
Journal of Machine Learning Research 25 (2024) 1-46 Submitted 9/23; Revised 3/24; Published 5/24

Learning to Warm-Start Fixed-Point Optimization
Algorithms

Rajiv Sambharya rajivs@princeton.edu
Operations Research and Financial Engineering, Princeton University, Princeton, NJ, USA

Georgina Hall georgina.hall@insead.edu
Decision Sciences, INSEAD, Fontainebleau, France

Brandon Amos bda@meta.com
Meta AI, New York City, NY, USA

Bartolomeo Stellato bstellato@princeton.edu

Operations Research and Financial Engineering, Princeton University, Princeton, NJ, USA

Editor: Quentin Berthet

Abstract

We introduce a machine-learning framework to warm-start fixed-point optimization algo-
rithms. Our architecture consists of a neural network mapping problem parameters to warm
starts, followed by a predefined number of fixed-point iterations. We propose two loss func-
tions designed to either minimize the fixed-point residual or the distance to a ground truth
solution. In this way, the neural network predicts warm starts with the end-to-end goal of
minimizing the downstream loss. An important feature of our architecture is its flexibility,
in that it can predict a warm start for fixed-point algorithms run for any number of steps,
without being limited to the number of steps it has been trained on. We provide PAC-
Bayes generalization bounds on unseen data for common classes of fixed-point operators:
contractive, linearly convergent, and averaged. Applying this framework to well-known
applications in control, statistics, and signal processing, we observe a significant reduction
in the number of iterations and solution time required to solve these problems, through
learned warm starts.

Keywords: learning to optimize, fixed-point problems, warm start, generalization bounds,
parametric convex optimization.

1. Introduction

We consider parametric fixed-point problems of the form

find z such that z = Tθ(z), (1)

where z ∈ Rp is the decision variable and θ ∈ Θ ⊆ Rd is the problem parameter defining each
instance of (1) via the fixed-point operator Tθ. We assume that θ is drawn from an unknown
distribution Q, accessible only via samples, and that for every θ ∈ Θ, problem (1) is solvable
(i.e., Tθ admits a fixed-point). Our focus is on the setting where the fixed-point problem (1)
represents the optimality conditions of a parametric convex optimization problem. In this
setting, solving (1) amounts to solving a convex optimization problem. As it turns out,
almost all convex optimization problems can be represented as finding the fixed point of an

c©2024 Rajiv Sambharya and Georgina Hall and Brandon Amos and Bartolomeo Stellato.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v25/23-1174.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v25/23-1174.html

Sambharya, Hall, Amos, and Stellato

operator (Ryu and Yin, 2022; Garstka et al., 2019; O’Donoghue et al., 2019; Stellato et al.,
2020), which makes the techniques we discuss in this paper broadly applicable. To solve
problem (1), we repeatedly apply the operator Tθ, obtaining the iterations

zi+1 = Tθ(z
i). (2)

We assume that the iterations (2) converge to a fixed-point, that is, limi→∞ ‖zi−z?(θ)‖ = 0,
where z?(θ) is a fixed point of Tθ. In practice, it is common to return an ε-approximate
solution, corresponding to a vector zi for which the fixed-point residual, ‖Tθ(zi) − zi‖2 is
below ε. Many optimization algorithms correspond to fixed-point iterations of the form (2);
see Table 1 for some examples.

Table 1: Many optimization algorithms can be written as fixed-point iterations.

Algorithm Problem Iterates zi+1 = Tθ(z
i)

Gradient descent min fθ(z) zi+1 = zi − α∇fθ(zi)

Proximal gradient descent min fθ(z) + gθ(z) zi+1 = proxαgθ(z
i − α∇fθ(zi))

ADMM
(Douglas and Rachford, 1956)
(Gabay and Mercier, 1976)

min fθ(u) + gθ(u)

ũi+1 = proxgθ(z
i)

ui+1 = proxfθ(2ũ
i+1 − zi)

zi+1 = zi + ui − ũi

OSQP
(Stellato et al., 2020)

min (1/2)xTPx+ cTx

s.t. l ≤ Ax ≤ u dual var. (y)

with θ = (vec(P),vec(A), c, l, u)

(xi, vi) = zi

wi+1 = Π[l,u](v
i)

solve Qxi+1 = σxi + ρAT (2wi+1 − vi)
vi+1 = ρAxi+1 + (1 + ρ)vi − (2ρ+ 1)wi+1

zi+1 = (xi+1, vi+1)

with Q = P + σI + ρATA

primal-dual solution (x, y) = (x, ρ(v −Π[l,u](v)))

SCS
(O’Donoghue, 2021)

min (1/2)xTPx+ cTx

s.t. Ax+ s = b dual var. (y)

s ∈ K

with θ = (vec(P),vec(A), c, b)

solve Qũi+1 = zi

ui+1 = ΠC(2ũ
i+1 − zi)

zi+1 = zi + ui+1 − ũi+1

with Q =

[
P + I AT

−A I

]
C = Rn ×K

primal-dual solution (x, y) = u

We denote prox as the proximal operator (Parikh and Boyd, 2014) and vec as the vectorization operator stacking the
columns of a matrix (See the notation paragraph in 1 for formal definitions). See Appendix A for more information on
the algorithms in this table.

Applications. Parametric fixed-point problems arise in several applications in machine
learning, operations research, and engineering, where we repeatedly solve a problem of the
form (1) with varying parameter θ. For example, in optimal control, we update the inputs
(e.g., propeller thrusts) as sensor signals (e.g., system state) and goals (e.g., desired trajec-
tory) vary (Borrelli et al., 2017, Section 7.1). Other examples include backtesting financial
models (Boyd et al., 2017), power flow optimization (Hentenryck, 2021; Zamzam and Baker,
2020), and image restoration (Elad and Aharon, 2006). In non-convex optimization, finding

2

Learning to Warm-Start Fixed-point Optimization Algorithms

a stationary point can also be cast as a fixed-point problem (Wang et al., 2019; Hong et al.,
2016). In game theory, finding the Nash equilibrium of a multi-player game can be formu-
lated as a fixed-point problem under some mild assumptions on the utility functions of each
player (Briceño-Arias and Combettes, 2013; Ryu and Boyd, 2016). Finding fixed-points are
also important in other areas, such as finding the optimal policy of Markov decision pro-
cesses (Bellman, 1957) and solving variational inequality problems (Rockafellar and Wets,
1998; Bauschke and Combettes, 2011).

Acceleration. In spite of the widespread use of fixed-point iterative algorithms, they
are known to suffer from slow convergence to high-accuracy solutions (Zhang et al., 2020).
Acceleration schemes (Zhang et al., 2020; Walker and Ni, 2011; d’Aspremont et al., 2021;
Sopasakis et al., 2019) are an active area of research designed to speed up the solving of
fixed-point problems. These methods, such as Anderson acceleration (Walker and Ni, 2011;
Zhang et al., 2020), combine past iterates to generate the next one in order to improve the
convergence behavior. Although acceleration methods are known to work well in certain
cases, such as Nesterov acceleration to solve smooth, convex optimization problems, it is
still an open research question to design schemes that are robust and versatile.

Learning for optimization. Instead of designing acceleration methods for single prob-
lems, recent approaches take advantage of the parametric structure of fixed-point problems
encountered in practice to learn efficient solution methods. In particular, they learn al-
gorithm steps using data from past solutions (Amos, 2023; Chen et al., 2022b). Despite
recent successes in a variety of fields, e.g., in sparse coding (Gregor and LeCun, 2010; Liu
et al., 2019), convex optimization (Ichnowski et al., 2021; Venkataraman and Amos, 2021),
and meta-learning (Li and Malik, 2016; Finn et al., 2017), most of these approaches lack
convergence guarantees because they directly alter the algorithm iterations with learned
variants (Chen et al., 2022b; Amos, 2023). Although some efforts have been made to safe-
guard the learned iterations (Prémont-Schwarz et al., 2022; Heaton et al., 2023; Banert
et al., 2021), guaranteeing convergence for general learned optimizers is still a challenge.
In addition, most of these approaches do not provide generalization guarantees on unseen
data (Chen et al., 2022b; Amos, 2023).

Another data-driven approach to reduce the number of iterations is to learn warm starts
rather than the steps of the algorithm (Chen et al., 2022a; Baker, 2019). An advantage to
learning warm starts as opposed to algorithm steps is that this approach can be integrated
with existing algorithms that provably converge from any starting point. However, existing
methods to learn warm starts still lack generalization guarantees. They also decouple the
learning procedure from the algorithm behavior after warm-starting, which can lead to
suboptimality and infeasibility issues on unseen problem instances.

Our contributions. We present a learning framework that predicts warm starts for it-
erative algorithms of the form (2), which solve parametric fixed-point problems of the type
given in (1). The framework consists of two modules. The first module maps the parameter
to a warm start via a neural network, and the second runs a predefined number of steps of
the fixed-point algorithm. We propose two loss functions. The first one is the fixed-point
residual loss which directly penalizes the fixed-point residual of the output of the architec-
ture. The second one is the regression loss which penalizes the distance between the output
of the architecture and a given ground truth fixed-point (among possibly many).

3

Sambharya, Hall, Amos, and Stellato

Compared to existing literature on learning warm starts, we train our architecture by
differentiating through the fixed-point iterations. In this way, we construct warm-start
predictions that perform well after a specific number of fixed-point iteration in an end-to-
end fashion. Furthermore, after training, our architecture allows the flexibility of selecting
an arbitrary number of fixed-point iterations to perform and is not limited to the number
it was originally trained on.

By combining operator theory with the PAC-Bayes framework (McAllester, 1998; Shawe-
Taylor and Williamson, 1997), we provide two types of guarantees on the performance of our
framework. First, we give bounds on the fixed-point residual when we apply our framework
to an arbitrary number of steps, larger than the number used during training. Second,
we provide generalization bounds to unseen problems for common classes of operators:
contractive, linearly convergent, and averaged.

Finally, we apply our framework to a variety of algorithms including gradient descent,
proximal gradient descent, and the alternating direction method of multipliers (ADMM). In
our benchmarks, we show that our learned warm starts lead to a significant reduction in the
required number of iterations used to solve the fixed-point problems. We also demonstrate
compatibility with state-of-the-art solvers by learning architectures specifically tailored to
the Splitting Conic Solver (SCS) (O’Donoghue et al., 2019) and the Operator Splitting
Quadratic Program solver (OSQP) (Stellato et al., 2020), and inputting warm starts into
the corresponding C implementations.

Notation. We denote the set of non-negative vectors of length n as Rn
+, and the set of

vectors with positive entries of length n as Rn
++. We let the set of n×n positive semidefinite

and positive definite matrices be Sn+ and Sn++ respectively. We define the set of fixed-points
of the operator T , assumed to be non-empty, as fixT . For any closed and convex set S, we
denote distS : Rn → R to be the distance function, where distS(x) = mins∈S ‖s−x‖2. For
any set S ⊂ Rn, we define the indicator function IS : Rn → R ∪ {+∞} where IS(x) = 0
if x ∈ S and IS(x) = +∞ otherwise. We take k applications of any single-valued operator
T to be T k : Rn → Rn. For any matrix A, we denote its spectral norm and Frobenius
norm with ‖A‖2 and ‖A‖F respectively. For a matrix Z ∈ Rm×n, vec(Z) is the vector
obtained by stacking the columns of Z. For a symmetric matrix Y ∈ Sn, vec(Y) is the
vector obtained by taking the upper triangular entries of matrix Y . We let the all-ones
vectors of length n be 1 ∈ Rn. The proximal operator, proxh : Rn → Rn, of h is defined
as (Parikh and Boyd, 2014)

proxh(v) = argminx

(
h(x) + (1/2)‖x− v‖22

)
.

Outline. We structure the rest of the paper as follows. In Section 2, we review some
related work on learned solvers. In Section 3, we present our learning to warm-start frame-
work. In Section 4, we provide generalization guarantees to unseen data for our method.
In Section 5, we discuss choosing the right architecture, namely the choice of loss function
and the number steps to train on. Section 6 presents various numerical benchmarks.

4

Learning to Warm-Start Fixed-point Optimization Algorithms

2. Related work

Learning warm starts. A common approach to reduce the number of iterations of it-
erative algorithms is to learn a mapping from problem parameters to high-quality initial-
izations. This paper extends our previous efforts (Sambharya et al., 2023) to learn warm
starts for Douglas-Rachford splitting in the context of convex quadratic programs (QPs) in
three main directions. First, we consider fixed-point problems arising in parametric con-
vex optimization, which generalizes the QP case. Second, we present new generalization
guarantees for averaged, linearly convergent, and contractive operators, as opposed to just
contractive operators (Sambharya et al., 2023). We also construct generalization guarantees
when, at evaluation time, we evaluate the fixed point operator for more steps than the ones
used during training. Finally, we consider two losses to judge warm starts: the fixed-point
residual loss (Sambharya et al., 2023), and a new regression loss based on the distance
between the predicted solution and the optimal one. In contrast to our approach, most of
the techniques to learn warm starts don’t consider the downstream algorithm in the warm
start prediction. Baker (2019) and Mak et al. (2023) use machine learning to warm-start
the optimal power flow problem. In the model predictive control (MPC) (Borrelli et al.,
2017) paradigm, Chen et al. (2022a) use a neural network to accelerate the optimal control
law computation by warm-starting an active set method. Other works in MPC use machine
learning to predict an approximate optimal solution and, instead of using it to warm-start
an algorithm, directly ensure feasibility and optimality. Chen et al. (2018) and Karg and
Lucia (2020) use a constrained neural network architecture that guarantees feasibility by
projecting its output onto the QP feasible region. Zhang et al. (2019) uses a neural net-
work to predict the solution while also certifying suboptimality of the output. Our paper
differs from these works in that the training of the neural network we propose is designed
to minimize the loss after many fixed-point steps, allowing us to improve solution quality.
Our work is also more general in scope since we consider general parametric fixed-point
problems. Finally, we provide generalization guarantees to unseen data which other works
lack.

Learning algorithm steps for convex optimization. In the area of learning to op-
timize (Chen et al., 2022b) or amortized optimization (Amos, 2023), a parallel approach
to learning warm starts consists in learning the algorithm steps themselves to solve convex
optimization problems. Ichnowski et al. (2021) and Jung et al. (2022) use reinforcement
learning to solve quadratic programs quickly by learning high-quality hyperparameters of
algorithms. Venkataraman and Amos (2021) learns to accelerate fixed-point problems that
correspond to convex problems quickly. One risk of some of these approaches is that conver-
gence may not be guaranteed (Amos, 2023). To solve this problem, some works safeguard
learned optimizers to guarantee convergence by reverting to a fallback update if the learned
update starts to diverge (Heaton et al., 2023; Prémont-Schwarz et al., 2022). Other strate-
gies guarantee convergence by making sure that the learned algorithm does not deviate
too much from a known convergent algorithm (Banert et al., 2021) or by providing conver-
gence rate bounds (Tan et al., 2023). In addition to convergence challenges, approaches that
learn algorithm steps generally do not have generalization guarantees to unseen data (Amos,
2023; Chen et al., 2022b). Lastly, these methods generally cannot interface with existing
algorithms that are written in C.

5

Sambharya, Hall, Amos, and Stellato

Learning algorithm steps beyond convex optimization. Many works have learned
algorithm steps for problems outside of convex optimization. For example, in non-convex
optimization, Sjölund and B̊ankestad (2022) use graph neural networks (Wu et al., 2022) to
accelerate algorithms to solve matrix factorization problems, and Bai et al. (2022) learn the
acceleratation scheme to solve fixed-point problems quickly. The research area of data-driven
algorithm design focuses on learning hyperparameters for algorithms used in combinatorial
optimization problems (Balcan, 2020) like partitioning problems (Balcan et al., 2017). In
this work, we instead focus on convex optimization problems.

The idea of learning algorithm steps has ventured beyond optimization. There has been
a surge in recent years to learn algorithm steps to solve inverse problems, that is, problems
where one wishes to recover a true signal, rather than minimizing an objective (Chen et al.,
2022b). This is typically done by embedding algorithm steps or reasoning layers (Chen et al.,
2020) into a deep neural network and has been applied to various fields such as sparse cod-
ing (Gregor and LeCun, 2010; Liu et al., 2019; Wu et al., 2020), image restoration (Diamond
et al., 2017; Zhang et al., 2017; Chang et al., 2017), and wireless communication (He et al.,
2020; Balatsoukas-Stimming and Studer, 2019). A widely used technique involves unrolling
algorithmic steps (Monga et al., 2021), meaning differentiating through these steps to mini-
mize a performance loss. While we also unroll algorithm steps, our work is different in scope
since we aim to solve optimization problems rather than inverse problems, and in method
since we learn warm starts rather than algorithm steps. Additionally, generalization and
convergence remain issues in the context of learning to solve inverse problems (Chen et al.,
2022b; Amos, 2023).

Learning surrogate optimization problems. Instead of solving the original paramet-
ric problem, several works aim to learn a surrogate model of large optimization problems.
Then, an approximate solution can be obtained by solving the simpler or smaller optimiza-
tion problem. For instance, Wang et al. (2020) learn a mapping to reduce the dimensionality
of the decision variables in the surrogate problem. Li et al. (2023) use a neural approx-
imator with reformulation and relaxation steps to solve linearly constrained optimization
problems. Other works predict which constraints are active (Misra et al., 2022) and the
value of the optimal integer solutions (Bertsimas and Stellato, 2021, 2022). In contrast,
our approach refrains from approximating any problem; instead, we warm-start the fixed-
point iterations. This allows us to clearly quantify the suboptimality achieved within a set
number of fixed-point iterations.

Meta-learning. Meta-learning (Hospedales et al., 2021; Vilalta and Drissi, 2001; Ruder,
2017) or learning to learn overlaps with the learning for optimization literature when the
tasks are general machine learning tasks (Chen et al., 2022b). A wide array of works learn
the update function to gradient-based methods to speed up machine learning tasks with
a variety of techniques including reinforcement learning (Li and Malik, 2016), unrolled
gradient steps (Andrychowicz et al., 2016), and evolutionary strategies (Metz et al., 2022).
More in the spirit of our work, Finn et al. (2017) learn the initial model weights so that
a new task can be learned after only a few gradient updates. While the initialization of
the model weights for their method is shared across the tasks, in our method we, instead,
predict the warm start from the problem parameter. This tailors our initialization to the
specific parametric problem under consideration.

6

Learning to Warm-Start Fixed-point Optimization Algorithms

Algorithms with predictions. Another area that uses machine learning to improve al-
gorithm performance is algorithms with predictions (Mitzenmacher and Vassilvitskii, 2020;
Kraska et al., 2018; Khodak et al., 2022). Here, algorithms take advantage of a possibly
imperfect prediction of some aspect of the problem to improve upon worst-case analysis.
This idea has been applied to many problems such as ski-rental (Purohit et al., 2018),
caching (Rohatgi, 2020), and bipartite matching (Dinitz et al., 2021). Even though the pre-
diction can be used to improve the warm start for algorithms (Dinitz et al., 2021; Sakaue and
Oki, 2022), the task we consider is fundamentally different since we aim to solve parametric
problems as quickly as possible rather than to take advantage of a prediction.

Generalization guarantees. The generalization guarantees we provide use a PAC-Bayes
framework, which has been used in prior work in the amortized optimization setting (Gupta
and Roughgarden, 2017; Bartlett et al., 2022). Chen et al. (2020) provide generalization
guarantees for architectures with reasoning layers, using a local Rademacher complexity
analysis. Balcan et al. (2021) use ideas from statistical learning theory to translate pseudo-
dimension bounds to generalization guarantees for combinatorial problems. However, to
the best of our knowledge, generalization guarantees have not been obtained with methods
that aim to solve fixed-point problems quickly. Additionally, the bounds from these works
mentioned above are obtained in methods where the algorithm steps are learned rather
than the warm start. Unlike Sambharya et al. (2023) which focused on solving QPs, we
obtain guarantees in the non-contractive case by using the PAC-Bayes framework rather
than Rademacher complexity theory. We later expand our work in this paper and develop
a framework to train learned optimizers to directly minimize an out-of-sample loss using
PAC-Bayes theory (Sambharya and Stellato, 2024).

Classical and computer-assisted convergence analysis. Worst-case convergence anal-
ysis of first-order methods offers strong performance guarantees for many fixed-point op-
erators, including contractive, linearly convergent, and averaged (Ryu and Yin, 2022, Sec-
tion 2) (Bauschke and Combettes, 2011, Section 4). Recently, computed-assisted approaches
like the performance estimation problem (PEP) (Drori and Teboulle, 2014; Taylor et al.,
2017a,b; Ryu et al., 2020) have improved classical convergence results by finding a worst-
case convergence certificate via semidefinite programming (SDP). While often tight, such
guarantees do not exploit the specific structure of parametric optimization problems and
fail to account for warm-starting, which can lead to conservative results. Addressing this,
Ranjan and Stellato (2024) introduced a technique inspired by neural network verifica-
tion (Fazlyab et al., 2022) to compute worst-case guarantees of warm-started fixed-point
algorithms for parametric QPs. In this work, rather than computing worst-case guarantees,
we take a probabilistic approach by focusing on generalization guarantees on unseen prob-
lem instances. Specifically, we combine classical convergence analysis with the PAC-Bayes
framework to analyze the performance of fixed-point algorithms with learned warm-starts.

3. Learning to warm-start framework

We now present our learning framework to learn warm starts to solve the parametric fixed-
point problem (1). A key feature of our framework is the inclusion of a predefined number
of fixed-point steps within the architecture. In this way, the warm-start predictions are

7

Sambharya, Hall, Amos, and Stellato

tailored for the downstream algorithm, and we conduct end-to-end learning. The section
is organized as follows. In Section 3.1, we provide intuition as to why learning end-to-end
can be beneficial through a small illustrative example. In Section 3.2, we describe our
architecture, and in Section 3.3 we introduce the two different loss functions we consider.
A concise summary of these aspects is depicted in Figure 2.

3.1 An illustrative example

To build intuition, we provide a two-dimensional example that illustrates the importance
of tailoring the warm-start prediction to the downstream algorithm. Consider the problem

minimize (1/2)zTQz + cT z

subject to z ≥ 0,
(3)

where Q = diag(10, 1) and c = (0,−1). We solve problem (3) using proximal gradient
descent (see Table 1) with the iterates

zi+1 = Π(zi − α∇f(zi)),

where∇f(z) = Qz+c, and Π is the projection onto the non-negative orthant. Here, the step
size α ∈ R++ is picked as 2/(µ+ L) where µ = 1 and L = 10 are the strong convexity and
smoothness parameters of the objective. This step size provides the strongest bound on the
worst-case convergence rate (Ryu and Boyd, 2016). The optimal solution for problem (3) is
at the point z? = (0, 1), and we consider three different warm starts shown in Figure 1. All
three are equidistant to the optimal solution, but lead to different convergence behavior. The
purple warm start has the fastest convergence since the projection step clips non-negative
values to zero. The orange warm start converges more quickly than the green warm start due
to the difference in scaling of the objective function along each axis. This results in faster
convergence for the orange warm start compared with the green one since the orange warm
start is closer to the z1 axis. This example shows the necessity of considering the downstream
algorithm when choosing a warm start. All three warm starts in this case appear of equal
quality as they are equidistant from z?, but when considering the downstream algorithm,
there is a clear hierarchy in terms of convergence speed: purple takes the lead, followed by
orange, then green.

3.2 Learning to warm-start architecture

Our learning architecture consists of two modules, a neural network with L layers and k
iterations of operator Tθ; see Figure 2. The neural network uses ReLU activation functions
defined as φ(z) = max(0, z) element-wise. We let w = {Wi}Li=1 be the neural network
weights for each layer where Wi ∈ Rmi×ni . Our warm-start prediction is computed as

hw(θ) = WLφ(WL−1φ(. . . φ(W1θ))). (4)

While we do not explicitly represent bias terms, we can include them by appending a new
column to matrices Wi for i = 1, . . . , L, and a 1 to the input vector. The warm-start
prediction hw(θ) ∈ Rp feeds into the fixed-point algorithm parametrized by θ. The second

8

Learning to Warm-Start Fixed-point Optimization Algorithms

z?

0 20 40
evaluation iterations

10−4

10−2

100

fix
ed

-p
oi

nt
re

si
d

u
al

Figure 1: The iterates of proximal gradient descent to solve problem (3) with different warm starts.
For three different warm starts equidistant to the optimal solution z?, we plot the first 5 iterates on
the left. The contour lines of the objective function are in blue and the infeasible region is shaded
in pink. We plot the fixed-point residuals for the different warm starts on the right. Depending on
the warm start, the convergence to the optimal solution, can vary greatly.

✓
<latexit sha1_base64="fl5E5l1QKA2L2PdkyWn9P8sloqw=">AAACAnicbZC7SgNBFIZn4y3G26qV2AwGIWnCrgS1DNikjJAbJOsyO5lNhsxemDmrhCXY+Co2ForY+hR2vo2TZAtN/GHg4z/ncOb8Xiy4Asv6NnJr6xubW/ntws7u3v6BeXjUVlEiKWvRSESy6xHFBA9ZCzgI1o0lI4EnWMcb38zqnXsmFY/CJkxi5gRkGHKfUwLacs2T5t3YTfswYkCmpZH7UFpwueyaRatizYVXwc6giDI1XPOrP4hoErAQqCBK9WwrBiclEjgVbFroJ4rFhI7JkPU0hiRgyknnJ0zxuXYG2I+kfiHguft7IiWBUpPA050BgZFars3M/2q9BPxrJ+VhnAAL6WKRnwgMEZ7lgQdcMgpiooFQyfVfMR0RSSjo1Ao6BHv55FVoX1Tsy0r1tlqs1bM48ugUnaESstEVqqE6aqAWougRPaNX9GY8GS/Gu/GxaM0Z2cwx+iPj8weTpJbs</latexit>

T k
✓ (hw(✓))

<latexit sha1_base64="nB4c06tN2e83H1lxyaIBX4NeevE=">AAAB/3icZVDLSgMxFM3UV62vqks3g0VwY5kpotuCm66kgn1AO5RMetuGJpmQZIpl6MKfcKs7d+LWT3Hjt5hpZ+HYA4HDuTknJzeUjGrjed9OYWNza3unuFva2z84PCofn7R1FCsCLRKxSHVDrIFRAS1DDYOuVIB5yKATTu/SeWcGStNIPJq5hIDjsaAjSrCxUh8rMqEGiIkVDMoVr+ot4a4TPyMVlKE5KP/0hxGJOQhDGNa653vSBAlWhhIGi1I/1iAxmeIx9CwVmIMOkmXnhXthlaE7ipQ9wrhLNecYzqjUmedpZfo7X+WYkOVVzLWe89Dmc2wmOpcooqtUDJL0RS2BWKsGwzEVqZI0gM3AdsfuPcS2v12I///766Rdq/o31euHWqXeyFZTRGfoHF0iH92iOmqgJmohgiR6Qa/ozXl23p0P53N1teBknlOUg/P1C1IJmIU=</latexit>

architecture
<latexit sha1_base64="owknPdFlILBlKeAtEXvnbfQ5o5o=">AAACAHicZVDLTsJAFL3FF+ILdemmEUxwIWmJ0S2JG1YGE3kk0JDpcIEJ02ntTFFC2PgTbnXnzrj1T9z4LU6hCysnmeTk3Dlnzlw34Ewqy/o2MmvrG5tb2e3czu7e/kH+8Kgp/Sik2KA+98O2SyRyJrChmOLYDkIknsux5Y5v4nlrgqFkvrhX0wAdjwwFGzBKlJac4qj3WOqqESpyXuzlC1bZWsBcJXZCCpCg3sv/dPs+jTwUinIiZce2AuXMSKgY5TjPdSOJAaFjMsSOpoJ4KJ3ZovTcPNNK3xz4oT5CmQs15ehPWCATz9PS9He+zFEuT6vEk3LquTrfI2okU4nCv4hFZxa/KAOk2ipReYSJWJnVkE9QdyfmLUa6v16I/f/7q6RZKdtX5cu7SqFaS1aThRM4hRLYcA1VqEEdGkDhAV7gFd6MZ+Pd+DA+l1czRuI5hhSMr19TnpfV</latexit>

hw(✓)
<latexit sha1_base64="Awd5odlEPaGexe43BgqpJsJIqQI=">AAACAHicZVC7TsMwFHXKq5RXgZElokJioUoqBGsllk6oSPQhtVHluLfFqu2EXKeiirrwE6ywsSFW/oSFb8FpMxB6JEvnnutzfH39UHDUjvNtFdbWNza3itulnd29/YPy4VEbgzhi0GKBCKKuTxEEV9DSXAvohhFQ6Qvo+JObtN+ZQoQ8UPd6FoIn6VjxEWdUG8kTAaI9ihVLq0G54lSdBexV4makQjI0B+Wf/jBgsQSlmaCIPdcJtZfQSHMmYF7qxwghZRM6hp6hikpAL1kMPbfPjDK0R0FkjtL2Qs05hlMeYuZ5Wpr+9pc52hd5lUrEmfRNvqT6AXOJKrhIRS9JX8QQmLEiaEm5SpWkAWIKZnZq30Js5jcLcf9/f5W0a1X3qnp5V6vUG9lqiuSEnJJz4pJrUicN0iQtwsgjeSGv5M16tt6tD+tzebVgZZ5jkoP19QvlVpjT</latexit>

loss function
<latexit sha1_base64="NaeEz/vaURfEUOVkyI7VCN5qrVo=">AAADHXicZVLLbtNAFJ2YVymvFJZsLNJKiVQiO6qAZaVusikqUtNWqkM0Ht/Eo8zDnbnOQyP/Ar/AT7CFHTvEFrHgX7CTSJXTuzpzzpz70L1xJrjFIPjb8O7df/Dw0c7j3SdPnz1/0dx7eWF1bhgMmBbaXMXUguAKBshRwFVmgMpYwGU8Pan0yxkYy7U6x2UGQ0knio85o1hSo2Y7AiFGLsIUkBbt88/T20c6mrfXuNPpjJqtoBuswr8Lwg1okU2cjfYa/6JEs1yCQiaotddhkOHQUYOcCSh2o9xCRtmUTuA6mfHMKirBDt1iNVVNdysKY1FnqbR2KePCP5AUU7utxXZZ+P5BrEVS6dtyxR36JcBU3qYwoGDOtJRUJS66gaSqoEXh9qNYlGZ7k1MD+/VGKi9qLWx9qhzHH4aOqyxHUKxuibWeIo3tocwFcqPnpWwBmc4VgnGndHFK0fDFSZXV9YJiuzVqDF1aNKUnLVzY7dVrK/226mroxlqhzYCt80vKVcW4PogZlJug/kfIYS0KUBNMXZRRw1VS7q1wAZP1vkHlkiPIojyIcHv9d8FFrxu+6x59Omod9zensUNekzekTULynhyTPjkjA8LIF/KNfCc/vK/eT++X93v91WtsPK9ILbw//wHtgwk9</latexit>

`✓(T
k
✓ (hw(✓)))

<latexit sha1_base64="pni7zQUZlPdJTQ4Yi64scDHwy3g=">AAADAHicZVJNb9NAEN2Yr1I+2sKRi0VaiUOJ7KgCjpV6yaWoSKStVFvR7noSr7Ifzu44TbTyhT/BFW7cEFf+CQf+C3YSCTmd09N7+2beaoYVUjiMoj+d4N79Bw8f7TzeffL02fO9/YMXl86UlsOQG2nsNaMOpNAwRIESrgsLVDEJV2x61uhXc7BOGP0ZlwWkik60GAtOsabSBKQc+QRzQFqN9rtRL1pVeBfEG9Alm7oYHXT+JpnhpQKNXFLnbuKowNRTi4JLqHaT0kFB+ZRO4Cabi8JpqsClfrEK3tL9ikIm2yxVzi0Vq8IjRTF32xpzyyoMj5iRWaNvyw13HNYAc/W/hQUNt9woRXXmkxlkzQQjK3+YMFmb3aykFg7bQRovGiNd+1cljj+kXuiiRNC8bWHGTJEyd6xKicKa21p2gNyUGsH6c7o4p2jF4qzp6vtRtR2NWkuXDm3tySsf9/rt2dq8bVKlfmw0ugL4ur+iQjeMH4CcQ70JGn6EEtaiBD3B3CcFtUJn9d4qH3HVzg26VAJBNQcRb6//Lrjs9+J3vZNPJ93TweY0dsgr8pq8ITF5T07JgFyQIeFkRr6Sb+R78CX4EfwMfq2fBp2N5yVpVfD7H8kf/mY=</latexit>

`✓

<latexit sha1_base64="NMD6KDX4V5NHRZppgEYSM0kFLWo=">AAAFoHiclVRbT9swGA2MbozdYHvcS0aLBBNDTUG7vKGBNCaNARM3jZTKSb+kXh072F9oi+Xn/Zq9br9l/2ZOWy5p4WF+iOxzvnN8HMtfkDKqsFr9OzF5b6p0/8H0w5lHj588fTY79/xQiUyGcBAKJuRxQBQwyuEAKTI4TiWQJGBwFLQ3cv7oHKSigu9jL4V6QmJOIxoStFBj9tVXyCRhLgfsCNl2fb9DseV2gMYtVG6lU2nMlqsr1f5wxyfecFJ2hmO3MTcV+00RZglwDBlR6sSrpljXRCINGZgZP1OQkrBNYjhpntNUcZKAqutu/zgFXvchDFgRJYlSvSQw7kJCsKVGuUD1jOsuBII1c36UzrFl106wlVxbSODQCUWSEN7U/hk08x0EM7riB8yK1VlGJFSKQXItCsFU8VQZRu/rmvI0Q+BhURII0UYSqOUkY0il6FhaAYYi4whSb5PuNkFJuxu5q65VzWg0IiXpKZRW0zLaW6kV9+biTZ6qriPBUaUQDvwTQnmO6C1g52Bvgrj26mFAMuAxtrSfEkl5096b0dUwKeYGniUUIUdvpkml6BrtI3QxiHR/NVIRoY0ZNWxNC5CMsnHOxnexIjV6/y7yi2ibE69+clHXPjB2VXaqfZnoKDVm8Vp72l4se0tLYxb0Vo8GvaG1i7vU+B8B8NJiE+yzkLA5fCMbl3b7P4x2d3Tb2M9F/jGuPf2pLnvG/xwdEpbBvi6vmqtc+cLoxXJtqfhrXtv9oZlH04Ob6b8inWO52VhxYJ3HqvvgZXkTIttgBkQkJCiMJQA3+tunj0avri273uqHZXd1bdR6UDbqXbC4LZGQhMfjmYbwUDJjW5M32ojGJ4e1Fe/tytperby+NWxS085LZ95ZdDznnbPubDm7zoETOj+dX85v509pvrRV2intDUonJ4aaF05hlL7/A8ad/6I=</latexit>

Neural network
with weights w

<latexit sha1_base64="yn7YVmFuYrrzMYbiudifqlMjYzY=">AAAF/3iclVTLbtw2FFUek4fbJE667IboOIBdTAbSPGJ7Z8QB6gJ5tfAjgDUeUNLVDDMUqZBX9tgEF/2D/kV2Qbdd9EOyzrb5h1Az49ga24twQZHn3Ht4KJI3yjnT6Pufrl2/cbN26/aduws//Hjv/oPFh492tSxUDDux5FK9jagGzgTsIEMOb3MFNIs47EWjzZLfOwSlmRTbeJxDL6MDwVIWU3RQf3EvRBjjRMdEvAANGFjzAqgS5IjhkCyFgkac9o9ICJz3TYhDQGqXCA6VLAZD9wWSsjEkT3LJBBKNkGvbX6z7zW7Q9VfXiRust1c7vhusr3bXOi0SNP1Jq3uz9qb/8ObfYSLjIgOBMada7wd+jj1DFbKYg10ICw05jUd0APvJIcu1oBnonhlPzFd4M4Ew4lWUZlofZ5EljzOKQz3PRfrYEvI4kjwp+Xm6xBrEDXCYnUkoEHAUyyyjIjHhe0jKFSS3Zil0fy0e6fcFVbBUNVLmopRcV3dVYLrWM0zkBYKIqymRlCOkkW5kBUem5JGj3VnFshAIyryk45cUFRtvlqqm5dt5a1QpeqxRuZyhNUGzVV1byCelq55JpUCdQzzVzygTJWK2gB+COwlKXkEBU5KDGODQhDlVTCTu3Kzx46zqG0SRMYQSPe8mV3JszeTuRamZzOYiUnQ202/3bY4dlOzgKlbm1mxfRb6QI7sf9PZPeqZyow9MqDKT5tYun+UejJbrwcrKBQl2qUafnct1k6uy8TsM4KnEc3DPQsHz2RvZPJXbfmcNeW1G1nUnZWeJ2/2BqQc2/D3dpe5Rb5t6237zVU6sWa63Vqq/5le3PiSlNWPOVYUSK8UuBJfl4kL0BDwNTyB1ZWlKpFKBxoECENb8+dsza9qdBgna6w3S7sxLT8PmtSsSlzmSiorBRU8z+DJXZyVvYqnbbQStp41gzTlaWHA17LRQkasHu61m8LTZ+aNV39iaVbM73s/eL96yF3ir3oa35b3xdrzY+8/77P3vfan9VftQ+1j7Zxp6/dos5yev0mr/fgWTKyZt</latexit>

Learn with rw`✓ through the fixed-point steps

<latexit sha1_base64="arNnKfotM/9deEFJ5Xz0iWoyzws=">AAADKHicZVI9bxNBEF0fX8F8OVDSnLAjUSTWnUEJZaQ0boKChJNIOcva3RvbK+/HZXfOsbW6H8Jf4E/QQkeHUtDwS7izjdA5U43emzfzZmdZJoXDKLptBPfuP3j4aOdx88nTZ89ftHZfnjuTWw4DbqSxl4w6kELDAAVKuMwsUMUkXLDZScVfzME6YfRnXGYwVHSixVhwiiU0ar1LGEyE9hw0gi2anVknHIsFpAdJkhmhMXQImWsmoNN/RaNWO+pGqwjvJvEmaZNNnI12G7+T1PBclXouqXNXcZTh0FOLgksomknuIKN8Ridwlc5F5jRV4IZ+sVqwxvsVhEzWUaqcWypWhHuK4tRtc8wtizDcY0amFb9NV9h+WCY4Vf9bWNBww41StNw9uYa0mmBk4TsJk6XYXefUQqdupNKiMdLVt8px/GHohc5yBM3rEmbMDClz+yqXKKy5KWkHyE1ePbc/pYtTilYsTqquvhcV29aotXTp0JaaaeHjbq8+W5uDytXQj41GlwFf91dU6ArxfZBzKC9Bw4+Qw5qUoCc49UlGrdBpebfCR1zVfYPOlUBQ1YeIt89/NznvdePD7vtPvfZxf/M1dshr8oa8JTE5IsekT87IgHDyhXwj38mP4GvwM/gV3K5Lg8ZG84rUIvjzF0cGDfk=</latexit>

k fixed-
point steps

Figure 2: Illustration of the learning framework. The architecture consists of two modules: a neural
network mapping the parameter θ to a warm start hw(θ), and a second module executing k fixed-
point iterations starting from hw(θ) to obtain the candidate solution T kθ (hw(θ)). The fixed-point
steps in the architecture depend on the parameter θ, and have no learnable weights. There are two
options for the loss function `θ: the fixed-point residual loss `fpθ , or the regression loss `regθ . We
backpropagate from the loss through the fixed-point iterates to learn the neural network weights w.

part of our architecture consists of k applications of the operator Tθ to the warm start
hw(θ). The final output is the candidate solution T kθ (hw(θ)).

We only consider feedforward neural networks as the first module in this work, but any
architecture that maps the problem parameters to warm starts could be used. Also note
that our approach is a generalization of the Model-Agnostic Meta-Learning (MAML) (Finn
et al., 2017) framework. Indeed, MAML learns a constant initialization shared over a family
of problems, whereas our method learns instance-dependent initializations where the warm
start hw(θ) changes as the parameter θ varies.

9

Sambharya, Hall, Amos, and Stellato

3.3 Loss functions

Training for k steps. We propose two loss functions to analyze the output of our learning
to warm-start architecture, T kθ (hw(θ)). The first one is the fixed-point residual loss

`fpθ (z) = ‖Tθ(z)− z‖2, (5)

which measures of the distance to convergence of the fixed-point algorithm (2) (Ryu and
Yin, 2022, Section 2.4). The second one is the regression loss

`reg
θ (z) = ‖z − z?(θ)‖2, (6)

where z?(θ) is a known (possibly non-unique) fixed-point of Tθ. The learning problem is

minimize Eθ∼Q`θ(T
k
θ (hw(θ))), (7)

where `θ is either `fpθ or `reg
θ , and k is the number of fixed-point iterations in our architecture.

We use the 2-norm in Equations (5) and (6) as opposed to its square, as this is more coherent
with the standard optimality metrics used in optimization solvers (Busseti et al., 2018; Ryu
and Yin, 2022, Section 2.4). Note that choosing k = 0 decouples the learning procedure
from the downstream algorithm, thereby making our architecture no longer end-to-end.

It is generally infeasible to evaluate the objective in problem (7) because the distribu-
tion Q is unknown. Instead, we minimize its empirical estimate over training data hoping
to attain generalization to unseen data. We leverage stochastic gradient descent (SGD)
methods to efficiently train the neural network weights, by constructing stochastic approx-
imations of the gradient of the empirical risk (Sra et al., 2011). To compute such gradient
estimates, we use automatic differentiation (Baydin et al., 2017) techniques to differentiate
through the k fixed-point iterations. We note that due to the inclusion of ReLU layers and
projection steps in the fixed-point algorithms (e.g., the projection step in OSQP), there
are non-differentiable mappings in the architecture. At non-differentiable points, SGD uses
subgradients (Rockafellar and Wets, 1998) to estimate directional derivatives of the loss. By
tailoring the warm-start prediction to the downstream fixed-point algorithm, our framework
constitutes an end-to-end learning scheme.

Testing for t steps. We now evaluate the learned model with t fixed-point iterations (t
possibly different from k used during training) on an unseen parameter θ. While we consider
two different loss functions for training, we always measure the test performance on unseen
problems by the fixed-point residual since it is a standard measure of progress (Ryu and
Yin, 2022, Section 2.4). To analyze the generalization of our architecture, we define the risk
as the following function of t:

Rt(w) = Eθ∼Q`
fp
θ (T tθ(hw(θ))). (8)

Since we only access the distribution Q via N samples θ1, . . . , θN , we define the empirical
risk as

R̂t(w) =
1

N

N∑
i=1

`fpθi(T
t
θi

(hw(θi))). (9)

10

Learning to Warm-Start Fixed-point Optimization Algorithms

4. PAC-Bayes generalization bounds

In this section, we provide generalization bounds for our approach using the PAC-Bayes
framework (Shawe-Taylor and Williamson, 1997; McAllester, 1998). More specifically, we
provide a generalization guarantee on the risk in Equation (8) after any number of evaluation
steps t (t need not be equal to the number of fixed-point steps k taken during training).

First, we introduce preliminary results and definitions needed for our proofs in Sec-
tion 4.1. In particular, we define the marginal fixed-point residual, a key ingredient of our
proof technique, which measures the maximum fixed-point residual incurred by a warm
start when subjected to a bounded perturbation. Then, we derive our main generalization
bound result, Theorem 2, in Section 4.2. Finally, in Section 4.3, we specialize Theorem 2
to three different cases of operators: contractive, linearly convergent, and averaged.

4.1 Preliminaries

In this subsection, we introduce our marginal fixed-point residual in Equation (10) and
McAllester’s bound in inequality (11).

Marginal fixed-point residual. We define the marginal fixed-point residual to be the
worst-case fixed-point residual for a warm start subjected to a bounded perturbation:

gtγ,θ(z) = max
‖∆‖2≤γ

`fpθ (T tθ(z + ∆)). (10)

Similarly, we define the marginal risk and marginal empirical risk in the same way as for
the non-marginal case from Section 3 with

Rtγ(w) = Eθ∼Qg
t
γ,θ(hw(θ)) and R̂tγ(w) =

1

N

N∑
i=1

gtγ,θi(hw(θi)).

Setting γ = 0 corresponds to the original fixed-point residual and risk functions, i.e.,
gt0,θ(z) = `fpθ (T tθ(z)), R̂

t
0(w) = R̂t(w), and Rt0(w) = Rt(w) from Equations (8) and (9).

McAllester’s bound. The PAC-Bayesian framework provides generalization bounds for
randomized predictors, as opposed to a learned single predictor. Randomized predictors
are obtained by sampling in a set of basic predictors based on a specific probability distri-
bution (Alquier, 2021). This is especially useful in our setting because we can manipulate
the bounds on the randomized predictors into bounds on our learned predictors.

In our case, hw from Equation (4) corresponds to the fixed warm-start prediction pa-
rameterized by the weights of the neural network w ∈ W where W is a set of possible
weights. We aim to bound Rt(w), the risk after t fixed-point steps from Equation (8), in
terms of empirical quantities. To do so, we consider perturbations of the neural network
weights given by the random variable u whose distribution may also depend on the training
data. Now, we have a distribution of predictors hw+u, where w is fixed and u is random.
Given a prior distribution π over the set of predictors that is independent of the training
data, the expected marginal risk of the randomized predictor Eu[Rtγ(w+u)] can be bounded
as (McAllester, 2003)

Eu[Rtγ(w + u)] ≤ Eu[R̂tγ(w + u)] + 2Cγ(t)

√
2(KL(w + u||π) + log(2N/δ))

N − 1
, (11)

11

Sambharya, Hall, Amos, and Stellato

with probability at least 1−δ. Here KL(p||π) is the KL-divergence between the distributions
p = w + u and π,

KL(p||π) =

∫ ∞
−∞

p(x) log

(
p(x)

π(x)

)
dx.

We define the maximum possible fixed-point residual after t steps as

Cγ(t) = max
θ∈Θ,w∈W

gtγ,θ(hw(θ)).

Note that the marginal risk and empirical marginal risk lie in the range [0, Cγ(t)]. In order
to bound Cγ(t), we will consider predictors where the distance from warm start to the set
of fixed-points is upper bounded by D:

distfixTθ(hw(θ)) ≤ D ∀θ ∈ Θ, w ∈ W. (12)

In Section 4.3, we bound Cγ(t) in terms of t, γ, D, and properties of the operator Tθ.

4.2 Generalization bounds

In this subsection, we use the marginal fixed-point residual and the McAllester bound
from Section 4.1, i.e., Equation (11), to bound the generalization gap. We first transform the
McAllester bound in (11), which provides a generalization bound on the expected marginal
risk of the randomized predictor, to a bound on the risk with the following lemma.

Lemma 1 Let hw : Θ→ Rp be any predictor to a warm start learned from the training data
such that gtγ/2,θ(hw(θ)) ≤ Cγ/2(t), ∀θ ∈ Θ. Let hw be any learned predictor parametrized
by w and π be any distribution that is independent from the training data. Then, for any
δ, γ > 0, with probability at least 1 − δ over a training set of size N and for any random
perturbation u such that P(maxθ∈Θ ‖hw+u(θ)− hw(θ)‖2 ≤ γ/2) ≥ 1/2 we have

Rt(w) ≤ R̂tγ(w) + 4Cγ/2(t)

√
KL(w + u||π) + log(6N/δ)

N − 1
.

See Appendix B.1 for the proof. In the above expression, w is fixed and u is a random
variable. This lemma bears resemblance to Neyshabur et al. (2018, Lemma 1), and the
proof is nearly identical. Next, we use Lemma 1 to obtain generalization bounds with our
main theorem.

Theorem 2 Assume that ‖θ‖2 ≤ B for all θ ∈ Θ. Let hw : Θ → Rp be an L-layer
neural network with ReLU activations where gtγ/2,θ(hw(θ)) ≤ Cγ/2(t), ∀θ ∈ Θ. Let c =

B2L2h̄ log(Lh̄)ΠL
j=1‖Wj‖22

∑L
i=1 ‖Wi‖2F /‖Wi‖22 and let h̄ = maxi ni be the largest number

of output units in any layer. Then for any δ, γ > 0 with probability at least 1 − δ over a
training set of size N ,

Rt(w) ≤ R̂tγ(w) +


O
(
Cγ/2(t)

√
c+log(LN

δ
)

γ2N

)
if ΠL

j=1‖Wj‖2 ≥ γ
2B

Cγ/2(t)

√
log(1/δ)

2N else.

(13)

12

Learning to Warm-Start Fixed-point Optimization Algorithms

See Appendix B.2 for the proof. With Theorem 2, we bound the risk in terms of the empirical
marginal risk and a penalty term. The main case is when the weights are sufficiently large:
ΠL
j=1‖Wj‖2 ≥ γ/(2B). In this case, we use the PAC-Bayesian framework to provide the

generalization bound. We directly use the perturbation bound from Neyshabur et al. (2018,
Lemma 2) which bounds the change in the warm start hw(θ) with respect to the change in
the neural network weights w. In the other case, if ΠL

j=1‖Wj‖2 ≤ γ/(2B), then the warm
start hw(θ) is close to the zero vector. Here, we leverage Hoeffding’s inequality to get the
generalization bound.

As t → ∞, the generalization gap in Theorem 2 approaches zero since Cγ/2(t) goes to
zero. Intuitively, this happens because the algorithm is run until convergence. On the other
hand, as N → ∞, the second term in each of the cases disappears and the generalization
gap becomes the difference between the marginal empirical risk and the risk for a fixed γ.
Our bounds also generalizes the setting where the warm start is not learned. Setting all of
the weights to zero corresponds to warm-starting every problem from the zero vector. In
this case, with high probability, Rt(0) ≤ R̂t(0) + Cγ/2(t)

√
log(1/δ)/(2N).

4.3 Bounding the empirical marginal risk

Theorem 2 bounds the risk Rt(w) in terms of the empirical marginal risk R̂tγ(w) plus a

penalty term. In this subsection, we use operator theory to bound two things: i) R̂tγ(w),
thus removing the dependency on the marginal component, and ii) Cγ/2(t) in terms of D
given by Equation (12). We first assume that the operator Tθ is non-expansive, which is a
common characteristic of solving convex problems (Ryu and Boyd, 2016).

Definition 3 (Non-expansive operator) An operator T is non-expansive if

‖Tx− Ty‖2 ≤ ‖x− y‖2, ∀x, y ∈ domT.

Since non-expansiveness is not enough to guarantee convergence, we break our analysis into
three different cases of fixed-point operators which converge: contractive in Section 4.3.1,
linearly convergent in Section 4.3.2, and averaged in Section 4.3.3. By using the different
properties of each, we can bound the marginal fixed-point residual after t steps, gtγ,θ(z)
defined in (10). Since the empirical marginal risk is the average of these marginal fixed-
point residuals, we can remove the dependence on the empirical marginal risk in Theorem 2.
The sets of the three different types of operators are not mutually exclusive as seen in the
set relationships depicted in Figure 3. The contractive case provides the strongest bounds,
followed by the linearly convergent case, and then the averaged case.

To help in the subsequent analysis, we define the following functions which give the
distance to optimality and marginal distance to optimality:

rθ(z) = distfixTθ(z), f tγ,θ(z) = max
‖∆‖2≤γ

rθ(T
t
θ(z + ∆)). (14)

We give the following lemma to relate the fixed-point residual to the distance to optimality.

Lemma 4 For any non-expansive operator Tθ,

`fpθ (z) ≤ 2rθ(z).

13

Sambharya, Hall, Amos, and Stellato

Linearly
convergent

Averaged

Contractive

Figure 3: The set relationship between the different types of operators we consider in this section.

See Appendix B.3 for the proof. Note that the more general statement where the closest
point in fixTθ is replaced by any point in fixTθ holds, i.e., it holds that for any y ∈ fixTθ,
we have that `fpθ (z) ≤ 2‖z − y‖2 for any z.

4.3.1 Contractive operators

We first consider contractive operators which give the strongest perturbation bounds.

Definition 5 (β-contractive operator) An operator T is β-contractive for β ∈ (0, 1) if

‖Tx− Ty‖2 ≤ β‖x− y‖2 ∀x, y ∈ domT.

If Tθ is β-contractive, then

gtγ,θ(z) ≤ `fpθ (T tθ(z)) + 2βtγ, (15)

which follows from `fpθ (T tθ(·)) being 2βt-Lipschitz (Sambharya et al., 2023, Appendix A.1).
In the contractive case, we remove the marginal risk dependency with the following corollary.

Corollary 6 We define B and h̄ as in Theorem 2. Let Tθ be β-contractive for any θ ∈ Θ.
Let hw be an L-layer neural network with ReLU activations such that (12) holds with bound
D. Let c = B2L2h̄ log(Lh̄)ΠL

j=1‖Wj‖22
∑L

i=1 ‖Wi‖2F /‖Wi‖22. Then for any δ, γ > 0 with
probability ≥ 1− δ over a training set of size N ,

Rt(w) ≤ R̂t(w) + 2βtγ +


O
(
βt(D + γ

2)

√
c+log(LN

δ
)

γ2N

)
if ΠL

j=1‖Wj‖2 ≥ γ
2B

2βt(D + γ
2)

√
log(1/δ)

2N else.

Proof We remove the marginal dependence by applying inequality (15) to get

R̂tγ(w) =
1

N

N∑
i=1

gtγ,θ(hw(θi)) ≤ 2βtγ +
1

N

N∑
i=1

`fpθ (T tθ(hw(θi))) = R̂t(w) + 2βtγ.

We bound the worst-case fixed-point residual as Cγ/2(t) ≤ 2βt(D+ γ/2) which comes from
C0(t) ≤ 2βtD (Sambharya et al., 2023, Appendix A.1) and the inequality

distfixTθ(hw(θ) + ∆) ≤ ‖ΠfixTθ(hw(θ))− (hw(θ) + ∆)‖2 ≤ distfixTθ(hw(θ)) + ‖∆‖2. (16)

14

Learning to Warm-Start Fixed-point Optimization Algorithms

Here, ΠfixTθ is the projection on the set fixTθ. The first inequality in (16) uses the defini-
tion of the distance function distfixTθ , and the second uses the triangle inequality.

4.3.2 Linearly convergent operators

Now, we consider a broader category of operators, linearly convergent operators.

Definition 7 (β-linearly convergent operator) An operator T is β-linearly convergent
for β ∈ [0, 1) if

distfixT (Tx) ≤ βdistfixT (x) ∀x ∈ domT.

If the operator Tθ is not contractive, then we get the weaker property that `fpθ (T tθ(·)) is 2-
Lipschitz. To provide tighter perturbation bounds, we first establish the following lemma.

Lemma 8 For any non-expansive operator Tθ and for any t ≥ 0,

|rθ(T tθ(z))− rθ(T tθ(w))| ≤ 2‖z − w‖2.

See Appendix B.4 for the proof. We now use Lemma 8 and the linear convergence guarantee,
Definition 7, to bound gtγ,θ in terms of empirical quantities.

Lemma 9 Assume that Tθ is β-linearly convergent where β ∈ (0, 1). Then the following
bounds hold for all t ≥ 0:

f tγ,θ(z) ≤ rθ(T tθ(z)) + 2γ, f t+1
γ,θ (z) ≤ βf tγ,θ(z)

gtγ,θ(z) ≤ 2f tγ,θ(z).

Proof The inequality f t+1
γ,θ (z) ≤ βf tγ,θ(z) comes from

f t+1
γ,θ (z) = rθ(T

t+1
θ (z + ∆?)) ≤ βrθ(T tθ(z + ∆?)) ≤ βf tγ,θ(z),

where ‖∆?‖2 ≤ γ is the maximizer to f t+1
γ,θ (z). The first inequality comes from Definition 7

and the second from (14). The inequality f t+1
γ,θ (z) ≤ rθ(T

t+1
θ (z)) + 2‖∆‖2 in Lemma 9

follows from Lemma 8. The final inequality in Lemma 9 is derived as follows:

gtγ,θ(z) = `fpθ (T tθ(z + ∆?)) ≤ 2rθ(T
t
θ(z + ∆?)) ≤ 2f tγ,θ(z).

Here, ‖∆?‖2 ≤ γ is the maximizer for gtγ,θ(z), and Lemma 4 gives the first inequality.

Using Lemma 9, we can bound the marginal empirical risk for the linearly convergent case.
For the β-linearly convergent case, Cγ/2(t) is bounded by 2βt(D + γ/2) which uses (16)
and C0(t) ≤ 2rθ(T

t
θ(z)) ≤ 2βtD. The first inequality comes from Lemma 4 and the second

inequality follows from Definition 7.

15

Sambharya, Hall, Amos, and Stellato

4.3.3 Averaged operators

Lastly, we consider the averaged operator case which in general gives sublinear convergence.

Definition 10 (α-averaged operator) An operator T is α-averaged for α ∈ (0, 1) if there
exists a non-expansive operator R such that T = (1− α)I + αR.

Lemma 11 Let Tθ be an α-averaged operator. Then the following bound holds:

gtγ,θ(z) ≤ min
j=0,...,t

√
α

(1− α)(t− j + 1)
(rθ(T

j
θ (z)) + 2γ) for t ≥ 0.

Proof Let ᾱt,j =
√

α
(1−α)(t−j+1) . There exists ‖∆?‖2 ≤ γ such that the equality below

holds by definition of the marginal fixed-point residual:

gtγ,θ(z) = `fpθ (T tθ(z+ ∆?)) ≤ ᾱt,j(rθ(T jθ (z + ∆?))) ≤ ᾱt,jf jγ,θ(z) ≤ ᾱt,j(rθ(T
j
θ (z)) + 2γ). (17)

The three inequalities comes from Ryu and Yin (2022, Theorem 1), the definition of f jγ,θ(z)
in (14), and Lemma 9 respectively. Equation (17) holds for all 0 ≤ j ≤ t.
Using Lemma 11, we can bound the marginal empirical risk for the averaged case. We bound
the worst-case marginal fixed-point residual with Cγ/2(t) ≤

√
α/((1− α)(t+ 1))(D + γ)

which follows from Lemma 11 by letting z = hw(θ) and j = 0. Then the inequality holds
for every θ ∈ Θ.

5. Choosing the right computational architecture

In this section, we discuss how the number of fixed-point steps the model is trained on, k,
and the loss function affect performance.

5.1 Bounds on the fixed-point residual for t evaluation steps

In this subsection, we derive bounds on the fixed-point residual after t steps, `fpθ (T tθ(z)), in
terms of the loss after k steps, `θ(T

k
θ (z)) where k < t. A summary of these results is given

in Table 2 where we provide the bound for each of the two loss functions. The bounds in
Table 2 using the fixed-point residual loss in the denominator are given by either applying
the definition of contractiveness in the contractive case or non-expansiveness in the other
two cases. To get the bounds in Table 2 when using the regression loss in the denominator,
we first establish the inequality

`fpθ (z) ≤ 2`reg
θ (z), (18)

for any non-expansive operator Tθ. This result follows from Lemma 4 since rθ(z) ≤ `reg
θ (z).

The results in the contractive and linearly convergent cases follow from applying the def-
inition of each and inequality (18). In the averaged case, we directly apply Ryu and Yin
(2022, Theorem 1). Unless the operator is contractive, the results from Table 2 indicate
that stronger bounds can be obtained from using the regression loss.

These bounds are particularly useful in the context of learning algorithm steps rather
than initializations (Chen et al., 2022b; Amos, 2023). When replacing algorithm steps with

16

Learning to Warm-Start Fixed-point Optimization Algorithms

learned variants, the implications of running more algorithm steps are uncertain. This is in
contrast to our learned warm starts approach, where running more algorithm steps always
leads to an improved performance. This is reflected in the guarantees on the fixed-point
residual we can obtain after t steps, given the loss after k steps, where t > k. Moreover, if it
is known that Tθ satisfies certain properties for all possible θ ∈ Θ (e.g., β-contractiveness)
then the bounds in Table 2 will hold not only for a given θ, but for every θ ∈ Θ.

Table 2: Bounds for the ratios of testing at t steps and training at k steps. Here, we bound the ratio
of the fixed-point residual after t steps and the loss after k steps where t > k. The value in the table
provides the bound, e.g., for a β-contractive operator, `fpθ (T tθ(z))/`regθ (T kθ (z)) ≤ 2βt−k.

Operator
`fpθ (T tθ(z))

`fpθ (T kθ (z))

`fpθ (T tθ(z))

`regθ (T kθ (z))

β-contractive βt−k 2βt−k

β-linearly convergent 1 2βt−k

α-averaged 1
√

α
(1−α)(t−k+1)

5.2 Training for the fixed-point residual vs regression loss

The fixed-point residual (5) and regression (6) losses, align with the main distinction of
learning methods mentioned in Amos (2023, Section 2.2) which splits between learning
strategies that penalize suboptimality directly and those that penalize the distance to known
ground truth solutions. The primary advantages of using our fixed-point residual loss are
twofold: i) there is no need to compute a ground truth solution z?(θ) for each problem
instance before training, and ii) the loss exactly corresponds to the evaluation metric, the
fixed-point residual. On the other hand, there are two main advantages to using the re-
gression loss: i) the regression loss uses the global information of the ground truth solution
z?(θ), while the fixed-point residual loss exploits only local information, and ii) as men-
tioned in Section 5.1, stronger bounds on future iterations can be obtained when using the
regression loss.

6. Numerical experiments

We now illustrate our method on examples of fixed-point algorithms from Table 1. We imple-
mented our architecture in the JAX library (Bradbury et al., 2018) using the Adam (Kingma
and Ba, 2015) optimizer to train. We use 10000 training problems and evaluate on 1000 test
problems for the examples except the first one in Section 6.1. In our examples, we conduct
a hyperparameter sweep over learning rates of either 10−3 or 10−4, and architectures with
0, 1, or 2 layers with 500 neurons each. We decay the learning rate by a factor of 5 when
the training loss fails to decrease over a window of 10 epochs. All computations were run
on the Princeton HPC Della Cluster and each example could be trained under 5 hours. The
code to reproduce our results is available at

https://github.com/stellatogrp/l2ws.

17

https://github.com/stellatogrp/l2ws

Sambharya, Hall, Amos, and Stellato

Baselines. We compare our learned warm start, for both the fixed-point residual loss and
the regression loss functions, against the following initialization approaches:

Cold start. We initialize the fixed-point algorithm for a test problem with parameter θ
with the prediction hwcs(θ) where wcs has been randomly initialized.

Nearest-neighbor warm start. The nearest-neighbor warm start initializes the test prob-
lem with an optimal solution of the nearest of the training problems measured by
distance in terms of its parameter θ ∈ Rd. In most of our examples, the parametrized
problems are sufficiently far apart so that the nearest-neighbor initializations do not
significantly improve upon the cold start.

MAML initialization. The Model-Agnostic Meta-Learning (MAML) framework (Finn
et al., 2017) learns a shared initialization for all the problems. We apply MAML with
various values of k, namely k = 0, 1, 5, 15, and 60 while using the fixed-point residual
loss. We then report the best MAML results out of these. Our method generalizes
MAML by predicting instance-dependent initializations. We see in the experiments
that the shared initializations from MAML cannot match the performance of our
instance-dependent initializations.

In every experiment, we plot the average of the fixed-point residuals of the test problems
for varying t as defined in Section 3.3. Additionally, we plot the average gain of each
initialization relative to the cold start across the test problems. This gain for a given
parameter θ corresponds to the ratio

`fpθ (T tθ(hwcs(θ)))

`fpθ (T tθ(hw(θ)))
,

where hw is the initialization technique in question and hwcs is the cold-start predictor
described above. Importantly, we code exact replicas of the OSQP and SCS algorithms in
JAX. This allows us to input the learned warm starts into the corresponding C implemen-
tations; moreover, we report the solve times in milliseconds to reach various tolerances for
the experiments we run with OSQP in Section 6.3 and SCS in Section 6.4.

6.1 Gradient descent

6.1.1 Unconstrained QP

We first consider a stylized example to illustrate why unrolling fixed-point steps can signif-
icantly improve over a decoupled approach, where k = 0. Consider the problem

minimize (1/2)zTPz + cT z,

where P ∈ Sn++, and c ∈ Rn are the problem data and z ∈ Rn is the decision variable. The
parameter is θ = c.

Numerical example. We consider a small example where n = 20. We have a single
hidden layer with 10 neurons, and 100 training problems. Let P ∈ Sn++ be a diagonal
matrix where the first 10 diagonals take the value 100 and the last ten take the value of 1.

18

Learning to Warm-Start Fixed-point Optimization Algorithms

Let θ = c ∈ Rn. Here, the i-th index of θ is sampled according to the uniform distribution
ψiU [−10, 10], where ψi = 10000 if i ≤ 10 else 1. The idea is that the first 10 indices of the
optimal solution z?(θ) vary much more than the last 10, but the first 10 indices of z will
converge much faster. Note that there exists a linear mapping between the parameters and
the optimal solution. Only including 10 neurons in the hidden layer prevents the training
loss from achieving zero.

Results. Figure 4 and Table 3 show the convergence behavior of our method. The de-
coupled approaches prioritize minimizing the error to predict the first 10 indices and fail
to improve on the cold start. By unrolling these gradient steps, our learning framework
with k > 0 is able to adapt the warm start to take advantage of the downstream algorithm.
These gains remain constant as the number of evaluation steps increases. We remark that
both curves trained with k = 0 have a lower value for the fixed-point residual at t = 0.
However, as t increases, their performance worsens compared to the cold start approach.
This is attributed to the fact that training with k = 0 does not take into account the down-
stream algorithm. Consequently, despite an initially lower fixed-point residual for k = 0
trained curves, their performance declines relative to other methods, such as cold starts, for
higher values of t.

10−3

10−1

101

103

te
st

fix
ed

-p
oi

nt
re

si
d

u
al training with fixed-point residual losses training with regression losses

0 100 200 300 400 500

evaluation iterations

2

4

6

8

10

te
st

ga
in

to
co

ld
st

ar
t

0 100 200 300 400 500

evaluation iterations

cold start nearest neighbor warm start
learned warm-start k ={ 0 5 15 60 }

Figure 4: Unconstrained QP. All of the learned warm starts provide large improvements over the
cold start and nearest neighbor initializations except for the ones learned with k = 0.

6.2 Proximal gradient descent

6.2.1 Lasso

We first consider the lasso problem

minimize (1/2)‖Az − b‖22 + λ‖z‖1,

19

Sambharya, Hall, Amos, and Stellato

Table 3: Unconstrained QP.

(a) Mean iterations to reach a given fixed point residual (Fp res.)
Fp
res.

Cold
Start

Near.
Neigh.

MAML
Fp
k = 0

Fp
k = 1

Fp
k = 5

Fp
k = 15

Fp
k = 60

Reg
k = 0

Reg
k = 1

Reg
k = 5

Reg
k = 15

Reg
k = 60

0.1 57 51 56 76 1 1 1 1 80 1 1 1 1
0.01 286 280 285 305 59 59 70 53 309 33 97 86 86
0.001 515 510 514 534 288 289 299 283 538 262 326 315 315
0.0001 744 739 743 763 518 518 529 512 767 491 555 544 544

(b) Mean reduction in iterations from a cold start to a given fixed-point residual (Fp res.)
Fp
res.

Cold
Start

Near.
Neigh.

MAML
Fp
k = 0

Fp
k = 1

Fp
k = 5

Fp
k = 15

Fp
k = 60

Reg
k = 0

Reg
k = 1

Reg
k = 5

Reg
k = 15

Reg
k = 60

0.1 0 0.11 0.02 -0.33 0.98 0.98 0.98 0.98 -0.40 0.98 0.98 0.98 0.98
0.01 0 0.02 0.00 -0.07 0.79 0.79 0.76 0.81 -0.08 0.88 0.66 0.70 0.70
0.001 0 0.01 0.00 -0.04 0.44 0.44 0.42 0.45 -0.04 0.49 0.37 0.39 0.39
0.0001 0 0.01 0.00 -0.03 0.30 0.30 0.29 0.31 -0.03 0.34 0.25 0.27 0.27

where A ∈ Rm×n, b ∈ Rm, and λ ∈ R++ are problem data and z ∈ Rn is the decision
variable. The parameter here is θ = b.

Numerical example. We generate A ∈ R50×100 with i.i.d entries drawn from N (0, 0.01)
and pick λ = 10. We sample each b vector from the uniform distribution U [10, 30].

Results. Figure 5 and Table 4 show the convergence behavior of our method. While most
of the learned warm starts significantly improve upon the baselines, the warm starts learned
with k = 60 for both the regression loss and the fixed-point residual loss perform the best.

10−4

10−2

100

102

te
st

fix
ed

-p
oi

nt
re

si
d

u
al training with fixed-point residual losses training with regression losses

0 100 200 300 400 500

evaluation iterations

0

2

4

6

8

te
st

ga
in

to
co

ld
st

ar
t

0 100 200 300 400 500

evaluation iterations

cold start nearest neighbor warm start
learned warm-start k ={ 0 5 15 60 }

Figure 5: Lasso. All of the learned warm starts except for k = 0 with fixed-point residual loss
significantly improve upon the baselines for any number of steps up to 500.

20

Learning to Warm-Start Fixed-point Optimization Algorithms

Table 4: Lasso.

(a) Mean iterations to reach a given fixed point residual (Fp res.)
Fp
res.

Cold
Start

Near.
Neigh.

MAML
Fp
k = 0

Fp
k = 1

Fp
k = 5

Fp
k = 15

Fp
k = 60

Reg
k = 0

Reg
k = 1

Reg
k = 5

Reg
k = 15

Reg
k = 60

0.1 99 65 63 79 51 40 34 36 41 39 34 31 39
0.01 192 153 149 172 135 121 113 104 121 118 112 106 105
0.001 301 262 257 282 242 226 218 207 225 223 217 210 207
0.0001 425 389 385 407 366 350 341 329 349 346 340 333 329

(b) Mean reduction in iterations from a cold start to a given fixed-point residual (Fp res.)
Fp
res.

Cold
Start

Near.
Neigh.

MAML
Fp
k = 0

Fp
k = 1

Fp
k = 5

Fp
k = 15

Fp
k = 60

Reg
k = 0

Reg
k = 1

Reg
k = 5

Reg
k = 15

Reg
k = 60

0.1 0 0.34 0.36 0.20 0.48 0.60 0.66 0.64 0.59 0.61 0.66 0.69 0.61
0.01 0 0.20 0.22 0.10 0.30 0.37 0.41 0.46 0.37 0.39 0.42 0.45 0.45
0.001 0 0.13 0.15 0.06 0.20 0.25 0.28 0.31 0.25 0.26 0.28 0.30 0.31
0.0001 0 0.08 0.09 0.04 0.14 0.18 0.20 0.23 0.18 0.19 0.20 0.22 0.23

6.3 OSQP

In this subsection, we apply our learning framework to the OSQP (Stellato et al., 2020) algo-
rithm from Table 1 to solve convex quadratic programs (QPs).We compare solve times using
OSQP code written in C for our learned warm starts against the baselines. Table 5 shows
the sizes of the problems we run: model predictive control of a quadcopter in Section 6.3.1
and image deblurring in Section 6.3.2.

Table 5: Sizes of QPs from Table 1 that we use OSQP to solve. We give the number of primal
constraints (m), size of the primal variable (n), and the parameter size, d.

Quadcopter Image deblurring

constraints m 600 2102
variables n 550 802
parameter size d 44 784

6.3.1 Model predictive control of a quadcopter

In our next example, we use model predictive control (Borrelli et al., 2017) to control a
quadcopter to follow a reference trajectory. The idea of MPC is to optimize over a finite
horizon length, but then to only implement the first control before optimizing again. Since
the family of problems is sequential in nature, instead of MAML, we use the previous-
solution baseline, where the warm start corresponds to the solution of the previous problem
shifted by one time index. This initialization technique is commonly used in practice for
control problems (Diehl et al., 2009).

We model the quadcopter as a rigid body controlled by four motors as in Song and
Scaramuzza (2022). The state vector is x = (p, v, q) ∈ Rnx where the state size is nx = 10.
The position vector p = (px, py, pz) ∈ R3 and the velocity vector v = (vx, vy, vz) ∈ R3

indicate the coordinates and velocities of the center of the quadcopter respectively. The
vector q = (qw, qx, qy, qz) ∈ R4 is the quaternion vector indicating the orientation of the
quadcopter. The inputs are u = (c, ωx, ωy, ωz) ∈ Rnu where the input size is nu = 4. The
first input is the vertical thrust, and the last three are the angular velocities in the body

21

Sambharya, Hall, Amos, and Stellato

frame. The dynamics are

ṗ = v, v̇ =

 2(qwqy + qxqz)c

2(qwqy + qxqz)c

(q2
w − q2

x − q2
y + q2

z)c− g

 , q̇ =
1

2


−wxqx − wyqy − wzqz
wxqw − wyqz + wzqy

wxqz + wyqw − wzqx
wxqy + wyqx + wzqw

 ,

where g is the gravitational constant. At each time step, the goal is to track a reference
trajectory given by xref = (xref

1 , . . . , xref
T), while satisfying constraints on the states and the

controls. We discretize the system with ∆t and solve the QP

minimize (xT − xref
T)TQT (xT − xref

T) +
∑T−1

t=1 (xt − xref
t)TQ(xt − xref

t) + uTt Rut

subject to xt+1 = Axt +But t = 0, . . . , T − 1

umin ≤ ut ≤ umin t = 0, . . . , T − 1

xmin ≤ xt ≤ xmax t = 1, . . . , T

|ut+1 − ut| ≤ ∆u t = 1, . . . , T − 1.

Here, the decision variables are the states (x1, . . . , xT) where xt ∈ Rnx and the controls
(u1, . . . , uT−1) where ut ∈ Rnu . The dynamics matrices A and B are determined by lin-
earizing the dynamics around the current state x0, and the previous control input u0 (Diehl
et al., 2009). The matrices Q,QT ∈ Snx+ penalize the distance of the states to the reference
trajectory, (xref

1 , . . . , xref
T). The matrix R ∈ Snu++ regularizes the controls. The parameter

is θ = (x0, u0, x
ref
1 , . . . , xref

T) ∈ R(T+1)nx+nu . We generate many different trajectories where
the simulation length is larger than the time horizon T .

Numerical example. We discretize our continuous time model with a value of ∆t = 0.05
seconds. The gravitational constant is 9.8. Each trajectory has a length of 100, and the
horizon we consider at each timestep for each QP is T = 10. We use state bounds of xmax =
−xmin = (1, 1, 1, 10, 10, 10, 1, 1, 1, 1). We constrain the controls with umax = (20, 6, 6, 6) and
umin = (2,−6,−6,−6), and set ∆u = (18, 6, 6, 6). For each simulation, the quadcopter is
initialized at p = v = 0 and q = (1, 0, 0, 0). We sample 5 waypoints for each of the (x, y, z)
coordinates for each trajectory from the uniform distribution, U [−0.5, 0.5]. Then we use a B-
spline (de Boor, 1972) to smoothly interpolate between the waypoints to generate 100 points
for the entire trajectory. Since each reference trajectory is made up of (x, y, z) coordinates
rather than the full state vector, we shorten the parameter size to θ ∈ Rnx+nu+3T .

Results. Figure 6 and Table 6 show the convergence behavior of our method. While all
of the warm starts learned with the regression losses deliver substantial improvements over
the baselines, our method using k = 60 with the fixed-point residual loss stands out as the
best for a larger number of steps. To simulate a strict latency requirement, we also compare
various initialization techniques in a closed-loop system where only 15 OSQP iterations are
allowed per QP in Figure 7. The learned warm start approach can more accurately track
the reference trajectory compared with the other two methods.

22

Learning to Warm-Start Fixed-point Optimization Algorithms

Table 6: Quadcopter.

(a) Mean iterations to reach a given fixed point residual (Fp res.)
Fp
res.

Cold
Start

Near.
Neigh.

Prev.
sol.

Fp
k = 0

Fp
k = 1

Fp
k = 5

Fp
k = 15

Fp
k = 60

Reg
k = 0

Reg
k = 1

Reg
k = 5

Reg
k = 15

Reg
k = 60

0.1 103 26 28 86 115 9 10 34 14 27 14 15 39
0.01 682 127 115 696 689 480 79 50 25 268 26 26 54
0.001 2262 1210 1416 2582 2172 4268 5728 277 596 1588 673 604 636
0.0001 9958 6573 6906 9980 9494 12938 14000 5681 6041 7082 5957 6015 6053

(b) Mean reduction in iterations from a cold start to a given fixed-point residual (Fp res.)
Fp
res.

Cold
Start

Near.
Neigh.

Prev.
sol.

Fp
k = 0

Fp
k = 1

Fp
k = 5

Fp
k = 15

Fp
k = 60

Reg
k = 0

Reg
k = 1

Reg
k = 5

Reg
k = 15

Reg
k = 60

0.1 0 0.75 0.73 0.17 -0.12 0.91 0.90 0.67 0.86 0.74 0.86 0.85 0.62
0.01 0 0.81 0.83 -0.02 -0.01 0.30 0.88 0.93 0.96 0.61 0.96 0.96 0.92
0.001 0 0.47 0.37 -0.14 0.04 -0.89 -1.53 0.88 0.74 0.30 0.70 0.73 0.72
0.0001 0 0.34 0.31 -0.00 0.05 -0.30 -0.41 0.43 0.39 0.29 0.40 0.40 0.39

(c) Mean solve times (in milliseconds) in OSQP with absolute and relative tolerances set to tol.

tol.
Cold
Start

Near.
Neigh.

Prev.
sol.

Fp
k = 0

Fp
k = 1

Fp
k = 5

Fp
k = 15

Fp
k = 60

Reg
k = 0

Reg
k = 1

Reg
k = 5

Reg
k = 15

Reg
k = 60

0.1 0.19 0.17 0.17 0.32 0.24 0.17 0.18 0.19 0.16 0.17 0.16 0.16 0.18
0.01 2.44 0.23 0.21 2.32 2.16 0.68 0.25 0.21 0.16 0.25 0.17 0.16 0.28
0.001 12.0 4.69 6.33 11.77 11.4 17.65 35.89 0.77 1.18 6.06 1.23 1.23 1.45
0.0001 54.59 24.63 28.66 50.15 49.92 68.56 104.1 14.34 18.26 31.05 18.86 18.51 18.6
1e-05 114.6 76.03 78.21 103.4 109.3 128.5 174.6 63.35 65.23 80.27 67.0 65.88 65.43

10−2

100

102

104

te
st

fix
ed

-p
oi

nt
re

si
d

u
al training with fixed-point residual losses training with regression losses

0 100 200 300 400 500

evaluation iterations

0

200

400

600

te
st

ga
in

to
co

ld
st

ar
t

0 100 200 300 400 500

evaluation iterations

cold start nearest neighbor warm start previous solution warm start
learned warm-start k ={ 0 5 15 60 }

Figure 6: Quadcopter. Learned warm starts offer substantial improvements over the baselines. In
particular, warm starts learned with k = 60 and the fixed-point residual loss have the largest gain
for evaluation steps over about 50.

6.3.2 Image deblurring

We turn our attention to the task of image deblurring. Given a blurry image b ∈ Rn,
the goal is to recover the original image x ∈ Rn. Both the noisy vector b and the target

23

Sambharya, Hall, Amos, and Stellato

(a) previous solution (b) nearest neighbor (c) learned

Figure 7: Visualizing closed-loop MPC of flying a quadcopter to track a reference trajectory. Each
row corresponds to a different unseen reference trajectory. Each column uses a different initialization
scheme to track the same unseen black reference trajectory in a closed-loop. Each technique is given
a budget of 15 OSQP iterations to solve each QP. The learned approach which is trained on k = 5
with the regression loss tracks the trajectory well compared against the other two.

vector x are formed by stacking the columns of their respective images. We formulate this
well-studied problem (Beck and Teboulle, 2009; Benvenuto et al., 2010) as

minimize ‖Ax− b‖22 + λ‖x‖1
subject to 0 ≤ x ≤ 1.

Here, the matrix A ∈ Rn×n is the blur operator which represents a two-dimensional convo-
lutional operator. The regularization hyperparameter λ ∈ R++, weights the fidelity term
‖Ax−b‖22, relative to the `1 penalty. The `1 penalty is used as it less sensitive to outliers and
encourages sparsity (Beck and Teboulle, 2009). The constraints ensure that the deblurred
image has pixel values within its domain.

Numerical example. We consider handwritten letters from the EMNIST dataset (Cohen
et al., 2017). We apply a Gaussian blue of size 8 to each letter and then add i.i.d. Gaussian
noise with standard deviation 0.001. The hyperparameter weighting term is λ = 1e− 4.

Results. Figure 8 and Table 7 show the convergence behavior of our method. Learned
warm starts with the regression loss tend to outperform the learned warm starts with the
fixed-point residual loss. We show visualizations of our method in Figure 9. For images that
are particularly challenging, the image quality after 50 OSQP steps is significantly better
for the learned warm start than the baseline initializations.

6.4 SCS

In this subsection, we apply our learning framework to the SCS (O’Donoghue et al., 2019)
algorithm from Table 1 to solve convex conic optimization problems. We compare solve
times using SCS code written in C for our learned warm starts against the baselines. We
run our experiments on two second-order cone programs (SOCPs) in robust Kalman filtering

24

Learning to Warm-Start Fixed-point Optimization Algorithms

10−2

100

102

te
st

fix
ed

-p
oi

nt
re

si
d

u
al training with fixed-point residual losses training with regression losses

0 100 200 300 400 500

evaluation iterations

0

5

10

15

te
st

ga
in

to
co

ld
st

ar
t

0 100 200 300 400 500

evaluation iterations

cold start nearest neighbor warm start
learned warm-start k ={ 0 5 15 60 }

Figure 8: Image deblurring. Warm starts learned with the regression loss provide bigger gains
compared with those learned with the fixed-point residual loss.

Table 7: Image deblurring.

(a) Mean iterations to reach a given fixed point residual (Fp res.)
Fp
res.

Cold
Start

Near.
Neigh.

MAML
Fp
k = 0

Fp
k = 1

Fp
k = 5

Fp
k = 15

Fp
k = 60

Reg
k = 0

Reg
k = 1

Reg
k = 5

Reg
k = 15

Reg
k = 60

0.1 24 16 23 6 7 5 8 12 5 5 6 8 11
0.01 194 181 188 107 102 93 17 36 16 16 15 18 42
0.001 1348 1253 1290 982 938 953 454 658 215 196 171 208 321
0.0001 7767 7607 7252 6613 6500 6689 5668 6812 4238 4038 3292 3779 4744

(b) Mean reduction in iterations from a cold start to a given fixed-point residual (Fp res.)
Fp
res.

Cold
Start

Near.
Neigh.

MAML
Fp
k = 0

Fp
k = 1

Fp
k = 5

Fp
k = 15

Fp
k = 60

Reg
k = 0

Reg
k = 1

Reg
k = 5

Reg
k = 15

Reg
k = 60

0.1 0 0.33 0.04 0.75 0.71 0.79 0.67 0.50 0.79 0.79 0.75 0.67 0.54
0.01 0 0.07 0.03 0.45 0.47 0.52 0.91 0.81 0.92 0.92 0.92 0.91 0.78
0.001 0 0.07 0.04 0.27 0.30 0.29 0.66 0.51 0.84 0.85 0.87 0.85 0.76
0.0001 0 0.02 0.07 0.15 0.16 0.14 0.27 0.12 0.45 0.48 0.58 0.51 0.39

(c) Mean solve times (in milliseconds) in OSQP with absolute and relative tolerances set to tol.

tol.
Cold
Start

Near.
Neigh.

MAML
Fp
k = 0

Fp
k = 1

Fp
k = 5

Fp
k = 15

Fp
k = 60

Reg
k = 0

Reg
k = 1

Reg
k = 5

Reg
k = 15

Reg
k = 60

0.1 6.34 6.37 6.46 6.32 6.35 6.31 6.30 6.32 6.33 6.36 6.34 6.32 6.33
0.01 9.13 9.62 8.42 6.32 6.34 6.33 6.32 6.33 6.33 6.40 6.33 6.35 6.33
0.001 62.37 68.25 60.14 48.00 46.52 38.51 9.90 18.38 9.51 9.14 7.55 8.21 15.54
0.0001 463.9 472.7 439.9 398.7 386.8 363.2 230.0 333.9 115.9 108.9 80.76 106.0 168.5
1e-05 3048 2996 2847 2629 2529 2777 2500 2934 1957 1891 1691 1831 2090

in Section 6.4.1 and robust non-negative least squares in Section 6.4.2 and two semidefinite
programs (SDPs) in phase retrieval in Section 6.4.3 and sparse PCA in Section 6.4.4.

25

Sambharya, Hall, Amos, and Stellato

10th

percentile optimal blurred cold-start nearest
neighbor

learned

50th

90th

99th

Figure 9: EMNIST image deblurring. Each row corresponds to an unseen sample from the EMNIST
dataset. The last three columns depict several different initialization techniques after 50 OSQP
steps. In the learned column, we use the regression loss with k = 5. To adjust the difficulty of the
images displayed, we select images corresponding to different percentiles of distance from the nearest
neighbor to the optimal solution.

Table 8: Sizes of conic problems from Table 1 that we use SCS to solve. We give the number of
primal constraints (m), size of the primal variable (n), and the parameter size, d. Then, we provide
the sizes of the cones for each conic program. For the second-order and the positive semidefinite
cones, we supply arrays specifying the lengths of each respective cone. The notation 100× [3] means
that there are 100 second-order cones each of size 3.

Kalman filter robust least squares phase retrieval sparse PCA

constraints m 600 2102 3480 4022
variables n 550 802 1600 2420
parameter size d 100 500 120 55

zero 600 0 240 1
non-negative 550 800 0 3201
second-order 100× [3] [801,501] 0 0
positive semidefinite 0 0 [80] [40]

6.4.1 Robust Kalman filtering

Kalman filtering (Kalman, 1960) is a widely used technique for predicting system states
in the presence of noise in dynamic systems. In our first SOCP example, we use robust
Kalman filtering (Xie and Soh, 1994) which mitigates the impact of outliers on the filtering
process and model misspecifications to track a moving vehicle from noisy data location as
in Venkataraman and Amos (2021). The dynamical system is modeled by

xt+1 = Axt +Bwt, yt = Cxt + vt, for t = 0, 1, . . . , (19)

where xt ∈ Rnx is the state, yt ∈ Rno is the observation, wt ∈ Rnu is the input, and
vt ∈ Rno is a perturbation to the observation. The matrices A ∈ Rnx×nx , B ∈ Rnx×nu ,
and C ∈ Rno×nx give the dynamics of the system. Our goal is to recover the state xt from

26

Learning to Warm-Start Fixed-point Optimization Algorithms

the noisy measurements yt. To do so, we solve the problem

minimize
∑T−1

t=1 ‖wt‖22 + µψρ(vt)

subject to xt+1 = Axt +Bwt t = 0, . . . , T − 1

yt = Cxt + vt t = 0, . . . , T − 1.

Here, the Huber penalty function (Huber, 1964) parametrized by ρ ∈ R++ that robustifies
against outliers is

ψρ(a) =

{
‖a‖2 ‖a‖2 ≤ ρ
2ρ‖a‖2 − ρ2 ‖a‖2 ≥ ρ

,

and µ ∈ R++ weights this penalty term. The decision variables are the xt’s, wt’s, and
vt’s. The parameters are the observed yt’s, i.e., θ = (y0, . . . , yT−1). In this example, we
take advantage of rotational invariance of the problem. We rotate the noisy trajectory so
that yT is on the x-axis for every problem. After solving the transformed problem (for any
initialization) we reverse the rotation to obtain the solution of the original problem.

Numerical example. As in Venkataraman and Amos (2021), we set nx = 4, no = 2,
nu = 2, µ = 2, ρ = 2, and T = 50. The dynamics matrices are

A =


1 0 (1− (γ/2)∆t)∆t 0

0 1 0 (1− (γ/2)∆t)∆t

0 0 1− γ∆t 0

0 0 0 1− γ∆t

 , B =


1/2∆t2 0

0 1/2∆t2

∆t 0

0 ∆t

 , C =

[
1 0 0 0

0 1 0 0

]
,

where ∆t = 0.5 and γ = 0.05 are fixed to be respectively the sampling time and the
velocity dampening parameter. We generate the problem instances in the following way.
We generate true trajectories {x∗0, . . . , x∗T−1} of the vehicle by first letting x∗0 = 0. Then we
sample the inputs as wt ∼ N (0, 0.01) and vt ∼ N (0, 0.01). The trajectories are then fully
defined via the dynamics equations in Equation (19) with the sampled wt’s and vt’s.

Results. Since this is a control example, we use the shifted previous solution as a warm
start from Section 6.3.1. Figure 10 and Table 9 show the convergence behavior of our
method. In this example, the learned warm starts do well with the fixed-point residual loss
for k = 5 and k = 15 and the regression loss for k = 5, but hardly improve in the other
cases. In all cases, the gains relative to the cold start remain nearly constant throughout
the evaluation iterations. Figure 11 illustrates how our learned solutions after 5 iterations
outperforms the solution returned after 5 iterations from the baselines.

6.4.2 Robust non-negative least squares

We consider the problem of non-negative least squares with matrix uncertainty

minx≥0 max‖∆A‖≤ρ‖(Â+ ∆A)x− b‖2,

where the right-hand side vector b ∈ Rm, nominal matrix Â ∈ Rm×n, and maximum
perturbation ρ ∈ R++ are the problem data. The decision variable of the minimizer and
maximizer are x ∈ Rn and ∆A ∈ Rm×n respectively. Here, ‖∆A‖ denotes the largest

27

Sambharya, Hall, Amos, and Stellato

Table 9: Robust Kalman filtering.

(a) Mean iterations to reach a given fixed point residual (Fp res.)
Fp
res.

Cold
Start

Near.
Neigh.

Prev.
sol.

Fp
k = 0

Fp
k = 1

Fp
k = 5

Fp
k = 15

Fp
k = 60

Reg
k = 0

Reg
k = 1

Reg
k = 5

Reg
k = 15

Reg
k = 60

0.1 40 36 37 34 29 4 8 35 24 9 9 33 35
0.01 90 85 86 87 82 33 25 81 77 41 27 81 81
0.001 142 139 140 140 135 84 73 133 131 93 76 134 133
0.0001 195 193 194 195 189 137 126 187 185 146 129 187 186

(b) Mean reduction in iterations from a cold start to a given fixed-point residual (Fp res.)
Fp
res.

Cold
Start

Near.
Neigh.

Prev.
sol.

Fp
k = 0

Fp
k = 1

Fp
k = 5

Fp
k = 15

Fp
k = 60

Reg
k = 0

Reg
k = 1

Reg
k = 5

Reg
k = 15

Reg
k = 60

0.1 0 0.10 0.07 0.15 0.28 0.9 0.80 0.12 0.4 0.78 0.78 0.18 0.12
0.01 0 0.06 0.04 0.03 0.09 0.63 0.72 0.10 0.14 0.54 0.70 0.10 0.10
0.001 0 0.02 0.01 0.01 0.05 0.41 0.49 0.06 0.08 0.35 0.46 0.06 0.06
0.0001 0 0.01 0.01 0.00 0.03 0.30 0.35 0.04 0.05 0.25 0.34 0.04 0.05

(c) Mean solve times (in milliseconds) in SCS with absolute and relative tolerances set to tol.

tol.
Cold
Start

Near.
Neigh.

Prev.
sol.

Fp
k = 0

Fp
k = 1

Fp
k = 5

Fp
k = 15

Fp
k = 60

Reg
k = 0

Reg
k = 1

Reg
k = 5

Reg
k = 15

Reg
k = 60

0.1 0.49 0.49 0.49 0.45 0.45 0.49 0.48 0.49 0.35 0.48 0.49 0.49 0.49
0.01 0.67 0.49 0.49 0.56 0.45 0.49 0.48 0.50 0.49 0.49 0.48 0.49 0.52
0.001 1.36 1.31 1.33 1.47 1.24 0.50 0.48 1.13 1.23 0.50 0.49 1.13 1.12
0.0001 2.23 2.19 2.22 2.33 2.08 1.18 0.94 1.97 2.12 1.36 1.02 1.99 1.96
1e-05 3.11 3.13 3.15 3.31 2.97 2.05 1.76 2.83 3.03 2.31 1.87 2.86 2.81

10−6

10−4

10−2

100

102

te
st

fix
ed

-p
oi

nt
re

si
d

u
al training with fixed-point residual losses training with regression losses

0 50 100 150 200 250 300

evaluation iterations

0

20

40

60

80

100

te
st

ga
in

to
co

ld
st

ar
t

0 50 100 150 200 250 300

evaluation iterations

cold start nearest neighbor warm start previous solution warm start
learned warm-start k ={ 0 5 15 60 }

Figure 10: Robust Kalman filtering. The learned warm starts that train with k = 5 for both losses
and with k = 15 for the fixed-point residual loss have significant gains over the baselines.

singular value of the perturbation matrix ∆A. El Ghaoui and Lebret (1997) provide an

28

Learning to Warm-Start Fixed-point Optimization Algorithms

optimal solution noisy trajectory
nearest neighbor previous solution learned

Figure 11: Visualizing test problems for robust Kalman filtering. Each plot is a separate test
problem. The noisy, observed trajectory are the red points which serve as problem data for the
SOCP. The robust Kalman filtering recovery, the optimal solution of the SOCP, is shown as green
dots. After 5 iterations, SCS with our learned warm start using the regression loss with k = 5 is
very close to the optimal solution while SCS initialized with both the shifted previous solution and
the nearest neighbor still is noticeably far away from optimality.

SOCP formulation for this problem

minimize u+ ρv

subject to ‖Âx− b‖2 ≤ u
‖x‖2 ≤ v
x ≥ 0,

where x ∈ Rn, u ∈ R, and v ∈ R are the decision variables. The parameter is θ = b.

Numerical example. We pick ρ = 4 and Â ∈ R500×800 where the entries of Â are
sampled the uniform distribution U [−1, 1]. We sample b in an i.i.d. fashion from U [1, 2].

Results. Figure 12 and table 10 show the convergence behavior of our method. The
learned warm starts with positive k substantially improve upon the baselines for both
losses. Figure 12 show linear convergence of our method; this results in the gains from the
learned warm starts staying roughly constant as the number of evaluation steps increases.

6.4.3 Phase retrieval

Our first SDP example is the problem of phase retrieval (Fienup, 1982) where the goal is
to recover an unknown signal x ∈ Cn from observations. This problem has applications
in X-ray crystallogpraphy (Millane, 1990) and coherent diffractive imaging (Shechtman
et al., 2015). Specifically, for known vectors ai ∈ Cn, we have m scalar measurements:
bi = |〈ai, x〉|2, i = 1, . . . ,m. Since the values are complex, we denote the conjugate
transpose of a matrix A by A∗. Noting that |〈ai, x〉|2 = (a∗ix)(x∗ai), we introduce a matrix
variable X ∈ Sn+ and matrices Ai = aia

∗
i . The exact phase retrieval problem becomes a

29

Sambharya, Hall, Amos, and Stellato

10−5

10−3

10−1

101

103

te
st

fix
ed

-p
oi

nt
re

si
d

u
al training with fixed-point residual losses training with regression losses

0 50 100 150 200 250 300

evaluation iterations

0

50

100

150

te
st

ga
in

to
co

ld
st

ar
t

0 50 100 150 200 250 300

evaluation iterations

cold start nearest neighbor warm start
learned warm-start k ={ 0 5 15 60 }

Figure 12: Robust non-negative least squares. All of the learned warm starts apart from the ones
with k = 0 substantially improve the gain over the cold start.

Table 10: Robust non-negative least squares.

(a) Mean iterations to reach a given fixed point residual (Fp res.)
Fp
res.

Cold
Start

Near.
Neigh.

MAML
Fp
k = 0

Fp
k = 1

Fp
k = 5

Fp
k = 15

Fp
k = 60

Reg
k = 0

Reg
k = 1

Reg
k = 5

Reg
k = 15

Reg
k = 60

0.1 76 26 28 12 78 3 12 19 15 5 8 14 20
0.01 131 78 63 65 133 37 42 45 68 41 39 41 46
0.001 189 136 120 124 192 94 99 99 127 97 95 97 99
0.0001 249 197 182 186 252 156 160 161 189 158 156 158 160

(b) Mean reduction in iterations from a cold start to a given fixed-point residual (Fp res.)
Fp
res.

Cold
Start

Near.
Neigh.

MAML
Fp
k = 0

Fp
k = 1

Fp
k = 5

Fp
k = 15

Fp
k = 60

Reg
k = 0

Reg
k = 1

Reg
k = 5

Reg
k = 15

Reg
k = 60

0.1 0 0.66 0.63 0.84 -0.03 0.96 0.84 0.75 0.8 0.93 0.89 0.82 0.74
0.01 0 0.40 0.52 0.50 -0.02 0.72 0.68 0.66 0.48 0.69 0.70 0.69 0.65
0.001 0 0.28 0.37 0.34 -0.02 0.50 0.48 0.48 0.33 0.49 0.50 0.49 0.48
0.0001 0 0.21 0.27 0.25 -0.01 0.37 0.36 0.35 0.24 0.37 0.37 0.37 0.36

(c) Mean solve times (in milliseconds) in SCS with absolute and relative tolerances set to tol.

tol.
Cold
Start

Near.
Neigh.

MAML
Fp
k = 0

Fp
k = 1

Fp
k = 5

Fp
k = 15

Fp
k = 60

Reg
k = 0

Reg
k = 1

Reg
k = 5

Reg
k = 15

Reg
k = 60

0.1 61.79 4.16 22.05 2.23 74.1 22.13 26.95 26.73 2.32 26.44 22.44 22.39 22.14
0.01 101.73 46.01 42.14 42.08 121.7 24.13 31.61 36.37 42.59 38.59 26.17 25.47 37.31
0.001 141.5 101.7 84.50 89.95 169.9 61.95 79.9 76.75 95.76 77.25 63.65 64.69 67.32
0.0001 185.4 145.5 137.8 148.4 225.2 107.7 142.3 149.7 143.7 138.2 112.3 115.1 119.7
1e-05 241.1 199.6 184.2 187.8 287.5 169.5 197.3 198.4 195.2 194.2 168.4 167.4 164.6

feasibility problem over the matrix variable with a rank constraint

find X

subject to tr(AiX) = bi, i = 1, . . . ,m

rank(X) = 1, X � 0.

30

Learning to Warm-Start Fixed-point Optimization Algorithms

We arrive at the following SDP relaxation by dropping the rank constraint:

minimize tr(X)

subject to tr(AiX) = bi, i = 1, . . . ,m

X � 0.

To parameterize each problem, we let θ = b ∈ Rm.

Numerical example. For the signal, we sample x from a complex normal distribu-
tion, i.e., we sample the real and imaginary parts of each component independently from
N (µ, σ2). To construct the constraint matrices, we use the coded diffraction pattern model
(Candès et al., 2015). The specific modulating waveforms follow the setup from Yurtsever
et al. (2021, Section F.1). For a signal of size n, we generate d = 3n measurements.
Specifically, we draw 3 independent modulating waveforms ψj ∈ Rn, j = 1, . . . , 3. Each
component of ψj is the product of two random variables, with one drawn uniformly from
{1, i,−1,−i} and the other drawn from {

√
2/2,
√

3} with probabilities 0.8 and 0.2, respec-
tively. Then, each ai corresponds to computing a single entry of the Fourier transform of x
after being modulated by the waveforms. Letting W be the n×n discrete Fourier transform
matrix, the ai’s can be written explicitly as a(j−1)n+l = W T

l (diag(ψj))
? where W T

l is the
l-th row of W . We take n = 40, µ = 5, and σ = 1.

Results. Figure 13 and Table 11 show the convergence behavior of our method. In this
case, while the decoupled approach with k = 0 offers the largest gains over the first few
iterations, the gain degrades as t increases to the point where it’s performance becomes
worse than that of the nearest-neighbor initialization. The learned warm starts with the
regression loss for positive k tend to sustain their gains for a larger value of t compared
with the learned warm starts that use the fixed-point residual loss.

6.4.4 Sparse PCA

Next, we examine the problem of sparse PCA (Zou et al., 2006). Unlike standard PCA (Jol-
liffe, 2005), which typically finds principal components that depend on all observed variables,
sparse PCA identifies principal components that rely on only a small subset of the variables.
The Sparse PCA problem is

maximize xTAx

subject to ‖x‖2 ≤ 1

card(x) ≤ c,
(20)

where x ∈ Rn is the decision variable and card(x) is the number of nonzero terms of vector
x. The covariance matrix A ∈ Sn+ and desired cardinality c ∈ R+ are problem data. We
consider an SDP relaxation of the non-convex problem (20) which takes the form

maximize tr(AX)

subject to tr(X) = 1

1T |X|1 ≤ c
X � 0,

(21)

31

Sambharya, Hall, Amos, and Stellato

Table 11: Phase retrieval.

(a) Mean iterations to reach a given fixed point residual (Fp res.)
Fp
res.

Cold
Start

Near.
Neigh.

MAML
Fp
k = 0

Fp
k = 1

Fp
k = 5

Fp
k = 15

Fp
k = 60

Reg
k = 0

Reg
k = 1

Reg
k = 5

Reg
k = 15

Reg
k = 60

0.1 531 254 324 320 327 280 209 76 322 140 122 115 129
0.01 2558 1629 2368 2259 2186 2710 2890 1982 2249 817 666 669 686
0.001 6478 5547 6305 6133 5965 6803 7113 6127 6098 3762 3609 3611 3667
0.0001 11512 10837 11482 11281 11009 12021 12379 11303 11223 8617 8322 8268 8217

(b) Mean reduction in iterations from a cold start to a given fixed-point residual (Fp res.)
Fp
res.

Cold
Start

Near.
Neigh.

MAML
Fp
k = 0

Fp
k = 1

Fp
k = 5

Fp
k = 15

Fp
k = 60

Reg
k = 0

Reg
k = 1

Reg
k = 5

Reg
k = 15

Reg
k = 60

0.1 0 0.52 0.39 0.40 0.38 0.47 0.61 0.86 0.39 0.74 0.77 0.78 0.76
0.01 0 0.36 0.07 0.12 0.15 -0.06 -0.13 0.23 0.12 0.68 0.74 0.74 0.73
0.001 0 0.14 0.03 0.05 0.08 -0.05 -0.10 0.05 0.06 0.42 0.44 0.44 0.43
0.0001 0 0.06 0.00 0.02 0.04 -0.04 -0.08 0.02 0.03 0.25 0.28 0.28 0.29

(c) Mean solve times (in milliseconds) in SCS with absolute and relative tolerances set to tol.

tol.
Cold
Start

Near.
Neigh.

MAML
Fp
k = 0

Fp
k = 1

Fp
k = 5

Fp
k = 15

Fp
k = 60

Reg
k = 0

Reg
k = 1

Reg
k = 5

Reg
k = 15

Reg
k = 60

0.1 72.59 48.5 48.68 35.34 35.52 34.92 35.33 35.19 35.27 35.15 35.14 35.23 35.39
0.01 490.6 257.6 439.2 495.5 480.6 512.8 364.7 118.4 500.3 153.7 140.4 127.8 146.9
0.001 3229 1978 2759 3152 3037 3732 3925 2813 3111 1175 1001 1043 1046
0.0001 8358 6365 6901 7965 8018 8829 9190 7882 7924 5151 4887 5003 5071
1e-05 12673 11113 10413 12236 12667 12514 12698 12490 12231 11104 10954 10844 10864

10−2

10−1

100

101

102

te
st

fix
ed

-p
oi

nt
re

si
d

u
al training with fixed-point residual losses training with regression losses

0 100 200 300 400 500

evaluation iterations

0

10

20

30

40

te
st

ga
in

to
co

ld
st

ar
t

0 100 200 300 400 500

evaluation iterations

cold start nearest neighbor warm start
learned warm-start k ={ 0 5 15 60 }

Figure 13: Phase retrieval. Other than the k = 0 case, the learned warm starts with regression loss
improvements are maintained for many evaluation steps.

where the decision variable is X ∈ Sn+. We use an r-factor model (Boyd et al., 2017) and
set A = FΣF T where F ∈ Rn×r is the factor loading matrix and Σ ∈ Sn+ is a matrix that
holds the factor scores. The parameter is θ = vec(Σ).

32

Learning to Warm-Start Fixed-point Optimization Algorithms

Numerical example. We run our experiments with matrix size of n = 40, a factor size
of r = 10, and a cardinality size of c = 10. To generate the covariance matrices, we first
generate a random nominal matrix A0, whose entries are sampled as an i.i.d. standard
Gaussian. We then take the singular value decomposition of A0 = UΣ0U

T , and let the
shared factor loading matrix F ∈ Rn×r be the first r singular vectors of U . Let B0 ∈ Sr+
be the diagonal matrix found by taking the square root of the first r singular values of A0.
Then, for each problem, we take Σ = BBT where B = ∆ + B0. Here, the elements of
∆ ∈ Rr×r are sampled i.i.d. from the uniform distribution U [−0.1, 0.1].

Table 12: Sparse PCA.

(a) Mean iterations to reach a given fixed point residual (Fp res.)
Fp
res.

Cold
Start

Near.
Neigh.

MAML
Fp
k = 0

Fp
k = 1

Fp
k = 5

Fp
k = 15

Fp
k = 60

Reg
k = 0

Reg
k = 1

Reg
k = 5

Reg
k = 15

Reg
k = 60

0.1 26 1 11 0 1 2 8 10 0 3 5 8 17
0.01 122 62 63 262 130 92 70 38 262 40 33 37 55
0.001 338 269 262 491 370 313 289 160 490 171 145 151 172
0.0001 982 822 785 1002 1000 881 935 738 1004 712 681 698 709

(b) Mean reduction in iterations from a cold start to a given fixed-point residual (Fp res.)
Fp
res.

Cold
Start

Near.
Neigh.

MAML
Fp
k = 0

Fp
k = 1

Fp
k = 5

Fp
k = 15

Fp
k = 60

Reg
k = 0

Reg
k = 1

Reg
k = 5

Reg
k = 15

Reg
k = 60

0.1 0 0.96 0.58 1.0 0.96 0.92 0.69 0.62 1.0 0.88 0.81 0.69 0.35
0.01 0 0.49 0.48 -1.15 -0.07 0.25 0.43 0.69 -1.15 0.67 0.73 0.7 0.55
0.001 0 0.20 0.22 -0.45 -0.09 0.07 0.14 0.53 -0.45 0.49 0.57 0.55 0.49
0.0001 0 0.16 0.20 -0.02 -0.02 0.10 0.05 0.25 -0.02 0.27 0.31 0.29 0.28

(c) Mean solve times (in milliseconds) in SCS with absolute and relative tolerances set to tol.

tol.
Cold
Start

Near.
Neigh.

MAML
Fp
k = 0

Fp
k = 1

Fp
k = 5

Fp
k = 15

Fp
k = 60

Reg
k = 0

Reg
k = 1

Reg
k = 5

Reg
k = 15

Reg
k = 60

0.1 9.66 0.59 7.38 0.65 10.56 10.62 8.35 8.22 0.73 10.55 10.06 8.27 8.4
0.01 26.34 9.63 7.81 97.97 30.58 14.31 8.81 8.22 88.35 9.91 10.09 8.25 9.94
0.001 67.88 45.91 39.84 121.9 83.92 71.17 43.23 17.23 110.4 20.18 20.09 16.92 25.31
0.0001 136.2 107.6 90.61 187.4 155.7 140.6 100.7 63.95 170.0 76.57 73.65 61.11 70.46
1e-05 255.5 204.3 166.0 309.5 272.7 264.9 201.3 151.2 279.2 189.1 174.6 144.5 153.8

Results. Figure 14 and table 12 show the convergence behavior of our method. In this
example, both the fixed-point residual loss and the regression loss perform with k = 0. All
of the other learned warm starts with the regression loss and some with the fixed-point
residual loss show good performance.

7. Conclusion

We present a machine-learning framework to warm-start fixed-point algorithms for para-
metric convex optimization. The architecture first maps the problem parameters to initial
warm start iterates, and then runs k fixed-point algorithm steps. We propose two different
loss functions, a regression loss and a fixed-point residual loss. Training the warm start pre-
dictor with gradient-based methods amounts to backpropagating through the fixed-point
steps. In this way, the learned initializations are tailored for the downstream fixed-point
algorithm. To provide guarantees to unseen data, we combine the PAC-Bayes framework
with operator theory and obtain guarantees when the fixed-point operator is contractive,
linearly convergent, and averaged. We showcase the effectiveness of this method on a wide

33

Sambharya, Hall, Amos, and Stellato

10−4

10−3

10−2

10−1

100

te
st

fix
ed

-p
oi

nt
re

si
d

u
al training with fixed-point residual losses training with regression losses

0 100 200 300 400 500

evaluation iterations

0

10

20

30

te
st

ga
in

to
co

ld
st

ar
t

0 100 200 300 400 500

evaluation iterations

cold start nearest neighbor warm start
learned warm-start k ={ 0 5 15 60 }

Figure 14: Sparse PCA. The learned warm starts with positive k that use the regression loss provide
large gains.

variety of fixed-point algorithms including gradient descent, proximal gradient descent, and
ADMM.

Future research directions of interest include exploring different predictors for the initial
iterates, developing warm start strategies for non-convex optimization, and investigating
methods to scale our computational architecture to large-scale problems.

Appendix A. Examples of fixed-point algorithms

Gradient descent. Here, z ∈ Rn is the decision variable and fθ is a convex and L-smooth
function. Recall that f : Rn → R is L-smooth if ‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2 ∀x, y ∈
Rn. If α ∈ (0, 2/L), then the iterates of gradient descent are guaranteed to converge to
an optimal solution (Ryu and Boyd, 2016). If fθ is strongly convex, then the fixed-point
operator is a contraction (Ryu and Boyd, 2016).

Proximal gradient descent. Here, z ∈ Rn is the decision variable, fθ is a convex and
L-smooth function, and gθ is a convex but possibly non-smooth function. The iterations of
proximal gradient descent converge to a solution if α ∈ (0, 2/L) (Parikh and Boyd, 2014).

Alternating direction method of multipliers (ADMM). Here, u ∈ Rn is the deci-
sion variable and fθ and gθ are closed, convex, proper, and possibly non-smooth functions.
The iterations of ADMM generate a sequence of iterates, resulting in the convergence of
both ũi and ui to each other and to a solution of the problem. The z ∈ Rn variable serves as
the associated dual variable. We use the equivalence of ADMM to Douglas-Rachford split-
ting (Gabay, 1983) and write the Douglas-Rachford splitting iterations in Table 1. While
the associated fixed-point operator to ADMM is averaged (Ryu and Boyd, 2016), ADMM
is known to converge linearly under certain conditions (Eckstein, 1989; Giselsson and Boyd,
2017).

34

Learning to Warm-Start Fixed-point Optimization Algorithms

OSQP. The operator splitting quadratic program (OSQP) (Stellato et al., 2020) solver is
based on ADMM. Here, P ∈ Sn+, A ∈ Rm×n, c ∈ Rn, l ∈ Rm, and u ∈ Rm are problem
data, and Π[l,u] is the projection onto the box [l, u]. The decision variable is x ∈ Rn. The
algorithm steps in Table 1 are given by Banjac et al. (2019).

SCS. The splitting conic solver (SCS) (O’Donoghue, 2021) is also based on ADMM. Here,
P ∈ Sn+, A ∈ Rm×n, c ∈ Rn, and b ∈ Rm are problem data, and ΠC is the projection onto
the cone C. The decision variables are x ∈ Rn and s ∈ Rm. For simplicity, Table 1
includes the simplified version of the SCS algorithm without the homogeneous self-dual
embedding. The SCS algorithm, the one we use in the numerical experiments in Section 6.4,
is based on the homogeneous self-dual embedding; see O’Donoghue (2021) for the details. As
in Venkataraman and Amos (2021), our implementation normalizes the fixed-point residual
by the τ scaling factor to ensure that the fixed-point residual is not artificially small.

Appendix B. Proofs

B.1 Proof of Lemma 1

Let w′ = w + u and let Sw be the set of perturbations w′ such that

Sw ⊂ {w′ | maxθ∈Θ ‖hw′(θ)− hw(θ)‖2 ≤ γ/2} .

Let q be the probability density function over w′. We construct a new distribution Q̃
over predictors hw̃ where w̃ is restricted to Sw with the probability density function q̃(w̃) =
(1/Z)q(w̃) if w̃ ∈ Sw and otherwise 0, where Z is a normalizing constant. By the assumption
of the lemma, Z = P(w′ ∈ Sw) ≥ 1/2. By the definition of Q̃, we have

maxθ∈Θ ‖hw̃(θ)− hw(θ)‖2 ≤ γ/2.

Therefore, `fpθ (T tθ(hw(θ))) ≤ gtγ/2,θ(hw̃(θ)) ≤ gtγ,θ(hw(θ)) almost surely for every θ ∈ Θ.

Hence, for every w̃ drawn from the probability density function Q̃, almost surely,

Rt(w) ≤ Rtγ/2(w̃), R̂tγ/2(w̃) ≤ R̂tγ(w). (22)

Now using these two inequalities above and the PAC-Bayes theorem, we get

Rt(w) ≤ Ew̃[Rtγ/2(w̃)]

≤ Ew̃[R̂tγ/2(w̃)] + 2Cγ/2(t)
√

(2KL(w̃||π) + log(2N/δ))/(N − 1)

≤ R̂tγ(w) + 2Cγ/2(t)
√

(2KL(w̃||π) + log(2N/δ))/(N − 1)

≤ R̂tγ(w) + 4Cγ/2(t)
√

(2KL(w′||π) + log(6N/δ))/(N − 1).

The first and third inequalities come from (22), and the second inequality follows from (11).
The last inequality comes from the following calculation which we repeat from Neyshabur
et al. (2018, Section 4). Let Scw denote the complement of Sw and q̃c denote the density
function q restricted to Scw and normalized. Then we get

KL(q||p) = ZKL(q̃||p) + (1− Z)KL(q̃c||p)−H(Z),

35

Sambharya, Hall, Amos, and Stellato

where H(Z) = −Z logZ − (1 − Z) log(1 − Z) is the binary entropy function. Since the
KL-divergence is always positive,

KL(q̃||p) = [KL(q||p) +H(Z)− (1− Z)KL(q̃c||p)]/Z ≤ 2(KL(q||p) + 1).

Using the additive properties of logarithms, 1 + log(2N/δ) ≤ log(6N/δ).

B.2 Proof of Theorem 2

Our proof follows a similar structure as the proof of Neyshabur et al. (2018, Theorem 1).
Let ζ = (ΠL

i=1‖Wi‖2)1/L and consider a neural network with weights W̃i = ζWi/‖Wi‖2.
Due to the homogeneity of the ReLU, we have hw(θ) = hw̃(θ) for all θ ∈ Θ (Neyshabur
et al., 2018). Since (ΠL

i=1‖Wi‖2)1/L = (ΠL
i=1‖W̃i‖2)1/L and ‖Wi‖F /‖Wi‖2 = ‖W̃i‖F /‖W̃i‖2,

inequality (13) is the same for w and w̃. Therefore, it is sufficient to prove the theorem
only for the normalized weights w̃ and we can assume that the spectral norm of the weight
matrix is equal across all layers, i.e., ‖Wi‖2 = ζ. Now, we break our proof into two cases
depending on the product of the spectral norm of the weight matrices. The main difference
between our proof and the proof for Neyshabur et al. (2018, Theorem 1) is that we introduce
a secondary case. The main case analysis is similar.

Main case. In the main case, ζL ≥ γ/(2B). We choose the prior distribution π to be
N (0, σ2) and consider the perturbation u ∼ N (0, σ2). As in Neyshabur et al. (2018), since
the prior distribution π cannot depend on ζ, we consider predetermined values of ζ̃ on a
grid and then do a union bound. For now, we consider ζ̃ fixed and consider all ζ such that
|ζ − ζ̃| ≤ ζ/L. This ensures that each relevant value of ζ is covered by some ζ̃ on the grid.
Since |ζ − ζ̃| ≤ ζ/L we get the inequalities

ζL−1/e ≤ ζ̃L−1 ≤ eζL−1. (23)

This follows from the inequalities (1+1/x)x−1 ≤ e and 1/e ≤ (1−1/x)x−1 which themselves
are consequences the inequality 1 + y ≤ ey for all y. Since the entries of each Ui are drawn
from N (0, σ2), we have the bound on the spectral norm of each Ui (Tropp, 2011)

PUi∼N (0,σ2)(‖Ui‖2 > t) ≤ 2h̄e−t
2/(2h̄σ2).

We can take a union bound to get

PU1,...,UL∼N (0,σ2)(‖U1‖2 ≤ t, . . . , ‖UL‖2 ≤ t) ≥ 1− 2Lh̄e−t
2/(2h̄σ2). (24)

By setting the right hand side of (24) to 1/2, we establish that with probability at least 1/2,
the spectral norm of every perturbation Ui is bounded by σ

√
2h̄ log(4Lh̄) simultaneously.

We choose σ = γ/(21LBζ̃L−1
√
h̄ log(4h̄L)) and now verify that with probability at least

1/2, ‖Ui‖2 ≤ ‖Wi‖2/L = ζ/L holds, a condition of Neyshabur et al. (2018, Lemma 2):

‖Ui‖2 ≤ σ
√

2h̄ log(4Lh̄) = γ
√

2/(21LBζ̃L−1)

≤ e2
√

2γ/(42LBζL−1) ≤ 2
√

2eζ/(21L) ≤ ζ/L.

In the first line, the inequality comes from the perturbation bound on ‖Ui‖2, and the equality
follows from plugging in for σ. The second line follows from (23), and the assumption from

36

Learning to Warm-Start Fixed-point Optimization Algorithms

the main case that ζL > γ/(2B). Now that the conditions are met, we apply Neyshabur
et al. (2018, Lemma 2). The following holds with probability at least 1/2:

maxθ∈Θ ‖hw(θ)− hw+u(θ)‖2 ≤ eBζL−1
∑L

i=1 ‖Ui‖2
≤ e2LBζ̃L−1σ

√
2h̄ log(4Lh̄) ≤ γ/2.

In the second inequality, we use (23). The last inequality follows from the choice of σ. Now
we calculate the KL-term with π ∼ N (0, σ2) and u chosen with the above value of σ:

KL(w + u||π) ≤ ‖w‖
2
2

2σ2 = 212L2B2ζ̃2L−2h̄ log(4h̄L)
2γ2

∑L
i=1 ‖Wi‖2F

≤ 212ζ2L

2γ2
B2L2h̄ log(4Lh̄)

∑L
i=1

‖Wi‖2F
ζ2

. (25)

What remains is to take a union bound over the different choices of ζ̃. We only need to
consider values of ζ in the range of

(γ/(2B))1/L ≤ ζ ≤ (γ
√
N/(2B))1/L. (26)

Since we are in the main case, we do not have to consider ζL < γ/(2B). Alternatively, if
ζL > γ

√
N/(2B), then the upper bound on the KL term in (25) is greater than N . To

see this, first note that the frobenius norm is always at least the operator norm of a given
matrix, so ‖Wi‖F ≥ ζ for i = 1, . . . , L. Then, the right hand side of (25) becomes at least
212L2h̄ log(4Lh̄)N/8 which is greater than N . Theorem 2 is obtained by using the bound
in the right hand side of (25) for the KL term in Lemma 1. Therefore Theorem 2 holds
trivially since Cγ/2(t) upper bounds Rt(w) and the entire square root term in Lemma 1 is
at least one. Hence, we only need to consider ζ in the range of (26).

The condition L|ζ̃ − ζ| ≤ (γ/(2B))1/L is sufficient to satisfy the required condition that
|ζ̃ − ζ| ≤ ζ/L since ζL ≥ γ/(2B). For each ζ̃ that we pick, we consider ζ within a distance
of (γ/(2B))1/L/L. We need to pick enough ζ̃’s to cover the whole region in (26). Picking a

cover size of LN
1
2L satisfies this condition since

(γ
√
N

2B)1/L − (γ
2B)1/L

1
L(γ

2B)1/L
= L(N1/(2L) − 1).

Therefore, by using Lemma 1, with probability at most δ̃ and for all w̃ such that |ζ − ζ̃| ≤
ζ/L, the following bound is violated:

Rt(w) ≤ R̂tγ(w̃) +O


√

B2L2 log(Lh̄)ΠLj=1‖W̃j‖22
∑L
i=1

‖W̃i‖2F
‖W̃i‖22

+log(N
δ̃

)

γ2N

 .

By applying the union bound over the cover size, with probability at most δ̃LN1/(2L), the
same bound is violated for at least one of the ζ̃’s out of the cover. Setting δ = δ̃LN1/(2L)

and recalling that the proof generalizes from normalized weights w̃ to weights w gives the
final result.

37

Sambharya, Hall, Amos, and Stellato

Secondary case. In this case, ‖hw(θ)‖2 ≤ B(ΠL
i=1‖Wi‖2) ≤ γ/2. We get the following:

Rt(w) ≤ Rtγ/2(0)

≤ R̂tγ/2(0) + Cγ/2(t)
√

log(1/δ)/(2N) w.p. at least 1− δ
≤ R̂tγ(w) + Cγ/2(t)

√
log(1/δ)/(2N) w.p. at least 1− δ

The first and third lines come from ‖hw(θ)‖2 ≤ γ/2 and the definition of the marginal
fixed-point residual. The second lines uses Hoeffding’s inequality as in Alquier (2021,
Equation 1.3), which is permissible since the prediction is the zero vector and is there-
fore independent of the data.

B.3 Proof of Lemma 4

First, let z?(θ) be the nearest fixed-point of the operator Tθ to z so that rθ(z) = ‖z−z?(θ)‖2.

`fpθ (z) = ‖Tθ(z)− z‖2 ≤ ‖Tθ(z)− z?(θ)‖2 + ‖z − z?(θ)‖2 ≤ 2rθ(z)

The first inequality uses the triangle inequality, and the second inequality uses the non-
expansiveness of Tθ.

B.4 Proof of Lemma 8

|rθ(T tθ(z))− rθ(T tθ(w))| = |‖T kθ (z)−ΠfixTθ(T
k
θ (z))‖2 − ‖T kθ (w)−ΠfixTθ(T

k
θ (w))‖2|

≤ ‖T kθ (z)−ΠfixTθ(T
k
θ (z)) + ΠfixTθ(T

k
θ (w))− T kθ (w)‖2

≤ ‖T kθ (z)− T kθ (w)‖2 + ‖ΠfixTθ(T
k
θ (z))−ΠfixTθ(T

k
θ (w))‖2

≤ 2‖T kθ (z)− T kθ (w)‖2 ≤ 2‖z − w‖2
The first two inequalities use the reverse triangle inequality and triangle inequality. Since
Tθ is non-expansive, fixTθ is a convex set (Ryu and Boyd, 2016, Section 2.4.1). The third
inequality follows since the projection onto a convex set is non-expansive (Ryu and Boyd,
2016, Section 3.1). In the last inequality, we use the non-expansiveness of Tθ.

Acknowledgments

We are pleased to acknowledge that the work reported on in this paper was substantially
performed using the Princeton Research Computing resources at Princeton University which
is consortium of groups led by the Princeton Institute for Computational Science and Engi-
neering (PICSciE) and Office of Information Technology’s Research Computing. We thank
Vinit Ranjan and three anonymous reviewers for helpful and detailed comments that im-
proved the quality of this work.

References

Pierre Alquier. User-friendly introduction to PAC-Bayes bounds. arXiv preprint
arXiv:2110.11216, 2021.

38

Learning to Warm-Start Fixed-point Optimization Algorithms

Brandon Amos. Tutorial on amortized optimization. Foundations and Trends in Machine
Learning, 16(5):592–732, 2023.

Marcin Andrychowicz, Misha Denil, Sergio Gómez Colmenarejo, Matthew W. Hoffman,
David Pfau, Tom Schaul, Brendan Shillingford, and Nando de Freitas. Learning to learn
by gradient descent by gradient descent. In Neural Information Processing Systems, 2016.

Shaojie Bai, Vladlen Koltun, and Zico Kolter. Neural deep equilibrium solvers. In Interna-
tional Conference on Learning Representations, 2022.

Kyri Baker. Learning warm-start points for ac optimal power flow. In IEEE International
Workshop on Machine Learning for Signal Processing (MLSP), 2019.

Alexios Balatsoukas-Stimming and Christoph Studer. Deep unfolding for communications
systems: A survey and some new directions. In 2019 IEEE International Workshop on
Signal Processing Systems (SiPS), pages 266–271, 2019.

Maria-Florina Balcan. Data-driven algorithm design. arXiv preprint arXiv:2011.07177,
2020.

Maria-Florina Balcan, Vaishnavh Nagarajan, Ellen Vitercik, and Colin White. Learning-
theoretic foundations of algorithm configuration for combinatorial partitioning problems.
In Conference on Learning Theory, pages 213–274. PMLR, 2017.

Maria-Florina Balcan, Dan DeBlasio, Travis Dick, Carl Kingsford, Tuomas Sandholm, and
Ellen Vitercik. How much data is sufficient to learn high-performing algorithms? gener-
alization guarantees for data-driven algorithm design. In Proceedings of the 53rd Annual
ACM SIGACT Symposium on Theory of Computing, pages 919–932, 2021.

Sebastian Banert, Jevgenija Rudzusika, Ozan Öktem, and Jonas Adler. Accelerated
forward-backward optimization using deep learning. arXiv preprint arXiv:2105.05210,
2021.

Goran Banjac, Paul Goulart, Bartolomeo Stellato, and Stephen Boyd. Infeasibility detection
in the alternating direction method of multipliers for convex optimization. Journal of
Optimization Theory and Applications, 183, 2019.

Peter L. Bartlett, Piotr Indyk, and Tal Wagner. Generalization bounds for data-driven
numerical linear algebra. In Conference on Learning Theory, volume 178, pages 2013–
2040, 2022.

Heinz. H. Bauschke and Patrick. L. Combettes. Convex Analysis and Monotone Operator
Theory in Hilbert Spaces. Springer, 1st edition, 2011.

Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Radul, and Jeffrey Mark Siskind.
Automatic differentiation in machine learning: a survey. J. Mach. Learn. Res., 18:153:1–
153:43, 2017.

Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm with
application to wavelet-based image deblurring. In 2009 IEEE International Conference
on Acoustics, Speech and Signal Processing, pages 693–696, 2009.

39

Sambharya, Hall, Amos, and Stellato

Richard Bellman. Dynamic Programming. Dover Publications, 1957.

Federico Benvenuto, Riccardo Zanella, Luca Zanni, and Mario Bertero. Nonnegative least-
squares image deblurring: improved gradient projection approaches. Inverse Problems,
26(2):025004, 2010.

Dimitris Bertsimas and Bartolomeo Stellato. The voice of optimization. Machine Learning,
110:249–277, 2021.

Dimitris Bertsimas and Bartolomeo Stellato. Online Mixed-Integer Optimization in Mil-
liseconds. INFORMS Journal on Computing, 34(4):2229–2248, 2022.

Francesco Borrelli, Alberto Bemporad, and Manfred Morari. Predictive Control for Linear
and Hybrid Systems. Cambridge University Press, 2017.

Stephen Boyd, Enzo Busseti, Steven Diamond, Ronald N. Kahn, Kwangmoo Koh, Peter
Nystrup, and Jan Speth. Multi-period trading via convex optimization, 2017.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018.

Luis M. Briceño-Arias and Patrick L. Combettes. Monotone operator methods for nash
equilibria in non-potential games. In Computational and Analytical Mathematics, pages
143–159, New York, NY, 2013. Springer New York. ISBN 978-1-4614-7621-4.

Enzo Busseti, Walaa M. Moursi, and Stephen P. Boyd. Solution refinement at regular points
of conic problems. Computational Optimization and Applications, 74:627 – 643, 2018.

Emmanuel J. Candès, Xiaodong Li, and Mahdi Soltanolkotabi. Phase retrieval from coded
diffraction patterns. Applied and Computational Harmonic Analysis, 39(2):277–299, 2015.

J.H. Rick Chang, Chun-Liang Li, Barnabás Póczos, B.V.K. Vijaya Kumar, and Aswin C.
Sankaranarayanan. One network to solve them all — solving linear inverse problems
using deep projection models. In 2017 IEEE International Conference on Computer
Vision (ICCV), pages 5889–5898, 2017.

Steven Chen, Kelsey Saulnier, Nikolay Atanasov, Daniel D. Lee, Vijay Kumar, George J.
Pappas, and Manfred Morari. Approximating explicit model predictive control using
constrained neural networks. In American Control Conference, pages 1520–1527, 2018.

Steven W. Chen, Tianyu Wang, Nikolay Atanasov, Vijay Kumar, and Manfred Morari.
Large scale model predictive control with neural networks and primal active sets. Auto-
matica, 135:109947, 2022a.

Tianlong Chen, Xiaohan Chen, Wuyang Chen, Howard Heaton, Jialin Liu, Zhangyang
Wang, and Wotao Yin. Learning to optimize: A primer and a benchmark. Journal of
Machine Learning Research, 23(189):1–59, 2022b.

Xinshi Chen, Yufei Zhang, Christoph Reisinger, and Le Song. Understanding deep archi-
tectures with reasoning layer. In Neural Information Processing Systems, 2020.

40

Learning to Warm-Start Fixed-point Optimization Algorithms

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. Emnist: an ex-
tension of mnist to handwritten letters, 2017.

Alexandre d’Aspremont, Damien Scieur, and Adrien Taylor. Acceleration methods. Foun-
dations and Trends in Optimization, 5(1-2):1–245, 2021.

Carl de Boor. On calculating with b-splines. Journal of Approximation Theory, 6(1):50–62,
1972.

Steven Diamond, Vincent Sitzmann, Felix Heide, and Gordon Wetzstein. Unrolled opti-
mization with deep priors. arXiv preprint arXiv:1705.08041, 2017.

Moritz Diehl, Hans Joachim Ferreau, and Niels Haverbeke. Efficient Numerical Methods
for Nonlinear MPC and Moving Horizon Estimation. 2009.

Michael Dinitz, Sungjin Im, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvit-
skii. Faster matchings via learned duals. In Advances in Neural Information Processing
Systems, 2021.

Jim Douglas and H. H. Rachford. On the numerical solution of heat conduction problems
in two and three space variables. Transactions of the American Mathematical Society, 82
(2):421–439, 1956.

Yoel Drori and Marc Teboulle. Performance of first-order methods for smooth convex
minimization: a novel approach. Mathematical Programming, 145(1):451–482, 2014.

Jonathan Eckstein. Splitting methods for monotone operators with applications to parallel
optimization. PhD thesis, Massachusetts Institute of Technology, 1989.

Laurent El Ghaoui and Hervé Lebret. Robust solutions to least-squares problems with
uncertain data. SIAM Journal on Matrix Analysis and Applications, 18:1035–1064, 1997.

Michael Elad and Michal Aharon. Image denoising via sparse and redundant representations
over learned dictionaries. IEEE Transactions on Image Processing, 15(12):3736–3745,
2006.

Mahyar Fazlyab, Manfred Morari, and George Pappas. Safety verification and robust-
ness analysis of neural networks via quadratic constraints and semidefinite programming.
IEEE Transactions on Automatic Control, 67(1):1–15, 2022.

James Fienup. Phase retrieval algorithms: a comparison. Applied Optics, 21(15):2758–2769,
1982.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast
adaptation of deep networks. In International Conference on Machine Learning, vol-
ume 70 of Proceedings of Machine Learning Research, pages 1126–1135. PMLR, 2017.

Daniel Gabay. Applications of the method of multipliers to variational inequalities. 1983.

41

Sambharya, Hall, Amos, and Stellato

Daniel Gabay and Bertrand Mercier. A dual algorithm for the solution of nonlinear vari-
ational problems via finite element approximation. Computers & Mathematics With
Applications, 2:17–40, 1976.

Michael Garstka, Mark Cannon, and Paul Goulart. COSMO: A conic operator splitting
method for large convex problems. In European Control Conference, 2019.

Pontus Giselsson and Stephen Boyd. Linear convergence and metric selection for douglas-
rachford splitting and ADMM. IEEE Transactions on Automatic Control, 62(2):532–544,
2017.

Karol Gregor and Yann LeCun. Learning fast approximations of sparse coding. In Inter-
national Conference on Machine Learning, Madison, WI, USA, 2010. Omnipress.

Rishi Gupta and Tim Roughgarden. A PAC approach to application-specific algorithm
selection. SIAM Journal on Computing, 46(3):992–1017, 2017.

Hengtao He, Chao-Kai Wen, Shi Jin, and Geoffrey Ye Li. Model-driven deep learning for
mimo detection. IEEE Transactions on Signal Processing, 68:1702–1715, 2020.

Howard Heaton, Xiaohan Chen, Zhangyang Wang, and Wotao Yin. Safeguarded learned
convex optimization. In Proceedings of the AAAI Conference on Artificial Intelligence,
2023.

Pascal Van Hentenryck. Machine Learning for Optimal Power Flows, chapter 3, pages
62–82. 2021.

Mingyi Hong, Zhi-Quan Luo, and Meisam Razaviyayn. Convergence analysis of alternating
direction method of multipliers for a family of nonconvex problems. SIAM Journal on
Optimization, 26(1):337–364, 2016.

Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning
in neural networks: A survey. IEEE transactions on pattern analysis and machine intel-
ligence, 44(9):5149–5169, 2021.

Peter J. Huber. Robust estimation of a location parameter. The Annals of Mathematical
Statistics, 35(1):73–101, 1964.

Jeffrey Ichnowski, Paras Jain, Bartolomeo Stellato, Goran Banjac, Michael Luo, Francesco
Borrelli, Joseph. E Gonzales, Ian Stoica, and Ken Goldberg. Accelerating quadratic
optimization with reinforcement learning. In Advances in Neural Information Processing
Systems 35, 2021.

Ian Jolliffe. Principal Component Analysis. John Wiley & Sons, Ltd, 2005. ISBN
9780470013199.

Haewon Jung, Junyoung Park, and Jinkyoo Park. Learning context-aware adaptive solvers
to accelerate quadratic programming. arXiv preprint arXiv:2211.12443, 2022.

Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. Trans-
actions of the ASME–Journal of Basic Engineering, 82(Series D):35–45, 1960.

42

Learning to Warm-Start Fixed-point Optimization Algorithms

Benjamin Karg and Sergio Lucia. Efficient representation and approximation of model
predictive control laws via deep learning. IEEE Transactions on Cybernetics, PP, 2020.

Mikhail Khodak, Nina Balcan, Ameet Talwalkar, and Sergei Vassilvitskii. Learning pre-
dictions for algorithms with predictions. In Advances in Neural Information Processing
Systems, 2022.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
International Conference on Learning Representations, 2015.

Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. The case for
learned index structures. In International Conference on Management of Data, 2018.

Ke Li and Jitendra Malik. Learning to optimize. arXiv preprint arXiv:1606.01885, 2016.

Meiyi Li, Soheil Kolouri, and Javad Mohammadi. Learning to solve optimization problems
with hard linear constraints. IEEE Access, 11:59995–60004, 2023.

Jialin Liu, Xiaohan Chen, Zhangyang Wang, and Wotao Yin. ALISTA: Analytic weights
are as good as learned weights in LISTA. In International Conference on Learning Rep-
resentations, 2019.

Terrence WK Mak, Minas Chatzos, Mathieu Tanneau, and Pascal Van Hentenryck. Learn-
ing regionally decentralized ac optimal power flows with ADMM. IEEE Transactions on
Smart Grid, 2023.

David A. McAllester. Some PAC-Bayesian theorems. In Conference on Computational
Learning Theory. Association for Computing Machinery, 1998.

David A. McAllester. Simplified PAC-Bayesian margin bounds. In Annual Conference
Computational Learning Theory, 2003.

Luke Metz, James Harrison, C Daniel Freeman, Amil Merchant, Lucas Beyer, James Brad-
bury, Naman Agrawal, Ben Poole, Igor Mordatch, Adam Roberts, et al. Velo: Training
versatile learned optimizers by scaling up. arXiv preprint arXiv:2211.09760, 2022.

Rick P. Millane. Phase retrieval in crystallography and optics. J. Opt. Soc. Am. A, 7(3):
394–411, 1990.

Sidhant Misra, Line Roald, and Yeesian Ng. Learning for constrained optimization: Iden-
tifying optimal active constraint sets. INFORMS Journal on Computing, 34(1):463–480,
2022.

Michael Mitzenmacher and Sergei Vassilvitskii. Algorithms with predictions, 2020.

Vishal Monga, Yuelong Li, and Yonina C. Eldar. Algorithm unrolling: Interpretable, effi-
cient deep learning for signal and image processing. IEEE Signal Processing Magazine,
38(2):18–44, 2021.

43

Sambharya, Hall, Amos, and Stellato

Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A PAC-Bayesian approach
to spectrally-normalized margin bounds for neural networks. In International Conference
on Learning Representations, 2018.

B. O’Donoghue, E. Chu, N. Parikh, and S. Boyd. SCS: Splitting conic solver, version 2.1.2.
https://github.com/cvxgrp/scs, 2019.

Brendan O’Donoghue. Operator splitting for a homogeneous embedding of the linear com-
plementarity problem. SIAM Journal on Optimization, 31(3):1999–2023, 2021.

Neal Parikh and Stephen Boyd. Proximal algorithms. Foundations and Trends in Opti-
mization, 1(3):127–239, 2014.

Isabeau Prémont-Schwarz, Jaroslav Vitku, and Jan Feyereisl. A simple guard for learned
optimizers. In International Conference on Machine Learning, 2022.

Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving online algorithms via ml
predictions. In Advances in Neural Information Processing Systems, volume 31, 2018.

Vinit Ranjan and Bartolomeo Stellato. Verification of first-order methods for parametric
quadratic optimization. arXiv preprint arXiv:2403.03331, 2024.

Ralph Tyrrell Rockafellar and Roger J.-B. Wets. Variational Analysis. Springer Verlag,
Heidelberg, Berlin, New York, 1998.

Dhruv Rohatgi. Near-Optimal Bounds for Online Caching with Machine Learned Advice,
pages 1834–1845. 2020.

Sebastian Ruder. An overview of multi-task learning in deep neural networks. arXiv preprint
arXiv:1706.05098, 2017.

Ernest Ryu and Stephen Boyd. Primer on monotone operator methods. Applied computa-
tional math, 15(1):3–43, 2016.

Ernest Ryu and Wotao Yin. Large-Scale Convex Optimization: Algorithms amp; Analyses
via Monotone Operators. Cambridge University Press, 2022.

Ernest Ryu, Adrien Taylor, Carolina Bergeling, and Pontus Giselsson. Operator split-
ting performance estimation: Tight contraction factors and optimal parameter selection.
SIAM Journal on Optimization, 30(3):2251–2271, 2020.

Shinsaku Sakaue and Taihei Oki. Discrete-convex-analysis-based framework for warm-
starting algorithms with predictions. In Advances in Neural Information Processing Sys-
tems, volume 35, pages 20988–21000, 2022.

Rajiv Sambharya and Bartolomeo Stellato. Data-driven performance guarantees for classical
and learned optimizers. arXiv preprint arXiv:2404.13831, 2024.

Rajiv Sambharya, Georgina Hall, Brandon Amos, and Bartolomeo Stellato. End-to-End
Learning to Warm-Start for Real-Time Quadratic Optimization. In Proceedings of the
5th Annual Learning for Dynamics and Control Conference, 2023.

44

https://github.com/cvxgrp/scs

Learning to Warm-Start Fixed-point Optimization Algorithms

John Shawe-Taylor and Robert C. Williamson. A PAC analysis of a bayesian estimator. In
Proceedings of the Tenth Annual Conference on Computational Learning Theory, COLT
’97, pages 2–9. Association for Computing Machinery, 1997.

Yoav Shechtman, Yonina C. Eldar, Oren Cohen, Henry Nicholas Chapman, Jianwei Miao,
and Mordechai Segev. Phase retrieval with application to optical imaging: A contempo-
rary overview. IEEE Signal Processing Magazine, 32(3):87–109, 2015.

Jens Sjölund and Maria B̊ankestad. Graph-based neural acceleration for nonnegative matrix
factorization. arXiv preprint arXiv:2202.00264, 2022.

Yunlong Song and Davide Scaramuzza. Policy search for model predictive control with
application to agile drone flight. IEEE Transactions on Robotics, 38(4):2114–2130, 2022.

Pantelis Sopasakis, Krina Menounou, and Panagiotis Patrinos. Superscs: fast and accurate
large-scale conic optimization. pages 1500–1505, 2019.

Suvrit Sra, Sebastian Nowozin, and Stephen J. Wright. Optimization for Machine Learning.
The MIT Press, 2011. ISBN 026201646X.

Bartolomeo Stellato, Goran Banjac, Paul Goulart, Alberto Bemporad, and Boyd Stephen.
OSQP: An Operator Splitting Solver for Quadratic Programs. Mathematical Program-
ming Computation, 12(4):637–672, 2020.

Hong Ye Tan, Subhadip Mukherjee, Junqi Tang, and Carola-Bibiane Schönlieb. Data-driven
mirror descent with input-convex neural networks. SIAM Journal on Mathematics of Data
Science, 5(2):558–587, 2023.

Adrien Taylor, Julien Hendrickx, and Francois Glineur. Smooth strongly convex interpola-
tion and exact worst-case performance of first-order methods. Math. Program., 161(1-2):
307–345, 2017a.

Adrien Taylor, Julien Hendrickx, and Francois Glineur. Exact worst-case performance of
first-order methods for composite convex optimization. SIAM J. Optim., 27(3):1283–1313,
2017b.

Joel A. Tropp. User-friendly tail bounds for sums of random matrices. Foundations of
Computational Mathematics, 12(4):389–434, 2011.

Shobha Venkataraman and Brandon Amos. Neural fixed-point acceleration for convex op-
timization. arXiv preprint arXiv:2107.10254, 2021.

Ricardo Vilalta and Youssef Drissi. A perspective view and survey of meta-learning. Arti-
ficial Intelligence Review, 18, 2001.

Homer F. Walker and Peng Ni. Anderson acceleration for fixed-point iterations. SIAM
Journal on Numerical Analysis, 49(4):1715–1735, 2011.

Kai Wang, Bryan Wilder, Andrew Perrault, and Milind Tambe. Automatically learning
compact quality-aware surrogates for optimization problems. In Neural Information Pro-
cessing Systems, 2020.

45

Sambharya, Hall, Amos, and Stellato

Yu Wang, Wotao Yin, and Jinshan Zeng. Global convergence of ADMM in nonconvex
nonsmooth optimization. J. Sci. Comput., 78(1):29–63, 2019.

Kailun Wu, Yiwen Guo, Ziang Li, and Changshui Zhang. Sparse coding with gated learned
ista. In International Conference on Learning Representations, 2020.

Lingfei Wu, Peng Cui, Jian Pei, and Liang Zhao. Graph Neural Networks: Foundations,
Frontiers, and Applications. Springer Singapore, Singapore, 2022.

Lihua Xie and Yeng Chai Soh. Robust kalman filtering for uncertain systems. Systems &
Control Letters, 22(2):123–129, 1994.

Alp Yurtsever, Joel A Tropp, Olivier Fercoq, Madeleine Udell, and Volkan Cevher. Scalable
semidefinite programming. SIAM Journal on Mathematics of Data Science, 3(1):171–200,
2021.

Ahmed S. Zamzam and Kyri Baker. Learning optimal solutions for extremely fast ac optimal
power flow. In 2020 IEEE International Conference on Communications, Control, and
Computing Technologies for Smart Grids (SmartGridComm), 2020.

Junzi Zhang, Brendan O’Donoghue, and Stephen Boyd. Globally convergent type-I anderson
acceleration for nonsmooth fixed-point iterations. SIAM Journal on Optimization, 30(4):
3170–3197, 2020.

Kai Zhang, Wangmeng Zuo, Shugang Gu, and Lei Zhang. Learning deep cnn denoiser
prior for image restoration. In 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2808–2817, Los Alamitos, CA, USA, 2017. IEEE Computer
Society.

Xiaojing Zhang, Monimoy Bujarbaruah, and Francesco Borrelli. Safe and near-optimal
policy learning for model predictive control using primal-dual neural networks. In 2019
American Control Conference (ACC), pages 354–359, 2019.

Hui Zou, Trevor Hastie, and Robert Tibshirani. Sparse principal component analysis. Jour-
nal of Computational and Graphical Statistics, 15(2):265–286, 2006.

46

	Introduction
	Related work
	Learning to warm-start framework
	An illustrative example
	Learning to warm-start architecture
	Loss functions

	PAC-Bayes generalization bounds
	Preliminaries
	Generalization bounds
	Bounding the empirical marginal risk
	Contractive operators
	Linearly convergent operators
	Averaged operators

	Choosing the right computational architecture
	Bounds on the fixed-point residual for t evaluation steps
	Training for the fixed-point residual vs regression loss

	Numerical experiments
	Gradient descent
	Unconstrained QP

	Proximal gradient descent
	Lasso

	OSQP
	Model predictive control of a quadcopter
	Image deblurring

	SCS
	Robust Kalman filtering
	Robust non-negative least squares
	Phase retrieval
	Sparse PCA

	Conclusion
	Examples of fixed-point algorithms
	Proofs
	Proof of Lemma
	Proof of Theorem
	Proof of Lemma
	Proof of Lemma

