quadratic
case. They showed that the update from this point can be decomposed into three terms,
a term that corresponds to the update in the convex quadratic case (which moves to the
other solution in the oscillation), a term in the descent direction of the operator norm of the
Hessian, and a third term, which, for small η and ρ, is of lower order. The edge-of-stability
point identified here is not a consequence of that analysis.

Among the varied results of Wen et al. (2023) is a theorem that may be paraphrased
by saying that, for a smooth enough objective functions, in an overparameterized regime
where there is a manifold of minimizers, once SAM’s iterates are close to this manifold, its

16



SAM and the Edge of Stability

updates track the updates that would be obtained by performing gradient flow to minimize
the operator norm of the Hessian among minimizers of the loss. Their main results use the
assumptions that η log(1/ρ) and ρ/η are sufficiently small. As was seen by Cohen et al.
(2021) and also here, the edge-of-stability phenomenon dissipates as η gets small.

Andriushchenko et al. (2023) demonstrated empirically that networks trained by SAM
tend to have features with lower rank, and illustrated how this can arise using a theoretical
analysis of a two-layer network.

Cohen et al. (2022) demonstrated that some adaptive gradient methods, such as Adam,
operate at the edge of stability.

A number of authors have provided insight by analyzing the dynamics of gradient descent
under clean and simple conditions under which the edge of stability arises (see Zhu et al.,
2022; Agarwala et al., 2023; Ahn et al., 2023; Chen and Bruna, 2022; Even et al., 2023).
Properties of the loss landscape that are compatible with edge of stability training have also
been described (and evaluated empirically) (Ma et al., 2022; Ahn et al., 2022). Arora et al.
(2022) established conditions under which an algorithm like GD, but that normalizes the
gradients so that they have unit length, operates at the edge of stability, and also analyzed
an algorithm that takes gradients with respect to the square root of the loss.

Some authors have studied an algorithm like SAM, but, instead of updating using the
gradient from the neighbor of the current iterate that is a constant distance ρ uphill, instead
uses a gradient from neighbor whose distance from the current iterate scales with the norm of
the gradient at the iterate (Andriushchenko and Flammarion, 2022; Agarwala and Dauphin,
2023), what has been called “unnormalized SAM”. Dai et al. (2023) made a case that the
SAM’s normalization is crucial, motivating research into the original algorithm.

6. Conclusion

We have computed the critical value of operator norm of the Hessian corresponding to
the edge of stability for SAM. This SAM-edge is a decreasing function of the norm of the
gradient, so it tends to decrease as training progresses. For three deep learning training
tasks, we have seen that the operator norm of the Hessian closely tracks this edge of stability,
despite the noise introduced by estimating using minibatches in the tiny_shakespeare task.

SAM interacts strongly with the edge-of-stability phenomenon to drive down the oper-
ator norm of the Hessian, while also driving down the training error. Insight into how and
why this happens could be promoted by identifying conditions under which SAM provably
operates at its edge of stability, analogous to the results obtained for GD mentioned in
Section 5. The analyses of Bartlett et al. (2023) and Wen et al. (2023) both required η
and ρ to be small, and analyzed the effect of the dynamics on the operator norm of the
Hessian late in training, whereas we empirically see a strong effect even early in training.
One especially interesting question is how the training error is reduced so rapidly despite
the overshooting associated with edge-of-stability training.

The experiments with language models showed that the edge-of-stability phenomenon
can also be seen, to a limited extent, when training with SGD. A more thorough under-
standing of SAM and the edge of stability when training with SGD is another interesting
and important subject for further research. (Wen et al. (2023) analyzed a variant of SAM
that works using SGD one example at a time, and pointed out strong qualitative differences
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between the algorithm that works with batch gradients and this extreme version of SGD,
suggesting that interesting and rich structure might be found in the behavior of SAM with
minibatches of intermediate size.)

In our experiments, there was a general tendency for the gradients used by SAM to be
more aligned with the principal direction of the Hessian than gradients evaluated at the
iterates. It is not clear why this is the case, and under what conditions it happens. The
theoretical analysis by Bartlett et al. (2023) depended critically on the assumption that the
update gradient was aligned with the principal eigenvector of the Hessian, which raises the
possibility that the fact that the gradients used by SAM are aligned more closely with the
principal direction of the Hessian is key to its success. However, it is not clear under what
conditions, and why, this improved alignment is seen, and when it is helpful. There also
was an intriguing exception when language models were trained with SGD using small step
sizes that it would be interesting to further explore.
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