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Abstract

We study the problem of variance estimation in general graph-structured problems. First,
we develop a linear time estimator for the homoscedastic case that can consistently estimate
the variance in general graphs. We show that our estimator attains minimax rates for the
chain and 2D grid graphs when the mean signal has total variation with canonical scaling.
Furthermore, we provide general upper bounds on the mean squared error performance of
the fused lasso estimator in general graphs under a moment condition and a bound on the
tail behavior of the errors. These upper bounds allow us to generalize for broader classes
of distributions, such as sub-Exponential, many existing results on the fused lasso that are
only known to hold with the assumption that errors are sub-Gaussian random variables.
Exploiting our upper bounds, we then study a simple total variation regularization esti-
mator for estimating the signal of variances in the heteroscedastic case. We also provide
lower bounds showing that our heteroscedastic variance estimator attains minimax rates
for estimating signals of bounded variation in grid graphs, and K-nearest neighbor graphs,
and the estimator is consistent for estimating the variances in any connected graph.

Keywords: Total variation, conditional variance estimation, nonparametric regression.

1. Introduction

Consider the problem of estimating signals θ∗ ∈ Rn and v∗ ∈ Rn+, based on data {yi}ni=1 ⊂ R
generated as

yi = θ∗i + (v∗i )
1/2εi, (1)

where ε1, . . . , εn are independent and E(εi) = 0, and var(εi) = 1, and where yi is associated
with node i in a connected graph G = (V,E) where V = {1, . . . , n} and E ⊂ V × V . This
class of graph estimation problems has appeared in applications in biology (Tibshirani et al.,
2005), image processing (Rudin et al., 1992; Tansey et al., 2017), traffic detection (Wang
et al., 2016), among others.

A common method for estimating the signal θ∗ is the fused lasso over graphs, also known
as (anisotropic) total variation denoising over graphs, independently introduced by Rudin
et al. (1992) and (Tibshirani et al., 2005). This consists of solving the optimization problem

θ̂ := arg min
θ∈Rn

{
1

2
‖y − θ‖2 + λ‖∇Gθ‖1

}
, (2)
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where y = (y1, . . . , yn)>, λ > 0 is a tuning parameter, and ∇G ∈ R|E|×n is the incidence
matrix of G. Specifically, each row of ∇G corresponds to an edge e = (e+, e−) ∈ E and

(∇G)e,`


1 if ` = e+,

−1 if ` = e−,

0 otherwise.

The motivation behind (2) is to have an estimator that balances between fitting the data
well, with the first term in the objective function in (2), and having a small complexity in
terms of the quantity ‖∇Gθ‖1 which is known as the total variation of the signal θ along
the graph G. Intuitively, if the graph G is informative about the signals θ∗ and v∗, then we
would expect that ‖∇Gθ∗‖1, ‖∇Gv∗‖1 << n. For instance, suppose that G is constructed
as a K-NN graph based on features {xi}ni=1 ⊂ Rd, and assume that θ∗i = f0(xi) for all
i = 1, . . . , n, and for a smooth function f0. If K is small, then for {i, j} an edge in G, we
have that |θ∗i −θ∗j | = |f0(xi)–f0(xj)| which would be a small quantity or zero for most edges.
Then summing over all the edges, we obtain ‖∇Gθ∗‖1 << n. In fact, Madrid Padilla et al.
(2020b) showed that ‖∇Gθ∗‖1 = Opr(n

1−1/d), ignoring logarithmic factors, provided that
f0 is a piecewise Lipschitz function.

The estimator defined in (2) has attracted a lot of attention in the literature. Specifically,
computationally efficient algorithms for chain graphs were developed by Johnson (2013),
for grid graphs by Barbero and Sra (2014), and for general graphs by Tansey and Scott
(2015); Chambolle and Darbon (2009). Moreover, several authors have studied the statisti-
cal properties of (2) in different settings. In particular, Mammen and van de Geer (1997),
and Tibshirani (2014) studied slow rates of convergence in chain graphs with signals having
bounded variation. Dalalyan et al. (2017); Lin et al. (2017); Guntuboyina et al. (2020), and
Ortelli and van de Geer (2021) proved fast rates for piecewise constant signals. Hütter and
Rigollet (2016), Sadhanala et al. (2016), Ortelli and van de Geer (2020), and Chatterjee and
Goswami (2021b) studied statistical properties of total variation denoising in grid graphs.
Padilla et al. (2018), and Ortelli and van de Geer (2018) studied the fused lasso in general
graphs. Wang et al. (2016), and Sadhanala et al. (2021) focused on developing higher order
versions of total variation denoising.

Despite the tremendous attention from the literature focusing on the fused lasso as
defined in (2), most of the statistical work assumes that the errors {εi}ni=1 are sub-Gaussian
when studying the estimator (2). While some works have considered the model in (1) with
more arbitrary distributions, such as Madrid-Padilla and Chatterjee (2020) and Ye and
Padilla (2021), these efforts have studied the quantile version of (1). Thus, the performance
of the estimator defined in (2) is not understood beyond the sub-Gaussian errors assumption.

Additionally, the literature has been silent about estimating the variances in (1). Thus,
there is currently no estimator available in the literature for estimating the variances even in
the homoscedastic case, where the v∗i are all equal to some v∗0 > 0, when G is a general graph.
Estimation of the variance is an important problem because it would allow practitioners
the possibility of quantifying the variability of the data in different regions of the graph.
For instance, if yi is the crime rate at location i, then we could have two locations where
E(yi) = E(yj), however, knowing that var(yi) > var(yj) would be informative about the
nature of crime at location i versus location j.
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Variance estimation with the fused lasso

In this paper, we fill the gaps described above regarding mean and variance estimation
in general graphs. Our main contributions are listed next.

1.1 Summary of results

We make the following contributions for the model described in (1) with a connected graph
G.

1. If the variances satisfy v∗i = v∗0 for all i = 1, . . . , n, then we show that, under a
simple moment condition, there exists an estimator v̂ that can be found in linear
time, O(n+ |E|), and satisfies

|v̂ − v∗0| = Opr

(
v∗0
n1/2

+
‖∇Gθ∗‖1

n

)
. (3)

The estimator v̂ is based on first running depth-first search (DFS) on the graph G
and then using the differences of the yi’s along the ordering. A detailed construction
is given in Section 2. Notably, when G is a 1D or 2D grid graph and ‖∇Gθ∗‖1 has
a canonical scaling, the rate in (3) is minimax optimal. Moreover, our estimator is
the first for the problem of estimating the variance in the sequence model where the
measurements are collected in a general graph. We also show with experiments in
Appendix B.1 that the estimator v̂ can be useful for model selection when the goal is
to estimate θ∗.

2. For the fused lasso estimator defined in (2), under a moment condition and an as-
sumption stating that

max
i=1,...,n

pr(|εi| > Un) → 0 (4)

fast enough, where Un > 0 is a sequence, we show that:

(a) For any connected graph, ignoring logarithmic factors, it holds that

‖θ̂ − θ∗‖2

n
= Opr

(
U

4/3
n ‖∇Gθ∗‖2/31

n2/3
+
U2
n

n

)
, (5)

and the same upper bound holds for an estimator that can be found in linear
time. Thus, we generalize the conclusions in Theorems 2 and 3 from Padilla
et al. (2018) to hold with noise beyond sub-Gaussian noise. For instance, for
sub-Exponential noise the term Un would satisfy Un = O(log n).

(b) For the d-dimensional grid graph with d > 1 and n nodes, we show that

‖θ̂ − θ∗‖2

n
= Opr

(
Un‖∇Gθ∗‖1

n
+
U2
n

n

)
, (6)

if we disregard logarithmic factors. Thus, under the canonical scaling ‖∇Gθ∗‖1 =
O(n1−1/d), see e.g Sadhanala et al. (2016), the upper bound is minimax optimal
thereby generalizing the results from Hütter and Rigollet (2016) to settings with
error distributions that satisfy (4).
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(c) For K-nearest neighbor (K-NN) graphs constructed with the assumptions from
Madrid Padilla et al. (2020b), we show that the fused lasso estimator satisfies
that

‖θ̂ − θ∗‖2

n
= Opr

(
Un

n1/d

)
, (7)

up to logarithmic factors. Hence, we generalize Theorem 2 from Madrid Padilla
et al. (2020b) to models with more general error distributions. Moreover, if
Un = O{poly(log n)} for a polynomial function poly(·), then the rate in (7) is
minimax optimal for classes of bounded variation.

3. In the heteroscedastic setting, where some of the v∗i can be different from each other,
we are the first in the literature to develop an estimator for the vector of variances v∗ ∈
Rn in general graph structured models. Specifically, we provide a simple estimator v̂
of v∗ that can be found with the same computational complexity as that of θ̂. For the
proposed estimator we show that there exists U ′n satisfying U ′n = O(1 +U2

n) for which
the upper bounds in (5)–(7) hold replacing ‖θ̂−θ∗‖2/n with ‖v̂−v∗‖2/n and ‖∇Gθ∗‖1
with ‖∇Gθ∗‖1 + ‖∇Gv∗‖1. Our results hold with the same assumptions that those in
2), but with a stronger moment condition presented in Theorem 9. Moreover, when
Un = O{poly(log n)} and ‖∇Gθ∗‖1 � ‖∇Gv∗‖1, our variance estimator attains, up to
log factors, the same rates as θ̂ attains in (5)–(7). We also show, save by logarithmic
factors, that the upper bounds in the case of grid and K-NN graphs are minimax
optimal, see Lemmas 13 and 14.

1.2 Other related work

Besides total variation, other popular methods for mean estimation in graph problems
include kernels based methods (Smola and Kondor, 2003; Zhu et al., 2003; Zhou et al.,
2005), wavelet constructions (Crovella and Kolaczyk, 2003; Coifman and Maggioni, 2006;
Gavish et al., 2010; Hammond et al., 2011; Sharpnack et al., 2013; Shuman et al., 2013), tree
based estimators (Donoho, 1997; Blanchard et al., 2007; Chatterjee and Goswami, 2021a;
Madrid-Padilla et al., 2021b), and `0-regularization approaches (Fan and Guan, 2018; Yu
et al., 2022).

As for variance estimation, some methods estimate the conditional mean and then com-
pute the residuals before proceeding to estimate the conditional variance. Some of these
approaches include Hall and Carroll (1989); Fan and Yao (1998). Other methods, as it is
the case of our proposed approach, do not consider the residuals. Some of such works in-
clude Wang et al. (2008); Cai et al. (2009), which studied rates of convergence for univariate
nonparametric regression with Lipschitz classes. Cai and Wang (2008) considered a wavelet
thresholding approach also for univariate data. More recently, Shen et al. (2020) considered
univariate Hölder functions classes and some homoscedastic multivariate settings.

Finally, total variation denoising methods have become popular as a tool to tackle
different statistics and machine learning problems. Ortelli and van de Geer (2020) and
Sadhanala and Tibshirani (2019) studied additive models, Padilla (2018) proposed a method
for graphon estimation, Madrid-Padilla et al. (2021a) considered a method for interpretable
causal inference, Dallakyan and Pourahmadi (2022) developed a method for covariance
matrix estimation. More recently, Tran et al. (2022) proposed an `1 + `2 based penalty over
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graphs called the Generalized Elastic Net aimed for problems where features are associated
with the nodes of graph.

1.3 Notation

Throughout, for a vector v ∈ Rn, we define its `1, `2 and `∞ norms as ‖v‖1 =
∑n

i=1 |vi|,
‖v‖ = (

∑n
i=1 |vi|)1/2, ‖v‖∞ = maxi=1,...,n |vi|, respectively. Given a sequence of random

variables Xn and a sequence of positive numbers an, we write Xn = Opr(an) if for every
t > 0 there exists C > 0 such that pr(Xn > Can) < t for all n. For two sequences an and
bn we write an � bn if there exists positive constants c and C such that can ≤ bn ≤ Can
for all n. A d-dimensional grid graph of size n = md is constructed as the d-dimensional
lattice {1, . . . ,m}d, where i, j ∈ {1, . . . ,m}d are connected if and only if ‖i − j‖1 = 1. We
also write 1 = (1, . . . , 1)> ∈ Rn and ā = 1

n

∑n
i=1 ai for a vector a ∈ Rn. For a function

f : [0, 1]d → R, we write ‖f‖2 :=
√∫

[0,1]d f(x)2dx.

1.4 Outline

The rest of the paper is organized as follows. In Section 2 we introduce the estimator for
the homoscedastic case and show an upper bound on its performance. In Section 3 we start
by defining our estimator for the heteroscedastic case. In Section 3.1 we provide a general
upper bound for the fused lasso estimator. Then we apply our new result in Section 3.2 to
obtain general upper bounds for our variances estimator in the heteroscedastic case, and
conclude by providing matching lower bounds. Section 4 contains numerical evaluations of
the proposed methods in both simulated and real data. All the proofs are deferred to the
Appendix.

2. Homoscedastic case

This section considers the homoscedastic case, which means that v∗i = v∗0 for all i. We now
give a motivation on how an estimator of the variance in the homoscedastic setting can
be used for model selection of (2). Specifically, if v̂ is an estimator of v∗0, then following
Tibshirani and Taylor (2012) and denoting θ̂λ the solution to (2), we can define

R̂isk(λ) := ‖y − θ̂λ‖2 + 2v̂d̂fλ,

where d̂fλ is an estimator of the degrees of freedom corresponding to the model associated
with θ̂λ, see Equation (8) in Tibshirani and Taylor (2012). In fact, based on Equation 4 from
Tibshirani and Taylor (2012), d̂fλ can be taken as the number of connected components in
G induced by θ̂λ when removing the edges (i, j) ∈ E satisfying (θ̂λ)i 6= (θ̂λ)j . Hence, in

practice one can choose the value of λ that minimizes R̂isk(λ) or some variant of it, such
as the one we consider in Section 4.1. Therefore, for model selection, it is convenient to
estimate v∗0.

Before providing our estimator of v∗0, we state the statistical assumption needed to arrive
at our main result of this section.

Assumption 1 We assume that v∗i = v∗0 for i = 1, . . . , n, and

max
i=1,...,n

E(ε4i ) = O(1).
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Figure 1: An example of a graph G. Running DFS starting with the node 1 produces the
ordering 1, 3, 6, 5, 8, 9, 4, 7, 11, 10, 2.

Thus, we simply require that the fourth moments of the errors are uniformly bounded.
We are now in position to define our estimator. This is given as

v̂ :=
1

2(bn/2c − 1)

bn/2c−1∑
i=1

{yσ(2i) − yσ(2i−1)}2, (8)

where σ(1), . . . , σ(n) are the nodes in G visited in order according to the DFS algorithm in
the graph G, see Tarjan (1972). The DFS algorithm proceeds as follows:
Procedure DFS (G, v):
Step 1: Label v as discovered.
Step 2: For all w such that (w, v) ∈ E do
If vertex w is not label then recursively call DFS (G,w).

Figure 1 shows an example of a graph and a potential run of DFS. Clearly, by construc-
tion of DFS, the function σ is a bijection from {1, . . . , n} onto itself, and the DFS ordering
is not unique. Hence, we propose to select the DFS by randomly choosing the start of the
algorithm.

Notice that the total computational complexity for computing v̂ is O(n + |E|), which
comes from computing the DFS order. Moreover, the estimator v̂ does not require any
tuning parameters to be specified.

The construction in (8) can be motivated as follows. First, recall that by Lemma 1 in
Padilla et al. (2018), it holds

n−1∑
i=1

|θ∗σ(i) − θ
∗
σ(i+1)| ≤ 2‖∇Gθ∗‖1.
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Hence, if ‖∇Gθ∗‖1 is small relative to n, then the signal θ∗ is well behaved in the order
given by DFS. Our resulting estimator defined in (8) is then obtained by applying the idea
of taking differences from Rice (1984), see also Dette et al. (1998) and Tong and Wang
(2005).

Theorem 1 Suppose that Assumption 1 holds and ‖ε‖∞ = Opr(Un) for some positive se-
quence Un. Then

|v∗0 − v̂| := Opr

[
v∗0
n1/2

+
{Un(v∗0)1/2 + ‖θ∗‖∞}‖∇Gθ∗‖1

n

]
. (9)

Remark 2 Consider the case where G is the chain graph, and suppose that θ∗i = f∗(i/n)
for i = 1, . . . , n, for a function f∗ : [0, 1] → R, bounded and of bounded total variation.
Thus, f∗ ∈ C where

C := {f : [0, 1]→ R : ‖f‖∞ ≤ C1, TV(f) ≤ C2},

where C1 and C2 are positive constants, and TV(f) is the total variation defined as

TV(f) := sup
0≤a1<...<am≤1, m∈N

m−1∑
j=1

|f(aj)− f(aj+1)|,

see the discussion about functions of bounded total variation in Tibshirani (2014). Then
max{‖θ∗‖∞, ‖∇Gθ∗‖1} = O(1). Hence, provided that v∗0 = O(1) and Un = O{poly(log n)}
for poly(·) some polynomial function, we obtain that

|v∗0 − v̂| := Opr(n
−1/2), (10)

if we ignore logarithmic factors. Therefore, from Proposition 3 in Shen et al. (2020), the
rate in (10) is minimax optimal in the class C. This follows since C is a larger class than
that considered in Proposition 3 in Shen et al. (2020) for the case corresponding to bounded
Lipschitz continuous functions.

Remark 3 If G is the 2D grid graph, then it is well known that ‖∇Gθ∗‖1 � n1/2 is the
canonical scaling, see Sadhanala et al. (2016) and our discussion in Appendix A. Hence,
if max{v∗0, ‖θ∗‖∞} = O(1), and Un = O{poly(log n)}, then (10) holds. Therefore, as in
Remark 2, by Proposition 3 from Shen et al. (2020), v̂ attains minimax rates when θ∗ is in
the class

{θ : ‖θ‖∞ ≤ C1, ‖∇Gθ‖1 ≤ C1n
1/2}

for positive constants C1 and C2.

Finally, for a general graph G, if the graph does capture smoothness of the true signal
in the sense that Un‖∇Gθ∗‖1/n → 0, then, as long as max{v∗0, ‖θ∗‖∞} = O(1), the upper
bound in Theorem 1 shows that v̂ is a consistent estimator of v∗0.
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Figure 2: The left panel shows comparisons of the true and estimated means for Example
1 in the text. The right panel shows the corresponding variance comparisons.

3. Heteroscedastic case

We now study the heteroscedastic setting. Hence, we do not longer require that all the
variances are equal. To estimate the signal v∗ ∈ Rn, we recall the identity

v∗i = var(yi) = E(y2
i )− {E(yi)}2.

Therefore, it is natural to estimate v∗i with

v̂i = γ̂i − (θ̂i)
2, (11)

where γ̂i is an estimator of γ∗i := E(y2
i ), and θ̂ is the fused lasso estimator defined in (2).

As an estimator for γ∗, we propose

γ̂ := arg min
γ∈Rn

1

2

n∑
i=1

(y2
i − γi)2 + λ′

∑
(i,j)∈E

|γi − γj |

 (12)

for a tuning parameter λ′ > 0.
Notice that v̂ can be found with the same order of computational cost that it is required

for finding θ̂. In practice, this can be done using the algorithm from Chambolle and Darbon
(2009). As for parameter tuning, we give details about choosing λ′ in practice in Section
4.1.

To illustrate the behavior of the estimator defined in (11)–(12), we now consider a simple
numerical example. More comprehensive evaluations are given in Section 4.

Example 1 We set n = 6000 and generate data according to the model given by (1) with

εi
ind∼ N(0, 1) for i = 1, . . . , n, and θ∗, v∗ ∈ Rn satisfying

θ∗i =

{
1 if n/4 < i ≤ 3n/4,

0 otherwise,
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and

v∗i =


1 if i ≤ bn/7c,
1.52 if bn/7c < i ≤ n/2,
0.62 otherwise.

Given the data {yi}ni=1, we run the estimator defined in (11)–(12) with tuning parame-
ter choices as discussed in Section 4.1. The results are displayed in Figure 2, where we
see that the estimated means and variances are reasonably close to the corresponding true
parameters.

3.1 A general result for fused lasso estimator

Before presenting our main result for the estimator v̂ defined in (11)–(12), we provide a
general upper bound for the fused lasso estimator that holds under very weak assump-
tions and generalizes existing work in Hütter and Rigollet (2016), Padilla et al. (2018) and
Madrid Padilla et al. (2020b).

Theorem 4 Consider data {oi}ni=1 generated as oi = β∗i + εi for some β∗ ∈ Rn and
ε1, . . . , εn independent random variables satisfying satisfying E(εi) = 0 for i = 1, . . . , n,
and maxi=1,...,n E(ε4

i ) = O(1). Let β̂ be defined as

β̂ := arg min
β∈Rn

1

2

n∑
i=1

(oi − βi)2 + λ
∑

(i,j)∈E

|βi − βj |

 . (13)

The following results hold:

1. General graphs. For any connected graph G, if for a positive sequence Un holds that

n1/2U−1
n {log(en)}−1/2 max

i=1,...,n
{pr(|εi| > Un)}1/4 → 0, (14)

then
‖β̂ − β∗‖2

n
= Opr

{
U

4/3
n (log n)1/3‖∇Gβ∗‖2/31

n2/3
+
U2
n log n

n

}
, (15)

for a choice of λ satisfying λ � U
4/3
n (n log n)1/3‖∇Gβ∗‖−1/3

1 .

2. Grid graphs. Let G be the d-dimensional grid graph with d > 1. Suppose that for a
positive sequence Un we have that

max
i=1,...,n

n1/2U−1
n {pr(|εi| > Un)}1/4 → 0. (16)

Then there exists a choice of λ satisfying

λ � Unφn + U2
n‖∇Gβ∗‖−1

1

such that

‖β̂ − β∗‖2

n
= Opr

(
Unφn‖∇Gβ∗‖1

n
+
U2
n

n

)
, (17)

9
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where φn = C log n if d = 2 and φn = C(log n)1/2 otherwise, for some constant C > 0.
for some constant C > 0.

3. K-NN graphs. Suppose that in addition to the measurements (o1, . . . , on)> we are
also given covariates {xi}ni=1 ⊂ X , where xi corresponds to oi, and X is a met-
ric space with metric dist(·). Suppose that {(xi, oi)}ni=1 satisfy the assumptions from
Madrid Padilla et al. (2020b), see Appendix E. In particular, X is homeomorphic to
[0, 1]d. In addition, assume that K � log1+2r n for some r > 0 in the construction of
the K-NN graph G, and that for a positive sequence Un we have that

n1/2U−1
n K−1/2 max

i=1,...,n
{pr(|εi| > Un)}1/4 → 0. (18)

Consider

λ � ‖∇Gβ∗‖−1
1

[
(poly(log n)n1−1/dUn)1/2 + K1/2Un + (UnK

1/2poly(log n)n1−1/dφn)1/2
]2

(19)
where poly(·) is a polynomial function, and φn is defined as in the case of grid graphs
above. Then

‖β̂ − β∗‖2

n
= Opr

{
Unpoly2(log n)

n1/d

}
, (20)

where poly2(·) is another polynomial function.

Remark 5 Let us now elaborate on (14), (16) and (18). Suppose, for instance, that εi is
sub-Exponential(a), for some constant a > 0. Then the usual sub-Exponential tail inequality
can be written as

pr(|εi| > t) ≤ 2 exp(−t/a), for all t > 0,

see Proposition 2.7.1 in Vershynin (2018). Hence, taking Un = 4a log n it follows that (14),
(16) and (18) immediately hold. More generally, if

pr(|εi| > t) ≤ c1 exp(−tα/c2), for all t > 0,

for positive constants c1, c2, and α, then taking Un = 4c2(log n)1/α, we obtain that (14),
(16) and (18) all hold.

Remark 6 Remark 5 gives a family of examples where Un can be taken as a power function
of log n. More generally, if Un = O{poly(log n)}, for a polynomial function poly(·), then
up to logarithmic factors, Theorem 4 gives the same rates as in several existing works on
the fused lasso, but now we allow for more general error distributions than sub-Gaussian.
Specifically:

1. For a connected graph G, (15) generalizes the upper bound in Theorem 4 in Padilla
et al. (2018). Moreover, the same upper bound in (15) also holds if we replace the
fused lasso estimator β̂ (13) with the DFS fused lasso estimator from Padilla et al.
(2018).

2. For a d-dimensional grid graph G, the rate in (17) matches that in Corollary 5 from
Hütter and Rigollet (2016).
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3. For nonparameteric regression, (20) gives the same minimax rate as Theorem 2 in
Madrid Padilla et al. (2020b) for classes of piecewise functions.

Remark 7 As stated before, Theorem 4 is the first result for fused lasso in general graph
models where the error terms can be non-Sub-Gaussian, yet the estimator still uses the `2
loss. The proof of Theorem 4 relies on Theorem 15 in Appendix D. The latter basically
allow us to control the quantity pr(‖β̂ − β∗‖ > η), for η > 0, in terms of the process

1

η2
E

[
sup

β∈Rn : ‖β−β∗‖≤η, ‖∇Gβ‖1.‖∇Gβ∗‖1

n∑
i=1

ξiεi1{|εi|≤Un}(βi − β
∗
i )

]
(21)

where ξ1, . . . , ξn are independent Rademacher random variables independent of {εi}ni=1. This
general result holds for arbitrary sequences Un and it is key given that the random variables
ξiεi1{|εi|≤Un} for i = 1, . . . , n are uniformly bounded. Hence, we do not need to control the
standard process

E

{
sup

β∈Λ : ‖β−β∗‖≤η, ‖∇Gβ‖1.‖∇Gβ∗‖1
ε>(β − β∗)

}
as it is the case in the analysis in Guntuboyina et al. (2020), which is only able to handle
sub-Gaussian random variables εi, i = 1, . . . , n. With this challenge overcome, the proof of
Theorem 15 continues by controlling additional terms, that account for the case ξiεi1{|εi|>Un}
for i = 1, . . . , n, of the form

n1/2 max
i=1,...,n

{E(ε4
i )}1/4{pr(|εi| > Un)}1/4

η
. (22)

With Theorem 15 in hand, the proof of Theorem 4 continues by deriving upper bounds for
the quantities (21) and (22). The analysis for (21) is done customizing for general graphs,
grid graphs, and K-NN graphs.

Remark 8 We now proceed to discuss the choice of the tuning parameters in Theorem
4. As pointed out by one of the reviewers, the corresponding choices of tuning parameters
depend on the unknow quantity ‖∇Gβ∗‖1. Here, we expand on this aspect and point out
some relaxations.

• First, in order to obtain (15), which holds for general graphs, our choice of λ is
basically the same as in Theorem 4 from Padilla et al. (2018).

• In the context of the d-dimensional grid graph, as explained in Section A, the canonical
scaling for ‖∇Gβ∗‖1 is n1−1/d. Hence, supposing that ‖∇Gβ∗‖1 ≥ 1, our proof can be
modified, see Page 34, so that if

λ � Unφn + U2
n,

we have that
‖β̂ − β∗‖2

n
= Opr

(
max{Unφn, U2

n}‖∇Gβ∗‖1
n

)
. (23)
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Thus, ignoring factors that depend on Un and φn, we can get the same rate as in
Theorem 4 for a choice of tuning parameter that does not involve ‖∇Gβ∗‖1. This is
in the spirit of the findings in Hütter and Rigollet (2016), where the choice of tuning
parameter does not depend on ‖∇Gβ∗‖1.

• Finally, for the setting of K-NN graphs, in the choice of λ that depends on ‖∇Gβ∗‖1
in (19), we can replace ‖∇Gβ∗‖1 with n1−1/d to attain the rate in (20). This can
be done provided that c1n

1−1/d ≤ ‖∇Gβ∗‖1 ≤ c2n
1−1/d for constants c1, c2 > 0, with

probability approaching one.

3.2 Fused lasso for variance estimation

We are now ready to state our main result regarding the estimator v̂ defined in (11)–(12).
Notably, our result shows that the estimator v̂ enjoys similar properties as the original fused
lasso in general graphs, d-dimensional grids, and K-NN graphs. The conclusion of our result
follows from an application of Theorem 4 to θ̂ defined in (2) and γ̂ defined in (12).

Theorem 9 Consider data {yi}ni=1 generated as in (1) and suppose that max
i=1,...,n

E(ε8i ) <∞.

Then the estimator v̂ satisfies the following.

• General graphs. Let G be any connected graph and assume that (14) holds with
{εi}ni=1 instead of {εi}ni=1. Then for choices of λ and λ′ satisfying

λ � U4/3
n (n log n)1/3‖∇Gθ∗‖−1/3

1

and λ′ � {‖v∗‖1/21 ‖θ∗‖∞Un + ‖v∗‖∞(1+U2
n)}4/3(n log n)1/3‖∇Gγ∗‖−1/3

1 , we have that

1

n
‖v̂ − v∗‖2 = Opr

{
(‖θ∗‖2∞ + 1)(U ′n)4/3(log n)1/3(‖∇Gv∗‖1 + ‖θ∗‖∞‖∇Gθ∗‖1)2/3

n2/3
+

(‖θ∗‖2∞ + 1)(U ′n)2 log n

n

}
(24)

where

U ′n := (2‖v∗‖1/2∞ ‖θ∗‖∞ + 1)Un + ‖v∗‖∞U2
n + ‖v∗‖∞. (25)

• Grid graphs. Let G be the d-dimensional grid graph with d > 1. Suppose that the
sequence {εi}ni=1 satisfies (16). Then there exists tuning parameter choices satisfying

λ � Unφn + U2
n‖∇Gθ∗‖−1

1 , and λ′ � U ′nφn + (U ′n)2‖∇Gγ∗‖−1
1

for which

‖v̂ − v∗‖2

n
= Opr

{
(‖θ∗‖2∞ + 1)U ′nφn (‖∇Gv∗‖1 + ‖θ∗‖∞‖∇Gθ∗‖1)

n
+

(‖θ∗‖2∞ + 1)(U ′n)2

n

}
,

(26)
with U ′n as in (25) and φn as in Theorem 4.

12
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• K-NN graphs. Suppose that in addition to the measurements (y1, . . . , yn)> we
are also given covariates {xi}ni=1 ⊂ X , where xi corresponds to yi, and X is a
metric space with metric dist(·). Suppose that {(xi, yi)}ni=1 satisfy the assumptions
from Madrid Padilla et al. (2020b) stated in Appendix E. In addition, assume that
K � log1+2r n for some r > 0 in the construction of the K-NN graph G, and (18)
holds for {εi}ni=1. Then for choices of λ and λ′ satisfying

λ � ‖∇Gθ∗‖−1
1

[
(poly(log n)n1−1/dUn)1/2 + K1/2Un + (UnK

1/2poly(log n)n1−1/dφn)1/2
]2

and

λ′ � ‖∇Gγ∗‖−1
1

[
(poly(logn)n1−1/dU ′n)1/2 + K1/2U ′n + (U ′nK

1/2poly(log n)n1−1/dφn)1/2
]2

for a polynomial function poly(·), it holds that

‖v̂ − v∗‖2

n
= Opr

{
(‖θ∗‖2∞ + 1)U ′nφnpoly(log n)

n1/d

}
, (27)

with U ′n as in (25), φn as in the previous case of grid graphs, and poly(·) is a polyno-
mial function.

Remark 10 Consider the setting in which max{‖θ∗‖∞, ‖v∗‖∞} = O(1), and Un = O{poly(log n)},
for poly(·) a polynomial function. Then, ignoring logarithmic factors, Theorem 9 implies
the following:

1. For a connected graph G the estimator v̂ satisfies

‖v̂ − v∗‖2

n
= Opr

{
(‖∇Gθ∗‖1 + ‖∇Gv∗‖1)2/3

n2/3

}
.

Hence, for the chain graph and the canonical setting in which max{‖∇Gθ∗‖1, ‖∇Gv∗‖1} =
O(1), the estimator v̂ attains the rate n−2/3, which is minimax optimal in the class

{(v, θ) : max{‖∇Gθ∗‖1, ‖∇Gv∗‖1} ≤ C1, max{‖θ∗‖∞, ‖v∗‖∞} ≤ C1}

for some constants C1, C2 > 0, see Theorem 4 in Shen et al. (2020).

2. If d > 1, then for the d-dimensional grid graph, we obtain that

‖v̂ − v∗‖2

n
= Opr

(
n−1/d

)
, (28)

under the canonical scaling, (Sadhanala et al. (2016), see also Appendix A)
‖∇Gθ∗‖1, ‖∇Gv∗‖1 � n1−1/d. Hence, from Lemma 13 below, for estimating v∗, v̂
attains the minimax rate under the canonical scaling.

3. For the K-NN graph, v̂ also attains the rate n−1/d for estimating piecewise Lips-
chitz functions, thereby maintaining the same adaptivity properties of θ̂ studied in
Madrid Padilla et al. (2020b). Moreover, from Lemma 14, the rate n−1/d matches the
minimax rate for estimating the signal of variances when this is constructed based on
the evaluations of a piecewise Lipschitz function.

13
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Remark 11 Given that our proposed estimator defined in (11) is based on estimating γ∗i =
E(y∗i ) and θ∗i = E(yi) for i = 1, . . . , n, the first step in the proof of Theorem 9 is to establish
Lemma 16 which states that the total variation of γ∗ is bounded by the total variation of the
variance signal v∗ and the total variation of the mean signal θ∗:

‖∇Gγ∗‖1 . ‖∇Gv∗‖1 + ‖∇Gθ∗‖1.

Thus, if v∗ and θ∗ both have small total variation along the graph G, then the same can be
said about the signal γ∗, which justifies our construction in (12). Then the proof of Theorem
9 continues by showing that

1

n
‖v̂ − v∗‖2 .

1

n

n∑
i=1

(
γ̂i − γ∗i

)2
+

1

n

n∑
i=1

(
θ̂i − θ∗i

)2
,

and then applying Theorem 4 separately with the choices β∗ = θ∗ and β∗ = γ∗. The latter
has an additional small challenge, addressed in Lemma 17, concerning the behavior of the
tails of the random variables y2

i .

Remark 12 Just as in Remark 8, for the d-dimensional grid graph, we can attain the rate
in (28) for choices of tuning parameters that do not depend on ‖∇Gθ∗‖1 and ‖∇Gγ∗‖1.
Specifically, for choices satisfying

λ � Unφn + U2
n, and λ′ � U ′nφn + (U ′n)2.

Next, we justify the second conclusion in Remark 10 concerning the minimax optimality
of v̂ under canonical scaling. This is presented in the next lemma.

Lemma 13 Let G be the d-dimensional grid graph and c ∈ (0, 1) a constant and let

Θ = {θ ∈ Rn : ‖∇Gθ‖1 ≤ cn1−1/d, ‖θ‖∞ ≤ c}.

Consider the collection of estimators given as

F :=
{
v : Rn → Rn measurable

}
.

Then there exists a constant C > 0 depending on c and d such that

inf
ṽ∈F

sup
θ∗,v∗∈Θ, v∗i ∈( c2

8
, 3c

2

8
)

E
(

1

n
‖ṽ(y)− v∗‖2

)
≥ C

n1/d
,

for data generated as yi = θ∗i +
√
v∗i εi, with εi

ind∼ N(0, 1), for i = 1, . . . , n.

Finally, we conclude our theory section with a lower bound that justifies our assertion
that v̂ is minimax optimal when using a K-NN graph for estimating a piecewise Lipschitz
signal.
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Lemma 14 Consider the class of piecewise Lipschitz functions F(L0), defined in Appendix
E, for a constant L0 ∈ (0, 1). Suppose that, for functions f0, g0 ∈ F(L0) with g0 ≥ 0, the
data are generated as

yi = f0(xi) +
√
g0(xi)εi,

where εi
ind∼ N(0, 1) and xi

ind∼ U [0, 1]d, for i = 1,. . . , n. Then for a constant C > 0
depending on L0, we have that

inf
g̃ estimator

sup
f0,g0∈F(L0)

E
(
‖g̃ − g0‖22

)
≥ C

n1/d
.

4. Experiments

4.1 Heteroscedastic estimator: Tuning parameters

We now discuss how to choose the tuning parameters for the estimator v̂ defined in (11)–
(12). Let θ̂(λ) and v̂(λ′) the estimates based on choices λ and λ′. Notice that v̂(λ′) depends
on λ but we do not make this dependence explicit to avoid overloading the notation.

To choose λ, inspired by Tibshirani and Taylor (2012), we use a Bayesian information
criterion given as

B̂IC(λ) := ‖y − θ̂(λ)‖2 + d̂f(λ) log n (29)

where d̂f(λ) is the number of connected components induced by θ̂(λ) in the graph G. Then

we select the value of λ that minimizes B̂IC(λ).

Once θ̂(λ) has been computed, we proceed to select λ′ for (12). We let γ̂(λ′) be the
solution to (12) and d̃f(λ′) be the number of connected components in G induced by γ̂(λ′).
Then we define

B̃IC(λ′) :=
n∑
i=1

[min{q, y2
i } − γ̂(λ′)i]

2 + d̃f(λ′) log n (30)

where q is the 0.95-quantile of the data {y2
i }ni=1. We use min{q, y2

i } in (30) to avoid the
influence of outliers in the model selection step. With the above score in hand, we choose
the value of λ′ that minimizes B̃IC(λ′). In all our experiments, we select λ and λ′ from the
set {101, 102, 103, 104, 105}.

4.2 Homoscedastic case simulations

We start by considering settings where the variance, denoted as v∗0, is constant across the
different nodes i. As benchmarks, we consider the estimator defined in (8) which we refer
as homoscedastic estimator (Hom.), the heteroscedastic estimator (Het.) defined (11)–(12),
and the U-statistic based local polynomial estimator defined in Shen et al. (2020) (U-LP).

For our comparisons, we generate data from the model in (1) with εi
ind∼ N(0, 1) and v∗i =

v∗0 for i = 1, . . . , n. We consider 2-dimensional grid graphsG with n ∈ {1002, 2002, 3002, 4002},
and we identify the nodes of G with elements of the set {1, . . . n1/2} × {1, . . . , n1/2}. Then
we consider values of v∗0 in {0.5, 1, 1.5, 2} and three different scenarios for the signal θ∗.
Next, we describe the choices of θ∗ that we consider.
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Scenario 1 Scenario 2 Scenario 3
n v0 U-LP Hom. Het. U-LP Hom. Het. U-LP Hom. Het.

1002 0.25 0.33 0.26 1.15 0.17 0.16 0.17 0.43 0.28 2.25
2002 0.25 0.14 0.12 1.121 0.21 0.10 0.11 0.39 0.11 0.94
3002 0.25 0.15 0.08 0.97 0.19 0.09 0.09 0.44 0.08 0.47
4002 0.25 0.14 0.07 0.70 0.22 0.09 0.08 0.49 0.06 0.28

1002 0.5 1.12 1.10 1.11 1.13 1.11 1.24 5.22 1.12 2.65
2002 0.5 0.52 0.44 1.23 1.21 0.62 1.34 4.99 0.44 0.94
3002 0.5 0.62 0.32 0.97 1.19 0.34 1.15 4.84 0.36 0.48
4002 0.5 0.61 0.20 0.70 1.38 0.25 0.91 4.96 0.23 0.29

1002 0.75 2.79 2.72 1.24 1.36 2.40 1.23 5.06 3.06 2.52
2002 0.75 1.20 1.19 1.18 1.31 1.27 1.40 4.89 1.49 0.91
3002 0.75 0.69 0.68 1.01 1.43 0.78 1.24 4.76 0.78 0.48
4002 0.75 0.68 0.55 0.69 1.33 0.58 0.92 5.30 0.59 0.30

1002 1.0 3.42 3.94 1.18 2.73 2.63 1.28 5.46 3.76 2.60
2002 1.0 2.31 2.22 1.28 1.58 2.23 1.38 4.81 2.03 0.96
3002 1.0 0.76 0.65 0.94 1.35 0.94 1.22 .4.94 1.06 0.51
4002 1.0 0.57 0.47 0.74 1.29 0.89 0.95 4.81 1.03 0.29

Table 1: Performance evaluations of the competing methods for the different settings de-
scribed in the text. We report 100 multiplied by the average mean squared error,
averaging over 200 Monte Carlo simulations.

Scenario 1. For k, l ∈ {1, . . . , n1/2}, we let

θ∗k,l =

{
1 if |k − n/2| < n/4, and |l − n/2| < n/8,

0 otherwise.

Scenario 2. We set

θ∗k,l =

{
1 if (k − n/4)2 + (l − n/4)2 < (n/5)2,

0 otherwise.

Scenario 3. In this scenario we set

θ∗k,l =

{
1 if k < n/2 and l < n/2,

0 otherwise.

For each scenario and value of the model parameters, we generate 200 data sets and, for
each data set, compute the different estimators. We compute the Hom. estimator with a
random DFS, and the Het. estimator with tuning parameters chosen as in Section 4.1. As for
the U-LP estimator, we follow the construction in Section 4.1 from Shen et al. (2020). First,
we identify the nodes of the 2-dimensional grid graph with elements of the interval [0, 1]2,
such that (i, j) in the grid graph corresponds to X(j−1)n1/2+i := (i/n1/2, j/n1/2) ∈ [0, 1]2

for (i, j) ∈ {1 . . . , n1/2} × {1, . . . , n1/2}. We also let Y(j−1)n1/2+i = y(i,j) where y(i,j) is the
observation associated with (i, j) in the 2-dimensional grid graph. Then we recall that the
estimator in Shen et al. (2020) in this context becomes

v̂original =

(
n
2

)−1∑
k<`Kh1(Xk,1 −X`,1) · Kh2(Xk,2 −X`,2)(Yk − Y`)2(

n
2

)−1∑
k<`Kh1(Xk,1 −X`,1) · Kh2(Xk,2 −X`,2)

, (31)
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where K : R → R is a kernel, h1, h2 > 0 are bandwidths, and Kh(·) := K(·/h)/h. No-
tice that computing v̂original involves O(n2) operations which quickly becomes intractable.
Hence, we approximate (31) with

v̂approx =
N−1

∑N
s=1Kh1(Xks,1 −X`s,1) · Kh2(Xks,2 −X`s,2)(Yks − Y`s)2

N−1
∑N

s=1Kh1(Xks,1 −X`s,1) · Kh2(Xks,2 −X`s,2)
, (32)

where (k1, `1), . . . , (kN , `N ) are independent draws from the uniform distribution in {1, . . . , n}×
{1, . . . , n}. The resulting estimator is the one that we consider as competitor in representa-
tion of the method from Shen et al. (2020). In our simulations, we set N = 5000, K is the
Gaussian kernel, and h1 = h2 = h. We allow h ∈ {2−10, 2−9, . . . , 2−1} and report results for
the choice of h that gives the best performance in terms of estimating the true parameter
v∗0.

We use the mean squared error as a measure of performance for the different estimators.
For the methods Hom. and U-LP which only compute a single estimator, denoting the
output of the method as v̂ ∈ R, we compute the average of |v̂−v∗0|2 across the 200 replicates.
For the method Het. that produces a vector v̂ ∈ Rn, we compute the average of

1

n

n∑
i=1

(v̂i − v∗0)2 (33)

over the 200 Monte Carlo simulations. The results can be seen in Table 1, where observe
that our proposed estimators Hom. and Het. outperform the competitor in all of the
instances considered. This does not come as a surprise since the true mean in each scenario
is piecewise constant, making it challenging for the kernel based method from Shen et al.
(2020), while both of our proposed methods are better suited for handling piecewise constant
signals for both the mean and variance vectors.

4.3 Heteroscedastic case: 2D Grid graphs

In our next experiment, we consider generative models where the true graph is a 2D grid
graph of size n1/2×n1/2. We generate data similarly to Section 4.2 with the difference that
the variance is now non-constant. Specifically, the data are generated as

yi = θ∗i +
√
v∗i εi

with εi
ind∼ N(0, 1). The scenarios we consider are:

Scenario 4. The signal θ∗ is taken as in Scenario 3 from Section 4.2, and we let

v∗k,l =

{
1.75 if |k − n/2| < n/3, and |l − n/2| < n/3,

1 otherwise,

for k, l ∈ {1, . . . , n1/2}.
Scenario 5. We set

v∗k,l =

{
1.5 if (k − n/2)2 + (l − n/2)2 < (n/4)2,

0.5 otherwise.

17



Madrid Padilla

Figure 3: Each row corresponds to one scenario, with the top row corresponding to Scenario
4, the middle to Scenario 5, and the bottom to Scenario 6. The left column
depicts the signals θ∗, the middle column the signals v∗, and the right column
the estimated v̂ with our method in (11)–(12).
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Scenario 4 Scenario 5 Scenario 6
n L. Pol. Laplacian S. Het. L. Pol. Laplacian S. Het. L. Pol. Laplacian S. Het.

1002 3.25 11.02 1.34 2.18 4.91 1.57 2.40 9.49 1.22
2002 3.27 10.71 0.52 2.17 4.91 0.75 2.44 8.09 0.72
3002 3.21 6.82 0.29 2.15 4.43 0.43 2.41 7.87 0.42
4002 3.15 6.14 0.18 2.14 3.92 0.28 2.39 7.41 0.29

Table 2: Performance evaluations of the competing methods for the different settings de-
scribed in the text. We report 10 multiplied by the average mean squared error,
averaging over 200 Monte Carlo simulations.

for k, l ∈ {1, . . . , n1/2} and take θ∗ as in Scenario 2 in Section 4.2.

Scenario 6. We let θ∗ = 0 ∈ Rn1/2×n1/2
and

v∗k,l =


0.5 if (k − n/4)2 + (l − n/4)2 < (n/5)2,

2 if (k − 3n/4)2 + (l − 3n/4)2 < (n/5)2,

1 otherwise.

for k, l ∈ {1, . . . , n1/2}.
As for benchmarks, we compare our estimator Het. defined in (11)–(12) with the lo-

cal polynomial regression (L. Pol.) method from Fan and Yao (1998), and the Laplacian
smoothing estimator (Laplacian S.), see e.g. Smola and Kondor (2003). For our method
Het. the tuning parameters are selected as in Section 4.1. As for the method L. Pol., we
use the function loess from the R package stats with the default choices of input. However,
for large values of n (n ≥ 10000) the computational complexity of this function becomes
challenging, and hence we average 10 estimates each of which is obtained by fitting the
estimator to randomly selected subsets of the data with size 5000.

As for the Laplacian S. estimator, we first define

θ̃ := arg min
θ∈Rn

1

2
‖y − θ‖2 + η

∑
(i,j)∈G

|θi − θj |2
 , (34)

where η > 0 is a tuning parameter, and G is the 2-dimensional grid graph. Thus, the only
difference with the estimator θ̂ defined in (2) is in the penalty with (34) using the square of
the absolute value of the difference of the signal values, along the edges of the graph. Once
θ̃ has been constructed, we define

ṽi = γ̂i − (θ̃i)
2, (35)

where

γ̂ := arg min
γ∈Rn

1

2

n∑
i=1

(y2
i − γi)2 + η′

∑
(i,j)∈E

|γi − γj |2
 (36)

for a tuning parameter η′ > 0. The final estimator γ̃ is the one that we refer to as Laplacian
S., where the tuning parameters are chosen with BIC as in Section 4.1.
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For each scenario and value of the tuning parameters, and for each data set, we compute
the estimator v̂ and choose the tuning parameters as in Section 4.1. We then report

1

n
‖v̂ − v∗‖2

averaging over 200 Monte Carlo simulations. The results in Table 2 show an excellent
performance of our estimator, which becomes more evident as n grows. This goes in line
with our findings in Theorem 9.

Finally, Figure 3 provides visualizations of Scenarios 4–6 and the corresponding esti-
mates v̂ for one instance of n = 4002. There, we can see that v̂ is a reasonable estimator of
v∗, although v̂ is affected by the bias induced by θ̂ which comes from Equation (11).

Figure 4: For n = 20000 and d = 2, the top left panel shows a scatter plot of
{(xi,1, xi,2, v∗i )}ni=1 for one instance of Scenarios 7 and 8. The top right panel
displays the corresponding scatter plot of {(xi,1, xi,2, v̂i)}ni=1 for Scenario 7. The
bottom left panel is the scatter plot of {(xi,1, xi,2, f0(xi))}ni=1 for Scenario 8, and
the bottom right panel shows the scatter plot of {(xi,1, xi,2, v̂i)}ni=1 for Scenario
8. Here, v̂ is our Het. estimator defined in (11)–(12) with the K-NN graph.
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Scenario 7 Scenario 8
n d L. Pol. Laplacian S. Het. L. Pol. Laplacian S. Het

5000 2 1.06 1.73 0.59 1.06 5.27 0.87
10000 2 1.04 1.65 0.40 1.01 5.11 0.58
15000 2 1.01 1.57 0.34 1.04 5.26 0.45
20000 2 1.25 1.53 0.27 1.08 5.05 0.39

5000 3 1.48 1.49 1.45 1.86 4.21 1.88
10000 3 1.38 1.40 1.05 1.61 4.11 1.54
15000 3 1.34 1.48 0.92 1.40 4.11 1.22
20000 3 1.42 1.26 0.89 1.39 4.37 1.12

Table 3: Performance evaluations of the competing methods for the different settings de-
scribed in the text. We report 10 multiplied by the average mean squared error,
averaging over 200 Monte Carlo simulations.

4.4 Heteroscedastic case: K-NN graphs

In this experiment we consider a nonparametric regression setting. Specifically, we generate
data from the model

yi = f0(xi) + (v∗i )
1/2εi,

v∗i = g0(xi)

εi
ind∼ N(0, 1),

xi
ind∼ U [0, 1]d,

where U [0, 1]d is the uniform distribution. In our simulations, we consider d ∈ {2, 3},
n ∈ {500, 10000, 15000, 20000}, and difference choices of f0 and g0. The functions f0 and g0

are taken from the following scenarios:

Scenario 7. In this scenario, we let f0(z) = 0 for all z = (z1, . . . , zd)
> ∈ Rd and

g0(z) =

{
1.75 if z1 > 0.5,

0.25 otherwise.

Scenario 8. We let g0 as in Scenario 7, and let

f0(z) =

{
0 if z2 > 0.5,

−1 otherwise,

for z ∈ Rd

Based on the above scenarios, we generate 200 data sets and compute the mean squared
error of our estimator in (11)–(12) averaging over all the repetitions. Our estimator is
computed using the K-NN graph with K = 5. Table 3 seems to corroborate our findings in
Theorem 9 as our method’s performance appears to improve with sample size but worsens
when d increases.

Finally, Figure 4 provides a visualization of the true signals and the estimated variances
for one instance with n = 12000 and d = 2.

21



Madrid Padilla

0 500 1000 2000 3000

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

index

Data
Estimated variance

Figure 5: Ion channels data and estimated variances

4.5 Ion channels data

We now validate our method using a real data example. Specifically, we consider the Ion
channels data used by Jula Vanegas et al. (2021). The original data was produced by the
Steinem Lab (Institute of Organic and Biomolecular Chemistry, University of Gottingen).
As explained by Jula Vanegas et al. (2021), Ion channels are a class of proteins expressed
by all cells that create pathways for ions to pass through the cell membrane. The data
consist of a single ion channel of the bacterial porin PorB, a bacterium related to Neisseria
gonorrhoeae.

Although the original data consists of 600000 time instances. We proceed as in Cappello
et al. (2021) and construct a signal y ∈ R2048. The resulting data are plotted in Figure 5.
There, we also see the estimated variances using our proposed method for the heteroscedastic
case on the 1D chain graph. We see that our method seems to capture the heteroscedastic
nature of the data.

5. Conclusion

In this paper, we have studied the problem of estimating the variance in general graph
denoising problems. We have proposed and analyzed estimators for both the homoscedastic
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and heteroscedastic cases. In studying the latter, we also proved generalizations of known
bounds for the fused lasso estimator to models beyond sub-Gaussian errors.

Many research directions are left open in this work. One particular problem is to
generalize our results to higher order versions of total variation for estimating the vector of
variances. Constructing higher order versions of total variation is challenging in the case
of estimating the mean in general graph-structured problems, and we expect it to be even
more challenging for the variance case. Therefore, we leave this for future work.

Appendix A. Canonical scaling

In previous sections of the paper we made reference to the fact that the canonical scaling
of the total variation in a d-dimensional grid graph is O(n1−1/d). Thus, for the 1D chain
graph we obtain that the canonical scaling is O(1) and O(n1/2) for the 2D grid graph. We
now justify this by following the discussion from Sadhanala et al. (2017).

To start, consider a d-dimensional grid graph given as G = (V,E), with V = {1, . . . , n}.
We letN = n1/d and construct the d-dimensional lattice Zd = {(i1/N, . . . , id/N) : i1, . . . , id ∈
{1, . . . , N}} ⊂ [0, 1]d. Then we can index the components of a vector θ ∈ Rn by the lattice
locations, θ(a), a ∈ Zd. Then, the total variation of θ along the graph G is given by

‖∇Gθ‖1 =
1

2

∑
a∈Zd

∑
b∈Zd

|θ(a)− θ(b)|1{‖a−b‖= 1
N
}.

Notice that the factor 1/2 appears because we are counting every edge exactly twice. Next,
assume that θ(a) = f(a) for a function f : [0, 1]d → R such that

‖f(a)− f(b)‖ ≤ L‖a− b‖,

for all a, b ∈ [0, 1]d and for a constant L > 0. Thus, f is an L-Lipschitz function. It follows
that

‖∇Gθ‖1 ≤ 1

2

∑
a∈Zd

∑
b∈Zd

L‖a− b‖1{‖a−b‖= 1
N
}

.
1

2

∑
a∈Zd

dL

N

=
dnL

2N
= O(n1−1/d),

and so O(n1−1/d) makes sense as a canonical scaling for ‖∇Gθ‖1 when G is a d-dimensional
grid graph.

Appendix B. Additional experiments

B.1 Model selection

Recall that in Section 2 we motivated our homoscedastic estimator as being potentially
useful for model selection. In this section, we evaluate a BIC criterion for model selection
for the purpose of mean estimation in a 2-dimensional grid graph. For this evaluation, we
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consider Scenarios 1–3 from Section 4.2. For each scenario, and σ ∈ {0.25, 0.5, 0.75, 1}, we
generate 200 data sets and compare the performance of θ̂(λ), the solution to (2) with two
choices of λ. The first choice of λ is taken as optimal, thus, as

λ := arg min
λ∈Λ

‖θ∗ − θ(λ)‖2,

where Λ = {101, 102, 103, 104, 105}. The second choice of λ is set to

λ := arg min
λ∈Λ

{‖y − θ̂λ‖2 + log(n)v̂d̂fλ},

where d̂fλ is the number of connected components induced by θ̂(λ) in the 2-dimensional
grid graph, and where v̂ is the homoscedastic estimator defined in (8).

We find that in all the instances considered, both choices of λ coincide, suggesting that
in practice the estimator v̂ can be useful for mean estimation with a BIC criterion that
typically produces the optimal choice of λ.

B.2 Mean estimation wih Laplace errors

Notice that in the second step of our heteroscedastic estimator, Equation (12), we actually
estimate γ∗i = E(y2

i ) for i = 1, . . . , n. Thus, we estimate the mean of the random variables
{y2
i }ni=1, which are not sub-Gaussian, even if the {yi}ni=1 are sub-Gaussian random variables.

In our experiments, the key is that our analysis in Theorem 4 can be used when {yi}ni=1 are
sub-Gaussian as in such case the random variables {y2

i }ni=1 are sub-Exponential.
We now evaluate the validity of Thereom 4 in a simulation setting where we estimate the

mean of the random variables but with yi−θ∗i following a Laplace distribution. Specifically,
we consider the same setting as in Section 4.3, but focusing on estimating θ∗ ∈ Rn, and
with data generated as

yi = θ∗i +
√
v∗i εi

with εi
ind∼ Laplace(0, 1). The methods that we compare are the gaph fused lasso (GFL)

defined in (2) with the Laplacian S. estimator defined in (36), and where we choose the
tuning parameters as in Section 4.1.

The results on Table 4 seem to provide additional evidence in favor of Theorem 4. In
particular, the GFL outperforms Laplacian S., and the performance of GFL improves as n
increases which is what it is expected in light of Theorem 4.

Appendix C. Proof of Theorem 1

Proof First, we observe that

|v∗0 − v̂| ≤
∣∣∣∣v∗0 − v∗0

2(bn/2c − 1)

bn/2c−1∑
i=1

{εσ(2i) − εσ(2i−1)}2
∣∣∣∣+∣∣∣∣ v∗0

2(bn/2c − 1)

bn/2c−1∑
i=1

{εσ(2i) − εσ(2i−1)}2−

1

2(bn/2c − 1)

bn/2c−1∑
i=1

{(v∗0)1/2εσ(2i) − (v∗0)1/2εσ(2i−1) + θ∗σ(2i) − θ
∗
σ(2i−1)}

2

∣∣∣∣.
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Scenario 4 Scenario 5 Scenario 6
n Laplacian S. GFL Laplacian S. GFL Laplacian S. GFL

1002 1.12 1.08 1.12 0.91 2.7× 10−3 9.87× 10−4

2002 1.13 0.52 1.12 0.54 2.7× 10−3 2.89× 10−4

3002 1.10 0.23 1.12 0.32 2.7× 10−3 1.44× 10−4

4002 1.11 0.13 1.11 0.18 2.7× 10−3 6.82× 10−5

Table 4: Performance evaluations of the competing methods for the different settings de-
scribed in the text. We report 10 multiplied by the average mean squared error,
averaging over 200 Monte Carlo simulations.

Next, using the identity a2 − (a+ b)2 = −b(2a+ b) we obtain that

|v∗0 − v̂| ≤
∣∣∣∣v∗0 − v∗0

2(bn/2c − 1)

bn/2c−1∑
i=1

{εσ(2i) − εσ(2i−1)}2
∣∣∣∣+

1

2(bn/2c − 1)

bn/2c−1∑
i=1

|θ∗σ(2i) − θ
∗
σ(2i−1)| |2(v∗0)1/2(εσ(2i) − εσ(2i−1)) + (θ∗σ(2i) − θ

∗
σ(2i−1))|

≤
∣∣∣∣v∗0 − v∗0

2(bn/2c − 1)

bn/2c−1∑
i=1

{εσ(2i) − εσ(2i−1)}2
∣∣∣∣+

{4‖ε‖∞(v∗0)1/2 + 2‖θ∗‖∞}
2(bn/2c − 1)

bn/2c−1∑
i=1

|θ∗σ(2i) − θ
∗
σ(2i−1)|

≤ v∗0

∣∣∣∣1 − 1

2(bn/2c − 1)

bn/2c−1∑
i=1

(εσ(2i) − εσ(2i−1))
2

∣∣∣∣+
{4‖ε‖∞(v∗0)1/2 + 4‖θ∗‖∞}‖∇Gθ∗‖1

2(bn/2c − 1)
(37)

where the last inequality follows from Lemma 1 in Padilla et al. (2018). Finally, notice that

E

 1

2(bn/2c − 1)

bn/2c−1∑
i=1

{εσ(2i) − εσ(2i−1)}2
 = 1 (38)
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and

var

 1

2(bn/2c − 1)

bn/2c−1∑
i=1

{εσ(2i) − εσ(2i−1)}2
 =

1

4(bn/2c − 1)2

bn/2c−1∑
i=1

var
[
{εσ(2i) − εσ(2i−1)}2

]
≤ 1

4(bn/2c − 1)2

bn/2c−1∑
i=1

E
[
{εσ(2i) − εσ(2i−1)}4

]
≤ 1

4(bn/2c − 1)2

bn/2c−1∑
i=1

E
{

8ε4σ(2i) + 8ε4σ(2i−1)

}
≤ 4

(bn/2c − 1)
sup

i=1,...,n
E(ε4i )

(39)
where the second inequality follows from the inequality (a + b)4 ≤ 8a4 + 8b4. Combining
(37)–(39) with the Chebyshev’s inequality we conclude the proof.

Appendix D. A general upper bound

Theorem 15 Consider data {oi}ni=1 generated as oi = β∗i + εi for some β∗ ∈ Rn and
ε1, . . . , εn independent random variables satisfying satisfying E(εi) = 0 and

max
i=1,...,n

E(ε4
i ) = O(1).

Let β̂ be defined as

β̂ := arg min
β∈Rn

1

2

n∑
i=1

(oi − βi)2 + λ
∑

(i,j)∈E

|βi − βj |

 .

Let η > 0. Then for any sequence Un > 0 and for any η > 0, it holds that

pr(‖β̂ − β∗‖ > η) ≤
16n1/2 max

i=1,...,n
{E(ε4

i )}1/4{pr(|εi| > Un)}1/4

η
+

16

η2
E

[
sup

β∈Rn : ‖β−β∗‖≤η, ‖∇Gβ‖1≤5‖∇Gβ∗‖1

n∑
i=1

ξiεi1{|εi|≤Un}(βi − β
∗
i )

]
,

where ξ1, . . . , ξn are independent Rademacher random variables independent of {εi}ni=1, pro-
vided that

λ =
η2

4‖∇Gβ∗‖1
. (40)

Proof First, notice that by convexity and the basic inequality we have that

1

2

n∑
i=1

(oi − βi)2 + λ‖∇Gβ‖1 ≤
1

2

n∑
i=1

(oi − β∗i )2 + λ‖∇Gβ∗‖1 (41)
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for any β ∈ Λ := {sβ̂ + (1− s)β∗ : s ∈ [0, 1]}. Then

‖∇Gβ‖1 ≤ ‖∇Gβ‖1 +
‖β − β∗‖2

2λ
≤ ε>(β − β∗)

λ
+ ‖∇Gβ∗‖1 (42)

for all β ∈ Λ. This implies

‖∇G(β − β∗)‖1 ≤ ‖∇Gβ‖1 + ‖∇Gβ∗‖1

≤ ε>(β − β∗)
λ

+ 2‖∇Gβ∗‖1,
(43)

for all β ∈ Λ.
Next, let β ∈ Λ and suppose that ‖β − β∗‖2 ≤ η2, and ‖∇Gβ‖1 ≥ 5‖∇Gβ∗‖1. Then

‖∇G(β − β∗)‖1 ≥ ‖∇Gβ‖1 − ‖∇Gβ∗‖1 ≥ 4‖∇Gβ∗‖1.

Hence, setting

s :=
4‖∇Gβ∗‖1

‖∇G(β − β∗)‖1
,

clearly s ∈ [0, 1], and we let
β′ := sβ + (1− s)β∗ ∈ Λ.

Then
‖β′ − β∗‖2 ≤ ‖β − β∗‖2 ≤ η2,

and
‖∇G(β′ − β∗)‖1 = s‖∇G(β − β∗)‖1

= 4‖∇Gβ∗‖1.

Therefore, from (43),

4‖∇Gβ∗‖1 = ‖∇G(β′ − β∗)‖1 ≤
ε>(β′ − β∗)

λ
+ 2‖∇Gβ∗‖1

which implies

2‖∇Gβ∗‖1 ≤
ε>(β′ − β∗)

λ
.

Hence, if we take

λ =
η2

4‖∇Gβ∗‖1
we obtain

η2

2
≤ ε>(β′ − β∗).

As a result, the events

Ω1 :=

{
sup

β∈Λ : ‖β−β∗‖≤η
‖∇Gβ‖1 ≥ 5‖∇Gβ∗‖1

}
and

Ω2 :=

{
sup

β∈Λ : ‖β−β∗‖≤η, ‖∇G(β−β∗)‖1≤4‖∇Gβ∗‖1
ε>(β − β∗) ≥ η2

2

}

27



Madrid Padilla

satisfy that Ω1 ⊂ Ω2. And so,
pr(Ω1) ≤ pr(Ω2). (44)

Next, suppose that ‖β̂ − β∗‖ > η. Then there exists β ∈ Λ such that ‖β − β∗‖ = η and
so (42) implies that

η2

2
≤ ε>(β − β∗) + λ‖∇Gβ∗‖1 − λ‖∇Gβ‖1.

Hence, given our choice of λ, we obtain that

η2

4
≤ ε>(β − β∗),

for some β ∈ Λ, provided that ‖β̂ − β∗‖ > η.
The above implies that

pr(‖β̂ − β∗‖ > η) ≤ pr({‖β̂ − β∗‖ > η} ∩ Ωc
1) + pr(Ω1)

≤ pr({‖β̂ − β∗‖ > η} ∩ Ωc
1) + pr(Ω2)

≤ pr

{
sup

β∈Λ : ‖β−β∗‖≤η, ‖∇Gβ‖1≤5‖∇Gβ∗‖1
ε>(β − β∗) ≥ η2

4

}
+ pr(Ω2)

≤ 2 pr

{
sup

β∈Λ : ‖β−β∗‖≤η, ‖∇Gβ‖1≤5‖∇Gβ∗‖1
ε>(β − β∗) ≥ η2

4

}
≤ 8

η2
E

{
sup

β∈Λ : ‖β−β∗‖≤η, ‖∇Gβ‖1≤5‖∇Gβ∗‖1
ε>(β − β∗)

}
=: A1,

(45)
where the second inequality follows from (44), and third from the discussion above, the
fourth from the definition of Ω2, and the last inequality from Markov’s inequality. Next,
notice that

A1 ≤ 8

η2
E

[
sup

β∈Λ : ‖β−β∗‖≤η, ‖∇Gβ‖1≤5‖∇Gβ∗‖1

n∑
i=1

εi1{|εi|≤Un}(βi − β
∗
i )

]
+

8

η2
E

[
sup

β∈Λ : ‖β−β∗‖≤η, ‖∇Gβ‖1≤5‖∇Gβ∗‖1

n∑
i=1

εi1{|εi|>Un}(βi − β
∗
i )

]

≤ 8

η2
E

{
sup

β∈Λ : ‖β−β∗‖≤η, ‖∇Gβ‖1≤5‖∇Gβ∗‖1

n∑
i=1

(εi1{|εi|≤Un} − E[εi1{|εi|≤Un}])(βi − β
∗
i )

}
+

8

η2
sup

β∈Λ : ‖β−β∗‖≤η, ‖∇Gβ‖1≤5‖∇Gβ∗‖1

n∑
i=1

E[εi1{|εi|≤Un}](βi − β
∗
i ) +

8

η2
E

[
sup

β∈Λ : ‖β−β∗‖≤η, ‖∇Gβ‖1≤5‖∇Gβ∗‖1

n∑
i=1

εi1{|εi|>Un}(βi − β
∗
i )

]
.

=: A2 +A3 +A4,

Next, we proceed to bound A2, A3 and A4. To bound A3, notice that since E(εi) = 0 then

A3 =
8

η2
sup

β∈Λ : ‖β−β∗‖≤η, ‖∇Gβ‖1≤5‖∇Gβ∗‖1

n∑
i=1

−E[εi1{|εi|>Un}](βi − β
∗
i ).
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Hence,

A3 ≤ 8n1/2

η
max
i=1,...,n

|E[εi1{|εi|>Un}]|

≤ 8n1/2

η
max
i=1,...,n

(
E(ε2

i )E[1{|εi|>Un}]
)1/2

=
8n1/2

η

{
max
i=1,...,n

E(ε2
i ) pr(|εi| > Un)

}1/2

,

(46)

where the first and second inequalities follow from Cauchy–Schwarz inequality.

To bound A4, we observe that

A4 ≤ 8

η2
E
(

sup
β∈Λ : ‖β−β∗‖≤η, ‖∇Gβ‖1≤5‖∇Gβ∗‖1

[ n∑
i=1

ε2
i 1{|εi|>Un}

]1/2

‖β − β∗‖
)

≤ 8

η
E
([ n∑

i=1

ε2
i 1{|εi|>Un}

]1/2)
≤ 8

η

(
E
[ n∑
i=1

ε2
i 1{|εi|>Un}

])1/2

≤ 8n1/2

η

(
max
i=1,...,n

E
[
ε2
i 1{|εi|>Un}

])1/2

≤ 8n1/2 maxi=1,...,n{E(ε4
i )}1/4{pr(|εi| > Un)}1/4

η
.

(47)

Let us now proceed to bound A2. Let ε′1, . . . , ε
′
n independent copies of ε1, . . . , εn. Then

for independent Rademacher random variables ξ1, . . . , ξn, it holds that

A2 ≤ 8

η2
E

(
sup

β∈Λ : ‖β−β∗‖≤η, ‖∇Gβ‖1≤5‖∇Gβ∗‖1

n∑
i=1

[εi1{|εi|≤Un} − ε
′
i1{|ε′i|≤Un}](βi − β

∗
i )

)

=
8

η2
E

(
sup

β∈Λ : ‖β−β∗‖≤η, ‖∇Gβ‖1≤5‖∇Gβ∗‖1

n∑
i=1

ξi[εi1{|εi|≤Un} − ε
′
i1{|ε′i|≤Un}](βi − β

∗
i )

)

≤ 8

η2
E

(
sup

β∈Λ : ‖β−β∗‖≤η, ‖∇Gβ‖1≤5‖∇Gβ∗‖1

n∑
i=1

ξi[εi1{|εi|≤Un}](βi − β
∗
i )

)
+

8

η2
E

(
sup

β∈Λ : ‖β−β∗‖≤η, ‖∇Gβ‖1≤5‖∇Gβ∗‖1

n∑
i=1

−ξi[ε′i1{|ε′i|≤Un}](βi − β
∗
i )

)

=
16

η2
E

[
sup

β∈Λ : ‖β−β∗‖≤η, ‖∇Gβ‖1≤5‖∇Gβ∗‖1

n∑
i=1

ξiεi1{|εi|≤Un}(βi − β
∗
i )

]

≤ 16

η2
E

[
sup

β∈Rn : ‖β−β∗‖≤η, ‖∇Gβ‖1≤5‖∇Gβ∗‖1

n∑
i=1

ξiεi1{|εi|≤Un}(βi − β
∗
i )

]
.

(48)
The claim then follows.
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Appendix E. Assumptions for K-NN graph for Theorem 4

We start by explicitly defining the construction of the K-NN graph. Specifically, (i, j) ∈ E
if and only if xj is among the K-nearest neighbors (with respect to the metric dist(·) of xi,
or vice versa.

We now state the assumptions from Madrid Padilla et al. (2020b) needed for Theorem
4. Throughout (X ,dist) is a metric space with Borel sets B(X ).

Assumption 2 The covariates {xi}ni=1 are independent draws from a density p, with respect
to the measurable space (X ,B(X ), µ), with support X . Furthermore, the density p satisfies
0 < pmin < p(x) < pmax for all x ∈ X , where pmin and pmax are constants.

Assumption 3 The base measure satisfies

c1r
d ≤ µ [{q ∈ X : dist(q, x) ≤ r}] ≤ c2r

d

for all x ∈ X , and all 0 < r < r0, where c1, c2 and r0 are all positive constants, and
d ∈ N\{0} is the intrinsic dimension of X .

Assumption 4 There exists a homeomorphism (a continuous bijection with a continuous
inverse) h : X → [0, 1]d such that

Lmindist(x, x′) ≤ ‖h(x)− h(x′)‖ ≤ Lmaxdist(x, x′), ∀x, x′ ∈ X ,

for some positive constants Lmin and Lmax.

For a set S ⊂ [0, 1]d, we let

Bt(S) := {q ∈ [0, 1]d : ‖q − q′‖ ≤ t for some q′ ∈ S}.

With this notation, we state our next assumption.

Assumption 5 [Piecewise Lipschitz]. The parameter β∗ satisfies that β∗i = f0(xi) for
i = 1, . . . , n for some function f0, where the following holds for the function f0.

1. f0 is bounded.

2. Let ∂[0, 1]d be the boundary of [0, 1]d, and let Ωt = [0, 1]d\Bt(∂[0, 1]d). We assume
that there exists a set S such that:

(a) The set S has Lebesgue measure zero.

(b) For some constants CS , t0 > 0, we have that

µ
[
h−1

{
Bt(S) ∪ ([0, 1]d\Ωt)

}]
≤ CSt

for all 0 < t < t0.

(c) There exists a positive constant L0 such that if z and z′ belong to the same
connected component of Ωt\Bt(S) then

|f0 ◦ h−1(z)− f0 ◦ h−1(z′)| ≤ L0‖z − z′‖.
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Notation: We denote as F(L0) the set of functions f : [0, 1]d → R that satisfy
Assumption 5 with L0 and such that

sup
x∈[0,1]d

|f(x)| ≤ L0,

and CS ≤ L0.

Appendix F. Assumptions for K-NN graph for Theorem 9

We assume that the covariates {xi}ni=1 satisfy Assumptions 2–4. In addition, we assume
that Assumption 5 holds replacing β∗ with both v∗ and θ∗.

Appendix G. Proof of Theorem 4

Proof of (15): First, let G′ be a chain graph corresponding to a DFS ordering in G.
Based of Theorem 15, we first need to bound

B1 :=
16

η2
E

[
sup

β∈Rn : ‖β−β∗‖≤η, ‖∇Gβ‖1≤5‖∇Gβ∗‖1

n∑
i=1

ξiεi1{|εi|≤Un}(βi − β
∗
i )

]
. (49)

To bound this, we recall Lemma 1 in Padilla et al. (2018) which implies that ‖∇G′β‖1 ≤
2‖∇Gβ‖1 for all β ∈ Rn. Hence,

B1 ≤ 16

η2
E

[
sup

β∈Rn : ‖β−β∗‖≤η, ‖∇G′β‖1≤10‖∇Gβ∗‖1

n∑
i=1

ξiεi1{|εi|≤Un}(βi − β
∗
i )

]

=
16

η2
E

(
E

[
sup

β∈Rn : ‖β−β∗‖≤η, ‖∇G′β‖1≤10‖∇Gβ∗‖1

n∑
i=1

ξiεi1{|εi|≤Un}(βi − β
∗
i )

∣∣∣∣ε
])

=
16Un
η2

E

(
E

[
sup

β∈Rn : ‖β−β∗‖≤η, ‖∇G′β‖1≤10‖∇Gβ∗‖1

n∑
i=1

ξi
εi
Un

1{|εi|≤Un}(βi − β
∗
i )

∣∣∣∣ε
])

.

(50)
Then

E
[

sup
β∈Rn : ‖β−β∗‖≤η, ‖∇G′β‖1≤10‖∇Gβ∗‖1

n∑
i=1

ξi
εi
Un

1{|εi|≤Un}(βi − β
∗
i )

∣∣∣∣ε]
≤ E

[
sup

β∈Rn : ‖β−β∗‖≤η, ‖∇G′ (β−β∗)‖1≤11‖∇Gβ∗‖1

n∑
i=1

ξi
εi
Un

1{|εi|≤Un}(βi − β
∗
i )

∣∣∣∣ε]
≤ E

[
sup

β∈Rn : ‖β‖≤η, ‖∇G′β‖1≤11‖∇Gβ∗‖1

n∑
i=1

ξi
εi
Un

1{|εi|≤Un}βi

∣∣∣∣ε]
≤ E

[
sup

β∈Rn : ‖β‖≤η, ‖∇G′β‖1≤11‖∇Gβ∗‖1

n∑
i=1

ξiβi

∣∣∣∣ε]
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where the last inequality follows from Theorem 4.12 in Ledoux and Talagrand (1991). As

a result, letting ξ̃i
ind∼ N(0, 1) for i = 1, . . . , n, we obtain that

E
[

sup
β∈Rn : ‖β−β∗‖≤η, ‖∇G′β‖1≤10‖∇Gβ∗‖1

n∑
i=1

ξi
εi
Un

1{|εi|≤Un}(βi − β
∗
i )

∣∣∣∣ε]
≤ E

(
sup

β∈Rn : ‖β‖≤η, ‖∇G′β‖1≤11‖∇Gβ∗‖1

n∑
i=1

ξiβi

)
≤
(π

2

)1/2
E
(

sup
β∈Rn : ‖β‖≤η, ‖∇G′β‖1≤11‖∇Gβ∗‖1

n∑
i=1

ξ̃iβi

)
≤ C1

{
η

(
11‖∇Gβ∗‖1n1/2

η

)1/2

+ η{log(en)}1/2
}

where the second inequality follows fromt a well known fact bounding Rademacher Width
by Gaussian Width; e.g see Page 132 in Wainwright (2019), and the last by Lemma B.1
from Guntuboyina et al. (2020). This implies that

B1 ≤
16Un
η2

C1

[
η

(
11‖∇Gβ∗‖1n1/2

η

)1/2

+ η{log(en)}1/2
]
.

Therefore, given a ∈ (0, 1), we let

η :=
4

a

[
162/3n1/6(log n)1/6(11)1/3‖∇Gβ∗‖1/31 U2/3

n (C1)2/3 + 16C1Un{log(en)}1/2
]

and λ as in (40). Hence,

B1 ≤ 16C1Un(11‖∇Gβ∗‖1)1/2n1/4

η3/2
+

16C1Un{log(en)}1/2

η

≤ a3/2

43/2

16C1Un(11‖∇Gβ∗‖1)1/2n1/4{
162/3n1/6(log n)1/6(11)1/3‖∇Gβ∗‖1/31 U

2/3
n (C1)2/3

}3/2
+
a

4

≤ a

2
.

(51)

Furthermore, by Theorem 15, we must bound

B2 :=

16n1/2 max
i=1,...,n

{E(ε4
i )}1/4{pr(|εi| > Un)}1/4

η
. (52)

However, given our definition of η, we obtain that

B2 ≤ a

4

16n1/2 max
i=1,...,n

{E(ε4
i )}1/4{pr(|εi| > Un)}1/4[

162/3n1/6(log n)1/6(11)1/3‖∇Gβ∗‖1/31 U
2/3
n (C1)2/3 + 16C1Un{log(en)}1/2

]
≤ a

4

where the last inequality follows from (14). The conclusion of the Theorem follows from
Theorem 15.
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Proof of rate (17): As before, we first bound B1 as defined in (49). Towards that
end, let ∇+

G the pseudo inverse of ∇G, and Π the orthogonal projection onto the span of
(1, . . . , 1)> ∈ Rn. Then notice that

B1 ≤ 16Un
η2

E

(
sup

δ∈Rn : ‖δ‖≤η, ‖∇Gδ‖1≤6‖∇Gβ∗‖1

n∑
i=1

ξiεi1{|εi|≤Un}

Un
δi

)

≤ 16Un
η2

E

(
sup

δ∈Rn : ‖δ‖≤η, ‖∇Gδ‖1≤6‖∇Gβ∗‖1
ε̃>∇+

G∇Gδ

)
+

16Un
η2

E

(
sup

δ∈Rn : ‖δ‖≤η, ‖∇Gδ‖1≤6‖∇Gβ∗‖1
ε̃>Πδ

)
,

where ε̃i = ξiεi1{|εi|≤Un}/Un for i = 1, . . . , n. Next, we observe that by Hölder’s inequality
and Cauchy–Schwarz inequality, it holds that,

B1 ≤ 96Un‖∇Gβ∗‖1
η2

E
(
‖
(
∇+
G

)>
ε̃‖∞

)
+

16Un
η2

E

{
sup

δ∈Rn : ‖δ‖≤η, ‖∇Gδ‖1≤6‖∇Gβ∗‖1
ε̃>Πδ

}
=

96Un‖∇Gβ∗‖1
η2

E
(
‖
(
∇+
G

)>
ε̃‖∞

)
+

16Un
η2

sup
δ : ‖δ‖≤η

(
1

n1/2

n∑
i=1

δi

)
E
(∣∣∣∣ 1

n1/2

n∑
i=1

ε̃i

∣∣∣∣)
≤ 96Un‖∇Gβ∗‖1

η2
E
(
‖
(
∇+
G

)>
ε̃‖∞

)
+

16Un
η

E
(∣∣∣∣ 1

n1/2

n∑
i=1

ε̃i

∣∣∣∣)
≤ 96Un‖∇Gβ∗‖1

η2
E
(
‖
(
∇+
G

)>
ε̃‖∞

)
+

16Un
η

≤ cUn‖∇Gβ∗‖1
η2

√
log n ·max

j
‖(∇+

G),j‖ +
16Un
η

where the third and last inequalities follow from basic properties of Sub-Gaussian random
variables, and where c > 0 is a constant. Next, by Propositions 4 and 6 from Hütter and
Rigollet (2016), we obtain that

max
j
‖(∇+

G),j‖ ≤ φn :=

{
C(log n)1/2 if d = 2,

C,
(53)

for some constant C > 0. Therefore,

B1 ≤
cUn
√

log n‖∇Gβ∗‖1φn
η2

+
16Un
η

. (54)

Hence, for a given a ∈ (0, 1), we let

η :=
2

a1/2
(cUn

√
log n‖∇Gβ∗‖1φn)1/2 +

4

a
· 16Un (55)

and λ as in (40).

Therefore,

B1 ≤
a

4
+
a

4
=

a

2
.

33



Madrid Padilla

Moreover, from (52), we have that

B2 =

16n1/2 max
i=1,...,n

{E(ε4
i )}1/4{pr(|εi| > Un)}1/4

η

≤ a

4

n1/2 max
i=1,...,n

{E(ε4
i )}1/4{pr(|εi| > Un)}1/4

Un
≤ a

4
,

(56)

where the last inequality follows from (16) and the fact that max
i=1,...,n

E(ε4
i ) = O(1).

Therefore,

pr(‖β̂ − β∗‖ > η) ≤ 3a

4
.

This proves (17).
Case ‖∇Gβ∗‖1 ≥ 1. Suppose now that ‖∇Gβ∗‖1 ≥ 1. Then instead of setting η as in

(55), we let

η :=
2

a1/2
(96Un‖∇Gβ∗‖1φn)1/2 +

4‖∇Gβ∗‖1/21

a
· 16Un

and λ as in (40), or

λ :=
η2

4‖∇Gβ∗‖1
=

1

4

[
2

a1/2
(96Unφn)1/2 +

4

a
· 16Un

]2

.

Hence, from (54)

B1 ≤
a2

4
+

a

4‖∇Gβ∗‖1/21

≤ a2

4
+
a

4
≤ a

2
.

Furthermore, as in (56),

B2 =

16n1/2 max
i=1,...,n

{E(ε4
i )}1/4{pr(|εi| > Un)}1/4

η

≤ a

4‖∇Gβ∗‖1/21

n1/2 max
i=1,...,n

{E(ε4
i )}1/4{pr(|εi| > Un)}1/4

Un

≤ a

4

n1/2 max
i=1,...,n

{E(ε4
i )}1/4{pr(|εi| > Un)}1/4

Un
≤ a

4
,

where the last inequality follows from (16) and the fact that max
i=1,...,n

E(ε4
i ) = O(1). As a

before, we arrive at

pr(‖β̂ − β∗‖ > η) ≤ 3a

4
.

Proof of (20): First, by Madrid Padilla et al. (2020a), there exists N satisfying N �
(n/K)1/d and functions I : Rn → Rn, and Ĩ : Rn → RNd

satisfying the properties below.
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• [Lemma 8 in Madrid Padilla et al. (2020b)]. Let E1 be the event such that

|e>{β − I(β)}| ≤ 2‖e‖∞‖∇Gβ‖1, ∀β, e ∈ Rn, (57)

and there exists a d-dimensional lattice G′ with Nd nodes such that

‖∇G′ Ĩ(β)‖1 ≤ ‖∇Gβ‖1, ∀β ∈ Rn. (58)

Then pr(E1)→ 1.

• [Lemmas 7, 8 and 10 in Madrid Padilla et al. (2020b)]. Le e be any vector of
mean zero independent subg-Gaussian(σ2), then there exists ẽ a vector of mean zero
independent sub-Gaussian(σ2) random variables and a constant C > 0(not depending
on e) such that the event E2 given as

E2 :=

{
e>{I(β)− I(β∗)} ≤ CK1/2

{
‖Πẽ‖2‖β − β∗‖ + ‖(∇G′)+ẽ‖∞(‖∇Gβ∗‖1 + ‖∇Gβ‖1)

}
,

∀β, e ∈ Rn
}

(59)
satisfies pr(E2)→ 1.

• Theorem 2 in Madrid Padilla et al. (2020b)]. It holds that for some constant
C2 > 0 the event

E3 :=
{
‖∇Gβ∗‖1 ≤ C2poly(log n)n1−1/d

}
satisfies pr(E3)→ 1, where poly(·) is a polynomial function.

Let E4 = E1 ∩ E2 ∩ E3 Notice that as in Theorem 15, with the choice

λ =
η2

4‖∇Gβ∗‖1
,

we have that

pr(‖β̂ − β∗‖ > η|E4) ≤
16n1/2 max

i=1,...,n
{E(ε4

i )}1/4{pr(|εi| > Un)}1/4

η
+

16Un
η2

E

[
sup

β∈Rn : ‖β−β∗‖≤η, ‖∇Gβ‖1≤5‖∇Gβ∗‖1

n∑
i=1

ξiεi1{|εi|≤Un}

Un
(βi − β∗i )

∣∣∣∣E4

]
=: T1 + T2.

(60)

Next we bound T1 and T2. To bound T2, we define

ei :=
ξiεi1{|εi|≤Un}

Un
,
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and notice that E(ei|E4) = E(ei) = 0, and ei is sub-Gaussian(1) for i = 1, . . . , n. It follows
that if E4 holds, then

e>(β − β∗) = e>{β − I(β)} + e>{I(β)− I(β∗)} − e>{β∗ − I(β∗)}

≤ 2‖∇Gβ∗‖1 + CK1/2

[
‖Πẽ‖2‖β − β∗‖ + ‖(∇G′)+ẽ‖∞(‖∇Gβ∗‖1 + ‖∇Gβ‖1)

]
+

2‖∇Gβ‖1.

Therefore,

T2 ≤ 16Un
η2

{
12C2poly(log n)n1−1/d + CK1/2

[
ηE(‖Πẽ‖) + 6C2poly(log n)n1−1/dE(‖(∇G′)+ẽ‖∞)

]}
≤ 16Un

η2

(
12C2poly(log n)n1−1/d + CK1/2

[
ηE
∣∣∣∣ 1

n1/2

n∑
i=1

ẽi

∣∣∣∣ + 6C2poly(log n)n1−1/dmax
j
‖(∇+

G),j‖
])

≤ 16Un
η2

[
12C2poly(log n)n1−1/d + CK1/2

[
η + 6C2poly(log n)n1−1/dmax

j
‖(∇+

G),j‖
]]

≤ 16Un
η2

[
12C2poly(log n)n1−1/d + CK1/2

[
η + 6C2poly(log n)n1−1/dφn

]]
where the second and third inequalities follow from Sub-Gaussian maximal inequality, and
the last from (53). Then for a given a ∈ (0, 1), we set

η = 61/2

a1/2
(16× 12C2poly(log n)n1−1/dUn)1/2 + 6

a(16CK1/2Un) +
6
a(16× 6CC2UnK

1/2poly(log n)n1−1/dφn)1/2

and so

T2 ≤
a

2
. (61)

Furthermore,

T1 ≤ a

6

16n1/2 max
i=1,...,n

{E(ε4
i )}1/4{pr(|εi| > Un)}1/4

16CK1/2Un
≤ a

6
.

(62)

The claim then follows.

Appendix H. Auxiliary lemmas for proof of Theorem 9

Lemma 16 Let γ∗i = E(y2
i ) for i = 1, . . . , n. Then∑

(i,j)∈E

|γ∗i − γ∗j | ≤
∑

(i,j)∈E

|v∗i − v∗j | + 2‖θ∗‖∞
∑

(i,j)∈E

|θ∗i − θ∗j |.
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Proof Notice that∑
(i,j)∈E

|γ∗i − γ∗j | =
∑

(i,j)∈E

|{v∗i + (θ∗i )
2} − {v∗j + (θ∗j )

2}|

≤
∑

(i,j)∈E

|v∗i − v∗j | +
∑

(i,j)∈E

|θ∗i − θ∗j |(|θ∗i |+ |θ∗j |)

≤
∑

(i,j)∈E

|v∗i − v∗j | + 2‖θ∗‖∞
∑

(i,j)∈E

|θ∗i − θ∗j |

and the claim follows.

Lemma 17 For any Un > 0 we have that

pr
(
|y2
i − E(y2

i )| > 2‖v∗‖1/2∞ ‖θ∗‖∞Un + ‖v∗‖∞(1 + U2
n)
)
≤ pr(|εi| > Un)

for i = 1, . . . , n.

Proof Simply observe that

y2
i − E(y2

i ) = {θ∗i + (v∗i )
1/2εi}2 − E[{θ∗i + (v∗i )

1/2εi}2]

= 2(v∗i )
1/2θ∗i εi + v∗i ε

2
i − v∗i

and hence

|y2
i − E(y2

i )| ≤ 2‖v∗‖1/2∞ ‖θ∗‖∞|εi|+ ‖v∗‖∞|εi|2 + ‖v∗‖∞
and so the claim follows.

Appendix I. Proof of Theorem 9

Proof First notice that

1

n
‖v̂ − v∗‖2 =

1

n

n∑
i=1

[
{γ̂i − (θ̂i)

2} − {γ∗i − (θ∗i )
2}
]2

≤ 2

n

n∑
i=1

(
γ̂i − γ∗i

)2
+

2

n

n∑
i=1

{
(θ̂i)

2 − (θ∗i )
2
}2

≤ 2

n

n∑
i=1

(
γ̂i − γ∗i

)2
+

8‖θ∗‖2∞
n

n∑
i=1

(
θ̂i − θ∗i

)2
and so each conclusion of the theorem follows applying Theorem 4, Lemma 16, and Lemma
17. Specifically, it is clear that the generative model and θ∗ satisfy the conditions of Theorem
4. As for the estimation of γ∗, letting ri = y2

i − E(y2
i ), for i = 1, . . . , n, we need to verify

the tail conditions , e.g. (14), for {ri}ni=1.
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Proof of (24). Notice that by Lemma 17,

n1/4 max
i=1,...,n

{pr(|ri| > U ′n)}1/4

U ′n{log(en)}1/2
≤

n1/4 max
i=1,...,n

{pr(|ri| > 2‖v∗‖1/2∞ ‖θ∗‖∞Un + ‖v∗‖∞U2
n + ‖v∗‖∞)}1/4

Un{log(en)}1/2

≤
n1/4 max

i=1,...,n
{pr(|εi| > Un)}1/4

Un{log(en)}1/2
→ 0.

Therefore, by Lemma 16 and Theorem 4,

1

n

n∑
i=1

(
θ̂i − θ∗i

)2
= Opr

{
U

4/3
n (log n)1/3‖∇Gθ∗‖2/31

n2/3
+
U2
n log n

n

}
,

and

1

n

n∑
i=1

(
γ̂i−γ∗i

)2
= Opr

{
(U ′n)4/3(log n)1/3 (‖∇Gv∗‖1 + ‖θ∗‖∞‖∇Gθ∗‖1)2/3

n2/3
+

(U ′n)2 log n

n

}
,

and so the claim (24) follows.
The proof of (26) and (27) follow similarly.

Appendix J. Lower bounds

J.1 Proof of Lemma 13

Proof
We notice that

inf
ṽ∈F

sup

θ∗,v∗∈Θ, v∗i ∈( c2

8
, 3c

2

8
), yi=θ∗i +

√
v∗i εi, εi

ind∼N(0,1)

E
(

1
n‖ṽ(y)− v∗‖2

)
≥ inf

ṽ∈F
sup

θ∗∈Θ, θ∗i ∈( c√
8
,
√
3c√
8

), yi=θ∗i +

√
c2

2
−(θ∗i )2εi, εi

ind∼N(0,1)

E
(

1
n

∑n
i=1(ṽi(y)− (c2/2− (θ∗i )

2))2
)

= inf
ṽ∈F

sup

θ∗∈Θ, θ∗i ∈( c√
8
,
√
3c√
8

), yi=θ∗i +

√
c2

2
−(θ∗i )2εi, εi

ind∼N(0,1)

E
(

1
n

∑n
i=1(ṽi(y)− (θ∗i )

2)2
)

≥ inf
ṽ∈F , ṽi(·)∈[ c√

8
,
√
3c√
8

]

sup

θ∗∈Θ, θ∗i ∈( c√
8
,
√
3c√
8

), yi=θ∗i +

√
c2

2
−(θ∗i )2εi, εi

ind∼N(0,1)

E
(

1
n

∑n
i=1(ṽi(y)2 − (θ∗i )

2)2
)

≥ inf
ṽ∈F , ṽi(·)∈[ c√

8
,
√
3c√
8

]

sup

θ∗∈Θ, θ∗i ∈( c√
8
,
√
3c√
8

), yi=θ∗i +

√
c2

2
−(θ∗i )2εi, εi

ind∼N(0,1)

E
(

1
n

∑n
i=1(ṽi(y)− θ∗i )2·

min
j=1,... n

(ṽj(y) + θ∗j )
2

)
≥ c2

32 inf
ṽ∈F , ṽi(·)∈[ c√

8
,
√

3c√
8

]

sup

θ∗∈Θ, θ∗i ∈( c√
8
,
√
3c√
8

), yi=θ∗i +

√
c2

2
−(θ∗i )2εi, εi

ind∼N(0,1)

E
(

1
n

∑n
i=1(ṽi(y)− θ∗i ))2

)
≥ c2

32 inf
ṽ∈F

sup

θ∗∈Θ, θ∗i ∈( c√
8
,
√
3c√
8

), yi=θ∗i +

√
c2

2
−(θ∗i )2εi, εi

ind∼N(0,1)

E
(

1
n

∑n
i=1(ṽi(y)− θ∗i ))2

)
(63)
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Next, let dmax be the maximum degree of any node inG and consider distinct a1, . . . , am ∈
[n1/d] × . . . × [n1/d], for m ∈ N with m � n1−1/d and dmax ·m ≤ n1−1/d, such that for all
j, j′ ∈ {1, . . . ,m} it holds that aj and aj′ are not connected by an edge in the d-dimensional
grid graph associated with [n1/d]× . . .× [n1/d] . Then for η ∈ {−1, 1}m let θη ∈ Rn be given
as

(θη)i =


c√
8

[
ηj(
√

3−1)
4 + (1+

√
3)

2

]
if i = aj , j ∈ {1, . . . ,m},

c√
8
· (1+

√
3)

2 otherwise.

Notice that by construction (θη)i ∈ ( c√
8
,
√

3c√
8

) for all i and η ∈ {−1, 1}m. Moreover,

‖∇Gθη‖1 ≤
dmax · c√

8
· m(
√

3− 1)

4
≤ cn1−1/d.

In addition, if η, η′ ∈ {−1, 1}m such that ‖η − η′‖1 = 2, then

‖θη − θη′‖ =
c√
8
· (
√

3− 1)

2
.

Also, denoting by Pη and Pη′ the distributions N(θη, diag( c
2

2 − (θη)
2
i )) and N(θη′ , diag( c

2

2 −
(θη′)

2
i )), respectively, we obtain that

TV(Pη, Pη′) ≤
√

1
2DKL(Pη, Pη′) ≤ 1

2

[
( 4−[3/4+

√
3/4]2

4−[1/4+3
√

3/4]2
− 1) + 8

c2
· ‖θη − θη′‖2 +

log( 4−[3/4+
√

3/4]2

4−[1/4+3
√

3/4]2
)

]1/2

< 1
2

√[
0.63 + ( (

√
3−1)
2 )2 + log(1.63)

]
< 0.6

where the first inequality follows from Pinsker’s inequality, and the second by the usual
formula for KL distance between multivariate normal distributions. Therefore, by Assouad’s
lemma, Lemma 2 in Yu (1997), we obtain that

inf
ṽ∈F

sup

θ∗∈Θ, θ∗i ∈( c√
8
,
√
3c√
8

), yi=θ∗i +εi, εi
ind∼N(0, c

2

2
−(θ∗i )2)

E
(∑n

i=1(ṽi(y)− θ∗i )2
)

& m
2 · (1− 0.6)

& n1−1/d.

(64)

Hence, from (63) and (64), we arrive at

inf
ṽ∈F

sup

θ∗,v∗∈Θ, v∗i ∈( c2

8
, 3c

2

8
), yi=θ∗i +

√
v∗i εi, εi

ind∼N(0,1)

E
(

1

n
‖ṽ(y)− v∗‖2

)
&

1

n1/d
.
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J.2 Proof of Lemma 14

Proof Let I be a rectangular partition of [0, 1]d such that |I| = n and each rectangle I ∈ I
has sides of lenght in [c1n

−1/d, c2n
−1/d] for some positive constants c1, c2 > 0. Notice that

cd1
n
≤ vol(I) ≤ cd2

n
(65)

for all I ∈ I. Also, for each rectangle I ∈ I let I◦ and ∂Il be its interior and boundary,
respectively. Let also be {Il}ml=1 ⊂ I such that

I◦l ∩ I◦l′ = ∅

for l 6= l′ and such that m � n1−1/d. Moreover, the rectangles {Il}ml=1 can be chosen such
that their union is a rectangle.

Then for fixed a > b > 0, define for every η ∈ {−1, 1}m the function gη : [0, 1]d → R,

gη(x) =

{
a+ ηjb if x ∈ I◦j
a otherwise.

We claim that gη ∈ F(L0). Towards that end notice that g is piecewise constant with
boundary S = ∪ml=1∂Il. Moreover, for t ∈ (0, 1), since ∪ml=1Il is rectangle, we obtain that

vol(Bt(S)) ≤
m∑
l=1

c3[d

(
1

n1/d

)d−1

t] + c3dt
d ≤ c4t

for some positive constants c3, c4 > 0 that can depend on d. Hence, for a and b small
enough, it holds that gη ∈ F(L0) for all η ∈ {−1, 1}m. Moreover, for any η, η′ such that
‖η − η′‖1 = 2, we have that

‖gη − g′η‖22 =

∫
Ij

4b2dx = 4b2vol(Ij) ≥
cd14b2

n

for j ∈ {1, . . . ,m} such that ηj 6= η′j . Moreover, let Pη be the distribution associated with
(x, y) = (x1, . . . , xn, y1, . . . , yn) and pη its corresponding density when f0 = 0 and g0 = gη.

The objects Pη′ and pη′ are defined accordingly. Then, since xi
ind∼ Uniform[0, 1]d,

TV(Pη, Pη′) =
1

2

∫
[0,1]nd×Rn

|pη(x, y)− pη′(x, y)|d(x× y)

=
1

2

∫
[0,1]d

. . .

∫
[0,1]d

[∫
Rn

|pη(y|x)− pη′(y|x)|dy
]
dx1 . . . dxn

=

∫
[0,1]d

. . .

∫
[0,1]d

[
TV(Pη(·|x), Pη′(·|x))

]
dx1 . . . dxn

≤ 3

2

∫
[0,1]d

. . .

∫
[0,1]d

[(∑n
i=1(gη(xi)− gη′(xi))2

)1/2
infq∈[0,1]d gη(q)

]
dx1 . . . dxn

=
3

2(a− b)

∫
[0,1]d

. . .

∫
[0,1]d

[( n∑
i=1

(gη(xi)− gη′(xi))2

)1/2 ]
dx1 . . . dxn
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where the inequality follows from Theorem 1.1 in Devroye et al. (2018). Hence,

TV(Pη, Pη′) ≤
6b

2(a− b)

∫
[0,1]d

. . .

∫
[0,1]d

|{i : xi ∈ Ij}| dx1 . . . dxn

=
6b

2(a− b)
E (|{i : xi ∈ Ij}|)

=
6b

2(a− b)
nvol(Ij)

≤ 6bcd2
2(a− b)

≤ 1
2

where the first inequality follows from (65), and where the last inequality follows by choosing
b = a/2 and c2 small enough in the construction of I.

Therefore, by Assouad’s lemma, see Lemma 2 in Yu (1997), we obtain that

inf
g̃

sup

f0,g0∈F(L0), yi=f0(xi)+
√
g0(xi)εi, εi

ind∼N(0,1)

E
(
‖g̃ − g0‖22

)
& m

(
4b2

n

)
·
(
1− 1

2

)
& n−1/d.

(66)
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