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Abstract

We study here a Gaussian mixture model (GMM) with rare events data. In this case, the
commonly used Expectation-Maximization (EM) algorithm exhibits extremely slow nu-
merical convergence rate. To theoretically understand this phenomenon, we formulate the
numerical convergence problem of the EM algorithm with rare events data as a problem
about a contraction operator. Theoretical analysis reveals that the spectral radius of the
contraction operator in this case could be arbitrarily close to 1 asymptotically. This theo-
retical finding explains the empirical slow numerical convergence of the EM algorithm with
rare events data. To overcome this challenge, a Mixed EM (MEM) algorithm is developed,
which utilizes the information provided by partially labeled data. As compared with the
standard EM algorithm, the key feature of the MEM algorithm is that it requires addi-
tionally labeled data. We find that MEM algorithm significantly improves the numerical
convergence rate as compared with the standard EM algorithm. The finite sample perfor-
mance of the proposed method is illustrated by both simulation studies and a real-world
dataset of Swedish traffic signs.

Keywords: Rare Events Data, Gaussian Mixture Model, Expectation-Maximum Algo-
rithm, Partial Labeled Data, Unsupervised Learning

1. Introduction

In this study, we investigate a problem related to the analysis of rare events data. Rare
events data are defined as a type of data with a binary response (Y ∈ R1) and feature
vector (X ∈ Rp). Furthermore, we require that the probability of the response belonging
to one particular class (e.g., Y = 1) is extremely small. For convenience, we refer to this
class (i.e., the class with Y = 1) as the minor class, representing rare events, and the
other class (i.e., the class with Y = 0) as the major class, representing non-rare events. To
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theoretically model the phenomenon of rare events, we adopt the idea proposed by Wang
(2020) and assume that the response probability for the minor class shrinks towards 0 as
the sample size diverges to infinity. Note that the rare event studied here is not an extreme
value event. In this work, a rare event refers to a random event generated by a binary
distribution, where the response probability for one particular class is extremely small.
Note that the binary distribution is a discrete distribution. In contrast, an extreme value
event is typically referred to a random event generated by one particular type of extreme
value distribution (e.g., Pareto distribution), which is often a continuous distribution (Kotz
and Nadarajah, 2000).

Rare events data are commonly encountered in practical scenarios. For example, con-
sider an online banking system that generates large volumes of daily transaction records.
Each transaction record can be treated as a sample and classified into two classes based on
whether it is related to fraud or not. Naturally, the probability of a transaction record being
a fraud is extremely low, making fraud records rare events (KRI, 2010; Sanz et al., 2015).
Another example involves computed tomography (CT) scans in medical imaging studies
(Gu et al., 2019; Polat, 2022). The objective here is to identify specific disease regions
within high-resolution CT images. A common approach is to treat each pixel as a sam-
ple (Heimann et al., 2009; Mansoor et al., 2015). Subsequently, positive samples represent
pixels associated with disease, while negative samples represent pixels unrelated to disease.
Often, the proportion of disease-related pixels (i.e., positive samples) is extremely small,
thus classifying them as rare events. Other examples of rare events related data include
drug discovery (Amaro et al., 2018; Korkmaz, 2020), data leakage prevention (Sigholm and
Raciti, 2012), and intrusion detection in the cybersecurity scenario (Bagui and Li, 2021).
For a comprehensive summary, we refer to Chandola et al. (2009) and Pimentel et al. (2014).

The statistical analysis of rare events data differs significantly from that of regular data.
First, rare events are rare and thus contain more valuable information than non-rare events.
For example, in a standard logistic regression model, Wang (2020) discovered that the sta-
tistical efficiency of the maximum likelihood estimator (MLE) is predominantly influenced
by the sample size of rare events. In contrast, the sample size of non-rare events plays
a considerably less significant role. Consequently, direct implementation of the standard
maximum likelihood estimation results in unnecessarily high computational costs and ad-
ditional storage requirements, particularly for datasets with massive sizes. In this regard,
various undersampling methods have been developed to reduce unnecessary computation
(Nguyen et al., 2012; Wang, 2020; Wang et al., 2021). These methods are not limited to lo-
gistic regression and have been applied to decision trees (Lin et al., 2017; Pozo et al., 2021),
support vector machine (Tang et al., 2009; Bao et al., 2016) and many others (Spelmen and
Porkodi, 2018; Hoyos-Osorio et al., 2021). Distributed computation methods with similar
objectives have also been developed by Lemnaru et al. (2012); Duan et al. (2020) and Shen
et al. (2021).

Despite significant progress in the literature on rare events data analysis, existing meth-
ods often share a common limitation: the requirement for fully labeled datasets. This
implies that the binary response Y for each sample must be accurately observed and can-
not be latent or missing. Consequently, a statistical learning model can be constructed to
relate the binary response Y to the feature vector X. However, this is not always feasible
in practical applications. In fact, for many real-world applications, the collection of the
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feature vector X is automated using well-designed hardware and software, resulting in rel-
atively low data collection costs. On the other hand, obtaining the response Y often relies
on human effort and is considerably more expensive. For instance, in the case of obtaining
a nodule mask for a lung CT image, it usually involves hiring two or more experienced
radiologists to manually annotate the nodule location in a two-stage process (Setio et al.,
2017). This makes the problem of unsupervised and semi-supervised learning a problem of
great importance.

As our first attempt, we investigate one of the most commonly used unsupervised learn-
ing methods, the Gaussian mixture model (GMM). The GMM is a model of fundamental
importance that has been extensively studied in the literature (Boldea and Magnus, 2009;
McLachlan et al., 2019). The Expectation-Maximization (EM) algorithm is commonly em-
ployed for GMM estimation (Wu, 1983; Xu and Jordan, 1996), and its theoretical properties
have been extensively examined. Specifically, Dempster et al. (1977) first introduced the
general form of the EM algorithm and demonstrated that the likelihood value does not de-
crease with each iteration. Wu (1983) rigorously proved that the estimator obtained by the
EM algorithm numerically converges to the MLE under appropriate regularity conditions.
Xu and Jordan (1996) investigated the numerical convergence rate of the EM algorithm
for GMM and established an interesting relationship between the EM algorithm and gra-
dient ascent methods. They showed that the conditional number of the EM algorithm is
always smaller than that of the gradient ascent algorithm, suggesting that the numerical
convergence speed of the EM algorithm is not worse. Xu et al. (2016) and Daskalakis et al.
(2017) conducted a global analysis of the EM algorithm for the mixture of two Gaussians
from random initialization. However, all these theoretical results were obtained under the
assumption of non-rare events data. In contrast, it has been widely observed that the stan-
dard EM algorithm exhibits painfully slow convergence rates for GMM with rare events.
This intriguing phenomenon remains unexplained by existing theories. Naim and Gildea
(2012) have provided simulation-based arguments, but no rigorously asymptotic theory has
been developed in this regard. The aim of this study is to fill this important theoretical
gap.

To address this problem, we formulate the EM algorithm for the GMM with rare events
as an iterative algorithm governed by a contraction operator. The convergence rate of this
algorithm is predominantly determined by the spectral radius of the contraction operator.
Our theoretical studies reveal that, as the percentage of the rare events approaches 0, the
spectral radius of the contraction operator could be arbitrarily close to 1 asymptotically,
causing the numerical convergence of the EM algorithm extremely slow. Our simulation
studies also confirm that the spectral radius of the contraction operator approaches 1 as
the response probability tends to 0. This indicates that the numerical convergence rate
of the standard EM algorithm can be extremely slow for a GMM with rare events. To
overcome this challenge, it becomes necessary to obtain a subsample of data with accurately
observed labels. By doing so, we aim to significantly enhance the numerical convergence
properties of the EM algorithm. Consequently, we propose a Mixed EM (MEM) algorithm
and meticulously examine its numerical convergence properties. Our findings demonstrate
that the numerical convergence properties of the EM algorithm can be improved when the
percentage of labeled data is carefully selected. Extensive simulation studies are presented
in this paper to demonstrate the numerical convergence properties of these two algorithms.
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In summary, we aim to make the following contributions to the existing literature. First,
we theoretically prove that the numerical convergence rate of the standard EM algorithm
can be extremely slow for a GMM with rare events. Second, to fix the problem, an MEM
algorithm is developed by using a partially labeled dataset. We theoretically prove that the
numerical convergence rate of this algorithm can be much faster than that of the standard
EM algorithm. These theoretical findings are further verified by extensive numerical studies.
The technical details are given in our Appendix A.1–A.2, which is heavily involved but
fairly standard. The remainder of this paper is organized as follows. Section 2 introduces
the model setting for unsupervised learning and the numerical convergence analysis of the
standard EM algorithm. Section 3 presents the model settings of semi-supervised learning
and a numerical convergence analysis of the MEM algorithm. Numerical studies are given
in Section 4. Moreover, the application of the proposed methods is then illustrated using
the Swedish Traffic Signs dataset. Finally, the article concludes with a brief discussion in
Section 5. All technical details are provided in the Appendices.

2. Unsupervised Learning

2.1 Problem Setup

Assume a total of N observations are indexed by 1 ≤ i ≤ N . The ith observation is denoted
as Xi ∈ Rp, which is a p-dimensional random vector. To model the random behavior
of Xi, a GMM is considered (McLachlan and Basford, 1988; Boldea and Magnus, 2009;
McNicholas, 2016). Specifically, we assume a latent binary random variable Yi ∈ {0, 1} with
P (Yi = 1) = α for some response probability 0 < α < 1. Next, we assume that Xi follows
a normal distribution with mean µ0 = (µ0,j) ∈ Rp and covariance Σ0 = (σ0,j1j2) ∈ Rp×p if
Yi = 0. Otherwise, we assume another normal distribution for Xi with mean µ1 = (µ1,j) ∈
Rp and covariance Σ1 = (σ1,j1j2) ∈ Rp×p. Suppose A = (Aij) ∈ Rp×p be an arbitrary

square matrix of p × p dimensions. Then, we define vec(A) = (Aij : 1 ≤ i, j ≤ p) ∈ Rp2
.

Moreover, if A is a symmetric matrix in the sense that Aij = Aji for 1 ≤ i ≤ j ≤ p, we
define the half-vec operator vech(A) = (Aij : 1 ≤ i ≤ j ≤ p) ∈ Rp(p+1)/2 (Boldea and

Magnus, 2009). In this case, there should exist a unique matrix D ∈ Rp2×p(p+1)/2 such
that Dvech(A) = vec(A). We then refer to D as a duplication matrix. See Magnus (1988),
Boldea and Magnus (2009), and Magnus and Neudecker (2019) for further details. We
write θ = (α, µ>0 , vech(Σ0)>, µ>1 , vech(Σ1)>)> ∈ Rq as our interested parameter vector with
q = p2+3p+1. Then, the probability density function of the GMM can be written as fθ(x) =
αφµ1,Σ1(x) + (1 − α)φµ0,Σ0(x), where φµ,Σ(x) = (|2πΣ|)−1/2 exp{−(x − µ)>Σ−1(x − µ)/2}
is the probability density function of a multivariate normal distribution with mean µ ∈ Rp
and covariance Σ ∈ Rp×p (McLachlan and Basford, 1988).

For a classical GMM, we should have α ∈ (0, 1) as a fixed parameter in the sense that it
does not vanish as the sample size increases. Under this setup, we should have the expected
sample size ratio E(N1)/N = α 9 0 as N →∞, where N1 =

∑N
i=1 Yi. Unfortunately, this

classical setup is inappropriate for applications involving rare events. In this case, one of
the two latent classes (e.g., the class with Yi = 1) is considered as the minor class with
a mixing probability α → 0 as N → ∞, and the other latent class (e.g., the class with
Yi = 0) is considered as the major class with a mixing probability 1 − α → 1 as N → ∞.
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Consequently, the sample size associated with the minor class (e.g., N1) is significantly
smaller than that of the major class (e.g., N0 = N −N1) in the sense that N1/N →p 0 as
N →∞. It is worthwhile mentioning that α cannot be excessively small either. Otherwise,
the sample size of the minor latent class (i.e., N1) might shrink towards 0. Consequently,
the parameters associated with the minor class (i.e., µ1 and Σ1) cannot be consistently
estimated even if class label Yis are given. In this case, no meaningful asymptotic theory
can be established. For the sake of asymptotic theory development, we do need to assume
that E(N1) → ∞ as N → ∞. This further requires that Nα → ∞ as N → ∞. Therefore,
throughout the remainder of this article, we always assume that (1) α→ 0 and (2) Nα→∞
as N →∞; see Wang (2020), Wang et al. (2021) and Li et al. (2023) for further discussion.
These two assumptions are called the rare events assumptions.

2.2 The EM Algorithm

Next, we consider how to compute the MLE for the GMM. The log-likelihood function is
given as follows

L(θ) =
N∑
i=1

log fθ(Xi). (1)

Subsequently, we can obtain the MLE as θ̂ = (α̂, µ̂>0 , vech(Σ̂0)>, µ̂>1 , vech(Σ̂1)>)> = argmaxθ
L(θ). To compute the MLE, a classical EM algorithm can be used (Dempster et al., 1977;
Biernacki et al., 2003). In the past literature, a standard EM algorithm was often motivated
by the method of complete log-likelihood, where the latent class label Yis are pretended to
be known. In this study, we present another interesting perspective, where the EM algo-
rithm is inspired by the gradient condition of the log-likelihood function without knowing
the latent class labels.

Specifically, define L̇(θ) = (L̇α(θ), L̇µ0(θ)>, L̇Σ0(θ)>, L̇µ1(θ)>, L̇Σ1(θ)>)> ∈ Rq, where
L̇α(θ) = ∂L(θ)/∂α ∈ R, L̇µk(θ) = ∂L(θ)/∂µk ∈ Rp and L̇Σk(θ) = ∂L(θ)/∂vech(Σk) ∈
Rp(p+1)/2 with k ∈ {0, 1}. Recall that θ̂ denotes the MLE. Consequently, we should
have a gradient condition as L̇(θ̂) = 0. This suggests a set of estimation equations
as α̂ = Fα(θ̂), µ̂k = Fµk(θ̂) and vech(Σ̂k) = FΣk(θ̂) with k ∈ {0, 1}. Here F(θ) =
(Fα(θ),Fµ0(θ)>,FΣ0(θ)>, Fµ1(θ)>,FΣ1(θ)>)> ∈ Rq is a mapping function, where

Fα(θ) = N−1
N∑
i=1

πi ∈ R, Fµ0(θ) =
{ N∑
i=1

(1− πi)
}−1

N∑
i=1

(1− πi)Xi ∈ Rp,

FΣ0(θ) =
{ N∑
i=1

(1− πi)
}−1

N∑
i=1

(
1− πi

)
vech

{(
Xi − µ0

)(
Xi − µ0

)>}
∈ R

(p+1)p
2 ,

Fµ1(θ) =
( N∑
i=1

πi

)−1
N∑
i=1

πiXi ∈ Rp, (2)

FΣ1(θ) =
( N∑
i=1

πi

)−1
N∑
i=1

πivech
{(
Xi − µ1

)(
Xi − µ1

)>}
∈ R

(p+1)p
2 ,
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and πi = P (Yi = 1|Xi) = fθ(Xi)
−1αφµ1,Σ1(Xi) is the posterior probability. An iterative

algorithm can then be developed accordingly.

Let θ̂(0) = (α̂(0), µ̂
(0)>
0 , vech(Σ̂

(0)
0 )>, µ̂

(0)>
1 , vech(Σ̂

(0)
1 )>)> ∈ Rq be the initial estima-

tor. Let θ̂(t) = (α̂(t), µ̂
(t)>
0 , vech(Σ̂

(t)
0 )>, µ̂

(t)>
1 , vech(Σ̂

(t)
1 )>)> ∈ Rq be the estimator ob-

tained in the tth step. Subsequently, we obtain the (t + 1)th step estimator θ̂(t+1) =

(α̂(t+1), µ̂
(t+1)>
0 , vech(Σ̂

(t+1)
0 )>, µ̂

(t+1)>
1 , vech(Σ̂

(t+1)
1 )>)> ∈ Rq as α̂(t+1) = Fα(θ̂(t)), µ̂

(t+1)
k =

Fµk(θ̂(t)) and vech(Σ̂
(t+1)
k ) = FΣk(θ̂(t)) with k ∈ {0, 1}. The aforementioned steps should

be iteratively executed until convergence. By the time of convergence, we obtain the MLE
as θ̂ = (α̂, µ̂>0 , vech(Σ̂0)>, µ̂>1 , vech(Σ̂1)>)> ∈ Rq. As one can see, this is an algorithm
fully implied by the gradient condition. Another possible way to develop an algorithm
is the complete-data likelihood method, where the latent class labels Yis are assumed to
be known(Dempster et al., 1977; Wu, 1983). This leads to a set of maximum likelihood
estimators for the interested parameters with analytical formula. This constitutes the max-
imization step. Once a set of estimators are obtained for the interested parameters, the
posterior probabilities of the latent class label can be analytically derived. This constitutes
the expectation step. Both the maximization and expectation steps lead to a standard
EM algorithm, as to be demonstrated in the first part of Appendix A.3. We find that this
standard EM algorithm is exactly the same as the above algorithm inspired by the gradient
condition (Dempster et al., 1977; Wu, 1983).

2.3 Numerical Convergence Analysis

To investigate the numerical convergence property, the key issue is to study the difference
between θ̂ and θ̂(t+1). Subsequently, the EM algorithm can be simply written as θ̂(t+1) =
F(θ̂(t)) by (2). If θ̂(t) converges numerically to θ̂ as t → ∞, we should have θ̂ = F(θ̂).
Consequently, we have θ̂(t+1) − θ̂ = F(θ̂(t)) − F(θ̂). Define Fj(θ) as the jth element of

the mapping function F(θ). We then have Fj(θ̂(t)) − Fj(θ̂) = Ḟj(θ̃(t)
j )(θ̂(t) − θ̂), where

θ̃
(t)
j = η

(t)
j θ̂(t) + (1 − η(t)

j )θ̂ ∈ Rq and 0 < η
(t)
j < 1 (Feng et al., 2013). We define Ḟ(θ) =

(Ḟα(θ), Ḟµ0(θ)>, ḞΣ0(θ)>, Ḟµ1(θ)>, ḞΣ1(θ)>)> ∈ Rq×q as the contraction operator, where
Ḟα(θ) = ∂Fα(θ)/∂θ = (Ḟαα(θ), Ḟαµ0(θ)>, ḞαΣ0(θ)>, Ḟαµ1(θ)>, ḞαΣ1(θ)>)> ∈ Rq, Ḟµk(θ) =
∂Fµk(θ)/∂θ> = (Ḟµkα(θ), Ḟµkµ0(θ), ḞµkΣ0(θ), Ḟµkµ1(θ), ḞµkΣ1(θ)) ∈ Rp×q, and ḞΣk(θ) =
∂FΣk(θ)/∂θ> = (ḞΣkα(θ), ḞΣkµ0(θ), ḞΣkΣ0(θ), ḞΣkµ1(θ), ḞΣkΣ1(θ)) ∈ Rp(p+1)/2×q with k ∈
{0, 1}. Therefore, the asymptotic behavior of Ḟ(θ) is critical for the numerical convergence
of the EM algorithm (Xu and Jordan, 1996; Ma et al., 2000). Next, we should study the
asymptotic behavior of Ḟ(θ) under the rare events assumptions with great care. This leads
to the following theorem. Its rigorous proof is provided in Appendix A.1.

Theorem 1 Assume α→ 0 and Nα→∞ as N →∞. We then have as N →∞

Ḟ(θ)→pM =


1 0 0 0 0

µ0 − µ1 0 0 0 0
∆Σ0α 0 0 0 0

∆µ1α −Σ1Σ−1
0 ∆µ1Σ0 Ip ∆µ1Σ1

vech(∆Σ1α) ∆Σ1µ0 ∆Σ1Σ0 ∆Σ1µ1 −∆Σ1Σ1

 ,
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where ∆Σ0α = −vech{Σ1 − Σ0 + (µ1 − µ0)(µ1 − µ0)>} ∈ Rp(p+1)/2, ∆µ1α = (∆µ1α,j) ∈ Rp,
∆µ1α,j = −

∫
φ2
µ1,Σ1

(x)φ−1
µ0,Σ0

(x)(xj−µ1,j)dx, ∆µ1Σk = (−1)k+1E{(Xi−µ1)vec(γikγ
>
ik)
>|Yi =

1}D/2 ∈ Rp×p(p+1)/2 with k ∈ {0, 1}, ∆Σ1α = (∆Σ1α,j1j2) ∈ Rp×p, ∆Σ1α,j1j2 = −
∫
φ2
µ1,Σ1

(x)

φ−1
µ0,Σ0

(x){(xj1 − µ1,j1)(xj2 − µ1,j2) − σ1,j1j2}dx, ∆Σ1µk = (−1)k+1E[vech{(Xi − µ1)(Xi −
µ1)>}γ>ik|Yi = 1]− (−1)k+1vech(Σ1)(µ1 − µk)>Σ−1

k ∈ Rp(p+1)/2×p with k ∈ {0, 1}, ∆Σ1Σk =
E[vech{(Xi−µ1)(Xi−µ1)>}vec(γikγ

>
ik)
>|Yi = 1]D/2−vech(Σ1)vec[Σ−1

k {Σ1+(µ1−µk)(µ1−
µk)
>}Σ−1

k ]>D/2 ∈ R
p(p+1)

2
× p(p+1)

2 and γik = Σ−1
k (Xi − µk) with k ∈ {0, 1}.

By Theorem 1, we obtain a number of interesting findings. First, it can be confirmed that
the determinant ofM− Iq is 0. Therefore,M has at least one eigenvalue as 1. This further
implies that the spectral radius of the contraction operator is no less than 1 as α → 0
asymptotically. This suggests that the numerical convergence rate of the EM algorithm for
GMM with rare events could be extremely slow, thereby necessitating the large number
of iterations. More specific, we know that α̂(t+1) − α̂ ≈ α̂(t) − α̂, since the first diagonal
component of M is 1 whereas all other components in the first row are 0. This suggests
that the numerical convergence rate of α̂(t) should be extremely slow. Unfortunately, this

side effects spill over into both µ̂
(t)
0 and Σ̂

(t)
0 . Specifically, by Theorem 1, we know that

µ̂
(t+1)
0 −µ̂0 ≈ (µ0−µ1)(α̂(t)−α̂), since the (2, 1)th component ofM is (µ0−µ1). This suggests

that the numerical convergence rate of µ̂
(t)
0 is mainly controlled by α̂(t), which unfortunately

converges at an extremely slow speed as mentioned before. Therefore, we know that the

numerical convergence rate of µ̂
(t)
0 cannot be fast either. By similar arguments, we know

that the numerical convergence property of Σ̂
(t)
0 is not optimistic either. The numerical

convergence properties of µ̂
(t)
1 and Σ̂

(t)
1 are considerably more complicated. To gain an

intuitive understanding, we consider an ideal case, where α̂(t) = α̂, µ̂
(t)
0 = µ̂0, and Σ̂

(t)
k = Σ̂k

with k ∈ {0, 1}. Then by the 4th row of M, we know that µ̂
(t+1)
1 − µ̂1 ≈ µ̂

(t)
1 − µ̂1, which

implies that µ̂
(t)
1 cannot converge fast, even if the maximum likelihood estimators α̂, µ̂0

and Σ̂k are already given. This side effect also spills over into the numerical convergence

property of Σ̂1, since the numerical convergence of Σ̂
(t)
1 is also affected by that of µ̂

(t)
1 . The

consequence is that θ̂(t+1) ceases approaching θ̂. Then how to fix the problem becomes an
important problem.

3. Semi-Supervised Learning

3.1 Partially Labeled Sample

By the careful analysis of the previous section, we know that the MLE of a GMM with rare
events can hardly be computed by a standard EM algorithm, if only unlabeled data are
available. To fix the problem, it seems very necessary to obtain an additional subsample
of data with accurately observed labels. By doing so, we wish the numerical convergence
properties of the EM algorithm can be improved substantially. Note that the sole purpose
for comparing the MEM and EM algorithms is not to establish any type of superiority
about the MEM algorithm over the EM algorithm. This comparison is obviously unfair
since the MEM algorithm enjoys the information provided by partially labeled instances
while the EM algorithm does not. The sole purpose here is to demonstrate the value of
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those partially labeled instances. We are able to do so since the only difference between
the MEM and EM algorithms is the partially labeled data. Therefore, any performance
improvements as demonstrated by the MEM algorithm over the EM algorithm can be fully
attributed to those partially labeled instances.

Specifically, we assume that the size of this labeled dataset is m with m/N → κ as
N → ∞ for some κ > 0. Next, for each labeled sample i, we use Y ∗i ∈ {0, 1} to represent
the observed response with P (Y ∗i = 1) = α. Here we assume that the distribution of the
labeled data is the same as that of the unlabeled data. Lastly, we use X∗i to represent the
associated feature vector. Here the conditional distribution of X∗i given Y ∗i should remain
the same as that of the unlabeled data. Subsequently, a joint log-likelihood function can be
analytically spelled out as

Lsemi(θ) =
N∑
i=1

log fθ
(
Xi

)
+

m∑
i=1

{
Y ∗i log φµ1,Σ1

(
X∗i
)

+
(

1− Y ∗i
)

log φµ0,Σ0

(
X∗i
)}

+
m∑
i=1

{
Y ∗i logα+

(
1− Y ∗i

)
log
(
1− α

)}
. (3)

Comparing this log-likelihood function with (1), the key difference is that the labeled sam-
ples are partially involved in (3) but not in (1). Accordingly, a new estimator can be defined
as θ̂semi = (α̂semi, µ̂semi>

0 , vech(Σ̂semi
0 )>, µ̂semi>

1 , vech(Σ̂semi
1 )>)> = argmaxθLsemi(θ).

3.2 The MEM Algorithm

Next, we consider how to compute the MLE for the new log-likelihood function (3). Specif-
ically, define L̇semi(θ) = (L̇semi,α(θ), L̇semi,µ0(θ)>, L̇semi,Σ0(θ)>, L̇semi,µ1(θ)>, L̇semi,Σ1(θ)>)>

∈ Rq, where L̇semi,α(θ) = ∂Lsemi(θ)/∂α ∈ R, L̇semi,µk(θ) = ∂Lsemi(θ)/∂µk ∈ Rp and

L̇semi,Σk(θ) = ∂Lsemi(θ)/∂vech(Σk) ∈ Rp(p+1)/2 with k ∈ {0, 1}. Recall that θ̂semi is the

MLE. We should have a gradient condition as L̇semi(θ̂semi) = 0. This suggests a set of
estimation equations as α̂semi = F∗α(θ̂semi), µ̂

semi
k = F∗µk(θ̂semi) and vech(Σ̂semi

k ) = F∗Σk(θ̂semi)

with k ∈ {0, 1}. Here F∗(θ) = (F∗α(θ),F∗µ0
(θ)>, F∗Σ0

(θ)>,F∗µ1
(θ)>,F∗Σ1

(θ)>)> ∈ Rq is
defined as a mapping function, where

F∗α(θ) =
(
N +m

)−1( N∑
i=1

πi +
m∑
i=1

Y ∗i

)
∈ R,

F∗µ0
(θ) =

{ N∑
i=1

(
1− πi

)
+

m∑
i=1

(
1− Y ∗i

)}−1{ N∑
i=1

(
1− πi

)
Xi +

m∑
i=1

(
1− Y ∗i

)
X∗i

}
∈ Rp,

F∗Σ0
(θ) =

{ N∑
i=1

(
1− πi

)
+

m∑
i=1

(
1− Y ∗i

)}−1[ N∑
i=1

(
1− πi

)
vech

{(
Xi − µ0

)(
Xi − µ0

)>}
+

m∑
i=1

(
1− Y ∗i

)
vech

{(
X∗i − µ0

)(
X∗i − µ0

)>}]
∈ R

p(p+1)
2 , (4)

F∗µ1
(θ) =

( N∑
i=1

πi +

m∑
i=1

Y ∗i

)−1( N∑
i=1

πiXi +

m∑
i=1

Y ∗i X
∗
i

)
∈ Rp,
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F∗Σ1
(θ) =

( N∑
i=1

πi +
m∑
i=1

Y ∗i

)−1[ N∑
i=1

πivech
{(
Xi − µ1

)(
Xi − µ1

)>}
+

m∑
i=1

Y ∗i vech
{(
X∗i − µ1

)(
X∗i − µ1

)>}]
∈ R

p(p+1)
2 ,

and πi = P (Yi = 1|Xi) = fθ(Xi)
−1αφµ1,Σ1(Xi) is the posterior probability. This leads to

an iterative algorithm as follows.

Let θ̂
(0)
semi = (α̂semi(0), µ̂

semi(0)>
0 , vech(Σ̂

semi(0)
0 )>, µ̂

semi(0)>
1 , vech(Σ̂

semi(0)
1 )>)> ∈ Rq be the

initial estimator. Let θ̂
(t)
semi = (α̂semi(t), µ̂

semi(t)>
0 , vech(Σ̂

semi(t)
0 )>, µ̂

semi(t)>
1 , vech(Σ̂

semi(t)
1 )>)>

∈ Rq be the estimator obtained in the tth step. Consequently, the next step estimator

θ̂
(t+1)
semi = (α̂semi(t+1), µ̂

semi(t+1)>
0 , vech(Σ̂

semi(t+1)
0 )>, µ̂

semi(t+1)>
1 , vech (Σ̂

semi(t+1)
1 )>)> ∈ Rq

can be obtained as α̂semi(t+1) = F∗α(θ̂
(t)
semi), µ̂

semi(t+1)
k = F∗µk(θ̂

(t)
semi), vech(Σ̂

semi(t+1)
k ) =

F∗Σk(θ̂
(t)
semi) and π̂

semi(t+1)
i = f

θ̂
(t)
semi

(Xi)
−1α̂semi(t) φ

µ̂
semi(t)
1 ,Σ̂

semi(t)
1

(Xi) with k ∈ {0, 1}. The

aforementioned steps should be iteratively executed until convergence. By the time of con-
vergence, we obtain the MLE as θ̂semi = (α̂semi, µ̂semi>

0 , vech(Σ̂semi
0 )>, µ̂semi>

1 , vech(Σ̂semi
1 )>)>

∈ Rq. Note that this is also an EM-type algorithm but with mixed samples, in the sense
that some samples are labeled while the others are not. For convenience, we refer to this
interesting algorithm as an MEM algorithm. As one can see, this MEM algorithm pre-
sented above is inspired by the gradient condition L̇semi(θ̂semi) = 0. In fact, it can also be
motivated by the complete-data likelihood method, which assumes that the latent Yis are
actually observed. This leads to a standard EM algorithm; see the second part of Appendix
A.3 for a brief description, which is the same as the MEM algorithm. Therefore, the MEM
algorithm is indeed a standard EM algorithm (Dempster et al., 1977; Wu, 1983).

3.3 Numerical Convergence Analysis

To investigate the numerical convergence property, the key issue is to study the differ-

ence between θ̂semi and θ̂
(t+1)
semi . By (4), the MEM algorithm can be written as θ̂

(t+1)
semi =

F∗(θ̂(t)
semi). If θ̂

(t)
semi converges numerically to θ̂semi as t → ∞, we then should have θ̂semi =

F∗(θ̂semi). Consequently, we have θ̂
(t+1)
semi − θ̂semi = F∗(θ̂(t)

semi) − F∗(θ̂semi). Define F∗j (θ)

as the jth element of the mapping function F∗(θ). We then have F∗j (θ̂
(t)
semi) − F∗j (θ̂semi) =

Ḟ∗j (θ̃
∗(t)
j )(θ̂

(t)
semi−θ̂semi), where θ̃

∗(t)
j = η

∗(t)
j θ̂

(t)
semi+(1−η∗(t)j )θ̂semi ∈ Rq and 0 < η

∗(t)
j < 1 (Feng

et al., 2013). Here define Ḟ∗(θ) = (Ḟ∗α(θ), Ḟ∗µ0
(θ)>, Ḟ∗Σ0

(θ)>, Ḟ∗µ1
(θ)>, Ḟ∗Σ1

(θ)>)> ∈ Rq×q

as the contraction operator, where Ḟ∗α(θ) = ∂F∗α(θ)/∂θ = (Ḟ∗αα(θ), Ḟ∗αµ0(θ)>, Ḟ∗αΣ0(θ)>,
Ḟ∗αµ1(θ)>, Ḟ∗αΣ1(θ)>)> ∈ Rq, Ḟ∗µ0

(θ) = ∂F∗µ0
(θ)/∂θ> = (Ḟ∗µ0α(θ), Ḟ∗µ0µ0(θ), Ḟ∗µ0Σ0(θ),

Ḟ∗µ0µ1(θ), Ḟ∗µ0Σ1(θ)) ∈ Rp×q and Ḟ∗Σ0
(θ) = ∂F∗Σ0

(θ)/∂θ> = (Ḟ∗Σ0α(θ), Ḟ∗Σ0µ0(θ), Ḟ∗Σ0Σ0(θ),

Ḟ∗Σ0µ1(θ), Ḟ∗Σ0Σ1 (θ)) ∈ R
p(p+1)

2
×q, Ḟ∗µ1

(θ) = (αḞ∗µ1α(θ), Ḟ∗µ1µ0(θ), Ḟ∗µ1Σ0(θ), Ḟ∗µ1µ1(θ),

Ḟ∗µ1Σ1(θ)) ∈ Rp×q and Ḟ∗Σ1
(θ) = (αḞ∗Σ1α(θ), Ḟ∗Σ1µ0(θ), Ḟ∗Σ1Σ0(θ), Ḟ∗Σ1µ1(θ), Ḟ∗Σ1Σ1(θ))

∈ R
p(p+1)

2
×q. Hence, the asymptotic behavior of Ḟ∗(θ) is important for the numerical con-

vergence of the EM algorithm (Xu and Jordan, 1996; Ma et al., 2000). Subsequently, we
should study the asymptotic behavior of Ḟ∗(θ) under the rare events assumption with great
care. This leads to the following theorem. Its rigorous proof is provided in Appendix A.2.
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Theorem 2 Assume α → 0 and Nα → ∞ as N → ∞. Assume limN→∞m/N = κ. We
then have Ḟ∗(θ)→pM∗ as N →∞, where

M∗ =


(1 + κ)−1 0 0 0 0
µ0−µ1

1+κ 0 0 0 0
∆Σ0α

1+κ 0 0 0 0

0
−Σ1Σ−1

0
1+κ

∆µ1Σ0
1+κ

Ip
1+κ

∆µ1Σ1
1+κ

0
∆Σ1µ0

1+κ

∆Σ1Σ0
1+κ

∆Σ1µ1
1+κ −∆Σ1Σ1

1+κ

 .

By Theorem 2, several interesting findings can be obtained. First, we know that
α̂semi(t+1) − α̂semi ≈ (1 + κ)−1(α̂semi(t) − α̂semi), since the first diagonal component of
M∗ is (1 + κ)−1 whereas all other components in the first row are 0. This suggests
that α̂semi(t) converges linearly as long as κ > 0. Consequently, the slow convergence
rate problem as described in Theorem 1 is nicely rectified. Meanwhile, we know that

µ̂
semi(t+1)
0 − µ̂semi

0 ≈ (1 + κ)−1(µ0 − µ1)(α̂semi(t) − α̂semi), since the (2, 1)th component of

M∗ is (1 + κ)−1(µ0 − µ1). This suggests that the numerical convergence rate of µ̂
semi(t)
0 is

mainly determined by that of α̂semi(t). Since α̂semi(t) converges to α̂semi linearly, we should

have µ̂
semi(t)
0 also converges to µ̂semi

0 linearly. By similar arguments, we know that Σ̂
semi(t)
0

also converges to Σ̂semi
0 linearly.

Unfortunately, the numerical convergence properties of µ̂
semi(t)
1 and Σ̂

semi(t)
1 are slightly

more complicated. By Theorem 2, we know that µ̂
semi(t+1)
1 −µ̂semi

1 ≈ −(1+κ)−1Σ1Σ−1
0 (µ̂

semi(t)
0

−µ̂semi
0 )+(1+κ)−1∆µ1Σ0vech(Σ̂

semi(t)
0 −Σ̂semi

0 )+(µ̂
semi(t)
1 −µ̂semi

1 )+(1+κ)−1∆µ1Σ1vech(Σ̂
semi(t)
1

−Σ̂1) and vech(Σ̂
(t+1)
1 − Σ̂1) ≈ ∆Σ1µ0(µ̂

semi(t)
0 − µ̂semi

0 )/(1 + κ) + ∆Σ1Σ0vech(Σ̂
semi(t)
0 −

Σ̂semi
0 )/(1+κ)+∆Σ1µ1(µ̂

semi(t)
1 − µ̂semi

1 )/(1+κ)−∆Σ1Σ1vech(Σ̂
semi(t)
1 − Σ̂semi

1 )/(1+κ). More-

over, the previous discussion suggests that µ̂
semi(t)
0 − µ̂semi

0 → 0 and Σ̂
semi(t)
0 − Σ̂semi

0 → 0 as
t→∞. Thus, for a sufficiently large t, we should have(

µ̂
semi(t+1)
1 − µ̂semi

1

vech(Σ̂
semi(t+1)
1 − Σ̂semi

1 )

)
≈ (1 + κ)−1

(
Ip ∆µ1Σ1

∆Σ1µ1 −∆Σ1Σ1

)(
µ̂

semi(t)
1 − µ̂semi

1

vech(Σ̂
semi(t)
1 − Σ̂semi

1 )

)
.

Therefore, whether µ̂
semi(t)
1 → µ̂semi

1 and Σ̂
semi(t)
1 → Σ̂semi

1 as t → ∞ is mainly determined
by the spectral radius of (Ip,∆µ1Σ1 ; ∆Σ1µ1 ,−∆Σ1Σ1)/(1 + κ). According to our numerical
analysis, we find that its spectral radius is not always less than 1 unless the fraction number
κ is sufficiently large.

4. Numerical Studies

4.1 A Simulation Study

To numerically confirm our theoretical findings, a number of simulation studies are pre-
sented. We independently generate the unlabeled data with sample size N and the labeled
data with sample size m. The total sample size is set as N +m = 105. The data generation
process begins with the unlabeled data. Specifically, for a given sample i in the unlabeled
data, we generate Yi independently according to a binomial distribution with P (Yi = 1) = α

10
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(1 ≤ i ≤ N). To evaluate the rare events effect, a total of five different response probabili-
ties are considered. They are 50%, 20%, 10%, 1%, 0.1%, respectively. We next generate Xi

from a normal distribution N(−1.5, 1) if Yi = 1. Otherwise, Xi should be generated from
a normal distribution N(1.5, 1). After the unlabeled data are prepared, we independently
generate the labeled data {(X∗i , Y ∗i ) : 1 ≤ i ≤ m} using a similar procedure and their
response variables Y ∗i s are observed. To demonstrate the value of partially labeled data,
six different percentages of labeled data (i.e., m/(N +m)× 100%) are evaluated. They are
0%, 1%, 5%, 10%, 25%, 50%, respectively. Once the data are generated, the EM and MEM
algorithms can be applied to compute the MLE. The experiment is randomly replicated for
D = 500 times.

To evaluate the performance of the EM and MEM algorithms, we focus on the numer-
ical convergence performance and the large sample convergence performance. Numerical
convergence relates to the computation cost needed for the initial estimator to numerically
converge to the MLE. This computation cost is reflected by the number of iterations needed
to achieve the pre-specified convergence criterion, and is fundamentally determined by the
spectral radius of the contraction operator evaluated at the true value. Therefore, both Niter

and ρ{Ḟ(θ)} serve as useful measures of numerical convergence. Specifically, the number of

iterations is denoted as N
(d)
iter in the dth replication. We next define Niter = D−1

∑D
d=1N

(d)
iter

as an overall measure. Denote the spectral radius of the contraction operator Ḟ(θ) as
ρ{Ḟ(θ)}(d) in the dth replication. We next define ρ{Ḟ(θ)} = D−1

∑D
d=1 ρ{Ḟ(θ)}(d) as an

overall measure. In contrast, large sample convergence refers to the discrepancy between the
MLE and the true parameter. To evaluate the estimation accuracy, we calculate the Root

Mean Square Error (RMSE) as RMSE = q−1
∑q

j=1

{
D−1

∑D
d=1(θ̂

(d)
j − θj)2

}1/2
, where θ̂(d)

is the MLE computed in the d-th random replication. The detailed results are summarized
in Table 1.

From Table 1, we can draw the following conclusions. First, we find that for a fixed
percentage of the labeled data, the RMSE value increases as the response probability α
decreases. This indicates that the statistical efficiency of the MLE deteriorates as rare
events become rarer (i.e., α→ 0). For example, when m/(m+N) = 0%, the RMSE value
of θ̂ is 0.0663 with α = 1%, which is much larger than 0.0092 of the case with α = 50%.
Second, we observe that for a fixed percentage of the labeled data, the spectral radius
ρ{Ḟ(θ)} increases as the response probability α decreases. Consider for example the case
with α = 1% and m/(m+N) = 0%. In this case, we find ρ{Ḟ(θ)} = 0.9839, which is very
close to 1. This explains why the numerical convergence of a standard EM algorithm could
be extremely slow. The resulting Niter value could be as large as Niter = 436.16. Third,
for a fixed response probability, we find that the RMSE value decreases as the percentage
of labeled data increases. This demonstrates that a higher percentage of the labeled data
would significantly improve the statistical efficiency. For example, when α = 1%, the RMSE
value of θ̂ is 0.0663 with m/(m+N) = 0%, which is much larger than the 0.0306 of the case
with m/(m+N) = 10%. Lastly, we observe that for a fixed response probability, both the
ρ{Ḟ(θ)} and Niter values decrease as the percentage of the labeled data increases. Consider
for example the case with α = 10%. When m/(m+N) = 1%, we have ρ{Ḟ(θ)} = 0.9437 and
Niter = 148.69. As m/(m+N) = 10%, we have ρ{Ḟ(θ)} = 0.8579 and Niter = 62.54. This
suggests that a slightly enhanced label percentage could lead to much improved numerical
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Table 1: Detailed simulation results with different response probabilities and labeling per-
centages. The estimated RMSE, the averaged number of iterations Niter and the
averaged spectral radius of the contraction operator ρ{Ḟ(θ)} are reported.

m/(m+N)× 100% 0% 1% 5% 10% 25% 50%

α = 50%

RMSE 0.0092 0.0087 0.0074 0.0067 0.0057 0.0052

ρ{Ḟ(θ)} 0.9323 0.9229 0.8856 0.8389 0.6990 0.4661
Niter 119.64 106.42 74.14 53.68 28.91 15.00

α = 20%

RMSE 0.0120 0.0113 0.0095 0.0078 0.0068 0.0061

ρ{Ḟ(θ)} 0.9419 0.9324 0.8949 0.8479 0.7065 0.4710
Niter 146.69 127.52 84.37 59.34 30.86 16.00

α = 10%

RMSE 0.0165 0.0151 0.0126 0.0102 0.0084 0.0074

ρ{Ḟ(θ)} 0.9533 0.9437 0.9057 0.8579 0.7150 0.4768
Niter 176.60 148.69 92.02 62.54 31.37 16.00

α = 1%

RMSE 0.0663 0.0529 0.0393 0.0306 0.0245 0.0199

ρ{Ḟ(θ)} 0.9839 0.9735 0.9344 0.8852 0.7382 0.4919
Niter 436.16 274.70 122.57 75.00 33.92 16.29

α = 0.1%

RMSE 0.2668 0.1932 0.1363 0.1055 0.0725 0.0593

ρ{Ḟ(θ)} 0.9992 0.9889 0.9488 0.8989 0.7493 0.5019
Niter 733.78 456.11 147.65 82.34 34.55 16.39

convergence performance for the proposed MEM algorithm. All these observations are in
line with the theoretical findings of Theorems 1 and 2.

4.2 A Real Data Example

To demonstrate the practicality of our proposed algorithm, we present an interesting real
data example for traffic sign recognition. The dataset used here is the Swedish Traffic Signs
(STS) dataset (Larsson and Felsberg, 2011; Larsson et al., 2011), which can be publicly ob-
tained from https://www.cvl.isy.liu.se/research/datasets/traffic-signs-dataset/. The dataset
contains a total of 1,970 high–resolution (960 × 1,280) color images with annotation. A
graphical illustration of the labeled data can be found in Figure 1. The objective here is
to automatically detect the traffic signs in Figure 1. To this end, we randomly partition
all labeled data into two parts. The first part contains about 80% of the whole data for
training. The remaining 20% part is used for testing. Subsequently, we demonstrate how
this task can be converted into a problem, which can be efficiently solved by our proposed
method.

We start with the construction of the feature vector. Specifically, for each original
high–resolution image of 960×1, 280, a pretrained VGG16 model is applied (Simonyan and
Zisserman, 2014). This results in a feature map of size 30×40×512. This feature map can be
viewed as a new “image” with resolution 30×40 and a total of 512 channels. In this regard,
each pixel in this feature map can be treated as one sample with a feature vector of p = 512
dimensions. This leads to the feature vectors as {Xi,k1,k2 ∈ Rp : 1 ≤ k1 ≤ 30, 1 ≤ k2 ≤ 40}.
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Figure 1: An example from the STS dataset for traffic sign detection. The original image
is of size 960 × 1, 280 × 3. The red bounding box of a small object treated as a
positive instance only covers less than 1% of the original image.

Therefore, a total of 30 × 40 = 1, 200 samples can be obtained for each image. Because a
total of 1,970 images are involved in the whole dataset, the total sample size in this study is
then N = 1, 970×1, 200 = 2, 364, 000. Next, for each Xi,k1k2 , we generate a binary response
Yi,k1,k2 based on whether a traffic sign is involved in the pixel location. This leads to labels
as {Yi,k1,k2 ∈ R : 1 ≤ k1 ≤ 30, 1 ≤ k2 ≤ 40}. The number of positive instances accounts
for only 0.225% of the total sample, which is expected because the region containing traffic
signs in a high–resolution image is extremely small. Once the data are well prepared, the
training data are randomly split into two parts. In the first part, the labels of the samples
are treated as if they were missing. The second part is treated as if the labels of the samples
were observed. Thereafter, the MEM algorithm can be applied to the training data. For
a comprehensive evaluation, six different labeled percentages (i.e., m/(N + m) × 100%)
are evaluated. They are, respectively, 0%, 5%, 25%, 50%, 75% and 100%. For a reliable
evaluation, the experiment is randomly replicated for D = 20 times.

To gauge the finite sample performance of the proposed method, three different mea-
sures are used. The first measure is area under the curve (AUC) (Ling et al., 2003).
Consider the i∗th image (1 ≤ i∗ ≤ N∗) in the test data, where N∗ = 394 denotes the
number of images for testing. For a given pixel (k1, k2) and one particular estimator θ̂
obtained from the train data, we then estimate the response probability of π̂i∗,k1,k2 =
f
θ̂
(Xi∗,k1,k2)−1αφ

µ̂1,Σ̂1
(Xi∗,k1,k2). Accordingly, the AUC measure can be computed at the

image level and denoted by AUCi∗ . The image-level AUC is then averaged across different
images, and denoted by AUC∗ = N∗−1

∑
i∗ AUCi∗ . The replicated AUC∗ values are aver-

aged across the random replications and are denoted as AUC. The second measure is the
number of false positives. For a given random replication and the i∗th image, we can pre-
dict Ŷi∗,k1,k2 = I

(
π̂i∗,k1,k2 > ci∗

)
, where c∗i is the largest threshold value so that all positive
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instances can be correctly captured. However, the price is inevitably paid by mistakenly
predicting some negative samples as positives. We define the number of false positives for
the i∗th image in the test data as FPi∗ =

∑
k1,k2

I
(
Ŷi∗,k1,k2 = 1

)
I
(
Yi∗,k1,k2 = 0

)
. Its median

value is then computed as FP∗. Then its overall mean across different random replications
is denoted by FP. The third measure is the number of iterations used for the numerical
convergence and denoted as N∗iter. The averaged N∗iter values across the random replica-
tions are computed and denoted as Niter as an overall measure. The prediction results are
presented in Figure 2.

Figure 2: Detailed prediction results obtained from the test data. The left panel demon-
strates the AUC results. The red dashed line corresponds to AUC = 0.95. The
middle panel presents the FP results. The red dashed line corresponds to FP = 5.
The right panel shows the Niter results.

We find that the AUC value is 0.5235 and FP value is 1,098.85 when the labeling
percentage is 0%. These are totally not comparable with the other cases and thus not
presented in Figure 2. This suggests that the prediction performance of the standard EM
algorithm for a GMM with rare events could be extremely poor. However, the performance
can be significantly improved if the data are partially labeled. A quick glance at Figure
2 suggests that cases with labeling percentages larger than 25% perform well in terms of
AUC values. For example, consider the case with a labeling percentage being 25%. The
AUC value becomes 0.9547, which is slightly worse than the 0.9711 for the fully labeled
case. Similar observations are also observed for other performance measures (i.e., FP and
Niter). Specifically, when the labeling percentage is 50%, the FP value becomes 5.45, which
is slightly worse than the 3.63 value obtained in the fully labeled case. Meanwhile, the Niter

value becomes 18.95, which performs much better than the 45.35 value obtained in the fully
unlabeled case.

5. Concluding Remarks

In this study, we focus on a problem related to the analysis of rare events data. Statistical
analysis of rare events data differs significantly from that of regular data, and considerable
progress has been made in the field concerning rare events data analysis (Duan et al.,
2020; Wang, 2020; Wang et al., 2021). However, the existing methods often suffer from
one common limitation. That is the dataset must be fully labeled. Thus, the problem of

14



GMM with Rare Events

unsupervised or semi-supervised learning remains open for discussion. In our first attempt,
we investigate here a GMM with rare events. The EM algorithm has been commonly
used to estimate GMM (Wu, 1983; Xu and Jordan, 1996). Consequently, we study the
theoretical properties of the standard EM algorithm for a GMM with rare events. To this
end, we formulate an EM algorithm for a GMM with rare events as an iterated algorithm
governed by a contraction operator. Our results suggest that the numerical convergence
rate of the standard EM algorithm is extremely slow. To address this, we develop an
MEM algorithm. We theoretically demonstrate that the numerical convergence rate of
this algorithm is significantly higher than that of a standard EM algorithm if the labeled
percentage is carefully designed.

To conclude this work, we would like to discuss some intriguing avenues for future re-
search. Firstly, in this study, our focus was solely on the GMM as a parametric model.
However, given the widespread use of various learning methods, such as deep neural net-
works, it would be of great interest to explore more complex and general models for rare
events data in future research projects. Secondly, although we examined a GMM with
only two underlying classes, our theoretical results can be extended to scenarios involv-
ing multiple classes with minimal modifications. Nevertheless, contemporary classification
problems often involve a growing number of classes. Exploring how to extend our theoret-
ical findings to address such challenging cases would be an intriguing direction for future
exploration. Lastly, most existing literature on semi-supervised learning, including this
study, has assumed that both positive and negative instances in previously labeled sam-
ples are accurately annotated. However, in situations where positive instances are rare, we
often encounter cases where only the labels for positive instances are practically available,
whereas the labels for negative instances are too numerous to be analytically provided.
This presents an interesting scenario where only positive instances are practically labeled.
Exploring solutions for this problem is another fascinating topic worthy of investigation.
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Appendix A.1: Proof of Theorem 1

We study here the asymptotic behavior of Ḟ(θ) under the rare events assumptions. To this
end, we decompose the contraction operator Ḟ(θ) into five blocks as Ḟ(θ) = (Ḟα(θ), Ḟµ0(θ)>,
ḞΣ0(θ)>, Ḟµ1(θ)>, ḞΣ1(θ)>)> ∈ Rq×q, where Ḟα(θ) = ∂Fα(θ)/∂θ ∈ Rq, Ḟµk(θ) = ∂Fµk(θ)/
∂θ> ∈ Rp×q and ḞΣk(θ) = ∂FΣk(θ)/∂θ> ∈ Rp(p+1)/2×q with k ∈ {0, 1}. Consequently, we
prove four convergence results in the first step. These conclusions are frequently used in
the subsequent proof. Next, we study these five blocks separately in the last five steps.

Step 1 Four Convergence Results. In this step, we verify Fµk(θ) →p µk and
FΣk(θ) →p vech(Σk) as N → ∞ with k ∈ {0, 1}. The technical details for proving
these four convergence results are very similar. Comparatively speaking, the proof of
FΣ1(θ) →p vech(Σ1) is technically more complicated. We thus provide the proof details
for this convergence result only. The proofs for other convergence results are omitted
to save space. Recall FΣ1(θ) = (

∑N
i=1 πi)

−1
∑N

i=1 πivech{(Xi − µ1)(Xi − µ1)>}, where
πi = P (Yi = 1|Xi) = fθ(Xi)

−1αφµ1,Σ1(Xi) is the posterior probability. Consequently, it
suffices to prove as N →∞,

(
Nα
)−1

N∑
i=1

πi →p 1, (5)

(
Nα
)−1

N∑
i=1

πi

(
Xi − µ1

)(
Xi − µ1

)>
→p Σ1. (6)

We then have FΣ1(θ)→p vech(Σ1) as N →∞ by the Slutsky’s Theorem. This finishes the
proof of Step 1.

Step 1.1 Verification of (5). We compute the expectation and variance of (Nα)−1∑N
i=1 πi respectively. First, it is obvious that E{(Nα)−1

∑N
i=1 πi} = 1. Next, we can

compute that var{(Nα)−1
∑N

i=1 πi} = N−1α−2var(πi) = N−1α−2E(π2
i ) − N−1. We then

compute

E
(
α−2π2

i

)
=

∫
φ2
µ1,Σ1

(x)

(1− α)φµ0,Σ0(x) + αφµ1,Σ1(x)
dx

=

∫
φ2
µ1,Σ1

(x)

(1− α)φµ0,Σ0(x){1 + δφ(x)}
dx ≤

∫
2φ2

µ1,Σ1
(x)

φµ0,Σ0(x)
dx = O

(
1
)
,

where δφ(x) = αφµ1,Σ1(x)/{(1 − α)φµ0,Σ0(x)}. This leads to var{(Nα)−1
∑N

i=1 πi} =
O(N−1)→ 0 as N →∞. This finally verify (5).

Step 1.2 Verification of (6). We show here (6). We first compute E{(Nα)−1
∑N

i=1

πi(Xi−µ1)(Xi−µ1)>}. We have E{(Nα)−1
∑N

i=1 πi(Xi−µ1)(Xi−µ1)>} = α−1E{πi(Xi−
µ1)(Xi−µ1)>} = α−1E{Yi(Xi−µ1)(Xi−µ1)>} = E{(Xi−µ1)(Xi−µ1)>|Yi = 1} = Σ1. We
next compute the variance of the (j1, j2)th element of (Nα)−1

∑N
i=1 πi(Xi − µ1)(Xi − µ1).

Define Xi = (Xi,j) ∈ Rp and µk = (µk,j) ∈ Rp with k ∈ {0, 1}. Note that var{(Nα)−1
∑N

i=1

πi(Xi,j1−µ1,j1)(Xi,j2−µ1,j2)} = N−1α−2var{πi(Xi,j1−µ1,j1)(Xi,j2−µ1,j2)} = N−1α−2E{π2
i

(Xi,j1 −µ1,j1)2(Xi,j2 −µ1,j2)2}−N−1α−2E2{πi(Xi,j1 −µ1,j1)(Xi,j2 −µ1,j2)}. We then focus
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on the first part and have

E

{
α−1π2

i

(
Xi,j1 − µ1,j1

)2(
Xi,j2 − µ1,j2

)2
}

=

∫
αφ2

µ1,Σ1
(x)

(1− α)φµ0,Σ0(x) + αφµ1,Σ1(x)
(xj1 − µ1,j1)2(xj2 − µ1,j2)2dx

=

∫
φµ1,Σ1(x)

1 + δ−1
φ (x)

(xj1 − µ1,j1)2(xj2 − µ1,j2)2dx ≤ E
(
‖Xi − µ1‖4|Yi = 1

)
= O(1).

Therefore, we prove var{(Nα)−1
∑N

i=1 πi(Xi,j1 − µ1,j1)(Xi,j2 − µ1,j2)} = O{(Nα)−1} → 0
under the rare events assumption Nα → ∞ as N → ∞. Combining the above results, we
have verified (6).

Step 2 The Asymptotic Behavior of Ḟα(θ). Next, we study these five blocks sepa-
rately in the last five steps. We start with the first block Ḟα(θ) = (Ḟαα(θ), Ḟαµ0(θ)>, ḞαΣ0(θ)>,
Ḟαµ1(θ)>, ḞαΣ1(θ)>)> ∈ Rq, where we define Ḟαα(θ) = ∂Fα(θ)/∂α ∈ R, Ḟαµk(θ) =
∂Fα(θ)/∂µk ∈ Rp and ḞαΣk(θ) = ∂Fα(θ)/∂vech(Σk) ∈ Rp(p+1)/2 with k ∈ {0, 1}. Re-

call that Fα(θ) = N−1
∑N

i=1 πi ∈ R. The analytical detail of Ḟα(θ) is given by

Ḟαα(θ) =
1

N

{
α
(

1− α
)}−1

{
N∑
i=1

πi

(
1− πi

)}
,

Ḟαµ0(θ) = − 1

N

N∑
i=1

πi

(
1− πi

)
γi0,

ḞαΣ0(θ) =
1

2N
D>

N∑
i=1

πi

(
1− πi

)
vec
(

Γi0

)
,

Ḟαµ1(θ) =
1

N

N∑
i=1

πi

(
1− πi

)
γi1,

ḞαΣ1(θ) = − 1

2N
D>

N∑
i=1

πi

(
1− πi

)
vec
(

Γi1

)
,

where γik = Σ−1
k (Xi − µk) and Γik = Σ−1

k − γikγ
>
ik with k ∈ {0, 1}. We next study these

five blocks separately.

Step 2.1 The Asymptotic Behavior of Ḟαα(θ). We start with Ḟαα(θ). The objec-
tive here is to prove that as N →∞

Ḟαα(θ) =
1

N

{
α
(

1− α
)}−1

{
N∑
i=1

πi

(
1− πi

)}
→p 1. (7)

To this end, we define Ḟαα,i(θ) = πi(1 − πi)/{α(1 − α)} − 1 ∈ R. We then have Ḟαα(θ) −
1 = N−1

∑N
i=1 Ḟαα,i(θ). We first compute the expectation of Ḟαα(θ) − 1. We compute

E{Ḟαα(θ)−1} = E{Ḟαα,i(θ)} = E[πi(1−πi)/{α(1−α)}]−1. Note that limN→∞ φµ1,Σ1(x)/(1−
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α)/{1+δφ(x)} = φµ1,Σ1(x). Meanwhile, since δφ(x) > 0, we have 0 < φµ1,Σ1(x)/(1−α)/{1+
δφ(x)} ≤ 2φµ1,Σ1(x) with

∫
2φµ1,Σ1(x)dx = 2 <∞. We then can verify that as N →∞

E

{
πi
(
1− πi

)
α
(
1− α

) } =

∫
φµ0,Σ0(x)φµ1,Σ1(x)

(1− α)φµ0,Σ0(x) + αφµ1,Σ1(x)
dx

=

∫
φµ1,Σ1(x)

(1− α){1 + δφ(x)}
dx = 1

{
1 + o(1)

}
(8)

by the Dominated Convergence Theorem (Royden and Fitzpatrick, 1988). This leads to
E{Ḟαα(θ)− 1} → 0 as N →∞.

Next, we want to show that the variance of Ḟαα(θ)−1 shrinks towards 0 as N →∞. We
have var{Ḟαα(θ) − 1} = N−1var{Ḟαα,i(θ)} = N−1E{Ḟ2

αα,i(θ)} − N−1E2{Ḟαα,i(θ)}. Since

we have N−1E2{Ḟαα,i(θ)} = O(1/N), it suffices to compute N−1E{Ḟ2
αα,i(θ)}. We can then

calculate that

N−1E
{
Ḟ2
αα,i(θ)

}
= N−1E

{
π2
i (1− πi)2

α2(1− α)2

}
=

1

Nα

∫
αφ2

µ0,Σ0
(x)φ2

µ1,Σ1
(x)

{(1− α)φµ0,Σ0(x) + αφµ1,Σ1(x)}3
dx

=
1

Nα

∫
φµ1,Σ1(x)/(1− α)2

{1 + δφ(x)}2{1 + δ−1
φ (x)}

dx ≤
4
∫
φµ1,Σ1(x)dx

Nα

{
1 + o(1)

}
= O

{(
Nα
)−1
}
.

This suggests that var{Ḟαα(θ)− 1} = N−1E{Ḟ2
αα,i(θ)} −N−1E2{Ḟαα,i(θ)} = O{(Nα)−1}

→ 0 as N → ∞. Combining the above results, we obtain Ḟαα(θ)− 1 →p 0 as N → ∞. In
other words, we have Ḟαα(θ)→p 1 as N →∞.

Step 2.2 The Asymptotic Behavior of Ḟαµ0(θ). We next study Ḟαµ0(θ). We want

to show that Ḟαµ0(θ)→p 0 asN →∞. To this end, we define Ḟαµ0(θ) = N−1
∑N

i=1 Ḟαµ0,i(θ),
where Ḟαµ0,i(θ) = −πi(1 − πi)Σ−1

0 (Xi − µ0) ∈ Rp. We first compute the expectation of
Ḟαµ0(θ). We have E{Ḟαµ0(θ)} = E{Ḟαµ0,i(θ)} = −Σ−1

0 E{πi(1−πi)Xi}+αΣ−1
0 µ0{1+o(1)}

by (8). Therefore, we should have by the Dominated Convergence Theorem (Royden and
Fitzpatrick, 1988) that

E
{
πi

(
1− πi

)
Xi,j

}
=

∫
α(1− α)φµ0,Σ0(x)φµ1,Σ1(x)

(1− α)φµ0,Σ0(x) + αφµ1,Σ1(x)
xjdx = α

∫
φµ1,Σ1(x)

1 + δφ(x)
xjdx

= α

∫
φµ1,Σ1(x)xjdx

{
1 + o

(
1
)}

= αµ1,j

{
1 + o

(
1
)}

= O
(
α
)
,

where the third equality is because 0 ≤ {1 + δφ(x)}−1φµ1,Σ1(x)|xj | ≤ φµ1,Σ1(x)|xj | and∫
φµ1,Σ1(x)|xj |dx = E(|Xi,j ||Yi = 1) <∞. We then have E{Ḟαµ0(θ)} = αΣ−1

0 (µ0−µ1){1 +
o(1)}. This suggests that E{Ḟαµ0(θ)} = O(α)→ 0 as N →∞.

Next, we show that the covariance of Ḟαµ0(θ) shrinks towards 0 as N →∞. It is obvious
that cov{Ḟαµ0(θ)} = N−1cov{Ḟαµ0,i(θ)} = N−1E{Ḟαµ0,i(θ)Ḟαµ0,i(θ)

>}−N−1E{Ḟαµ0,i(θ)}
E{Ḟαµ0,i(θ)

>}. We then calculate that

E
{
Ḟαµ0,i(θ)Ḟαµ0,i(θ)

>
}

= Σ−1
0 E

{
π2
i

(
1− πi

)2(
Xi − µ0

)(
Xi − µ0

)>}
Σ−1

0 .
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Consequently, we focus on E{π2
i (1− πi)2(Xi − µ0)(Xi − µ0)>} and have∥∥∥∥E{π2

i

(
1− πi

)2(
Xi − µ0

)(
Xi − µ0

)>}∥∥∥∥ ≤ E (π2
i

∥∥∥Xi − µ0

∥∥∥)
≤ α

∫
αφ2

µ1,Σ1
(x)

(1− α)φµ0,Σ0(x) + αφµ1,Σ1(x)

∥∥x− µ0

∥∥dx
≤ α

∫
φµ1,Σ1(x)

∥∥x− µ0

∥∥dx = αE
(∥∥Xi − µ0

∥∥ | Yi = 1
){

1 + o
(
1
)}

= O
(
α
)
.

This suggests that E{Ḟαµ0,i(θ)Ḟαµ0,i(θ)
>} = O(α), which leads to cov{Ḟαµ0(θ)} = O(α/N)

→ 0 as N → ∞. Combining the above results, we finally verified that Ḟαµ0(θ) →p 0 as
N →∞.

Step 2.3 The Asymptotic Behavior of ḞαΣ0(θ). Recall that ḞαΣ0(θ) = (2N)−1D>∑N
i=1 πi(1− πi)vec(Γi0). We then have ḞαΣ0(θ) = {N−1

∑N
i=1 πi(1− πi)}D> vec(Σ−1

0 )/2−
D>vec[Σ−1

0 {N−1
∑N

i=1 πi(1 − πi)(Xi − µ0)(Xi − µ0)>}Σ−1
0 ]/2. Note that we have veri-

fied N−1
∑N

i=1 πi(1 − πi) →p 0 as N → ∞ by Step 1.1. Then, it suffices to prove that

N−1
∑N

i=1 πi(1−πi)(Xi−µ0)(Xi−µ0)> →p 0 as N →∞. This finally leads to ḞαΣ0(θ)→p 0
as N →∞.

To this end, we need to verify (Nα)−1
∑N

i=1 πi(1 − πi)XiX
>
i →p Σ1 + µ1µ

>
1 as N →

∞. We first compute E{(Nα)−1
∑N

i=1 πi(1 − πi)XiX
>
i }. We have E{(Nα)−1

∑N
i=1 πi(1 −

πi)XiX
>
i } = α−1E{πi(1 − πi)XiX

>
i }. Then by the Dominant Convergence Theorem, we

have as N →∞ that

E
{
α−1πi

(
1− πi

)
Xi,j1Xi,j2

}
=

∫
(1− α)φµ0,Σ0(x)φµ1,Σ1(x)

(1− α)φµ0,Σ0(x) + αφµ1,Σ1(x)
xj1xj2dx

=

∫
φµ1,Σ1(x)

1 + δφ(x)
xj1xj2dx = E

(
Xi,j1Xi,j2

∣∣∣Yi = 1
){

1 + o(1)
}
.

Hence, we have E{(Nα)−1
∑N

i=1 πi(1 − πi)XiX
>
i } = E(XiX

>
i |Yi = 1){1 + o(1)} = (Σ1 +

µ1µ
>
1 ){1 + o(1)}. We next compute var{(Nα)−1

∑N
i=1 πi(1 − πi)Xi,j1Xi,j2}. Note that

var{(Nα)−1
∑N

i=1 πi(1−πi)Xi,j1Xi,j2} = N−1α−2var{πi(1−πi)Xi,j1Xi,j2} = N−1α−1E{α−1

π2
i (1− πi)2X2

i,j1
X2
i,j2
} −N−1E2{α−1πi(1− πi)Xi,j1Xi,j2}. We have for the first part that

E

{
α−1π2

i

(
1− πi

)2
X2
i,j1X

2
i,j2

}
=

∫
α(1− α)2φ2

µ0,Σ0
(x)φ2

µ1,Σ1
(x)

{(1− α)φµ0,Σ0(x) + αφµ1,Σ1(x)}3
x2
j1x

2
j2dx

=

∫
φµ1,Σ1(x)/(1− α)

(1 + δ−1
φ (x))(1 + δφ)2(x)

x2
j1x

2
j2dx ≤ 2E

(
‖Xi‖4|Yi = 1

)
= O(1).

Therefore, we prove var{(Nα)−1
∑N

i=1 πi(1 − πi)Xi,j1Xi,j2} = O{(Nα)−1} + O(N−1) =

O{(Nα)−1}. Combining the above results, we have (Nα)−1
∑N

i=1 πi(1−πi)XiX
>
i →p Σ1 +

µ1µ
>
1 as N →∞.
Step 2.4 The Asymptotic Behavior of Ḟαµ1(θ) and ḞαΣ1(θ). By similar argu-

ments, we can show that Ḟαµ1(θ)→p 0 and ḞαΣ1(θ)→p 0 as N →∞.
Step 3 The Asymptotic Behavior of Ḟµ0(θ). Next, we study the second block

Ḟµ0(θ). Here we define Ḟµ0(θ) = (Ḟµ0α(θ), Ḟµ0µ0(θ), Ḟµ0Σ0(θ), Ḟµ0µ1(θ), Ḟµ0Σ1(θ)) ∈ Rp×q,
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where Ḟµ0α(θ) = ∂Fµ0(θ)/∂α ∈ Rp, Ḟµ0µk(θ) = ∂Fµ0(θ)/∂µ>k ∈ Rp×p and Ḟµ0Σk(θ) =
∂Fµ0(θ)/∂vech(Σk)

> ∈ Rp×p(p+1)/2 with k ∈ {0, 1}. Furthermore, the analytical detail of
Ḟµ0(θ) is given by

Ḟµ0α(θ) = −
{ N∑
i=1

(
1− πi

)}−1
N∑
i=1

πi(1− πi)
α(1− α)

(
Xi −Fµ0(θ)

)
,

Ḟµ0µ0(θ) =
{ N∑
i=1

(
1− πi

)}−1
N∑
i=1

πi

(
1− πi

)(
Xi −Fµ0(θ)

)
γ>i0,

Ḟµ0Σ0(θ) = −
{ N∑
i=1

(
1− πi

)}−1 1

2

N∑
i=1

πi

(
1− πi

)(
Xi −Fµ0(θ)

)
vec
(

Γi0

)>
D,

Ḟµ0µ1(θ) = −
{ N∑
i=1

(
1− πi

)}−1
N∑
i=1

πi

(
1− πi

)(
Xi −Fµ0(θ)

)
γ>i1,

Ḟµ0Σ1(θ) =
{ N∑
i=1

(
1− πi

)}−1 1

2

N∑
i=1

πi

(
1− πi

)(
Xi −Fµ0(θ)

)
vec
(

Γi1

)>
D.

Step 3.1 The Asymptotic Behavior of Ḟµ0α(θ). We start with Ḟµ0α(θ). The
objective here is to show that Ḟµ0α(θ) →p µ0 − µ1 as N → ∞. To this end, we can
decompose Ḟµ0α(θ)− (µ0 − µ1) into the following two parts

Ḟµ0α(θ)−
(
µ0 − µ1

)
= −

[{ N∑
i=1

(
1− πi

)}−1
N∑
i=1

πi(1− πi)
α(1− α)

Xi − µ1

]

+

[{
N−1

N∑
i=1

(
1− πi

)}−1
Ḟαα(θ)Fµ0(θ)− µ0

]
.

By Step 1, we have verified N−1
∑N

i=1(1−πi)→p 1 and Fµ0(θ)→p µ0 as N →∞. By Step
2.1, we have proved Ḟαα(θ)→p 1 as N →∞. Consequently, it suffices to prove as N →∞

N−1
N∑
i=1

πi(1− πi)
α(1− α)

Xi →p µ1. (9)

Then by the Slutsky’s Theorem, we can verify Ḟµ0α(θ)− (µ0 − µ1)→p 0 as N →∞. This
accomplishes the proof of Step 3.1.

We next verify (9). We first compute E[N−1
∑N

i=1 πi(1 − πi)Xi/{α(1 − α)}]. Note

that E[N−1
∑N

i=1 πi(1 − πi)Xi/{α(1 − α)}] = E{πi(1 − πi)Xi}/α{1 + o(1)}. Note that
direct calculation leads to E(πiXi)/α = E(YiXi)/α = µ1 and E(π2

iXi)/α = O(α) = o(1).
This leads to E{πi(1 − πi)/{α(1 − α)}Xi} = µ1{1 + o(1)}. We next compute cov[N−1∑N

i=1 πi(1−πi)Xi/{α(1−α)}]. One can verify that cov[N−1
∑N

i=1 πi(1−πi)Xi/{α(1−α)}] =
N−1cov[πi(1−πi)Xi/{α(1−α)}] = (Nα)−1E[π2

i (1−πi)2XiX
>
i /{α(1−α)2}]−N−1µ1µ

>
1 {1+
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o(1)}. We then focus on the first part and obtain∥∥∥∥E{π2
i (1− πi)2

α(1− α)2
XiX

>
i

}∥∥∥∥ ≤ ∫ αφ2
µ0,Σ0

(x)φ2
µ1,Σ1

(x)

{(1− α)φµ0,Σ0(x) + αφµ1,Σ1(x)}3
∥∥x∥∥dx

=

∫
φµ1,Σ1(x)

{1 + δφ(x)}2{1 + δ−1
φ (x)}(1− α)2

∥∥x∥∥dx
≤
∫

4φµ1,Σ1(x)‖x‖dx = 4E
(∥∥Xi

∥∥|Yi = 1
)

= O(1).

Hence, we prove cov[N−1
∑N

i=1 πi(1 − πi)Xi/{α(1 − α)}] = O{(Nα)−1}. Combining the
above results, we finish the proof of (9).

Step 3.2 The Asymptotic Behavior of Ḟµ0µ0(θ). We next study Ḟµ0µ0(θ). We aim

to show that Ḟµ0µ0(θ)→p 0 asN →∞. Recall Ḟµ0µ0(θ) = {
∑N

i=1(1−πi)}−1Σ−1
0

∑N
i=1 πi(1−

πi)(Xi−µ0)(Xi−Fµ0(θ))>. With the help of (5), we then focus on N−1
∑N

i=1 πi(1−πi)(Xi−
µ0)(Xi −Fµ0(θ))> and decompose

N−1
N∑
i=1

πi

(
1− πi

)(
Xi − µ0

)(
Xi −Fµ0(θ)

)>
= N−1

N∑
i=1

πi

(
1− πi

)(
Xi − µ0

)(
Xi − µ0

)>
+

{
N−1

N∑
i=1

πi

(
1− πi

)(
Xi − µ0

)}(
µ0 −Fµ0(θ)

)>
. (10)

For the first part of (10), we have verified N−1
∑N

i=1 πi(1 − πi)XiX
>
i − α(1 − α)(Σ1 +

µ1µ
>
1 ) →p 0 as N → ∞ in Step 2.3. Further, by (7) and (9), we have N−1

∑N
i=1 πi(1 −

πi)(Xi − µ0)(Xi − µ0)> →p 0 as N → ∞. For the second part of (10), we have by Step 1,
(7) and (9) that as N →∞ that

N−1

{
N∑
i=1

πi

(
1− πi

)(
Xi − µ0

)}(
µ0 −Fµ0(θ)

)>
→p 0.

This finally suggests that Ḟµ0µ0(θ)→p 0 as N →∞.

Step 3.3 The Asymptotic Behavior of Ḟµ0Σ0(θ). Recall Ḟµ0Σ0(θ) = −{
∑N

i=1(1−
πi)}−1

∑N
i=1 πi(1−πi)(Xi−Fµ0(θ))vec(Γi0)>D/2. With the help of (9), we focus on ∆µ0Σ0 =

N−1
∑N

i=1 πi(1−πi)(Xi−Fµ0(θ))vec(Γi0)>. Define ∆
(j1,j2)
µ0Σ0

as the (j1, j2)th element of ∆µ0Σ0 .

Then, we have ∆
(j1,j2)
µ0Σ0

= ∆
(j1,j2)
µ0Σ0,1

+ ∆
(j1,j2)
µ0Σ0,2

, where ∆
(j1,j2)
µ0Σ0,1

= N−1
∑N

i=1 πi(1 − πi)(Xi,j1 −
Fµ0,j1(θ))vecj2(Σ−1

0 )>, ∆
(j1,j2)
µ0Σ0,2

= Σ−1
0 N−1

∑N
i=1 πi(1 − πi){Xi,j1 − Fµ0,j1(θ)}vecj2{(Xi −

µ0)(Xi − µ0)>Σ−1
0 }> and vecj(A) stands for the jth element of vec(A). By (7) and (9),

we have for the first part that ∆
(j1,j2)
µ0Σ0,1

→p 0 as N → ∞. For the second part ∆
(j1,j2)
µ0Σ0,2

,

it suffices to prove N−1
∑N

i=1 πi(1 − πi)(Xi,j1 − Fµ0,j1(θ))(Xi − µ0)(Xi − µ0)> →p 0 as

N → ∞. Note that N−1
∑N

i=1 πi(1 − πi)(Xi,j1 − Fµ0,j1(θ))(Xi − µ0)(Xi − µ0)> = (µ0j1 −
Fµ0,j1(θ))N−1

∑N
i=1 πi(1−πi)(Xi−µ0)(Xi−µ0)>+N−1

∑N
i=1 πi(1−πi)(Xi,j1 −µ0j1)(Xi−

µ0)(Xi−µ0)>. By similar arguments, we have these two terms converge to 0 in probability
as N →∞. This finishes the proof.
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Step 3.4 The Asymptotic Behavior of Ḟµ0µ1(θ) and Ḟµ0Σ1(θ). By the similar
arguments, we can show that Ḟµ0µ1(θ)→p 0 and Ḟµ0Σ1(θ)→p 0 as N →∞.

Step 4 The Asymptotic Behavior of ḞΣ0(θ). In this step, we consider the fourth

block ḞΣ0(θ). Define ḞΣ0(θ) = (ḞΣ0α(θ), ḞΣ0µ0(θ), ḞΣ0Σ0(θ), ḞΣ0µ1(θ), ḞΣ0Σ1(θ)) ∈ R
p(p+1)

2
×q,

where ḞΣ0α(θ) = ∂FΣ0(θ)/∂α ∈ Rp(p+1)/2, ḞΣ0µk(θ) = ∂FΣ0(θ)/∂µk ∈ Rp(p+1)/2×p and
ḞΣ0Σk(θ) = ∂FΣ0(θ)/∂vech(Σk) ∈ Rp(p+1)/2×p(p+1)/2 with k ∈ {0, 1}. Define Ωik =
vech{(Xi − µk)(Xi − µk)>} − FΣk(θ) ∈ Rp(p+1)/2 with k ∈ {0, 1}. The analytical detail
of ḞΣ0(θ) is given by

ḞΣ0α(θ) = −
{ N∑
i=1

(
1− πi

)}−1
N∑
i=1

πi(1− πi)
α(1− α)

Ωi0,

ḞΣ0µ0(θ) =
{ N∑
i=1

(
1− πi

)}−1
N∑
i=1

πi

(
1− πi

)
Ωi0γ

>
i0

−
{ N∑
i=1

(
1− πi

)}−1
N∑
i=1

(
1− πi

)
D+
{(
Xi − µ0

)
⊗ Ip + Ip ⊗

(
Xi − µ0

)}
,

ḞΣ0Σ0(θ) = −
{ N∑
i=1

(
1− πi

)}−1 1

2

N∑
i=1

πi

(
1− πi

)
Ωi0vec

(
Γi0

)>
D,

ḞΣ0µ1(θ) = −
{ N∑
i=1

(
1− πi

)}−1
N∑
i=1

πi

(
1− πi

)
Ωi0γ

>
i1,

ḞΣ0Σ1(θ) =
{ N∑
i=1

(
1− πi

)}−1 1

2

N∑
i=1

πi

(
1− πi

)
Ωi0vec

(
Γi1

)>
D,

where D+ = (D>D)−1D> ∈ Rp(p+1)/2×p2
, Ip ∈ Rp×p is an identity matrix and ⊗ repre-

sents the Kronecker product operation. We start with ḞΣ0α(θ). We rewrite ḞΣ0α(θ) =
−{
∑N

i=1(1 − πi)}−1vech[
∑N

i=1 πi(1 − πi)/{α(1 − α)}(Xi − µ0)(Xi − µ0)>] + {
∑N

i=1(1 −
πi)}−1FΣ0(θ)

∑N
i=1 πi(1−πi)/{α(1−α)}. Recall by (5) and Steps 1–2, we have N−1

∑N
i=1 πi

(1−πi)/{α(1−α)} →p 1 and N−1
∑N

i=1(1−πi)→p 1, N−1
∑N

i=1 πi(1−πi)/{α(1−α)}(Xi−
µ0)(Xi − µ0)> →p Σ1 + (µ1 − µ0)(µ1 − µ0)> as N → ∞. By the Slutsky’s Theorem, we
have ḞΣ0α(θ) →p −vech{Σ1 + (µ1 − µ0)(µ1 − µ0)> − Σ0} as N → ∞. For the other four
block matrices, we have ḞΣ0µk(θ)→p 0 and ḞΣ0Σk(θ)→p 0 as N →∞ with k ∈ {0, 1}.

Step 5 The Asymptotic Behavior of Ḟµ1(θ). In this step, we consider the third
block Ḟµ1(θ). Define Ḟµ1(θ) = (Ḟµ1α(θ), Ḟµ1µ0(θ), Ḟµ1Σ0(θ), Ḟµ1µ1(θ), Ḟµ1Σ1(θ)) ∈ Rp×q,
where Ḟµ1α(θ) = ∂Fµ1(θ)/∂α ∈ Rp, Ḟµ1µk(θ) = ∂Fµ1(θ)/∂µ>k ∈ Rp×p and Ḟµ1Σk(θ) =
∂Fµ1(θ)/∂vech(Σk)

> ∈ Rp×p(p+1)/2 with k ∈ {0, 1}. Further, the analytical detail of Ḟµ1(θ)
is given by

Ḟµ1α(θ) =
( N∑
i=1

πi

)−1
N∑
i=1

πi(1− πi)
α(1− α)

(
Xi −Fµ1(θ)

)
,

Ḟµ1µ0(θ) = −
( N∑
i=1

πi

)−1
N∑
i=1

πi

(
1− πi

)(
Xi −Fµ1(θ)

)
γ>i0,
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Ḟµ1Σ0(θ) =
( N∑
i=1

πi

)−1 1

2

N∑
i=1

πi

(
1− πi

)(
Xi −Fµ1(θ)

)
vec
(

Γi0

)>
D,

Ḟµ1µ1(θ) =
( N∑
i=1

πi

)−1
N∑
i=1

πi

(
1− πi

)(
Xi −Fµ1(θ)

)
γ>i1,

Ḟµ1Σ1(θ) = −
( N∑
i=1

πi

)−1 1

2

N∑
i=1

πi

(
1− πi

)(
Xi −Fµ1(θ)

)
vec
(

Γi1

)>
D.

Step 5.1 The Asymptotic Behavior of Ḟµ1α(θ). We start with Ḟµ1α(θ). The
objective here is to show that Ḟµ1α(θ) →p ∆µ1α as N → ∞, where ∆µ1α = (∆µ1α,j)
and ∆µ1α,j =

∫
φ2
µ1,Σ1

(x)φ−1
µ0,Σ0

(x)(µ1,j − xj)dx. By the definition of Fµ1(θ), we have∑N
i=1 πiXi = Fµ1(θ)

∑N
i=1 πi. Thus, we have

Ḟµ1α(θ) = −
( 1

Nα

N∑
i=1

πi

)−1
{

1

Nα2(1− α)

N∑
i=1

π2
i

(
Xi −Fµ1(θ)

)}
.

Note that we have verified (Nα)−1
∑N

i=1 πi →p 1 and Fµ1(θ)→p µ1 as N →∞ by Steps 1
and 3.1. Then it suffices to prove as N →∞ that

N−1α−2
N∑
i=1

π2
i →p

∫
φ2
µ1,Σ1

(x)

φµ0,Σ0(x)
dx, (11)

N−1α−2
N∑
i=1

π2
iXi,j →p

∫
φ2
µ1,Σ1

(x)

φµ0,Σ0(x)
xjdx. (12)

We start with (11). We compute the expectation and variance of (Nα2)−1
∑N

i=1 π
2
i

separately. We have E{(Nα2)−1
∑N

i=1 π
2
i } = α−2E(π2

i ). Then we have by the Dominant
Convergence Theorem that

α−2E
(
π2
i

)
=

∫
φ2
µ1,Σ1

(x)

(1− α)φµ0,Σ0(x) + αφµ1,Σ1(x)
dx

=

∫
φ2
µ1,Σ1

(x)/φµ0,Σ0(x)

(1− α){1 + δφ(x)}
dx =

∫
φ2
µ1,Σ1

(x)

φµ0,Σ0(x)
dx
{

1 + o(1)
}
.

Meanwhile, we have var{(Nα2)−1
∑N

i=1 π
2
i } = N−1α−4var(π2

i ) = N−1α−4E(π4
i )−N−1α−4

E2(π2
i ). We then compute

α−4E
(
π4
i

)
=

∫
φ4
µ1,Σ1

(x)

{(1− α)φµ0,Σ0(x) + αφµ1,Σ1(x)}3
dx

=

∫
φ4
µ1,Σ1

(x)/φ3
µ0,Σ0

(x)

(1− α)3{1 + δφ(x)}3
dx =

∫
φ4
µ1,Σ1

(x)

φ3
µ0,Σ0

(x)
dx
{

1 + o(1)
}

= O(1).

This suggests that var{(Nα2)−1
∑N

i=1 π
2
i } = O(N−1). This finishes the proof of (11). By

the similar arguments, we also have (12).
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Step 5.2 The Asymptotic Behavior of Ḟµ1µ0(θ). The aim is to prove Ḟµ1µ0(θ)→p

−Σ1Σ−1
0 as N → ∞. Recall Ḟµ1µ0(θ) = −(

∑N
i=1 πi)

−1
∑N

i=1 πi(1 − πi)(Xi − Fµ1(θ))(Xi −
µ0)>Σ−1

0 . We can then decompose Ḟµ1µ0(θ) = −{(Nα)−1
∑N

i=1 πi}−1{
∑N

i=1 πi(1−πi)XiX
>
i

(Nα)−1−(Nα)−1
∑N

i=1 πi(1−πi)Xiµ
>
0 −(Nα)−1

∑N
i=1 πi (1−πi)Fµ1(θ)X>i +(Nα)−1

∑N
i=1 πi

(1 − πi)Fµ1(θ)µ>0 }Σ
−1
0 . By Step 1, we have (Nα)−1

∑N
i=1 πi →p 1 and Fµ1(θ) →p µ1 as

N → ∞. By Step 2.3, we have (Nα)−1
∑N

i=1 πi(1 − πi)XiX
>
i →p Σ1 + µ1µ

>
1 . By (9),

we have (Nα)−1
∑N

i=1 πi(1 − πi)Xi →p µ1. Then by the Slutsky’s Theorem, we can verify
Ḟµ1µ0(θ)→p −Σ1Σ−1

0 as N →∞. This accomplishes the proof of Step 5.2.

Step 5.3 The Asymptotic Behavior of Ḟµ1Σ0(θ). Recall Ḟµ1Σ0(θ) = (
∑N

i=1 πi)
−1∑N

i=1 πi(1− πi)(Xi −Fµ1(θ))vec(Γi0)>D/2. We then can decompose

Ḟµ1Σ0(θ) = −
( N∑
i=1

πi

)−1 1

2

N∑
i=1

πi

(
1− πi

)(
Xi − µ1

)
vec
(
γi0γ

>
i0

)>
D

+
( N∑
i=1

πi

)−1 1

2

N∑
i=1

πi

(
1− πi

)(
Xi − µ1

)
vec
(

Σ−1
0

)>
D

+
( N∑
i=1

πi

)−1 1

2

(
µ1 −Fµ1(θ)

) N∑
i=1

πi

(
1− πi

)
vec
(

Γi0

)>
D. (13)

We have the last two parts of (13) converge to 0 in probability as N →∞. We then focus
on the first part of (13). With the help of (9), it suffices to compute (Nα)−1

∑N
i=1 πi(1 −

πi)(Xi − µ1)vec(γi0γ
>
i0)>. Note that (j1, j2)th element of (Nα)−1

∑N
i=1 πi(1 − πi)(Xi −

µ1)vec(γi0γ
>
i0)> is vecj2{(Nα)−1

∑N
i=1 πi(1−πi)(Xi,j1−µ1,j1)γi0γ

>
i0} = vecj2{Σ−1

0 (Nα)−1
∑N

i=1

πi(1 − πi)(Xi,j1 − µ1,j1)(Xi − µ0)(Xi − µ0)>Σ−1
0 }. Consequently, it suffices to compute

(Nα)−1
∑N

i=1 πi(1 − πi)(Xi,j1 − µ1,j1)(Xi − µ0)(Xi − µ0)>. We first compute the expec-

tation of the (j3, j4)th element of this matrix and have E{(Nα)−1
∑N

i=1 πi(1 − πi)(Xi,j1 −
µ1,j1)(Xi,j3−µ0,j3)(Xi,j4−µ0,j4)} = E{α−1πi(1−πi)(Xi,j1−µ1,j1)(Xi,j3−µ0,j3)(Xi,j4−µ0,j4)}.
Further, we have

E
{
α−1πi

(
1− πi

)(
Xi,j1 − µ1,j1

)(
Xi,j3 − µ0,j3

)(
Xi,j4 − µ0,j4

)}
=

∫
(1− α)φµ0,Σ0(x)φµ1,Σ1(x)

(1− α)φµ0,Σ0(x) + αφµ1,Σ1(x)

(
xj1 − µ1,j1

)(
xj3 − µ0,j3

)(
xj4 − µ0,j4

)
dx

=

∫
φµ1,Σ1(x)

1 + δφ(x)

(
xj1 − µ1,j1

)(
xj3 − µ0,j3

)(
xj4 − µ0,j4

)
dx

=

∫
φµ1,Σ1(x)

(
xj1 − µ1,j1

)(
xj3 − µ0,j3

)(
xj4 − µ0,j4

)
dx
{

1 + o(1)
}

= E
{(
Xi,j1 − µ1,j1

)(
Xi,j3 − µ0,j3

)(
Xi,j4 − µ0,j4

)
| Yi = 1

}{
1 + o(1)

}
.

We then focus on the variance of (j3, j4)th element of (Nα)−1
∑N

i=1 πi(1 − πi)(Xi,j1 −
µ1,j1)(Xi − µ0)(Xi − µ0)>. We have var{(Nα)−1

∑N
i=1 πi(1 − πi)(Xi,j1 − µ1,j1)(Xi,j3 −

µ0,j3)(Xi,j4 − µ0,j4)} = N−1α−2var{πi(1− πi)(Xi,j1 − µ1,j1)(Xi,j3 − µ0,j3)(Xi,j4 − µ0,j4)} =
N−1α−2E{π2

i (1 − πi)2(Xi,j1 − µ1,j1)2(Xi,j3 − µ0,j3)2(Xi,j4 − µ0,j4)2} − N−1α−2E2{πi(1 −
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πi)(Xi,j1 − µ1,j1)(Xi,j3 − µ0,j3)(Xi,j4 − µ0,j4)}. Further, we have

E

{
α−1π2

i

(
1− πi

)2(
Xi,j1 − µ1,j1

)2(
Xi,j3 − µ0,j3

)2(
Xi,j4 − µ0,j4

)2
}

=

∫
α(1− α)2φ2

µ0,Σ0
(x)φ2

µ1,Σ1
(x)

{(1− α)φµ0,Σ0(x) + αφµ1,Σ1(x)}3
(
xj1 − µ1,j1

)2(
xj3 − µ0,j3

)2(
xj4 − µ0,j4

)2
dx

=

∫
φµ1,Σ1(x)

{1 + δφ(x)}2{1 + δ−1
φ (x)}

(
xj1 − µ1,j1

)2(
xj3 − µ0,j3

)2(
xj4 − µ0,j4

)2
dx

≤
∫

φµ1,Σ1(x)

{1 + δφ(x)}2
(
xj1 − µ1,j1

)2(
xj3 − µ0,j3

)2(
xj4 − µ0,j4

)2
dx

=

∫
φµ1,Σ1(x)

(
xj1 − µ1,j1

)2(
xj3 − µ0,j3

)2(
xj4 − µ0,j4

)2
dx
{

1 + o(1)
}

= E
{(
Xi,j1 − µ1,j1

)2(
Xi,j3 − µ0,j3

)2(
Xi,j4 − µ0,j4

)2
| Yi = 1

}{
1 + o(1)

}
= O

(
1
)
.

This leads to var{(Nα)−1
∑N

i=1 πi(1 − πi)(Xi,j1 − µ1,j1)(Xi,j3 − µ0,j3)(Xi,j4 − µ0,j4)} =
O{(Nα)−1}. Combining the above results, we finally have Ḟµ1Σ0(θ)→p −E{(Xi−µ1)vec(γi0
γ>i0)>|Yi = 1}D/2 as N →∞.

Step 5.4 The Asymptotic Behavior of Ḟµ1µ1(θ) and Ḟµ1Σ1(θ). By the similar
arguments, we have Ḟµ1µ1(θ)→p Ip and Ḟµ1Σ1(θ)→p E{(Xi − µ1)vec(γi1γ

>
i1)>|Yi = 1}D/2

as N →∞.
Step 6 The Asymptotic Behavior of ḞΣ1(θ). We consider here the last block

ḞΣ1(θ). Define ḞΣ1(θ) = (ḞΣ1α(θ), ḞΣ1µ0(θ), ḞΣ1Σ0(θ), ḞΣ1µ1(θ), ḞΣ1Σ1(θ)) ∈ Rp(p+1)/2×q,
where ḞΣ1α(θ) = ∂FΣ1(θ)/∂α ∈ Rp(p+1)/2, ḞΣ1µk(θ) = ∂FΣ1(θ)/∂µ>k ∈ Rp(p+1)/2×p and
ḞΣ1Σk(θ) = ∂FΣ1(θ)/∂vech(Σk)

> ∈ Rp(p+1)/2×p(p+1)/2 with k ∈ {0, 1}. Recall Ωik =
vech{(Xi −µk)(Xi − µk)

>} − FΣk(θ) with k ∈ {0, 1}. The analytical detail of ḞΣ1(θ)
is given by

ḞΣ1α(θ) =
( N∑
i=1

πi

)−1
N∑
i=1

πi(1− πi)
α(1− α)

Ωi1,

ḞΣ1µ0(θ) = −
( N∑
i=1

πi

)−1
N∑
i=1

πi

(
1− πi

)
Ωi1γ

>
i0,

ḞΣ1Σ0(θ) =
( N∑
i=1

πi

)−1 1

2

N∑
i=1

πi

(
1− πi

)
Ωi1vec

(
Γi0

)>
D,

ḞΣ1µ1(θ) =
( N∑
i=1

πi

)−1
N∑
i=1

πi

(
1− πi

)
Ωi1γ

>
i1

−
( N∑
i=1

πi

)−1
N∑
i=1

πiD
+
{(
Xi − µ1

)
⊗ Ip + Ip ⊗

(
Xi − µ1

)}
,

ḞΣ1Σ1(θ) = −
( N∑
i=1

πi

)−1 1

2

N∑
i=1

πi

(
1− πi

)
Ωi1vec

(
Γi1

)>
D.
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Step 6.1 The Asymptotic Behavior of ḞΣ1α(θ). We start with ḞΣ1α(θ). The ob-
jective here is to show that ḞΣ1α(θ)→p vech(∆Σ1α) as N →∞, where ∆Σ1α = (∆Σ1α,j1j2)
and ∆Σ1α,j1j2 = −

∫
φ2
µ1,Σ1

(x)φ−1
µ0,Σ0

(x){(xj1 − µ1,j1)(xj2 − µ1,j2) − σ1,j1j2}dx. By the defi-

nition of FΣ1(θ), we have
∑N

i=1 πiΩi1 = 0. Thus, we have

ḞΣ1α(θ) = −
( 1

Nα

N∑
i=1

πi

)−1 1

Nα2(1− α)

N∑
i=1

π2
i Ωi1.

By Step 1, we have verified (Nα)−1
∑N

i=1 πi →p 1 and FΣ1(θ) →p vech(Σ1) as N → ∞.
Then it suffices to prove

N−1α−2
N∑
i=1

π2
i

(
Xi,j1 − µ1,j1

)(
Xi,j2 − µ1,j2

)
→p

∫
φ2
µ1,Σ1

(x)

φµ0,Σ0(x)
(xj1 − µ1,j1)(xj2 − µ1,j2)dx.

We have E{(Nα2)−1
∑N

i=1 π
2
i (Xi,j1 −µ1,j1)(Xi,j2 −µ1,j2)} = α−2E{π2

i (Xi,j1 −µ1,j1)(Xi,j2 −
µ1,j2)}. Then we have by the Dominant Convergence Theorem that

α−2E
{
π2
i

(
Xi,j1 − µ1,j1

)(
Xi,j2 − µ1,j2

)}
=

∫
φ2
µ1,Σ1

(x)

(1− α)φµ0,Σ0(x) + αφµ1,Σ1(x)

(
xj1 − µ1,j1

)(
xj2 − µ1,j2

)
dx

=

∫
φ2
µ1,Σ1

(x)/φµ0,Σ0(x)

(1− α){1 + δφ(x)}

(
xj1 − µ1,j1

)(
xj2 − µ1,j2

)
dx

=

∫
φ2
µ1,Σ1

(x)

φµ0,Σ0(x)

(
xj1 − µ1,j1

)(
xj2 − µ1,j2

)
dx
{

1 + o(1)
}
.

Meanwhile, we have var{(Nα2)−1
∑N

i=1 π
2
i (Xi,j1 − µ1,j1)(Xi,j2 − µ1,j2)} = N−1α−4var{π2

i

(Xi,j1−µ1,j1)(Xi,j2−µ1,j2)} = N−1α−4E{π4
i (Xi,j1−µ1,j1)2(Xi,j2−µ1,j2)2}−N−1α−4E2{π2

i

(Xi,j1 − µ1,j1)(Xi,j2 − µ1,j2)}. We then compute

α−4E
{
π4
i

(
Xi,j1 − µ1,j1

)2(
Xi,j2 − µ1,j2

)2}
=

∫
φ4
µ1,Σ1

(x)

{(1− α)φµ0,Σ0(x) + αφµ1,Σ1(x)}3
(
xj1 − µ1,j1

)2(
xj2 − µ1,j2

)2
dx

=

∫
φ4
µ1,Σ1

(x)/φ3
µ0,Σ0

(x)

(1− α)3{1 + δφ(x)}3
(
xj1 − µ1,j1

)2(
xj2 − µ1,j2

)2
dx

=

∫
φ4
µ1,Σ1

(x)

φ3
µ0,Σ0

(x)

(
xj1 − µ1,j1

)2(
xj2 − µ1,j2

)2
dx
{

1 + o(1)
}

= O(1).

This suggests that var{(Nα2)−1
∑N

i=1 π
2
i (Xi,j1 − µ1,j1)(Xi,j2 − µ1,j2)} = O(N−1) → 0 as

N →∞. This finishes the proof of Step 6.1.
Step 6.2 The Asymptotic Behavior of ḞΣ1µ0(θ). We can decompose ḞΣ1µ0(θ)

ḞΣ1µ0(θ) =
( N∑
i=1

πi

)−1
FΣ1(θ)

N∑
i=1

πi

(
1− πi

)
γ>i0
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−
( N∑
i=1

πi

)−1
N∑
i=1

πi

(
1− πi

)
vech

{(
Xi − µ1

)(
Xi − µ1

)>}
γ>i0. (14)

We start with the first part of (14). By Step 1 and Step 2.2, we have verified (Nα)−1
∑N

i=1 πi
→p 1, FΣ1(θ) →p Σ1 and (Nα)−1

∑N
i=1 πi(1 − πi)γi0 →p Σ−1

0 (µ1 − µ0) as N → ∞. We

then have (
∑N

i=1 πi)
−1FΣ1(θ)

∑N
i=1 πi(1 − πi)γ>i0 →p vech(Σ1)(µ1 − µ0)>Σ−1

0 as N → ∞.
We next focus on the second part of (14) and have

−
( N∑
i=1

πi

)−1
N∑
i=1

πi

(
1− πi

)
vech

{(
Xi − µ1

)(
Xi − µ1

)>}
γ>i0

→p −E
[
vech

{(
Xi − µ1

)(
Xi − µ1

)>}(
Xi − µ0

)>∣∣∣Yi = 1
]
Σ−1

0 .

Therefore, as N → ∞, we finally have ḞΣ1µ0(θ) →p ∆Σ1µ0 as N → ∞, where ∆Σ1µ0 =
−E[vech{(Xi − µ1)(Xi − µ1)>}γ>i0|Yi = 1] + vech(Σ1)(µ1 − µ0)>Σ−1

0 .
Step 6.3 The Asymptotic Behavior of ḞΣ1Σ0(θ). Recall we have ḞΣ1Σ0(θ) =

( 1
Nα

∑N
i=1 πi)

−1∆̂Σ1Σ0D/2, where we decompose

∆̂Σ1Σ0 =
1

Nα

N∑
i=1

πi

(
1− πi

)
Ωi1vec

(
Γi0

)>
= ∆̂a

Σ1Σ0
+ ∆̂b

Σ1Σ0
+ ∆̂c

Σ1Σ0
+ ∆̂d

Σ1Σ0
.

We then focus on these four terms, respectively. Following the similar technique, we have
as N →∞ that

∆̂a
Σ1Σ0

= − 1

Nα

N∑
i=1

πi

(
1− πi

)
vech

{(
Xi − µ1

)(
Xi − µ1

)>}
vec
(
γi0γ

>
i0

)>
→p −E

[
vech

{(
Xi − µ1

)(
Xi − µ1

)>}
vec
(
γi0γ

>
i0

)>∣∣∣Yi = 1
]
,

∆̂b
Σ1Σ0

=
1

Nα

N∑
i=1

πi

(
1− πi

)
vech

{(
Xi − µ1

)(
Xi − µ1

)>}
vec
(

Σ−1
0

)>
→p vech

(
Σ1

)
vec
(

Σ−1
0

)>
,

∆̂c
Σ1Σ0

= FΣ1(θ)
1

Nα

N∑
i=1

πi

(
1− πi

)
vec
(
γi0γ

>
i0

)>
→p vech

(
Σ1

)
vec
[
Σ−1

0

{
Σ1 +

(
µ1 − µ0

)(
µ1 − µ0

)>}
Σ−1

0

]>
,

∆̂d
Σ1Σ0

= −FΣ1(θ)vec
(

Σ−1
0

)> 1

Nα

N∑
i=1

πi

(
1− πi

)
→p −vech

(
Σ1

)
vec
(

Σ−1
0

)>
.

Combining the above results, we have ∆̂Σ1Σ0 →p ∆Σ1Σ0 as N → ∞, where ∆Σ1Σ0 =
−E[vech{(Xi−µ1)(Xi−µ1)>}vec(γi0γ

>
i0)>|Yi = 1] + vech(Σ1)vec[Σ−1

0 {Σ1 + (µ1−µ0)(µ1−
µ0)>}Σ−1

0 ]>. This suggests that ḞΣ1Σ0(θ)→p ∆Σ1Σ0D/2 as N →∞.
Step 6.4 The Asymptotic Behavior of ḞΣ1µ1(θ) and ḞΣ1Σ1(θ). By the similar

arguments, we have ḞΣ1µ1(θ) →p ∆Σ1µ1 and ḞΣ1Σ1(θ) →p −∆Σ1Σ1D/2 as N → ∞, where
∆Σ1µ1 = E[vech{(Xi − µ1)(Xi − µ1)>}γ>i1|Yi = 1] and ∆Σ1Σ1 = −E[vech{(Xi − µ1)(Xi −
µ1)>}vec(γi1γ

>
i1)>|Yi = 1] + vech(Σ1)vec(Σ−1

1 )>. This accomplishes the entire proof.
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Appendix A.2: Proof of Theorem 2

We study here the asymptotic behavior of Ḟ∗(θ) under the rare events assumptions. To this
end, we decompose the contraction operator Ḟ∗(θ) into five blocks as Ḟ∗(θ) = (Ḟ∗α(θ), Ḟ∗µ0

(θ)>,

Ḟ∗Σ0
(θ)>, Ḟ∗µ1

(θ)>, Ḟ∗Σ1
(θ)>)> ∈ Rq×q, where Ḟ∗α(θ) = ∂F∗α(θ)/∂θ ∈ Rq, Ḟ∗µk(θ) = ∂F∗µk(θ)/

∂θ> ∈ Rp×q and Ḟ∗Σk(θ) = ∂F∗Σk(θ)/∂θ> ∈ Rp(p+1)/2×q with k ∈ {0, 1}. Similarly, we
prove four convergence results in the first step. These conclusions are frequently used in
the subsequent proof. Next, we study these five blocks separately in the last five steps.

Step 1 Four Convergence Results. In this step, we verify F∗µk(θ) →p µk and
F∗Σk(θ) →p vech(Σk) as N → ∞ with k ∈ {0, 1}. The technical details for proving
these four convergence results are very similar. Comparatively speaking, the proof of
F∗Σ1

(θ) →p vech(Σ1) is technically more complicated. We thus provide the proof details
for this convergence result only. The proofs for other convergence results are omitted to
save space. Recall F∗Σ1

(θ) = (
∑N

i=1 πi +
∑m

i=1 Y
∗
i )−1vech{

∑N
i=1 πi(Xi − µ1)(Xi − µ1)> +∑m

i=1 Y
∗
i (X∗i − µ1)(X∗i − µ1)>}. Consequently, it suffices to prove as N →∞,

{(
N +m

)
α
}−1( N∑

i=1

πi +

m∑
i=1

Y ∗i

)
→p 1, (15)

{(
N +m

)
α
}−1{ N∑

i=1

πi

(
Xi − µ1

)(
Xi − µ1

)>
+

m∑
i=1

Y ∗i

(
X∗i − µ1

)(
X∗i − µ1

)>}
→p Σ1.

(16)

By the Slutsky’s Theorem, we then have F∗Σ1
(θ)→p vech(Σ1) as N →∞. This finishes the

proof of Step 1.

Step 1.1 Verification of (15). By Step 1 in Appendix A.1, we calculate {(N +
m)α}−1

∑N
i=1 πi = N/(N + m)(Nα)−1

∑N
i=1 πi →p 1/(1 + κ) as N → ∞ by the Slutsky’s

Theorem. Consequently, we focus on {(N + m)α}−1
∑m

i=1 Y
∗
i . We compute the expec-

tation and variance of {(N + m)α}−1
∑m

i=1 Y
∗
i , respectively. It is obvious that E[{(N +

m)α}−1
∑m

i=1 Y
∗
i ] = m/(N + m) → (1 + κ−1)−1 as N → ∞. Next, we compute that

var[{(N + m)α}−1
∑m

i=1 Y
∗
i ] = (N + m)−2α−1m(1 − α) = O[m/{(N + m)2α}] → 0 as

N →∞. This finally verify (15).

Step 1.2 Verification of (16). We show here (16). For the first part, we have
{(N +m)α}−1

∑N
i=1 πi(Xi − µ1)(Xi − µ1)> = N(N +m)−1(Nα)−1

∑N
i=1 πi(Xi − µ1)(Xi −

µ1)> →p (1 + κ)−1Σ1 as N → ∞ by Step 1.2 in Appendix A.1. For the second part, it is
obvious that E{(mα)−1

∑m
i=1 Y

∗
i (X∗i −µ1)(X∗i −µ1)>} = α−1E{Y ∗i (X∗i −µ1)(X∗i −µ1)>} =

E{(X∗i − µ1)(X∗i − µ1)>|Y ∗i = 1} = Σ1. We then focus on the variance of the (j1, j2)th
element and have var{(mα)−1

∑m
i=1 Y

∗
i (X∗i,j1−µ1,j1)(X∗i,j2−µ1,j2)} = m−1α−2var{Y ∗i (X∗i,j1−

µ1,j1)(X∗i,j2−µ1,j2)} = m−1α−2E{Y ∗i (X∗i,j1−µ1,j1)2(X∗i,j2−µ1,j2)2}−m−1α−2E2{Y ∗i (X∗i,j1−
µ1,j1)(X∗i,j2 − µ1,j2)} = O{(mα)−1} → 0 as N →∞. Thus, we have (mα)−1

∑m
i=1 Y

∗
i (X∗i −

µ1)(X∗i −µ1)> →p Σ1 as N →∞. This suggests that {(N+m)α}−1
∑m

i=1 Y
∗
i (X∗i −µ1)(X∗i −

µ1)> = m(N + m)−1(mα)−1
∑m

i=1 Y
∗
i (X∗i − µ1)(X∗i − µ1)> →p κ(1 + κ)−1Σ1. Combining

the above results, we have (16).

Step 2 The Asymptotic Behavior of Ḟ∗α(θ). We start with the first block
Ḟ∗α(θ) = (Ḟ∗αα(θ), Ḟ∗αµ0(θ)>, Ḟ∗αΣ0(θ)>, Ḟ∗αµ1(θ)>, Ḟ∗αΣ1(θ)>)> ∈ Rq, where we define
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Ḟ∗αα(θ) = ∂F∗α(θ)/∂α ∈ R, Ḟ∗αµk(θ) = ∂F∗α(θ)/∂µk ∈ Rp and Ḟ∗αΣk(θ) = ∂F∗α(θ)/∂vech(Σk)

∈ Rp(p+1)/2 with k ∈ {0, 1}. Recall that F∗α(θ) = (N +m)−1(
∑N

i=1 πi +
∑m

i=1 Y
∗
i ) ∈ R. The

analytical detail of Ḟ∗α(θ) is given by

Ḟ∗αα(θ) =
1

N +m

N∑
i=1

πi(1− πi)
α(1− α)

,

Ḟ∗αµ0(θ) = − 1

N +m

N∑
i=1

πi

(
1− πi

)
γi0,

Ḟ∗αΣ0(θ) =
1

N +m

D>

2

N∑
i=1

πi

(
1− πi

)
vec
(

Γi0

)
,

Ḟ∗αµ1(θ) =
1

N +m

N∑
i=1

πi

(
1− πi

)
γi1,

Ḟ∗αΣ1(θ) = − 1

N +m

D>

2

N∑
i=1

πi

(
1− πi

)
vec
(

Γi1

)
,

where γik = Σ−1
k (Xi − µk) and Γik = Σ−1

k − γikγ
>
ik with k ∈ {0, 1}. We next study these

five blocks separately. We start with Ḟ∗αα(θ). We have Ḟ∗αα(θ) = (N + m)−1{α(1 −
α)}−1

∑N
i=1 πi(1 − πi) = (1 + m/N)−1Ḟαα(θ) →p (1 + κ)−1 as N → ∞ by Step 2.1 in

Appendix A.1. By similar arguments, we have Ḟ∗αµk(θ) →p 0 and Ḟ∗αΣ1
(θ) →p 0 with

k ∈ {0, 1} as N →∞ based on Step 2 in Appendix A.1.

Step 3 The Asymptotic Behavior of Ḟ∗µ0
(θ). Next, we study the second block

Ḟ∗µ0
(θ). Here we define Ḟ∗µ0

(θ) = (Ḟ∗µ0α(θ), Ḟ∗µ0µ0(θ), Ḟ∗µ0Σ0(θ), Ḟ∗µ0µ1(θ), Ḟ∗µ0Σ1(θ))

∈ Rp×q, where Ḟ∗µ0α(θ) = ∂F∗µ0
(θ)/∂α ∈ Rp, Ḟ∗µ0µk(θ) = ∂F∗µ0

(θ)/∂µ>k ∈ Rp×p and

Ḟ∗µ0Σk(θ) = ∂F∗µ0
(θ)/∂vech(Σk)

> ∈ Rp×p(p+1)/2 with k ∈ {0, 1}. Recall F∗µ0
(θ) = {

∑N
i=1(1−

πi)+
∑m

i=1(1−Y ∗i )}−1{
∑N

i=1(1−πi)Xi+
∑N

i=1(1−Y ∗i )X∗i }. The analytical detail of Ḟ∗µ0
(θ)

is given by

Ḟ∗µ0α(θ) = −
{ N∑
i=1

(
1− πi

)
+

m∑
i=1

(
1− Y ∗i

)}−1
N∑
i=1

πi(1− πi)
α(1− α)

(
Xi −F∗µ0

(θ)
)
,

Ḟ∗µ0µ0(θ) =
{ N∑
i=1

(
1− πi

)
+

m∑
i=1

(
1− Y ∗i

)}−1
N∑
i=1

πi

(
1− πi

)(
Xi −F∗µ0

(θ)
)
γ>i0,

Ḟ∗µ0Σ0(θ) = −
{ N∑
i=1

(
1− πi

)
+

m∑
i=1

(
1− Y ∗i

)}−1 1

2

N∑
i=1

πi

(
1− πi

)(
Xi −F∗µ0

(θ)
)

vec
(

Γi0

)>
D,

Ḟ∗µ0µ1(θ) = −
{ N∑
i=1

(
1− πi

)
+

m∑
i=1

(
1− Y ∗i

)}−1
N∑
i=1

πi

(
1− πi

)(
Xi −F∗µ0

(θ)
)
γ>i1,

Ḟ∗µ0Σ1(θ) =
{ N∑
i=1

(
1− πi

)
+

m∑
i=1

(
1− Y ∗i

)}−1 1

2

N∑
i=1

πi

(
1− πi

)(
Xi −F∗µ0

(θ)
)

vec
(

Γi1

)>
D.
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We start with Ḟ∗µ0α(θ). The objective here is to show that Ḟ∗µ0α(θ)→p (µ0 − µ1)/(1 +

κ) as N → ∞. We first focus on the denominator of Ḟ∗µ0α(θ). By Step 1, we have

(N + m)−1
∑N

i=1(1 − πi) →p (1 + κ)−1 and F∗µ0
(θ) →p µ0 as N → ∞. Then we prove∑m

i=1 Y
∗
i /(mα) →p 1 as m → ∞. It is easy to verified that E{

∑m
i=1 Y

∗
i /(mα)} = 1 and

var{
∑m

i=1 Y
∗
i /(mα)} = m−1α−2var(Y ∗i ) = m−1α−1(1 − α) → 0 as m → ∞. This leads

to (N + m)−1{
∑N

i=1(1 − πi) +
∑m

i=1(1 − Y ∗i )} →p 1 as N → ∞. We next work on the

numerator of Ḟ∗µ0α. By Step 2 in Appendix A.1, we have (N+m)−1{α(1−α)}−1
∑N

i=1 πi(1−
πi) = N(N + m)−1N−1{α(1 − α)}−1

∑N
i=1 πi(1 − πi) →p (1 + κ)−1 and (N + m)−1{α(1 −

α)}−1
∑N

i=1 πi(1 − πi)Xi = N(N + m)−1N−1{α(1 − α)}−1
∑N

i=1 πi(1 − πi)Xi →−1
p µ1 as

N → ∞. Then by the Slutsky’s Theorem, we can verify Ḟ∗µ0α(θ) →p (µ0 − µ1)/(1 + κ)
as N → ∞. For the similar arguments, we have Ḟ∗αµk(θ) →p 0 and Ḟ∗αΣ1

(θ) →p 0 with
k ∈ {0, 1} as N → ∞ based on Step 3 in Appendix A.1. This accomplishes the proof of
Step 3.

Step 4 The Asymptotic Behavior of Ḟ∗Σ0
(θ). In this step, we consider the fourth

block Ḟ∗Σ0
(θ). Here define Ḟ∗Σ0

(θ) = (Ḟ∗Σ0α(θ), Ḟ∗Σ0µ0(θ), Ḟ∗Σ0Σ0(θ), Ḟ∗Σ0µ1(θ), Ḟ∗Σ0Σ1(θ))

∈ Rp(p+1)/2×q, where Ḟ∗Σ0α(θ) = ∂F∗Σ0
(θ)/∂α ∈ Rp(p+1)/2, Ḟ∗Σ0µk(θ) = ∂F∗Σ0

(θ)/∂µ>k ∈
Rp(p+1)/2×p and Ḟ∗Σ0Σk(θ) = ∂F∗Σ0

(θ)/∂vech(Σk)
> ∈ Rp(p+1)/2×p(p+1)/2 with k ∈ {0, 1}.

Recall Ω∗ik = vech{(Xi − µk)(Xi − µk)>} −F∗Σk(θ) with k ∈ {0, 1}. The analytical detail of

Ḟ∗Σ0
(θ) is given by

Ḟ∗Σ0α(θ) = −
{ N∑
i=1

(
1− πi

)
+

N∑
i=1

(
1− Y ∗i

)}−1
N∑
i=1

πi(1− πi)
α(1− α)

Ω∗i0,

Ḟ∗Σ0µ0(θ) =
{ N∑
i=1

(
1− πi

)
+

N∑
i=1

(
1− Y ∗i

)}−1
N∑
i=1

πi

(
1− πi

)
Ω∗i0Γ>i0

−
{ N∑
i=1

(
1− πi

)
+

N∑
i=1

(
1− Y ∗i

)}−1[ N∑
i=1

(
1− πi

)
D+
{(
Xi − µ0

)
⊗ Ip

+Ip ⊗
(
Xi − µ0

)}
+

m∑
i=1

(
1− Y ∗i

)
D+
{(
X∗i − µ0

)
⊗ Ip + Ip ⊗

(
X∗i − µ0

)}]
,

Ḟ∗Σ0Σ0(θ) = −
{ N∑
i=1

(
1− πi

)
+

N∑
i=1

(
1− Y ∗i

)}−1 1

2

N∑
i=1

πi

(
1− πi

)
Ω∗i0vec

(
Γi0

)>
D,

Ḟ∗Σ0µ1(θ) = −
{ N∑
i=1

(
1− πi

)
+

N∑
i=1

(
1− Y ∗i

)}−1
N∑
i=1

πi

(
1− πi

)
Ω∗i0Γ>i1,

Ḟ∗Σ0Σ1(θ) =
{ N∑
i=1

(
1− πi

)
+

N∑
i=1

(
1− Y ∗i

)}−1 1

2

N∑
i=1

πi

(
1− πi

)
Ω∗i0vec

(
Γi1

)>
D.

By (15), we have (N +m)−1{
∑N

i=1(1− πi) +
∑N

i=1(1− Y ∗i )} →p 1 as N →∞. Meanwhile,

by Step 4 in Appendix A.1, we have (Nα)−1
∑N

i=1 πi(1−πi)→p 1 and (Nα)−1
∑N

i=1 πi(1−
πi)(Xi − µ0)(Xi − µ0)> →p Σ1 + (µ1 − µ0)(µ1 − µ0)> as N → ∞. By Step 1, we have
F∗Σ0α

(θ)→p vech(Σ0) as N →∞. Combining the above results, we have Ḟ∗Σ0α(θ) = N(N+
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m)−1(1−α)−1(Nα)−1
∑N

i=1 πi(1−πi)Ω∗i0 →p (1+κ)−1vech{Σ1 +(µ1−µ0)(µ1−µ0)>−Σ0}
as N →∞. For the other four block matrices, we have Ḟ∗Σ0µk(θ)→p 0 and Ḟ∗Σ0Σk(θ)→p 0
as N →∞ with k ∈ {0, 1}.

Step 5 The Asymptotic Behavior of Ḟ∗µ1
(θ). In this step, we consider the third

block Ḟ∗µ1
(θ). Here we define Ḟ∗µ1

(θ) = (Ḟ∗µ1α(θ), Ḟ∗µ1µ0(θ), Ḟ∗µ1Σ0(θ), Ḟ∗µ1µ1(θ), Ḟ∗µ1Σ1(θ))

∈ Rp×q, where Ḟ∗µ1α(θ) = ∂F∗µ1
(θ)/∂α ∈ Rp, Ḟ∗µ1µk(θ) = ∂F∗µ1

(θ)/∂µ>k ∈ Rp×p and

Ḟ∗µ1Σk(θ) = ∂F∗µ1
(θ)/∂vech(Σk)

> ∈ Rp×p(p+1)/2 with k ∈ {0, 1}. The analytical detail of

Ḟ∗µ1
(θ) is given by

Ḟ∗µ1α(θ) =
( N∑
i=1

πi +
m∑
i=1

Y ∗i

)−1
N∑
i=1

πi(1− πi)
α(1− α)

(
Xi −F∗µ1

(θ)
)
,

Ḟ∗µ1µ0(θ) = −
( N∑
i=1

πi +
m∑
i=1

Y ∗i

)−1
N∑
i=1

πi

(
1− πi

)(
Xi −F∗µ1

(θ)
)
γ>i0,

Ḟ∗µ1Σ0(θ) =
( N∑
i=1

πi +

m∑
i=1

Y ∗i

)−1 1

2

N∑
i=1

πi

(
1− πi

)(
Xi −F∗µ1

(θ)
)

vec
(

Γi0

)>
D,

Ḟ∗µ1µ1(θ) =
( N∑
i=1

πi +

m∑
i=1

Y ∗i

)−1
N∑
i=1

πi

(
1− πi

)(
Xi −F∗µ1

(θ)
)
γ>i1,

Ḟ∗µ1Σ1(θ) = −
( N∑
i=1

πi +
m∑
i=1

Y ∗i

)−1 1

2

N∑
i=1

πi

(
1− πi

)(
Xi −F∗µ1

(θ)
)

vec
(

Γi1

)>
D.

Step 5.1 The Asymptotic Behavior of Ḟ∗µ1α(θ). We start with Ḟ∗µ1α(θ). The

objective here is to show that αḞ∗µ1α(θ) →p 0 as N → ∞. To this end, we rewrite
αḞ∗µ1α(θ) as

αḞ∗µ1α(θ) =

{
1

(N +m)α

( N∑
i=1

πi +
m∑
i=1

Y ∗i

)}−1{
1

(N +m)

N∑
i=1

πi(1− πi)
α(1− α)

(
Xi −Fµ1(θ)

)
+
(
Fµ1(θ)−F∗µ1

(θ)
) 1

(N +m)

N∑
i=1

πi(1− πi)
α(1− α)

}
.

By (15), we have {(N +m)α}−1(
∑N

i=1 πi +
∑m

i=1 Y
∗
i )→p 1, N−1{α(1− α)}−1

∑N
i=1 πi(1−

πi)→p 1, (Nα)−1{α(1− α)}−1
∑N

i=1 πi(1− πi)(Xi − Fµ1(θ))→p ∆µ1α as N →∞. Subse-
quently, it suffices to show Fµ1(θ)− F∗µ1

(θ) →p 0 as N → ∞. By the definitions of Fµ1(θ)
and F∗µ1

(θ), we have

Fµ1(θ)−F∗µ1
(θ) =

( N∑
i=1

πi +
m∑
i=1

Y ∗i

)−1( N∑
i=1

πi

)−1( m∑
i=1

Y ∗i

N∑
i=1

πiXi −
N∑
i=1

πi

m∑
i=1

Y ∗i X
∗
i

)
.

By Step 1, (15) and Step 5.1 in Appendix A.1, we have (N+m)−1α−1(
∑N

i=1 πi+
∑m

i=1 Y
∗
i )→p

1, (Nα)−1
∑N

i=1 πi →p 1, (Nα)−1
∑N

i=1 πiXi →p µ1, (N+m)−1α−1
∑m

i=1 Y
∗
i →p (1+κ−1)−1
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and (N + m)−1α−1
∑m

i=1 Y
∗
i X

∗
i →p (1 + κ−1)−1µ1 as N → ∞. This leads to Fµ1(θ) −

F∗µ1
(θ) →p 0 as N → ∞. Combining the above results, we have αḞ∗µ1α(θ) →p 0 as

N →∞.

Step 5.2 The Asymptotic Behavior of Ḟ∗µ1µ0(θ). The aim is to prove Ḟ∗µ1µ0
(θ)→p

−(1 + κ)−1Σ1Σ−1
0 as N → ∞. Recall Ḟ∗µ1µ0(θ) = −(

∑N
i=1 πi +

∑m
i=1 Y

∗
i )−1

∑N
i=1 πi(1 −

πi)(Xi − F∗µ1
(θ))γ>i0. We have Ḟ∗µ1µ0(θ) = −(N + m)α(

∑N
i=1 πi +

∑m
i=1 Y

∗
i )−1N/(N +

m)(Nα)−1
∑N

i=1 πi(1− πi)(Xi −F∗µ1
(θ))γ>i0 →p −(1 + κ)−1Σ1Σ−1

0 as N →∞.

Step 5.3 The Asymptotic Behavior of Ḟ∗µ1Σ0(θ). Recall Ḟ∗µ1Σ0(θ) = (
∑N

i=1 πi +∑m
i=1 Y

∗
i )−1 1

2

∑N
i=1 πi(1− πi)(Xi −F∗µ1

(θ))vec(Γi0)>D. We then can decompose

Ḟ∗µ1Σ0(θ) = −
( N∑
i=1

πi +
m∑
i=1

Y ∗i

)−1 1

2

N∑
i=1

πi

(
1− πi

)(
Xi − µ1

)
vec
(
γi0γ

>
i0

)>
D

+
( N∑
i=1

πi +
m∑
i=1

Y ∗i

)−1 1

2

N∑
i=1

πi

(
1− πi

)(
Xi − µ1

)
vec
(

Σ−1
0

)>
D

+
( N∑
i=1

πi +

m∑
i=1

Y ∗i

)−1 1

2

(
µ1 −F∗µ1

(θ)
) N∑
i=1

πi

(
1− πi

)
vec
(

Γi0

)>
D (17)

We have the last two parts of (17) converge to 0 in probability as N → ∞. We then
focus on the first part of (17). By (15) and Step 5.3 in Appendix A.1, we can obtain
−(
∑N

i=1 πi +
∑m

i=1 Y
∗
i )−1 1

2

∑N
i=1 πi(1− πi)(Xi − µ1)vec(γi0γ

>
i0)>D →p −(1 + κ)−1E{(Xi −

µ1)vec(γi0γ
>
i0)>|Yi = 1}D/2 as N → ∞. This leads to Ḟ∗µ1Σ0(θ) →p −(1 + κ)−1E{(Xi −

µ1)vec(γi0γ
>
i0)>|Yi = 1}D/2.

Step 5.4 The Asymptotic Behavior of Ḟ∗µ1µ1(θ) and Ḟ∗µ1Σ1(θ). By the sim-
ilar arguments, we have Ḟ∗µ1µ1

(θ) →p (1 + κ)−1Ip and Ḟ∗µ1Σ1(θ) →p (1 + κ)−1E{(Xi −
µ1)vec(γi1γ

>
i1)>|Yi = 1}D/2 as N →∞.

Step 6 The Asymptotic Behavior of Ḟ∗Σ1
(θ). We consider here the last block

Ḟ∗Σ1
(θ). Here define Ḟ∗Σ1

(θ) = (Ḟ∗Σ1α(θ), Ḟ∗Σ1µ0(θ), Ḟ∗Σ1Σ0(θ), Ḟ∗Σ1µ1(θ), Ḟ∗Σ1Σ1(θ)) ∈
Rp(p+1)/2×q, where Ḟ∗Σ1α(θ) = ∂F∗Σ1

(θ)/∂α ∈ Rp(p+1)/2, Ḟ∗Σ1µk(θ) = ∂F∗Σ1
(θ)/∂µ>k ∈

Rp(p+1)/2×p and Ḟ∗Σ1Σk(θ) = ∂F∗Σ1
(θ)/∂vech(Σk)

> ∈ Rp(p+1)/2×p(p+1)/2 with k ∈ {0, 1}.
Recall Ωik = vech{(Xi − µk)(Xi − µk)>} −F∗Σk(θ) with k ∈ {0, 1}. The analytical detail of

Ḟ∗Σ1
(θ) is given by

Ḟ∗Σ1α(θ) =
( N∑
i=1

πi +
m∑
i=1

Y ∗i

)−1
N∑
i=1

πi(1− πi)
α(1− α)

Ω∗i1,

Ḟ∗Σ1µ0(θ) = −
( N∑
i=1

πi +
m∑
i=1

Y ∗i

)−1
N∑
i=1

πi

(
1− πi

)
Ω∗i1γ

>
i0,

Ḟ∗Σ1Σ0(θ) =
( N∑
i=1

πi +

m∑
i=1

Y ∗i

)−1 1

2

N∑
i=1

πi

(
1− πi

)
Ω∗i1vec

(
Γi0

)>
D,
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Ḟ∗Σ1µ1(θ) =
( N∑
i=1

πi +
m∑
i=1

Y ∗i

)−1
N∑
i=1

πi

(
1− πi

)
Ω∗i1γ

>
i1

−
( N∑
i=1

πi +
m∑
i=1

Y ∗i

)−1[ N∑
i=1

πiD
+
{(
Xi − µ1

)
⊗ Ip + Ip ⊗

(
Xi − µ1

)}
+

m∑
i=1

Y ∗i D
+
{(
X∗i − µ1

)
⊗ Ip + Ip ⊗

(
X∗i − µ1

)}]
,

Ḟ∗Σ1Σ1(θ) = −
( N∑
i=1

πi +

m∑
i=1

Y ∗i

)−1 1

2
D>

N∑
i=1

πi

(
1− πi

)
Ω∗i1vec

(
Γi1

)>
D.

Step 6.1 The Asymptotic Behavior of Ḟ∗Σ1α(θ). The objective here is to show
that αḞ∗Σ1α(θ)→p 0 as N →∞. To this end, we rewrite αḞ∗µ1α(θ) as

αḞ∗Σ1α(θ) =

{
1

(N +m)α

( N∑
i=1

πi +

m∑
i=1

Y ∗i

)}−1 [
1

(N +m)

N∑
i=1

πi(1− πi)
α(1− α)

Ωi1

+
{
FΣ1(θ)−F∗Σ1

(θ)
} 1

(N +m)

N∑
i=1

πi(1− πi)
α(1− α)

]
.

By (15), we have {(N +m)α}−1(
∑N

i=1 πi +
∑m

i=1 Y
∗
i )→p 1, N−1{α(1− α)}−1

∑N
i=1 πi(1−

πi) →p 1, (Nα)−1{α(1 − α)}−1
∑N

i=1 πi(1 − πi)Ωi1 →p ∆Σ1α as N → ∞. Subsequently, it
suffices to show Ω∗i1 − Ωi1 →p 0 as N → ∞. By the definitions of FΣ1(θ) and F∗Σ1

(θ), we
have

FΣ1(θ)−F∗Σ1
(θ) =

( N∑
i=1

πi +
m∑
i=1

Y ∗i

)−1( N∑
i=1

πi

)−1{ m∑
i=1

Y ∗i

N∑
i=1

πi

(
Xi − µ1

)(
Xi − µ1

)>
−

N∑
i=1

πi

m∑
i=1

Y ∗i

(
X∗i − µ1

)(
X∗i − µ1

)>}
.

By Step 1, (15) and Step 5.1 in Appendix A.1, we have (N+m)−1α−1(
∑N

i=1 πi+
∑m

i=1 Y
∗
i )→p

1, (Nα)−1
∑N

i=1 πi→p 1, (Nα)−1
∑N

i=1 πi(Xi−µ1)(Xi−µ1)>→p Σ1, (N+m)−1α−1
∑m

i=1 Y
∗
i

→p (1 + κ−1)−1 and (N + m)−1α−1
∑m

i=1 Y
∗
i (X∗i − µ1)(X∗i − µ1)> →p (1 + κ−1)−1Σ1 as

N →∞. This leads to FΣ1(θ)−F∗Σ1
(θ)→p 0 as N →∞. Combining the above results, we

have αḞ∗Σ1α(θ)→p 0 as N →∞. This finishes the proof of Step 6.1.

Step 6.2 The Asymptotic Behavior of Ḟ∗Σ1µ0(θ). We can decompose Ḟ∗Σ1µ0(θ)

Ḟ∗Σ1µ0(θ) =
( N∑
i=1

πi +
m∑
i=1

Y ∗i

)−1
F∗Σ1

(θ)
N∑
i=1

πi

(
1− πi

)
γ>i0

−
( N∑
i=1

πi +

m∑
i=1

Y ∗i

)−1
N∑
i=1

πi

(
1− πi

)
vech

{(
Xi − µ1

)(
Xi − µ1

)>}
γ>i0. (18)
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We start with the first part of (18). By Step 1, (15) and Step 3.2 in Appendix A.1,
we have (

∑N
i=1 πi +

∑m
i=1 Y

∗
i )−1F∗Σ1

(θ)
∑N

i=1 πi(1 − πi)γ
>
i0 →p (1 + κ)−1vech(Σ1)(µ1 −

µ0)>Σ−1
0 as N → ∞. We next focus on the second part of (18) and have −(

∑N
i=1 πi +∑m

i=1 Y
∗
i )−1

∑N
i=1 πi(1 − πi)vech{(Xi − µ1)(Xi − µ1)>}γ>i0 →p −(1 + κ)−1E[vech{(Xi −

µ1)(Xi−µ1)>}(Xi−µ0)]Σ−1
0 . Hence, we finally have Ḟ∗Σ1µ0(θ)→p (1+κ)−1∆Σ1µ0 as N →

∞, where ∆Σ1µk = (−1)k+1E[vech{(Xi−µ1)(Xi−µ1)>}(Xi−µk)]Σ−1
k −(−1)k+1vech(Σ1)(µ1−

µk)
>Σ−1

k with k ∈ {0, 1}.
Step 6.3 The Asymptotic Behavior of Ḟ∗Σ1Σ0(θ). Recall we have Ḟ∗Σ1Σ0(θ) =

(N +m)α(
∑N

i=1 πi +
∑m

i=1 Y
∗
i )−1∆̂∗Σ1Σ0

D/2, where we decompose

∆̂∗Σ1Σ0
=

1

(N +m)α

N∑
i=1

πi

(
1− πi

)
Ω∗i1vec

(
Γi0

)>
=

N

N +m

(
∆̂a

Σ1Σ0
+ ∆̂b

Σ1Σ0
+ ∆̂c∗

Σ1Σ0
+ ∆̂d∗

Σ1Σ0

)
.

By Step 6.3 in Appendix A.1 and Step 1, we then focus on the last two terms and have as
N →∞

∆̂c∗
Σ1Σ0

= vech
{
F∗Σ1

(θ)
} 1

Nα

N∑
i=1

πi

(
1− πi

)
vec
(
γi0γ

>
i0

)>
→p −vech

(
Σ1

)
vec
[
Σ−1

0

{
Σ1 + (µ1 − µ0)(µ1 − µ0)>

}
Σ−1

0

]>
,

∆̂d∗
Σ1Σ0

= −F∗Σ1
(θ)vec

(
Σ−1

0

)> 1

Nα

N∑
i=1

πi

(
1− πi

)
→p −vech

(
Σ1

)
vec
(

Σ−1
0

)>
.

Combining the above results, we have ∆̂∗Σ1Σ0
→p ∆Σ1Σ0 as N → ∞, where we recall

∆Σ1Σk = E[vech{(Xi − µ1)(Xi − µ1)>}vec(γikγ
>
ik)
>|Yi = 1]− vech(Σ1)vec[Σ−1

k {Σ1 + (µ1 −
µk)(µ1−µk)>}Σ−1

k ]> with k ∈ {0, 1}. This suggests that Ḟ∗Σ1Σ0(θ)→p (1+κ)−1∆Σ1Σ0D/2
as N →∞.

Step 6.4 The Asymptotic Behavior of Ḟ∗Σ1µ1(θ) and Ḟ∗Σ1Σ1(θ). By the similar
arguments, we have Ḟ∗Σ1µ1(θ)→p (1+κ)−1∆Σ1µ1 and Ḟ∗Σ1Σ1(θ)→p −(1+κ)−1∆Σ1Σ1D/2
as N →∞. This accomplishes the entire proof.

Appendix A.3: Details Demonstration of the EM and MEM Algorithms

Part 1. The EM Algorithm. In the first part, we start with the EM algorithm by the
complete-data likelihood method (Dempster et al., 1977; Wu, 1983). Suppose we have the
data {(Xi, Yi) : 1 ≤ i ≤ N}, where the latent class labels Yis are assumed to be known.
Consequently, the logarithm of complete-data likelihood function can be written as

Q(θ) =
N∑
i=1

{
Yi log φµ1,Σ1

(
Xi

)
+
(

1− Yi
)

log φµ0,Σ0

(
Xi

)}
+

N∑
i=1

{
Yi logα+

(
1− Yi

)
log
(
1− α

)}
. (19)
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We start with the expectation step. Let θ̂(t) = (α̂(t), µ̂
(t)>
0 , vech(Σ̂

(t)
0 )>, µ̂

(t)>
1 , vech(Σ̂

(t)
1 )>)> ∈

Rq be the estimator obtained in the tth step. By the Bayes’ theorem, we have for the poste-

rior probability that π̂
(t+1)
i = E(Yi|Xi, θ̂

(t)) = P (Yi = 1|Xi, θ̂
(t)) = f

θ̂(t)(Xi)
−1α̂(t)φ

µ̂
(t)
1 ,Σ̂

(t)
1

(Xi).

Next, we derive the maximization step. Define Q(θ|θ̂(t)) to be the expectation of the
joint log-likelihood for the complete data conditional on the observed data Xis. Conse-

quently, we have Q(θ|θ̂(t)) =
∑N

i=1{π̂
(t+1)
i log φµ1,Σ1(Xi) + (1 − π̂

(t+1)
i ) log φµ0,Σ0(Xi)} +∑N

i=1{π̂
(t+1)
i logα + (1 − π̂(t+1)

i ) log
(
1 − α

)
} by (19). Accordingly, the estimators in the

(t + 1)th step can be computed by θ̂(t+1) = argmaxθQ(θ|θ̂(t)). By solving Q̇(θ|θ̂(t)) = 0,

we obtain the (t + 1)th step estimator θ̂(t+1) = (α̂(t+1), µ̂
(t+1)>
0 , vech(Σ̂

(t+1)
0 )>, µ̂

(t+1)>
1 ,

vech(Σ̂
(t+1)
1 )>)> ∈ Rq as

α̂(t+1) = N−1
N∑
i=1

π̂
(t+1)
i , µ̂

(t+1)
0 =

{ N∑
i=1

(
1− π̂(t+1)

i

)}−1
N∑
i=1

(
1− π̂(t+1)

i

)
Xi,

Σ̂
(t+1)
0 =

{ N∑
i=1

(
1− π̂(t+1)

i

)}−1
N∑
i=1

(
1− π̂(t+1)

i

)(
Xi − µ̂(t)

0

)(
Xi − µ̂(t)

0

)>
,

µ̂
(t+1)
1 =

( N∑
i=1

π̂
(t+1)
i

)−1
N∑
i=1

π̂
(t+1)
i Xi,

Σ̂
(t+1)
1 =

( N∑
i=1

π̂
(t+1)
i

)−1
N∑
i=1

π̂
(t+1)
i

(
Xi − µ̂(t)

1

)(
Xi − µ̂(t)

1

)>
.

The aforementioned steps should be iteratively executed until numerical convergence. Note
that numerical convergence here relates to the computation cost needed for the initial
estimator to numerically converge to the MLE. This computation cost is reflected by
the number of iterations needed to achieve the pre-specified convergence criterion, and
is fundamentally determined by the spectral radius of the contraction operator evalu-
ated at the true value. By the time of numerical convergence, we obtain the MLE as
θ̂ = (α̂, µ̂>0 , vech(Σ̂0)>, µ̂>1 , vech(Σ̂1)>)> ∈ Rq. Both the expectation and maximization
steps lead to a standard EM algorithm, which is exactly the same as the above algorithm
inspired by the gradient condition (Dempster et al., 1977; Wu, 1983).

Part 2. The MEM Algorithm. In the second part, we derive the MEM algorithm
using the complete-data likelihood method similarly (Dempster et al., 1977; Wu, 1983).
Recall we have the unlabeled dataset {(Xi, Yi) : 1 ≤ i ≤ N} and the labeled dataset
{(X∗i , Y ∗i ) : 1 ≤ i ≤ m}. We still assume that the latent class labels Yis in the unlabeled
dataset are observed. Consequently, the logarithm of complete-data likelihood function can
be written as

Qsemi(θ) = Q(θ) +
m∑
i=1

{
Y ∗i log φµ1,Σ1

(
X∗i
)

+
(

1− Y ∗i
)

log φµ0,Σ0

(
X∗i
)}

+
m∑
i=1

{
Y ∗i logα+

(
1− Y ∗i

)
log
(
1− α

)}
. (20)
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We begin with the expectation step. Let θ̂
(t)
semi = (α̂semi(t), µ̂

semi(t)>
0 , vech(Σ̂

semi(t)
0 )>,

µ̂
semi(t)>
1 , vech(Σ̂

semi(t)
1 )>)> ∈ Rq be the estimator obtained in the tth step. We can

then derive the posterior probability π̂
semi(t+1)
i = E(Yi|Xi, θ̂

(t)
semi) = P (Yi = 1|Xi, θ̂

(t)
semi) =

f
θ̂
(t)
semi

(Xi)
−1α̂semi(t)φ

µ̂
semi(t)
1 ,Σ̂

semi(t)
1

(Xi). For the maximization step, define Qsemi(θ|θ̂(t)
semi) to

be the expectation of the joint log-likelihood Qsemi(θ) for the complete data conditional

on the observed data Xis. Consequently, we can compute Qsemi(θ|θ̂(t)
semi) =

∑N
i=1{π̂

semi(t+1)
i

log φµ1,Σ1(Xi)+(1−π̂semi(t+1)
i ) log φµ0,Σ0(Xi)}+

∑N
i=1{π̂

semi(t+1)
i logα+(1−π̂semi(t+1)

i ) log
(
1−

α
)
} +

∑m
i=1{Y ∗i log φµ1,Σ1(X∗i )+(1−Y ∗i ) log φµ0,Σ0(X∗i )} +

∑m
i=1{Y ∗i logα+(1−Y ∗i ) log(1−

α)} by (20). Subsequently, the (t + 1)th step estimator θ̂
(t+1)
semi = (α̂semi(t+1), µ̂

semi(t+1)>
0 ,

vech(Σ̂
semi(t+1)
0 )>, µ̂

semi(t+1)>
1 , vech(Σ̂

semi(t+1)
1 )>)> ∈ Rq can be obtained as

α̂semi(t+1) =
(
N +m

)−1( N∑
i=1

π̂
semi(t+1)
i +

m∑
i=1

Y ∗i

)
,

µ̂
semi(t+1)
0 =

{ N∑
i=1

(
1− π̂semi(t+1)

i

)
+

m∑
i=1

(
1− Y ∗i

)}−1{ N∑
i=1

(
1− π̂semi(t+1)

i

)
Xi

+
m∑
i=1

(
1− Y ∗i

)
X∗i

}
,

Σ̂
semi(t+1)
0 =

{ N∑
i=1

(
1− π̂semi(t+1)

i

)
+

m∑
i=1

(
1− Y ∗i

)}−1{ N∑
i=1

(
1− π̂semi(t+1)

i

)(
Xi − µ̂semi(t)

0

)
(
Xi − µ̂semi(t)

0

)>
+

m∑
i=1

(
1− Y ∗i

)(
X∗i − µ̂

semi(t)
0

)(
X∗i − µ̂

semi(t)
0

)>}
,

µ̂
semi(t+1)
1 =

( N∑
i=1

π̂
semi(t+1)
i +

m∑
i=1

Y ∗i

)−1( N∑
i=1

π̂
semi(t+1)
i Xi +

m∑
i=1

Y ∗i X
∗
i

)
,

Σ̂
semi(t+1)
1 =

( N∑
i=1

π̂
semi(t+1)
i +

m∑
i=1

Y ∗i

)−1{ N∑
i=1

π̂
semi(t+1)
i

(
Xi − µ̂semi(t)

1

)(
Xi − µ̂semi(t)

1

)>
+

m∑
i=1

Y ∗i

(
X∗i − µ̂

semi(t)
1

)(
X∗i − µ̂

semi(t)
1

)>}
.

The aforementioned steps should be iteratively executed until convergence. By the time of
numerical convergence, the MLE can be obtained as θ̂semi = (α̂semi, µ̂semi>

0 , vech(Σ̂semi
0 )>,

µ̂semi>
1 , vech(Σ̂semi

1 )>)> ∈ Rq. This leads to a standard EM algorithm, which is the same as
the MEM algorithm. Therefore, the MEM algorithm is indeed a standard EM algorithm
(Dempster et al., 1977; Wu, 1983).

References

A hybrid model for plastic card fraud detection systems. Expert Systems with Applications,
37(8):6070–6076, 2010.

36



GMM with Rare Events

Rommie E Amaro, Jerome Baudry, John Chodera, Özlem Demir, J Andrew McCammon,
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