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Abstract

We propose a general approach for encouraging fairness in survival analysis models that is
based on minimizing a worst-case error across all subpopulations that are “large enough”
(occurring with at least a user-specified probability threshold). This approach can be used
to convert a wide variety of existing survival analysis models into ones that simultaneously
encourage fairness, without requiring the user to specify which attributes or features to
treat as sensitive in the training loss function. From a technical standpoint, our approach
applies recent methodological developments of distributionally robust optimization (DRO)
to survival analysis. The complication is that existing DRO theory uses a training loss
function that decomposes across contributions of individual data points, i.e., any term that
shows up in the loss function depends only on a single training point. This decomposition
does not hold for commonly used survival loss functions, including for the standard Cox
proportional hazards model, its deep neural network variants, and many other recently
developed survival analysis models that use loss functions involving ranking or similarity
score calculations. We address this technical hurdle using a sample splitting strategy. We
demonstrate our sample splitting DRO approach by using it to create fair versions of a
diverse set of existing survival analysis models including the classical Cox model (and its
deep neural network variant DeepSurv), the discrete-time model DeepHit, and the neural
ODE model SODEN. We also establish a finite-sample theoretical guarantee to show what
our sample splitting DRO loss converges to. Specifically for the Cox model, we further
derive an exact DRO approach that does not use sample splitting. For all the survival
models that we convert into DRO variants, we show that the DRO variants often score
better on recently established fairness metrics (without incurring a significant drop in ac-
curacy) compared to existing survival analysis fairness regularization techniques, including
ones which directly use sensitive demographic information in their training loss functions.

Our code is available at: https://github.com/discovershu/DRO_survival.
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1. Introduction

Survival analysis aims to model time durations before a critical event happens. Examples of
such critical events include a patient dying, a convicted criminal reoffending, or a customer
cancelling a subscription service. Predicting such time durations accurately could help plan
patient treatments, make bail decisions, or target subscription pricing promotions. If a
survival analysis model is to be used in high-stakes decision making, fairness could be an
important design criterion. For example, in the case of making bail decisions with the help
of predicted time durations until a criminal reoffends, we may want a survival analysis model
that produces these predictions to be similarly accurate across different races.

One of the major recent advances in encouraging fairness for machine learning models
is to minimize a worst-case error over all subpopulations that are “large enough” (e.g.,
Hashimoto et al. 2018; Duchi and Namkoong 2021; Li et al. 2021; Duchi et al. 2022; Hu et al.
2022a). In particular, a modeler specifies a minimum probability threshold α. The goal then
is to ensure that all subpopulations that occur with probability at least α have low average
error, whereas we make no promises for subpopulations that occur with probability less
than α. The modeler need not provide a list of subpopulations to account for. This problem
can be tractably solved in practice and is called distributionally robust optimization (DRO).

We emphasize that curating a list of all subpopulations to account for can be challenging
for various reasons. For example, one major challenge is intersectionality : subpopulations
that a machine learning model yields the worst accuracy scores for can be defined by complex
intersections of sensitive attributes (such as age, race, and gender simultaneously taking on
specific values) (Buolamwini and Gebru, 2018). Some of these attributes might require
discretization (e.g., dividing age into bins), for which choosing the “best” discretization
strategy might not be straightforward. Moreover, if there is a large number of features and
we suspect that the sensitive attributes (encoded by specific features) could possibly be
correlated with other features (not flagged as sensitive), then there is a question of whether
these other features should also be accounted for in a listing of what the sensitive attributes
are. DRO provides a theoretically sound alternative to having to specify which attributes
to treat as sensitive in a training loss function.

Our main contribution in this paper is to show how to apply DRO to survival analysis.
Specifically, we propose a general strategy for converting a wide variety of survival analysis
models into ones that simultaneously encourage fairness. Our strategy supports all survival
analysis models we are aware of that minimize a loss function (details on the general form
of survival analysis models that our approach supports are in Section 3).

The key technical challenge is that existing DRO theory assumes that the overall training
loss is the sum of individual loss terms, where each such term only depends on a single data
point. This assumption fails to hold for commonly used survival analysis loss functions—
including that of the standard Cox proportional hazards model (Cox, 1972)—that involve
pairwise comparisons from ranking or similarity score evaluations (e.g., Steck et al. 2007; Lee
et al. 2018; Chen 2020; Wu et al. 2021). In particular, there are loss terms that arise that
incorporate information from multiple data points at once. We propose a sample splitting
approach to address this technical challenge, and we establish a finite-sample theoretical
guarantee on what our sample splitting DRO loss converges to. We point out that there are
also parametric survival analysis models with loss functions that directly adhere to existing
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DRO theory (e.g., parametric accelerated failure time models (Klein and Moeschberger,
2003, Chapter 12) or, as a more exotic example, the recently proposed neural ordinary
differential equation (ODE) model called SODEN (Tang et al., 2022b)); such models can
trivially be modified to use DRO without the sample splitting approach that we propose.

We specifically show how to derive DRO variants of the standard Cox model (Cox, 1972)
(and its deep neural network variant DeepSurv (Faraggi and Simon, 1995; Katzman et al.,
2018)), the discrete-time DeepHit model (Lee et al., 2018), and the neural ODE model
called SODEN (Tang et al., 2022b). Again, we emphasize that our strategy for converting
an existing survival analysis model to its DRO variant is fairly general and is not limited to
only the few models that we showcase as illustrative examples.

We further derive an exact DRO approach specific to the Cox model that does not require
sample splitting. In particular, by introducing additional parameters to optimize over for
the Cox model’s standard negative partial likelihood loss, it is possible to convert this loss
function into one that decouples across training points. This derivation is specific to the
Cox model though and does not easily generalize to other survival models.

On three standard datasets that have been previously used for research on fair survival
analysis, we show that our DRO modification often outperforms various baseline fairness
regularization techniques in terms of existing fairness metrics that focus on user-specified
sensitive attributes. Most of these baselines require the user to specify which attributes to
treat as sensitive attributes within the added regularization term. As with other fairness
methods recently developed for survival analysis (e.g., Keya et al. (2021); Rahman and
Purushotham (2022)), our approach also results in a drop in accuracy (compared to using
a loss that does not encourage fairness). Note that our paper does not aim to find which
survival model is the most accurate or the most fair. In fact, per survival model, there is
in general a tradeoff between accuracy and fairness that can be tuned by the modeler. We
show how to visualize this tradeoff using a plot inspired by an ROC curve.

Related work on fair survival analysis Despite many recent advances in survival anal-
ysis methodology (see, for instance, the survey by Wang et al. (2019)), very few of these
advances study fairness (Keya et al., 2021; Zhang and Weiss, 2022; Sonabend et al., 2022;
Rahman and Purushotham, 2022). We provide an overview of these existing papers, and we
discuss how they differ from our work.

Keya et al. (2021) adapted existing fairness definitions to the survival analysis setting
and showed how to encourage different notions of fairness by adding fairness regularization
terms. Specifically, Keya et al. (2021) came up with individual (Dwork et al., 2012), group
(Dwork et al., 2012), and intersectional (Foulds et al., 2020) fairness definitions specialized
to Cox models. Keya et al. define individual fairness in terms of model predictions being
similar for similar individuals, and group fairness in terms of different user-specified groups
having similar average predicted outcomes. Intersectional fairness further considers sub-
groups defined by intersections of protected groups (e.g., individuals of a specific race and
simultaneously a specific gender). However, a major limitation of the notions of fairness
defined by Keya et al. is that they focus on predicted model outputs and do not actually
use any of the ground truth label information. For example, if one uses age as a sensitive
attribute and suppose we discretize age into two groups, then the notion of group fairness by
Keya et al. would ask for the predicted outcomes of the two age groups to be similar, which
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for healthcare problems often does not make sense (since age is often highly predictive of
different health outcomes). Instead, in such a scenario, a more desirable notion of fairness
is that the model’s accuracy for the different age groups be similar.

To account for model accuracy, Zhang and Weiss (2022) introduced a fairness metric
called concordance imparity that computes a quantity similar to the standard survival anal-
ysis accuracy metric of concordance index (Harrell et al., 1982) for different groups and then
looks at the worst-case difference between any two groups’ accuracy scores. Meanwhile,
Rahman and Purushotham (2022) directly modified the fairness definitions of Keya et al.
(2021) to account for ground truth label information, and also generalized these definitions
to survival models beyond Cox models.

Separately, Sonabend et al. (2022) empirically explored how well existing survival analy-
sis accuracy and calibration metrics measure bias by synthetically modifying datasets (e.g.,
undersampling disadvantaged groups). However, they do not propose any new fairness met-
ric or survival model that encourages fairness.

The papers mentioned above that propose new methods for learning fair survival models
all either require user-specified demographic information to treat as sensitive (possibly as a
list of subpopulations or groups to account for) or are simply adding a regularization term
that encourages smoothness in the model outputs (the individual fairness regularization by
Keya et al. (2021) and Rahman and Purushotham (2022) are directly related to encouraging
Lipschitz continuity; for details, see Appendix F). In contrast, our proposed DRO approach
does not require the user to indicate which attributes to treat as sensitive in the training
loss function, and is not simply encouraging the model output to be Lipschitz continuous.

Bibliographical note This paper significantly extends our previous conference paper (Hu
and Chen, 2022) in methodological development and in experiments. For methodological
development, whereas our conference paper only considered Cox models, we show in this
journal paper version how to convert a much wider class of survival analysis models into
their DRO variants that encourage fairness. In fact, this wider class of models consists of
all survival models we are aware of that are learned by minimizing an overall loss function.
Furthermore, this journal paper extension includes theoretical analysis of our sample split-
ting DRO approach and also an exact DRO approach for the Cox model without sample
splitting; neither of these contributions were in our conference paper. For experiments,
we demonstrate our conversion strategy on not only Cox models but also on DeepHit and
SODEN models. Our experiments are overall more extensive, and the SEER dataset we
now use is much larger (∼28k data points in this version vs ∼4k in the conference paper).
Lastly, we also add a new visualization for seeing the tradeoff between accuracy and fairness
across multiple models within a single plot.

Outline The rest of the paper is organized as follows. We provide background on survival
analysis, existing research on fairness in survival analysis, and DRO in Section 2. We
then present our strategy for converting a wide family of existing survival analysis models
into their corresponding DRO variants that encourage fairness in Section 3; notably, this
section introduces a sample splitting DRO approach and formally establishes its rate of
convergence. Specifically for the Cox model, we present an exact DRO Cox model without
sample splitting in Section 4. We conduct experiments to compare DRO variants of Cox,
DeepHit, and SODEN models to their original non-DRO variants as well as to variants of
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these models that encourage fairness using non-DRO baseline regularization strategies. We
conclude the paper in Section 6.

2. Background

We begin by reviewing the basic survival analysis problem setup in Section 2.1 and then pro-
vide three examples of survival analysis models (Cox, DeepHit, and SODEN) in Section 2.2.
We then review DRO in Section 2.3. Throughout the paper, we frequently use the notation
[`] , {1, 2, . . . , `} for any positive integer `.

2.1 Survival Analysis Setup

Survival analysis aims to model the amount of time that will elapse before a critical event
of interest happens. We assume that we have training data {(Xi, Yi,∆i)}ni=1, where training
data point i ∈ [n] has raw input Xi ∈ X , observed duration Yi ≥ 0, and event indicator
∆i ∈ {0, 1}. If ∆i = 1 (i.e., the critical event of interest happened for the i-th data point),
then Yi is the time until the event happens. Otherwise, if ∆i = 0, then Yi is the time until
censoring for the i-th point, i.e., the true time until event is unknown but we know that it is
at least Yi. The raw input space X could be any input space supported by standard neural
network software (e.g., tabular data, images, time series).

Each training data point (Xi, Yi,∆i) is assumed to be generated as follows:
1. Sample raw input Xi from a raw input distribution PX .
2. Sample nonnegative time duration Ti (this is the true time until the critical event

happens) from a conditional distribution PT |X=Xi .
3. Sample nonnegative time duration Ci (this is the true time until the data point is

censored) from a conditional distribution PC|X=Xi .
4. If Ti ≤ Ci (the critical event happens before censoring), then set Yi = Ti and ∆i = 1.

Otherwise, set Yi = Ci and ∆i = 0.
Distributions PX , PT |X , and PC|X are shared across data points and are unknown. We
assume that the random variables Ti and Ci are independent given raw input Xi (since the
training data are i.i.d., this means that conditioned on the raw input, the censoring times are
random and independent of each other, and they are also independent of the true survival
times). We denote the CDF of distribution PT |X=x as F (·|x).

Prediction A standard prediction task is to estimate the probability that a data point
with raw input x ∈ X survives beyond time t. Formally, this is defined as the conditional
survival function

S(t|x) , P(T > t|X = x) = 1− F (t|x) for t ≥ 0. (1)

Importantly, for raw input x, we are predicting an entire probability distribution (since
S(·|x) encodes the same information as the CDF F (·|x)).

Some survival analysis models, such as the Cox proportional hazards model (Cox, 1972),
estimate a transformed version of S(·|x) called the hazard function, given by

h(t|x) , − ∂

∂t
logS(t|x) for t ≥ 0. (2)
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From negating both sides of this equation, integrating over time, and exponentiating, we get
S(t|x) = exp(−

∫ t
0 h(u|x)du). Thus, if we have an estimate of h(·|x), then we can readily

estimate the conditional survival function S(·|x).

2.2 Examples of Survival Analysis Models

We now review three examples of survival analysis models (Cox, DeepHit, and SODEN)
that can be modified to encourage fairness using DRO. In reviewing these models, we focus
on aspects most relevant to our exposition later for how to convert these models into their
DRO variants. For all three examples, we denote the neural network to be learned as f(·; θ),
where θ denotes the parameters of the neural network. The domain and range of f depends
on the specific survival model we look at. Meanwhile, the architecture of f is up to the
modeler to specify, where standard strategies could be used (e.g., if the raw inputs are
tabular data, then a multilayer perceptron could be used; if the raw inputs are images, a
convolutional neural network could be used; etc).

2.2.1 Classical and Deep Cox Models

The classical Cox model assumes that the hazard function has the factorization

h(t|x) = h0(t) exp(f(x; θ)), (3)

where h0 is called the baseline hazard function (h0 maps a nonnegative time t ≥ 0 to a
nonnegative number), and neural network f(·; θ) maps a raw input from X to a single real
number (i.e., f(·; θ) has domain X and range R). In particular, f(x; θ) models the so-called
log partial hazard function and could be thought of as assigning a real-valued “risk score”
to raw input x ∈ X : when f(x; θ) is higher, then x has a higher risk of the critical event
happening, so that the survival time of x will tend to be lower.

The original Cox model (Cox, 1972) defines f to be a dot product: f(x; θ) = θTx, where θ
and x are in the same Euclidean vector space. More recently, researchers replaced f with
a neural network (Faraggi and Simon, 1995; Katzman et al., 2018), resulting in a method
called DeepSurv (which could be viewed as a generalization of the original Cox model in
that the classical definition f(x; θ) = θTx is a simple neural network consisting of a linear
layer with no bias and no nonlinear activation). In either case, the standard approach for
learning a Cox model is to first learn the neural network parameters θ by minimizing the
negative log partial likelihood:

LCox(θ) =
1

n

n∑
i=1

LCox
i (θ), (4)

where the i-th data point’s loss is

LCox
i (θ) , −∆i

[
f(Xi; θ)− log

∑
j∈[n] s.t. Yj≥Yi

exp(f(Xj ; θ))

]
. (5)

If the i-th data point is censored (i.e., ∆i = 0), then LCox
i (θ) = 0. Thus, the overall loss

LCox(θ) could be viewed as weighting the uncensored training points equally. After learning
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θ, we then estimate h0; as this step is not essential to our exposition, we explain it in
Appendix A.1, along with details on constructing the final estimate of S(·|x).

We remark that the factorization in equation (3) is referred to as the proportional haz-
ards assumption: regardless of what the input x is, the hazard function h(·|x) is always
proportional to the baseline hazard function h0. A consequence of this assumption is
that the resulting conditional survival function S(·|x) is heavily constrained in terms of
its shape. In particular, regardless of what x is, S(t|x) must be a power of the function
S0(t) , exp(−

∫ t
0 h0(u)du) (for details, see Appendix A.2). The next two survival analysis

models that we describe do not have this assumption and can more flexibly estimate S(·|x).

2.2.2 DeepHit

A wide class of survival analysis models directly estimate (some transformed version of)
the conditional survival function S(·|x) along a discretized time grid, without requiring the
proportional hazards assumption. The time grid itself is up to the modeler to choose and can
depend on the observed time Yi and event indicator ∆i variables in the training data. For
example, we could use a uniformly-spaced time grid between the minimum and maximum
observed times (for some user-specified number of discretized time steps), or we could have
the time grid consist of all unique times in the training data in which the critical event
happened (in fact, this how the classical Kaplan-Meier estimator (Kaplan and Meier, 1958)
discretizes time). Some other time grids are discussed by Kvamme and Borgan (2021).

An example of a model that uses a discretized time grid is DeepHit (Lee et al., 2018).
Note that DeepHit supports the so-called competing risks setting where there are multiple
critical events of interest. For simplicity, we review DeepHit where we only present the case
where there is a single critical event of interest, which reduces the problem setup to the
same one we specified in Section 2.1.

Let t1 < t2 < · · · < tm denote the m discretized time points based on some user-specified
grid. We assume that these are the only time points in which the critical event or censoring
could happen (if a critical event or censoring happens at some other time point, we quantize
it to one of these m time points). Then DeepHit parameterizes the following conditional
probability mass function using a neural network:

P(T = tj |X = x) = fj(x; θ) for j ∈ [m], (6)

where neural network f(x; θ) =
(
f1(x; θ), f2(x; θ), . . . , fm(x; θ)

)
∈ [0, 1]m has parameters θ

and maps a raw input x ∈ X to a probability distribution over the m time steps. In
other words, the domain of f(·; θ) is X and the range of f(·; θ) is the probability simplex{
z ∈ Rm : zj ≥ 0 for all j ∈ [m] and

∑m
j=1 zj = 1

}
. For example, when working with

tabular data, f could be a multilayer perceptron, where the last linear layer outputs m
numbers and has softmax activation.

Because of the parameterization in equation (6), we can write the conditional survival
function S(t|x) at any discrete time point tj in terms of the neural network f(·; θ):

Sj(x; θ) , S(tj |x) = P(T > tj |X = x) =
m∑

`=j+1

f`(x; θ) for j ∈ [m].

To learn θ, DeepHit uses the sum of two loss terms, corresponding to a negative log likelihood
term and, separately, a ranking loss term. In what follows, we use the notation κ(Yi) ∈ [m]
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to denote the time step index corresponding to the i-th training point’s observed time Yi
(i.e., Yi gets quantized to integer time step κ(Yi)). For example, one way to define the
function κ : [t1,∞)→ [m] is as follows:1

κ(t) ,

{
` if there exists time index ` ∈ [m] s.t. t` = t,

max{` ∈ [m] : t` < t} otherwise.
(7)

Then the overall DeepHit loss is

LDeepHit(θ) , β ·

negative log likelihood loss term︷ ︸︸ ︷
1

n

n∑
i=1

[
−∆i log(fκ(Yi)(Xi; θ))− (1−∆i) log(Sκ(Yi)(Xi; θ))

]
+ (1− β) · 1

n2

n∑
i=1

∆i

∑
j∈[n] s.t. κ(Yj)>κ(Yi)

exp

(
Sκ(Yi)(Xi; θ)− Sκ(Yi)(Xj ; θ)

σ

)
︸ ︷︷ ︸

ranking loss term

,

(8)

where β ∈ [0, 1] and σ > 0 are hyperparameters. Note that this formulation of the overall
loss follows the implementation of DeepHit by Kvamme et al. (2019) in the now-standard
pycox software package and is slightly different from the original formulation by Lee et al.
(2018) (the only difference is in the weights used to combine the two main loss terms).

For how we convert DeepHit into its DRO variant later, it will be helpful to rewrite the
DeepHit loss in terms of individual losses:

LDeepHit(θ) ,
1

n

n∑
i=1

LDeepHit
i (θ), (9)

where the i-th individual loss is

LDeepHit
i (θ) = β ·

[
−∆i log(fκ(Yi)(Xi; θ))− (1−∆i) log(Sκ(Yi)(Xi; θ))

]
+ (1− β) · 1

n
·∆i

∑
j∈[n] s.t. κ(Yj)>κ(Yi)

exp

(
Sκ(Yi)(Xi; θ)− Sκ(Yi)(Xj ; θ)

σ

)
.

(10)

2.2.3 SODEN

Recently, a number of researchers have considered a differential-equation approach to setting
up a survival analysis model that can avoid the proportional hazards assumption while also
not requiring the modeler to explicitly specify a discrete time grid (Groha et al., 2020; Moon
et al., 2022; Tang et al., 2022a,b). We review one such model called SODEN (Survival model

1. Note that it is possible to instead define the domain of κ to be [0,∞), where we either require t1 , 0 or
alternatively we define a special time point t0 , 0 (and have κ(t) = 0 when t < t1, where t1 is assumed
to be positive). In the latter case where we introduce time point t0, the range of κ would of course be
{0, 1, . . . ,m} instead of [m] = {1, 2, . . . ,m}.
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through Ordinary Differential Equation Networks), proposed by Tang et al. (2022b). Note
that we review a special case that is easier to describe and that corresponds to our survival
analysis problem setup in Section 2.1, where survival times are all nonnegative.

In what follows, we denote H(t|x) , − logS(t|x). From how we defined the hazard
function h(t|x) in equation (2), we have h(t|x) = ∂

∂tH(t|x), so H(t|x) =
∫ t

0 h(u|x)du; this
integral expression reveals why H(t|x) is commonly called the cumulative hazard function.

SODEN uses a neural network f(·; θ) to parameterize the hazard function as the solution
to an ordinary differential equation (ODE):{

∂
∂tH(t|x) = h(t|x) = f

(
(t,H(t|x), x); θ

)
for t > 0,

H(0|x) = 0 (initial condition at time 0),
(11)

where the neural network f(·; θ) has domain [0,∞)× [0,∞)× X and range R. Specifically
f(·; θ) takes as input time t ≥ 0, a cumulative hazard value H(t|x) (which is nonnegative),
and a raw input x ∈ X , and f(·; θ) outputs a single real number that is h(t|x). For example,
f(·; θ) could concatenate all its inputs to form a single vector of numbers that is then
treated as the input to a multilayer perceptron, where the final linear layer outputs a single
number and has softplus activation (to ensure that the output is always positive). The initial
condition follows from the fact that H(0|x) =

∫ 0
0 h(u|x)du = 0.

Learning neural networks in terms of ODEs (as in equation (11)) is possible thanks to the
landmark paper by Chen et al. (2018). Importantly, using any user-specified ODE solver,
given any raw input x ∈ X and neural network parameters θ, we can numerically solve the
ODE in equation (11) (going from time 0 to any user-specified time t > 0) to obtain an
estimate for H(t|x); we denote this estimate as HODE-solve(t|x; θ). In particular, a major
result of Chen et al. (2018) is that the loss function we use to train the neural network can
contain terms involving h(t|x) = f((t,H(t|x), x); θ) and H(t|x), where we replace H(t|x)
with HODE-solve(t|x; θ). Backpropagation is possible with the help of any ODE solver.

To train the SODEN model, Tang et al. (2022b) use the overall loss function

LSODEN(θ) ,
1

n

n∑
i=1

LSODEN
i (θ), (12)

where the i-th individual loss is

LSODEN
i (θ) = −∆i log f

(
(Yi, HODE-solve(Yi|Xi; θ), Xi); θ

)
+HODE-solve(Yi|Xi; θ). (13)

Note that the overall loss (12) is just a negative log likelihood expression, so that minimizing
this loss corresponds to solving a maximum likelihood problem.

2.3 Distributionally Robust Optimization (DRO)

DRO uses a worst-case average error over “large enough” subpopulations. Note that there are
now a number of different versions of DRO (e.g., Hashimoto et al. 2018; Sagawa et al. 2020;
Duchi and Namkoong 2021; Duchi et al. 2022). We specifically use the one by Hashimoto
et al. (2018). Even though existing literature on DRO does not consider survival analysis
to the best of our knowledge, we intentionally review DRO here using survival analysis
notation that we have introduced in Section 2.1. In fact, existing DRO theory actually
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works with many existing survival analysis loss functions already, without modification. In
particular, survival analysis models for which each data point’s individual loss does not
depend on any other data points could trivially use existing DRO machinery. Examples
of such survival analysis models include DeepHit when β = 1 (see equation (10)), SODEN
(see equation (13)), as well as exponential, Weibull, log-logistic, log-normal, and generalized
Gamma accelerated failure time models (Klein and Moeschberger, 2003, Chapter 12).

Problem setup Let P denote the joint distribution over each data point (Xi, Yi,∆i).
This joint distribution corresponds to the generative procedure described in Section 2.1.
We assume that there are K groups that comprise P. In particular, P is a mixture of K
distributions P ,

∑K
k=1 πkPk, where the k-th group occurs with probability πk ∈ (0, 1)

and has associated distribution Pk. Moreover,
∑K

k=1 πk = 1. We assume that we do not
know {(πk,Pk)}Kk=1, nor do we know K. This setting, for instance, handles the case where
we do not exhaustively know all subpopulations to consider. The smallest minority group
corresponds to whichever group has the smallest πk value. A simple special case would be
when K = 2, where data are drawn from either a minority group or a majority group.

We would like to minimize the risk

Rmax(θ) , max
k=1,...,K

E(X,Y,∆)∼Pk [Lindiv(θ;X,Y,∆)],

where Lindiv is a loss function that depends only on the parameters θ (for a survival analysis
model that we aim to learn) and on a single data point (X,Y,∆). However, minimizing
Rmax(θ) is not possible as we do not know any of the latent groups. Nevertheless, it turns
out that there is an optimization problem that we can tractably solve that minimizes an
empirical version of an upper bound on Rmax(θ). We explain what the upper bound is in
Section 2.3.1 and how to empirically minimize the upper bound in Section 2.3.2.

2.3.1 Upper Bound on the Risk Rmax(θ) Using DRO

For a set of distributions Br(P) to be defined shortly, we consider minimizing the following
alternative risk instead:

RDRO(θ; r) , sup
Q∈Br(P)

E(X,Y,∆)∼Q[Lindiv(θ;X,Y,∆)]. (14)

This is the worst-case expected loss when we sample from any distribution in Br(P).
The definition for Br(P) is somewhat technical; we first give its precise definition and

then state how to choose r so that RDRO(θ; r) is an upper bound on Rmax(θ). Importantly,
we will be able to efficiently minimize an empirical version of RDRO(θ; r).

Definition 1 The set Br(P) consists of all distributions Q that have the same (or smaller)
support as P and have χ2-divergence at most r from distribution P. Formally,

Br(P) , {distribution Q such that Q� P and Dχ2(Q‖P) ≤ r},

where, using standard measure theory notation, “ Q � P” means that Q is absolutely con-
tinuous with respect to P, and Dχ2(Q‖P) ,

∫
(dQ

dP − 1)2dP.

10
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Working with Br(P) turns out to be straightforward so long as we have a lower bound on
the smallest group’s probability (i.e., a lower bound on mink=1,...,K πk).

Proposition 2 (Directly follows from Proposition 2 of Hashimoto et al. (2018)) Suppose
that we have a lower bound α > 0 on the K latent groups’ probabilities of occurring (i.e.,
α ≤ mink=1,...,K πk). Then RDRO(θ; rmax) ≥ Rmax(θ), where rmax , ( 1

α − 1)2.

In other words, if we have a guess for α ∈ (0,mink=1,...,K πk], then it suffices to choose r
for Br(P) to be rmax = ( 1

α − 1)2. Furthermore, the risk RDRO(θ; rmax) is an upper bound
on Rmax(θ). In practice, α ∈ (0, 1) is a user-specified hyperparameter since we do not know
π1, . . . , πK nor K. Choosing α to be smaller means that we want to ensure that groups
with smaller probabilities of occurring also have low expected loss. For example, setting
α = 0.1 means that the “rarest” group that we want to ensure low expected loss for occurs
with probability at least 0.1.

To provide some more detail, if there is some underlying true K unknown subpopulation
distributions P1, . . . ,PK (where the value of K itself is also unknown), it is important to
keep in mind that often times it suffices to consider there to simply be two subpopulations:
a minority subpopulation which we could without loss of generality take to be P1 (since we
can reorder the subpopulations so that the minority subpopulation of interest is the first
one) and everyone else (the combination of P2, . . . ,PK , i.e.,

∑K
k=2 πkPk); note that this is

a mixture of two distributions now. Then we would be tuning α with the hope that if
P1 occurs with probability π1 that is at least α, then we ensure low expected loss for P1.
However, if α > π1, then we would no longer ensure that P1 has low expected loss. However,
if the combination of P1 and any of the other mixture components, say, P2 have probability
π1 + π2 ≥ α, then we would be ensuring that this larger subpopulation of π1P1 + π2P2 has
low expected loss. In this manner, as we increase α, we are ensuring low expected loss across
a larger subpopulation, where this subpopulation could be the combination of multiple of
the Pk distributions. More precisely, for any choice of α, if K is any subset of [K] such
that

∑
k∈K πk ≥ α, then we would be ensuring low expected loss for the subpopulation∑

k∈K πkPk.

2.3.2 Empirical DRO Risk

The next issue is how to minimize the risk RDRO(θ; rmax), which at a first glance might
appear daunting due to the supremum over all distributions in Brmax(P). However, a fun-
damental theoretical result from DRO literature is that RDRO(θ; rmax) can be written in a
form that is amenable to computation.

Proposition 3 (Lemma 1 in Duchi and Namkoong (2021)) Suppose ̂̀(θ;X,Y,∆) is upper
semi-continuous with respect to θ. Let [·]+ denote the ReLU function (i.e., [a]+ , max{a, 0}
for any a ∈ R), and Cα ,

√
2( 1
α − 1)2 + 1. Then

RDRO(θ; rmax) = inf
η∈R

{
Cα

√
E(X,Y,∆)∼P

[
[Lindiv(θ;X,Y,∆)− η]2+

]
+ η
}
, (15)

where, as a reminder, rmax = ( 1
α − 1)2.
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Algorithm 1: dro
Input: A training dataset {(Xi, Yi,∆i)}ni=1, minimum subpopulation probability hyperparameter

α, learning rate ξ, max_iterations
Output: Survival model parameters θ̂

1 Obtain initial survival model parameters θ̂0 (e.g., using default PyTorch parameter initialization).
2 for ` = 0 to max_iterations do
3 for i = 1 to n do
4 Set ui ← Lindiv(θ̂`;Xi, Yi,∆i).
5 end

6 Set η̂ ← arg minη∈R
{(√

2
(

1
α
− 1
)2

+ 1
)√

1
n

∑n
i=1[ui − η]2+ + η

}
, where this minimization is

solved using binary search. (This step directly corresponds to minimizing LDRO(θ̂`, η) as
given in equation (16).)

7 Set θ̂`+1 ← θ̂` − ξ · ∇θLDRO(θ̂`, η̂).
8 end
9 return θ̂ ← θ̂max_iterations+1

The right-hand side of equation (15) could be interpreted as follows. Suppose that we have
achieved the optimal value η∗. Then the loss from a data point will be ignored if it is less
than η∗ (due to the ReLU function). Thus, only the data points with losses above η∗ are
considered for learning the survival model.

Note that as we vary the model parameters θ, the different data points’ losses change.
Thus, as a function of θ, the DRO risk RDRO(θ; rmax) dynamically adjusts which data
points to focus on, always prioritizing the points with the highest loss values (again, we only
consider the points with a loss greater than the optimal value of η).

We can readily minimize an empirical version of RDRO(θ; rmax). Specifically, we replace
the expectation on the right-hand side of equation (15) with an empirical average to arrive
at the following optimization problem:

min
θ∈Θ,η∈R

(
Cα

√√√√ 1

n

n∑
i=1

[Lindiv(θ;Xi, Yi,∆i)− η]2+ + η

︸ ︷︷ ︸
,LDRO(θ,η)

)
, (16)

where Θ denotes the feasible set of the model parameters.

Numerical optimization The optimization problem in equation (16) can be solved with
an iterative gradient descent approach (Hu et al., 2020, 2021, 2022b). Specifically, we first
initialize the model parameters θ. Then, following Hashimoto et al. (2018), we alternate
between two steps:
• We fix θ and update η by finding the value of η that minimizes LDRO(θ, η). To do

this, we use binary search to find the global optimum of η since LDRO(θ, η) is a convex
function with respect to η.
• We fix η and update θ by minimizing LDRO(θ, η) (e.g., using gradient descent).

We stop iterating after user-specified stopping criteria are reached (e.g., maximum number
of iterations reached, early stopping due to no improvement in a validation metric after a
pre-specified number of epochs). The pseudocode can be found in Algorithm 1.

12



Fairness in Survival Analysis with Distributionally Robust Optimization

3. Converting Existing Survival Analysis Models into DRO Variants

Throughout this section, we assume that the training points {(Xi, Yi,∆i)}ni=1 are generated
by the procedure stated in Section 2.1. We describe the general class of survival models that
we can convert into DRO variants in Section 3.1. For some models (such as SODEN), the
existing DRO approach stated in Section 2.3 directly works without modification. For other
survival models (such as Cox models), existing DRO theory does not work as advertised
and we propose a sample splitting DRO approach in Section 3.2 to obtain an approximate
loss to minimize that does comply with DRO theory. We establish theoretical guarantees
for this sample splitting DRO approach in Section 3.3.

3.1 Class of Survival Models Convertible Into DRO Variants

Our technique for converting a survival model into its DRO variant works with any survival
model that minimizes a loss of the form

Laverage(θ) =
1

n

n∑
i=1

Li(θ;Ai), (17)

where the i-th loss term Li depends on training point i ∈ [n] as well as possibly other
training points Ai ⊆ [n] \ {i}. We refer to Ai as the adjacency set for the i-th training
point, where Ai can be empty. The basic idea is that the i-th training point’s loss term
could potentially depend on training points aside from the i-th training point.

Importantly, in what follows, we assume that we have access to a function A∗ that tell us
for any data point what its adjacency set is, and we also have access to a function L∗(·, ·; θ)
(with parameter variable θ) that tells us for any data point what its individual loss term
is. Note that θ contains all the underlying survival model’s parameters and is thus shared
across data points. The functions A∗ and L∗(·, ·; θ) (to be defined shortly) can be evaluated
even for points that are not in the training data. We first formally describe these functions
and then we state what they are for the survival models we presented in Section 2.2.

Adjacency function Let Z , X × [0,∞)× {0, 1} denote the set of possible data points
(for instance, each training point (Xi, Yi,∆i) belongs to Z). We assume that given any
(x, y, δ) ∈ Z and any set C of data points from Z, there is a function A∗ that tells us which
points in C are adjacent to (x, y, δ); namely, A∗((x, y, δ), C) denotes the subset of points in
C that are adjacent to (x, y, δ). This means that for the i-th training point (Xi, Yi,∆i), the
training points adjacent to the i-th point (and excluding the i-th point itself) is given by

Zi , A∗
(
(Xi, Yi,∆i), {(Xj , Yj ,∆j) for j ∈ [n] \ {i}}

)
.

Then the adjacency set Ai is precisely defined as the set of training data indices correspond-
ing to the data points in Zi:

Ai , {j ∈ [n] such that (Xj , Yj ,∆j) ∈ Zi}. (18)

Individual loss function Next, individual loss functions are determined using a function
L∗(·, ·; θ), where parameter variable θ. Similar to the function A∗, L∗(·, ·; θ) takes two inputs:
a single data point from Z and a (possibly empty) set of data points from Z. Specifically,
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for any (x, y, δ) ∈ Z and any set C of data points from Z, we use L∗((x, y, δ), C; θ) to denote
the individual loss for data point (x, y, δ). We then define

Li(θ; I) , L∗
(
(Xi, Yi,∆i), {(Xj , Yj ,∆j) for j ∈ I}; θ

)
for any I ⊆ [n]. (19)

In particular, the i-th data point’s loss in equation (17) is taken to be Li(θ;Ai).

We now give explicit examples for the functions A∗ and L∗(·, ·; θ).

Example 1 (Cox models) For any (x, y, δ) ∈ Z and for any (possibly empty) set C of
data points from Z, define the adjacency function

A∗
(
(x, y, δ), C

)
,

{
∅ if δ = 0,{

(x′, y′, δ′) ∈ C such that y′ ≥ y} otherwise,

and the individual loss function

L∗((x, y, δ), C; θ) , −δ
[
f(x; θ)− log

(
exp(f(x; θ)) +

∑
(x′,y′,δ′)∈C

exp(f(x′; θ))

)]
.

One can verify that plugging in these choices for A∗ and L∗(·, ·; θ) into equations (18)
and (19) to obtain Ai and Li(θ;Ai), and subsequently plugging Ai and Li(θ;Ai) into equa-
tion (17), we recover the Cox loss from equation (4).

Example 2 (DeepHit) Recall that DeepHit discretizes time so as to use the user-specified
grid t1 < t2 < · · · < tm, and κ : [t1,∞) → [m] maps from a continuous time to one of the
discrete time indices as given in equation (7). For any (x, y, δ) ∈ Z and for any (possibly
empty) set C of data points from Z, define the adjacency function

A∗
(
(x, y, δ), C

)
,

{
∅ if δ = 0,{

(x′, y′, δ′) ∈ C such that κ(y′) ≥ κ(y)} otherwise,

and the individual loss function

L∗((x, y, δ), C; θ) , β ·
[
− δ log(fκ(y)(x; θ))− (1− δ) log(Sκ(y)(x; θ))

]
+ (1− β) · 1

n
· δ

∑
(x′,y′,δ′)∈C

exp
(Sκ(y)(x; θ)− Sκ(y)(x

′; θ)

σ

)
. (20)

Plugging in these choices for A∗ and L∗(·, ·; θ) into equations (18) and (19) to obtain Ai
and Li(θ;Ai), and subsequently plugging Ai and Li(θ;Ai) into equation (17), we recover the
DeepHit loss from equation (9).

Specifically when β = 1, note that the second term (i.e., the ranking loss) in equation (20)
becomes 0, so that in this special case, the adjacency function A∗ can just always be set to
output the empty set. Conceptually, the ranking loss is the only reason that the DeepHit loss
has terms that couple different data points.
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If Ai = ∅ for all i ∈ [n], then we can directly use the existing DRO optimization (16); the
overall loss decouples across the different data points so we do not run into issues where
multiple data points get “coupled”.

Example 3 (SODEN) For the SODEN model, the overall loss function (12) actually has
no coupling across training points, so it suffices to define the adjacency function A∗ to always
output the empty set. Meanwhile, for any (x, y, δ) ∈ Z and any (possibly empty) set of data
points from Z, we define the individual loss function to be

L∗((x, y, δ), C; θ) , −δ log f
(
(y,HODE-solve(y|x; θ), x); θ

)
+HODE-solve(y|x; θ).

With these definitions of A∗ and L∗(·, ·; θ), one can show that equation (17) becomes the
SODEN loss from equation (13).

As our examples above illustrate, the loss function in equation (17) can vary quite a bit
across different survival models. For Cox models, the loss function corresponds to a negative
partial log likelihood (it is called “partial” since it excludes the baseline hazard function;
we discuss this in more detail in Section 4). For the DeepHit model, the loss function
corresponds to the sum of a negative log likelihood term and a ranking loss term (e.g., if
hyperparameter β is set equal to 0, then we would only be using the ranking loss term). For
the SODEN model, the loss function is just a negative log likelihood. In particular, the loss
function is not required to be a negative log likelihood, such as in the case of using only the
DeepHit ranking loss (without the negative log likelihood term).

3.2 Applying DRO When Adjacency Sets Can be Nonempty

We now discuss how to use DRO when Ai is not guaranteed to be empty.

3.2.1 Heuristic Approach

To convert a survival analysis model that minimizes the loss (17) into one that uses DRO,
a heuristic approach that does not comply with existing DRO theory would be to solve the
DRO optimization problem (16), ignoring the fact that the individual loss terms are not
guaranteed to depend only on a single data point each. To be clear, existing DRO theory
effectively requires that the sets Ai are all empty. As a preview of our experimental results,
we mention that this heuristic approach actually works well in practice but we lack any
justification as to why it should be expected to work well.

3.2.2 Sample Splitting Approach

We now propose a sample splitting approach that creates an approximate loss function that
complies with existing DRO theory. We divide the training data into two sets D1 ⊂ [n] and
D2 , [n] \ D1 of sizes n1 , |D1| and n2 , |D2| = n − n1. The basic idea is that we treat
the data points in D2 as fixed, and then define a DRO loss only over data points in D1. For
each i ∈ D1, we replace its original individual loss Li(θ;Ai) with an approximate version
Li(θ;Ai ∩D2) that only depends on the i-th point along with points in D2. Specifically, we
minimize the new DRO loss function

Lsplit
DRO(θ, η,D1 | D2) , Cα

√
1

|D1|
∑
i∈D1

[Li(θ;Ai ∩ D2)− η]2+ + η. (21)
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The key observation is that conditioned on the points in D2, the loss terms Li(θ;Ai ∩ D2)
appear i.i.d. across i ∈ D1 and the i-th loss only depends on the i-th data point (and possibly
points in D2 which are treated as fixed). Hence, the original DRO theory applies. More
formally, we can state the following.

Proposition 4 Suppose that we condition on indices D2 and the data {(Xi, Yi,∆i) : i ∈
D2}. Then the individual losses Li(θ;Ai∩D2) for i ∈ D1 appear i.i.d. Consequently, we can
directly apply Propositions 2 and 3, where

Lindiv(θ;X,Y,∆) , L∗
(
(X,Y,∆),A∗

(
(X,Y,∆), {(Xj , Yj ,∆j) : j ∈ D2}

)︸ ︷︷ ︸
points in D2

adjacent to (X,Y,∆)

; θ
)
. (22)

Clearly this sample splitting strategy is introducing an approximation since we replace
Li(θ;Ai) with Li(θ;Ai ∩ D2). However, it is unclear how to quantify the approximation
error of the resulting individual loss in equation (22). The technical challenge is that to
measure this approximation error, we need to state what the target individual loss function
is that we are measuring the error from. However, the problem is that DRO theory, to the
best of our knowledge, does not work with an individual loss function that has coupling
across points. In short, it is unclear what the “correct” Lindiv function (that is compliant
with DRO theory) should even be for the general class of survival models that we consider.

One could view Proposition 4 as positing an individual loss function that can be used
with DRO theory. In particular, suppose that we treat n2 = |D2| as fixed, and we sample
{(X ′j , Y ′j ,∆′j)}

n2
j=1 i.i.d. from P (the same distribution that the training data are sampled

from), where these freshly sampled points are also independent of the training data. Then
equation (22) could be viewed as an empirical estimate of the individual risk

Rindiv(θ;X,Y,∆) , E{(X′j ,Y ′j ,∆′j)}n2j=1

[
L∗
(
(X,Y,∆),A∗((X,Y,∆), {(X ′j , Y ′j ,∆′j)}

n2
j=1); θ

)]
.

(23)
We refer to Rindiv as a risk rather than a loss since it cannot be computed exactly in practice
due to the expectation. This risk says that for any individual data point, we measure its
error in comparison to n2 randomly sampled reference data points.

We point out that our sample splitting strategy is somewhat inspired by the “case con-
trol” strategy by Kvamme et al. (2019), where instead of using the original Cox loss, they
approximate each individual data point’s loss (which could depend on many other data
points) to only depend on a single other randomly sampled reference data point. Kvamme
et al. found that by optimizing this modified loss, the resulting model’s prediction accuracy
is often about as good as using the original Cox loss.

Returning to the earlier question of quantifying the “approximation error” of replacing
Li(θ;Ai) with Li(θ;Ai ∩ D2), we reiterate that we do not know of a clear way to do this.
If we state that our goal is to minimize the individual risk Rindiv(θ;X,Y,∆), then clearly
we would use the empirical version of this individual risk as given by Li(θ;Ai ∩D2), and in
particular, it would not make sense to use Li(θ;Ai), which we suspect does not correspond
to any individual loss or risk that works with DRO theory when Ai is nonempty.
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Cross-fitting Although minimizing Lsplit
DRO(θ, η,D1 | D2) is compliant with DRO theory, it

uses data “less effectively” since at most n1 data points (rather than n) are used to compute
the empirical average inside the square root in equation (21) (as compared to the empirical
average inside the square root of LDRO(θ, η) in equation (16)); as reminder, some individual
loss terms might actually be zero (in the case of the Cox model, individual loss terms are zero
for censored data). Moreover, in the new split loss Lsplit

DRO(θ, η,D1 | D2), each individual loss
within the empirical average is computed using only a subset of each individual’s original
adjacency set (for each i ∈ D1, we approximate individual loss Li(θ;Ai) by Li(θ;Ai ∩D2)).

To “more effectively” use data, we use the basic idea from cross-fitting (e.g., Schick 1986;
Chernozhukov et al. 2018). Whereas the loss Lsplit

DRO(θ, η,D1 | D2) treats D2 as fixed and
computes an average over D1, we also do the opposite: we treat D1 as fixed and compute an
average over D2, which would corresponds precisely to using the loss Lsplit

DRO(θ, η′,D2 | D1);
note that we use a different variable η′ than the variable η used in Lsplit

DRO(θ, η,D1 | D2).
Overall, we minimize the loss

Lsplit
DRO(θ, η, η′) ,

1

2
Lsplit

DRO(θ, η,D1 | D2) +
1

2
Lsplit

DRO(θ, η′,D2 | D1)

via coordinate descent, alternating between the following steps:
• Treating η′ and θ as fixed, we update η by finding the value of η that minimizes
Lsplit

DRO(θ, η, η′). This amounts to solving minη∈R L
split
DRO(θ, η,D1 | D2) using binary

search (since Lsplit
DRO(θ, η,D1 | D2) is convex w.r.t. η).

• Treating η and θ as fixed, we update η′ by finding the value of η′ that minimizes
Lsplit

DRO(θ, η, η′). This amounts to solving minη′∈R L
split
DRO(θ, η′,D2 | D1) using binary

search.
• Treating η and η′ as fixed, we update θ by minimizing Lsplit

DRO(θ, η, η′) (e.g., using
gradient descent).

We provide the pseudocode in Algorithm 2.
Note that it is possible to do cross-fitting where we partition the training data into more

than 2 sets D1 and D2, similar to how for K-fold cross-validation, one could use more than 2
folds. We explain how to do this in Appendix B. However, for simplicity, we only use 2-fold
cross-fitting in our experiments later.

3.3 Theoretical Guarantees for the Sample Splitting Approach

We now derive a theoretical guarantee for our sample splitting approach. We begin by
stating assumptions on the survival data generating process:

• A1 (compact raw input space). We assume that the raw input space X ⊆ Rd is
compact, and we denote its ε-covering number in Euclidean distance by N(ε,X ).

• A2 (discrete time). We assume that the survival and censoring times are discrete
along a grid t1 < t2 < · · · < tm (with m ≥ 2), and that all of these time points are
used in the sense that there exists a positive constant ζ > 0 such that

P(Y = t`) ≥ ζ for all time indices ` ∈ [m].

In other words, the probability of an observed time being equal to t` is never 0.

17



Hu and Chen

Algorithm 2: dro (split)
Input: A training dataset {(Xi, Yi,∆i)}ni=1, minimum subpopulation probability hyperparameter

α, subset size n1, learning rate ξ, max_iterations
Output: Survival model parameters θ̂

1 Obtain initial survival model parameters θ̂0 (e.g., using default PyTorch parameter initialization).
2 Set D1 ← {1, 2, . . . , n1} and D2 ← {n1 + 1, . . . , n}.
3 for ` = 0 to max_iterations do
4 for i ∈ D1 do
5 Set ui ← Li(θ̂`;Ai ∩ D2).
6 end

7 Set η̂ ← arg minη∈R
{(√

2
(

1
α
− 1
)2

+ 1
)√

1
n1

∑
i∈D1

[ui − η]2+ + η
}
, where this minimization

is solved using binary search.
8 for i ∈ D2 do
9 Set vi ← Li(θ̂`;Ai ∩D1).

10 end

11 Set η̂′ ← arg minη′∈R

{(√
2
(

1
α
− 1
)2

+ 1
)√

1
n2

∑
i∈D2

[vi − η′]2+ + η′
}
, where this

minimization is solved using binary search.
12 Set θ̂`+1 ← θ̂` − ξ

2

(
∇θLsplit

DRO(θ̂`, η̂,D1 | D2) +∇θLsplit
DRO(θ̂`, η̂

′,D2 | D1)
)
.

13 end
14 return θ̂ ← θ̂max_iterations+1

Next, we state assumptions on the adjacency function A∗ and the loss function L∗ (note
that special instances of Cox and DeepHit models satisfy these conditions, as we explain
later):

• A3 (adjacency function). We assume that the adjacency function is as stated for
the DeepHit model (in fact, under ssumption A2, the adjacency function for the Cox
model would be equivalent but for simplicity, we use the version stated for the DeepHit
model that explicitly has time discretized).

• A4 (loss function). We assume that the individual loss function L∗ is of the form

L∗((x, y, δ), C; θ)

= φindiv((x, y, δ); θ) + δ · φtransform

( ∑
(x′,y′,δ′)∈C

φcouple((x, y, δ), (x
′, y′, δ′); θ)

)
for some functions φindiv(·; θ) : Z → R, φcouple(·, ·; θ) : Z × Z → R, and φtransform :
R→ R. These functions satisfy the following conditions:

(a) There exist constants Mindiv ∈ [0,∞) and Mcouple-min,Mcouple-max ∈ (0,∞) such
that

φindiv((x, y, δ); θ) ∈ [0,Mindiv] for all (x, y, δ) ∈ Z and θ ∈ Θ,

and

φcouple((x, y, δ), (x
′, y′, δ′); θ) ∈ [Mcouple-min,Mcouple-max]

for all (x, y, δ), (x′, y′, δ′) ∈ Z and θ ∈ Θ.
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Importantly, when a coupling term appears, it is nontrivial in the sense that it is
not just equal to 0, whereas we allow for the possibility that Mindiv = 0.

(b) The function φtransform is either (a) the identity function φtransform(s) = s, or (b)
the function φtransform(s) = log(1 + s).

(c) For any fixed y ∈ {t1, t2, . . . , tm}, δ ∈ {0, 1}, set of data points C from Z, and
parameter setting θ ∈ Θ, the map x 7→ L∗((x, y, δ), C; θ) is L-Lipschitz with
respect to Euclidean norm, i.e., for all x, x′ ∈ X ,

|L∗((x, y, δ), C; θ)− L∗((x′, y, δ), C; θ)| ≤ L‖x− x′‖2.

We define
Rsplit

DRO(θ, η) , Cα
√

E(X,Y,∆)∼P
[
[Rindiv(θ;X,Y,∆)− η]2+

]
+ η,

where, as a reminder, Cα =
√

2( 1
α − 1)2 + 1, and Rindiv is defined in a manner that de-

pends on taking the expectation with respect to a fresh sample {(X ′i, Y ′i ,∆′i)}
n2
i=1 with n2

treated as a constant. Put another way, Rsplit
DRO(θ, η) is simply the population-level version

of Lsplit
DRO(θ, η,D1 | D2). In particular, Rsplit

DRO(θ, η) does not depend on the training data.
We are now ready to state our main theoretical result.

Theorem 5 Fix n ∈ N even and randomly split the training data into D1 and D2 of sizes
n1 = n2 = n/2. Let ω > 0. Suppose that Assumptions A1–A4 hold. If φtransform(s) = s,
then define

M ,Mindiv +
Mcouple-max

2
n,

M ′ , (Mcouple-max −Mcouple-min)

√
ωn

2ζ
.

If instead φtransform(s) = log(1 + s), then define

M ,Mindiv + log
(

1 +
Mcouple-max

2
n
)
,

M ′ ,
4(Mcouple-max −Mcouple-min)

ζMcouple-min

√
ω

n
.

Then with probability at least

1− 2

[
M

(Cα − 1)
[
2
√

ω
n max{2, Cα

Cα−1}M + (2L+ 1)M ′
] + N(M ′,X )

]
e−ω −me−

nζ
16 (24)

over randomness in the training data, we have∣∣∣∣ inf
η∈R

Lsplit
DRO(θ, η,D1 | D2)− inf

η∈R
Rsplit

DRO(θ, η)

∣∣∣∣
≤ 10C2

α

[√
2

n
max

{
2,

Cα
Cα − 1

}(√
2ω + 1

)
M + (2L+ 1)M ′

]
. (25)

19



Hu and Chen

We defer the proof of this theorem to Appendix C, where we state a slightly more general
result in which n need not be even, and n1 need not equal n2 (we present the theorem in
the manner above to prevent the notation from getting more unwieldy). To help provide
intuition for Theorem 5, we illustrate its use for special cases of Cox and DeepHit models,
where we see that as n→∞, the probability in equation (24) goes to 1 and the right-hand
side of bound (25) goes to 0.

Corollary 6 (Special case of a Cox model) Suppose that the raw input space X ⊆ Rd and
the parameter vector space Θ ∈ Rd are both set to be the unit ball in Rd, where d ≥ 5.
Consider the standard Cox model where f(x; θ) = θ>x, and time is discrete along the finite
grid t1 < t2 < · · · < tm that satisfies Assumption A2. This setup implies that Assumptions
A1, A3, and A4 are also satisfied. Specifically for Assumption A4, we have

φindiv((x, y, δ); θ) = 0︸︷︷︸
Mindiv

,

φcouple((x, y, δ), (x
′, y′, δ′); θ) = eθ

>(x−x′) ∈ [ e−2︸︷︷︸
Mcouple-min

, e2︸︷︷︸
Mcouple-max

],

φtransform(s) = log(1 + s).

Furthermore, a valid Lipschitz constant in Assumption A4(c) in this case is L = 1.
Now assume that the number of training data is sufficiently large, namely

n ≥ max

{(4(e2 − e−2)

ζe−2

)2(d+ 1

2

)
e

√
2 log

((
4(e2−e−2)

ζe−2

)2(
d+1
2

))
−1

,

2e
− 6(e4−1)

ζmax{2, Cα
Cα−1

}
−2

, e

√
2(log d+1

2
−1)+log d+1

2 , e
2
d+1

}
.

Define Υ , 2
[

1

2 max
{

2(Cα−1),Cα
} +

( 3ζe−2

4(e2−e−2)

)d], which is constant with respect to n. Then

with probability at least

1− Υ√
n
−me−

nζ
16 (26)

over randomness in the training data, we have∣∣∣∣ inf
η∈R

Lsplit
DRO(θ, η,D1 | D2)− inf

η∈R
Rsplit

DRO(θ, η)

∣∣∣∣
≤ 10C2

α

[√
2

n
max

{
2,

Cα
Cα − 1

}(√
(d+ 1) log n+ 1

)
log
(

1 +
e2

2
n
)

+
12(e2 − e−2)

ζe−2

√
(d+ 1) log n

2n

]
= Õ

( 1√
n

)
, (27)

where Õ is big O notation ignoring log factors.
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We provide the proof in Appendix D. The key idea is that we set ω = d+1
2 log n for

Theorem 5 and we further impose constraints on n and d that enable us to simplify the
probability bound in equation (24).

Corollary 7 (Special case of a DeepHit model) Just as in Corollary 6, we assume X ⊆ Rd
and Θ ∈ Rd are both set to be the unit ball in Rd,where d ≥ 5. We consider a DeepHit model
defined over a discrete time grid with m ≥ 3 time points, where the conditional probabilities
of each time index satisfy the bound

fj(x; θ) = P(T = tj | X = x) ≥ % for all x ∈ X , j ∈ [m], θ ∈ Θ.

Furthermore, we assume that the very last time step tm is special in that it is used to mean
“any time strictly after all the observed training times” (so that tm > Yj for all j ∈ [n]); of
course this last time step also obeys the bound above of fm(x; θ) ≥ %. Moreover, we assume
that fj(·; θ) is 1-Lipschitz:

|fj(x; θ)− fj(x′; θ)| ≤ ‖x− x′‖2 for all x, x′ ∈ X , j ∈ [m], θ ∈ Θ.

We further suppose that Assumption A2 holds, that the number of training data is sufficiently
large

n ≥ max

{
(1− β)2

(
e(1−%)/σ − e(%−1)/σ

)2(d+ 1

4ζ

)
e

√
2 log

(
(1−β)2(e(1−%)/σ−e(%−1)/σ)2

(
d+1
4ζ

))
,

e

√
2(log d+1

2
−1)+log d+1

2 , e
2
d+1

}
,

and that
log
(

(1− β)2(e(1−%)/σ − e(%−1)/σ)2
(d+ 1

4ζ

))
> 1.

Then this setup as stated also implies that Assumptions A1, A3, and A4 are satisfied. Specif-
ically for Assumption A4, we have

φindiv((x, y, δ); θ) = β ·
[
− δ log(fκ(y)(x; θ))− (1− δ) log(Sκ(y)(x; θ))

]
,

φcouple((x, y, δ), (x
′, y′, δ′), C; θ) = (1− β) · 1

n
· exp

(Sκ(y)(x; θ)− Sκ(y)(x
′; θ)

σ

)
,

φtransform(s) = s,

where one can verify that

Mindiv = β log
1

%
,

Mcouple-min =
(1− β

n

)
e
%−1
σ ,

Mcouple-max =
(1− β

n

)
e

1−%
σ ,

and that x 7→ L∗((x, y, δ), C; θ) has Lipschitz constant L = 2β(m−1)
% .

21



Hu and Chen

Define the constant

Ψ ,
2

(Cα − 1)
[
2 max{2, Cα

Cα−1}+ (2L+ 1)
((

(1−β)e(1−%)/σ−(1−β)e(%−1)/σ
)(

2β log 1
%

+(1−β)e(1−%)/σ
) √

2
ζ

)]
+ 2

(
3
√

2ζ

(1− β)e(1−%)/σ − (1− β)e(%−1)/σ

)d
.

Then with probability at least

1− Ψ√
n
−me−

nζ
16 ,

we have∣∣∣∣ inf
η∈R

Lsplit
DRO(θ, η,D1 | D2)− inf

η∈R
Rsplit

DRO(θ, η)

∣∣∣∣
≤ 10C2

α

[√
2

n
max

{
2,

Cα
Cα − 1

}(√
(d+ 1) log n+ 1

)(
β log

1

%
+

(1− β)e(1−%)/σ

2

)
+
(4β(m− 1)

%
+ 1
)√(d+ 1) log n

ζn

(1− β)(e(1−%)/σ − e(%−1)/σ)

2

]
= Õ

( 1√
n

)
.

The proof is in Appendix E and uses similar ideas as that of Corollary 6. The constants
change since M and M ′ are different, but we again set ω = d+1

2 log n in the statement of
Theorem 5.

Corollary 8 (Cross-fitting) We assume the same setting as Theorem 5. For a fixed θ ∈ Θ,
the cross-fitting approach solves

inf
η,η′∈R

Lsplit
DRO(θ, η, η′) =

1

2
inf
η∈R

Lsplit
DRO(θ, η,D1 | D2) +

1

2
inf
η′∈R

Lsplit
DRO(θ, η′,D2 | D1).

With probability at least

1− 4

[
M

(Cα − 1)
[
2
√

ω
n max{2, Cα

Cα−1}M + (2L+ 1)M ′
] + N(M ′,X )

]
e−ω − 2me−

nζ
16 ,

we have ∣∣∣∣ inf
η,η′∈R

Lsplit
DRO(θ, η, η′)− inf

η∈R
Rsplit

DRO(θ, η)

∣∣∣∣
≤ 10C2

α

[√
2

n
max

{
2,

Cα
Cα − 1

}(√
2ω + 1

)
M + (2L+ 1)M ′

]
.

Proof The proof is straightforward and amounts to applying Theorem 5 for each of the
two folds separately and then union bounding over the bad events of the two folds. This
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union bound just multiplies the bad event’s probability in bound (24) by 2. Then since this
bad event does not happen for either fold, we have

max

{∣∣∣∣ inf
η∈R

Lsplit
DRO(θ, η,D1 | D2)− inf

η∈R
Rsplit

DRO(θ, η)

∣∣∣∣, ∣∣∣∣ inf
η∈R

Lsplit
DRO(θ, η,D2 | D1)− inf

η∈R
Rsplit

DRO(θ, η)

∣∣∣∣
}

≤ 10C2
α

[√
2

n
max

{
2,

Cα
Cα − 1

}(√
2ω + 1

)
M + (2L+ 1)M ′

]
.

Then ∣∣∣∣ inf
η,η′∈R

Lsplit
DRO(θ, η, η′)− inf

η∈R
Rsplit

DRO(θ, η)

∣∣∣∣
=

∣∣∣∣12 inf
η∈R

Lsplit
DRO(θ, η,D1 | D2) +

1

2
inf
η′∈R

Lsplit
DRO(θ, η′,D1 | D2)

− 1

2
inf
η∈R

Rsplit
DRO(θ, η)− 1

2
inf
η∈R

Rsplit
DRO(θ, η)

∣∣∣∣
=

1

2

∣∣∣∣ inf
η∈R

Lsplit
DRO(θ, η,D1 | D2)− inf

η∈R
Rsplit

DRO(θ, η)

+ inf
η′∈R

Lsplit
DRO(θ, η′,D1 | D2)− inf

η∈R
Rsplit

DRO(θ, η)

∣∣∣∣
≤ 1

2

∣∣∣∣ inf
η∈R

Lsplit
DRO(θ, η,D1 | D2)− inf

η∈R
Rsplit

DRO(θ, η)

∣∣∣∣
1

2

∣∣∣∣ inf
η′∈R

Lsplit
DRO(θ, η′,D1 | D2)− inf

η∈R
Rsplit

DRO(θ, η)

∣∣∣∣
≤ 10C2

α

[√
2

n
max

{
2,

Cα
Cα − 1

}(√
2ω + 1

)
M + (2L+ 1)M ′

]
.

4. An Exact DRO Cox Approach

We now derive an exact DRO approach for Cox models. The rough idea is that we repa-
rameterize the Cox model in such a way that the resulting loss function decouples across
training data points, removing the coupling issue. Our derivation here is specific to the Cox
model and, as far as we are aware, does not easily generalize to other survival models with
nonempty adjacency sets.

To obtain an exact approach for using the Cox model with DRO that does not require
sample splitting, we turn to a standard derivation of the Cox partial likelihood loss. Specifi-
cally, Breslow (1972) showed that the Cox log partial likelihood could be derived by assuming
that the baseline hazard function h0 is piecewise constant. First, denote the unique times
in which the critical event happened in the training data as t1 < t2 < · · · < tm (so that
there are m unique times in which the event happened), with the convention that t0 , 0
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(note that we are reusing notation used for the discrete time grid for DeepHit; however,
the difference is that for the Cox model, the time grid is typically set based on the unique
critical event times whereas for DeepHit, the time grid is user-specified and need not be the
unique critical event times). Then we parameterize the baseline hazard function as

h0(t;ψ) ,

{
eψ` if t`−1 < t ≤ t` for ` ∈ [m],

0 otherwise,
(28)

where ψ1, ψ2, . . . , ψm ∈ R are parameters to be learned, and ψ , (ψ1, . . . , ψm).2

Next, let κ(Yi,∆i) ∈ [m] denote the discrete time index that Yi corresponds to in a
manner that depends also on ∆i: if ∆i = 1, then κ(Yi,∆i) is set equal to the index ` such
that t` = Yi, and if ∆i = 0 (so that Yi is a censoring time), then we set κ(Yi,∆i) to be the
largest time index corresponding to when a critical event happened strictly before Yi (i.e.,
we use the largest index in {` ∈ {0, 1, . . . ,m} : t` < Yi}). Then the full negative Cox log
likelihood can be written as

LCox-full(θ, ψ) ,
1

n

n∑
i=1

LCox-full
i (θ, ψ), (29)

where

LCox-full
i (θ, ψ) , −∆i[f(Xi; θ) + ψκ(Yi,∆i)] + ef(Xi;θ)

κ(Yi,∆i)∑
`=1

(t` − t`−1)eψ` . (30)

Then a standard result is as follows.

Proposition 9 (slight variant of Breslow 1972) Suppose that the baseline hazard func-
tion is piecewise constant as stated in equation (28). Suppose that we preprocess the data so
that for each training point i ∈ [n] that is censored (i.e., ∆i = 0), we set Yi , tκ(Yi,0) (we
do not modify the observed times for the uncensored training points). Then the partial Cox
loss LCox (from equation (4)) is related to the full Cox loss LCox-full (from equation (29)) by

LCox(θ) = min
ψ∈Rm

LCox-full(θ, ψ) + constant w.r.t. θ.

Hence, arg minθ∈Θ L
Cox(θ) = arg minθ∈Θ{minψ∈Rm L

Cox-full(θ, ψ)}, where Θ is the feasible
set of model parameters.

While the proof is standard (Breslow, 1972), to keep the paper relatively self-contained, we
provide it in Appendix A.3, where we also provide a little bit of background on how the
expression for individual loss LCox-full

i (θ, ψ) (from equation (30)) is derived. We separately
point out that, as far as we are aware, the full Cox loss in equation (29) is typically not
used in practice and is instead mainly used for theoretically justifying the standard Cox loss
(equation (4)) that actually is extremely commonly used in practice.

2. Note that in equation (28), the exponential function can be replaced with any differentiable, strictly
increasing, positive activation function (e.g., instead of eψ` , we could use the softplus function
log (1 + exp(ψ`))). For ease of exposition, we stick to using the exponential function.
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An immediate consequence of Proposition 9 is that we could apply DRO to the loss
LCox-full(θ, ψ) (using the individual losses given by LCox-full

i (θ, ψ) in equation (30)), which
does not involve coupling across training points. The high-level idea is that whereas LCox(θ)
had the coupling issue, by introducing an additional parameter variable ψ, we remove the
dependence between the training points’ contributions.

Numerical optimization For completeness, we now state how to use DRO with the full
Cox loss. We first define

LDRO-Cox-exact(θ, ψ, η) , Cα

√√√√ 1

n

n∑
i=1

[LCox-full
i (θ, ψ)− η]2+ + η. (31)

Then we alternate between the following two steps until convergence:
• Treating θ and ψ as fixed, we update η by finding the value of η that minimizes
LDRO-Cox-exact(θ, ψ, η). As before, this step is done using binary search to find the
global minimum since LDRO-Cox-exact(θ,ψ,η) is convex with respect to η.
• Treating η as fixed, we update (θ, ψ) by minimizing LDRO-Cox-exact(θ, ψ, η) (e.g., using

gradient descent).
This procedure corresponds to using Algorithm 1, where Lindiv is set to be LCox-full

i (θ, ψ)
(equation (30)), and the survival model parameter variable θ is replaced by (θ, ψ). Note
that we intentionally specified the parameter variable ψ so that it remains unconstrained so
that it could be optimized along with θ using standard gradient descent variants.

5. Experiments

To see how well our general proposed DRO conversion strategy works in practice (the heuris-
tic approach without guarantees and, separately, our sample splitting DRO approach), we
now conduct extensive experiments to evaluate the accuracy and fairness of DRO variants
of different survival models compared to the original versions of these models, as well as to
versions of these models modified to encourage fairness using existing fairness regularizers.
Specifically for the Cox model, we also show how well our exact Cox DRO approach works
in practice.

We describe the datasets we use in Section 5.1, the experimental setup in Section 5.2, the
evaluation metrics in Section 5.3, and the models evaluated in Section 5.4. We then present
our experimental results in Section 5.5. Lastly, we show how to compare across multiple
models using a plot inspired by ROC curves in Section 5.6.

5.1 Datasets

We use three standard, publicly available survival analysis datasets:
• The FLC dataset (Dispenzieri et al., 2012) is from a study on the relationship between

serum free light chain (FLC) and mortality of Olmsted County residents aged 50 or
higher. We treat discretized age (age≤65 and age>65) and gender (women and men)
as sensitive attributes.
• The SUPPORT dataset (Knaus et al., 1995) is from a study at Vanderbilt Univer-

sity on understanding prognoses, preferences, outcomes, and risks of treatment by
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Table 1: Basic dataset characteristics.

FLC SUPPORT SEER

# samples 7,874 9,105 28,018
# features 6 (9∗) 14 (19∗) 11

Censoring rate 0.725 0.319 0.654
Sensitive attributes age, gender age, race, gender age, race

∗ indicates the number before preprocessing (preprocessing removes some features)

analyzing survival times of severely ill hospitalized patients. We treat discretized age
(age≤65 and age>65), race (white and non-white), and gender (women and men) as
sensitive attributes.
• The SEER dataset is on breast cancer patients from the Sureillance, Epidemiology,

and End Results (SEER) program of the National Cancer Institute. We collected
this dataset using the data extraction software from the official SEER program of
the National Cancer Institute. We used 11 covariates that also appear in an existing
snapshot of the SEER dataset (Teng, 2019) that only contained 4024 data points. We
also treat discretized age (age≤65 and age>65) and race (white and non-white) as
sensitive attributes.

These datasets have appeared in existing fair survival analysis research (e.g., Keya et al.
2021; Rahman and Purushotham 2022; Zhang and Weiss 2022) although not always with
all three of these appearing within the same paper. Basic characteristics of these datasets
are reported in Table 1.

5.2 Experimental Setup

For all models, we first use a random 80%/20% train/test split to hold out a test set that
will be the same across experimental repeats for all datasets. Then we repeat the following
basic experiment 10 times: (1) We hold out 20% of the training data to treat as a validation
set, which is used to tune hyperparameters. (2) We then compute evaluation metrics across
the same test set. We describe the evaluation metrics and how hyperparameter tuning
works shortly. When we report our experimental results, we provide the mean and standard
deviation of each metric across the 10 experimental repeats. More hyperparameter settings
can be found in Appendix G.

5.3 Evaluation Metrics

For accuracy metrics, we use Time-dependent concordance index (Ctd, higher is better)
(Antolini et al., 2005) and Integrated IPCW Brier Score (IBS, lower is better) (Graf et al.,
1999). For fairness metrics, we use the concordance imparity (CI) fairness metric by (Zhang
and Weiss, 2022), Censoring-based individual fairness (FCI) (Rahman and Purushotham,
2022), and Censoring-based group fairness (FCG) (Rahman and Purushotham, 2022). For
these fairness metrics, lower is better. Definitions of these fairness metrics are in Appendix F.

Note that the fairness metrics CI and FCG require us to specify groups. For the FLC
dataset, we use (discretized) age and, separately, gender (i.e., we first run experiments using
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only age in evaluating CI and FCG; we then re-run experiments using gender instead of age).
For the SUPPORT dataset, we separately use gender, age, and race. For the SEER dataset,
we separately use race and age.

5.4 Models Evaluated

Working off our running examples from Section 2.2, we consider Cox models (classical and
deep), DeepHit, and SODEN. For each of these, we compare the original model with its DRO
variants using our conversion strategy (the heuristic approach and also the sample splitting
approach stated in Section 3.2; for Cox models, we also compare with the exact DRO Cox
approach, and for SODEN, there is no need to do sample splitting and the heuristic approach
is actually exact). We also try versions of the original models modified to encourage fairness
using existing fairness regularizers.

Note that when we use our sample splitting DRO approach, for simplicity, we randomly
split the training data so that D1 and D2 are (approximately) the same size and, moreover,
we stratify the sampling so that D1 and D2 have (approximately) the same censoring rates.
We include some supplemental experiments that consider deviations of both of these in
Appendix H that focus specifically on Cox models.

Cox models We separately experiment on the classical linear setting (the log partial
hazard function is f(x; θ) = θTx) or the “deep” nonlinear setting in which f is a multilayer
perceptron (MLP). In the linear case, we denote the heuristic DRO variant as dro-cox and
the sample splitting DRO variant as dro-cox (split). For the nonlinear case, we add the
prefix “Deep” to these names for clarity.

In terms of baselines, we use the unregularized linear Cox model (Cox, 1972) (denoted
as “Cox” in tables later), whereas the unregularized nonlinear Cox model (Katzman et al.,
2018) is denoted as “DeepSurv”. As baselines, we use regularized versions of either the stan-
dard Cox or DeepSurv models, using different fairness regularization terms. When we use
individual, group, or intersectional regularization terms by Keya et al. (2021) (we discuss
these in Appendix F), we add the suffix “I(Keya et al.)”, “G(Keya et al.)”, or “∩(Keya et al.)”
respectively to a model name; for example, “DeepSurvG(Keya et al.)” corresponds to Deep-
Surv with group fairness regularization by Keya et al. (2021). When we use the individual
or group fairness regularization terms that account for censoring information (Rahman and
Purushotham, 2022), we instead use the suffix “I(R&P)” or “G(R&P)”.3 Note that group
fairness regularization (suffixes “G(Keya et al.)” and “G(R&P)”) uses the same groups that
test set CI and FCG fairness metrics use. As additional baselines, we also use the pseudo
value-based approaches proposed by Rahman and Purushotham (2022), namely their Fair
DeepPseudo and Fair PseudoNAM methods (abbreviated as “FIDP” and “FIPNAM” re-
spectively; note that these abbreviations are the same as the ones used by Rahman and
Purushotham (2022) and, moreover, following Rahman and Purushotham’s paper and im-
plementation, FIDP and FIPNAM specifically use individual fairness regularization).

3. Rahman and Purushotham (2022) did not propose an intersectional fairness regularizer and technically
did not try regularized versions of Cox models using their fairness definitions. However, it is straight-
forward to adapt their individual and group fairness definitions as regularization terms for a Cox model,
especially as their work is directly modifying definitions by Keya et al. (2021).
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In terms of hyperparameter tuning, we use the strategy by Keya et al. (2021): the final
hyperparameter setting used per dataset and per method is determined based on a preset
rule in practice that allows up to a 5% degradation in the validation set Ctd from the classical
Cox model (for the linear setting) or DeepSurv (for the nonlinear setting) while minimizing
the validation set CI fairness metric or FCG fairness metric (for details, see Appendix H).

DeepHit and SODEN For DeepHit (Tang et al., 2022b), we denote its heuristic DRO
variant as dro-deephit and its sample splitting DRO variant as dro-deephit (split).
For SODEN (Tang et al., 2022b), there is only one DRO variant to consider which we denote
as dro-soden.

In terms of baselines, we consider the original DeepHit and SODEN models that do
not account for fairness. We further adapt the group-based fairness regularization that
accounts for censoring from Rahman and Purushotham (2022) to each of DeepHit and
SODEN separately as additional baselines (DeepHitG(R&P) and SODENG(R&P)).

The hyperparameter setting used per dataset and per method is also determined based
on a preset rule in practice that allows up to a 5% degradation in the validation set Ctd

from the original model (that does not encourage fairness) while minimizing the validation
set CI fairness metric or FCG fairness metric. Hyperparameter grids for all methods are in
Appendix G, where we also provide information on the compute environment that we used.

5.5 Experimental Results

Cox models We compare dro-cox and dro-cox (split) against various baselines using
a similar experimental setup as Keya et al. (2021). Specifically, we report the test set
evaluation metrics for FLC (using age to evaluate CI and FCG) in Table 2, SUPPORT
(gender) in Table 3, and SEER (race) in Table 4. Experimental results using other sensitive
attributes for the datasets have similar trends and are in Appendix H. From these tables,
we have the following observations:
• Among linear methods, the heuristic dro-cox method consistently outperforms baselines

in terms of the CI fairness metric (and often on the other fairness metrics too) while
still achieving reasonably high accuracy scores. A similar trend holds among nonlinear
methods for the heuristic deep dro-cox variant.
• The performance difference (in terms of both accuracy and fairness) between the heuristic

dro-cox and sample-splitting-based dro-cox (split) is not clear cut; sometimes one
performs better than the other and vice versa. This holds for their linear variants as well
as, separately, their nonlinear (deep) variants.
• As expected, the unregularized Cox and DeepSurv models often have (among) the highest

accuracy scores but tend to have poor performance on fairness metrics.
• The baselines that are regularized variants of Cox and DeepSurv typically do not simul-

taneously achieve low scores across all fairness metrics. Even though some of these can
work well with some of the metrics by Keya et al. (2021), they clearly do not work as well
as our dro-cox variants when it comes to the CI fairness metric that actually accounts
for accuracy.

Effect of α. To show how α trades off between fairness and accuracy, we show results for
dro-cox in the linear setting across all datasets (using age for evaluating FG and CI) in
Figure 1, where we use c-index as the accuracy metric. It is clear that accuracy tends
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Table 2: Cox model test set accuracy and fairness metrics on the FLC (age) dataset. We report
mean and standard deviation (in parentheses) across 10 experimental repeats (each repeat
holds out a different 20% of the training data as a validation set for hyperparameter tuning;
the test set is the same across experimental repeats). Higher is better for metrics with “↑”,
while lower is better for metrics with “↓”. The best results are shown in bold for linear
and, separately, nonlinear models. When one of our methods outperforms all baselines
(in linear and, separately, nonlinear models), we highlight the corresponding cell in green.
Evaluation metrics are reported to 4 decimal places unless the number is exactly equal
to 0 (in which case we just state 0 without using a decimal point) or smaller than 10−4 (in
which case we report the number in scientific notation). Note that achieving FCI or FCG

scores that are exactly 0 is due to the manner in which these fairness metrics are defined.5

Methods
CI-based Tuning FCG-based Tuning

Accuracy Metrics Fairness Metrics Accuracy Metrics Fairness Metrics
Ctd↑ IBS↓ CI(%)↓ FCI↓ FCG↓ Ctd↑ IBS↓ CI(%)↓ FCI↓ FCG↓

L
in

ea
r

Cox 0.8032
(0.0002)

0.1739
(0.0004)

0.5350
(0.0413)

0.0249
(0.0002)

0.0044
(2.8919e-05)

0.8032
(0.0002)

0.1739
(0.0004)

0.5350
(0.0413)

0.0249
(0.0002)

0.0044
(2.8919e-05)

CoxI (Keya et al.) 0.7937
(0.0068)

0.1414
(0.0073)

0.5400
(0.3270)

0.0129
(0.0028)

0.0021
(0.0005)

0.7923
(0.0074)

0.1334
(0.0034)

0.4010
(0.2631)

0.0068
(0.0006)

0.0010
(0.0001)

CoxI (R&P) 0.8029
(0.0005)

0.1735
(0.0023)

0.4660
(0.1551)

0.0247
(0.0009)

0.0043
(0.0002)

0.8020
(0.0007)

0.1700
(0.0034)

0.2530
(0.2658)

0.0233
(0.0014)

0.0040
(0.0003)

CoxG(Keya et al.) 0.7974
(0.0117)

0.1492
(0.0077)

0.3410
(0.3011)

0.0123
(0.0043)

0.0024
(0.0007)

0.7862
(0.0133)

0.1413
(0.0035)

0.5360
(0.3888)

0.0079
(0.0029)

0.0016
(0.0004)

CoxG(R&P) 0.8029
(0.0005)

0.1735
(0.0023)

0.4660
(0.1551)

0.0247
(0.0009)

0.0043
(0.0002)

0.8015
(0.0003)

0.1673
(0.0004)

0.0390
(0.0243)

0.0222
(0.0002)

0.0038
(3.3934e-05)

Cox∩(Keya et al.) 0.7870
(0.0029)

0.1400
(0.0005)

1.0790
(0.1098)

0.0073
(0.0002)

0.0016
(0.0001)

0.7875
(0.0021)

0.1402
(0.0004)

1.1190
(0.1073)

0.0073
(0.0002)

0.0016
(0.0001)

DRO-COX 0.7959
(0.0036)

0.1408
(0.0050)

0.0510
(0.0401)

0.0078
(0.0051)

0.0012
(0.0008)

0.7958
(0.0049)

0.1330
(0.0002)

0.1620
(0.1132)

0
(0)

0
(0)

DRO-COX (SPLIT) 0.7964
(0.0045))

0.1389
(0.0008)

0.2350
(0.1277)

0
(0)

0
(0)

0.7964
(0.0045))

0.1389
(0.0008)

0.2350
(0.1277)

0
(0)

0
(0)

EXACT DRO-COX 0.7821
(0.0142)

0.3916
(0.0487)

0.9838
(0.4567)

0.0094
(0.0016)

0.0019
(0.0003)

0.7821
(0.0142)

0.3916
(0.0487)

0.9838
(0.4567)

0.0094
(0.0016)

0.0019
(0.0003)

N
on

li
n
ea

r

DeepSurv 0.8070
(0.0014)

0.1767
(0.0018)

0.2940
(0.2147)

0.0259
(0.0004)

0.0050
(0.0003)

0.8070
(0.0014)

0.1767
(0.0018)

0.2940
(0.2147)

0.0259
(0.0004)

0.0050
(0.0003)

DeepSurvI (Keya et al.) 0.7884
(0.0070)

0.1441
(0.0130)

0.3700
(0.2523)

0.0127
(0.0080)

0.0025
(0.0017)

0.7994
(0.0069)

0.1672
(0.0051)

0.6310
(0.5316)

0.0245
(0.0014)

0.0050
(0.0005)

DeepSurvI (R&P) 0.8070
(0.0033)

0.1736
(0.0086)

0.2300
(0.1471)

0.0246
(0.0040)

0.0047
(0.0008)

0.8086
(0.0015)

0.1766
(0.0024)

0.1560
(0.0956)

0.0258
(0.0011)

0.0050
(0.0002)

DeepSurvG(Keya et al.) 0.7990
(0.0120)

0.4190
(0.2487)

0.2490
(0.1646)

0.0071
(0.0069)

0.0015
(0.0013)

0.8061
(0.0020)

0.4713
(0.2142)

0.2700
(0.2260)

0.0070
(0.0081)

0.0014
(0.0016)

DeepSurvG(R&P) 0.8069
(0.0033)

0.1735
(0.0086)

0.2580
(0.1661)

0.0245
(0.0040)

0.0047
(0.0008)

0.8086
(0.0015)

0.1766
(0.0024)

0.1560
(0.0956)

0.0258
(0.0011)

0.0050
(0.0002)

DeepSurv∩(Keya et al.) 0.7751
(0.0018)

0.1357
(0.0002)

0.4300
(0.1091)

0.0037
(0.0001)

0.0008
(1.3494e-05)

0.7751
(0.0018)

0.1357
(0.0002)

0.4300
(0.1091)

0.0037
(0.0001)

0.0008
(1.3494e-05)

FIDP 0.8077
(0.0022)

0.1228
(0.0019)

0.2530
(0.0974)

0.0239
(0.0018)

0.0048
(0.0004)

0.8077
(0.0022)

0.1228
(0.0019)

0.2530
(0.0974)

0.0239
(0.0018)

0.0048
(0.0004)

FIPNAM 0.7829
(0.0037)

0.1810
(0.0050)

0.3660
(0.0508)

0.0251
(0.0006)

0.0052
(0.0004)

0.7829
(0.0037)

0.1810
(0.0050)

0.3660
(0.0508)

0.0251
(0.0006)

0.0052
(0.0004)

Deep DRO-COX 0.8068
(0.0024)

0.1595
(0.0135)

0.0730
(0.0822)

0.0189
(0.0056)

0.0036
(0.0013)

0.7781
(0.0091)

0.1331
(0.0002)

2.4300
(0.3462)

0.0001
(3.1257e-05)

9.9660e-06
(3.5999e-06)

Deep DRO-COX (SPLIT) 0.7784
(0.0092)

0.1647
(0.0037)

2.3210
(0.3590)

0
(0)

0
(0)

0.7784
(0.0092)

0.1647
(0.0037)

2.3210
(0.3590)

0
(0)

0
(0)

Deep EXACT DRO-COX 0.8048
(0.0011)

0.1363
(0.0016)

0.5050
(0.2489)

0.0197
(0.0005)

0.0038
(0.0001)

0.8048
(0.0011)

0.1363
(0.0016)

0.5050
(0.2489)

0.0197
(0.0005)

0.0038
(0.0001)

to increase when α increases from 0.1 to 0.3 on FLC and SEER, and from 0.3 to 0.5 on
SUPPORT. However, the increase in α results in worse scores across fairness metrics.

Additional experiments. Across all methods, instead of minimizing the validation set CI fair-
ness metric during hyperparameter tuning (tolerating a small degradation in the validation
set Ctd), we also tried instead minimizing the validation set FCG metric and found similar
results (see the rightmost columns under the heading “FCG-based Tuning” in Tables 2, 3,
and 4).

5. Censoring-based individual and group fairness metrics (FCI and FCG respectively) by Rahman and
Purushotham (2022)—which we formally define in Appendix F—depend on a user-specified scale constant
γ > 0 that must be specified in advance (of running experiments). A higher value of γ makes it easier
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Table 3: Cox model test set scores on the SUPPORT (gender) dataset, in the same format as
Table 2.

Methods
CI-based Tuning FCG-based Tuning

Accuracy Metrics Fairness Metrics Accuracy Metrics Fairness Metrics
Ctd↑ IBS↓ CI(%)↓ FCI↓ FCG↓ Ctd↑ IBS↓ CI(%)↓ FCI↓ FCG↓

L
in

ea
r

Cox 0.6025
(0.0005)

0.2304
(0.0015)

1.4300
(0.0654)

0.0054
(0.0002)

0.0028
(0.0001)

0.6025
(0.0005)

0.2304
(0.0015)

1.4300
(0.0654)

0.0054
(0.0002)

0.0028
(0.0001)

CoxI (Keya et al.) 0.5881
(0.0114)

0.2157
(0.0060)

0.9650
(0.6126)

0.0004
(0.0004)

0.0002
(0.0002)

0.5829
(0.0099)

0.2147
(0.0063)

1.1330
(0.6846)

0
(0)

0
(0)

CoxI (R&P) 0.6018
(0.0016)

0.2309
(0.0011)

1.4390
(0.1077)

0.0056
(0.0002)

0.0029
(0.0001)

0.6022
(0.0005)

0.2307
(0.0012)

1.4060
(0.0932)

0.0055
(0.0002)

0.0028
(0.0001)

CoxG(Keya et al.) 0.6030
(0.0007)

0.2297
(0.0018)

1.4190
(0.0632)

0.0051
(0.0003)

0.0026
(0.0001)

0.6024
(0.0006)

0.2284
(0.0009)

1.4360
(0.0674)

0.0047
(0.0001)

0.0025
(4.2335e-05)

CoxG(R&P) 0.6018
(0.0016)

0.2309
(0.0011)

1.4390
(0.1077)

0.0056
(0.0002)

0.0029
(0.0001)

0.6024
(0.0007)

0.2307
(0.0012)

1.4010
(0.0931)

0.0055
(0.0002)

0.0028
(0.0001)

Cox∩(Keya et al.) 0.5715
(0.0062)

0.2275
(0.0016)

1.1270
(0.2457)

0.0028
(0.0003)

0.0015
(0.0002)

0.5631
(0.0070)

0.2264
(0.0017)

0.8650
(0.2958)

0.0024
(0.0003)

0.0012
(0.0002)

DRO-COX 0.5734
(0.0019)

0.2210
(0.0010)

0.4350
(0.0674)

0.0002
(2.3882e-05)

0.0001
(1.3621e-05)

0.5641
(0.0105)

0.2211
(0.0010)

0.3840
(0.1830)

0.0001
(0.0001)

0.0001
(4.8271e-05)

DRO-COX (SPLIT) 0.5701
(0.0056)

0.4569
(0.1314)

0.3860
(0.1163)

1.1922e-07
(2.6445e-07)

9.6779e-08
(2.1315e-07)

0.5701
(0.0056)

0.4570
(0.1314)

0.3860
(0.1163)

1.1922e-07
(2.6445e-07)

9.6779e-08
(2.1315e-07)

EXACT DRO-COX 0.5884
(0.0063)

0.3122
(0.0068)

0.8580
(0.2434)

8.1822e-06
(8.1542e-06)

5.2437e-06
(5.0535e-06)

0.5884
(0.0063)

0.3122
(0.0068)

0.8580
(0.2434)

8.1822e-06
(8.1542e-06)

5.2437e-06
(5.0535e-06)

N
on

li
n
ea

r

DeepSurv 0.6108
(0.0029)

0.2417
(0.0016)

1.6220
(0.3303)

0.0090
(0.0002)

0.0046
(0.0001)

0.6108
(0.0029)

0.2417
(0.0016)

1.6220
(0.3303)

0.0090
(0.0002)

0.0046
(0.0001)

DeepSurvI (Keya et al.) 0.5984
(0.0124)

0.2376
(0.0182)

1.3280
(0.7670)

0.0061
(0.0036)

0.0031
(0.0019)

0.6031
(0.0059)

0.2459
(0.0102)

1.1590
(0.8626)

0.0090
(0.0007)

0.0046
(0.0004)

DeepSurvI (R&P) 0.6100
(0.0070)

0.2383
(0.0075)

1.6100
(0.3374)

0.0080
(0.0023)

0.0041
(0.0012)

0.6115
(0.0051)

0.2444
(0.0036)

1.5410
(0.4066)

0.0097
(0.0009)

0.0050
(0.0004)

DeepSurvG(Keya et al.) 0.5982
(0.0109)

0.2436
(0.0121)

1.6540
(0.3892)

0.0090
(0.0036)

0.0046
(0.0019)

0.6034
(0.0037)

0.2499
(0.0024)

1.2390
(0.4314)

0.0111
(0.0003)

0.0057
(0.0001)

DeepSurvG(R&P) 0.6105
(0.0055)

0.2408
(0.0067)

1.5410
(0.3661)

0.0087
(0.0019)

0.0045
(0.0010)

0.6115
(0.0051)

0.2444
(0.0036)

1.5410
(0.4066)

0.0097
(0.0009)

0.0050
(0.0004)

DeepSurv∩(Keya et al.) 0.6015
(0.0069)

0.2378
(0.0053)

1.4110
(0.2129)

0.0066
(0.0017)

0.0034
(0.0009)

0.5912
(0.0012)

0.2309
(0.0011)

1.5390
(0.1303)

0.0043
(0.0002)

0.0023
(0.0001)

FIDP 0.5811
(0.0090)

0.2356
(0.0023)

1.2670
(0.4179)

0.0059
(0.0005)

0.0029
(0.0003)

0.5811
(0.0090)

0.2356
(0.0023)

1.2670
(0.4179)

0.0059
(0.0005)

0.0029
(0.0003)

FIPNAM 0.5760
(0.0039)

0.2330
(0.0005)

1.0360
(0.0448)

0.0021
(0.0001)

0.0009
(0.0001)

0.5760
(0.0039)

0.2330
(0.0005)

1.0360
(0.0448)

0.0021
(0.0001)

0.0009
(0.0001)

Deep DRO-COX 0.5829
(0.0067)

0.2240
(0.0010)

1.2600
(0.4412)

0.0019
(0.0006)

0.0010
(0.0003)

0.5754
(0.0120)

0.2227
(0.0011)

1.5550
(0.4622)

0.0010
(0.0005)

0.0005
(0.0003)

Deep DRO-COX (SPLIT) 0.5772
(0.0093)

0.6387
(0.0007)

1.5530
(0.4682)

0
(0)

0
(0)

0.5772
(0.0093)

0.6387
(0.0007)

1.5530
(0.4682)

0
(0)

0
(0)

Deep EXACT DRO-COX 0.5811
(0.0065)

0.2621
(0.0098)

2.0490
(0.4989)

0.0062
(0.0020)

0.0033
(0.0010)

0.5811
(0.0065)

0.2621
(0.0098)

2.0490
(0.4989)

0.0062
(0.0020)

0.0033
(0.0010)
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Table 4: Cox model test set scores on the SEER (race) dataset, in the same format as Table 2.
Methods

CI-based Tuning FCG-based Tuning
Accuracy Metrics Fairness Metrics Accuracy Metrics Fairness Metrics
Ctd↑ IBS↓ CI(%)↓ FCI↓ FCG↓ Ctd↑ IBS↓ CI(%)↓ FCI↓ FCG↓

L
in

ea
r

Cox 0.7025
(0.0003)

0.2128
(0.0009)

2.5200
(0.0431)

0.0256
(0.0006)

0.0204
(0.0005)

0.7025
(0.0003)

0.2128
(0.0009)

2.5200
(0.0431)

0.0256
(0.0006)

0.0204
(0.0005)

CoxI (Keya et al.) 0.6894
(0.0046)

0.1837
(0.0027)

1.9750
(0.6480)

0.0005
(0.0001)

0.0004
(0.0001)

0.6894
(0.0046)

0.1837
(0.0027)

1.9750
(0.6480)

0.0005
(0.0001)

0.0004
(0.0001)

CoxI (R&P) 0.7032
(0.0025)

0.2103
(0.0031)

2.4590
(0.0886)

0.0235
(0.0022)

0.0186
(0.0017)

0.7035
(0.0025)

0.2097
(0.0031)

2.4520
(0.0862)

0.0231
(0.0021)

0.0183
(0.0016)

CoxG(Keya et al.) 0.6952
(0.0146)

0.2073
(0.0049)

2.8690
(0.5267)

0.0216
(0.0041)

0.0175
(0.0035)

0.6952
(0.0146)

0.2073
(0.0049)

2.8690
(0.5267)

0.0216
(0.0041)

0.0175
(0.0035)

CoxG(R&P) 0.7037
(0.0025)

0.2089
(0.0020)

2.4790
(0.0611)

0.0226
(0.0017)

0.0179
(0.0014)

0.7037
(0.0025)

0.2089
(0.0020)

2.4790
(0.0611)

0.0226
(0.0017)

0.0179
(0.0014)

Cox∩(Keya et al.) 0.6494
(0.0016)

0.1963
(0.0012)

2.1290
(0.2573)

0.0107
(0.0010)

0.0087
(0.0008)

0.6494
(0.0016)

0.1963
(0.0012)

2.1290
(0.2573)

0.0107
(0.0010)

0.0087
(0.0008)

DRO-COX 0.6927
(0.0069)

0.1868
(0.0004)

2.3090
(0.5215)

0
(0)

0
(0)

0.6927
(0.0069)

0.1868
(0.0004)

2.3090
(0.5215)

0
(0)

0
(0)

DRO-COX (SPLIT) 0.6872
(0.0047)

0.1869
(0.0004)

2.8280
(0.7434)

0
(0)

0
(0)

0.6872
(0.0047)

0.1869
(0.0004)

2.8280
(0.7434)

0
(0)

0
(0)

EXACT DRO-COX 0.6833
(0.0060)

0.2422
(0.0044)

1.3020
(0.3474)

0.0056
(0.0005)

0.0045
(0.0004)

0.6833
(0.0060)

0.2422
(0.0044)

1.3020
(0.3474)

0.0056
(0.0005)

0.0045
(0.0004)

N
on

li
n
ea

r

DeepSurv 0.7095
(0.0014)

0.2200
(0.0012)

2.5990
(0.1189)

0.0309
(0.0006)

0.0249
(0.0004)

0.7095
(0.0014)

0.2200
(0.0012)

2.5990
(0.1189)

0.0309
(0.0006)

0.0249
(0.0004)

DeepSurvI (Keya et al.) 0.6982
(0.0045)

0.2127
(0.0032)

1.5740
(0.6970)

0.0291
(0.0014)

0.0235
(0.0012)

0.6982
(0.0045)

0.2127
(0.0032)

1.5740
(0.6970)

0.0291
(0.0014)

0.0235
(0.0012)

DeepSurvI (R&P) 0.7064
(0.0021)

0.2168
(0.0012)

2.5120
(0.1847)

0.0288
(0.0006)

0.0233
(0.0004)

0.7064
(0.0021)

0.2168
(0.0012)

2.5120
(0.1847)

0.0288
(0.0006)

0.0233
(0.0004)

DeepSurvG(Keya et al.) 0.7034
(0.0016)

0.2154
(0.0007)

2.5920
(0.1468)

0.0278
(0.0010)

0.0229
(0.0008)

0.7034
(0.0016)

0.2154
(0.0007)

2.5920
(0.1468)

0.0278
(0.0010)

0.0229
(0.0008)

DeepSurvG(R&P) 0.7062
(0.0017)

0.2169
(0.0010)

2.5010
(0.1626)

0.0289
(0.0005)

0.0234
(0.0004)

0.7062
(0.0017)

0.2169
(0.0010)

2.5010
(0.1626)

0.0289
(0.0005)

0.0234
(0.0004)

DeepSurv∩(Keya et al.) 0.6537
(0.0054)

0.1998
(0.0008)

1.0480
(0.4252)

0.0136
(0.0012)

0.0111
(0.0010)

0.6537
(0.0054)

0.1998
(0.0008)

1.0480
(0.4252)

0.0136
(0.0012)

0.0111
(0.0010)

FIDP 0.7086
(0.0030)

0.1824
(0.0033)

2.3290
(0.2906)

0.0168
(0.0055)

0.0120
(0.0040)

0.7086
(0.0030)

0.1824
(0.0033)

2.3290
(0.2906)

0.0168
(0.0055)

0.0120
(0.0040)

FIPNAM 0.7022
(0.0118)

0.2226
(0.0019)

2.3480
(0.2087)

0.0181
(0.0020)

0.0129
(0.0016)

0.7022
(0.0118)

0.2226
(0.0019)

2.3480
(0.2087)

0.0181
(0.0020)

0.0129
(0.0016)

Deep DRO-COX 0.6830
(0.0050)

0.1869
(0.0004)

2.5810
(0.5244)

5.3651e-06
(6.3580e-06)

5.3233e-06
(6.2580e-06)

0.6830
(0.0050)

0.1869
(0.0004)

2.5810
(0.5244)

5.3651e-06
(6.3580e-06)

5.3233e-06
(6.2580e-06)

Deep DRO-COX (SPLIT) 0.6829
(0.0049)

0.1881
(0.0012)

2.4880
(0.5154)

6.3123e-06
(7.2058e-06)

6.2466e-06
(7.0785e-06)

0.6829
(0.0049)

0.1881
(0.0012)

2.4880
(0.5154)

6.3123e-06
(7.2058e-06)

6.2466e-06
(7.0785e-06)

Deep EXACT DRO-COX 0.7057
(0.0014)

0.1597
(0.0003)

2.5030
(0.2540)

0.0277
(0.0004)

0.0225
(0.0003)

0.7057
(0.0014)

0.1597
(0.0003)

2.5030
(0.2540)

0.0277
(0.0004)

0.0225
(0.0003)
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(a) FLC (age) (b) SUPPORT (age) (c) SEER (age)

Figure 1: Effect of α on test set accuracy (c-index; higher is better) and fairness metrics (FCI ,
FCG, and CI; lower is better for all fairness metrics) of dro-cox on four datasets.

We further conduct a number of supplemental experiments that we summarize the find-
ings for now. First, we show that our dro-cox (split) procedure is somewhat robust to
the choice of n1 = |D1| and n2 = |D2|. Second, we show what happens if D1 and D2 have
different censoring rates, where the main finding is that dro-cox (split) can still work well
when there is a large imbalance in censoring rates between D1 and D2. Third, if dro-cox
(split) did not use both losses Lsplit

DRO(θ, η,D1 | D2) and Lsplit
DRO(θ, η,D2 | D1) (i.e., if it only

used one of these), then it performs worse. For details on these additional experiments in-
cluding a formal definition of a quantity that controls the amount of imbalance in censoring
rates between D1 and D2, see Appendix H.

DeepHit We now compare dro-deephit and dro-deephit (split) to the original Deep-
Hit method (Lee et al., 2018) and the regularized variant DeepHitG(R&P). We report the
test performance on all three datasets in Table 5. According to the results in Table 5, we
have the following observations:
• Our DRO variants can achieve better CI performance than the original DeepHit method on

most of datasets with different sensitive attributes when using a CI-based hyperparameter
tuning strategy. It is also clear that dro-deephit and dro-deephit (split) can achieve
lower values on FCI and FCG on all datasets when using an FCG-based hyperparameter

for a survival model to achieve an FCI or FCG score that is exactly and not just approximately equal
to 0. We set γ = 0.01 for all datasets and it turns out that in this case, for the Cox model, it is possible
for our DRO variants to achieve FCI or FCG scores that are exactly 0. We point out that we have found
that if we decrease γ, then we no longer get exactly 0 for FCI or FCG. Ultimately, this issue of FCI or
FCG being exactly 0 is due to how they are defined by Rahman and Purushotham (2022), and if one did
not want these scores to be exactly 0, one would have to tune on γ in a manner that could depend on
the dataset. For more details, see Appendix F.
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Table 5: DeepHit test set scores on the FLC, SUPPORT, SEER datasets when hyperparameter
tuning is based on CI and FCG.

Datasets Methods
CI-based Tuning FCG-based Tuning

Accuracy Metrics Fairness Metrics Accuracy Metrics Fairness Metrics
Ctd↑ IBS↓ CI(%)↓ FCI↓ FCG↓ Ctd↑ IBS↓ CI(%)↓ FCI↓ FCG↓

FLC
(age)

DeepHit 0.7937
(0.0080)

0.1560
(0.0204)

1.1950
(0.7885)

0.0108
(0.0012)

0.0022
(0.0003)

0.7937
(0.0080)

0.1560
(0.0204)

1.1950
(0.7885)

0.0108
(0.0012)

0.0022
(0.0003)

DeepHitG(R&P) 0.7825
(0.0237)

0.1449
(0.0201)

1.2340
(0.6046)

0.0097
(0.0023)

0.0021
(0.0003)

0.7446
(0.0051)

0.1326
(0.0027)

2.1110
(0.4770)

0.0064
(0.0001)

0.0018
(0.0001)

dro-deephit 0.7956
(0.0051)

0.1971
(0.0543)

1.0430
(0.4835)

0.0084
(0.0028)

0.0017
(0.0006)

0.7821
(0.0101)

0.2754
(0.0076)

1.0180
(0.5330)

0.0026
(0.0005)

0.0006
(0.0001)

dro-deephit (split) 0.7748
(0.0189)

0.2264
(0.0623)

0.9950
(0.4556)

0.0067
(0.0036)

0.0015
(0.0007)

0.7622
(0.0122)

0.2734
(0.0092)

0.9270
(0.5411)

0.0027
(0.0009)

0.0007
(0.0002)

FLC
(gender)

DeepHit 0.7937
(0.0080)

0.1560
(0.0204)

0.4990
(0.3792)

0.0108
(0.0012)

0.0055
(0.0006)

0.7937
(0.0080)

0.1560
(0.0204)

0.4990
(0.3792)

0.0108
(0.0012)

0.0055
(0.0006)

DeepHitG(R&P) 0.7840
(0.0245)

0.1489
(0.0212)

0.5170
(0.3982)

0.0099
(0.0021)

0.0050
(0.0011)

0.7937
(0.0080)

0.1560
(0.0204)

0.4990
(0.3792)

0.0108
(0.0012)

0.0055
(0.0006)

dro-deephit 0.7956
(0.0051)

0.1971
(0.0543)

0.4320
(0.4786)

0.0084
(0.0028)

0.0043
(0.0014)

0.7821
(0.0101)

0.2754
(0.0076)

1.3700
(0.6702)

0.0026
(0.0005)

0.0013
(0.0002)

dro-deephit (split) 0.7748
(0.0189)

0.2264
(0.0623)

1.3100
(0.9915)

0.0067
(0.0036)

0.0034
(0.0018)

0.7622
(0.0122)

0.2734
(0.0092)

1.9350
(0.7234)

0.0027
(0.0009)

0.0014
(0.0004)

SUPPORT
(age)

DeepHit 0.6029
(0.0071)

0.2151
(0.0067)

3.5910
(0.3987)

0.0055
(0.0008)

0.0026
(0.0004)

0.6029
(0.0071)

0.2151
(0.0067)

3.5910
(0.3987)

0.0055
(0.0008)

0.0026
(0.0004)

DeepHitG(R&P) 0.5775
(0.0050)

0.2123
(0.0009)

1.1940
(0.8221)

0.0046
(0.0006)

0.0023
(0.0003)

0.5766
(0.0033)

0.2126
(0.0007)

1.0230
(0.4416)

0.0044
(0.0002)

0.0022
(0.0001)

dro-deephit 0.5932
(0.0159)

0.2447
(0.0147)

2.9160
(0.8347)

0.0014
(0.0009)

0.0007
(0.0004)

0.5899
(0.0154)

0.2493
(0.0159)

3.3740
(0.6078)

0.0007
(0.0002)

0.0003
(0.0001)

dro-deephit (split) 0.5753
(0.0236)

0.2225
(0.0112)

2.7280
(0.9570)

0.0044
(0.0013)

0.0021
(0.0006)

0.5792
(0.0234)

0.2392
(0.0268)

3.5270
(0.7331)

0.0037
(0.0019)

0.0018
(0.0009)

SUPPORT
(gender)

DeepHit 0.6029
(0.0071)

0.2151
(0.0067)

0.5880
(0.2895)

0.0055
(0.0008)

0.0028
(0.0004)

0.6029
(0.0071)

0.2151
(0.0067)

0.5880
(0.2895)

0.0055
(0.0008)

0.0028
(0.0004)

DeepHitG(R&P) 0.5767
(0.0034)

0.2126
(0.0008)

0.6960
(0.3183)

0.0044
(0.0002)

0.0022
(0.0001)

0.5773
(0.0039)

0.2125
(0.0007)

0.7600
(0.2994)

0.0043
(0.0002)

0.0022
(0.0001)

dro-deephit 0.5932
(0.0159)

0.2447
(0.0147)

1.1980
(0.6834)

0.0014
(0.0009)

0.0007
(0.0005)

0.5899
(0.0154)

0.2493
(0.0159)

1.4460
(0.4235)

0.0007
(0.0002)

0.0004
(0.0001)

dro-deephit (split) 0.5753
(0.0236)

0.2225
(0.0112)

0.5160
(0.3942)

0.0044
(0.0013)

0.0022
(0.0006)

0.5792
(0.0234)

0.2392
(0.0268)

0.7550
(0.5022)

0.0037
(0.0019)

0.0019
(0.0010)

SUPPORT
(race)

DeepHit 0.6029
(0.0071)

0.2151
(0.0067)

1.2250
(0.4454)

0.0055
(0.0008)

0.0033
(0.0005)

0.6029
(0.0071)

0.2151
(0.0067)

1.2250
(0.4454)

0.0055
(0.0008)

0.0033
(0.0005)

DeepHitG(R&P) 0.5767
(0.0031)

0.2126
(0.0008)

0.7290
(0.4122)

0.0044
(0.0002)

0.0026
(0.0001)

0.5813
(0.0108)

0.2144
(0.0041)

0.7400
(0.4211)

0.0043
(0.0003)

0.0026
(0.0002)

dro-deephit 0.5932
(0.0159)

0.2447
(0.0147)

1.0630
(0.5174)

0.0014
(0.0009)

0.0009
(0.0005)

0.5899
(0.0154)

0.2493
(0.0159)

1.4220
(0.4302)

0.0007
(0.0002)

0.0004
(0.0001)

dro-deephit (split) 0.5753
(0.0236)

0.2225
(0.0112)

1.1930
(0.4449)

0.0044
(0.0013)

0.0027
(0.0008)

0.5792
(0.0234)

0.2392
(0.0268)

1.5640
(0.6744)

0.0037
(0.0019)

0.0022
(0.0012)

SEER
(age)

DeepHit 0.7156
(0.0047)

0.1715
(0.0038)

1.4450
(0.2901)

0.0122
(0.0011)

0.0038
(0.0003)

0.7156
(0.0047)

0.1715
(0.0038)

1.4450
(0.2901)

0.0122
(0.0011)

0.0038
(0.0003)

DeepHitG(R&P) 0.7122
(0.0086)

0.1743
(0.0064)

1.4160
(0.2443)

0.0105
(0.0029)

0.0034
(0.0007)

0.6987
(0.0025)

0.1801
(0.0021)

2.0960
(0.4633)

0.0046
(0.0002)

0.0019
(0.0001)

dro-deephit 0.7112
(0.0084)

0.2794
(0.0871)

0.7990
(0.3281)

0.0061
(0.0041)

0.0020
(0.0013)

0.6951
(0.0051)

0.4122
(0.0304)

1.3800
(0.5574)

0.0002
(0.0002)

0.0001
(0.0001)

dro-deephit (split) 0.6969
(0.0211)

0.2073
(0.0464)

1.0240
(0.3449)

0.0107
(0.0016)

0.0038
(0.0004)

0.6963
(0.0224)

0.2063
(0.0419)

1.2630
(0.7467)

0.0098
(0.0025)

0.0034
(0.0005)

SEER
(race)

DeepHit 0.7156
(0.0047)

0.1715
(0.0038)

3.2820
(0.5958)

0.0122
(0.0011)

0.0099
(0.0009)

0.7156
(0.0047)

0.1715
(0.0038)

3.2820
(0.5958)

0.0122
(0.0011)

0.0099
(0.0009)

DeepHitG(R&P) 0.7132
(0.0073)

0.1728
(0.0045)

3.1330
(0.8321)

0.0113
(0.0028)

0.0091
(0.0023)

0.6987
(0.0048)

0.1806
(0.0028)

1.6760
(0.6385)

0.0045
(0.0023)

0.0034
(0.0019)

dro-deephit 0.7112
(0.0084)

0.2794
(0.0871)

3.0120
(0.5652)

0.0061
(0.0041)

0.0049
(0.0033)

0.6951
(0.0051)

0.4122
(0.0304)

3.2520
(1.7820)

0.0002
(0.0002)

0.0002
(0.0002)

dro-deephit (split) 0.6969
(0.0211)

0.2073
(0.0464)

2.7700
(0.5636)

0.0107
(0.0016)

0.0085
(0.0014)

0.6963
(0.0224)

0.2063
(0.0419)

3.0070
(0.8355)

0.0098
(0.0025)

0.0078
(0.0021)

tuning strategy. These results indicate that our DRO methods can encourage fairness for
DeepHit and can obtain better fairness scores than DeepHitG(R&P).
• We find that our DRO variants outperform DeepHit on FCI and FCG metrics when using

CI-based hyperparameter tuning. However, we find that our DRO variants cannot always
achieve the best scores on the CI fairness metric when using FCG-based hyperparameter
tuning. We conclude that the CI metric may reflect fairness in the FCG fairness metric
but the reverse may not be true.
• It is hard to distinguish which method is better between dro-deephit and dro-deephit

(split). For both methods, as expected, they have slightly lower performance than the
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Table 6: SODEN test set scores on the FLC, SUPPORT, SEER datasets when hyperparameter
tuning is based on CI and FCG.

Datasets Methods
CI-based Tuning FCG-based Tuning

Accuracy Metrics Fairness Metrics Accuracy Metrics Fairness Metrics
Ctd↑ IBS↓ CI(%)↓ FCI↓ FCG↓ Ctd↑ IBS↓ CI(%)↓ FCI↓ FCG↓

FLC
(age)

SODEN 0.7785
(0.0175)

0.1482
(0.0138)

1.1790
(0.6098)

0.0004
(0.0009)

0.0001
(0.0002)

0.7785
(0.0175)

0.1482
(0.0138)

1.1790
(0.6098)

0.0004
(0.0009)

0.0001
(0.0002)

SODENG(R&P) 0.7832
(0.0138)

0.1454
(0.0134)

0.8248
(0.6491)

0.0006
(0.0007)

0.0002
(0.0002)

0.7807
(0.0140)

0.1454
(0.0134)

1.7324
(1.2715)

0.0001
(0.0001)

1.2814e-05
(2.2052e-05)

dro-soden 0.7857
(0.0124)

0.1434
(0.0141)

1.0401
(0.7724)

1.6903e-05
(3.9865e-05)

6.2555e-06
(1.4369e-05)

0.7787
(0.0134)

0.1619
(0.0247)

1.4140
(0.7545)

2.4385e-06
(5.8775e-06)

8.9596e-07
(2.1956e-06)

FLC
(gender)

SODEN 0.7785
(0.0175)

0.1482
(0.0138)

1.3822
(0.6028)

0.0004
(0.0009)

0.0002
(0.0005)

0.7785
(0.0175)

0.1482
(0.0138)

1.3822
(0.6028)

0.0004
(0.0009)

0.0002
(0.0005)

SODENG(R&P) 0.7824
(0.0126)

0.1496
(0.0117)

0.8252
(0.3665)

0.0005
(0.0006)

0.0003
(0.0003)

0.7832
(0.0126)

0.1452
(0.0131)

1.0564
(0.4984)

0.0001
(0.0001)

2.5966e-05
(4.4394e-05)

dro-soden 0.7857
(0.0100)

0.1350
(0.0069)

0.7115
(0.3545)

0.0008
(0.0023)

0.0004
(0.0011)

0.7811
(0.0131)

0.1592
(0.0258)

1.5226
(0.7068)

2.4385e-06
(5.8775e-06)

1.5323e-06
(3.5413e-06)

SUPPORT
(age)

SODEN 0.6276
(0.0101)

0.1933
(0.0013)

2.6275
(0.2490)

0.0081
(0.0007)

0.0035
(0.0003)

0.6276
(0.0101)

0.1933
(0.0013)

2.6275
(0.2490)

0.0081
(0.0007)

0.0035
(0.0003)

SODENG(R&P) 0.6162
(0.0118)

0.2073
(0.0134)

1.9914
(0.4342)

0.0059
(0.0018)

0.0025
(0.0006)

0.6070
(0.0080)

0.2147
(0.0099)

1.6135
(0.2891)

0.0043
(0.0008)

0.0020
(0.0004)

dro-soden 0.6080
(0.0161)

0.2002
(0.0095)

1.9901
(0.4576)

0.0045
(0.0022)

0.0021
(0.0012)

0.5996
(0.0128)

0.2041
(0.0082)

1.9980
(0.4681)

0.0031
(0.0011)

0.0019
(0.0011)

SUPPORT
(gender)

SODEN 0.6276
(0.0101)

0.1933
(0.0013)

1.7548
(0.1958)

0.0081
(0.0007)

0.0041
(0.0003)

0.6276
(0.0101)

0.1933
(0.0013)

1.7548
(0.1958)

0.0081
(0.0007)

0.0041
(0.0003)

SODENG(R&P) 0.6263
(0.0077)

0.1960
(0.0057)

1.6308
(0.3285)

0.0074
(0.0012)

0.0038
(0.0006)

0.6083
(0.0070)

0.2147
(0.0099)

1.2239
(0.1634)

0.0043
(0.0008)

0.0023
(0.0004)

dro-soden 0.6177
(0.0118)

0.1943
(0.0023)

1.6282
(0.2094)

0.0065
(0.0016)

0.0033
(0.0008)

0.5996
(0.0128)

0.2041
(0.0082)

1.5995
(0.1943)

0.0031
(0.0011)

0.0016
(0.0006)

SUPPORT
(race)

SODEN 0.6276
(0.0101)

0.1933
(0.0013)

1.6910
(0.2182)

0.0081
(0.0007)

0.0048
(0.0004)

0.6276
(0.0101)

0.1933
(0.0013)

1.6910
(0.2182)

0.0081
(0.0007)

0.0048
(0.0004)

SODENG(R&P) 0.6137
(0.0085)

0.2045
(0.0115)

1.6304
(0.1344)

0.0058
(0.0016)

0.0036
(0.0009)

0.6089
(0.0073)

0.2164
(0.0101)

1.7705
(0.4111)

0.0043
(0.0008)

0.0027
(0.0005)

dro-soden 0.6113
(0.0143)

0.1993
(0.0093)

1.3418
(0.4286)

0.0052
(0.0025)

0.0032
(0.0015)

0.5996
(0.0128)

0.2041
(0.0082)

1.1979
(0.4273)

0.0031
(0.0011)

0.0019
(0.0006)

SEER
(age)

SODEN 0.7132
(0.0017)

0.1550
(0.0009)

0.8531
(0.0940)

0.0280
(0.0014)

0.0075
(0.0006)

0.7132
(0.0017)

0.1550
(0.0009)

0.8531
(0.0940)

0.0280
(0.0014)

0.0075
(0.0006)

SODENG(R&P) 0.7131
(0.0017)

0.1556
(0.0011)

0.8541
(0.1562)

0.0277
(0.0011)

0.0075
(0.0006)

0.7122
(0.0009)

0.1561
(0.0012)

0.9110
(0.0948)

0.0276
(0.0013)

0.0072
(0.0004)

dro-soden 0.7026
(0.0116)

0.1757
(0.0293)

1.1275
(0.3644)

0.0227
(0.0054)

0.0071
(0.0010)

0.6980
(0.0108)

0.2008
(0.0367)

1.4280
(0.5242)

0.0161
(0.0095)

0.0049
(0.0021)

SEER
(race)

SODEN 0.7132
(0.0017)

0.1550
(0.0009)

2.4948
(0.1341)

0.0280
(0.0014)

0.0227
(0.0011)

0.7132
(0.0017)

0.1550
(0.0009)

2.4948
(0.1341)

0.0280
(0.0014)

0.0227
(0.0011)

SODENG(R&P) 0.7124
(0.0016)

0.1558
(0.0011)

2.4390
(0.1775)

0.0273
(0.0013)

0.0220
(0.0011)

0.7123
(0.0016)

0.1561
(0.0013)

2.4747
(0.1869)

0.0271
(0.0013)

0.0218
(0.0011)

dro-soden 0.6913
(0.0109)

0.2079
(0.0373)

1.6398
(0.4948)

0.0167
(0.0057)

0.0132
(0.0047)

0.6893
(0.0055)

0.2191
(0.0269)

1.7676
(0.4458)

0.0126
(0.0059)

0.0099
(0.0047)

DeepHit method on accuracy metrics. However, dro-deephit method has the best Ctd

performance on the FLC dataset in Table 5.

SODEN We conduct experiments to compare the accuracy and fairness of SODEN and
SODENG(R&P) to dro-soden. Our experimental results are reported in Table 6 (CI-based
hyperparameter tuning and FCG-based hyperparameter tuning). From these results, we have
the following observations:
• When tuning hyperparameters based on CI, it is clear that dro-soden outperforms the

other methods on the CI fairness metric for FLC and SUPPORT datasets. Meanwhile,
FCI and FCG are also reduced by using dro-soden while accuracy scores become a little
lower than those of SODEN. However, we find dro-soden can achieve a slightly higher
Ctd scores on the FLC dataset.
• When tuning hyperparameters based on FCG, we find dro-soden also can achieve better

performance on FCG than the corresponding values that are from the CI-based tuning
since we tune hyperparameters based on this metric. In addition, dro-soden can obtain
the best FCG and FCI scores compared to the baselines.
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Figure 2: Comparison of all proposed fairness methods in terms of FCI (first row) and FCG
(second row) with Ctd on FLC, SUPPORT, and SEER datasets. Each line is
drawn based on the various values of α (from 0.1 to 1.0). In each subfigure, the
closer the curve is to the lower right corner, the better the performance.

5.6 Accuracy Fairness Tradeoff Comparison Across DRO Variants of Different
Survival Models

We can compare the tradeoff between accuracy and tradeoff across different DRO variants.
Specifically, for the deep dro-cox, deep dro-cox (split), dro-deephit, dro-deephit
(split), and dro-soden models, we test them under the nonlinear setting on FLC, SUP-
PORT, and SEER datasets. We evaluate the FCI , FCG, and Ctd scores of all methods
using different values of α from 0.1 to 1.0 and then plot accuracy vs fairness curves for each
dataset, as shown in Figure 2. Note that in each plot, being closer to the lower right is
considered better, corresponding to a model having an α value that achieves as low of a
fairness metric score (either FCI or FCG) as possible (which is considered more fair) and
as high of a Ctd score as possible. From the figure, we find that the dro-deephit method
outperforms the other methods.

6. Discussion

We have shown a general strategy for converting a wide class of survival models into DRO
variants that encourage fairness. The key idea is to write the overall loss in terms of indi-
vidual losses, which in turn could be used in a DRO framework. When there is coupling so
that an individual loss technically is not “individual” as it depends on multiple data points,
we introduced a sample splitting approach that is compliant with DRO theory. We also
showed that the heuristic approach that ignores this coupling problem and naively runs an
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existing DRO algorithm (that assumes that there is no coupling) works in practice about
as well as the sample splitting version. When a survival model used does not have this cou-
pling issue (such as SODEN or the Cox model when using the full Cox loss as in Section 4),
then existing DRO machinery directly works; there is no need to use any sample splitting.
Specifically for the Cox model, we derive an exact DRO approach that does not use any
sample splitting, where the trick is to lift the problem to a higher dimensional (in terms of
the number of survival model parameters) space where the coupling issue vanishes.

We now discuss some extensions of our work as well as open questions.

Competing risks In various time-to-event prediction problems, we aim to predict the time
until the earliest of multiple competing events happen along with which such event happens.
For instance, consider hospitalized patients who are in a coma. We may be interested in
predicting their time until awakening. However, it could be that they die before awakening.
Thus, the two critical events that compete as to which happens first is awakening vs death.
Meanwhile, by the time we stop collecting training data, some patients could still be in a
coma (so that their outcome is censored). Such a setting is referred to as a competing risks
problem (see, for instance, Chapter 8 of the textbook by Kalbfleisch and Prentice (2002)).

Our DRO conversion framework can easily accommodate the competing risks setting.
To illustrate this, consider the DeepHit model (Lee et al., 2018) that was originally designed
to handle competing risks (and that we actually simplified in our exposition in Section 2.2.2
and Example 2 to be for the standard survival analysis setting). Suppose that there are
δmax ∈ N competing events, which we simply label as the events 1, 2, . . . , δmax. Now each
training point still is represented by the triple (Xi, Yi,∆i) but Yi is the time until the earliest
critical event happens (or the censoring time if censoring happened prior to any critical event
happening), and ∆i ∈ {0, 1, . . . , δmax} indicates which critical event happened first (with the
special value of 0 meaning that censoring happened first).

Then in general, DeepHit aims to estimate the so-called cumulative incidence function
(CIF) (Gray, 1988; Fine and Gray, 1999) that is specific to each event δ ∈ [δmax]:

Fδ(t|x) , P(Y ≤ t,∆ = δ | X = x).

To estimate the CIF, DeepHit uses a user-specified discrete time grid t1 < t2 < · · · < tm.
Letting random variable T be the time until the earliest event happens for a data point with
feature vector X, and letting random variable ∆ indicate which of the critical events is the
earliest to happen (also for feature vector X), we define

P(T = tj ,∆ = δ | X = x) , fδ,j(x; θ) for δ ∈ [δmax] and j ∈ [m], (32)

where neural network

f(x; θ) =
(
f1,1(x; θ), f1,2(x; θ), . . . , f1,m(x; θ),

f2,1(x; θ), f2,2(x; θ), . . . , f2,m(x; θ),

. . . ,

fδmax,1(x; θ), fδmax,2(x; θ), . . . , fδmax,m(x; θ)
)
∈ [0, 1]δmax·m

has parameters θ and maps a raw input x ∈ X to a probability distribution over δmax ·m
entries. Note that when there is only one critical event of interest (so that δmax = 1), then
equation (32) reduces to equation (6)).
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In particular, DeepHit’s estimate of the CIF is given by

F̂δ(t`|x) ,
∑̀
j=1

fδ,j(x; θ) for δ ∈ [δmax] and ` ∈ [m].

Moreover, the loss function of DeepHit in this case is

LDeepHit-general(θ) ,
1

n

n∑
i=1

LDeepHit-general
i (θ),

where the i-th individual loss is

LDeepHit-general
i (θ)

= β ·
[
− 1{∆i 6= 0} log(f∆i,κ(Yi)(Xi; θ))− 1{∆i = 0} log

(
1−

δmax∑
δ=1

κ(Yi)∑
`=1

fδ,`(Xi; θ)

)]

+ (1− β) · 1

n
· 1{∆i 6= 0}

∑
j∈[n] s.t.

κ(Yj)>κ(Yi)

exp

(∑κ(Yi)
`=1 [f∆i,`(Xj ; θ)− f∆i,`(Xi; θ)]

σ

)
.

Note that the model hyperparameters are the same as what we had presented earlier in
Section 2.2.2, with the only minor difference being that in practice, for the ranking loss, it
could be helpful to weight the contributions of different competing events differently (i.e.,
for the i-th point to have a ranking loss contribution, it needs to have ∆i 6= 0, in which case
we multiply by a scalar weight hyperparameter specific to the event type ∆i ∈ [δmax]).

In particular, because we can write the loss function as the average of individual loss
terms, we can convert this model into a DRO variant using either the heuristic or sample
splitting approaches we presented in Section 3.2.

Tuning subpopulation probability threshold α In using DRO, tuning the subpopu-
lation probability threshold α can significantly impact the results. In our experiments, we
tuned α using one of two different fairness metrics (CI or FCG) on a validation set. While
DRO (whether heuristic or using sample splitting) itself does not require the user to specify
which features to treat as sensitive in the training loss, we are effectively using some infor-
mation about which features to treat as sensitive as it shows up in computing the validation
set fairness metric. We do this primarily because this is how other researchers have tuned
hyperparameters for fair survival models. An open question thus arises of whether we could
tune α in some other way in practice that either does not use a validation set or which
does not require using a validation set fairness metric that knows which features to treat
as sensitive. Fundamentally this is about coming up with other fairness evaluation metrics
that can be used for the validation set.

Choosing “optimal” splits For simplicity, in how we presented our split DRO approach,
we used 2-fold cross-fitting, where a key step is randomly splitting the training data into the
two sets D1 and D2 (as a reminder, we explain how to use more than 2 folds in Appendix B).
Furthermore, our main theoretical guarantee for split DRO (Theorem 5) assumes that |D1| =
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|D2|. We defer identifying an “optimal” split to future work. Some interesting problems that
arise include coming up with some notion of optimality of a split, and figuring out the
number of folds that would be optimal. It could even be that instead of randomly splitting
the training data, there could be some better non-random optimization-based approach for
data splitting.

Impact of DRO on evaluation metrics that are not about fairness Lastly, we
point out that it would be interesting to empirically study how converting a survival model
into its DRO variant impacts other metrics aside from the accuracy or fairness metrics
we considered, such as calibration metrics (Haider et al., 2020; Goldstein et al., 2020).
Ultimately, we suspect that DRO variants of survival models potentially have interesting
properties that make them useful beyond encouraging fairness.
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Appendix A. More Details on Cox Models

A.1 Estimating the Baseline Hazard and Conditional Survival Function

After learning the log partial hazard function f(·; θ) (or, equivalently, learning the param-
eters θ), a standard approach to estimating the baseline hazard function h0 is to use the
so-called Breslow method (Breslow, 1972). In what follows, we use θ̂ to denote the learned
estimate of θ.

The Breslow method estimates a discretized version of h0. Specifically, let t1 < t2 <
· · · < tm denote the unique times when critical event happened in the training data. Let dj
denote the number of critical events that occurred at time tj for j ∈ [m]. Then we compute
the following estimate of h0 at the j-th time step:

ĥ0,j ,
dj∑

i∈[n] s.t. Yi≥tj exp(f(xi; θ̂))
for j ∈ [m].

After estimating the baseline hazard function, estimating the survival function is straight-
forward. Recall that S(t|x) = exp

(
−
∫ t

0 h(u|x)du
)
. Then combining this equation with the

proportional hazards assumption (i.e., the factorization in equation (3)), we get

S(t|x) = exp
(
−
∫ t

0
h0(u) exp(f(x; θ))du

)
= exp

([
−
∫ t

0
h0(u)du︸ ︷︷ ︸

abbreviate as H0(t)

]
exp(f(x; θ))

)
. (A.1)

We can estimate H0(t) via a summation in place of an integration:

Ĥ0(t) ,
∑

j∈[m] s.t. tj≤t

ĥ0,j for t ≥ 0.

Thus, by plugging in Ĥ0 in place of H0 and θ̂ in place of θ in equation (A.1), we obtain the
conditional survival function estimate Ŝ(t|x) , exp(−Ĥ0(t) exp(f(x; θ̂))).

A.2 The Proportional Hazards Assumption and the Shape of the Conditional
Survival Function

The proportional hazards assumption constrains the shape of the conditional survival func-
tion. Recall that for any two real numbers a, b ∈ R, we have exp(a · b) = (exp(a))b. Then
equation (A.1) (which was derived using the proportional hazard assumption) is equal to

S(t|x) = exp
(
H0(t) exp(f(x; θ))

)
= [exp(H0(t))︸ ︷︷ ︸

,S0(t)

]exp(f(x;θ)).

In other words, under the proportional hazards assumption, the conditional survival function
S(·|x) must necessarily be a power of the so-called baseline survival function S0(·).

A.3 Details on the Full Cox Loss

Throughout this section, we assume that we have done the preprocessing stated for Propo-
sition 9, namely that for i ∈ [n] such that ∆i = 0, we have set Yi = tκ(Yi,0).
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Deriving the full Cox loss function For a survival model specified in terms of a hazard
function, the full likelihood (see, e.g., Section 3.2 of Kalbfleisch and Prentice (2002)) is

likelihood ,
n∏
i=1

{
[h(Yi|Xi)]

∆i exp

(
−
∫ Yi

0
h(u|Xi)du

)}
. (A.2)

For the Cox model, recall that the hazard function is given by

h(t|x) = h0(t)ef(x;θ).

Under the assumption that h0 is piecewise constant, as given in equation (28), we have

h(t|x) =

{
eψ`+f(x;θ) if t ∈ (t`−1, t`] for ` ∈ [m],

0 otherwise.

Plugging this expression for h(t|x) into the full likelihood (equation (A.2)), we get

likelihood =

n∏
i=1

{
[eψ`+f(Xi;θ)]∆i exp

(
− ef(Xi;θ)

κ(Yi,∆i)∑
`=1

(t` − t`−1)eψ`
)}

, (A.3)

where we have crucially used the preprocessing of the censoring data’s observed times in
evaluating the integral. (If we did not do the preprocessing, we could still come up with an
expression for the integral but the math gets messy.)

Taking the negative log of both sides of equation (A.3), we get:

−log likelihood = −
n∑
i=1

{
∆i[ψκ(Yi,∆i) + f(Xi; θ)]− ef(Xi;θ)

κ(Yi,∆i)∑
`=1

(t` − t`−1)eψ`
}

Multiplying both sides by 1
n , we get the full loss (i.e., equation (29)), which we reproduce

here for convenience:

LCox-full(θ, ψ) =
1

n

n∑
i=1

{
−∆i[ψκ(Yi,∆i) + f(Xi; θ)] + ef(Xi;θ)

κ(Yi,∆i)∑
`=1

(t` − t`−1)eψ`
}
.

Proof of Proposition 9 First, we do some re-indexing (to introduce summation over the
unique times in which critical events happen):

LCox-full(θ, ψ)

=
1

n

n∑
i=1

{
−∆iψκ(Yi,∆i) −∆if(Xi; θ) + ef(Xi;θ)

κ(Yi,∆i)∑
`=1

(t` − t`−1)eψ`
}

=− 1

n

n∑
i=1

∆iψκ(Yi,∆i) −
1

n

n∑
i=1

∆if(Xi; θ) +
1

n

n∑
i=1

ef(Xi;θ)

κ(Yi,∆i)∑
`=1

(t` − t`−1)eψ`

=− 1

n

m∑
`=1

n∑
j=1

∆j1{Yj = t`}︸ ︷︷ ︸
,d`

ψ` −
1

n

n∑
i=1

∆if(Xi; θ) +
1

n

m∑
`=1

(t` − t`−1)eψ`
n∑
j=1

1{Yj ≥ t`}ef(Xj ;θ).

(A.4)
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Taking the derivative of LCox-full(θ, ψ) with respect to ψ` for ` ∈ [m], we get

∂LCox-full(θ, ψ)

∂ψ`
= −d`

n
+

[
1

n
(t` − t`−1)

n∑
j=1

1{Yj ≥ `}ef(Xj ;θ)

]
eψ` .

By setting this derivative to 0, we get that the optimal value of ψ` is

ψ̂` = log
d`

(t` − t`−1)
∑n

j=1 1{Yj ≥ t`}ef(Xj ;θ)
.

One can verify that indeed [∂
2LCox-full(θ,ψ)

∂ψ2
`

]
ψ`=ψ̂`

> 0 so that this optimal value corresponds
to a minimum.

Finally, we plug in ψ̂ , (ψ̂1, . . . , ψ̂m) in place of ψ = (ψ1, . . . , ψm) in LCox-full(θ, ψ) (using
equation (A.4)):

LCox-full(θ, ψ̂)

= − 1

n

n∑
i=1

∆if(Xi; θ)−
1

n

m∑
`=1

d`ψ̂` +
1

n

m∑
`=1

(t` − t`−1)eψ̂`
n∑
j=1

1{Yj ≥ t`}ef(Xj ;θ)

= − 1

n

n∑
i=1

∆if(Xi; θ)−
1

n

m∑
`=1

d` log
d`

(t` − t`−1)
∑n

j=1 1{Yj ≥ t`}ef(Xj ;θ)
+

1

n

m∑
`=1

d`

= − 1

n

n∑
i=1

∆if(Xi; θ)−
1

n

m∑
`=1

d`

[
log

d`
t` − t`−1

− log
n∑
j=1

1{Yj ≥ t`}ef(Xj ;θ)

]
+

1

n

m∑
`=1

d`

= − 1

n

n∑
i=1

∆if(Xi; θ) +
1

n

m∑
`=1

d` log
n∑
j=1

1{Yj ≥ t`}ef(Xj ;θ) + constant︸ ︷︷ ︸
w.r.t. θ

= − 1

n

n∑
i=1

∆if(Xi; θ) +
1

n

m∑
`=1

[ n∑
i=1

∆i1{Yi = t`}
]

log

n∑
j=1

1{Yj ≥ t`}ef(Xj ;θ) + constant

= − 1

n

n∑
i=1

∆if(Xi; θ) +
1

n

n∑
i=1

∆i

m∑
`=1

1{Yi = t`} log
n∑
j=1

1{Yj ≥ t`}ef(Xj ;θ) + constant

= − 1

n

n∑
i=1

∆if(Xi; θ) +
1

n

n∑
i=1

∆i log
n∑
j=1

1{Yj ≥ Yi}ef(Xj ;θ) + constant

=
1

n

n∑
i=1

−∆i

[
f(Xi; θ)− log

n∑
j=1

1{Yj ≥ Yi}ef(Xj ;θ)

]
+ constant

= LCox(θ) + constant. �

Appendix B. Cross-Fitting With More Than Two Folds

For example, for some pre-specified number of folds Kfolds, we could randomly partition the
training data into Kfolds roughly equal-size sets D1, . . . ,DKfolds . Then for each k ∈ [Kfolds],
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we could either set

Lsplit
DRO(θ, η(1), . . . , η(Kfolds)) ,

Kfolds∑
k=1

Lsplit
DRO

(
θ, η(k),Dk | ([n] \ Dk)

)
,

or

Lsplit
DRO(θ, η(1), . . . , η(Kfolds)) ,

Kfolds∑
k=1

Lsplit
DRO

(
θ, η(k), ([n] \ Dk) | Dk

)
.

Appendix C. Proof of Theorem 5

We prove the following.

Proposition 10 (Slightly more general version of Theorem 5) Let n ≥ 2 and randomly split
the training data into D1 and D2 of sizes n1 ≥ 1 and n2 = n− n1. Let ω > 0. Suppose that
Assumptions A1–A6 hold. If φtransform(s) = s, then define

M ,Mindiv + n2Mcouple-max,

M ′ , (Mcouple-max −Mcouple-min)

√
ωn2

ζ
.

If instead φtransform(s) = log(1 + s), then define

M ,Mindiv + log(1 + n2Mcouple-max),

M ′ ,
(Mcouple-max −Mcouple-min)

ζMcouple-min

√
8ω

n2
.

Then with probability at least

1− 2

[
M

(Cα − 1)
[√

2ω
n1

max{2, Cα
Cα−1}M + (2L+ 1)M ′

] + N(M ′,X )

]
e−ω −me−

n2ζ
8

over randomness in the training data, we have∣∣∣∣ inf
η∈R

Lsplit
DRO(θ, η,D1 | D2)− inf

η∈R
Rsplit

DRO(θ, η)

∣∣∣∣
≤ 10C2

α

[
1
√
n1

max
{

2,
Cα

Cα − 1

}(√
2ω + 1

)
M + (2L+ 1)M ′

]
.

Theorem 5 corresponds to Proposition 10, where we assume n to be even and we set
n1 = n2 = n/2.

We define

Lsplit,∗
DRO (θ, η) , Cα

√
E(X,Y,∆)∼P

[
[Lindiv(θ;X,Y,∆)− η]2+

]
+ η.
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The main goal in the proof is to bound

|Lsplit
DRO(θ, η,D1 | D2)−Rsplit

DRO(θ, η)|

= |Lsplit
DRO(θ, η,D1 | D2)− E[Lsplit

DRO(θ, η,D1 | D2)]

+ E[Lsplit
DRO(θ, η,D1 | D2)]− Lsplit,∗

DRO (θ, η,D1 | D2)

+ Lsplit,∗
DRO (θ, η,D1 | D2)−Rsplit

DRO(θ, η)
∣∣

≤ |Lsplit
DRO(θ, η,D1 | D2)− E[Lsplit

DRO(θ, η,D1 | D2)]
∣∣︸ ︷︷ ︸

,♠

+
∣∣E[Lsplit

DRO(θ, η,D1 | D2)]− Lsplit,∗
DRO (θ, η,D1 | D2)

∣∣︸ ︷︷ ︸
,♥

+
∣∣Lsplit,∗

DRO (θ, η,D1 | D2)−Rsplit
DRO(θ, η)

∣∣︸ ︷︷ ︸
,♣

,

where we have used the triangle inequality. The bulk of the proof is in upper-bounding ♠,
♥, and ♣. Prior to bounding these, we collect two important lemmas. The first establishes
that Lindiv(θ;x, y, δ) and Rindiv(θ;x, y,∆) are bounded. Note that we defer all proofs of
lemmas to subsections immediately following this main proof outline.

Lemma 11 Under Assumption A4, for all (x, y, δ) ∈ Z, if φtransform is the identity function,
then

Lindiv(θ;x, y, δ), Rindiv(θ;x, y, δ) ∈ [0,Mindiv + n2Mcouple-max].

Otherwise if φtransform(s) = log(1 + s), then

Lindiv(θ;x, y, δ), Rindiv(θ;x, y, δ) ∈ [0,Mindiv + log(1 + n2Mcouple-max)].

In fact, M is defined in Proposition 10 precisely based on the upper bounds in Lemma
11.

The next lemma says that even though we are optimizing over η ∈ R, we actually only
need to consider η within a closed interval that depends on M .

Lemma 12 (Slight variant of Lemma 9 of Duchi and Namkoong (2021)) We have

inf
η∈R

Lsplit
DRO(θ, η,D1 | D2) = inf

η∈[− 1
Cα−1

M,M ]
Lsplit

DRO(θ, η,D1 | D2),

and similarly
inf
η∈R

Rsplit
DRO(θ, η) = inf

η∈[− 1
Cα−1

M,M ]
Rsplit

DRO(θ, η).

Now we present the bounds on ♠, ♥, and ♣ in three successive lemmas.

Lemma 13 (Bound on ♠; appears in the proof of Theorem 2 of Duchi and Namkoong
(2021)) Let ω > 0. We have

P

(
♠ ≥ Cα max

{
2,

Cα
Cα − 1

}
M

√
2ω

n1︸ ︷︷ ︸
Ebad spade(η)

)
≤ 2e−ω.
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Note that for this probabilistic bound, the event Ebad spade(η), as the notation suggests, de-
pends on η as ♠ depends on η (later we union bound Ebad spade(η) over a finite choice of
options of η).

The statement of this lemma depends on Lemma 11 (since the constant M shows up),
and the proof crucially uses the fact that from Lemma 12, we know that it suffices to only
consider η ∈ [− 1

Cα−1M,M ].

Lemma 14 (Bound on ♥; appears in the proof of Theorem 2 of Duchi and Namkoong
(2021)) We have

♥ ≤ Cα
√

max
{

2,
Cα

Cα − 1

}
M · 1
√
n1
.

Once again, the statement of this lemma depends on Lemma 11 (due to the constant M
showing up), and the proof again uses the fact that η ∈ [− 1

Cα−1M,M ].

Lemma 15 (Bound on ♣) Under Assumptions A1, A2, and A4, we have

♣ ≤ Cα sup
(x,y,δ)∈Z

|Lindiv(θ;x, y, δ)−Rindiv(θ;x, y, δ)|

= Cα max
(x,y,δ)∈Z

|Lindiv(θ;x, y, δ)−Rindiv(θ;x, y, δ)|︸ ︷︷ ︸
,♦

.

Importantly, the supremum is attained by a specific point in the set Z , X×{t1, t2, . . . , tm}×
{0, 1}.

To help upper-bound ♦, we make use of the following lemma.

Lemma 16 (Enough data points in D2 for every time index) Define the bad event

Ebad time

,
m⋃
`=1

{
the number of points in {(Xi, Yi,∆i)}i∈D2 with observed time equal to t` is ≤

n2ζ

2

}
=

m⋃
`=1

{ ∑
i∈D2

1{Yi = t`} ≤
n2ζ

2

}
.

Under Assumption A2,

P(Ebad time) ≤ me−
n2ζ
8 .

The reason that Lemma 16 is helpful is that it ensures that the adjacency sets we get
are large enough. Specifically, note that by Assumption A3, we use

A∗((x, y, δ), C) =

{
∅ if δ = 0,

{(x′, y′, δ′) ∈ C : κ(y′) ≥ κ(y) otherwise.
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In particular, for any time index t` for ` ∈ [m], the set

A∗((x, t`, 1), {(Xi, Yi,∆i)}i∈D2) = {(Xi, Yi,∆i) : i ∈ D2 and κ(Yi) ≥ `}
= {(Xi, Yi,∆i) : i ∈ D2 and Yi ≥ t`},

has cardinality
m∑
˜̀=`

∑
i∈D2

1{Yi = t˜̀} ≥ ∑
i∈D2

1{Yi = t`} >
n2ζ

2
,

where the strict inequality occurs when Ebad timedoes not happen.
Before we bound ♦ from Lemma 15, we collect one more lemma.

Lemma 17 Let ω > 0. Let (x, y, δ) ∈ Z. Under Assumptions A1—A4, when δ = 0,
trivially

|Lindiv(θ;x, y, δ)−Rindiv(θ;x, y, δ)| = 0.

Otherwise, suppose that the bad event Ebad time in Lemma 16 does not happen:

• If φtransform(s) = s, then

P
(
|Lindiv(θ;x, y, δ)−Rindiv(θ;x, y, δ)| ≥ (Mcouple-max −Mcouple-min)

√
ωn2

ζ

)
≤ 2e−ω.

• If φtransform(s) = log(1 + s), then

P
(
|Lindiv(θ;x, y, δ)−Rindiv(θ;x, y, δ)| ≥

(Mcouple-max −Mcouple-min)

ζMcouple-min

√
8ω

n2

)
≤ 2e−ω.

Note that M ′ from Proposition 10 is precisely defined based on the bounds in Lemma
17. Moreover, we now define the bad event based on Lemma 17:

Ebad couples(x, y, δ) ,
{
|Lindiv(θ;x, y, δ)−Rindiv(θ;x, y, δ)| ≥M ′

}
.

Note that this bad event depends on (x, y, δ). By compactness of X (Assumption A1) and
the time grid being finite (Assumption A2), letQ be anM ′-cover of minimal size for X in Eu-
clidean norm (so that |Q| = N(M ′,X )); denote the elements of Q by q1, q2, . . . , qN(M ′,X ), and
for x ∈ X , let j(x) ∈ [N(ε,X )] be the index of the closest point (in Euclidean distance) from
Q to x (breaking ties arbitrarily). Then we shall union bound over Ebad couples(x, y, δ) for all
x ∈ Q, y ∈ {t1, . . . , tm}, and δ ∈ {0, 1}. Importantly, by ensuring that Ebad couples(x, y, δ)
holds at all these coordinates means that

♦ = max
(x,y,δ)

|Lindiv(θ;x, y, δ)−Rindiv(θ;x, y, δ)|

= max
(x,y,δ)

{
|Lindiv(θ;x, y, δ)− Lindiv(θ; qj(x), y, δ)|

+ |Lindiv(θ; qj(x), y, δ)−Rindiv(θ; qj(x), y, δ)|
+ |Rindiv(θ; qj(x), y, δ)−Rindiv(θ;x, y, δ)|

}
≤ max

(x,y,δ)
{LM ′ +M ′ + LM ′}

= (2L+ 1)M ′,
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where the inequality uses the coordinate-based Lipschitz continuity of L∗ (and thus also
Lindiv and Rindiv) to obtain the two different LM ′ terms, whereas the M ′ term comes from
the bound from Lemma 17.

At this point, when the bad events of Lemma 13 (this bad event depends on η), Lemma
16, and Lemma 17 (this bad event depends on (x, y, δ)) do not happen,

|Lsplit
DRO(θ, η,D1 | D2)−Rsplit

DRO(θ, η)|
≤ ♠+♥+♣

≤ Cα max
{

2,
Cα

Cα − 1

}
M

√
2ω

n1
+ Cα

√
max

{
2,

Cα
Cα − 1

}
M · 1
√
n1

+ Cα(2L+ 1)M ′

≤ Cα

[
1
√
n1

max
{

2,
Cα

Cα − 1

}(√
2ω + 1

)
M + (2L+ 1)M ′

]
︸ ︷︷ ︸

,εω,n1,n2

.

We now apply yet another covering argument. For positive integers i ≤ Cα
Cα−1

M
εω,n1,n2

, we
define

ηi , −
1

Cα − 1
M + iεω,n1,n2 .

By construction, {η1, η2 . . . } forms an εω,n1,n2-cover of [− 1
Cα−1M,M ], meaning that for any

η ∈ [− 1
Cα−1M,M ], there exists an integer i(η) ∈ [1, Cα

Cα−1
M

εω,n1,n2
] such that |η − ηi(η)| ≤

εω,n1,n2 . The size of this εω,n1,n2-cover is bounded above by Cα
Cα−1

M
εω,n1,n2

. We have

sup
η∈[− 1

Cα−1
M,M ]

|Lsplit
DRO(θ, η,D1 | D2)−Rsplit

DRO(θ, η)|

≤ sup
η∈[− 1

Cα−1
M,M ]

∣∣Lsplit
DRO(θ, η,D1 | D2)− Lsplit

DRO(θ, ηi(η),D1 | D2)

+ Lsplit
DRO(θ, ηi(η),D1 | D2)−Rsplit

DRO(θ, ηi(η)) +Rsplit
DRO(θ, ηi(η))−R

split
DRO(θ, η)

∣∣
≤ sup

η∈[− 1
Cα−1

M,M ]

{∣∣Lsplit
DRO(θ, η,D1 | D2)− Lsplit

DRO(θ, ηi(η),D1 | D2)
∣∣

+
∣∣Lsplit

DRO(θ, ηi(η),D1 | D2)−Rsplit
DRO(θ, ηi(η))

∣∣+
∣∣Rsplit

DRO(θ, ηi(η))−R
split
DRO(θ, η)

∣∣}
≤ sup

i∈[1, Cα
Cα−1

M
εω,n1,n2

]

{
(1 + Cα)εω,n1,n2 +

∣∣Lsplit
DRO(θ, ηi,D1 | D2)−Rsplit

DRO(θ, ηi(η))
∣∣+ (1 + Cα)εω,n1,n2

}
,

where the first and third terms inside the supremum objective have been bounded in the
last step using the fact that η 7→ Lsplit

DRO(θ, η,D1 | D2) and η 7→ Rsplit
DRO(θ, η) are each (1+Cα)-

Lipschitz. Meanwhile, the second term in the objective is upper-bounded by εω,n1,n2 when
none of the bad events happen, where for the bad event of Lemma 13 (the probabilistic
bound for ♠) we now have to union bound over it not happening across all the points
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η1, η2, . . . in the εω,n1,n2-cover. We thus conclude that with probability at least

1− Cα
Cα − 1

M

εω,n1,n2︸ ︷︷ ︸
upper bound on size of

εω,n1,n2 -cover

· 2e−ω︸ ︷︷ ︸
from Lemma 13

− me−
n2ζ
8︸ ︷︷ ︸

from Lemma 16

−N(M ′,X ) 2e−ω︸ ︷︷ ︸
from Lemma 17

≥ 1− 2
[ Cα
Cα − 1

M

εω,n1,n2

+ N(M ′,X )
]
e−ω −me−

n2ζ
8

= 1− 2

[
Cα

Cα − 1
· M

Cα
[

1√
n1

max{2, Cα
Cα−1}

(√
2ω + 1

)
M + (2L+ 1)M ′

] + N(M ′,X )

]
e−ω −me−

n2ζ
8

= 1− 2

[
M

(Cα − 1)
[

1√
n1

max{2, Cα
Cα−1}

(√
2ω + 1

)
M + (2L+ 1)M ′

] + N(M ′,X )

]
e−ω −me−

n2ζ
8

≥ 1− 2

[
M

(Cα − 1)
[√

2ω
n1

max{2, Cα
Cα−1}M + (2L+ 1)M ′

] + N(M ′,X )

]
e−ω −me−

n2ζ
8 ,

we have

sup
η∈[− 1

Cα−1
M,M ]

|Lsplit
DRO(θ, η,D1 | D2)−Rsplit

DRO(θ, η)|

≤ 2(1 + Cα)εω,n1,n2 + εω,n1,n2

= (3 + 2Cα)εω,n1,n2

= (3 + 2Cα)Cα

[
1
√
n1

max
{

2,
Cα

Cα − 1

}(√
2ω + 1

)
M + (2L+ 1)M ′

]

≤ 10C2
α

[
1
√
n1

max
{

2,
Cα

Cα − 1

}(√
2ω + 1

)
M + (2L+ 1)M ′

]
.

At this point, using Lemma 12, we have∣∣∣∣ inf
η∈R

Lsplit
DRO(θ, η,D1 | D2)− inf

η∈R
Rsplit

DRO(θ, η)

∣∣∣∣
=

∣∣∣∣ inf
η∈[− 1

Cα−1
M,M ]

Lsplit
DRO(θ, η,D1 | D2)− inf

η∈[− 1
Cα−1

M,M ]
Rsplit

DRO(θ, η)

∣∣∣∣
≤ sup

η∈[− 1
Cα−1

M,M ]

|Lsplit
DRO(θ, η,D1 | D2)−Rsplit

DRO(θ, η)|

≤ 10C2
α

[
1
√
n1

max
{

2,
Cα

Cα − 1

}(√
2ω + 1

)
M + (2L+ 1)M ′

]
,

where the first inequality is a standard result that holds when optimizing over bounded
functions. This finishes the proof of Proposition 10. �
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C.1 Proof of Lemma 11

Under Assumption A4, when φtransform is the identity function,

Lindiv(θ;x, y, δ) = L∗
(
(x, y, δ),A∗

(
(x, y, δ), {(Xj , Yj ,∆j) : j ∈ D2}

)
; θ
)

≤Mindiv + |D2|Mcouple-max

= Mindiv + n2Mcouple-max.

Assumption A4 trivially also implies that Lindiv(θ;x, y, δ) ≥ 0. Hence, Lindiv(θ;x, y, δ) ∈
[0,Mindiv + n2Mcouple-max]. By a similar argument, Rindiv(θ;x, y, δ) ∈ [0,Mindiv +
n2Mcouple-max].

If instead φtransform(s) = log(1 + s), then

Lindiv(θ;x, y, δ) = L∗
(
(x, y, δ),A∗

(
(x, y, δ), {(Xj , Yj ,∆j) : j ∈ D2}

)
; θ
)

≤Mindiv + log(1 + |D2|Mcouple-max)

= Mindiv + log(1 + n2Mcouple-max).

Again, we have Lindiv(θ;x, y, δ) ≥ 0, so Lindiv(θ;x, y, δ) ∈ [0,Mindiv+log(1+n2Mcouple-max)].
Similarly, Rindiv(θ;x, y, δ) ∈ [0,Mindiv + log(1 + n2Mcouple-max)]. �

C.2 Proof of Lemma 12

Using Proposition 4, we have

Lsplit
DRO(θ, η,D1 | D2) = Cα

√
1

n1

∑
i∈D1

[Lindiv(θ;Xi, Yi,∆i)− η]2+ + η.

Since Lindiv(θ;Xi, Yi,∆i) ∈ [0,M ] (from Lemma 11), this means that when η ≥M , we have
[Lindiv(θ;Xi, Yi,∆i)− η]+ = 0 for all i ∈ D1 in which case Lsplit

DRO(θ, η,D1 | D2) = η.
Meanwhile,

Lsplit
DRO

(
θ,− 1

Cα − 1
M,D1 | D2

)
= Cα

√
1

n1

∑
i∈D1

[Lindiv(θ;Xi, Yi,∆i) +
1

Cα − 1
M ]2+ −

1

Cα − 1
M

≥ Cα
√

1

n1

∑
i∈D1

[0 +
1

Cα − 1
M ]2+ −

1

Cα − 1
M

=
Cα

Cα − 1
M − 1

Cα − 1
M

= M.

Since η 7→ Lsplit
DRO(θ, η,D1 | D2) is convex, and Lsplit

DRO(θ,− 1
Cα−1M,D1 | D2) = M and

Lsplit
DRO(θ, η,D1 | D2) = η for all η ≥M , then it must be that

inf
η∈R

Lsplit
DRO(θ, η,D1 | D2) = inf

η∈[− 1
Cα−1

M,M ]
Lsplit

DRO(θ, η,D1 | D2).

Using the same reasoning,

inf
η∈R

Rsplit
DRO(θ, η) = inf

η∈[− 1
Cα−1

M,M ]
Rsplit

DRO(θ, η). �
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C.3 Proof of Lemma 13

We define
Ξi , [Lindiv(θ;Xi, Yi,∆i)− η]+ for i ∈ D1.

As a consequence of Lemma 12, it suffices to only consider η ∈ [− 1
Cα−1M,M ]. Hence,

Ξi = [Lindiv(θ;Xi, Yi,∆i)− η]+

≤ |Lindiv(θ;Xi, Yi,∆i)− η|
≤ |Lindiv(θ;Xi, Yi,∆i)|+ |η|
≤M + |η|

≤M + max
{ 1

Cα − 1
M,M

}
= max

{ 1

Cα − 1
M +M, 2M

}
= max

{ Cα
Cα − 1

M, 2M
}
.

Meanwhile, trivially Ξi ≥ 0, so

Ξi ∈
[
0,max

{
2,

Cα
Cα − 1

}
M
]
. (C.1)

Next, by Lemma 7 of Duchi and Namkoong (2021), Lsplit
DRO(θ, η,D1 | D2) is Cα√

n1
Lipschitz

with respect to the vector (Ξi)i∈D1 in Euclidean norm. Then by Lemma 6 of Duchi and
Namkoong (2021), for any ω̃ > 0,

P
(
|Lsplit

DRO(θ, η,D1 | D2)− E[Lsplit
DRO(θ, η,D1 | D2)]| ≥ ω̃

)
≤ 2 exp

(
− ω̃2n1

2C2
α

(
max{2, Cα

Cα−1}M
)2).

We do a change of variables. Let ω > 0. Plugging in

ω̃ = Cα max
{

2,
Cα

Cα − 1

}
M

√
2ω

n1
,

we get that

P

( ♠︷ ︸︸ ︷
|Lsplit

DRO(θ, η,D1 | D2)− E[Lsplit
DRO(θ, η,D1 | D2)]| ≥ Cα max

{
2,

Cα
Cα − 1

}
M

√
2ω

n1

)
≤ 2e−ω. �

C.4 Proof of Lemma 14

Recall from bound (C.1) that for i ∈ D1, the variable Ξi = [Lindiv(θ;Xi, Yi,∆i)−η]+ satisfies

Ξi ∈
[
0,max

{
2,

Cα
Cα − 1

}
M
]
.
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Thus, we trivially have

E[|Ξi|4] ≤
(

max
{

2,
Cα

Cα − 1

}
M

)2

E[|Ξi|2],

which means that applying Lemma 8 of Duchi and Namkoong (2021), we get

E

[√
1

n1

∑
i∈D1

|Ξi|2
]
≥
√
E[|Ξi|2]−

√
max

{
2,

Cα
Cα − 1

}
M · 1
√
n1
.

This means that

Lsplit,∗
DRO (θ, η,D1 | D2)− E[Lsplit

DRO(θ, η,D1 | D2)]

= Cα

(√
E[|Ξi|2]− E

[√
1

n1

∑
i∈D1

|Ξi|2
])

≤ Cα
√

max
{

2,
Cα

Cα − 1

}
M · 1
√
n1
.

Separately, by Jensen’s inequality,

E[Lsplit
DRO(θ, η,D1 | D2)]− Lsplit,∗

DRO (θ, η,D1 | D2)

= Cα

(
E

[√
1

n1

∑
i∈D1

|Ξi|2
]
−
√
E[|Ξi|2]

)

≤ Cα

(√√√√E
[

1

n1

∑
i∈D1

|Ξi|2
]
−
√
E[|Ξi|2]

)

= Cα

(√
E[|Ξi|2]−

√
E[|Ξi|2]

)
= 0.

Hence,

♥ =
∣∣E[Lsplit

DRO(θ, η,D1 | D2)]− Lsplit,∗
DRO (θ, η,D1 | D2)

∣∣
≤ Cα

√
max

{
2,

Cα
Cα − 1

}
M · 1
√
n1
. �

C.5 Proof of Lemma 15

First off, under Assumptions A1, A2, and A4, we have

sup
(x,y,δ)∈Z

|Lindiv(θ;x, y, δ)−Rindiv(θ;x, y, δ)|

= max
(x,y,δ)∈Z

|Lindiv(θ;x, y, δ)−Rindiv(θ;x, y, δ)|

= max
y∈{t1,...,tm}

max
δ∈{0,1}

max
x∈X
|Lindiv(θ;x, y, δ)−Rindiv(θ;x, y, δ)|.
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The reason the supremum is attained (so that it is equal to the max) is because not only do
we discretize time to a finite grid (Assumption A2) so that maximizing over the m values
of y and the 2 values of δ does not present any issues in the supremum being attained, we
further assume that X is compact (Assumption A1) and L∗((x, y, δ), C; θ) is continuous in
the coordinate x with respect to Euclidean norm (Assumption A4(c)), which ensures that
the supremum over x ∈ X is equal to the max over x ∈ X .

Next, using the fact that for any a, b, c, d ∈ R, we have max{a+ b, c+ d} ≤ max{a, c}+
max{b, d} (which implies that max{a+ b, 0} ≤ max{a, 0}+ max{b, 0} = [a]+ + [b]+),

E(X,Y,∆)∼P
[
[Lindiv(θ;X,Y,∆)− η]2+

]
= E(X,Y,∆)∼P

[
[Lindiv(θ;X,Y,∆)−Rindiv(θ;X,Y,∆) +Rindiv(θ;X,Y,∆)− η]2+

]
≤ E(X,Y,∆)∼P

[(
[Lindiv(θ;X,Y,∆)−Rindiv(θ;X,Y,∆)]+ + [Rindiv(θ;X,Y,∆)− η]+

)2]
.

Taking the square root of both sides, we get√
E(X,Y,∆)∼P

[
[Lindiv(θ;X,Y,∆)− η]2+

]
≤
√
E(X,Y,∆)∼P

[(
[Lindiv(θ;X,Y,∆)−Rindiv(θ;X,Y,∆)]+ + [Rindiv(θ;X,Y,∆)− η]+

)2]
.

(C.2)

Applying Minkowski’s inequality,√
E(X,Y,∆)∼P

[(
[Lindiv(θ;X,Y,∆)−Rindiv(θ;X,Y,∆)]+ + [Rindiv(θ;X,Y,∆)− η]+

)2]
≤
√

E(X,Y,∆)∼P
[
[Lindiv(θ;X,Y,∆)−Rindiv(θ;X,Y,∆)]2+

]
+
√

E(X,Y,∆)∼P
[
[Rindiv(θ;X,Y,∆)− η]2+

]
. (C.3)

Next, we have√
E(X,Y,∆)∼P

[
[Lindiv(θ;X,Y,∆)−Rindiv(θ;X,Y,∆)]2+

]
≤
√
E(X,Y,∆)∼P

[
(Lindiv(θ;X,Y,∆)−Rindiv(θ;X,Y,∆))2

]
≤
√

E(X,Y,∆)∼P
[

max
(x,y,δ)∈Z

(Lindiv(θ;x, y, δ)−Rindiv(θ;x, y, δ))2
]

=
√

max
(x,y,δ)∈Z

(Lindiv(θ;x, y, δ)−Rindiv(θ;x, y, δ))2

= max
(x,y,δ)∈Z

|Lindiv(θ;x, y, δ)−Rindiv(θ;x, y, δ)|. (C.4)

Combining inequalities (C.2), (C.3), and (C.4), we obtain√
E(X,Y,∆)∼P

[
[Lindiv(θ;X,Y,∆)− η]2+

]
≤
√

E(X,Y,∆)∼P
[
[Lindiv(θ;X,Y,∆)−Rindiv(θ;X,Y,∆)]2+

]
+
√

E(X,Y,∆)∼P
[
[Rindiv(θ;X,Y,∆)− η]2+

]
≤ max

(x,y,δ)∈Z
|Lindiv(θ;x, y, δ)−Rindiv(θ;x, y, δ)|+

√
E(X,Y,∆)∼P

[
[Rindiv(θ;X,Y,∆)− η]2+

]
,
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i.e., √
E(X,Y,∆)∼P

[
[Lindiv(θ;X,Y,∆)− η]2+

]
−
√
E(X,Y,∆)∼P

[
[Rindiv(θ;X,Y,∆)− η]2+

]
≤ max

(x,y,δ)∈Z
|Lindiv(θ;x, y, δ)−Rindiv(θ;x, y, δ)|. (C.5)

Repeating the same proof ideas but with the roles of Lindiv and Rindiv swapped, we would
instead obtain the bound√

E(X,Y,∆)∼P
[
[Rindiv(θ;X,Y,∆)− η]2+

]
−
√
E(X,Y,∆)∼P

[
[Lindiv(θ;X,Y,∆)− η]2+

]
≤ max

(x,y,δ)∈Z
|Lindiv(θ;x, y, δ)−Rindiv(θ;x, y, δ)|. (C.6)

Thus, inequalities (C.5) and (C.6) together imply that∣∣∣∣√E(X,Y,∆)∼P
[
[Lindiv(θ;X,Y,∆)− η]2+

]
−
√
E(X,Y,∆)∼P

[
[Rindiv(θ;X,Y,∆)− η]2+

]∣∣∣∣
≤ max

(x,y,δ)∈Z
|Lindiv(θ;x, y, δ)−Rindiv(θ;x, y, δ)|.

Therefore,

|Lsplit,∗
DRO (θ, η)−Rsplit

DRO(θ, η)|

= Cα

∣∣∣∣√E(X,Y,∆)∼P
[
[Lindiv(θ;X,Y,∆)− η]2+

]
−
√

E(X,Y,∆)∼P
[
[Rindiv(θ;X,Y,∆)− η]2+

]∣∣∣∣
≤ Cα max

(x,y,δ)∈Z
|Lindiv(θ;x, y, δ)−Rindiv(θ;x, y, δ)|. �

C.6 Proof of Lemma 16

For each time index ` ∈ [m], by the multiplicative Chernoff bound and Assumption A2,

P
(∑
i∈D2

1{Yi = t`} ≤
1

2
n2P(Y = t`)

)
≤ e−

E[
∑
i∈D2

1{Yi=t`}]
8 = e−

n2P(Y=t`)

8 ≤ e−
n2ζ
8 .

Note that
∑

i∈D2
1{Yi = t`} ≤ 1

2n2ζ implies that
∑

i∈D2
1{Yi = t`} ≤ 1

2n2P(Y = t`) since
P(Y = t`) ≥ ζ by Assumption A2. This means that

P
(∑
i∈D2

1{Yi = t`} ≤
1

2
n2ζ

)
≤ P

(∑
i∈D2

1{Yi = t`} ≤
1

2
n2P(Y = t`)

)
≤ e−

n2ζ
8 .

Union-bounding over all m time indices yields the claim. �

C.7 Proof of Lemma 17

Let (x, y, δ) ∈ Z. If δ = 0, then we obtain the trivial equality

|Lindiv(θ;x, y, δ)−Rindiv(θ;x, y, δ)| = 0,
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since by Assumption A4, Lindiv(θ;x, y, 0) has no coupling terms, in which case it is exactly
equal to Rindiv(θ;x, y, 0).

For the remainder of this lemma’s proof, we assume that δ 6= 0. In this case, the
adjacency set of (x, y, δ) could be nonempty. First, we introduce the shorthand notation
where ND2 ⊆ [n] denotes the indices of training data in D2 that are considered adjacent to
data point (x, y, δ), and Nfresh ∈ [n2] is analogously defined but for the fresh sample of n2

data points (used in the definition of Rindiv). Formally,

ND2 ,
{
i ∈ D2 : (Xi, Yi,∆i) ∈ A∗

(
(x, y, δ), {(Xj , Yj ,∆j) : j ∈ D2}

)}
,

Nfresh ,
{
i ∈ [n2] : (X ′i, Y

′
i ,∆

′
i) ∈ A∗

(
(x, y, δ), {(X ′j , Y ′j ,∆′j) : j ∈ [n2]}

)}
.

When the event Ebad time in Lemma 16 does not happen, we are guaranteed that |ND2 | >
n2ζ
2 > 0 (by the definition of DeepHit’s adjacency function, when δ = 1, ND2 would at least

contain all points in D2 with the same time index as y, for which there are more than n2ζ
2

such data points).
Then when φtransform is the identity function,

|Lindiv(θ;x, y, δ)−Rindiv(θ;x, y, δ)|

=

∣∣∣∣φindiv((x, y, δ); θ) +
∑

j∈N ∗D2

φcouple((x, y, δ), (Xj , Yj ,∆j); θ)

− E{(X′i,Y ′i ,∆′i)}n2i=1

[
φindiv((x, y, δ); θ) +

∑
j∈N ∗fresh

φcouple((x, y, δ), (X
′
j , Y

′
j ,∆

′
j); θ)

]∣∣∣∣
=

∣∣∣∣ ∑
j∈N ∗D2

φcouple((x, y, δ), (Xj , Yj ,∆j); θ)

− E{(X′i,Y ′i ,∆′i)}n2i=1

[ ∑
j∈N ∗fresh

φcouple((x, y, δ), (X
′
j , Y

′
j ,∆

′
j); θ)

]∣∣∣∣.
The key observation is that by construction,

∑
j∈N ∗D2

φcouple((x, y, δ), (Xj , Yj ,∆j); θ) has the
same distribution as

∑
j∈N ∗fresh

φcouple((x, y, δ), (X
′
j , Y

′
j ,∆

′
j); θ), so

E{(Xi,Yi,∆i)}i∈D2

[ ∑
j∈N ∗D2

φcouple((x, y, δ), (Xj , Yj ,∆j); θ)

]

= E{(X′i,Y ′i ,∆′i)}n2i=1

[ ∑
j∈N ∗fresh

φcouple((x, y, δ), (X
′
j , Y

′
j ,∆

′
j); θ)

]
.

Hence, denoting
Φ ,

∑
j∈N ∗D2

φcouple((x, y, δ), (Xj , Yj ,∆j); θ), (C.7)

we have
|Lindiv(θ;x, y, δ)−Rindiv(θ;x, y, δ)| = |Φ− E[Φ]|.
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When event Ebad time does not happen, we know that |ND2 | ≥ d
n2ζ
2 e. This means

that Φ is a nonempty sum of i.i.d. nonnegative random variables each bounded within
[Mcouple-min,Mcouple-max]. Then by Hoeffding’s inequality,

for any ω̃ > 0,

P
(
|Φ− E[Φ]| ≥ ω̃|ND2 |

∣∣∣∣ |ND2 | ≥
⌈n2ζ

2

⌉)
=

∑n2

`=dn2ζ
2
e
P
(
|Φ− E[Φ]| ≤ ω̃|ND2 |

∣∣ |ND2 | = `
)
P(|ND2 | = `)

P(|ND2 | ≥ d
n2ζ
2 e)

≤

∑n2

`=dn2ζ
2
e

2 exp

(
− 2(ω̃`)2

`(Mcouple-max−Mcouple-min)2

)
P(|ND2 | = `)

P(|ND2 | ≥ d
n2ζ
2 e)

=

∑n2

`=dn2ζ
2
e

2 exp

(
− 2ω̃2`

(Mcouple-max−Mcouple-min)2

)
P(|ND2 | = `)

P(|ND2 | ≥ d
n2ζ
2 e)

≤

∑n2

`=dn2ζ
2
e

2 exp

(
− 2ω̃2(

n2ζ
2

)

(Mcouple-max−Mcouple-min)2

)
P(|ND2 | = `)

P(|ND2 | ≥ d
n2ζ
2 e)

= 2 exp

(
− ω̃2n2ζ

(Mcouple-max −Mcouple-min)2

)
.

Now we do a change of variables. Let ω > 0, and set

ω̃ = (Mcouple-max −Mcouple-min)

√
ω

ζn2
.

Then we have

P
(
|Φ− E[Φ]| ≥ (Mcouple-max −Mcouple-min)

√
ω

ζn2
|ND2 |

∣∣∣∣ |ND2 | ≥
⌈n2ζ

2

⌉)
≤ 2e−ω.

In summary, when Ebad time does not happen, with probability at least 1− 2e−ω, we have

|Lindiv(θ;x, y, δ)−Rindiv(θ;x, y, δ)| = |Φ− E[Φ]|

≤ (Mcouple-max −Mcouple-min)

√
ω

ζn2
|ND2 |

≤ (Mcouple-max −Mcouple-min)

√
ω

ζn2
· n2

= (Mcouple-max −Mcouple-min)

√
ωn2

ζ
.
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Now let’s consider when instead φtransform(s) = log(1 + s), and as a reminder we assume
δ 6= 0. Then

|Lindiv(θ;x, y, δ)−Rindiv(θ;x, y, δ)|

=

∣∣∣∣φindiv((x, y, δ); θ) + log

(
1 +

∑
j∈ND2

φcouple((x, y, δ), (Xj , Yj ,∆j); θ)

)

− E{(X′i,Y ′i ,∆′i)}n2i=1

[
φindiv((x, y, δ); θ) + δ log

(
1 +

∑
j∈Nfresh

φcouple((x, y, δ), (X
′
j , Y

′
j ,∆

′
j); θ)

)]∣∣∣∣
=

∣∣∣∣ log

(
1 +

∑
j∈ND2

φcouple((x, y, δ), (Xj , Yj ,∆j); θ)

)

− E{(X′i,Y ′i ,∆′i)}n2i=1

[
log

(
1 +

∑
j∈Nfresh

φcouple((x, y, δ), (X
′
j , Y

′
j ,∆

′
j); θ)

)]∣∣∣∣.

By a similar argument as we used for proving the case where φtransform is the identity
function, the key observation is that

E{(Xi,Yi,∆i)}i∈D2

[
log

(
1 +

∑
j∈ND2

φcouple((x, y, δ), (Xj , Yj ,∆j); θ)

)]

= E{(X′i,Y ′i ,∆′i)}n2i=1

[
log

(
1 +

∑
j∈Nfresh

φcouple((x, y, δ), (X
′
j , Y

′
j ,∆

′
j); θ)

)]
.

We now define Γj , φcouple((x, y, δ), (Xj , Yj ,∆j); θ) for each j ∈ ND2 . Again, when event
Ebad time does not happen, we are guaranteed that |ND2 | ≥

n2ζ
2 , i.e., ND2 is nonempty. Note

that the map (Γj)j∈ND2
7→ log(1 +

∑
j∈ND2

Γj) is concave. We now show that this map is
Lipschitz continuous with respect to the Euclidean norm by showing what a valid Lipschitz
constant is for the map. Note that for i ∈ ND2 ,

∂ log(1 +
∑

j∈ND2
Γj)

∂Γi
=

1

1 +
∑

j∈ND2
Γj
.
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Then

∥∥∥∇ log
(

1 +
∑

j∈ND2

Γj

)∥∥∥
2

=

√√√√ ∑
i∈ND2

(∂ log(1 +
∑

j∈ND2
Γj)

∂Γi

)2

=

√
|ND2 |

(1 +
∑

j∈ND2
Γj)2

≤
√

|ND2 |
(
∑

j∈ND2
Γj)2

≤
√

|ND2 |
(n2ζ

2 Mcouple-min)2

≤
√

n2

(n2ζ
2 Mcouple-min)2

=
2

ζMcouple-min
· 1
√
n2
.

In other words, the map (Γj)j∈ND2
7→ log(1+

∑
j∈ND2

Γj) has Lipschitz constant 2
ζMcouple-min

·
1√
n2

when event Ebad time does not happen. Then applying Lemma 6 of Duchi and Namkoong
(2021), for any ω̃ > 0,

P
(∣∣∣∣ log

(
1 +

∑
j∈ND2

Γj

)
− E

[
log
(

1 +
∑

j∈ND2

Γj

)]∣∣∣∣ ≥ ω̃ ∣∣∣∣ |ND2 | ≥
n2ζ

2

)

≤ 2 exp
(
− ω̃2

2( 2
ζMcouple-min

· 1√
n2

)2(Mcouple-max −Mcouple-min)2

)
= 2 exp

(
−

ω̃2ζ2M2
couple-minn2

8(Mcouple-max −Mcouple-min)2

)
.

Let ω > 0 and set ω̃ =
(Mcouple-max−Mcouple-min)

ζMcouple-min

√
8ω
n2
. Then

P
( =|Lindiv(θ;x,y,δ)−Rindiv(θ;x,y,δ)|︷ ︸︸ ︷∣∣∣∣ log

(
1 +

∑
j∈N ∗D2

Γj

)
− E

[
log
(

1 +
∑

j∈N ∗D2

Γj

)]∣∣∣∣ ≥ (Mcouple-max −Mcouple-min)

ζMcouple-min

√
8ω

n2

)
≤ 2e−ω. �

Appendix D. Proof of Corollary 6

The proof of this corollary consists of two main parts. First, we check that the Assumptions
A1–A4 needed by Theorem 5 hold. Then we apply Theorem 5, where we impose constraints
on n and d so that we can simplify the probability bound in equation (24).
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Verifying Assumptions A1–A4 Assumption A1 clearly holds since X is the unit ball
in Rd, which is compact. There is no need to check Assumption A2 in that we are directly
assuming it. Similarly, Assumption A3 also trivially holds (for discrete time, the adjacency
function for the Cox model is the same as for DeepHit).

We proceed to verify Assumption A4. For the Cox model where f(x; θ) = θ>x, we have

L∗((x, y, δ), C; θ) = −δ

[
θ>x− log

(
exp(θ>x) +

∑
(x′,y′,δ′)∈C

exp(θ>x′)

)]

= −δ

[
log exp(θ>x)− log

(
exp(θ>x) +

∑
(x′,y′,δ′)∈C

exp(θ>x′)

)]

= −δ log

(
exp(θ>x)

exp(θ>x) +
∑

(x′,y′,δ′)∈C exp(θ>x′)

)

= δ log

(
exp(θ>x) +

∑
(x′,y′,δ′)∈C exp(θ>x′)

exp(θ>x)

)
= δ log

(
1 +

∑
(x′,y′,δ′)∈C

exp
(
θ>(x′ − x)

))
,

which corresponds to Assumption A4 where φtransform(s) = log(1 + s), φindiv always outputs
0 (so Mindiv = 0), and

φcouple((x, y, δ), (x
′, y′, δ′); θ) = exp

(
θ>(x′ − x)

)
.

In this case, since X and Θ are constrained to be within the unit ball, by the Cauchy-Schwarz
inequality,

|θ>(x′ − x)| ≤ ‖θ‖2︸︷︷︸
≤1

‖x′ − x‖2︸ ︷︷ ︸
≤2 since a unit ball

has diameter 2

≤ 2.

In particular,
θ>(x′ − x) ∈ [−2, 2],

so the largest φcouple((x, y, δ), (x
′, y′, δ′); θ) can be is

exp
(
θ>(x′ − x)

)
≤ exp(2) ,Mcouple-max,

whereas the smallest is

exp
(
θ>(x′ − x)

)
≥ exp(−2) ,Mcouple-min.

Meanwhile, to check that L∗((x, y, δ), C; θ) satisfies Lipschitz continuity, first note that when
δ = 0, the L∗((x, y, δ), C; θ) = 0, so there is nothing to show. When δ 6= 0, we have

L∗((x, y, δ), C; θ) = log
(

1 +
∑

(x′,y′,δ′)∈C

exp
(
θ>(x′ − x)

))
.
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Taking the gradient with respect to x, we get

∂L∗((x, y, δ), C; θ)
∂x

= −
∑

(x′,y′,δ′)∈C exp
(
θ>(x′ − x)

)
1 +

∑
(x′,y′,δ′)∈C exp

(
θ>(x′ − x)

)θ.
Then ∥∥∥∂L∗((x, y, δ), C; θ)

∂x

∥∥∥
2

=

∥∥∥∥−
∑

(x′,y′,δ′)∈C exp
(
θ>(x′ − x)

)
1 +

∑
(x′,y′,δ′)∈C exp

(
θ>(x′ − x)

)θ∥∥∥∥
2

=

∑
(x′,y′,δ′)∈C exp

(
θ>(x′ − x)

)
1 +

∑
(x′,y′,δ′)∈C exp

(
θ>(x′ − x)

)︸ ︷︷ ︸
≤1 (this is a probability from a softmax calculation)

‖θ‖2︸︷︷︸
≤1

≤ 1.

Thus, L∗((x, y, δ), C; θ) is 1-Lipschitz (i.e., the constant L in Assumption A4(c) is 1). At
this point we have verified that Assumption A4 holds.

Applying Theorem 5 We now apply Theorem 5. In this case, we have

M , log
(

1 +
e2

2
n
)

and M ′ ,
4(e2 − e−2)

ζe−2

√
ω

n
. (D.1)

By a standard result (see, for instance, Corollary 4.2.13 of Vershynin (2018)), for all ε ∈ (0, 1],

N(ε,X ) ≤
(3

ε

)d
. (D.2)

Since the Theorem 5’s probability bound (24) depends on N(M ′,X ), we first verify that
M ′ ≤ 1 so that inequality (D.2) holds. To do this, we make use of the lower branch W−1 of
the Lambert W function and the standard result that

−1−
√

2s− s < W−1(−e−s−1) for s > 0. (D.3)

By assumption,

n ≥
(4(e2 − e−2)

ζe−2

)2(d+ 1

2

)
e

√
2 log

((
4(e2−e−2)

ζe−2

)2(
d+1
2

))
−1

= e
log

((
4(e2−e−2)

ζe−2

)2(
d+1
2

))
+

√
2 log

((
4(e2−e−2)

ζe−2

)2(
d+1
2

))
−1

.

Inequality (D.3) (with s = log
(
(4(e2−e−2)

ζe−2 )2(d+1
2 )
)
− 1) implies that

e
log

((
4(e2−e−2)

ζe−2

)2(
d+1
2

))
+

√
2 log

((
4(e2−e−2)

ζe−2

)2(
d+1
2

))
−1

> e

−W−1

(
− 1(

4(e2−e−2)

ζe−2

)2(
d+1
2

))
,
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so that

n ≥ e

−W−1

(
− 1(

4(e2−e−2)

ζe−2

)2(
d+1
2

))
.

This implies that

M ′ =
4(e2 − e−2)

ζe−2

√
ω

n
=

4(e2 − e−2)

ζe−2

√
d+1

2 log n

n
≤ 1

as desired. Then using inequality (D.2), the probability bound in equation (24) satisfies the
bound

1− 2

[
M

(Cα − 1)
[
2
√

ω
n max{2, Cα

Cα−1}M + (2L+ 1)M ′
] + N(M ′,X )

]
e−ω −me−

nζ
16

= 1− 2

[
log
(
1 + e2

2 n
)

(Cα − 1)
[
2
√

ω
n max{2, Cα

Cα−1} log
(
1 + e2

2 n
)

+ 12(e2−e−2)
ζe−2

√
ω
n

] + N(M ′,X )

]
e−ω −me−

nζ
16

≥ 1− 2

[
log
(
1 + e2

2 n
)

(Cα − 1)
[
2
√

ω
n max{2, Cα

Cα−1} log
(
1 + e2

2 n
)

+ 12(e2−e−2)
ζe−2

√
ω
n

] +

(
3

4(e2−e−2)
ζe−2

√
ω
n

)d]
e−ω

−me−
nζ
16

= 1− 2

[
log
(
1 + e2

2 n
)

2(Cα − 1) max{2, Cα
Cα−1} log

(
1 + e2

2 n
)

+ 12(Cα−1)(e2−e−2)
ζe−2

√
n

ω
+

(
3ζe−2

4(e2 − e−2)

)d(n
ω

)d/2]
e−ω

−me−
nζ
16

= 1− 2

[
log
(
1 + e2

2 n
)

Υ1 log
(
1 + e2

2 n
)

+ Υ2

(n
ω

)1/2
+ Υ3

(n
ω

)d/2]
e−ω −me−

nζ
16 ,

where

Υ1 , 2(Cα − 1) max
{

2,
Cα

Cα − 1

}
,

Υ2 ,
12(Cα − 1)(e2 − e−2)

ζe−2
,

Υ3 ,

(
3ζe−2

4(e2 − e−2)

)d
.

Recall that we have the assumption

n ≥ 2e
− 6(e4−1)

ζmax{2, Cα
Cα−1

}
−2

=
2e−Υ2/Υ1

e2
.

This implies that

n >
2(e−Υ2/Υ1 − 1)

e2
,
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which further implies that
log
(
1 + e2

2 n
)

Υ1 log
(
1 + e2

2 n
)

+ Υ2

≤ 1

Υ1
.

Consequently,

1− 2

[
log
(
1 + e2

2 n
)

Υ1 log
(
1 + e2

2 n
)

+ Υ2

(n
ω

)1/2
+ Υ3

(n
ω

)d/2]
e−ω −me−

nζ
16

≥ 1− 2

[
1

Υ1

(n
ω

)1/2
+ Υ3

(n
ω

)d/2]
e−ω −me−

nζ
16 .

Next, we use the fact that we set ω = d+1
2 log n. Let W−1 to be the lower branch of the

Lambert W function. The statement of the corollary also assumes that

n ≥ e
√

2(log d+1
2
−1)+log d+1

2 .

A standard bound on W−1 is that for any s > 0, we have −1 −
√

2s − s < W−1(−e−s−1).
Plugging in s = log d+1

2 − 1 (which is guaranteed to be positive since we assume that
d ≥ 5 > 2e− 1), we get that

n ≥ e
√

2(log d+1
2
−1)+log d+1

2 ≥ e−W−1(− 2
d+1

).

This in turn implies that n ≥ ω = d+1
2 log n. Then since n ≥ ω, we have

1− 2

[
1

Υ1

(n
ω

)1/2
+ Υ3

(n
ω

)d/2]
e−ω −me−

nζ
16

≥ 1− 2
( 1

Υ1
+ Υ3

)(n
ω

)d/2
e−ω −me−

nζ
16 .

Lastly, because we assume that n ≥ e
2
d+1 and d ≥ 5 > 0, then these two conditions imply

that
d

2
log n− d

2
logω − ω ≤ −1

2
log n,

which means that (n
ω

)d/2
e−ω︸ ︷︷ ︸

=nd/2ω−d/2e−ω

≤ n−1/2.

Thus,

1− 2
( 1

Υ1
+ Υ3

)(n
ω

)d/2
e−ω −me−

nζ
16

≥ 1− 2
( 1

Υ1
+ Υ3

) 1√
n
−me−

nζ
16 .

This results in the simplified probability bound in equation (26).
Finally, we plug in M and M ′ from equation (D.1) as well as ω = d+1

2 log n into bound
(25) to arrive at (27), which completes the proof of the corollary. �
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Appendix E. Proof of Corollary 7

Verifying Assumptions A1–A4 Since X is the unit ball in R2, Assumption A1 is satis-
fied. There is no need to check Assumptions A2 or A3 (we directly assume A2, and A3 says
that we are using the DeepHit adjacency function, which is the case since we are analyzing
DeepHit). As for Assumption A4, we now describe how the bounds on Mindiv, Mcouple-min,
and Mcouple-max are obtained.

First, let’s look at

φindiv((x, y, δ); θ) = β ·
[
− δ log(fκ(y)(x; θ))− (1− δ) log(Sκ(y)(x; θ))

]
.

Note that this function is nonnegative since log probabilities are negative and are at most
0, i.e., log(fκ(y)(x; θ)) ≤ 0 and log(Sκ(y)(x; θ)) ≤ 0. Since fκ(y)(x; θ) ≥ %, this means that

−β · δ · log(fκ(y)(x; θ)) ≤ −β log(fκ(y)(x; θ)) ≤ −β log % = β log
1

%
.

Meanwhile,

−β(1− δ) log(Sκ(y)(x; θ)) ≤ −β log(Sκ(y)(x; θ)) ≤ −β log % = β log
1

%
,

where the last inequality holds because Sj(x; θ) monotonically decreases as we go to later
time indices; the smallest it gets is Sm−1(x; θ) = fm(x; θ) ≥ % (where we have used the
assumption that within the training data, no observed time corresponds to index m). Thus,
we can take Mindiv = β log 1

% .
Next, we look at

φcouple((x, y, δ), (x
′, y′, δ′), C; θ) = (1− β) · 1

n
· exp

(Sκ(y)(x; θ)− Sκ(y)(x
′; θ)

σ

)
.

Here, the main observation is that Sj(x; θ) ∈ [%, 1] for j ∈ [m − 1]. Hence, Sκ(y)(x; θ) −
Sκ(y)(x

′; θ) ∈ [%− 1, 1− %], from which we conclude that

φcouple((x, y, δ), (x
′, y′, δ′), C; θ) ∈ [(1− β) · 1

n
· e(%−1)/σ︸ ︷︷ ︸

Mcouple-min

, (1− β) · 1

n
· e(1−%)/σ︸ ︷︷ ︸

Mcouple-max

].

Now we check the Lipschitz constant. When δ = 0, then

L∗((x, y, δ), C; θ) = φindiv((x, y, δ); θ) + δφtransform

( ∑
(x′,y′,δ′)∈C

φcouple((x, y, δ), (x
′, y′, δ′); θ)

)
= φindiv((x, y, δ); θ)

= −β log(fκ(y)(x; θ)).

Note that s 7→ log s defined on the interval [%,∞) has Lipschitz constant 1
% . We are com-

posing s 7→ log s with fκ(y)(x; θ), which we assumed is 1-Lipschitz, so log(fκ(y)(x; θ)) is
1
% -Lipschitz. Finally by multiplying by −β, we have that L∗((x, y, δ), C; θ) is β

% -Lipschitz.
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Next, we consider when δ = 1. In this case,

L∗((x, y, δ), C; θ) = φindiv((x, y, δ); θ) + δφtransform

( ∑
(x′,y′,δ′)∈C

φcouple((x, y, δ), (x
′, y′, δ′); θ)

)
= −β log(Sκ(y)(x; θ)) + (1− β) · 1

n
· exp

(Sκ(y)(x; θ)− Sκ(y)(x
′; θ)

σ

)
.

First off, we show that −β log(Sκ(y)(x; θ)) is β(m−1)
% -Lipschitz. Note that Sj(x; θ) =∑m

`=j+1 f`(x; θ) is the sum of at most (m − 1) functions that are each 1-Lipschitz, so it
is (m− 1)-Lipschitz. As stated earlier, Sκ(y)(x; θ) ≥ %, and s 7→ log(s) defined over [%,∞) is
1
% -Lipschitz. Thus, x 7→ log(Sκ(y)(x; θ)) is m−1

% -Lipschitz. Finally, x 7→ −β log(Sκ(y)(x; θ))

is β(m−1)
% -Lipschitz.

Now we consider the term (1− β) · 1
n · exp

(
Sκ(y)(x;θ)−Sκ(y)(x′;θ)

σ

)
. Note that Sκ(y)(x; θ)−

Sκ(y)(x
′; θ) is the difference of two (m − 1)-Lipschitz functions, so it is 2(m − 1)-Lipschitz.

Next, Sκ(y)(x;θ)−Sκ(y)(x′;θ)
σ is 2(m−1)

σ -Lipschitz. Note that

Sκ(y)(x; θ)− Sκ(y)(x
′; θ)

σ
∈
[%− 1

σ
,
1− %
σ

]
.

Observe that the map s 7→ exp(s) defined over the interval [%−1
σ , 1−%

σ ] is Lipschitz with
Lipschitz constant

e
1−%
σ − e

%−1
σ

1−%
σ −

%−1
σ

=
σ(e

1−%
σ − e

%−1
σ )

2(1− %)
.

Then x 7→ exp
(Sκ(y)(x;θ)−Sκ(y)(x′;θ)

σ

)
has Lipschitz constant

σ(e
1−%
σ − e

%−1
σ )

2(1− %)
· 2(m− 1)

σ
=

(e
1−%
σ − e

%−1
σ )(m− 1)

(1− %)
.

Finally, x 7→ (1− β) · 1
n · exp

(Sκ(y)(x;θ)−Sκ(y)(x′;θ)
σ

)
has Lipschitz constant

(1− β)(e
1−%
σ − e

%−1
σ )(m− 1)

n(1− %)
.

We conclude that x 7→ L∗((x, y, δ), C; θ) has Lipschitz constant

β(m− 1)

%
+

(1− β)(e
1−%
σ − e

%−1
σ )(m− 1)

n(1− %)
.

Under the assumption that

n ≥ %(1− β)(e
1−%
σ − e

%−1
σ )

(1− %)β
,
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we have

β(m− 1)

%
+

(1− β)(e
1−%
σ − e

%−1
σ )(m− 1)

n(1− %)

≤ β(m− 1)

%
+

(1− β)(e
1−%
σ − e

%−1
σ )(m− 1)

%(1−β)(e
1−%
σ −e

%−1
σ )

(1−%)β (1− %)

=
2β(m− 1)

%

, L.

Note that for simplicity, we have used a somewhat loose bound on the Lipschitz constant.
This finishes our verification of Assumptions A1–A4.

Applying Theorem 5 We begin by noting that in this setup,

M = Mindiv +
Mcouple-max

2
n

= β log
1

%
+

(1− β) · 1
n · e

(1−%)/σ

2
n

= β log
1

%
+

(1− β)e(1−%)/σ

2
,

and

M ′ = (Mcouple-max −Mcouple-min)

√
ωn

2ζ

=
(

(1− β) · 1

n
· e(1−%)/σ − (1− β) · 1

n
· e(%−1)/σ

)√ωn

2ζ

=

√
ω

n

((1− β)e(1−%)/σ − (1− β)e(%−1)/σ

√
2ζ

)
.

Just as in the proof of Corollary 6, we begin by showing that M ′ ≤ 1, which ensures that

N(M ′,X ) ≤
( 3

M ′

)d
.

We have

M ′ =

√
ω

n

((1− β)e(1−%)/σ − (1− β)e(%−1)/σ

√
2ζ

)
=

√
d+1

2 log n

n

((1− β)e(1−%)/σ − (1− β)e(%−1)/σ

√
2ζ

)
=

√
log n

n

(
(1− β)e(1−%)/σ − (1− β)e(%−1)/σ

2

√
d+ 1

ζ

)
.
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Under the assumptions that

n ≥ [(1− β)e(1−%)/σ − (1− β)e(%−1)/σ]2
(d+ 1

4ζ

)
e

√
2 log

(
[(1−β)e(1−%)/σ−(1−β)e(%−1)/σ ]2

(
d+1
4ζ

))

= e
log

(
[(1−β)e(1−%)/σ−(1−β)e(%−1)/σ ]2

(
d+1
4ζ

))
+

√
2 log

(
[(1−β)e(1−%)/σ−(1−β)e(%−1)/σ ]2

(
d+1
4ζ

))
,

and that

log[(1− β)e(1−%)/σ − (1− β)e(%−1)/σ]2
(d+ 1

4ζ

)
> 1,

then by inequality (D.3) (with s = log[(1−β)e(1−%)/σ− (1−β)e(%−1)/σ]2
(
d+1
4ζ

)
−1), we have

n ≥ e
−W−1

(
− 1

[(1−β)e(1−%)/σ−(1−β)e(%−1)/σ ]2
(
d+1
4ζ

))
,

which implies that M ′ ≤ 1.
Now that we have shown that M ′ ≤ 1 so that N(M ′,X ) ≤ ( 3

M ′ )
d, the probability in

equation (24) satisfies the bound

1− 2

[
M

(Cα − 1)
[
2
√

ω
n max{2, Cα

Cα−1}M + (2L+ 1)M ′
] + N(M ′,X )

]
e−ω −me−

nζ
16

= 1− 2

[
β log 1

% + (1−β)e(1−%)/σ

2

(Cα − 1)
[
2
√

ω
n max{2, Cα

Cα−1}(β log 1
% + (1−β)e(1−%)/σ

2 ) + (2L+ 1)
√

ω
n

(
(1−β)e(1−%)/σ−(1−β)e(%−1)/σ

√
2ζ

)]
+ N(M ′,X )

]
e−ω −me−

nζ
16

= 1− 2

[
1

(Cα − 1)
[
2 max{2, Cα

Cα−1}+ (2L+ 1)
((

(1−β)e(1−%)/σ−(1−β)e(%−1)/σ
)(

2β log 1
%

+(1−β)e(1−%)/σ
) √

2
ζ

)]√n

ω
+ N(M ′,X )

]
e−ω

−me−
nζ
16

≤ 1− 2

[
1

(Cα − 1)
[
2 max{2, Cα

Cα−1}+ (2L+ 1)
((

(1−β)e(1−%)/σ−(1−β)e(%−1)/σ
)(

2β log 1
%

+(1−β)e(1−%)/σ
) √

2
ζ

)]√n

ω

+

(
3√

ω
n

(
(1−β)e(1−%)/σ−(1−β)e(%−1)/σ

√
2ζ

))d]e−ω −me−nζ16
= 1− 2

[
Ψ1

√
n

ω
+ Ψ2

(n
ω

)d/2]
e−ω −me−

nζ
16 ,
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where

Ψ1 ,
1

(Cα − 1)
[
2 max{2, Cα

Cα−1}+ (2L+ 1)
((

(1−β)e(1−%)/σ−(1−β)e(%−1)/σ
)(

2β log 1
%

+(1−β)e(1−%)/σ
) √

2
ζ

)] ,
Ψ2 ,

(
3
√

2ζ

(1− β)e(1−%)/σ − (1− β)e(%−1)/σ

)d
.

Using the same reasoning as in the proof of Corollary 6, when n ≥ e

√
2(log d+1

2
−1)+log d+1

2

(which we assume in the corollary statement), we are guaranteed that n ≥ ω. Hence, we
have

1− 2

[
Ψ1

√
n

ω
+ Ψ2

(n
ω

)d/2]
e−ω −me−

nζ
16

≥ 1− 2(Ψ1 + Ψ2)
(n
ω

)d/2
e−ω −me−

nζ
16 .

Moreover, when n ≥ e
2
d+1 and d ≥ 5 > 0 (we assume both of these), using the same reasoning

as the proof of Corollary 6, (n
ω

)d/2
e−ω ≤ 1√

n
.

Hence,

1− 2(Ψ1 + Ψ2)
(n
ω

)d/2
e−ω −me−

nζ
16

≥ 1− 2(Ψ1 + Ψ2)
1√
n
−me−

nζ
16 .

In the statement of the corollary, Ψ , 2(Ψ1 + Ψ2). As for the loss bound (25), we simply
plug in the values of M and M ′ specific to the DeepHit setup here, and we also plug in
ω = d+1

2 log n. This finishes the proof. �

Appendix F. Fairness Metrics

In this paper, we use the individual, group, and intersectional fairness metrics defined by
Keya et al. (2021), the concordance imparity (CI) metric by Zhang and Weiss (2022), and
also censoring-based individual and censoring-based group fairness metrics by Rahman and
Purushotham (2022). For all of these fairness metrics, lower is considered better, where the
minimum possible value is 0. We point out that the fairness metrics by Keya et al. (2021) and
Rahman and Purushotham (2022) can readily be treated as regularizers (i.e., they could be
included as additional loss terms during model training). Moreover, the individual fairness
metric by Keya et al. (2021) and the censoring-based individual and censoring-based group
fairness metrics by Rahman and Purushotham (2022) crucially depend on a scaling constant
γ > 0 that must be set by the user in advance: if γ is set to be higher, then it becomes
easier for a survival model to achieve a score of exactly (and not just approximately) 0 for
these particular fairness metrics.
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Note that in Section 5 of the main paper, we use the fairness metrics by Keya et al. as
regularizers in baseline methods and not as evaluation metrics. However, we include addi-
tional experimental results that use the individual and group fairness metrics by Keya et
al. as evaluation metrics in Appendix H (specifically, see Tables H.5–H.13).

We begin by explaining the fairness metrics proposed by Keya et al. (2021) as these
were the earliest fairness metrics we are aware of that were developed for survival analysis.
Note that Keya et al. focused on Cox proportional hazards models. For such models, we
can take the predicted outcome for a feature vector x to be the so-called partial hazard
h̃(x) , exp(f(x; θ)); this is the same as the hazard function given in equation (3) except
where we exclude the baseline hazard factor h0(t). Note that once we exclude h0(t), then h̃
no longer depends on time t. We state the fairness metrics in terms of a collection of Ntest
test patients with data (Xtest

1 , Y test
1 ,∆test

1 ), . . . , (Xtest
Ntest

, Y test
Ntest

,∆test
Ntest

). Note that the fairness
metrics by Keya et al. (2021) only use the test feature vectors Xtest

1 , . . . , Xtest
Ntest

and ignores
the test patients’ observed times and event indicators. Also, at the end of this section, we
point out that the individual and group fairness metrics by Keya et al. (2021) are sensitive
to the scale of the log partial hazard f(·; θ).

Individual fairness Roughly, Keya et al. (2021) consider a model to be fair across indi-
viduals (patients) if similar individuals have similar predicted outcomes. To operationalize
this notion of fairness in the context of Cox models, Keya et al. define the individual fairness
metric

FI ,
Ntest∑
i=1

Ntest∑
j=i+1

[
|h̃(Xtest

i )− h̃(Xtest
j )| − γ‖Xtest

i −Xtest
j ‖

]
+
,

where γ is a predefined scale factor (0.01 in our experiments). As a reminder, [ · ]+ is the
ReLU function (so that [a]+ = max{0, a} for any a ∈ R). Importantly, we point out that
by setting γ to be larger, then more terms in the summation become 0 (since within the
ReLU expression, we are subtracting a larger quantity, making it more likely that after
applying ReLU, we get 0). If γ is set to be too large, then it is possible that all terms in the
summation become 0 (i.e., the fairness metric becomes exactly and not just approximately
equal to 0).

Note that this individual fairness metric is actually just penalizing h̃ for not being Lip-
schitz continuous (as empirically evaluated over the test data). Specifically, h̃ is defined to
be γ-Lipschitz continuous if

|h̃(x)− h̃(x′)| ≤ γ‖x− x′‖ for all x, x′ ∈ X .

Meanwhile, when FI is equal to 0, then it means that

|h̃(Xtest
i )− h̃(Xtest

j )| ≤ γ‖Xtest
i −Xtest

j ‖ for all i, j ∈ {1, . . . , Ntest}.

As a technical remark, in the definition of FI and also γ-Lipschitz continuity, the metric
used to measure distances between feature vectors does not have to be Euclidean. For
example, we can replace ‖Xtest

i −Xtest
j ‖ with ρ(Xtest

i , Xtest
j ), where ρ : X × X → [0,∞) is

a user-specified metric.
The individual fairness metric by Keya et al. (2021) can be modified to support survival

models that do not assume the proportional hazards assumption (such as DeepHit and
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SODEN) in a straightforward manner: we simply replace the hazard function h̃(x) by the
estimated survival function Ŝ(t|x) to obtain the following time-dependent fairness metric:

FI(t) ,
Ntest∑
i=1

Ntest∑
j=i+1

[
|Ŝ(t|Xtest

i )− Ŝ(t|Xtest
j )| − γ‖Xtest

i −Xtest
j ‖

]
+
.

Group fairness Keya et al. (2021) consider a model is fair across a user-specified set
of groups if these different groups have similar predicted outcomes. Keya et al. define the
group fairness metric FG to look at the maximum deviation of a group’s average predicted
outcome to the overall population’s average predicted outcome. Specifically, let G be the
user-specified set of groups to consider (for example, there could be two groups: everyone
with age at most 65 years, and everyone older than 65 years), where each group g ∈ G is a
subset of the test set indices {1, . . . , Ntest} (so that using this notation, group g has size |g|);
the different groups should form a partition of the test set (so that the groups are disjoint
and their union is the entire test set). Then

FG , max
g∈G

∣∣∣∣ 1

|g|
∑
i∈g

h̃(Xtest
i )︸ ︷︷ ︸

average predicted
outcome of group g

− 1

Ntest

Ntest∑
i=1

h̃(Xtest
i )︸ ︷︷ ︸

average predicted
outcome of population

∣∣∣∣.

Once again, for survival models that do not assume a proportional hazards assumption (such
as DeepHit and SODEN), we can instead replace h̃(x) with S̃(t|x) to obtain the following
time-dependent group fairness metric:

FG(t) , max
g∈G

∣∣∣∣ 1

|g|
∑
i∈g

Ŝ(t|Xtest
i )︸ ︷︷ ︸

average predicted
outcome of group g

− 1

Ntest

Ntest∑
i=1

Ŝ(t|Xtest
i )︸ ︷︷ ︸

average predicted
outcome of population

∣∣∣∣.

Intersectional fairness Keya et al. (2021) consider a notion of intersectional fairness
that accounts for multiple sensitive attributes. For example, in the FLC dataset, we have
2 different sensitive attributes, age and gender. For each of these sensitive attributes, we
can partition the test set into groups. Specifically, let G1 be a partition of the test set
into different age groups (for example, two groups: at most 65 years old and over 65 years
old), and let G2 be a partition of the test set into different gender groups (for example,
two groups: female and male). Then intersectional fairness looks at every intersection of
age/gender groups (continuing from the previous examples, we would have four intersectional
subgroups: at most 65 years old and female, at most 65 years and male, over 65 years old
and female, over 65 years old and male).

The notation here is a bit more involved. The set of all intersectional subgroups of
G1 and G2 is given by the Cartesian product G1 × G2. Note that s ∈ G1 × G2 means that
s = (s1, s2), where s1 ∈ G1 and s2 ∈ G2. More generally, if there are J sensitive attributes,
corresponding to groupings G1,G2, . . . ,GJ , then the set of all intersectional subgroups would
be S , G1×G2× · · · GJ . Now s ∈ S is a list consisting of J different subsets of test patients
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(i.e., s = (s1, s2, . . . , sJ), where s1 ∈ G1, . . . , sJ ∈ GJ). The intersection of these J subsets
(i.e., ∩Jj=1sj ⊂ {1, . . . , Ntest}) is precisely the set of test patients that intersectional subgroup
s corresponds to. Then the average predicted outcome for intersectional subgroup s is

h̃(s) ,
1

| ∩Jj=1 sj |
∑

i∈∩Jj=1sj

h̃(Xtest
i ).

Then the intersection fairness metric F∩ by Keya et al. (2021) is the worst-case log ratio of
expected predicted outcomes between two intersectional subgroups:

F∩ , max
s,s′∈S

∣∣∣ log
h̃(s)

h̃(s′)

∣∣∣.
Concordance imparity We now describe an alternative metric for group fairness called
concordance imparity (CI) that asks that a survival analysis model achieves similar predic-
tion accuracy for different groups. For ease of exposition, we only state the CI metric by
Zhang and Weiss (2022) in terms of a single sensitive attribute that has already been dis-
cretized (e.g., the attribute is already discrete or we have a pre-specified discretization rule);
this special case is sufficient for our experiments. We denote the set of possible discretized
values of this sensitive attribute as A. For example, A could correspond to age and we could
have A = {“age ≤ 65”, “age > 65”}, i.e., A consists of the different groups to consider. We
refer the reader to the Zhang and Weiss’s original paper for their more general definition of
CI that can handle a continuous sensitive attribute via an automatic discretization strategy
that they propose.

Assuming that the sensitive attribute has already been discretized into the set A, the CI
metric looks at a variant of the standard survival analysis accuracy metric of concordance
index (Harrell et al., 1982) that Zhang and Weiss call the concordance fraction (CF), which is
specific to each sensitive attribute value a ∈ A. The CI metric is then defined to be the worst-
case difference between the CF scores of any two a, a′ ∈ A where a 6= a′. The pseudocode
can be found in Algorithm 3; note that to keep the notation from getting clunky, we drop
the superscript “test” from the test feature vectors, observed times, and event indicators in
the pseudocode but we still use Ntest to denote the number of test patients. Also, in the
pseudocode, we let Ai ∈ A denote the sensitive attribute value for the i-th test patient,
where we assume that Ai can directly be computed based on the i-th test patient’s feature
vector. For example, when age (which is not discretized) is one of the features and A consists
of the two age groups previously stated (≤ 65 or > 65), then since we know the discretization
rule used, we can readily determine which age group in A that any test patient is in.

Importantly, to calculate the CI metric, a way to calculate a risk score is required to
compute the CF scores. How to define a risk score differs across models. For Cox models,
we can take the risk score to be the log partial hazard function f(·; θ). For DeepHit and
SODEN models, we take the risk score to be the estimated survival probability Ŝ(t|x) and
therefore we need to replace f(·; θ) with Ŝ(t|x) before using Algorithm 3. Since different
values of time t can have different estimated Ŝ(t|x) values, we would obtain different value
of the CI fairness metric for different t. We test three different values of t (the 25th, 50th,
and 75th percentile of the observed times in the test data) and use the average value for the
final CI score.
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Censoring-based individual fairness Individual fairness FI does not consider censoring
information that is available. Rahman and Purushotham (2022) defined a censoring-based
individual fairness metric as follows:

FCI(t) ,
1

|Nc| × |Nuc|
∑

i∈Nc,j∈Nuc
s.t. Yj≥Yi

[
|Ŝ(t|Xtest

i )− Ŝ(t|Xtest
j )| − γ‖Xtest

i −Xtest
j ‖

]
+
,

where Nc and Nuc are the index sets of censored and uncensored data, and Ŝ(t|X) is the
estimated survival probability at time t for patient X. Similar to in FI , the scale factor γ is
a predefined (0.01 in our experiments). This fairness metric ensures that a censored patient
and an uncensored patient who have similar features should also have similar predictions
whenever the observed time from the uncensored patient is larger than that of the censored
patient. Similar to the CI fairness metric and following the experimental settings of Rahman
and Purushotham (2022), we test three different t values (25th, 50th, 75th percentile of the
observed times in the test data) and use their average value to calculate the final FCI score.

As a warning, just as with the individual fairness metric FI by Keya et al. (2021) that we
described earlier, if γ is set higher, then it becomes easier for the FCI(t) metric to become
exactly and not just approximately equal to 0.

Censoring-based group fairness Rahman and Purushotham (2022) also modified the
FG metric by Keya et al. (2021) to account for censoring information. Reusing notation
from the definitions of FG and FCI(t), we now define the censoring-based group fairness
metric

FCG(t) ,
1

|Nc| × |Nuc|
∑
g∈G

∑
i∈Nc,g ,j∈Nuc,g

s.t. Yj≥Yi

[
|Ŝ(t|Xtest

i )− Ŝ(t|Xtest
j )| − γ‖Xtest

i −Xtest
j ‖

]
+
,

where Nc,g and Nuc,g are the index sets of censored and uncensored in group g, and Ŝ(t|X)
is the estimated survival probability at time t for patient X. Similar to the setting in
censoring-based individual fairness, we use three different t to test the value of FCG(t) and
use their average for the final reported FCG score. Once again, if γ is set too large, then it
becomes easier for FCG(t) to be exactly 0.

Scale Issues with FI and FG
We point out that the FI and FG fairness metrics by Keya et al. (2021) are sensitive to the
scale of the log partial hazard function f(·; θ), and thus also the scale of the partial hazard
h̃(x) = exp(f(x; θ)) if they are calculated by using h̃(x). For instance, consider a standard
linear Cox model with f(x; θ) = θTx, where the parameters θ have already been learned.
Then one way to make the model appear fairer according to the FI and FG metrics is to
just scale all values in θ by any positive constant smaller than 1; doing so, the standard
accuracy metric of concordance index (Harrell et al., 1982) would actually remain unchanged
for the model as it only depends on the ranking of the different individuals’ (log) partial
hazard values. However, an accuracy score that considers each individual’s survival function
estimate (e.g., integrated IPCW Brier Score (Graf et al., 1999)) would be affected.
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Algorithm 3: Concordance Imparity (CI) with a discrete sensitive attribute
Input: Test dataset {(Xi, Yi,∆i)}Ntest

i=1 , risk score f(·; θ) (from an already trained model), set of
sensitive attribute values A (so that each a ∈ A corresponds to a different group),
A1, . . . , ANtest ∈ A says which sensitive attribute value each test patient has

Output: CI score
1 for a ∈ A do
2 Initialize the numerator count N(a)← 0 and denominator count D(a)← 0.
3 end
4 for i = 1, . . . , Ntest do
5 for j = 1, . . . , Ntest s.t. j 6= i do
6 if (Yi < Yj and ∆i == 0) or (Yj < Yi and ∆j == 0) or (Yi == Yj and ∆i == 0 and

∆j == 0) then
7 continue
8 else
9 Set D(Ai)← D(Ai) + 1.

10 end
11 if Yi < Yj then
12 if f(Xi; θ) > f(Xj ; θ) then
13 Set N(Ai)← N(Ai) + 1.
14 else if f(Xi; θ) == f(Xj ; θ) then
15 Set N(Ai)← N(Ai) + 0.5.
16 end
17 else if Yi > Yj then
18 if f(Xi; θ) < f(Xj ; θ) then
19 Set N(Ai)← N(Ai) + 1.
20 else if f(Xi; θ) == f(Xj ; θ) then
21 Set N(Ai)← N(Ai) + 0.5.
22 end
23 else if Yi == Yj then
24 if ∆i == 1 and ∆j == 1 then
25 if f(Xi; θ)==f(Xj ; θ) then
26 Set N(Ai)← N(Ai) + 1.
27 else
28 Set N(Ai)← N(Ai) + 0.5.
29 end
30 else if ∆i==0 and ∆j==1 and f(Xi; θ)<f(Xj ; θ) then
31 Set N(Ai)← N(Ai) + 1.
32 else if ∆i==1 and ∆j==0 and f(Xi; θ)>f(Xj ; θ) then
33 Set N(Ai)← N(Ai) + 1.
34 else
35 Set N(Ai)← N(Ai) + 0.5.
36 end
37 end
38 end
39 end
40 for a ∈ A do
41 Set the concordance fraction of a: CF(a)← N(a)

D(a)
.

42 end
43 return CI← maxa,a′∈A s.t. a6=a′ |CF(a)−CF(a′)|
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Appendix G. Hyperparameter Tuning and Compute Environment Details

Hyperparameters Cox models: for nonlinear Cox models, we always use a two-layer
MLP with ReLU as the activation function and 24 as the number of hidden units. All
models (linear and nonlinear) are trained using Adam (Kingma and Ba, 2014) in PyTorch
1.7.1 in a batch setting for 500 iterations (except in the case of the exact DRO Cox model
on the FLC dataset, where we use 5000 iterations as it took more iterations for the model
to converge), only using a CPU and no GPU.

DeepHit models: we use three-layer MLP with ReLU activation, batch normalization,
and dropout (in 0.1). The number of hidden units is 32. The original DeepHit and dro-
deephit models are trained using Adam in PyTorch 1.7.1 in a mini-batch 256 setting for
500 epochs. However, the dro-deephit (split) model is trained using a batch setting for
500 iterations.

SODEN models: for the FLC dataset, we use an MLP with 4 layers and 16 hidden units.
For SUPPORT and SEER datasets, we use an MLP with 2 layers and 26 hidden units. In
addition, RMSprop (Tieleman et al., 2012) in 128 batch size with a maximum 100 epochs
is used to train all models.

We tune on the following hyperparameter grid:
• To find the optimal learning rate for each Cox model, we conducted a sweep over values

of 0.01, 0.001, and 0.0001. Specifically for the exact DRO Cox model, we used a fixed
learning rate of 0.1. For the FIDP, FIPNAM, and DeepHit models, we used a fixed
learning rate of 0.01. In the case of SODEN models, the learning rates applied were 0.01,
0.002, and 0.002 for the FLC, SUPPORT, and SEER datasets, respectively.
• λ (only used for baselines; a hyperparameter that controls the tradeoff between the original

Cox loss and fairness regularization term): 1, 0.7, 0.4. We set λ = 0.1 for FIDP and
FIPNAM.
• α: 0.1, 0.15, 0.2, 0.3, 0.4, 0.5 for dro-cox/dro-cox (split)/exact dro-cox variants;

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 for dro-deephit/dro-deephit (split)
variants and dro-soden.

In addition, for dro-cox (split) and dro-deephit (split), we choose n1 = n2 = n/2
(rounding as needed when n is odd, so that n1 might not equal n2).

Compute environment All models are implemented with Python 3.8.3, and they are
trained and tested on identical compute instances, each with an Intel Core i9-10900K CPU
(3.70GHz with 64 GB RAM) and a Quadro RTX 4000 GPU.

Appendix H. Additional Experiments

Using other sensitive attributes in evaluating CI and FCG in Cox models In
Section 5 of the main paper, for the Cox model, we only showed test set performance metrics
(Ctd and IBS accuracy metrics, and CI, FCI , and FCG fairness metrics) for FLC, SUPPORT,
and SEER using age, gender, race, and race respectively (in Tables 2, 3, and 4). We now
provide results using gender for FLC (Table H.1), age and separately race for SUPPORT
(Tables H.2 and H.3), and age for SEER (Table H.4). Our main findings still hold for these
additional results.
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We point out that for DeepHit and SODEN models, in Section 5, we had already shown
results for FLC, SUPPORT, and SEER where per dataset, we consider different sensitive
attributes (see Tables 5 and 6).

Using individual and group fairness evaluation metrics by Keya et al. (2021)
Whereas in the main paper, we focused on evaluating test data using CI, FCI , and FCG
fairness metrics, we now also show results where we use the FI and FG fairness metrics by
Keya et al. (2021) instead. See Tables H.5–H.13. Our main findings still hold using these
fairness metrics by Keya et al.

Effect of changing n1 (or n2) for dro-cox (split) In the above experiments, we set
n1 = n2 = n/2 (rounding as needed). To evaluate the sensitivity of this setting, we test the
model performance using dro-cox (split) under the linear and nonlinear settings, where
we set n2 = 0.1n, 0.2n, 0.3n, 0.4n, 0.5n (corresponding to n1 = 0.9n, 0.8n, 0.7n, 0.6n, 0.5n).
We report the test set performance metrics for the FLC dataset (using age for evaluation)
in Table H.14. From the table, we find that per metric, different settings for n1 and n2 lead
to results that, while slightly different, are not dramatically different, i.e., the performance
of dro-cox (split) does not appear very sensitive w.r.t. the choice of n1 and n2.

Effect of changing imbalance in censoring rates across training data splits for
dro-cox (split) For our split DRO strategy, to see what happens when the two subsets
of the training data D1 and D2 have different censoring rates, we conduct the following
experiment. We first randomly divide the training data into 50/50 pieces D1/D2 where we
stratify on the censoring rate so that D1 and D2 have the same censoring rate. Then, we
introduce an censoring rate imbalance by trading, for instance, a randomly chosen censored
point from D2 with a randomly chosen uncensored point from D1. We could of course trade
multiple points.

To formalize a notion of how much imbalance we are introducing, we define a censoring
rate imbalance ratio as follows. First, note that using the above strategy of trading points
between D1 and D2 that we stated, the maximum number of points we could possibly trade is
given by the minimum of the number of uncensored points in D1 and the number of censored
points in D2. Let’s call this maximum number of points we could trade as nmax trade. Then
we define the imbalance ratio to be a percentage of nmax trade points that we trade. Thus, an
imbalance ratio of 80% means that we trade 0.8nmax trade randomly chosen censored points
from D2 with 0.8nmax trade randomly chosen uncensored points from D1.

We repeat the same experiment that resulted in Table 2 specifically for dro-cox (split)
(i.e., for simplicity, we only consider the FLC dataset treating age as sensitive), where the
only difference now is that we re-train dro-cox (split) using imbalance ratios of 0%, 20%,
40%, 60%, 80%, and 100% (per imbalance ratio, we re-run experiments 10 times). The
resulting test set accuracy and fairness metrics are reported in Table H.15.

The most important takeaway from Table H.15 is that our split DRO approach still can
work well even with high censoring rate imbalance ratios. For instance, in the linear setting,
accounting for the standard deviations that have been reported in the table, at an imbalance
ratio of 100%, the resulting accuracy and fairness metrics are actually within noise of using
an imbalance ratio of 0%. In the nonlinear setting, at an imbalance ratio of 80%, the
model achieves a better mean CI fairness score compared to an imbalance ratio of 0% while
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achieving the highest mean Ctd score (although the mean IBS score increases). Meanwhile,
still in the nonlinear setting, at an imbalance of 100%, the model achieves the lowest IBS
and CI fairness scores (within the nonlinear setting). To recap, these findings suggest that
our split DRO approach can still work well even at high censoring rate imbalance ratios.

As for whether we should favor low or high censoring rate imbalance ratios, Table H.15
suggests that in practice, we should just tune on this imbalance ratio since an intermediate
imbalance ratio could achieve the best tradeoff of accuracy and fairness scores. For simplicity
though, in the main paper, we do not tune on the censoring rate imbalance ratio and stick to
just using an imbalance ratio of 0%. We defer a more thorough investigation of the impact
of the imbalance ratio to future work.

The effect of using two losses for dro-cox (split) rather than only one Re-
call that dro-cox (split) minimizes the sum of two losses Lsplit

DRO(θ, η,D1 | D2) and
Lsplit

DRO(θ, η,D2 | D1). Towards the end of Section 3.2, we said that an approach that
only minimizes one of these losses would not use the data as effectively compared to min-
imizing the sum of these losses. We conducted an experiment to verify this claim, where
we refer to the version of dro-cox (split) that only minimizes Lsplit

DRO(θ, η,D1 | D2) as
dro-cox (split, one side). Specifically, we compare dro-cox (split, one side) and
dro-cox (split) under linear and nonlinear settings on the FLC dataset using age for
evaluation. We report the resulting test set performance metrics in Table H.16. From the
table, we find that dro-cox (split) outperforms dro-cox (split, one side) on most
metrics. This experimental finding supports our hypothesis that dro-cox (split, one
side) uses data less effectively.
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Table H.1: Cox model test set scores on the FLC (gender) dataset, in the same format as Table 2.

Methods
CI-based Tuning FCG-based Tuning

Accuracy Metrics Fairness Metrics Accuracy Metrics Fairness Metrics
Ctd↑ IBS↓ CI(%)↓ FCI↓ FCG↓ Ctd↑ IBS↓ CI(%)↓ FCI↓ FCG↓

L
in

ea
r

Cox 0.8032
(0.0002)

0.1739
(0.0004)

0.8610
(0.0197)

0.0249
(0.0002)

0.0128
(0.0001)

0.8032
(0.0002)

0.1739
(0.0004)

0.8610
(0.0197)

0.0249
(0.0002)

0.0128
(0.0001)

CoxI (Keya et al.) 0.7932
(0.0083)

0.1368
(0.0052)

1.6750
(0.7969)

0.0096
(0.0031)

0.0051
(0.0016)

0.7859
(0.0220)

0.1334
(0.0034)

1.9650
(1.3510)

0.0067
(0.0006)

0.0035
(0.0004)

CoxI (R&P) 0.8024
(0.0007)

0.1714
(0.0033)

0.7850
(0.0648)

0.0239
(0.0014)

0.0123
(0.0007)

0.8016
(0.0006)

0.1679
(0.0020)

0.7350
(0.0329)

0.0224
(0.0008)

0.0115
(0.0004)

CoxG(Keya et al.) 0.8011
(0.0015)

0.1619
(0.0077)

0.7020
(0.1081)

0.0195
(0.0035)

0.0100
(0.0018)

0.8003
(0.0004)

0.1567
(0.0004)

0.6350
(0.0081)

0.0172
(0.0001)

0.0089
(0.0001)

CoxG(R&P) 0.8022
(0.0006)

0.1707
(0.0033)

0.7730
(0.0628)

0.0236
(0.0015)

0.0121
(0.0007)

0.8015
(0.0003)

0.1673
(0.0004)

0.7210
(0.0137)

0.0222
(0.0002)

0.0114
(0.0001)

Cox∩(Keya et al.) 0.7868
(0.0018)

0.1400
(0.0005)

0.4830
(0.1020)

0.0073
(0.0001)

0.0039
(0.0001)

0.7868
(0.0018)

0.1400
(0.0005)

0.4830
(0.1020)

0.0073
(0.0001)

0.0039
(0.0001)

DRO-COX 0.7605
(0.0096)

0.1350
(0.0003)

0.3040
(0.1569)

0.0018
(0.0006)

0.0010
(0.0003)

0.7958
(0.0049)

0.1330
(0.0002)

1.0780
(0.0739))

0
(0)

0
(0)

DRO-COX (SPLIT) 0.7964
(0.0045)

0.1389
(0.0008)

1.0120
(0.1369)

0
(0)

0
(0)

0.7964
(0.0045)

0.1389
(0.0008)

1.0120
(0.1369)

0
(0)

0
(0)

EXACT DRO-COX 0.7821
(0.0142)

0.3916
(0.0487)

1.3025
(0.3796)

0.0094
(0.0016)

0.0049
(0.0008)

0.7821
(0.0142)

0.3916
(0.0487)

1.3025
(0.3796)

0.0094
(0.0016)

0.0049
(0.0008)

N
on

li
n
ea

r

DeepSurv 0.8070
(0.0014)

0.1767
(0.0018)

1.0760
(0.1702)

0.0259
(0.0004)

0.0133
(0.0002)

0.8070
(0.0014)

0.1767
(0.0018)

1.0760
(0.1702)

0.0259
(0.0004)

0.0133
(0.0002)

DeepSurvI (Keya et al.) 0.7916
(0.0121)

0.1548
(0.0176)

1.4610
(0.7342)

0.0176
(0.0088)

0.0091
(0.0045)

0.7994
(0.0069)

0.1673
(0.0051)

1.4660
(0.8459)

0.0245
(0.0014)

0.0126
(0.0008)

DeepSurvI (R&P) 0.8066
(0.0033)

0.1736
(0.0087)

1.0520
(0.1533)

0.0245
(0.0039)

0.0126
(0.0020)

0.8086
(0.0015)

0.1766
(0.0024)

1.1210
(0.0964)

0.0258
(0.0011)

0.0132
(0.0005)

DeepSurvG(Keya et al.) 0.7964
(0.0117)

0.1576
(0.0196)

0.9420
(0.2229)

0.0161
(0.0097)

0.0083
(0.0050)

0.8017
(0.0114)

0.1655
(0.0182)

1.0310
(0.2034)

0.0201
(0.0091)

0.0103
(0.0046)

DeepSurvG(R&P) 0.8054
(0.0039)

0.1704
(0.0113)

1.0420
(0.1463)

0.0231
(0.0051)

0.0119
(0.0026)

0.8086
(0.0015)

0.1766
(0.0024)

1.1210
(0.0964)

0.0258
(0.0011)

0.0132
(0.0005)

DeepSurv∩(Keya et al.) 0.7804
(0.0119)

0.1399
(0.0086)

0.8440
(0.2581)

0.0062
(0.0052)

0.0033
(0.0026)

0.7751
(0.0018)

0.1357
(0.0002)

0.7400
(0.0671)

0.0037
(0.0001)

0.0020
(4.1949e-05)

FIDP 0.8077
(0.0022)

0.1228
(0.0019)

1.2500
(0.1186)

0.0239
(0.0018)

0.0118
(0.0009)

0.8077
(0.0022)

0.1228
(0.0019)

1.2500
(0.1186)

0.0239
(0.0018)

0.0118
(0.0009)

FIPNAM 0.7829
(0.0037)

0.1810
(0.0050)

0.9750
(0.0246)

0.0251
(0.0006)

0.0127
(0.0004)

0.7829
(0.0037)

0.1810
(0.0050)

0.9750
(0.0246)

0.0251
(0.0006)

0.0127
(0.0004)

Deep DRO-COX 0.7699
(0.0147)

0.1336
(0.0004)

0.4870
(0.2540)

0.0010
(0.0008)

0.0006
(0.0004)

0.7781
(0.0091)

0.1331
(0.0002)

0.9050
(0.2372)

0.0001
(3.1257e-05)

0.0001
(2.4246e-05)

Deep DRO-COX (SPLIT) 0.7784
(0.0092)

0.1647
(0.0037)

1.0500
(0.3409)

0
(0)

0
(0)

0.7784
(0.0092)

0.1647
(0.0037)

1.0500
(0.3409)

0
(0)

0
(0)

Deep EXACT DRO-COX 0.8048
(0.0011)

0.1363
(0.0016)

0.9660
(0.1395)

0.0197
(0.0005)

0.0102
(0.0002)

0.8048
(0.0011)

0.1363
(0.0016)

0.9660
(0.1395)

0.0197
(0.0005)

0.0102
(0.0002)
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Table H.2: Cox model test set scores on the SUPPORT (age) dataset, in the same format as Table 2.

Methods
CI-based Tuning FCG-based Tuning

Accuracy Metrics Fairness Metrics Accuracy Metrics Fairness Metrics
Ctd↑ IBS↓ CI(%)↓ FCI↓ FCG↓ Ctd↑ IBS↓ CI(%)↓ FCI↓ FCG↓

L
in

ea
r

Cox 0.6025
(0.0005)

0.2304
(0.0015)

2.2240
(0.1078)

0.0054
(0.0002)

0.0023
(0.0001)

0.6025
(0.0005)

0.2304
(0.0015)

2.2240
(0.1078)

0.0054
(0.0002)

0.0023
(0.0001)

CoxI (Keya et al.) 0.5820
(0.0116)

0.2153
(0.0076)

1.3120
(0.7623)

0.0001
(0.0003)

3.6626e-05
(0.0001)

0.5829
(0.0099)

0.2147
(0.0063)

1.3600
(0.8532)

0
(0)

0
(0)

CoxI (R&P) 0.6019
(0.0008)

0.2310
(0.0014)

2.1220
(0.2937)

0.0056
(0.0003)

0.0024
(0.0001)

0.6017
(0.0012)

0.2308
(0.0013)

2.2370
(0.2882)

0.0055
(0.0003)

0.0023
(0.0001)

CoxG(Keya et al.) 0.5875
(0.0013)

0.2315
(0.0014)

2.2030
(0.0986)

0.0045
(0.0002)

0.0023
(0.0001)

0.5862
(0.0009)

0.2292
(0.0010)

2.2070
(0.0958)

0.0038
(0.0001)

0.0020
(0.0001)

CoxG(R&P) 0.6019
(0.0008)

0.2310
(0.0014)

2.1220
(0.2937)

0.0056
(0.0003)

0.0024
(0.0001)

0.6017
(0.0012)

0.2308
(0.0013)

2.2370
(0.2882)

0.0055
(0.0003)

0.0023
(0.0001)

Cox∩(Keya et al.) 0.5664
(0.0061)

0.2273
(0.0016)

2.8030
(0.2551)

0.0027
(0.0003)

0.0014
(0.0002)

0.5631
(0.0070)

0.2264
(0.0017)

2.8350
(0.2498)

0.0024
(0.0003)

0.0013
(0.0002)

DRO-COX 0.5722
(0.0031)

0.2210
(0.0010)

1.8310
(0.2546)

0.0001
(0.0001)

0.0001
(2.5317e-05)

0.5641
(0.0105)

0.2211
(0.0010)

1.8490
(0.6025)

0.0001
(0.0001)

4.7704e-05
(3.9221e-05)

DRO-COX (SPLIT) 0.5701
(0.0056)

0.4569
(0.1314)

1.7240
(0.3998)

1.1922e-07
(2.6445e-07)

3.2988e-08
(8.8067e-08)

0.5701
(0.0056)

0.4570
(0.1314)

1.7210
(0.3977)

1.1922e-07
(2.6445e-07)

3.2988e-08
(8.8067e-08)

EXACT DRO-COX 0.5884
(0.0063)

0.3122
(0.0068)

0.8540
(0.3189)

8.1822e-06
(8.1542e-06)

5.1031e-06
(4.9357e-06)

0.5884
(0.0063)

0.3122
(0.0068)

0.8540
(0.3189)

8.1822e-06
(8.1542e-06)

5.1031e-06
(4.9357e-06)

N
on

li
n
ea

r

DeepSurv 0.6108
(0.0029)

0.2417
(0.0016)

2.1170
(0.2107)

0.0090
(0.0002)

0.0041
(0.0001)

0.6108
(0.0029)

0.2417
(0.0016)

2.1170
(0.2107)

0.0090
(0.0002)

0.0041
(0.0001)

DeepSurvI (Keya et al.) 0.5950
(0.0116)

0.2316
(0.0188)

1.6330
(0.5036)

0.0048
(0.0041)

0.0021
(0.0018)

0.6031
(0.0059)

0.2459
(0.0102)

1.8950
(0.6473)

0.0090
(0.0007)

0.0040
(0.0003)

DeepSurvI (R&P) 0.6034
(0.0089)

0.2334
(0.0078)

2.0940
(0.4228)

0.0063
(0.0027)

0.0028
(0.0013)

0.6115
(0.0051)

0.2444
(0.0036)

1.9370
(0.5165)

0.0097
(0.0009)

0.0044
(0.0003)

DeepSurvG(Keya et al.) 0.5869
(0.0122)

0.2372
(0.0131)

1.6760
(0.4326)

0.0062
(0.0045)

0.0031
(0.0021)

0.5966
(0.0048)

0.2543
(0.0032)

1.9710
(0.4498)

0.0117
(0.0006)

0.0057
(0.0003)

DeepSurvG(R&P) 0.6039
(0.0094)

0.2329
(0.0074)

2.0890
(0.4199)

0.0061
(0.0025)

0.0027
(0.0012)

0.6115
(0.0051)

0.2444
(0.0036)

1.9370
(0.5165)

0.0097
(0.0009)

0.0044
(0.0003)

DeepSurv∩(Keya et al.) 0.5979
(0.0063)

0.2345
(0.0036)

2.4300
(0.2338)

0.0055
(0.0012)

0.0028
(0.0006)

0.5912
(0.0012)

0.2309
(0.0011)

2.4750
(0.1695)

0.0043
(0.0002)

0.0022
(0.0001)

FIDP 0.5811
(0.0090)

0.2356
(0.0023)

1.4920
(0.3806)

0.0059
(0.0005)

0.0027
(0.0003)

0.5811
(0.0090)

0.2356
(0.0023)

1.4920
(0.3806)

0.0059
(0.0005)

0.0027
(0.0003)

FIPNAM 0.5760
(0.0039)

0.2330
(0.0005)

2.1960
(0.1062)

0.0021
(0.0001)

0.0008
(0.0001)

0.5760
(0.0039)

0.2330
(0.0005)

2.1960
(0.1062)

0.0021
(0.0001)

0.0008
(0.0001)

Deep DRO-COX 0.5833
(0.0088)

0.2231
(0.0015)

0.7590
(0.3395)

0.0012
(0.0004)

0.0006
(0.0002)

0.5754
(0.0120)

0.2227
(0.0011)

0.8240
(0.3554)

0.0010
(0.0005)

0.0005
(0.0003)

Deep DRO-COX (SPLIT) 0.5772
(0.0093)

0.6387
(0.0007)

0.8660
(0.3260)

0
(0)

0
(0)

0.5772
(0.0093)

0.6387
(0.0007)

0.8660
(0.3260)

0
(0)

0
(0)

Deep EXACT DRO-COX 0.5811
(0.0065)

0.2621
(0.0098)

1.7720
(0.7390)

0.0062
(0.0020)

0.0031
(0.0009)

0.5811
(0.0065)

0.2621
(0.0098)

1.7720
(0.7390)

0.0062
(0.0020)

0.0031
(0.0009)

75



Hu and Chen

Table H.3: Cox model test set scores on the SUPPORT (race) dataset, in the same format as
Table 2.

Methods
CI-based Tuning FCG-based Tuning

Accuracy Metrics Fairness Metrics Accuracy Metrics Fairness Metrics
Ctd↑ IBS↓ CI(%)↓ FCI↓ FCG↓ Ctd↑ IBS↓ CI(%)↓ FCI↓ FCG↓

L
in

ea
r

Cox 0.6025
(0.0005)

0.2304
(0.0015)

1.4160
(0.0696)

0.0054
(0.0002)

0.0034
(0.0001)

0.6025
(0.0005)

0.2304
(0.0015)

1.4160
(0.0696)

0.0054
(0.0002)

0.0034
(0.0001)

CoxI (Keya et al.) 0.5905
(0.0086)

0.2161
(0.0054)

1.1230
(0.6621)

0.0005
(0.0005)

0.0003
(0.0004)

0.5829
(0.0099)

0.2147
(0.0063)

1.1820
(0.5238)

0
(0)

0
(0)

CoxI (R&P) 0.6023
(0.0009)

0.2309
(0.0012)

1.3590
(0.1882)

0.0055
(0.0003)

0.0035
(0.0002)

0.6024
(0.0007)

0.2307
(0.0012)

1.3800
(0.1880)

0.0055
(0.0002)

0.0035
(0.0001)

CoxG(Keya et al.) 0.6013
(0.0008)

0.2282
(0.0017)

1.3610
(0.0647)

0.0047
(0.0003)

0.0030
(0.0002)

0.6011
(0.0006)

0.2279
(0.0009)

1.3610
(0.0650)

0.0046
(0.0001)

0.0029
(0.0001)

CoxG(R&P) 0.6023
(0.0009)

0.2309
(0.0012)

1.3590
(0.1882)

0.0055
(0.0003)

0.0035
(0.0002)

0.6024
(0.0007)

0.2307
(0.0012)

1.3800
(0.1880)

0.0055
(0.0002)

0.0035
(0.0001)

Cox∩(Keya et al.) 0.5681
(0.0079)

0.2271
(0.0018)

1.4020
(0.1743)

0.0027
(0.0004)

0.0017
(0.0003)

0.5631
(0.0070)

0.2264
(0.0017)

1.3670
(0.1406)

0.0024
(0.0003)

0.0015
(0.0002)

DRO-COX 0.5735
(0.0018)

0.2210
(0.0010)

0.4640
(0.0790)

0.0002
(2.4047e-05)

0.0001
(1.6044e-05)

0.5641
(0.0105)

0.2211
(0.0010)

0.6660
(0.3208)

0.0001
(0.0001)

0.0001
(0.0001)

DRO-COX (SPLIT) 0.5701
(0.0056)

0.4569
(0.1314)

0.6450
(0.3222)

1.1922e-07
(2.6445e-07)

1.0222e-07
(2.2769e-07)

0.5701
(0.0056)

0.4570
(0.1314)

0.6440
(0.3228)

0
(0)

0
(0)

EXACT DRO-COX 0.5884
(0.0063)

0.3122
(0.0068)

0.6010
(0.2146)

8.1822e-06
(8.1542e-06)

6.3444e-06
(6.1862e-06)

0.5884
(0.0063)

0.3122
(0.0068)

0.6010
(0.2146)

8.1822e-06
(8.1542e-06)

6.3444e-06
(6.1862e-06)

N
on

li
n
ea

r

DeepSurv 0.6108
(0.0029)

0.2417
(0.0016)

1.7440
(0.2649)

0.0090
(0.0002)

0.0056
(0.0001)

0.6108
(0.0029)

0.2417
(0.0016)

1.7440
(0.2649)

0.0090
(0.0002)

0.0056
(0.0001)

DeepSurvI (Keya et al.) 0.5927
(0.0082)

0.2316
(0.0166)

1.0380
(0.5996)

0.0044
(0.0039)

0.0029
(0.0025)

0.6031
(0.0059)

0.2459
(0.0102)

1.2450
(0.7264)

0.0090
(0.0007)

0.0058
(0.0004)

DeepSurvI (R&P) 0.6087
(0.0083)

0.2379
(0.0081)

1.4840
(0.3203)

0.0076
(0.0024)

0.0047
(0.0014)

0.6115
(0.0051)

0.2444
(0.0036)

1.4410
(0.4472)

0.0097
(0.0009)

0.0060
(0.0005)

DeepSurvG(Keya et al.) 0.5941
(0.0145)

0.2369
(0.0117)

1.2780
(0.3894)

0.0068
(0.0041)

0.0043
(0.0025)

0.6056
(0.0044)

0.2485
(0.0023)

1.4490
(0.4958)

0.0107
(0.0005)

0.0066
(0.0003)

DeepSurvG(R&P) 0.6103
(0.0075)

0.2393
(0.0075)

1.4420
(0.3373)

0.0081
(0.0021)

0.0050
(0.0012)

0.6115
(0.0051)

0.2444
(0.0036)

1.4410
(0.4472)

0.0097
(0.0009)

0.0060
(0.0005)

DeepSurv∩(Keya et al.) 0.5992
(0.0072)

0.2357
(0.0042)

1.4230
(0.4286)

0.0059
(0.0015)

0.0037
(0.0009)

0.5912
(0.0012)

0.2309
(0.0011)

1.1590
(0.1338)

0.0043
(0.0002)

0.0028
(0.0001)

FIDP 0.5811
(0.0090)

0.2356
(0.0023)

0.9400
(0.3875)

0.0059
(0.0005)

0.0033
(0.0004)

0.5811
(0.0090)

0.2356
(0.0023)

0.9400
(0.3875)

0.0059
(0.0005)

0.0033
(0.0004)

FIPNAM 0.5760
(0.0039)

0.2330
(0.0005)

1.0380
(0.0519)

0.0021
(0.0001)

0.0011
(0.0001)

0.5760
(0.0039)

0.2330
(0.0005)

1.0380
(0.0519)

0.0021
(0.0001)

0.0011
(0.0001)

Deep DRO-COX 0.5798
(0.0101)

0.2234
(0.0017)

0.7900
(0.4283)

0.0015
(0.0007)

0.0009
(0.0004)

0.5754
(0.0120)

0.2227
(0.0011)

0.7140
(0.4094)

0.0010
(0.0005)

0.0006
(0.0003)

Deep DRO-COX (SPLIT) 0.5772
(0.0093)

0.6387
(0.0007)

0.7100
(0.4386)

0
(0)

0
(0)

0.5772
(0.0093)

0.6387
(0.0007)

0.7100
(0.4386)

0
(0)

0
(0)

Deep EXACT DRO-COX 0.5811
(0.0065)

0.2621
(0.0098)

0.7600
(0.4098)

0.0062
(0.0020)

0.0038
(0.0013)

0.5811
(0.0065)

0.2621
(0.0098)

0.7600
(0.4098)

0.0062
(0.0020)

0.0038
(0.0013)
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Table H.4: Cox model test set scores on the SEER (age) dataset, in the same format as Table 2.
Methods

CI-based Tuning FCG-based Tuning
Accuracy Metrics Fairness Metrics Accuracy Metrics Fairness Metrics
Ctd↑ IBS↓ CI(%)↓ FCI↓ FCG↓ Ctd↑ IBS↓ CI(%)↓ FCI↓ FCG↓

L
in

ea
r

Cox 0.7025
(0.0003)

0.2128
(0.0009)

0.9420
(0.0271)

0.0256
(0.0006)

0.0063
(0.0001)

0.7025
(0.0003)

0.2128
(0.0009)

0.9420
(0.0271)

0.0256
(0.0006)

0.0063
(0.0001)

CoxI (Keya et al.) 0.6911
(0.0049)

0.1910
(0.0041)

0.6840
(0.4589)

0.0114
(0.0044)

0.0026
(0.0011)

0.6877
(0.0065)

0.1838
(0.0027)

0.7570
(0.4637)

0.0005
(0.0002)

3.2960e-06
(4.6576e-06)

CoxI (R&P) 0.7032
(0.0011)

0.2128
(0.0035)

1.0080
(0.0456)

0.0254
(0.0024)

0.0062
(0.0004)

0.7037
(0.0025)

0.2090
(0.0025)

0.9970
(0.0986)

0.0226
(0.0017)

0.0057
(0.0001)

CoxG(Keya et al.) 0.6517
(0.0023)

0.1986
(0.0005)

3.2470
(0.0794)

0.0129
(0.0003)

0.0068
(0.0001)

0.6517
(0.0023)

0.1986
(0.0005)

3.2470
(0.0794)

0.0129
(0.0003)

0.0068
(0.0001)

CoxG(R&P) 0.7040
(0.0010)

0.2107
(0.0039)

1.0220
(0.0564)

0.0238
(0.0026)

0.0061
(0.0005)

0.7040
(0.0024)

0.2083
(0.0015)

1.0090
(0.1030)

0.0222
(0.0012)

0.0057
(0.0001)

Cox∩(Keya et al.) 0.6494
(0.0016)

0.1963
(0.0012)

2.2630
(0.1127)

0.0107
(0.0010)

0.0056
(0.0005)

0.6494
(0.0016)

0.1963
(0.0012)

2.2630
(0.1127)

0.0107
(0.0010)

0.0056
(0.0005)

DRO-COX 0.6927
(0.0069)

0.1868
(0.0004)

0.6340
(0.2865)

0
(0)

0
(0)

0.6927
(0.0069)

0.1868
(0.0004)

0.6340
(0.2865)

0
(0)

0
(0)

DRO-COX (SPLIT) 0.6872
(0.0047)

0.1869
(0.0004)

0.5010
(0.3020)

0
(0)

0
(0)

0.6872
(0.0047)

0.1869
(0.0004)

0.5010
(0.3020)

0
(0)

0
(0)

EXACT DRO-COX 0.6833
(0.0060)

0.2422
(0.0044)

1.6980
(0.2181)

0.0056
(0.0005)

0.0026
(0.0001)

0.6833
(0.0060)

0.2422
(0.0044)

1.6980
(0.2181)

0.0056
(0.0005)

0.0026
(0.0001)

N
on

li
n
ea

r

DeepSurv 0.7095
(0.0014)

0.2200
(0.0012)

0.9800
(0.1702)

0.0309
(0.0006)

0.0094
(0.0003)

0.7095
(0.0014)

0.2200
(0.0012)

0.9800
(0.1702)

0.0309
(0.0006)

0.0094
(0.0003)

DeepSurvI (Keya et al.) 0.6985
(0.0041)

0.2123
(0.0035)

0.7700
(0.3175)

0.0289
(0.0014)

0.0082
(0.0003)

0.6982
(0.0045)

0.2127
(0.0032)

0.7640
(0.3397)

0.0291
(0.0014)

0.0082
(0.0004)

DeepSurvI (R&P) 0.7062
(0.0017)

0.2169
(0.0010)

0.7220
(0.1638)

0.0289
(0.0005)

0.0078
(0.0004)

0.7059
(0.0012)

0.2169
(0.0011)

0.6970
(0.1434)

0.0289
(0.0005)

0.0077
(0.0002)

DeepSurvG(Keya et al.) 0.7076
(0.0015)

0.2397
(0.0822)

0.9810
(0.1653)

0.0234
(0.0060)

0.0077
(0.0020)

0.7076
(0.0015)

0.2397
(0.0822)

0.9810
(0.1653)

0.0234
(0.0060)

0.0077
(0.0020)

DeepSurvG(R&P) 0.7062
(0.0017)

0.2169
(0.0010)

0.7220
(0.1638)

0.0289
(0.0005)

0.0078
(0.0004)

0.7062
(0.0017)

0.2169
(0.0010)

0.7220
(0.1638)

0.0289
(0.0005)

0.0078
(0.0004)

DeepSurv∩(Keya et al.) 0.6537
(0.0054)

0.1998
(0.0008)

2.0120
(0.1339)

0.0136
(0.0012)

0.0075
(0.0006)

0.6537
(0.0054)

0.1998
(0.0008)

2.0120
(0.1339)

0.0136
(0.0012)

0.0075
(0.0006)

FIDP 0.7086
(0.0030)

0.1824
(0.0033)

1.1460
(0.2295)

0.0168
(0.0055)

0.0044
(0.0018)

0.7086
(0.0030)

0.1824
(0.0033)

1.1460
(0.2295)

0.0168
(0.0055)

0.0044
(0.0018)

FIPNAM 0.7022
(0.0118)

0.2226
(0.0019)

0.8610
(0.1067)

0.0181
(0.0020)

0.0047
(0.0012)

0.7022
(0.0118)

0.2226
(0.0019)

0.8610
(0.1067)

0.0181
(0.0020)

0.0047
(0.0012)

Deep DRO-COX 0.6830
(0.0050)

0.1869
(0.0004)

0.7250
(0.3413)

5.3651e-06
(6.3580e-06)

3.6414e-06
(2.0671e-06)

0.6830
(0.0050)

0.1869
(0.0004)

0.7250
(0.3413)

5.3651e-06
(6.3580e-06)

3.6414e-06
(2.0671e-06)

Deep DRO-COX (SPLIT) 0.6829
(0.0049)

0.1881
(0.0012)

0.7700
(0.3233)

6.3123e-06
(7.2058e-06)

4.1674e-06
(2.1908e-06)

0.6829
(0.0049)

0.1881
(0.0012)

0.7700
(0.3233)

6.3123e-06
(7.2058e-06)

4.1674e-06
(2.1908e-06)

Deep EXACT DRO-COX 0.7057
(0.0014)

0.1597
(0.0003)

0.9670
(0.1247)

0.0277
(0.0004)

0.0076
(0.0003)

0.7057
(0.0014)

0.1597
(0.0003)

0.9670
(0.1247)

0.0277
(0.0004)

0.0076
(0.0003)
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Table H.5: Cox model test set individual and group fairness metrics on the FLC (age) dataset, in
the same format as Table 2.

Methods CI-based Tuning FCG-based Tuning
FI↓ FG↓ FI↓ FG↓

L
in

ea
r

Cox 0.0964 (0.0006) 0.1912 (0.0012) 0.0964 (0.0006) 0.1912 (0.0012)
CoxI (Keya et al.) 0.0496 (0.0121) 0.1079 (0.0213) 0.0256 (0.0018) 0.0658 (0.0030)

CoxI (R&P) 0.0958 (0.0030) 0.1899 (0.0064) 0.0912 (0.0043) 0.1803 (0.0092)
CoxG(Keya et al.) 0.0526 (0.0167) 0.1033 (0.0321) 0.0353 (0.0109) 0.0716 (0.0236)

CoxG(R&P) 0.1033 (0.0030) 0.1899 (0.0064) 0.0951 (0.0006) 0.1726 (0.0010)
Cox∩(Keya et al.) 0.0325 (0.0006) 0.0652 (0.0025) 0.0326 (0.0006) 0.0661 (0.0023)

DRO-COX 0.0317 (0.0207) 0.0695 (0.0441) 0 (0) 0.0021 (0.0001)
DRO-COX (SPLIT) 0 (0) 0.0017 (0.0001) 0 (0) 0.0017 (0.0001)
EXACT DRO-COX 0.0094 (0.0016) 0.0019 (0.0003) 0.0094 (0.0016) 0.0019 (0.0003)

N
on

li
n
ea

r

DeepSurv 0.1001 (0.0018) 0.1922 (0.0010) 0.1001 (0.0018) 0.1922 (0.0010)
DeepSurvI (Keya et al.) 0.0486 (0.0288) 0.1020 (0.0505) 0.0931 (0.0024) 0.1758 (0.0106)

DeepSurvI (R&P) 0.0955 (0.0141) 0.1838 (0.0248) 0.1002 (0.0032) 0.1902 (0.0060)
DeepSurvG(Keya et al.) 0.0289 (0.0274) 0.0572 (0.0522) 0.0278 (0.0318) 0.0540 (0.0602)

DeepSurvG(R&P) 0.1028 (0.0141) 0.1839 (0.0249) 0.1076 (0.0031) 0.1902 (0.0060)
DeepSurv∩(Keya et al.) 0.0158 (0.0003) 0.0421 (0.0007) 0.0158 (0.0003) 0.0421 (0.0007)

FIDP 0.0899 (0.0064) 0.1630 (0.0108) 0.0899 (0.0064) 0.1630 (0.0108)
FIPNAM 0.1071 (0.0031) 0.1802 (0.0026) 0.1071 (0.0031) 0.1802 (0.0026)

Deep DRO-COX 0.0754 (0.0215) 0.1468 (0.0353) 0.0002 (0.0001) 0.0097 (0.0017)
Deep DRO-COX (SPLIT) 7.1710e-11 (2.1182e-10) 0.0015 (0.0003) 7.1710e-11 (2.1182e-10) 0.0015 (0.0003)
Deep EXACT DRO-COX 0.0197 (0.0005) 0.0038 (0.0001) 0.0197 (0.0005) 0.0038 (0.0001)

Table H.6: Cox model test set individual and group fairness metrics on the FLC (gender) dataset,
in the same format as Table 2.

Methods CI-based Tuning FCG-based Tuning
FI↓ FG↓ FI↓ FG↓

L
in

ea
r

Cox 0.0964 (0.0006) 0.0167 (0.0015) 0.0964 (0.0006) 0.0167 (0.0015)
CoxI (Keya et al.) 0.0367 (0.0118) 0.0048 (0.0031) 0.0253 (0.0019) 0.0065 (0.0058)

CoxI (R&P) 0.0931 (0.0045) 0.0150 (0.0041) 0.0885 (0.0024) 0.0122 (0.0026)
CoxG(Keya et al.) 0.0784 (0.0119) 0.0127 (0.0047) 0.0708 (0.0005) 0.0097 (0.0011)

CoxG(R&P) 0.0997 (0.0045) 0.0141 (0.0034) 0.0951 (0.0006) 0.0117 (0.0018)
Cox∩(Keya et al.) 0.0325 (0.0006) 0.0022 (0.0012) 0.0325 (0.0006) 0.0022 (0.0012)

DRO-COX 0.0091 (0.0022) 0.0058 (0.0010) 0 (0) 0.0010 (0.0002)
DRO-COX (SPLIT) 0 (0) 0.0009 (0.0001) 0 (0) 0.0009 (0.0001)
EXACT DRO-COX 0.0094 (0.0016) 0.0049 (0.0008) 0.0094 (0.0016) 0.0049 (0.0008)

N
on

li
n
ea

r

DeepSurv 0.1001 (0.0018) 0.0186 (0.0014) 0.1001 (0.0018) 0.0186 (0.0014)
DeepSurvI (Keya et al.) 0.0676 (0.0329) 0.0093 (0.0068) 0.0932 (0.0025) 0.0166 (0.0063)

DeepSurvI (R&P) 0.0953 (0.0138) 0.0184 (0.0037) 0.1002 (0.0032) 0.0202 (0.0044)
DeepSurvG(Keya et al.) 0.0636 (0.0370) 0.0126 (0.0074) 0.0785 (0.0346) 0.0157 (0.0071)

DeepSurvG(R&P) 0.0977 (0.0182) 0.0180 (0.0035) 0.1076 (0.0031) 0.0202 (0.0044)
DeepSurv∩(Keya et al.) 0.0265 (0.0219) 0.0025 (0.0029) 0.0158 (0.0003) 0.0015 (0.0005)

FIDP 0.0899 (0.0064) 0.0125 (0.0057) 0.0899 (0.0064) 0.0125 (0.0057)
FIPNAM 0.1071 (0.0031) 0.0154 (0.0017) 0.1071 (0.0031) 0.0154 (0.0017)

Deep DRO-COX 0.0042 (0.0030) 0.0043 (0.0018) 0.0002 (0.0001) 0.0025 (0.0007)
Deep DRO-COX (SPLIT) 7.1710e-11 (2.1182e-10) 0.0008 (0.0001) 7.1710e-11 (2.1182e-10) 0.0008 (0.0001)
Deep EXACT DRO-COX 0.0197 (0.0005) 0.0102 (0.0002) 0.0197 (0.0005) 0.0102 (0.0002)

Angela Dispenzieri, Jerry A Katzmann, Robert A Kyle, Dirk R Larson, Terry M Therneau,
Colin L Colby, Raynell J Clark, Graham P Mead, Shaji Kumar, and L Joseph Melton III.
Use of nonclonal serum immunoglobulin free light chains to predict overall survival in the
general population. In Mayo Clinic Proceedings, pages 517–523. Elsevier, 2012.

John Duchi, Tatsunori Hashimoto, and Hongseok Namkoong. Distributionally robust losses
for latent covariate mixtures. Operations Research, 2022.

John C Duchi and Hongseok Namkoong. Learning models with uniform performance via
distributionally robust optimization. The Annals of Statistics, 49(3):1378–1406, 2021.

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness
through awareness. In Proceedings of the 3rd Innovations in Theoretical Computer Science
Conference, pages 214–226, 2012.
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Table H.7: Cox model test set individual and group fairness metrics on the SUPPORT (age)
dataset, in the same format as Table 2.

Methods CI-based Tuning FCG-based Tuning
FI↓ FG↓ FI↓ FG↓

L
in

ea
r

Cox 0.0461 (0.0020) 0.0498 (0.0021) 0.0461 (0.0020) 0.0498 (0.0021)
CoxI (Keya et al.) 0.0010 (0.0031) 0.0041 (0.0067) 0 (0) 0.0006 (0.0004)

CoxI (R&P) 0.0479 (0.0020) 0.0513 (0.0042) 0.0473 (0.0016) 0.0517 (0.0039)
CoxG(Keya et al.) 0.0409 (0.0019) 0.0031 (0.0013) 0.0350 (0.0009) 0.0031 (0.0008)

CoxG(R&P) 0.0639 (0.0021) 0.0513 (0.0042) 0.0632 (0.0016) 0.0517 (0.0039)
Cox∩(Keya et al.) 0.0242 (0.0031) 0.0035 (0.0015) 0.0214 (0.0034) 0.0034 (0.0014)

DRO-COX 0.0013 (0.0005) 0.0068 (0.0022) 0.0009 (0.0007) 0.0052 (0.0032)
DRO-COX (SPLIT) 1.8200e-06 (4.4671e-06) 0.0020 (0.0012) 1.8199e-06 (4.4672e-06) 0.0020 (0.0012)
EXACT DRO-COX 8.1822e-06 (8.1542e-06) 5.1031e-06 (4.9357e-06) 8.1822e-06 (8.1542e-06) 5.1031e-06 (4.9357e-06)

N
on

li
n
ea

r

DeepSurv 0.0674 (0.0012) 0.0548 (0.0033) 0.0674 (0.0012) 0.0548 (0.0033)
DeepSurvI (Keya et al.) 0.0417 (0.0348) 0.0407 (0.0266) 0.0759 (0.0050) 0.0631 (0.0125)

DeepSurvI (R&P) 0.0487 (0.0180) 0.0485 (0.0098) 0.0726 (0.0060) 0.0608 (0.0104)
DeepSurvG(Keya et al.) 0.0476 (0.0320) 0.0204 (0.0237) 0.0856 (0.0037) 0.0487 (0.0036)

DeepSurvG(R&P) 0.0636 (0.0178) 0.0491 (0.0099) 0.0892 (0.0061) 0.0608 (0.0104)
DeepSurv∩(Keya et al.) 0.0470 (0.0078) 0.0048 (0.0034) 0.0390 (0.0015) 0.0024 (0.0010)

FIDP 0.0456 (0.0043) 0.0197 (0.0087) 0.0456 (0.0043) 0.0197 (0.0087)
FIPNAM 0.0190 (0.0011) 0.0190 (0.0015) 0.0190 (0.0011) 0.0190 (0.0015)

Deep DRO-COX 0.0097 (0.0030) 0.0097 (0.0015) 0.0076 (0.0040) 0.0083 (0.0030)
Deep DRO-COX (SPLIT) 0 (0) 0.0006 (5.9147e-06) 0 (0) 0.0006 (5.9147e-06)
Deep EXACT DRO-COX 0.0062 (0.0020) 0.0031 (0.0009) 0.0062 (0.0020) 0.0031 (0.0009)

Table H.8: Cox model test set individual and group fairness metrics on the SUPPORT (gender)
dataset, in the same format as Table 2.

Methods CI-based Tuning FCG-based Tuning
FI↓ FG↓ FI↓ FG↓

L
in

ea
r

Cox 0.0461 (0.0020) 0.0142 (0.0017) 0.0461 (0.0020) 0.0142 (0.0017)
CoxI (Keya et al.) 0.0042 (0.0042) 0.0026 (0.0020) 0 (0) 0.0003 (0.0001)

CoxI (R&P) 0.0475 (0.0010) 0.0145 (0.0055) 0.0470 (0.0014) 0.0137 (0.0034)
CoxG(Keya et al.) 0.0437 (0.0027) 0.0010 (0.0006) 0.0407 (0.0005) 0.0009 (0.0006)

CoxG(R&P) 0.0635 (0.0011) 0.0145 (0.0055) 0.0629 (0.0014) 0.0133 (0.0031)
Cox∩(Keya et al.) 0.0256 (0.0034) 0.0038 (0.0012) 0.0214 (0.0034) 0.0031 (0.0008)

DRO-COX 0.0015 (0.0002) 0.0008 (0.0005) 0.0009 (0.0007) 0.0007 (0.0006)
DRO-COX (SPLIT) 1.8200e-06 (4.4671e-06) 0.0005 (0.0002) 1.8200e-06 (4.4671e-06) 0.0005 (0.0002)
EXACT DRO-COX 8.1822e-06 (8.1542e-06) 5.2437e-06 (5.0535e-06) 8.1822e-06 (8.1542e-06) 5.2437e-06 (5.0535e-06)

N
on

li
n
ea

r

DeepSurv 0.0674 (0.0012) 0.0121 (0.0026) 0.0674 (0.0012) 0.0121 (0.0026)
DeepSurvI (Keya et al.) 0.0531 (0.0312) 0.0125 (0.0079) 0.0759 (0.0050) 0.0156 (0.0128)

DeepSurvI (R&P) 0.0604 (0.0151) 0.0123 (0.0055) 0.0726 (0.0060) 0.0106 (0.0070)
DeepSurvG(Keya et al.) 0.0666 (0.0256) 0.0024 (0.0021) 0.0816 (0.0016) 0.0018 (0.0019)

DeepSurvG(R&P) 0.0819 (0.0130) 0.0133 (0.0067) 0.0892 (0.0061) 0.0106 (0.0070)
DeepSurv∩(Keya et al.) 0.0538 (0.0107) 0.0016 (0.0017) 0.0390 (0.0015) 0.0014 (0.0006)

FIDP 0.0456 (0.0043) 0.0053 (0.0025) 0.0456 (0.0043) 0.0053 (0.0025)
FIPNAM 0.0190 (0.0011) 0.0031 (0.0013) 0.0190 (0.0011) 0.0031 (0.0013)

Deep DRO-COX 0.0148 (0.0044) 0.0018 (0.0005) 0.0076 (0.0040) 0.0018 (0.0009)
Deep DRO-COX (SPLIT) 0 (0) 0.0006 (3.0118e-06) 0 (0) 0.0006 (3.0118e-06)
Deep EXACT DRO-COX 0.0062 (0.0020) 0.0033 (0.0010) 0.0062 (0.0020) 0.0033 (0.0010)

David Faraggi and Richard Simon. A neural network model for survival data. Statistics in
Medicine, 14(1):73–82, 1995.

Jason P Fine and Robert J Gray. A proportional hazards model for the subdistribution of a
competing risk. Journal of the American Statistical Association, 94(446):496–509, 1999.

James R Foulds, Rashidul Islam, Kamrun Naher Keya, and Shimei Pan. An intersectional
definition of fairness. In 2020 IEEE 36th International Conference on Data Engineering
(ICDE), pages 1918–1921. IEEE, 2020.

Mark Goldstein, Xintian Han, Aahlad Puli, Adler Perotte, and Rajesh Ranganath. X-
cal: Explicit calibration for survival analysis. Advances in neural information processing
systems, 33:18296–18307, 2020.
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Table H.9: Cox model test set individual and group fairness metrics on the SUPPORT (race)
dataset, in the same format as Table 2.

Methods CI-based Tuning FCG-based Tuning
FI↓ FG↓ FI↓ FG↓

L
in

ea
r

Cox 0.0461 (0.0020) 0.0115 (0.0042) 0.0461 (0.0020) 0.0115 (0.0042)
CoxI (Keya et al.) 0.0050 (0.0052) 0.0053 (0.0072) 0 (0) 0.0008 (0.0005)

CoxI (R&P) 0.0475 (0.0016) 0.0118 (0.0061) 0.0470 (0.0014) 0.0116 (0.0047)
CoxG(Keya et al.) 0.0404 (0.0024) 0.0011 (0.0006) 0.0396 (0.0006) 0.0010 (0.0006)

CoxG(R&P) 0.0634 (0.0017) 0.0118 (0.0061) 0.0629 (0.0014) 0.0116 (0.0047)
Cox∩(Keya et al.) 0.0242 (0.0038) 0.0045 (0.0016) 0.0214 (0.0034) 0.0042 (0.0015)

DRO-COX 0.0015 (0.0002) 0.0033 (0.0009) 0.0009 (0.0007) 0.0025 (0.0015)
DRO-COX (SPLIT) 1.8200e-06 (4.4671e-06) 0.0017 (0.0008) 1.8199e-06 (4.4672e-06) 0.0017 (0.0008)
EXACT DRO-COX 8.1822e-06 (8.1542e-06) 6.3444e-06 (6.1862e-06) 8.1822e-06 (8.1542e-06) 6.3444e-06 (6.1862e-06)

N
on

li
n
ea

r

DeepSurv 0.0674 (0.0012) 0.0126 (0.0053) 0.0674 (0.0012) 0.0126 (0.0053)
DeepSurvI (Keya et al.) 0.0126 (0.0053) 0.0230 (0.0208) 0.0759 (0.0050) 0.0440 (0.0160)

DeepSurvI (R&P) 0.0586 (0.0169) 0.0157 (0.0119) 0.0726 (0.0060) 0.0164 (0.0147)
DeepSurvG(Keya et al.) 0.0515 (0.0288) 0.0069 (0.0087) 0.0789 (0.0027) 0.0179 (0.0062)

DeepSurvG(R&P) 0.0784 (0.0154) 0.0174 (0.0137) 0.0892 (0.0061) 0.0164 (0.0147)
DeepSurv∩(Keya et al.) 0.0495 (0.0103) 0.0095 (0.0040) 0.0390 (0.0015) 0.0110 (0.0011)

FIDP 0.0456 (0.0043) 0.0154 (0.0083) 0.0456 (0.0043) 0.0154 (0.0083)
FIPNAM 0.0190 (0.0011) 0.0055 (0.0028) 0.0190 (0.0011) 0.0055 (0.0028)

Deep DRO-COX 0.0115 (0.0054) 0.0018 (0.0010) 0.0076 (0.0040) 0.0014 (0.0009)
Deep DRO-COX (SPLIT) 0 (0) 0.0012 (1.6940e-06) 0 (0) 0.0012 (1.6940e-06)
Deep EXACT DRO-COX 0.0062 (0.0020) 0.0038 (0.0013) 0.0062 (0.0020) 0.0038 (0.0013)

Table H.10: Cox model test set individual and group fairness metrics on the SEER (age) dataset,
in the same format as Table 2.

Methods CI-based Tuning FCG-based Tuning
FI↓ FG↓ FI↓ FG↓

L
in

ea
r

Cox 0.0642 (0.0014) 0.1676 (0.0048) 0.0642 (0.0014) 0.1676 (0.0048)
CoxI (Keya et al.) 0.0289 (0.0110) 0.0923 (0.0268) 0.0012 (0.0004) 0.0229 (0.0032)

CoxI (R&P) 0.0640 (0.0055) 0.1670 (0.0156) 0.0574 (0.0037) 0.1495 (0.0139)
CoxG(Keya et al.) 0.0367 (0.0007) 0.0026 (0.0012) 0.0367 (0.0007) 0.0026 (0.0012)

CoxG(R&P) 0.0727 (0.0062) 0.1557 (0.0164) 0.0686 (0.0023) 0.1462 (0.0102)
Cox∩(Keya et al.) 0.0298 (0.0029) 0.0046 (0.0012) 0.0298 (0.0029) 0.0046 (0.0012)

DRO-COX 0 (0) 0.0025 (0.0013) 0 (0) 0.0025 (0.0013)
DRO-COX (SPLIT) 0 (0) 0.0018 (0.0002) 0 (0) 0.0018 (0.0002)
EXACT DRO-COX 0.0056 (0.0005) 0.0026 (0.0001) 0.0056 (0.0005) 0.0026 (0.0001)

N
on

li
n
ea

r

DeepSurv 0.0799 (0.0015) 0.1793 (0.0021) 0.0799 (0.0015) 0.1793 (0.0021)
DeepSurvI (Keya et al.) 0.0753 (0.0018) 0.1798 (0.0063) 0.0759 (0.0018) 0.1811 (0.0065)

DeepSurvI (R&P) 0.0737 (0.0014) 0.1796 (0.0056) 0.0736 (0.0014) 0.1807 (0.0036)
DeepSurvG(Keya et al.) 0.0607 (0.0154) 0.1289 (0.0328) 0.0607 (0.0154) 0.1289 (0.0328)

DeepSurvG(R&P) 0.0861 (0.0014) 0.1796 (0.0056) 0.0861 (0.0014) 0.1796 (0.0056)
DeepSurv∩(Keya et al.) 0.0386 (0.0033) 0.0058 (0.0041) 0.0386 (0.0033) 0.0058 (0.0041)

FIDP 0.0433 (0.0138) 0.0976 (0.0233) 0.0433 (0.0138) 0.0976 (0.0233)
FIPNAM 0.0455 (0.0055) 0.1022 (0.0038) 0.0455 (0.0055) 0.1022 (0.0038)

Deep DRO-COX 1.4579e-05 (1.6833e-05) 0.0061 (0.0009) 1.4579e-05 (1.6833e-05) 0.0061 (0.0009)
Deep DRO-COX (SPLIT) 1.7208e-05 (1.8956e-05) 0.0063 (0.0010) 1.7208e-05 (1.8956e-05) 0.0063 (0.0010)
Deep EXACT DRO-COX 0.0277 (0.0004) 0.0076 (0.0003) 0.0277 (0.0004) 0.0076 (0.0003)

Erika Graf, Claudia Schmoor, Willi Sauerbrei, and Martin Schumacher. Assessment and
comparison of prognostic classification schemes for survival data. Statistics in Medicine,
18(17-18):2529–2545, 1999.

Robert J Gray. A class of K-sample tests for comparing the cumulative incidence of a
competing risk. The Annals of Statistics, pages 1141–1154, 1988.

Stefan Groha, Sebastian M Schmon, and Alexander Gusev. A general framework for survival
analysis and multi-state modelling. arXiv preprint arXiv:2006.04893, 2020.

Humza Haider, Bret Hoehn, Sarah Davis, and Russell Greiner. Effective ways to build and
evaluate individual survival distributions. J. Mach. Learn. Res., 21(85):1–63, 2020.
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Table H.11: Cox model test set individual and group fairness metrics on the SEER (race) dataset,
in the same format as Table 2.

Methods CI-based Tuning FCG-based Tuning
FI↓ FG↓ FI↓ FG↓

L
in

ea
r

Cox 0.0642 (0.0014) 0.0597 (0.0027) 0.0642 (0.0014) 0.0597 (0.0027)
CoxI (Keya et al.) 0.0011 (0.0002) 0.0072 (0.0015) 0.0011 (0.0002) 0.0072 (0.0015)

CoxI (R&P) 0.0595 (0.0050) 0.0612 (0.0135) 0.0586 (0.0048) 0.0634 (0.0110)
CoxG(Keya et al.) 0.0541 (0.0098) 0.0096 (0.0168) 0.0541 (0.0098) 0.0096 (0.0168)

CoxG(R&P) 0.0695 (0.0035) 0.0571 (0.0087) 0.0696 (0.0038) 0.0610 (0.0086)
Cox∩(Keya et al.) 0.0298 (0.0029) 0.0024 (0.0010) 0.0298 (0.0029) 0.0024 (0.0010)

DRO-COX 0 (0) 0.0008 (0.0006) 0 (0) 0.0008 (0.0006)
DRO-COX (SPLIT) 0 (0) 0.0003 (0.0001) 0 (0) 0.0003 (0.0001)
EXACT DRO-COX 0.0056 (0.0005) 0.0045 (0.0004) 0.0056 (0.0005) 0.0045 (0.0004)

N
on

li
n
ea

r

DeepSurv 0.0799 (0.0015) 0.0731 (0.0043) 0.0799 (0.0015) 0.0731 (0.0043)
DeepSurvI (Keya et al.) 0.0759 (0.0018) 0.0681 (0.0056) 0.0759 (0.0018) 0.0681 (0.0056)

DeepSurvI (R&P) 0.0736 (0.0014) 0.0681 (0.0101) 0.0736 (0.0014) 0.0681 (0.0101)
DeepSurvG(Keya et al.) 0.0697 (0.0028) 0.0111 (0.0039) 0.0697 (0.0028) 0.0111 (0.0039)

DeepSurvG(R&P) 0.0861 (0.0014) 0.0676 (0.0115) 0.0861 (0.0014) 0.0676 (0.0115)
DeepSurv∩(Keya et al.) 0.0386 (0.0033) 0.0023 (0.0013) 0.0386 (0.0033) 0.0023 (0.0013)

FIDP 0.0433 (0.0138) 0.0417 (0.0130) 0.0433 (0.0138) 0.0417 (0.0130)
FIPNAM 0.0455 (0.0055) 0.0446 (0.0057) 0.0455 (0.0055) 0.0446 (0.0057)

Deep DRO-COX 1.4579e-05 (1.6833e-05) 0.0035 (0.0006) 1.4579e-05 (1.6833e-05) 0.0035 (0.0006)
Deep DRO-COX (SPLIT) 1.7208e-05 (1.8956e-05) 0.0035 (0.0005) 1.7208e-05 (1.8956e-05) 0.0035 (0.0005)
Deep EXACT DRO-COX 0.0277 (0.0004) 0.0225 (0.0003) 0.0277 (0.0004) 0.0225 (0.0003)

Table H.12: DeepHit test set individual and group fairness on the FLC, SUPPORT, SEER datasets
when hyperparameter tuning is based on CI and FCG.

Datasets Methods
CI-based Tuning FCG-based Tuning

FI↓ FG↓ FI↓ FG↓
FLC
(age)

DeepHit 0.0330 (0.0049) 0.0721 (0.0078) 0.0330 (0.0049) 0.0721 (0.0078)
DeepHitG(R&P) 0.0289 (0.0089) 0.0615 (0.0193) 0.0173 (0.0006) 0.0331 (0.0012)

dro-deephit 0.0233 (0.0111) 0.0561 (0.0183) 0.0022 (0.0012) 0.0168 (0.0035)
dro-deephit (split) 0.0177 (0.0140) 0.0426 (0.0252) 0.0030 (0.0027) 0.0160 (0.0051)

FLC
(gender)

DeepHit 0.0330 (0.0049) 0.0152 (0.0103) 0.0330 (0.0049) 0.0152 (0.0103)
DeepHitG(R&P) 0.0297 (0.0075) 0.0132 (0.0110) 0.0330 (0.0049) 0.0152 (0.0103)

dro-deephit 0.0233 (0.0111) 0.0134 (0.0107) 0.0022 (0.0012) 0.0049 (0.0020)
dro-deephit (split) 0.0177 (0.0140) 0.0118 (0.0118) 0.0030 (0.0027) 0.0031 (0.0007)

SUPPORT
(age)

DeepHit 0.0187 (0.0049) 0.0200 (0.0047) 0.0187 (0.0049) 0.0200 (0.0047)
DeepHitG(R&P) 0.0139 (0.0036) 0.0082 (0.0052) 0.0125 (0.0010) 0.0067 (0.0018)

dro-deephit 0.0013 (0.0024) 0.0054 (0.0025) 0.0001 (0.0001) 0.0031 (0.0011)
dro-deephit (split) 0.0133 (0.0064) 0.0135 (0.0081) 0.0109 (0.0083) 0.0140 (0.0084)

SUPPORT
(gender)

DeepHit 0.0187 (0.0049) 0.0101 (0.0054) 0.0187 (0.0049) 0.0101 (0.0054)
DeepHitG(R&P) 0.0128 (0.0010) 0.0038 (0.0016) 0.0122 (0.0006) 0.0039 (0.0019)

dro-deephit 0.0013 (0.0024) 0.0026 (0.0014) 0.0001 (0.0001) 0.0012 (0.0005)
dro-deephit (split) 0.0133 (0.0064) 0.0077 (0.0052) 0.0109 (0.0083) 0.0069 (0.0057)

SUPPORT (race)
DeepHit 0.0187 (0.0049) 0.0108 (0.0024) 0.0187 (0.0049) 0.0108 (0.0024)

DeepHitG(R&P) 0.0125 (0.0012) 0.0051 (0.0023) 0.0120 (0.0018) 0.0059 (0.0026)
dro-deephit 0.0013 (0.0024) 0.0042 (0.0031) 0.0001 (0.0001) 0.0025 (0.0014)

dro-deephit (split) 0.0133 (0.0064) 0.0137 (0.0044) 0.0109 (0.0083) 0.0110 (0.0041)

SEER
(age)

DeepHit 0.0153 (0.0023) 0.0600 (0.0076) 0.0153 (0.0023) 0.0600 (0.0076)
DeepHitG(R&P) 0.0122 (0.0051) 0.0501 (0.0166) 0.0019 (0.0002) 0.0185 (0.0010)

dro-deephit 0.0055 (0.0052) 0.0290 (0.0207) 0 (0) 0.0008 (0.0007)
dro-deephit (split) 0.0124 (0.0031) 0.0473 (0.0135) 0.0106 (0.0049) 0.0438 (0.0176)

SEER
(race)

DeepHit 0.0153 (0.0023) 0.0175 (0.0053) 0.0153 (0.0023) 0.0175 (0.0053)
DeepHitG(R&P) 0.0138 (0.0049) 0.0170 (0.0059) 0.0022 (0.0036) 0.0092 (0.0022)

dro-deephit 0.0055 (0.0052) 0.0085 (0.0066) 0 (0) 0.0008 (0.0014)
dro-deephit (split) 0.0124 (0.0031) 0.0208 (0.0065) 0.0106 (0.0049) 0.0208 (0.0057)

Frank E Harrell, Robert M Califf, and David B Pryor. Evaluating the yield of medical tests.
Journal of the American Medical Association, 247(18):2543–2546, 1982.

Tatsunori Hashimoto, Megha Srivastava, Hongseok Namkoong, and Percy Liang. Fairness
without demographics in repeated loss minimization. In International Conference on
Machine Learning, pages 1929–1938. PMLR, 2018.

Shu Hu and George H Chen. Distributionally robust survival analysis: A novel fairness loss
without demographics. In Machine Learning for Health, pages 62–87. PMLR, 2022.
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Table H.13: SODEN test set individual and group fairness on the FLC, SUPPORT, SEER datasets
when hyperparameter tuning is based on CI and FCG.

Datasets Methods
CI-based Tuning FCG-based Tuning

FI↓ FG↓ FI↓ FG↓
FLC
(age)

SODEN 0.0019 (0.0037) 0.0101 (0.0103) 0.0019 (0.0037) 0.0101 (0.0103)
SODENG(R&P) 0.0046 (0.0037) 0.0153 (0.0066) 0.0004 (0.0007) 0.0051 (0.0035)

dro-soden 0.0001 (0.0003) 0.0046 (0.0024) 2.2814e-05 (5.7901e-05) 0.0034 (0.0017)

FLC
(gender)

SODEN 0.0019 (0.0037) 0.0017 (0.0008) 0.0019 (0.0037) 0.0017 (0.0008)
SODENG(R&P) 0.0031 (0.0036) 0.0027 (0.0017) 0.0004 (0.0007) 0.0013 (0.0007)

dro-soden 0.0041 (0.0112) 0.0056 (0.0115) 2.2814e-05 (5.7901e-05) 0.0012 (0.0006)

SUPPORT
(age)

SODEN 0.0606 (0.0051) 0.0585 (0.0035) 0.0606 (0.0051) 0.0585 (0.0035)
SODENG(R&P) 0.0472 (0.0103) 0.0419 (0.0117) 0.0384 (0.0061) 0.0323 (0.0071)

dro-soden 0.0361 (0.0201) 0.0373 (0.0177) 0.0332 (0.0193) 0.0345 (0.0169)

SUPPORT
(gender)

SODEN 0.0604 (0.0047) 0.0114 (0.0049) 0.0604 (0.0047) 0.0114 (0.0049)
SODENG(R&P) 0.0575 (0.0061) 0.0085 (0.0046) 0.0387 (0.0061) 0.0058 (0.0036)

dro-soden 0.0503 (0.0107) 0.0087 (0.0040) 0.0255 (0.0084) 0.0044 (0.0019)

SUPPORT
(race)

SODEN 0.0604 (0.0047) 0.0266 (0.0147) 0.0604 (0.0047) 0.0266 (0.0147)
SODENG(R&P) 0.0482 (0.0107) 0.0204 (0.0077) 0.0387 (0.0061) 0.0164 (0.0055)

dro-soden 0.0404 (0.0175) 0.0165 (0.0147) 0.0255 (0.0084) 0.0099 (0.0088)

SEER
(age)

SODEN 0.0714 (0.0029) 0.1725 (0.0112) 0.0714 (0.0029) 0.1725 (0.0112)
SODENG(R&P) 0.0706 (0.0027) 0.1701 (0.0079) 0.0702 (0.0028) 0.1726 (0.0111)

dro-soden 0.0596 (0.0126) 0.1294 (0.0413) 0.0367 (0.0187) 0.0736 (0.0442)

SEER
(race)

SODEN 0.0714 (0.0029) 0.0606 (0.0134) 0.0714 (0.0029) 0.0606 (0.0134)
SODENG(R&P) 0.0698 (0.0028) 0.0668 (0.0140) 0.0692 (0.0030) 0.0664 (0.0126)

dro-soden 0.0453 (0.0137) 0.0606 (0.0139) 0.0348 (0.0158) 0.0559 (0.0210)

Table H.14: Test set scores for dro-cox (split) on the FLC (age) dataset using n2 =
0.1n, 0.2n, 0.3n, 0.4n, 0.5n (corresponding to n1 = 0.9n, 0.8n, 0.7n, 0.6n, 0.5n). The
format of this table is similar to that of Table 2 although here we do not bold or
highlight any cells, as our main finding here is that the scores are not dramatically
different for the different choices for n1 or n2.

n2
Accuracy Metrics Fairness Metrics

Ctd ↑ IBS↓ CI(%)↓ FCI↓ FCG↓

L
in

ea
r

0.1n 0.7822 (0.0183) 0.1410 (0.0056) 0.4670 (0.3846) 0 (0) 0 (0)
0.2n 0.7945 (0.0069) 0.1402 (0.0029) 0.3610 (0.2667) 0 (0) 0 (0)
0.3n 0.7970 (0.0037) 0.1397 (0.0025) 0.2560 (0.1559) 0 (0) 0 (0)
0.4n 0.7970 (0.0043) 0.1392 (0.0015) 0.2940 (0.1387) 0 (0) 0 (0)
0.5n 0.7964 (0.0045) 0.1389 (0.0008) 0.2350 (0.1277) 0 (0) 0 (0)

N
on

lin
ea

r 0.1n 0.7583 (0.0109) 0.1907 (0.0764) 2.1490 (1.0704) 1.8664e-04 (5.5992e-04) 3.8323e-05 (1.1497e-04)
0.2n 0.7712 (0.0107) 0.1622 (0.0095) 2.2640 (0.7685) 2.4905e-05 (7.4715e-05) 5.2623e-06 (1.5787e-05)
0.3n 0.7709 (0.0205) 0.1650 (0.0025) 2.3830 (0.4080) 0 (0) 0 (0)
0.4n 0.7731 (0.0178) 0.1633 (0.0057) 2.3860 (0.2411) 1.0570e-07 (3.1711e-07) 6.5156e-08 (1.9547e-07)
0.5n 0.7784 (0.0092) 0.1647 (0.0037) 2.3210 (0.3590) 0 (0) 0 (0)

Shu Hu, Yiming Ying, and Siwei Lyu. Learning by minimizing the sum of ranked range.
Advances in Neural Information Processing Systems, 2020.

Shu Hu, Lipeng Ke, Xin Wang, and Siwei Lyu. TkML-AP: Adversarial attacks to top-
k multi-label learning. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 7649–7657, 2021.

Shu Hu, Xin Wang, and Siwei Lyu. Rank-based decomposable losses in machine learning:
A survey. arXiv preprint arXiv:2207.08768, 2022a.

Shu Hu, Yiming Ying, Xin Wang, and Siwei Lyu. Sum of ranked range loss for supervised
learning. Journal of Machine Learning Research, 23(112):1–44, 2022b.

John D Kalbfleisch and Ross L Prentice. The Statistical Analysis of Failure Time Data (2nd
ed). John Wiley & Sons, 2002.
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Table H.15: Test set scores for dro-cox (split) on the FLC (age) dataset using censoring rate
imbalance ratios (abbreviated below as just “Ratio”) of 0%, 20%, 40%, 60%, 80%, and
100%. The format of this table is similar to that of Table 2.

Ratio (%) Accuracy Metrics Fairness Metrics
Ctd ↑ IBS↓ CI(%)↓ FCI↓ FCG↓

L
in

ea
r

0 0.7964 (0.0045) 0.1389 (0.0008) 0.2350 (0.1277) 0 (0) 0 (0)
20 0.7977 (0.0053) 0.1393 (0.0009) 0.1520 (0.0846) 0 (0) 0 (0)
40 0.7990 (0.0066) 0.1402 (0.0017) 0.2200 (0.1239) 0 (0) 0 (0)
60 0.7965 (0.0070) 0.1410 (0.0022) 0.2810 (0.1840) 0 (0) 0 (0)
80 0.7935 (0.0074) 0.1454 (0.0075) 0.5660 (0.3148) 0 (0) 0 (0)
100 0.7929 (0.0102) 0.1341 (0.0006) 0.3970 (0.2665) 0 (0) 0 (0)

N
on

lin
ea

r 0 0.7784 (0.0092) 0.1647 (0.0037) 2.3210 (0.3590) 0 (0) 0 (0)
20 0.7734 (0.0188) 0.1647 (0.0048) 2.4380 (0.3981) 5.7227e-08 (1.7168e-07) 3.9546e-08 (1.1864e-07)
40 0.7753 (0.0187) 0.1677 (0.0028) 2.1080 (0.5425) 0.0001 (0.0002) 1.3683e-05 (4.1049e-05)
60 0.7853 (0.0120) 0.1700 (0.0002) 1.1180 (0.6116) 0 (0) 0 (0)
80 0.7900 (0.0122) 0.1703 (0.0002) 0.6790 (0.5659) 0 (0) 0 (0)
100 0.7577 (0.0059) 0.1646 (0.0021) 0.6390 (0.4295) 0 (0) 0 (0)

Table H.16: Test set scores of dro-cox (split, one side) vs dro-cox (split) on the FLC (age)
dataset. The format of this table is the same that of Table 2 except without any cells
highlighted in green as we are not comparing against baselines by previous authors.

Methods Accuracy Metrics Fairness Metrics
Ctd ↑ IBS↓ CI(%)↓ FCI↓ FCG↓

L
in

ea
r DRO-COX

(SPLIT, ONE SIDE)
0.7810

(0.0109)
0.1330

(0.0002)
0.4060

(0.2847)
0

(0)
0

(0)

DRO-COX (SPLIT) 0.7964
(0.0045)

0.1389
(0.0008)

0.2350
(0.1277)

0
(0)

0
(0)

N
on

-
lin

ea
r Deep DRO-COX

(SPLIT, ONE SIDE)
0.7554

(0.0231)
0.1332

(0.0002)
1.9000

(0.6850)
1.6544e-04

(1.2172e-04)
4.0388e-05

(3.1972e-05)

Deep DRO-COX (SPLIT) 0.7784
(0.0092)

0.1647
(0.0037)

2.3210
(0.3590)

0
(0)

0
(0)
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