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Abstract

A multivariate regression model of affine and diffeomorphic transformation sequences—
FineMorphs—is presented. Leveraging concepts from shape analysis, model states are op-
timally “reshaped” by diffeomorphisms generated by smooth vector fields during learning.
Affine transformations and vector fields are optimized within an optimal control setting,
and the model can naturally reduce (or increase) dimensionality and adapt to large data
sets via sub-optimal vector fields. An existence proof of solution and necessary conditions
for optimality for the model are derived. Experimental results on real data sets from the
UCI repository are presented, with favorable results in comparison with state-of-the-art in
the literature, neural ordinary differential equation models, and densely-connected neural
networks in TensorFlow.

Keywords: affine transformations, diffeomorphisms, machine learning, optimal control,
regression, reproducing kernel Hilbert spaces, shape analysis

1. Introduction

We present FineMorphs—an affine-diffeomorphic sequence model for multivariate regres-
sion. Our approach combines arbitrary sequences of affine and diffeomorphic transforma-
tions with a training algorithm using concepts from optimal control. Predictors, estimated
responses, and states in between are transformed or “reshaped” via diffeomorphisms of their
respective ambient spaces, in an optimal way to facilitate learning.

Recall that diffeomorphisms of an open subset M of a Euclidean space Rd (where we
will typically take M = Rd) are one-to-one, invertible, C1 transformations mapping M
onto itself that have C1 inverse. (If C1 is replaced by C0, one speaks of homeomorphisms.)
Because diffeomorphisms form a group, arbitrary large deformations can be generated via
the composition of many small ones, making them natural objects to utilize within a feed
forward setting. In the limit of infinite compositions of transformations that differ infinites-
imally from the identity, one finds the classical representation of diffeomorphisms as flows
associated to ordinary differential equations (ODEs).

Several papers have recently explored the possibility of using homeomorphic or diffeo-
morphic transformations within feed-forward machine learning models. Discrete invertible
versions of the ResNet architecture (He et al., 2016) were proposed as “normalizing flows”
in Rezende and Mohamed (2015) (see Kobyzev et al. (2021) for a recent review), and ex-
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tended to a time-continuous form in Chen et al. (2018); Rousseau et al. (2019); Dupont
et al. (2019); Queiruga et al. (2020); with a recent survey in Ruthotto (2024). Continuous-
time optimal control as a learning principle was proposed in Weinan (2017); Ganaba (2021);
Owhadi (2023). Applications of deep residual neural networks (NNs) to the large deforma-
tion diffeomorphic metric mapping (LDDMM) framework of shape analysis have recently
been explored (Amor et al., 2023; Wu and Zhang, 2023) as well as sub-Riemannian landmark
matching as time-continuous NNs (Jansson and Modin, 2022).

A direct formalization of the diffeomorphic learning approach was proposed in Younes
(2020) for classification by a single diffeomorphic layer sequence generated by optimal vector
fields. While most flow-based learning approaches build dynamical systems that are adapted
to NN implementations, diffeomorphic learning is presented as a non-parametric penalized
learning problem, parametrized by a diffeomorphism of the data space. The penalty is
specified as a Riemannian metric on the diffeomorphism group in a framework directly
inspired from shape analysis (Younes, 2010). This allows for a smooth invertible reshaping
of the underlying shape or manifold of a data set with explicit control of the smoothness
of this transformation, in contrast with other methods including NNs. When applied to
finite training data, the method reduces to a finite-, albeit large-, dimensional problem
involving reproducing kernels (see Section 6). Shape analysis methods were also introduced
for dimensionality reduction in Walder and Schölkopf (2009). Similar models were used
combined with a shooting formulation for the comparison of geodesics in Vialard et al.
(2020).

In this paper, we consider vector regression predictors of the form

x ∈ RdX 7→ Am ◦ ϕm ◦Am−1 ◦ · · · ◦ ϕ1 ◦A0(x) ∈ RdY , (1)

where Aq, q = 0, . . . ,m, are affine transformations from Rdq to Rdq+1 , and ϕq, q = 1, . . . ,m,
are diffeomorphisms on Rdq . In this setting, a dY -dimensional output variable is predicted
by the transformation of a dX -dimensional input through an arbitrary number and order of
arbitrary affine and diffeomorphic transformations. In contrast with the single diffeomorphic
layer sequence model in Younes (2020), these arbitrary affine-diffeomorphic sequences allow
for greater model complexity and provide a natural framework for automated data scaling
and dimensionality reduction. Additionally, we extend the diffeomorphic learning model
to more general sub-optimal vector fields parametrized by control points (see Section 8),
enabling training on very large data sets. Combined with a GPU implementation, this
allows for experiments on data sets beyond smaller-sized, simulated data sets to real-world
data with larger, more realistic dimensions and sizes. Finally, we provide an existence proof
of solution to the variational problem and a derivation of necessary optimality conditions.
The existence proof was loosely sketched in Younes (2020), and is provided here with full
details and extended to the more general situation addressed in the present paper.

We test our diffeomorphic regression models on real data sets from the UCI repository
(Dua and Graff, 2017), with favorable results in comparison with the literature and with
neural ODEs (NODEs) (Chen et al., 2018; Dupont et al., 2019) and densely-connected NNs
(DNNs) in TensorFlow (Abadi et al., 2015). We note improved performance with multiple
sequential diffeomorphic modules with decreasing kernel sizes as well as a robustness of
our models to “out-of-distribution” testing. For the largest data set in our experiments,
in both dimensionality and number size, our model reduces dimensionality through affine
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transformations and reduces computational complexity through the control points method,
with a tractable run time and good predictive results in comparison with the literature and
DNNs.

2. Notation

For our multivariate regression setting, X : Ω→ RdX is the predictor variable and Y : Ω→
RdY is the response. The training data set is denoted T0 = (x1, y1, . . . , xn, yn). The training
predictors are x = (x1, . . . , xn) ∈ (RdX )n and training responses are y = (y1, . . . , yn) ∈
(RdY )n. We define the operator ιj : Rd → Rd+j , where ιj(x) appends j zero coordinates to
x, and the operator πj : Rd → Rd−j , where πj(x) removes the last j coordinates from x.
For matrix notation, if k, l are two integers, Mk,l(R) is the space of all k × l real matrices,
reducing toMk(R) for square k× k real matrices. The d× d identity matrix is denoted Id.
When applied to vectors and matrices, the norm ‖ · ‖ is the Euclidean and Frobenius norm,
respectively. For time-dependent vector fields

v : R× Rd → Rd

(t, x) 7→ v(t, x),

we will denote by v the mapping t 7→ v(t), where v(t) is the time-indexed vector field
x 7→ v(t, x). In particular, the time-dependent vector field v in the Bochner space L2(I, V )
will represent the mapping t ∈ I 7→ v(t) ∈ V, where V is a Hilbert space.

3. Model

We consider the following regression model approximating Y by f(X), in which we complete
(1) by possibly padding zeros in input and removing coordinates in output,

f : x ∈ RdX 7→ πr (Am ◦ ϕm ◦Am−1 ◦ · · · ◦ ϕ1 ◦A0(ιs(x))) ∈ RdY .

Here, ιs pads the input with s zeros so that d0 = dX + s, and πr removes the last r coor-
dinates from the model output so that dm+1 = dY + r. Advantages of adding “dummy”
dimensions are discussed in Section 9. In contrast to the single affine layered approach of
standard linear regression, this model alternates m+ 1 affine transformations and m diffeo-
morphic layers, denoted as A and D modules, respectively, starting and ending with affine
modules. For affine modules Aq, q = 0, . . . ,m, the corresponding affine transformations are

Aq : x ∈ Rdq 7→Mqx+ bq ∈ Rdq+1 ,

where Mq ∈Mdq+1,dq(R), bq ∈ Rdq+1 . For diffeomorphic modules Dq, q = 1, . . . ,m, the
corresponding diffeomorphisms and their domains are ϕq and Rdq , respectively.

The values of s and r, and the internal dimensions d1, . . . , dm are parts of the design of
the model, i.e., they are user-specified. Given them, the dimensions of the linear operators
are uniquely determined, and so are the spaces on which the diffeomorphisms operate.
Any module in a sequence with identical input and output dimensions can be set to the
identity map, id, which allows for simple definitions of submodels from an initial sequence
of modules (obviously, one wants to keep at least one A module and at least one D module
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X A Y

X D1 A1 Y
ιs πr

X A0 D1 Y
ιs πr

X D1 A1 D2 A2 Y
ιs πr

X A0 D1 D2 A2 A3 Y
ιs πr

Figure 1: Standard linear regression (top) followed by four example transformation se-
quences that can be operated by the FineMorphs model, with naming convention
(from top to bottom): A, DA, AD, DADA or (DA)2, and ADDAA or AD2A2 (A:
affine module; D: diffeomorphic module). Identity modules are omitted.

free to optimize by the system). The flexibility of assigning module dimensions as well as
arbitrary modules to the identity generalizes our model from a simple and fixed alternating
sequence to an arbitrary sequence of arbitrary affine and diffeomorphic transformations. In
this setting, affine modules can provide not only useful data scaling prior to diffeomorphic
transforms but also a natural approach to dimensionality reduction or increase. In the
following, the naming convention for sequences includes only non-identity modules, e.g.,
the sequence of modules A0, D1, A1, D2, A2, D3, and A3, where A1 and D3 are identities, is
denoted ADDAA. For sequence names containing repetitive module or module subsequence
elements, we further adopt a simplified notation superscripting the repetition, e.g., ADDAA
can be expressed as AD2A2, and sequence ADAD· · ·A with x sequential AD module pairs
before the final A can be denoted as (AD)xA. Several sequence examples are illustrated in
Figure 1, including the smallest possible sequences that can be represented in our model,
DA and AD.

4. Objective Function

Learning is implemented by minimizing the objective function

m∑
q=1

dVq(id, ϕq)
2 + λ

m∑
q=0

Uq(Aq) +
1

σ2

n∑
k=1

Γk(πr(Am ◦ ϕm ◦Am−1 ◦ · · · ◦ ϕ1 ◦A0(ιs(xk))))

over ϕ1, . . . , ϕm, A0, . . . , Am. The objective function combines an optimal deformation cost
dVq , an affine cost Uq, and a standard loss function or endpoint cost Γk. In our setting, dVq
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is a Riemannian distance in a group of diffeomorphisms of Rdq described in Section 5, Uq is
a ridge regularization function

Uq(A) = ‖M‖2 = trace(M>M)

for affine transformations A : Rdq → Rdq+1 of the form A(x) = Mx+ b, M ∈Mdq+1,dq(R),
b ∈ Rdq+1 , and Γk is a squared error loss function

Γk(·) = ‖yk − (·)‖2

for comparison of experimental responses with model predictions.

5. Distance over Diffeomorphisms

Spaces of diffeomorphisms are defined as follows (Beg et al., 2005; Miller et al., 2015; Younes,
2010). Let Bp = Cp0 (Rd,Rd) denote the space of Cp vector fields on Rd that tend to zero
(together with their first p derivatives) at infinity. This is a Banach space for the norm

‖f‖p,∞ = max
0≤k≤p

∥∥∥dkf∥∥∥
∞
,

where ‖ · ‖∞ denotes the usual supremum norm. Let V denote a Hilbert space of vector
fields on Rd, continuously embedded in Bp for some p ≥ 1, so that there exists a C > 0
such that

‖f‖p,∞ ≤ C ‖f‖V , (2)

for all f ∈ V, where ‖·‖V is the Hilbert norm on V with inner product 〈·, ·〉V .
Diffeomorphisms can be generated as flows of ODEs associated with time-dependent

elements of V. Let H denote the Hilbert space L2([0, 1], V ) of time-dependent vector fields,
so that v ∈ H, if and only if v(t) ∈ V for t ∈ [0, 1], v is measurable, and

‖v‖2H =

∫ 1

0
‖v(t)‖2V dt <∞,

where ‖ · ‖H denotes the norm on H with inner product 〈·, ·〉H. Then the ODE

∂ty(t) = v(t)(y(t))

has a unique solution over [0, 1] given any initial condition y(0) = x. The flow of the ODE
is the function

ϕv : (t, x) 7→ y(t),

where y(t) is the solution starting at x, after t units of time. This function is the unique
flow of Rd-diffeomorphisms satisfying the dynamical system

∂tϕv(t, x) = v(t)(ϕv(t, x))

ϕv(0, x) = x
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over t ∈ [0, 1]. We will often write ϕv(t) for the time-indexed function x 7→ ϕv(t, x) satisfying

∂tϕv(t) = v(t) ◦ϕv(t), t ∈ [0, 1]

ϕv(0) = id.

The set of diffeomorphisms that can be generated in such a way forms a group denoted DiffV ,
such that a flow path associated with some v ∈ H is a curve on DiffV . Let 1

2‖v(t)‖2V denote
the kinetic energy associated with the flow’s velocity at time t along this curve. Given
ψ ∈ DiffV , we define the optimal deformation cost from id to ψ as the minimal kinetic
energy among all curves between id and ψ on DiffV , i.e., the minimum of

∫ 1
0 ‖v(t)‖2V dt

over all v ∈ H such that ϕv(1) = ψ. A distance dV (·, ·) can then be defined on DiffV with
the right-invariance property dV (ψ, ψ̃) = dV (ψ ◦ ψ′, ψ̃ ◦ ψ′) for ψ, ψ̃, ψ′ ∈ DiffV . Given
ψ,ψ′ ∈ DiffV , dV (ψ,ψ′) = dV (id, ψ′ ◦ ψ−1) and

dV (id, ψ)2 = min
v∈H

{∫ 1

0
‖v(t)‖2V dt : ϕv(1) = ψ

}
.

In our setting of m distinct D modules, we assume for each Dq module the corresponding
Hilbert space Vq of vector fields on Rdq and Hilbert space L2([0, 1], Vq) denoted Hq, and
let the time-dependent vector fields vq ∈ Hq generate the corresponding DiffVq space of
diffeomorphisms. Our optimal deformation cost can then be expressed in terms of the
vector fields as

m∑
q=1

dVq(id, ϕq)
2 =

m∑
q=1

min
vq∈Hq

{∫ 1

0
‖vq(t)‖2Vqdt : ϕvq(1) = ϕq

}
.

We introduce forward states between modules as ξ0, ζ1, ξ1, ζ2, . . . , ξm, ζm+1, as shown in
Figure 2, given by {

ζq+1
k = Aq(ξ

q
k)

ξqk = ϕvq(1)(ζqk)
k = 1, . . . , n

for outputs of corresponding Aq and Dq modules, respectively, with ξ0k = ιs(xk), ensuring
that

ζm+1
k = Am ◦ϕvm(1) ◦Am−1 ◦ · · · ◦ϕv1(1) ◦A0(ιs(xk)).

The objective function becomes

m∑
q=1

∫ 1

0
‖vq(t)‖2Vqdt+ λ

m∑
q=0

Uq(Aq) +
1

σ2

n∑
k=1

Γk(πr(ζ
m+1
k )) (3)

minimized over A0, . . . , Am, and vq ∈ Hq, q = 1, . . . ,m, such that ϕvq(t) satisfies

∂tϕvq(t) = vq(t) ◦ϕvq(t), t ∈ [0, 1]

ϕvq(0) = id.

When the Hilbert norms on Vq are translation invariant, a minimizer of this objective
function always exists. This is demonstrated in Appendix A.
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6. Kernel Reduction

The embedding assumption in equation (2) implies that V1, . . . , Vm are vector-valued repro-
ducing kernel Hilbert spaces (RKHSs) (Aronszajn, 1950; Wahba, 1990; Joshi and Miller,
2000; Miller et al., 2002; Vaillant et al., 2004; Micchelli and Pontil, 2005). By Riesz’s
representation theorem, each Vq has an associated matrix-valued kernel function

Kq : Rdq × Rdq →Mdq(R)

that reproduces every function in Vq. More precisely, for every y, a ∈ Rdq , there exists a
unique element Kq(·, y)a of Vq such that

Kq(·, y)a : x ∈ Rdq 7→ Kq(x, y)a

and

〈Kq(·, y)a, f〉Vq = a>f(y)

for all f ∈ Vq. These properties imply

〈Kq(·, x)a,Kq(·, y)b〉Vq = a>Kq(x, y)b

and thus symmetry, Kq(y, x) = Kq(x, y)>, and positive semi-definiteness for all x, y, a, b ∈
Rdq . Conversely, by the Moore–Aronszajn theorem, any matrix-valued kernel that is sym-
metric and positive semi-definite induces the corresponding vector-valued RKHS of func-
tions reproducible by this kernel.

An RKHS argument similar to the kernel trick used in standard kernel methods can
reduce the dimension of our problem as follows. Let

zqk(t) = ϕvq(t)(ζqk), k = 1, . . . , n

represent the time-dependent states in Rdq of module Dq, and denote the array of n states
as zq(·) = (zq1(·), . . . , zqn(·)). The dependence of our endpoint cost on each vector field vq(t)
is through the n trajectories

∂tz
q
k(t) = vq(t)(z

q
k(t))

generating the n corresponding endpoints ζm+1
1 , . . . , ζm+1

n . The vector fields minimizing
this cost are regularized by the RKHS norm ‖ · ‖Vq on their respective spaces Vq. By the
representer theorem, these minimizers must then take the form

vq(t)(·) =

n∑
l=1

Kq(·, zql (t))a
q
l (t),

where aq(·) = (aq1(·), . . . , a
q
n(·)) are the unknown time-dependent vectors in Rdq to be de-

termined. In this reduced representation, our objective function

m∑
q=1

∫ 1

0

n∑
k,l=1

aqk(t)
>Kq(z

q
k(t), z

q
l (t))a

q
l (t)dt+ λ

m∑
q=0

Uq(Aq) +
1

σ2

n∑
k=1

Γk(πr(ζ
m+1
k ))
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is minimized over a1(·), . . . ,am(·), A0, . . . , Am, subject to the system of trajectories and
initial conditions

∂tz
q
k(t) =

n∑
l=1

Kq(z
q
k(t), z

q
l (t))a

q
l (t)

zqk(0) = ζqk = Aq−1(ξ
q−1
k )

ξqk = zqk(1)

and initialization ξ0k = ιs(xk). Our learning problem can now be solved as an optimal control
problem with a finite dimensional control space.

7. Optimal Control

An optimal control steers the state of a system from a given initial state to a final state
while optimizing an objective function, typically a running cost and an endpoint cost to
be minimized. Our learning problem can be solved in an optimal control framework, as we
seek the optimal deformations (control) and affine parameters for our system of trajectories
and initial conditions such that a deformation (running) cost and a learning (endpoint) cost
are minimized.

Assuming existence of solutions, the Pontryagin Maximum Principle (PMP) (Hocking,
1991; Macki and Strauss, 2012) provides necessary conditions for optimality in optimal con-
trol settings. By the PMP, an optimal control and trajectory must also solve a Hamiltonian
system with a corresponding costate and a stationarity condition. We derive the PMP for
our model within the Lagrangian variational framework in Appendix B, with the resulting
solutions as follows.

First define backpropagation states between modules as ρ1, η1, ρ2, . . . , ηm, ρm+1, as shown
in Figure 2, where {

ηqk = M>q ρ
q+1
k

ρqk = Fq(ηqk)
k = 1, . . . , n

are states propagating back from corresponding Aq and Dq modules, respectively, with

ρm+1
k = − 1

σ2 ιr(∇Γk(πr(ζ
m+1
k ))).

Fq(ηqk) is obtained by solving the ODEs
∂tz

q
k(t) =

n∑
l=1

Kq(z
q
k(t), z

q
l (t))a

q
l (t), zqk(0) = ζqk

∂tp
q
k(t) = −

n∑
l=1

∇1Kq(z
q
k(t), z

q
l (t))(p

q
k(t)
>aql (t) + aqk(t)

>pql (t)− 2aqk(t)
>aql (t)), pqk(1) = ηqk

and assigning Fq(ηqk) = pqk(0), where pqk(t) are the time-dependent costates in Rdq of module
Dq, with array of n costates denoted pq(·) = (pq1(·), . . . , p

q
n(·)). Note the states zqk(t) are

calculated on the forward pass through the model and cached for the backpropagation pass.
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X A0 D1 A1 D2

. . .

. . . Dm Am

ξ0
ζ1

ρ1

ξ1

η1

ζ2

ρ2

ξ2

η2

ζm

ρm

ξm

ηm

ζm+1

ρm+1

Figure 2: General FineMorphs model of alternating A and D modules. Forward states are
ξ0, ζ1, ξ1, ζ2, . . . , ξm, ζm+1, with ξqk = ϕvq(1)(ζqk), ζq+1

k = Aq(ξ
q
k), and ξ0k = ιs(xk),

for data point index k. Backpropagation states are ρ1, η1, ρ2, . . . , ηm, ρm+1, with
ηqk = M>q ρ

q+1
k , ρqk = Fq(ηqk), and ρm+1

k = − 1
σ2 ιr(∇Γk(πr(ζ

m+1
k ))).

Let G denote our objective function. The gradients for determining our optimal control
parameters a1(·), . . . ,am(·) and affine parameters A0, . . . , Am are then

∂aqk(t)
G =

n∑
l=1

Kq(z
q
k(t), z

q
l (t))(2a

q
l (t)− p

q
l (t)), k = 1, . . . , n, q = 1, . . . ,m

∂MqG = λ∂MqUq(Aq)−
n∑
k=1

ρq+1
k ξqk

>
, q = 0, . . . ,m

∂bqG = −
n∑
k=1

ρq+1
k , q = 0, . . . ,m,

which can be used in gradient descent methods as the directions in which to step the current
parameters to minimize the objective function. Once the parameters are updated, another
forward pass through our model is run, recalculating the forward states and objective func-
tion, followed by backpropagation, recalculating the backpropagation states and gradients.
The parameters are then updated again, and the cycle repeated, until a sufficient minimum
in the objective function or total gradient is achieved.

8. Control Points Method

Large data sets and models are time and resource prohibitive in many machine learning
tasks. Our model can be naturally adapted to large data sets by approximating the optimal
vector fields with more general “sub-Riemannian” or sub-optimal ones parametrized by a
finite set of arbitrary points in the data space called control points. During learning, the
corresponding lower-complexity diffeomorphisms are applied to the entire training data set
for analysis in the endpoint cost. Similar approximations were introduced in shape analysis
(see Younes et al. (2020) for a review and references) and in Walder and Schölkopf (2009);
Vialard et al. (2020).

To approximate the optimal vector fields, we choose a set of points from the data space
of size nS ≤ n, and, without loss of generality, constrain these points to the training data
set. Without further loss of generality, we renumber the training data such that its first nS
elements coincide with this subset. Then the sub-optimal vector fields are defined as

vq(t)(·) =

nS∑
l=1

Kq(·, zql (t))a
q
l (t),
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where (zq1(·), . . . , zqnS (·)) and aq(·) = (aq1(·), . . . , a
q
nS (·)) are the states corresponding to this

subset and the control parameters, respectively. The resulting objective function

m∑
q=1

∫ 1

0

nS∑
k,l=1

aqk(t)
>Kq(z

q
k(t), z

q
l (t))a

q
l (t)dt+ λ

m∑
q=0

Uq(Aq) +
1

σ2

n∑
k=1

Γk(πr(ζ
m+1
k )) (4)

is minimized over a1(·), . . . ,am(·), A0, . . . , Am, subject to the system of trajectories

∂tz
q
k(t) =

nS∑
l=1

Kq(z
q
k(t), z

q
l (t))a

q
l (t)

with the same initial conditions and initialization as in the optimal vector fields case. The
existence of a minimizer of this objective function is demonstrated in Appendix A. The PMP
is derived in Appendix B, where the more general expressions for the costate trajectories
and gradients for the optimal control for this case are found.

9. Dummy Dimensions

Adding “dummy” dimensions to a data set can provide a benefit in our setting (Younes,
2020; Dupont et al., 2019). In cases where a diffeomorphism of the given domain cannot
reshape the data to within an affine transformation of the true responses for successful
regression—or is too costly to do so—adding dimensions can provide a more viable or less
costly pathway for the diffeomorphism. An example is illustrated with the two-dimensional
Rings on the left in Figure 3, where the data point locations and colors represent the
predictors and true responses, respectively. Zero padding the predictors with one additional
dimension then applying our baseline model (described in Section 14) leads to a linear
representation of the true responses by a simple diffeomorphism of the predictors as shown
on the right. To facilitate the use of the extra dimensions by the diffeomorphisms, these
dimensions can be initialized with random number values small enough to break the data
symmetry without impacting the data structure.

10. Implementation

The model is implemented in Python using an Euler discretization approach, with objective
function

m∑
q=1

1

Tq

Tq−1∑
i=0

n∑
k,l=1

aqk(
i
Tq

)>Kq(z
q
k(

i
Tq

), zql (
i
Tq

))aql (
i
Tq

) + λ

m∑
q=0

‖Mq‖2 +
1

σ2

n∑
k=1

Γk(πr(ζ
m+1
k ))

minimized over

(i) aq( i
Tq

) = (aq1(
i
Tq

), . . . , aqn( i
Tq

)) ∈ (Rdq)n, i = 0, . . . , Tq − 1, q = 1, . . . ,m

(ii) Mq ∈Mdq+1,dq(R), bq ∈ Rdq+1 , q = 0, . . . ,m,

10



FineMorphs

Figure 3: Two-dimensional Rings data set (left) with a linear representation of the color-
coded true responses (right) following a diffeomorphism on the domain with one
added dummy dimension.

subject to

zqk(
i+1
Tq

) = zqk(
i
Tq

) +
1

Tq

n∑
l=1

Kq(z
q
k(

i
Tq

), zql (
i
Tq

))aql (
i
Tq

)

with zqk(0) = ζqk = Mq−1ξ
q−1
k + bq−1, ξ

q
k = zqk(1), and initialization ξ0k = ιs(xk). The model

parameters are initialized as

(i) aq( i
Tq

) = 0 ∈ (Rdq)n, i = 0, . . . , Tq − 1, q = 1, . . . ,m

(ii) Mq ∼ N (0, 1
dq

) ∈Mdq+1,dq(R), bq = 0 ∈ Rdq+1 , q = 0, . . . ,m.

We include an option to speed up kernel computations using PyKeOps (Charlier et al.,
2021) with user-specified precision and GPUs. Our optimization algorithms are gradient
descent methods implemented with line search.

To run the model, the user specifies an arbitrary sequence and number of non-identity
A and D modules, dimension parameters s, r, and d1, . . . , dm, ridge regularization weight λ,
and optimization algorithm parameters for gradient descent, including stopping thresholds
and maximum number of iterations. For each Dq module, the user specifies the kernel type
and the number of discretized time points Tq for state and costate propagation and the
control variables. For each kernel Kq, the algorithm assigns a default kernel width hq of 0.5,
as the affine module preceding Dq automatically scales and adapts its input to the kernel
width of the subsequent Dq, removing the need for user-provided kernel widths. Input
and output dimension assignments for each module in the sequence are automated by our
algorithm based on dX , dY , s, r, and the inner module dimensions provided by the user.
The normalization factor σ of the error term is determined by our model as a function of
the noise in the training data, as described in Section 12.

11
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11. Data Preprocessing

Prior to training, the x and y training data in T0 are standardized by the model to zero
mean and unit variance by subtracting their respective means, µX ∈ RdX and µY ∈ RdY ,
and dividing by their respective standard deviations, σX ∈ RdX and σY ∈ RdY . For s > 0,
s extra dimensions are then appended to the training predictors by n vector draws from
N (0, 0.012) ∈ Rs. Prior to testing, the test predictors are standardized using the standard-
ization parameters of the training predictors, µX and σX , and then appended with ntest
zero vectors 0 ∈ Rs, where ntest is the number of data points in the test set.

12. Normalization Factor and Model Training

To determine an optimal penalty for endpoint matching errors and prevent overfitting to
data noise, the σ normalization factor of the error term is calculated by the model as follows.
First, the noise of the “data manifold,” σ2data, is estimated, and a noise threshold, σ2thresh,
is set to this value with a minimum cap to avoid overfitting in the case of low noise,

σ2thresh = max
{
σ2data, 0.01

}
.

Training begins, with the normalization factor initialized to a scale of the noise threshold,

σ2 = n1/2σ2thresh,

(the
√
n factor was determined empirically as a good choice for initialization) then iteratively

decreased after a fixed number of training steps until the training error falls below the noise
threshold. Using the final value for σ, the training algorithm is then run until convergence.

13. Evaluation Metric

The diffeomorphisms and affine transformations learned on the training set are applied to
the corresponding test set for performance analysis. Specifically, the test predictors are
forward propagated through the model, transformed in turn by the learned affine trans-
formations of each Aq and the vector fields of each Dq, the latter functions of the learned
aq(·) and cached zq(·). The evaluation metric is the square root of the mean square error
(MSE), or root-MSE (RMSE), between the model outputs ζm+1

k,test and the test experimental
responses √√√√ 1

ntest

ntest∑
k=1

Γk(σY � πr(ζm+1
k,test) + µY ),

which we will denote test RMSE. Lower test RMSE signifies better performance.

14. Baseline Experiments

While DA and AD are the smallest possible sequences that can be represented in our model,
the AD sequence is not as practical for regression purposes, and the DA sequence requires
the user to specify a data-specific kernel width for the D1 diffeomorphism. Therefore, we
consider the ADA model, which is the sequence case for m = 1 and no identity modules, as

12
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X A0 D1 A1 Y
ι1 π0

Figure 4: ADA transformation sequence used in the baseline experiments.

our simplest regression model sequence, and we choose this baseline model for our experi-
ments, as shown in Figure 4. Additionally, we choose the simplest reasonable values for the
remaining hyperparameters of our model. We set λ = 1 and assign dimensions s = 1, r = 0,
and d1 = dX + s, ensuring the dummy dimension added to the data set is carried through
module A0 to the diffeomorphism in D1. For module D1, we set T1 = 10, and we construct
a matrix-valued kernel from the scalar Matérn kernel and the identity matrix Id1 (Younes,
2020). In particular,

K1(x, y) =

(
1 + u+ 0.4u2 +

1

15
u3
)
e−uId1 , u =

|y − x|
h1

with default kernel width h1 = 0.5. Kernel computations are performed using PyKeOps with
an NVIDIA RTX A5000 GPU with CUDA 12.1. The optimization algorithm is the limited-
memory Broyden–Fletcher–Goldfarb–Shanno algorithm (L-BFGS) with Wolfe conditions
on the line search. Early stopping, typically used to prevent overfitting, is avoided by
setting the maximum number of gradient descent iterations large enough to ensure numerical
convergence. The FineMorphs code and data sets used in the experiments are available at
https://github.com/diffeomorphic-learning/finemorphs.

Our model is tested on nine UCI data sets—Concrete, Energy, Kin8nm, Naval, Power,
Protein, Wine Red (denoted Wine), Yacht, and Year—with standard splits originally gener-
ated for the experiments in Hernández-Lobato and Adams (2015) and gap splits generated
by Foong et al. (2019).1,2 Data sets are split into training and test sets by uniform subsam-
pling for the standard splits and by a custom split assigning “outer regions” to the training
sets and “middle regions” to the test sets for the gap splits. For the standard splits, 20
randomized train-test splits (90% train, 10% test) of each data set are provided, with the
exception of the larger Protein (5 splits) and Year (1 split) data sets. Note that the Year
standard split is not provided in the standard splits repositories, so we assume it follows
the single split (90% train, 10% test) guideline provided for that data set in the UCI re-
spository.3 For the gap splits, dX train-test splits of each data set are provided, each split
corresponding to one of the dX dimensions of that data set. These splits are generated by
creating “gaps” in the training data, by first sorting the data set in increasing order in the
dimension of interest, then assigning the outer two-thirds to the training set and the middle
third to the test set (Foong et al., 2019). The Year data set is not included in the gap splits
repository or experiments. For each multiple split experiment, the evaluation metric is test
RMSE averaged over all splits with standard error.

The total number of data points N prior to splitting and the dimensions dX and dY of
each provided data set are listed in Tables 3A and 3B. Note that although two of the original

1. https://github.com/yaringal/DropoutUncertaintyExps/tree/master/UCI_Datasets
2. https://github.com/cambridge-mlg/DUN/tree/master/experiments/data/UCI_for_sharing
3. https://archive.ics.uci.edu/ml/datasets/yearpredictionmsd
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Hidden Layer

Model 1 2 3 4 5 6 7 8 9 10

DNN-1 64
DNN-2 128 64
DNN-3 256 128 64
DNN-5 256 128 64 32 16
DNN-10 256 128 64 32 16 16 8 8 4 4

Table 1: Hidden layer sizes of densely-connected neural networks.

data sets—Energy and Naval—have response dimension dY = 2, all provided standard and
gap splits have dY = 1. In the Year data set (N = 515345, dX = 90) experiment, to make
it computationally tractable, we set d1 = 10 to reduce dimensionality and use the control
points method with a subset (nS = 1000) of training data selected as the initial nS cluster
seeds for k-means clustering according to the k-means++ algorithm.

For performance comparison with our model, we test standard ridge regression (A),
NODEs, and five DNNs on the same UCI standard splits and gap splits. Ridge regression is
implemented in Python with regularization weight λ = 1. We use a NODE model available
on github4, with an option for augmented or dummy dimensions (ANODE). Parameters for
the NODE experiments follow those used in Dupont et al. (2019), including hidden layer size
of 32, learning rate of 0.001, batch size of 256, and augmented dimension of 5 for ANODE.
However, we extend the number of training epochs—or number of complete passes through
the training data—to 400 to allow for model convergence which significantly improves re-
sults. The DNN models, implemented in TensorFlow and denoted DNN-x, x = 1, 2, 3, 5, 10,
consist of x sequential densely-connected hidden layers with ReLU activation and layer sizes
listed in Table 1, followed by a densely-connected output layer. In TensorFlow, we use the
Adam optimizer (Kingma and Ba, 2014), MSE loss, and 400 training epochs. Default values
are assumed for all other TensorFlow parameters, including learning rate of 0.001, batch size
of 32, and no validation split of the data. The A, NODE, and DNN models are trained and
tested on each data set split following standardization, and the standardization is removed
from the model outputs for performance analysis. The NODE and DNN experiments are
executed on an NVIDIA GeForce GTX 1050 GPU with Cuda 10.1. Due to size, the Year
data set is not analyzed in the NODE experiments.

Performance is further compared with published experimental results from similarly
tested state-of-the-art models found in the literature references in Table 2. The literature
models include Bayesian deep learning techniques such as variational inference (VI); back-
propagation (BP) and probabilistic BP (PBP) for Bayesian NNs (BNNs); Monte Carlo
dropout run in a timed setting (Dropout-TS or Dropout), to convergence (Dropout-C), and
with grid hyperparameter tuning (Dropout-G); BNNs with variational matrix Gaussian
posteriors (VMG) and horseshoe priors (HS-BNN); and PBP with the matrix variate Gaus-
sian distribution (PBP-MV). Additional models are Bayes by backprop (BBB); stochastic,
low-rank, approximate natural-gradient (SLANG) method; variations of the neural linear
(NL) model: maximum a posteriori (MAP) estimation NL (MAP NL), regularized NL (Reg

4. https://github.com/EmilienDupont/augmented-neural-odes
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Models Splits Reference

VI, BP, BP-2, BP-3, BP-4,
S Hernández-Lobato and Adams (2015)

PBP, PBP-2, PBP-3, PBP-4
Dropout-TS S Gal and Ghahramani (2016)
VMG D Louizos and Welling (2016)
HS-BNN D Ghosh et al. (2019)
PBP-MV D Sun et al. (2017)
Dropout-C, Dropout-G S Mukhoti et al. (2018)
BBB, SLANG S Mishkin et al. (2018)
MAP-1, MAP-2, MAP-1 NL,

D,G Ober and Rasmussen (2019)
MAP-2 NL, Reg-1 NL, Reg-2 NL,
BN(ML)-1 NL, BN(ML)-2 NL,
BN(BO)-1 NL, BN(BO)-2 NL
DUN, DUN (MLP), Dropout,

S,G Antoran et al. (2020)
Ensemble, MFVI, SGD
Lβ−NLL, β = 0.0, 0.25, 0.5, 0.75, 1.0,

S,D Seitzer et al. (2022)LMM, LMSE, Student-t,
xVAMP, xVAMP*, VBEM, VBEM*

Table 2: Literature models tested on standard splits (S), gap splits (G), and different stan-
dard splits (D).

NL), Bayesian noise (BN) NL by marginal likelihood maximization (BN(ML) NL) and by
Bayesian optimization (BO) (BN(BO) NL); depth uncertainty network (DUN) with multi-
layer perceptron (MLP) architecture (DUN (MLP)); deep ensembles (Ensemble); Gaussian
mean field VI (MFVI); vanilla NNs (SGD); and distributional regression by negative log-
likelihood (NLL) with alternative loss formulation (β−NLL) (Lβ−NLL), “moment matching”
(MM) (LMM), MSE loss (LMSE), Student’s t-distribution (Student-t), and different variance
priors and variational inference (xVAMP, xVAMP*, VBEM, VBEM*). An integer “-x” ap-
pended to a model name denotes x hidden layers in the network.

A comprehensive list of average test RMSE results for all models in Table 2 is found in
Appendix Tables C.2A and C.2B for standard split experiments and Tables C.1A and C.1B
for gap split experiments. The “D” standard splits notation in Table 2 and gray shading
in Tables C.2A and C.2B indicate experiments using standard splits that are different
from those used in our experiments but generated following the training-test protocol from
Hernández-Lobato and Adams (2015). Louizos and Welling (2016) and Sun et al. (2017)
generate their own standard splits, following the training-test protocol from Hernández-
Lobato and Adams (2015), and randomly generate the Year data split. Seitzer et al. (2022)
also generate their own standard splits for the Energy and Naval data sets (maintaining
the original response dimensions of dY = 2) and use the standard splits from Hernández-
Lobato and Adams (2015) for the rest of the data sets. In Ghosh et al. (2019) and Ober
and Rasmussen (2019), it is unclear if the standard splits are those used in Hernández-
Lobato and Adams (2015) or if they are generated by the authors following that training-
test protocol, thus the standard splits experiments for these models are also labelled “D”
in Table 2 and their corresponding results shaded in gray in Tables C.2A and C.2B. All
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presented literature results involve some form of hyperparameter tuning, typically by BO or
a grid approach, using a portion of each training set as a validation set. For consistency in
performance comparison, we convert the standard deviation results in Ghosh et al. (2019),
Antoran et al. (2020), and Seitzer et al. (2022) to standard errors and use the standard
error representation of the results in Gal and Ghahramani (2016) found in Mukhoti et al.
(2018). Due to size, the larger Protein and Year data sets are not analyzed in some of the
literature references. All literature results are provided in 2-digit decimal precision, with
the exception of 3-digit decimal precision in Hernández-Lobato and Adams (2015), Antoran
et al. (2020), the Year analysis in Gal and Ghahramani (2016) and Louizos and Welling
(2016), and the Kin8nm and Wine analysis in Seitzer et al. (2022), and 4-digit decimal
precision for the Naval analysis in Seitzer et al. (2022).

Performance of our ADA model is compared in Tables 3A and 3B with the A, NODE,
and DNN models and with a representative cross-section of the literature results in Tables
C.1A, C.1B, C.2A, and C.2B from each reference in Table 2 using the same standard splits
and gap splits. While all results in Tables 3A, 3B, C.1A, C.1B, C.2A, and C.2B are listed
in 2-digit decimal precision, performance comparisons are carried out in higher decimal
precision when necessary, if available. The lowest average test RMSE in each standard
splits column and each gap splits column in Tables 3A and 3B is bolded, and result values
presented in 2-digit decimal representation in the literature that cannot be confirmed as
lower or higher than these lowest values are marked with a dagger symbol (†). Examples
of final reshaped sequences through module D1 of standard training splits of Kin8nm,
Concrete, and Energy are illustrated in Figure 5. In each figure plot, data point locations
represent the first three principal components of z1(t) at a fixed time t, and color coding
represents the true responses. The figure contains four plots per data set, corresponding to
t = 0.0, 0.4, 0.7, and 1.0, respectively. Average run times for ADA, A, NODEs, and DNNs
for each experiment are provided in Table 4.
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UCI Data Sets

Concrete Energy Kin8nm Naval Power
N = 1030 N = 768 N = 8192 N = 11934 N = 9568
dX = 8 dX = 8 dX = 8 dX = 16 dX = 4

Model dY = 1 dY = 1 dY = 1 dY = 1 dY = 1

Standard Splits

ADA 4.86± 0.12 0.50± 0.01 0.07± 0.00 0.00± 0.00 3.39± 0.05
A 10.31± 0.14 3.06± 0.05 0.20± 0.00 0.01± 0.00 4.61± 0.03
NODE 5.21± 0.15 0.57± 0.02 0.07± 0.00 0.00± 0.00 3.96± 0.04
ANODE 5.25± 0.18 0.54± 0.02 0.07± 0.00 0.00± 0.00 3.85± 0.04
DNN-1 5.02± 0.14 0.53± 0.01 0.08± 0.00 0.00± 0.00 3.98± 0.04
DNN-2 4.47± 0.13 0.51± 0.01 0.08± 0.00 0.00± 0.00 3.70± 0.04
DNN-3 4.46± 0.12 0.43± 0.02 0.08± 0.00 0.00± 0.00 3.63± 0.05
DNN-5 4.71± 0.15 0.46± 0.02 0.08± 0.00 0.00± 0.00 3.67± 0.05
DNN-10 4.64± 0.14 0.54± 0.08 0.08± 0.00 0.01± 0.00 3.59± 0.04
BP-3 5.57± 0.13 0.63± 0.03 0.07± 0.00 0.00± 0.00 4.11± 0.04
BP-4 5.53± 0.14 0.67± 0.03 0.07± 0.00 0.00± 0.00 4.18± 0.06
PBP-2 5.24± 0.12 0.90± 0.05 0.07± 0.00 0.00± 0.00 4.03± 0.03
PBP-3 5.73± 0.11 1.24± 0.06 0.07± 0.00 0.01± 0.00 4.07± 0.04
Dropout-TS 5.23± 0.12 1.66± 0.04 0.10± 0.00 0.01± 0.00 4.02± 0.04
Dropout-C 4.93± 0.14 1.08± 0.03 0.09± 0.00 0.00± 0.00† 4.00± 0.04
Dropout-G 4.82± 0.16 0.54± 0.06 0.08± 0.00 0.00± 0.00† 4.01± 0.04
BBB 6.16± 0.13 0.97± 0.09 0.08± 0.00 0.00± 0.00† 4.21± 0.03
SLANG 5.58± 0.19 0.64± 0.03 0.08± 0.00 0.00± 0.00† 4.16± 0.04
DUN (MLP) 4.57± 0.16 0.95± 0.11 0.08± 0.00 0.00± 0.00 3.67± 0.06
Dropout 4.61± 0.13 0.57± 0.05 0.07± 0.00 0.00± 0.00 3.82± 0.08
Ensemble 4.55± 0.13 0.51± 0.02 0.30± 0.22 0.00± 0.00 3.44± 0.05
LMSE 4.96± 0.14 −− 0.08± 0.00 −− 4.01± 0.04
VBEM* 5.17± 0.13 −− 0.08± 0.00 −− 4.02± 0.04

Gap Splits

ADA 7.61± 0.38 3.51± 1.20 0.07± 0.00 0.02± 0.00 5.33± 0.43
A 10.75± 0.29 3.96± 0.36 0.20± 0.00 0.03± 0.00 4.47± 0.08
NODE 7.77± 0.27 4.98± 1.82 0.08± 0.00 0.03± 0.00 4.39± 0.11
ANODE 8.49± 0.30 4.90± 1.99 0.07± 0.00 0.02± 0.00 4.36± 0.15
DNN-1 7.53± 0.34 4.59± 1.75 0.08± 0.00 0.03± 0.00 4.33± 0.13
DNN-2 7.45± 0.31 3.77± 1.34 0.08± 0.00 0.03± 0.00 5.17± 0.33
DNN-3 7.44± 0.23 3.93± 1.42 0.08± 0.00 0.03± 0.00 5.67± 0.33
DNN-5 7.28± 0.16 3.23± 1.08 0.08± 0.00 0.03± 0.00 5.78± 0.41
DNN-10 8.41± 1.05 5.98± 1.42 0.08± 0.00 0.02± 0.00 5.56± 0.45
MAP-1 7.79± 0.18 2.83± 0.99 0.09± 0.01 0.02± 0.00 4.24± 0.12
MAP-2 7.78± 0.23 3.70± 1.33 0.08± 0.00 0.03± 0.00 4.33± 0.18
MAP-2 NL 7.44± 0.17 3.48± 1.21 0.07± 0.00† 0.03± 0.00 4.27± 0.08
BN(ML)-2 NL 7.33± 0.36 4.10± 1.64 0.08± 0.00 0.01± 0.00 5.17± 0.28
DUN 7.20± 0.18 2.94± 0.67 0.08± 0.00 0.02± 0.00 4.30± 0.09
Dropout 7.06± 0.21 2.87± 0.50 0.07± 0.00 0.03± 0.00 4.69± 0.07
Ensemble 6.85± 0.18 3.36± 0.83 1.63± 0.99 0.02± 0.00 4.37± 0.09
MFVI 7.55± 0.19 8.61± 2.10 0.10± 0.01 0.03± 0.01 4.68± 0.16

† Literature result indistinguishable from the best value.

Table 3A: Average test RMSE± 1 standard error (best values in bold) for ADA, A, NODEs,
DNNs, and a cross-section of the literature models in Tables C.1A and C.2A.
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UCI Data Sets

Protein Wine Yacht Year
N = 45730 N = 1599 N = 308 N = 515345

dX = 9 dX = 11 dX = 6 dX = 90
Model dY = 1 dY = 1 dY = 1 dY = 1

Standard Splits

ADA 3.24± 0.01 0.59± 0.01 0.72± 0.06 8.88±NA
A 5.21± 0.02 0.65± 0.01 8.95± 0.27 9.51±NA
NODE 4.11± 0.02 0.71± 0.01 1.16± 0.09 −−
ANODE 4.08± 0.02 0.71± 0.01 0.93± 0.10 −−
DNN-1 4.35± 0.04 0.66± 0.01 0.95± 0.07 8.96±NA
DNN-2 3.79± 0.02 0.73± 0.02 0.92± 0.08 9.78±NA
DNN-3 3.83± 0.03 0.66± 0.02 1.27± 0.15 10.73±NA
DNN-5 3.70± 0.01 0.64± 0.01 1.22± 0.12 10.20±NA
DNN-10 4.73± 0.52 0.70± 0.02 3.32± 1.02 10.31±NA
BP-3 4.01± 0.03 0.65± 0.01 1.11± 0.09 8.93±NA
BP-4 3.96± 0.01 0.65± 0.02 1.27± 0.13 9.05±NA
PBP-2 4.25± 0.02 0.64± 0.01 0.85± 0.05 8.92±NA
PBP-3 4.09± 0.03 0.64± 0.01 0.89± 0.10 8.87±NA
Dropout-TS 4.36± 0.01 0.62± 0.01 1.11± 0.09 8.85±NA
Dropout-C 4.27± 0.01 0.61± 0.01 0.70± 0.05 −−
Dropout-G 4.27± 0.02 0.62± 0.01 0.67± 0.05 −−
BBB −− 0.64± 0.01 1.13± 0.06 −−
SLANG −− 0.65± 0.01 1.08± 0.06 −−
DUN (MLP) 3.41± 0.03 0.63± 0.01 2.47± 0.19 −−
Dropout 3.43± 0.03 0.64± 0.01 0.88± 0.09 −−
Ensemble 3.26± 0.03 1.93± 1.28 1.43± 0.11 −−
LMSE 4.28± 0.03 0.63± 0.01 0.78± 0.06 −−
VBEM* 4.35± 0.04 0.63± 0.01 0.65± 0.04 −−

Gap Splits

ADA 5.13± 0.20 0.68± 0.01 1.02± 0.14
A 5.34± 0.04 0.64± 0.01 9.24± 0.31
NODE 5.46± 0.15 0.79± 0.01 2.71± 0.29
ANODE 5.49± 0.20 0.84± 0.01 2.29± 0.52
DNN-1 5.08± 0.09 0.72± 0.01 2.33± 0.29
DNN-2 5.56± 0.20 0.81± 0.01 3.40± 0.64
DNN-3 5.95± 0.21 0.73± 0.01 3.53± 0.59
DNN-5 5.85± 0.24 0.74± 0.01 3.29± 0.54
DNN-10 6.04± 0.21 0.76± 0.01 3.95± 0.71
MAP-1 5.16± 0.04 0.63± 0.01† 1.31± 0.14
MAP-2 5.07± 0.06 0.63± 0.01† 1.05± 0.09
MAP-2 NL 5.08± 0.06 0.63± 0.01† 1.01± 0.09
BN(ML)-2 NL 5.37± 0.17 0.64± 0.01 1.31± 0.16
DUN 5.21± 0.35 0.70± 0.01 1.85± 0.17
Dropout 5.13± 0.28 0.66± 0.01 2.29± 0.47
Ensemble 4.80± 0.27 0.67± 0.01 1.84± 0.19
MFVI 5.12± 0.13 0.63± 0.01 1.84± 0.16

† Literature result indistinguishable from the best value.

Table 3B: Average test RMSE± 1 standard error (best values in bold) for ADA, A, NODEs,
DNNs, and a cross-section of the literature models in Tables C.1B and C.2B.
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Figure 5: Reshaped sequences of Kin8nm (left), Concrete (middle), and Energy (right)
standard training splits through module D1. Data points correspond to the first
three principal components of z1(t) at a fixed time t, with colors representing the
true responses. Starting from the top, t = 0.0, 0.4, 0.7, and 1.0, respectively.
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UCI Data Sets

Model Concrete Energy Kin8nm Naval Power Protein Wine Yacht Year

Standard Splits

ADA 3:24 1:26 12:21 28:41 27:19 3:57:53 4:27 0:58 22:16:39
A 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:01
NODE 0:34 0:25 5:03 6:19 5:33 29:13 0:53 0:17 −−
ANODE 0:34 0:25 4:24 6:38 4:50 28:22 0:51 0:17 −−
DNN-1 0:09 0:07 1:03 1:33 1:16 6:15 0:13 0:03 1:07:04
DNN-2 0:09 0:07 1:15 1:42 1:24 6:28 0:14 0:03 1:14:57
DNN-3 0:10 0:08 1:20 1:51 1:35 6:59 0:15 0:04 1:19:55
DNN-5 0:11 0:09 1:29 2:12 1:47 7:52 0:17 0:04 1:31:06
DNN-10 0:15 0:11 1:55 2:46 2:18 10:15 0:22 0:05 1:52:08

Gap Splits

ADA 2:05 1:30 9:33 21:27 21:35 2:32:31 3:44 0:55
A 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00
NODE 0:25 0:17 3:28 4:43 3:49 21:06 0:43 0:09
ANODE 0:25 0:17 3:08 4:42 3:32 21:27 0:42 0:08
DNN-1 0:07 0:04 0:48 1:09 0:55 4:19 0:11 0:03
DNN-2 0:07 0:04 0:52 1:15 1:01 4:47 0:12 0:03
DNN-3 0:08 0:05 0:56 1:21 1:06 5:09 0:13 0:03
DNN-5 0:09 0:06 1:04 1:33 1:15 6:09 0:15 0:04
DNN-10 0:12 0:07 1:22 2:00 1:36 8:03 0:18 0:05

Table 4: Average run times for the baseline experiments. Times are in mm:ss or hh:mm:ss
format (h: hour; m: minute; s: second), as applicable.

15. Discussion

In comparison with all models tested on the same UCI standard splits in Tables 3A, 3B,
C.2A, and C.2B, our baseline ADA model performs well in general, with best performance
ranking or lowest average test RMSE for five data sets—Kin8nm, Naval, Power, Protein,
and Wine—third lowest for Energy, and fourth lowest for Yacht and Year. We note that
for the Naval standard splits, it is unclear if the literature results for models Dropout-
C, Dropout-G, BBB, and SLANG are better or worse than the otherwise top-performing
result of our model for that experiment. Additionally, the use of the control points method
and dimensionality reduction for the Year experiment enabled experiment tractability with
competitive results. The DNN-3 model outperforms all models for the Concrete and Energy
data sets, and VBEM* and Dropout-TS have the lowest average RMSEs for Yacht and Year,
respectively. In comparison with all models tested on different standard splits in Tables
C.2A and C.2B and with results in high enough decimal precision for comparison, our
ADA model maintains a similar performance level, as those literature model experiments
primarily show improved performance for the Energy, Yacht, and Year data sets on which
ADA did not have top performance. Sample D1 deformation sequences in Figure 5 for several
standard split experiments demonstrate the smooth invertibility of data transformations
through the D modules of our model.
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While the standard splits are useful for testing a model’s ability to fit data, the gap
splits can test in a sense how well a model generalizes to out-of-distribution data. A robust
model will simultaneously perform well on the standard splits and not critically fail on the
gap splits. Our ADA model demonstrates above average performance overall in ranking
comparisons with all models tested on the UCI gap splits in Tables 3A, 3B, C.1A, and
C.1B, with no excessively poor predictions aside from one low performance ranking (22nd

out of 25 models) for Power. Specifically, in comparison with the other models, our model’s
average test RMSE is the lowest for Kin8nm, second lowest for Yacht, sixth lowest for
Protein, and ninth lowest for Energy and Naval, with approximately center performance
ranking for Concrete and Wine. Our model’s top ranking result for the Kin8nm gap splits
is caveated with the fact that the literature results for models MAP-2 NL, Reg-2 NL, and
BN(BO)-2 NL cannot be confirmed as lower or higher than this value. In addition, the
ADA results cannot be distinguished from the results for MAP-1, MAP-1 NL, and DUN
(MLP) for Naval gap splits and from the results for MAP-1 NL for Protein gap splits.

Average run time comparisons of ADA, A, NODE, and DNN models in Table 4 demon-
strate the computational trade-off for the higher performance of ADA. Among these baseline
models, the fastest run times in all experiments is achieved by the A model, followed by
DNNs, then NODEs, then the ADA model.

A summary of ADA performance rankings and average run times for both the standard
split and gap split experiments are found in Table 7. Rankings are in comparison with all
models in Tables 3A, 3B, C.1A, C.1B, C.2A, and C.2B using the same standard splits and
gap splits. Run times are in minutes, rounded to the nearest integer.

16. Beyond the Baseline

We test more complex model architectures beyond the ADA baseline in Table 5, using the
Airfoil data set in the UCI repository for the experiments. Performance is compared with
our baseline model as well as DNNs, as the Airfoil data set has similar size and dimensions to
the Concrete and Energy data sets on which the DNN models perform best in Table 3A. We
generate 10 randomized train-test splits (90% train, 10% test) and again evaluate prediction
performance on the test splits. The hyperparameter values of the diffeomorphic regression
models in Table 5 follow those used in the experiments in Section 14, including the same
A and D modules used in our baseline model, with one exception. For ADxA models with
x sequential D modules, while the D modules have the same dimension, kernel type, and
number of discretized time points as in our ADA model, the kernel widths of this sequence of
m D modules increase as hq = q

m+1 , q = 1, . . . ,m, or decrease as hq = m−q+1
m+1 , q = 1, . . . ,m.

All other experimental settings in Table 5 follow Section 14. Starting with the original ADA
model, the results show improved performance with increased model complexity, with the
AD4A model with decreasing kernel sizes outperforming all models, including the DNNs,
which again outperform the baseline. Note that to ensure these improved results are not
the result of the increased number of time steps inherent in increasing the number of our
D modules, the ADA model is also run with increased T1, as shown in Table 5.

We test the AD4A model further in Table 6 on the standard and gap splits of six of
the UCI data sets, using the same experimental settings in Section 14, and summarize
its performance rankings and average run times in Table 7. In comparison with ADA in
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UCI Data Set

Airfoil
N = 1503
dX = 5

Model dY = 1

ADA 1.49± 0.05
ADA (T1 = 20) 1.49± 0.05
ADA (T1 = 30) 1.45± 0.04
ADA (T1 = 40) 1.40± 0.08
DNN-1 2.02± 0.06
DNN-2 1.36± 0.05
DNN-3 1.25± 0.05
DNN-5 1.16± 0.04
DNN-10 1.79± 0.60

UCI Data Set

Airfoil
N = 1503
dX = 5

Model dY = 1

AD2A (hq ↑) 1.34± 0.06
AD3A (hq ↑) 1.20± 0.04
AD4A (hq ↑) 1.11± 0.04
AD2A (hq ↓) 1.18± 0.04
AD3A (hq ↓) 1.07± 0.03
AD4A (hq ↓) 1.02± 0.03
(AD)2A 1.38± 0.07
(AD)3A 1.29± 0.06
(AD)4A 1.26± 0.05
(AD)5A 1.33± 0.05

Table 5: Average test RMSE ± 1 standard error (best values in bold). Increasing and
decreasing kernel sizes are denoted (hq ↑) and (hq ↓), respectively.

UCI Data Sets

Model Concrete Energy Kin8nm Power Wine Yacht

Standard Splits

ADA 4.86± 0.12 0.50± 0.01 0.07± 0.00 3.39± 0.05 0.59± 0.01 0.72± 0.06
AD4A 4.49± 0.13 0.51± 0.01 0.07± 0.00 3.27± 0.06 0.58± 0.01 0.78± 0.05

Gap Splits

ADA 7.61± 0.38 3.51± 1.20 0.07± 0.00 5.33± 0.43 0.68± 0.01 1.02± 0.14
AD4A 7.29± 0.37 3.52± 1.19 0.07± 0.00 4.67± 0.21 0.68± 0.01 1.04± 0.18

Table 6: Average test RMSE ± 1 standard error (best values in bold) for ADA and AD4A
with decreasing kernel sizes.

Table 6, the more complex model shows improved (Concrete, Kin8nm, Power, Wine) and
similar (Energy) test RMSE results for both sets of experiments, with slightly worse results
on the remaining Yacht experiments. In particular, for the standard splits, the improved
Concrete result in Table 6 is now comparable with the best (lowest) result from DNN-3.
In comparison with the literature, we note the AD4A results cannot be distinguished from
the results for LMSE for Yacht standard splits, and AD4A and ADA share the same results
caveat for Kin8nm gap splits. In comparison with ADA in Table 7, AD4A has similar
performance rankings, with the exception of significant improvements for Concrete (from
ten to three for standard splits and from 13 to five for gap splits) and for Power gap splits
(from 22 to 15 or low to approximately center ranking), thus demonstrating even greater
overall robustness.
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Avg. Run Time Avg. Run Time
Ranking (minutes) Ranking (minutes)

Data Set ADA AD4A ADA AD4A ADA AD4A ADA AD4A

Standard Splits Gap Splits

Concrete 10/41 3/41 3 10 13/25 5/25 2 6
Energy 3/29 4/29 1 5 9/25 9/25 2 4
Kin8nm 1/41 1/41 12 41 1-4/25† 1-4/25† 10 30
Naval 1-5/29† −− 29 −− 9-12/25† −− 21 −−
Power 1/41 1/41 27 56 22/25 15/25 22 41
Protein 1/39 −− 238 −− 6-7/25† −− 153 −−
Wine 1/41 1/41 4 12 15/25 15/25 4 13
Yacht 4/41 4-5/41† 1 3 2/25 2/25 1 4
Year 4/17 −− 1337 −−
† Literature results indistinguishable from the ADA or AD4A result included in the ranking range.

Table 7: Test performance rankings and average run times of ADA and AD4A with de-
creasing kernel sizes. Rankings are in comparison with all A, NODEs, and DNNs
in Tables 3A and 3B and literature results in Tables C.1A, C.1B, C.2A, and C.2B
using the same standard splits and gap splits. Times are in minutes, rounded to
the nearest integer.

17. Summary

We present a layered approach to multivariate regression using FineMorphs, a sequence
model of affine and diffeomorphic transformations. Optimal control concepts from shape
analysis are leveraged to optimally “reshape” model states while learning. Diffeomor-
phisms (the model states) are generated by RKHS time-dependent vector fields (the con-
trol) calculated by Hamiltonian control theory, minimizing—along with the optimal affine
parameters—a learning objective functional consisting of a kinetic energy term and affine
and endpoint costs. In our setting, any arbitrary number and order of arbitrary affine and
diffeomorphic transformations can be modeled, and diffeomorphisms can be generated as
flows of sub-optimal vector fields parametrized by control points to reduce computational
complexity and enable training on large data sets. Additionally, the affine modules can scale
data prior to diffeomorphic transforms as well as reduce (or increase) dimensionality. For
both the optimal and sub-optimal vector fields cases, a proof of the existence of a solution
to the variational problem and a derivation of the necessary conditions for optimality are
provided. On standard UCI benchmark experiments, our baseline diffeomorphic regression
model—ADA—performs favorably overall against state-of-the-art, hyperparameter-tuned
deep BNNs and other models in the literature as well as NODEs and TensorFlow DNNs.
The computational intractability of the largest data set in the experiments is successfully
addressed with our model’s dimensionality reduction and control points capabilities, with
good performance. A general trend of improved performance with increased model com-
plexity is observed, in particular with “coarse-to-fine” models containing multiple sequential
diffeomorphisms of decreasing kernel sizes. Additionally, our models demonstrate out-of-
distribution robustness with reasonable performances in experiments using custom train-test
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splits with “gaps” in the training data. In contrast with other methods, our diffeomorphic
regression models learn smooth, invertible transformations of the shapes or manifolds on
which the data sets—and deeper model states—lie, with explicit control of the smoothness
of these transformations. Future work includes further understanding of the theoretical
basis, limitations, and advantages of our models; investigating coarse-to-fine architectures
and Riemannian optimization methods on the diffeomorphism group (Boumal, 2023); and
extending the diffeomorphic learning model to manifold learning.
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Appendix A. Existence of Solution to the FineMorphs Variational
Problem

The variational problem in (3) is to minimize

G(v1, . . . , vm,M0, . . . ,Mm, b0, . . . , bm) =

m∑
q=1

‖vq‖2Hq
+ λ

m∑
q=0

‖Mq‖2

+
1

σ2

n∑
k=1

Γk(πr(ζ
m+1
k ))

(5)

over vq ∈ Hq, q = 1, . . . ,m, and Mq ∈Mdq+1,dq(R), bq ∈ Rdq+1 , q = 0, . . . ,m, subject to
∂tϕvq(t) = vq(t) ◦ϕvq(t), t ∈ [0, 1]

ζq+1
k = Mqϕvq(1, ζqk) + bq

ϕvq(0) = id, ζ1k = M0ιs(xk) + b0.

(6)

G is bounded from below and thus has an infimum Gmin. We want to show that Gmin

is also a minimum, i.e., there exists v
(∗)
q ∈ Hq, q = 1, . . . ,m, and M

(∗)
q ∈Mdq+1,dq(R),

b
(∗)
q ∈ Rdq+1 , q = 0, . . . ,m, such that

G(v
(∗)
1 , . . . , v(∗)m ,M

(∗)
0 , . . . ,M (∗)

m , b
(∗)
0 , . . . , b(∗)m ) = Gmin.

We prove this under the following weak assumptions which are satisfied in all practical
cases within our problem space. We introduce the following action of translation on diffeo-
morphisms: b ·ϕq : x 7→ ϕ(x+ b)− b and corresponding infinitesimal action on vector fields
b · f : x 7→ f(x+ b). (As is customary, we use the same notation for action and infinitesimal
action.)

(H1) The Hilbert norms on Vq (recall that Hq = L2([0, 1], Vq)) are translation invariant:
for any f ∈ Vq and b ∈ Rdq , the vector field b · f belongs to Vq with ‖b · f‖Vq = ‖f‖Vq .

(H2) The functions Γk are continuous, non-negative, and satisfy Γk(ζ) → ∞ when
‖ζ‖ → ∞.

The existence proof is detailed below, first in the unconstrained case of equation (5), then
in the “sub-Riemannian” case introduced in Section 8.

Existence: unconstrained case. If v ∈ Hq and b ∈ Rdq , we will denote by b · v the
time-dependent vector field t 7→ b · v(t). Importantly, the associated flow ϕb·v (defined by
∂tϕb·v(t, x) = b · v(t)(ϕb·v(t, x)) and ϕb·v(0, x) = x) satisfies ϕb·v = b ·ϕv.

Indeed b ·ϕv(0, x) = ϕv(0, x+ b)− b = x, and

∂t(b ·ϕv)(t, x) = ∂t(ϕv(t, x+ b)− b)
= v(t)(ϕv(t, x+ b))

= b · v(t)(ϕv(t, x+ b)− b) = b · v(t)((b ·ϕv)(t, x)).
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As a consequence, if (H1) is true, one can assume, without changing the value of the
infimum, that b0 = · · · = bm−1 = 0. Indeed, given v1, . . . , vm, M0, . . . ,Mm, b0, . . . , bm, one
can define

cq =

{
b0, if q = 0

Mqcq−1 + bq, if 1 ≤ q ≤ m,

and, one has, letting ṽq = cq−1 · vq, q ≥ 1, b̃0 = · · · = b̃m−1 = 0, b̃m = cm,

G(ṽ1, . . . , ṽm,M0, . . . ,Mm, 0, · · · , 0, b̃m) = G(v1, . . . , vm,M0, . . . ,Mm, b0, . . . , bm). (7)

To see this, let ϕṽq and ζ̃qk be defined by (6), i.e.,
∂tϕṽq(t) = ṽq(t) ◦ϕṽq(t), t ∈ [0, 1]

ζ̃q+1
k = Mqϕṽq(1, ζ̃qk) + b̃q

ϕṽq(0) = id, ζ̃1k = M0ιs(xk) + b̃0.

As we just saw, we have ϕṽq = cq−1 ·ϕvq . Moreover, for q ≤ m−1 (so that b̃q = 0), we have

ζ̃q+1
k = Mq(cq−1 ·ϕvq)(1, ζ̃qk) = Mqϕvq(1, ζ̃qk + cq−1)−Mqcq−1,

yielding
ζ̃q+1
k + cq = Mqϕvq(1, ζ̃qk + cq−1) + bq.

So ζ̃q+1
k + cq satisfy the same iterations as ζq+1

k , with same initial condition

ζ̃1k + c0 = M0ιs(xk) + c0 = ζ1k

(since c0 = b0). This shows that ζ̃q+1
k + cq = ζq+1

k , q = 0, . . . ,m− 1. Finally,

ζ̃m+1
k = Mmϕvm(1, ζ̃mk + cm−1)−Mmcm−1 + cm = Mmϕvm(1, ζmk ) + bm = ζm+1

k .

Since ‖ṽq‖Hq = ‖vq‖Hq , (7) is satisfied.

We now conclude the argument by considering a minimizing sequence for G in the

form v
(`)
q ∈ Hq, q = 1, . . . ,m, and M

(`)
q ∈Mdq+1,dq(R), b

(`)
q ∈ Rdq+1 , q = 0, . . . ,m, with

b
(`)
0 = · · · = b

(`)
q−1 = 0, satisfying

lim
`→∞

G(v
(`)
1 , . . . , v(`)m ,M

(`)
0 , . . . ,M (`)

m , b
(`)
0 , . . . , b(`)m ) = Gmin.

Denote by ϕ
v
(`)
q

and ζqk
(`)

the diffeomorphisms and vectors defined in (6) for each `.

Each M
(`)
q sequence is bounded inMdq+1,dq(R), and each v

(`)
q is bounded in Hq. There is

therefore no loss of generality (just using a subsequence) in assuming that M
(`)
q converges to

some M
(∗)
q ∈Mdq+1,dq(R), and that v

(`)
q converges weakly in Hq to some v

(∗)
q that satisfies

lim inf
`→∞

‖v(`)q ‖2Hq
≥ ‖v(∗)q ‖2Hq

. (8)
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Let ϕ
v
(∗)
q

(t) be the flow associated with v
(∗)
q . Weak convergence in Hq implies, at each

fixed t ∈ [0, 1], uniform convergence of ϕ
v
(`)
q

(t) to ϕ
v
(∗)
q

(t) on Rdq (Younes, 2010). As a

consequence, for all q ≤ m, the sequence (ζqk
(`)
, ` ≥ 0) also converges to a limit ζqk

(∗)
that

satisfies (6).

Each Γk(πr(ζ
m+1
k

(`)
)) must be bounded independently of `, since we have a mini-

mizing sequence. Assumption (H2) then implies that πr(ζ
m+1
k

(`)
) is also bounded, with

πr(ζ
m+1
k

(`)
) = πr(M

(`)
m ϕ

v
(`)
m

(1, ζmk
(`))) + πr(b

(`)
m ). Since the first term in this sum converges,

we see that πr(b
(`)
m ) is also bounded, so that, taking a subsequence if needed, we can assume

that πr(b
(`)
m ) converges to some b

(∗)
m (with πr(b

(∗)
m ) = b

(∗)
m ). Using (8), we obtain

G(v
(∗)
1 , . . . , v(∗)m ,M

(∗)
0 , . . . ,M (∗)

m , 0, . . . , 0, b(∗)m ) = Gmin,

which concludes the proof.

Existence: sub-Riemannian case. The situation in which the vector fields vq are re-
stricted to sub-optimal finite-dimensional spaces, as considered in Section 8, is handled
similarly, and follows arguments previously made in Younes (2012); Arguillere et al. (2015);
Gris et al. (2018); Younes et al. (2020). Here, we associate a closed subspace of Vq with
a diffeomorphism ψ on Rdq . This subspace will also depend on the configuration (denoted
ζq) that comes as input to the diffeomorphic module. We denote this subspace as Wq(ψ, ζ),
with ψ ∈ DiffVq and ζ ∈ (Rdq)n. We also denote the orthonormal projection of f ∈ Vq onto
Wq(ψ, ζ) as PWq(ψ,ζ)(f).

We will make the following hypotheses on the spaces Wq(ψ, ζ), which form a “distribu-
tion” in the terminology of sub-Riemannian geometry.

(HS1) For b ∈ Rdq , let b ·Wq(ψ, ζ) = {b · f : f ∈Wq(ψ, ζ)}. We assume b ·Wq(ψ, ζ) =
Wq(b · ψ, ζ − b).

(HS2) The spaces Wq(ψ, ζ) depend continuously on ψ and ζ, in the sense that the map-
ping ψ 7→ PWq(ψ,ζ), which takes values in the space of linear operators on Vq, is continuous
in ψ (for uniform convergence) and ζ.

In the setting of equation (5), we now add to the minimization the requirement that
each vq belongs to the space

Wq(ϕvq(·), ζq) =
{
v ∈ Hq : v(t) ∈Wq(ϕvq(t), ζq) for almost all t ∈ [0, 1]

}
.

Then, assuming (H1), (H2), (HS1) and (HS2), there exists a solution to this minimization
problem.

The proof starts by repeating the argument made in the unconstrained case. The com-
bination of (H1) and (HS1) allows us to claim that there is no loss of generality in restricting

the minimization to b1 = · · · = bm−1 = 0. Then, given any minimizing sequence v
(`)
q ∈ Hq,

q = 1, . . . ,m, M
(`)
q ∈Mdq+1,dq(R), b

(`)
q ∈ Rdq+1 , q = 0, . . . ,m, with b

(`)
0 = · · · = b

(`)
m−1 = 0,

one can find a subsequence such that each v
(`)
q converges weakly to v

(∗)
q ∈ Hq, and M

(`)
q , b

(`)
q
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converge to M
(∗)
q , b

(∗)
q , and such that the limit achieves the minimum of the objective func-

tion in (5), with the additional property that ϕ
v
(`)
q

converges uniformly to ϕ
v
(∗)
q

(which also

ensures that the sequence ζq(`) converges to a limit ζq(∗)).

The only point that remains to be shown in the sub-Riemannian context is that v
(∗)
q

satisfies the constraints, i.e., that v
(∗)
q ∈ Wq(ϕv(∗)q

(·), ζq(∗)), q = 1, . . . ,m. We now proceed

with the argument.
Given a continuous function ϕ : t 7→ ϕ(t) and ζ ∈ (Rdq)n , let P q,ϕ,ζ be defined on Hq

by P q,ϕ,ζ(v)(t) = PWq(ϕ(t),ζ)(v(t)). Clearly, P q,ϕ,ζ is bounded, maps Hq toWq(ϕ(·), ζ), and
P q,ϕ,ζ(v) = v if and only if v ∈ Wq(ϕ(·), ζ), showing that this set is closed and that P q,ϕ,ζ

is its orthogonal projection. Moreover, if ϕ(`) converges to ϕ and ζ(`) to ζ, then P q,ϕ(`),ζ(`)

converges to P q,ϕ,ζ , as can be deduced by dominated convergence and the hypotheses made
on PWq(ϕ(t),ζ).

Returning to v
(∗)
q , assume that v ∈ Hq is perpendicular to Wq(ϕv(∗)q

(·), ζq(∗)). Then

|〈v, v(`)q 〉Hq | = |〈P q,ϕ
v
(`)
q
,ζq(`)(v), v(`)q 〉Hq | ≤ ‖P q,ϕ

v
(`)
q
,ζq(`)(v)‖Hq‖v(`)q ‖Hq .

Since P q,ϕ
v
(`)
q
,ζq(`)(v) converges to P q,ϕ

v
(∗)
q
,ζq(∗)(v) = 0, we find that 〈v, v(`)q 〉Hq tends to

0. By weak convergence, this quantity also converges to 〈v, v(∗)q 〉Hq , which must there-

fore also vanish. Since this is true for all v ∈ Wq(ϕv(∗)q
(·), ζq(∗))⊥, we find that v

(∗)
q ∈

(Wq(ϕv(∗)q
(·), ζq(∗))⊥)⊥ = Wq(ϕv(∗)q

(·), ζq(∗)) (since the space is closed). This concludes the

proof in the sub-Riemannian case.

To conclude, we check that (HS1) and (HS2) hold in the context of Section 8 (assuming
that (H1) is true). In that section, the finite-dimensional space is generated by the columns
of the matrices Kq(·, zl), l = 1, . . . , nS , which leads us to define

Wq(ψ, ζ) =

{
nS∑
l=1

Kq(·, zl)wl : w1, . . . , wnS ∈ Rdq , zl = ψ(ζl)

}
,

for a diffeomorphism ψ and ζ ∈ (Rdq)n. We have f ∈ b ·Wq(ψ, ζ) if and only if there exists
w1, . . . , wnS such that, for all x ∈ Rdq ,

f(x) =

nS∑
l=1

Kq(x+ b, zl)wl

with zl = ψ(ζl). By translation invariance of the norm in Vq, this is equivalent to

f(x) =

nS∑
l=1

Kq(x, zl − b)wl.

We have zl− b = ψ(ζl− b+ b)− b = (b ·ψ)(ζl− b) showing that f ∈ b ·Wq(ψ, ζ) is equivalent
to f ∈Wq(b · ψ, ζ − b), proving (HS1).
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Continuity of the projections is true because PW (ψ,ζq)(f) for f ∈ Vq takes the form

nS∑
l=1

Kq(·, zl)wl(f),

where w1(f), . . . , wnS (f) satisfy the linear system

nS∑
l=1

Kq(zk, zl)wl(f) = f(zk), k = 1, . . . , nS ,

which has a unique solution, continuous in z (over the set of nS distinct points in Rdq) and
thus in ψ and ζ.

Appendix B. Necessary Conditions for Optimality

Recall the notation for the general case of sub-optimal vector fields in Section 8, where a sub-
set of the training data of size nS ≤ n is selected, the training data renumbered such that the
first nS elements coincide with this subset, and (zq1(·), . . . , zqnS (·)) and aq(·) = (aq1(·), . . . , a

q
nS (·))

represent the states corresponding to this subset and the controls, respectively. (For the
optimal vector fields case, nS = n.) We now let G denote the general reduced objective
function in (4), namely

G(a1(·), . . . ,am(·), A0, . . . , Am) =
m∑
q=1

∫ 1

0
Lq(z

q(t),aq(t))dt+ λ
m∑
q=0

Uq(Aq) +
1

σ2

n∑
k=1

γk,

where the Lagrangian or running cost functions are Lq : (Rdq)nS × (Rdq)nS → R, with

Lq(u,w) =

nS∑
k,l=1

wk
>Kq(uk, ul)wl,

and

γk = Γk(πr(ζ
m+1
k )).

The dynamical system constraints are, for k = 1, . . . , n: ξ0k = ιs(xk), ζ
q
k = Aq−1(ξ

q−1
k ),

zqk(0) = ζqk , ∂tz
q
k(t) = vq(t)(z

q
k(t)), ξ

q
k = zqk(1), where

vq(t)(·) =

nS∑
l=1

Kq(·, zql (t))a
q
l (t).

Adjoin these constraints to G by the Lagrange multipliers ρq1, . . . , ρ
q
n ∈ Rdq and pq(·) =

(pq1(·), . . . , p
q
n(·)), q = 1, . . . ,m,

m∑
q=1

[
n∑
k=1

ρqk
>

(zqk(0)− ζqk) +

∫ 1

0

( n∑
k=1

pqk
>
∂tz

q
k −H

q
aq(zq,pq)

)
dt

]
+λ

m∑
q=0

Uq(Aq) +
1

σ2

n∑
k=1

γk,
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where pqk(·) is a time-dependent vector in Rdq and Hq
w : (Rdq)n× (Rdq)n → R, w ∈ (Rdq)nS ,

Hq
w(u, r) =

n∑
k=1

rk
>

nS∑
l=1

Kq(uk, ul)wl − Lq(uS ,w)

are the Hamiltonians, with uS = (ui ∈ u, i = {1, . . . , nS}). Apply the calculus of variations:

m∑
q=1

[
n∑
k=1

((zqk(0)− ζqk)δρqk + ρqkδz
q
k|0 − ρ

q
k∂Mq−1ζ

q
kδMq−1 − ρqk∂bq−1ζ

q
kδbq−1 − ρ

q
k∂ξq−1

k
ζqkδξ

q−1
k )

+

∫ 1

0

( n∑
k=1

(∂tz
q
kδp

q
k + pqk∂tδz

q
k − ∂pqkH

q
aqδp

q
k − ∂zqkH

q
aqδz

q
k)−

nS∑
k=1

(∂aqk
Hq

aqδa
q
k)

)
dt

]

+ λ
m∑
q=0

(∂MqUq(Aq)δMq + ∂bqUq(Aq)δbq) +
1

σ2

n∑
k=1

(∂MmγkδMm + ∂bmγkδbm + ∂ξqmγkδξ
q
m).

Substitute ∂bqUq(Aq) = 0 ∈ Rdq+1 and∫ 1

0
pqk∂tδz

q
kdt = (pqkδz

q
k)|1 − (pqkδz

q
k)|0 −

∫ 1

0
∂tp

q
kδz

q
kdt = pqk(1)δξqk − (pqkδz

q
k)|0 −

∫ 1

0
ṗqkδz

q
kdt :

m∑
q=1

[
n∑
k=1

((zqk(0)− ζqk)δρqk + (ρqkδz
q
k − p

q
kδz

q
k)|0

− ρqk(ξ
q−1
k )>δMq−1 − ρqkδbq−1 −M

>
q−1ρ

q
kδξ

q−1
k + pqk(1)δξqk)

+

∫ 1

0

( n∑
k=1

(∂tz
q
kδp

q
k − ∂tp

q
kδz

q
k − ∂pqkH

q
aqδp

q
k − ∂zqkH

q
aqδz

q
k)−

nS∑
k=1

(∂aqk
Hq

aqδa
q
k)

)
dt

]

+ λ
m∑
q=0

∂MqUq(Aq)δMq +
1

σ2

n∑
k=1

(
ιr(∇γk)ξmk

>δMm + ιr(∇γk)δbm +M>mιr(∇γk)δξmk
)
.

Group terms by variation:

m∑
q=1

[
n∑
k=1

((zqk(0)− ζqk)δρqk + (ρqk − p
q
k(0))δzqk|0)

+

∫ 1

0

( n∑
k=1

((∂tz
q
k − ∂pqkH

q
aq)δpqk − (∂tp

q
k + ∂zqk

Hq
aq)δzqk)−

nS∑
k=1

(∂aqk
Hq

aqδa
q
k)

)
dt

]

+

m−1∑
q=1

n∑
k=1

(pqk(1)−M>q ρ
q+1
k )δξqk +

n∑
k=1

(
1

σ2
M>mιr(∇γk) + pmk (1)

)
δξmk

+

m−1∑
q=0

(
λ∂MqUq(Aq)−

n∑
k=1

ρq+1
k ξqk

>
)
δMq −

m−1∑
q=0

n∑
k=1

ρq+1
k δbq

+

(
1

σ2

n∑
k=1

ιr(∇γk)ξmk
> + λ∂MmUm(Am)

)
δMm +

(
1

σ2

n∑
k=1

ιr(∇γk)
)
δbm.
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Setting the coefficients of the variations with respect to the forward states and boundary
conditions to zero, we have the following backpropagation states and boundary conditions:

pmk (1) = − 1

σ2
M>mιr(∇Γk(πr(ζ

m+1
k )))

pqk(1) = M>q ρ
q+1
k , q = m− 1, . . . , 1

which imply

ρm+1
k = − 1

σ2
ιr(∇Γk(πr(ζ

m+1
k )))

pqk(1) = M>q ρ
q+1
k , q = m, . . . , 1,

and

∂tp
q
k(t) = −∂zqk(t)H

q
aq(zq,pq), q = m, . . . , 1

= −
nS∑
l=1

∇1Kq(z
q
k(t), z

q
l (t))p

q
k(t)
>aql (t)

−


∑n

l=1∇1Kq(z
q
k(t), z

q
l (t))a

q
k(t)
>pql (t)

−2
∑nS

l=1∇1Kq(z
q
k(t), z

q
l (t))a

q
k(t)
>aql (t), if k ≤ nS

0, if k > nS

ρqk = pqk(0), q = m, . . . , 1.

The coefficients of the variations with respect to our parameters are the gradients

∂aqk(t)
G = −∂aqk(t)H

q
aq(zq,pq), k = 1, . . . , nS , q = 1, . . . ,m

= 2

nS∑
l=1

Kq(z
q
k(t), z

q
l (t))a

q
l (t)−

n∑
l=1

Kq(z
q
k(t), z

q
l (t))p

q
l (t)

∂MqG = λ∂MqUq(Aq)−
n∑
k=1

ρq+1
k ξqk

>
, q = 0, . . . ,m

∂bqG = −
n∑
k=1

ρq+1
k , q = 0, . . . ,m,

which are calculated using the backpropagation states.
By the PMP, our optimal controls aq(·) and state trajectories zq(·) must also solve these

Hamiltonian systems with corresponding costates pq(·) and stationarity conditions

aq(t) = argmax
a′(t)

Hq
a′(t)(z

q(t),pq(t)).

Therefore, an optimal minimizer of our learning problem sets the above gradients to zero.
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Appendix C. Literature Results

UCI Gap Splits

Model Concrete Energy Kin8nm Naval Power

MAP-1 7.79± 0.18 2.83± 0.99 0.09± 0.01 0.02± 0.00 4.24± 0.12
MAP-2 7.78± 0.23 3.70± 1.33 0.08± 0.00 0.03± 0.00 4.33± 0.18
MAP-1 NL 7.68± 0.23 3.09± 1.17 0.09± 0.01 0.02± 0.00 4.25± 0.09
MAP-2 NL 7.44± 0.17 3.48± 1.21 0.07± 0.00 0.03± 0.00 4.27± 0.08
Reg-1 NL 8.21± 0.48 4.24± 2.11 0.08± 0.00 0.01± 0.00 5.17± 0.60
Reg-2 NL 8.27± 0.39 3.83± 1.49 0.07± 0.00 0.01± 0.00 5.23± 0.43
BN(ML)-1 NL 7.69± 0.51 4.15± 1.64 0.09± 0.00 0.01± 0.00 4.49± 0.15
BN(ML)-2 NL 7.33± 0.36 4.10± 1.64 0.08± 0.00 0.01± 0.00 5.17± 0.28
BN(BO)-1 NL 7.74± 0.31 4.76± 1.98 0.08± 0.00 0.01± 0.00 4.66± 0.21
BN(BO)-2 NL 9.20± 0.55 4.58± 1.87 0.07± 0.00 0.01± 0.00 5.27± 0.36
DUN 7.20± 0.18 2.94± 0.67 0.08± 0.00 0.02± 0.00 4.30± 0.09
DUN (MLP) 7.46± 0.21 3.61± 0.88 0.08± 0.00 0.02± 0.00 4.58± 0.08
Dropout 7.06± 0.21 2.87± 0.50 0.07± 0.00 0.03± 0.00 4.69± 0.07
Ensemble 6.85± 0.18 3.36± 0.83 1.63± 0.99 0.02± 0.00 4.37± 0.09
MFVI 7.55± 0.19 8.61± 2.10 0.10± 0.01 0.03± 0.01 4.68± 0.16
SGD 7.37± 0.19 3.06± 0.64 0.09± 0.00 0.02± 0.00 4.62± 0.08

Table C.1A: Average test RMSE ± 1 standard error.

UCI Gap Splits

Model Protein Wine Yacht

MAP-1 5.16± 0.04 0.63± 0.01 1.31± 0.14
MAP-2 5.07± 0.06 0.63± 0.01 1.05± 0.09
MAP-1 NL 5.13± 0.05 0.63± 0.01 1.28± 0.14
MAP-2 NL 5.08± 0.06 0.63± 0.01 1.01± 0.09
Reg-1 NL 5.23± 0.12 0.66± 0.02 1.24± 0.11
Reg-2 NL 5.33± 0.16 0.64± 0.01 1.22± 0.13
BN(ML)-1 NL 5.27± 0.12 0.63± 0.01 1.15± 0.11
BN(ML)-2 NL 5.37± 0.17 0.64± 0.01 1.31± 0.16
BN(BO)-1 NL 5.14± 0.10 0.65± 0.01 1.37± 0.15
BN(BO)-2 NL 5.46± 0.17 0.64± 0.01 1.59± 0.23
DUN 5.21± 0.35 0.70± 0.01 1.85± 0.17
DUN (MLP) 5.10± 0.24 0.69± 0.01 1.85± 0.14
Dropout 5.13± 0.28 0.66± 0.01 2.29± 0.47
Ensemble 4.80± 0.27 0.67± 0.01 1.84± 0.19
MFVI 5.12± 0.13 0.63± 0.01 1.84± 0.16
SGD 5.17± 0.28 0.73± 0.02 2.21± 0.18

Table C.1B: Average test RMSE ± 1 standard error.
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UCI Standard Splits (Different Splits in Gray)

Model Concrete Energy Kin8nm Naval Power

VI 7.13± 0.12 2.65± 0.08 0.10± 0.00 0.01± 0.00 4.33± 0.04
BP 5.98± 0.22 1.10± 0.07 0.09± 0.00 0.00± 0.00 4.18± 0.04
BP-2 5.40± 0.13 0.68± 0.04 0.07± 0.00 0.00± 0.00 4.22± 0.07
BP-3 5.57± 0.13 0.63± 0.03 0.07± 0.00 0.00± 0.00 4.11± 0.04
BP-4 5.53± 0.14 0.67± 0.03 0.07± 0.00 0.00± 0.00 4.18± 0.06
PBP 5.67± 0.09 1.80± 0.05 0.10± 0.00 0.01± 0.00 4.12± 0.03
PBP-2 5.24± 0.12 0.90± 0.05 0.07± 0.00 0.00± 0.00 4.03± 0.03
PBP-3 5.73± 0.11 1.24± 0.06 0.07± 0.00 0.01± 0.00 4.07± 0.04
PBP-4 5.96± 0.16 1.18± 0.06 0.08± 0.00 0.00± 0.00 4.08± 0.04
Dropout-TS 5.23± 0.12 1.66± 0.04 0.10± 0.00 0.01± 0.00 4.02± 0.04
VMG 4.70± 0.14 1.16± 0.03 0.08± 0.00 0.00± 0.00 3.88± 0.03
HS-BNN 5.66± 0.09 1.99± 0.08 0.08± 0.00 0.00± 0.00 4.03± 0.03
PBP-MV 5.08± 0.14 0.45± 0.01 0.07± 0.00 0.00± 0.00 3.91± 0.04
Dropout-C 4.93± 0.14 1.08± 0.03 0.09± 0.00 0.00± 0.00 4.00± 0.04
Dropout-G 4.82± 0.16 0.54± 0.06 0.08± 0.00 0.00± 0.00 4.01± 0.04
BBB 6.16± 0.13 0.97± 0.09 0.08± 0.00 0.00± 0.00 4.21± 0.03
SLANG 5.58± 0.19 0.64± 0.03 0.08± 0.00 0.00± 0.00 4.16± 0.04
MAP-1 5.41± 0.12 0.52± 0.02 0.08± 0.00 0.00± 0.00 4.11± 0.04
MAP-2 5.13± 0.12 0.47± 0.02 0.07± 0.00 0.00± 0.00 3.99± 0.03
MAP-1 NL 5.14± 0.13 0.44± 0.01 0.08± 0.00 0.00± 0.00 4.01± 0.04
MAP-2 NL 5.05± 0.11 0.42± 0.02 0.07± 0.00 0.00± 0.00 3.90± 0.04
Reg-1 NL 5.03± 0.16 0.46± 0.01 0.08± 0.00 0.00± 0.00 3.91± 0.04
Reg-2 NL 4.82± 0.14 0.43± 0.02 0.07± 0.00 0.00± 0.00 3.74± 0.04
BN(ML)-1 NL 5.08± 0.13 0.46± 0.01 0.08± 0.00 0.00± 0.00 3.94± 0.04
BN(ML)-2 NL 5.17± 0.12 0.42± 0.01 0.07± 0.00 0.00± 0.00 3.73± 0.04
BN(BO)-1 NL 4.96± 0.15 0.48± 0.01 0.08± 0.00 0.00± 0.00 3.94± 0.04
BN(BO)-2 NL 4.78± 0.19 0.40± 0.01 0.07± 0.00 0.00± 0.00 3.70± 0.04
DUN 4.61± 0.14 0.61± 0.04 0.08± 0.00 0.00± 0.00 3.57± 0.06
DUN (MLP) 4.57± 0.16 0.95± 0.11 0.08± 0.00 0.00± 0.00 3.67± 0.06
Dropout 4.61± 0.13 0.57± 0.05 0.07± 0.00 0.00± 0.00 3.82± 0.08
Ensemble 4.55± 0.13 0.51± 0.02 0.30± 0.22 0.00± 0.00 3.44± 0.05
MFVI 5.89± 0.17 1.69± 0.23 0.08± 0.00 0.01± 0.00 4.29± 0.04
SGD 4.98± 0.20 0.80± 0.06 0.20± 0.12 0.00± 0.00 3.70± 0.06
Lβ−NLL(β = 0) 6.08± 0.15 2.25± 0.08 0.09± 0.00 0.00± 0.00 4.06± 0.04
Lβ−NLL(β = 0.25) 5.79± 0.17 1.81± 0.07 0.08± 0.00 0.00± 0.00 4.04± 0.04
Lβ−NLL(β = 0.5) 5.61± 0.15 1.12± 0.06 0.08± 0.00 0.00± 0.00 4.04± 0.04
Lβ−NLL(β = 0.75) 5.67± 0.16 1.31± 0.10 0.08± 0.00 0.00± 0.00 4.04± 0.03
Lβ−NLL(β = 1.0) 5.55± 0.17 1.54± 0.12 0.08± 0.00 0.00± 0.00 4.06± 0.04
LMM 6.28± 0.18 2.19± 0.06 0.08± 0.00 0.00± 0.00 4.07± 0.04
LMSE 4.96± 0.14 0.92± 0.02 0.08± 0.00 0.00± 0.00 4.01± 0.04
Student-t 5.82± 0.13 2.26± 0.08 0.09± 0.00 0.00± 0.00 4.02± 0.04
xVAMP 5.44± 0.14 1.87± 0.07 0.08± 0.00 0.00± 0.00 4.03± 0.04
xVAMP* 5.35± 0.16 2.00± 0.06 0.08± 0.00 0.00± 0.00 4.03± 0.04
VBEM 5.21± 0.13 1.29± 0.07 0.08± 0.00 0.00± 0.00 4.09± 0.03
VBEM* 5.17± 0.13 1.08± 0.04 0.08± 0.00 0.00± 0.00 4.02± 0.04

Table C.2A: Average test RMSE ± 1 standard error.
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UCI Standard Splits (Different Splits in Gray)

Model Protein Wine Yacht Year

VI 4.84± 0.03 0.65± 0.01 6.89± 0.67 9.03±NA
BP 4.54± 0.03 0.65± 0.01 1.18± 0.16 8.93±NA
BP-2 4.19± 0.03 0.65± 0.01 1.54± 0.19 8.98±NA
BP-3 4.01± 0.03 0.65± 0.01 1.11± 0.09 8.93±NA
BP-4 3.96± 0.01 0.65± 0.02 1.27± 0.13 9.05±NA
PBP 4.73± 0.01 0.64± 0.01 1.02± 0.05 8.88±NA
PBP-2 4.25± 0.02 0.64± 0.01 0.85± 0.05 8.92±NA
PBP-3 4.09± 0.03 0.64± 0.01 0.89± 0.10 8.87±NA
PBP-4 3.97± 0.04 0.64± 0.01 1.71± 0.23 8.93±NA
Dropout-TS 4.36± 0.01 0.62± 0.01 1.11± 0.09 8.85±NA
VMG 4.14± 0.01 0.61± 0.01 0.77± 0.06 8.78±NA
HS-BNN 4.39± 0.02 0.63± 0.01 1.58± 0.05 9.26±NA
PBP-MV 3.94± 0.02 0.64± 0.01 0.81± 0.06 8.72±NA
Dropout-C 4.27± 0.01 0.61± 0.01 0.70± 0.05 −−
Dropout-G 4.27± 0.02 0.62± 0.01 0.67± 0.05 −−
BBB −− 0.64± 0.01 1.13± 0.06 −−
SLANG −− 0.65± 0.01 1.08± 0.06 −−
MAP-1 4.67± 0.03 0.64± 0.01 0.73± 0.06 −−
MAP-2 4.33± 0.01 0.63± 0.01 0.66± 0.06 −−
MAP-1 NL 4.56± 0.01 0.64± 0.01 0.61± 0.05 −−
MAP-2 NL 4.24± 0.01 0.63± 0.01 0.63± 0.05 −−
Reg-1 NL 4.25± 0.02 0.64± 0.01 0.64± 0.04 −−
Reg-2 NL 3.94± 0.02 0.63± 0.01 0.58± 0.06 −−
BN(ML)-1 NL 4.24± 0.01 0.63± 0.01 0.79± 0.06 −−
BN(ML)-2 NL 3.94± 0.02 0.63± 0.01 0.55± 0.05 −−
BN(BO)-1 NL 4.25± 0.01 0.63± 0.01 0.77± 0.06 −−
BN(BO)-2 NL 3.88± 0.02 0.63± 0.01 0.66± 0.06 −−
DUN 3.40± 0.03 0.66± 0.01 2.51± 0.44 −−
DUN (MLP) 3.41± 0.03 0.63± 0.01 2.47± 0.19 −−
Dropout 3.43± 0.03 0.64± 0.01 0.88± 0.09 −−
Ensemble 3.26± 0.03 1.93± 1.28 1.43± 0.11 −−
MFVI 4.51± 0.06 0.66± 0.01 3.42± 1.64 −−
SGD 3.59± 0.08 0.65± 0.01 2.35± 0.20 −−
Lβ−NLL(β = 0) 4.49± 0.05 0.64± 0.01 1.22± 0.11 −−
Lβ−NLL(β = 0.25) 4.35± 0.02 0.64± 0.01 1.73± 0.22 −−
Lβ−NLL(β = 0.5) 4.31± 0.01 0.64± 0.01 2.35± 0.32 −−
Lβ−NLL(β = 0.75) 4.28± 0.01 0.64± 0.01 1.97± 0.23 −−
Lβ−NLL(β = 1.0) 4.31± 0.02 0.64± 0.01 2.08± 0.25 −−
LMM 4.32± 0.03 0.65± 0.01 3.02± 0.31 −−
LMSE 4.28± 0.03 0.63± 0.01 0.78± 0.06 −−
Student-t 4.76± 0.11 0.64± 0.01 1.34± 0.14 −−
xVAMP 4.38± 0.02 0.64± 0.01 0.99± 0.10 −−
xVAMP* 4.31± 0.01 0.63± 0.01 1.13± 0.15 −−
VBEM 4.31± 0.00 0.64± 0.01 1.66± 0.19 −−
VBEM* 4.35± 0.04 0.63± 0.01 0.65± 0.04 −−

Table C.2B: Average test RMSE ± 1 standard error.
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