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Abstract

We consider sequential state and parameter learning in state-space models with intractable
state transition and observation processes. By exploiting low-rank tensor train (TT) de-
compositions, we propose new sequential learning methods for joint parameter and state
estimation under the Bayesian framework. Our key innovation is the introduction of scal-
able function approximation tools such as TT for recursively learning the sequentially
updated posterior distributions. The function approximation perspective of our methods
offers tractable error analysis and potentially alleviates the particle degeneracy faced by
many particle-based methods. In addition to the new insights into the algorithmic design,
our methods complement conventional particle-based methods. Our TT-based approxima-
tions naturally define conditional Knothe–Rosenblatt (KR) rearrangements that lead to
parameter estimation, filtering, smoothing and path estimation accompanying our sequen-
tial learning algorithms, which open the door to removing potential approximation bias.
We also explore several preconditioning techniques based on either linear or nonlinear KR
rearrangements to enhance the approximation power of TT for practical problems. We
demonstrate the efficacy and efficiency of our proposed methods on several state-space
models, in which our methods achieve state-of-the-art estimation accuracy and computa-
tional performance.

Keywords: tensor train, Knothe–Rosenblatt rearrangement, state-space models, sequen-
tial Monte Carlo, uncertainty quantification, transport maps

1. Introduction

State-space models have been widely used in mathematical and statistical modelling to an-
alyze time-varying complex phenomena (Cappé et al., 2006; Kantas et al., 2009). Examples
include time series analysis in finance, temporal pattern recognition in bioinformatics, fore-
cast in meteorology, and more. A typical state-space model is also referred to as a hidden
Markov model, which consists of two stochastic processes {Xt}t≥0 and {Y t}t≥1. The state
transition process {Xt}t≥0 is an X -valued latent Markov process specified by a conditional
transition density

(Xt|X0:t-1 = x0:t-1) ≡ (Xt|Xt-1 = xt-1) ∼ f(xt|xt-1,θ), (1)

c©2024 Yiran Zhao and Tiangang Cui.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v25/23-0743.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v25/23-0743.html


Zhao and Cui

and an initial density p(x0|θ). HereXt represents the hidden state of the underlying system
at an integer-valued time index t ≥ 0, and the notation xi:j denotes vectors (xi,xi+1, . . . ,xj)
from a sequence {xt}t≥0. The Y-valued observation process {Y t}t≥1 is characterized by the
likelihood function g (yt|xt,θ) as

(Y t|X0:t = x0:t,Y 1:t-1 = y1:t-1) ≡ (Y t|Xt = xt) ∼ g(yt|xt,θ), (2)

where Y t represents the observable at time index t > 0. In (1) and (2), θ ∈ Θ is a set of
parameters that govern the state transition process and the observation process.

Example 1 (Volatility of financial instruments) The stochastic volatility model consists of
the return of an asset {Y t}t≥1 and the logarithm of its squared volatility {Xt}t≥0. In the
simplest setup, the logarithm of the squared volatility {Xt}t≥0 is a scalar-valued autore-
gressive process with order one, that is, an AR(1) process, while the scalar-valued return
{Y t}t≥1 is the observable determined by the volatility. We arrange the unknown parameters
to appear in both the state transition process and the observation process. The system is
described by {

Xt = γXt-1 + σε
(x)
t

Y t = ε
(y)
t β exp(1

2Xt)
,

where Θ = (γ, σ, β) are model parameters, ε
(x)
t and ε

(y)
t are independent and identically

distributed (i.i.d.) standard Gaussian random variables, and the initial state is given as

X0 ∼ N (0, σ2

1−γ2 ). The goal is to estimate the parameter Θ and the hidden states {Xt}t≥0

from the observed returns {Y t}t≥1.

1.1 Sequential learning problems

Following the state-space model defined in (1) and (2), random variables (Θ,X0:t,Y 1:t)
have the joint density

p(θ,x0:t,y1:t) = p(θ) p(x0|θ)

t∏

j=1

(
f(xj |xj-1,θ) g(yj |xj ,θ)

)
, (3)

where p(θ) and p(x0|θ) are prescribed prior densities. Conditioned on all available data
Y 1:t = y1:t at time t, the trajectory of the states X0:t and the parameter Θ jointly follow
the posterior density

p(θ,x0:t|y1:t) =
p(θ,x0:t,y1:t)

p(y1:t)
, (4)

where p(y1:t) is an unknown constant commonly referred to as the evidence. We aim to
design sequential algorithms that simultaneously solve the following inference problems at
each time t:

• Filtering that infers the current state, which is the marginal conditional random vari-
able

(Xt|Y 1:t = y1:t) ∼ p(xt|y1:t) :=

∫
p(θ,x0:t|y1:t)dx0:t-1dθ. (5)
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• Parameter estimation that infers the unknown parameter, which is the marginal
conditional random variable

(Θ|Y 1:t = y1:t) ∼ p(θ|y1:t) :=

∫
p(θ,x0:t|y1:t)dx0:t. (6)

• Path estimation that infers the trajectory of the states, which are the marginal con-
ditional random variables

(X0:t|Y 1:t = y1:t) ∼ p(x0:t|y1:t) :=

∫
p(θ,x0:t|y1:t)dθ. (7)

• Smoothing. As a result of increasing state dimensions and the observation size, path
estimation becomes increasingly challenging over time. Smoothing is a related learning
problem focusing on the lower-dimensional marginal conditional random variable

(Xk|Y 1:t = y1:t) ∼ p(xk|y1:t) :=

∫
p(θ,x0:t|y1:t)dx0:k-1dxk+1:tdθ (8)

for some previous time index k < t.

In the presence of unknown parameters and stochastic noises in the state transition density
(1), all the above-mentioned learning problems are essentially characterizations of marginal
random variables. Furthermore, the random variables of interest are intractable, in the sense
that the characteristic functions and moments often do not admit analytical forms, and it
is infeasible to directly simulate these random variables. Thus, we need to design numerical
methods to solve these problems. In principle, algorithms for solving these problems need
to be sequential by design—the computation of new solutions to the problems (5)–(8) at
time t only relies on either previous solutions at t − 1 for forward algorithms, or solutions
at t + 1 for backward algorithms. We refer readers to Evensen et al. (2022); Kantas et al.
(2009); Reich and Cotter (2015) and Särkkä (2013) for further details and references of
these sequential learning problems.

1.2 Related work and our contributions

Assuming the parameter θ is known, the classical filtering problem aims to estimate the
distribution of the current state conditioned on the data available up to t, that is, (Xt|Θ =
θ,Y 1:t = y1:t). For linear models with Gaussian noises, the filtering density yields a closed-
form solution given by the classical Kalman filter (Kalman, 1960). The extended Kalman
filter (Anderson and Moore, 2012; Einicke and White, 1999) and the ensemble Kalman
filter (Evensen, 2003) generalize the Kalman filter to nonlinear problems. These generaliza-
tions use linearization and Monte Carlo sampling to create Gaussian approximations and
sample-based approximations of posterior densities. As a result, these methods are flexi-
ble to implement and often robust with respect to dimensionality. However, the Gaussian
assumption used by various Kalman filters introduces unavoidable approximation errors to
the resulting filtering density, which makes them only suitable for tracking the states for
nonlinear problems.

Beyond the Gaussian form, sequential Monte Carlo (SMC) methods recursively main-
tain a set of weighted particles to fully characterize the filtering density (5) for nonlinear
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problems. In the simplest form, the bootstrap filter (Gordon et al., 1993) updates weighted
particles using the state transition process and reweighs them using the likelihood function
with newly collected data. It is well-known that the weights of the bootstrap filter tend
to degenerate over time, a phenomenon commonly referred to as the particle degeneracy
(Doucet and Johansen, 2009; Snyder et al., 2008; Liu et al., 2001; Pitt and Shephard, 1999).
To mitigate the particle degeneracy, the auxiliary particle filter (Pitt and Shephard, 1999,
2001) and various advanced resampling techniques such as residual resampling (Carpen-
ter et al., 1999), systematic resampling (Kitagawa, 1996), and resample-move (Gilks and
Berzuini, 2001) have been developed. See Del Moral et al. (2012); Doucet and Johansen
(2009); Reich and Cotter (2015) and Maskell and Gordon (2002) for comprehensive reviews
of these techniques.

An emerging trend is the development of transport map methods that overcome the
particle degeneracy by transforming the forecast particles into equally weighted particles
following the filtering density. The ensemble transform filter (Reich, 2013) builds such trans-
formations via a discrete optimal transport problem. The coupling technique of Spantini
et al. (2022) relaxes the Gaussian assumption of the ensemble Kalman filter by building con-
ditional Knothe–Rosenblatt (KR) rearrangements (Knothe et al., 1957; Rosenblatt, 1952).
The implicit sampling method (Chorin and Tu, 2009; Morzfeld et al., 2012) couples a ref-
erence density, for example, a standard Gaussian, to a particular approximation of the
filtering density via implicit maps. Methods based on neural networks are also developed.
For example, Gottwald and Reich (2021) build random feature maps on delayed coordinates
to accelerate filtering, and Hoang et al. (2021) approximate conditional mean filters using
neural networks.

One of our innovations is treating the filtering problem and other aforementioned se-
quential learning problems as recursive function approximation problems. This perspective
opens the door to applying scalable function approximation tools in sequential learning.
In particular, we employ tensor-train (TT) decompositions (Hackbusch, 2012; Oseledets
and Tyrtyshnikov, 2010; Oseledets, 2011) to design non-parametric solution ansatzes for
recursively approximating probability densities in sequential learning. As a result, our
new algorithms significantly generalize the linear Gaussian assumptions used by various
Kalman filters and bypass sample-based empirical approximations used in various particle
filters. This not only makes our algorithms computationally efficient but also capable of
fully quantifying uncertainties in sequential learning problems. The computed TT decom-
positions in our algorithms naturally lead to a sequence of KR rearrangements, enabling us
to design an accompanying particle filter to correct for biases due to function approximation
errors. Moreover, we use these KR rearrangements to develop a backward sampling algo-
rithm, in line with many particle smoothing methods—for example, Bresler (1986); Briers
et al. (2010); Fearnhead et al. (2010); Godsill et al. (2004)—to solve the path estimation
and smoothing problems.

Another significant challenge in sequential learning problems is to estimate unknown
parameters, which intrinsically requires marginalizing over the state path to evaluate the
posterior parameter density (6). The particle Markov chain Monte Carlo (MCMC) method
(Andrieu et al., 2010) and the method developed in Särkkä et al. (2015) use inner-loop
particle filters or Gaussian filters to estimate the computationally intractable marginalized
posterior parameter density p(θ|y1:t), and then build outer-loop Markov chain transition
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kernels to sample posterior parameters. These methods are designed for batched data and
thus may have difficulties updating the solution in an online manner with new observations.
To estimate posterior parameters online, the SMC2 method (Chopin et al., 2013) and its
variants—for example, the nested particle filter (Crisan and Miguez, 2018)—run an outer-
loop particle filter to sequentially update the parameter distribution. Since these methods
are based on particle filters, they often need a restart step to handle the particle degener-
acy. As a result, they need to sacrifice either the computational complexity (SMC2 has a
computational complexity quadratic in time) or the rate of convergence (the nested particle
filter has a convergence rate of N−1/4, where N is the sample size) in online estimation.

Our new algorithms are directly applicable to the online parameter estimation problem.
In fact, our new algorithms solve all four aforementioned sequential learning problems in an
integrated manner by recursively approximating the joint posterior density of parameters
and states over time. The separability of TT decompositions naturally leads to marginal
posterior densities for solving the parameter estimation and filtering problems. This also
allows us to build accompanying KR rearrangements to correct approximation biases and
solve the smoothing and path estimation problems. More importantly, we show that the
accumulation of these density approximation errors has a linear rate under mild assump-
tions. Within the same framework, we also present preconditioning techniques to improve
the approximation power of TT decompositions. On a range of numerical examples, we
show that our method outperforms the SMC2 method and can produce meaningful results
in real-world applications.

1.3 Outline

We propose a basic version of the TT-based algorithm that recursively approximates the
time-varying joint posterior densities in Section 2. The separable form of TT provides ap-
proximations to the marginal densities required in learning problems (5)–(8). The basic
TT-based algorithm is useful to outline the design principles and key steps of our proposed
methods. However, the rank truncation used by TT may not preserve non-negativity of den-
sity functions. This leads to difficulties in removing the approximation bias using techniques
such as importance sampling. We overcome this limitation in Section 3 by integrating the
square-root approximation technique of Cui and Dolgov (2022) into the basic algorithm of
Section 2. This preserves the recursive learning pattern of the basic algorithm for problems
(5)–(8) and leads to non-negative approximations by construction. More importantly, the
separable form of the non-negative TT naturally leads to a sequence of KR rearrangements
that couple reference random variables and the marginal random variables of interest. We
use the resulting (conditional) KR rearrangements to design particle filters and particle
smoothers accompanying TT approximations to remove estimation biases.

The smoothing procedure accompanying our TT-based learning algorithm shares many
similarities with the joint KR rearrangements developed in Spantini et al. (2018). In partic-
ular, our joint KR rearrangement for the simultaneous path and parameter estimation (see
Section 3.4) follows the same sparsity pattern as that of Spantini et al. (2018), as a result of
the hidden Markov structure of the learning problem. Our key innovation lies in algorithmic
design. The work of Spantini et al. (2018) adopts a variational approach that builds an
approximate map by minimizing the statistical divergence of the pushforward of some ref-
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erence density under the candidate map from the target density. The training procedure of
the variational approach is often quite involved—the objective function presents many local
minima and each optimization iteration requires repeated evaluations of the target density
at transformed reference variables under the candidate map. In comparison, our algorithmic
design uses multilinear function approximations to directly approximate marginal and con-
ditional densities of interest. In addition to the benefit of bypassing nonlinear optimization,
we can exploit the TT-based approximations to compute the exact KR rearrangement of the
approximate density in both lower-triangular and upper-triangular forms. This enables us
to solve the filtering problem (5) and the smoothing problem (8) using different conditional
KR rearrangements constructed from the same approximate density.

In Section 4, we discuss the error accumulation rate of our proposed algorithms. In
Section 5, we present a set of preconditioning techniques for our sequential learning problems
to further enhance the approximation power of TT. These preconditioning techniques are
also given in the form of KR rearrangements. In Section 6, we present a set of numerical
experiments to demonstrate the efficacy and efficiency of our proposed methods and compare
them to particle-based methods. Our code is accessible online via https://github.com/

DeepTransport/tensor-ssm-paper-demo.

1.4 Notation

The dimensionalities of the state space X , the data space Y, and the parameter space Θ

are m, n, and d, respectively. We assume that the spaces X , Y, and Θ can be expressed
as Cartesian products. We denote the j-th element of a vector x by xj . The index t ∈ N
is specifically reserved for denoting the time throughout the paper. For a state random
vector Xt and its realization xt at time t, their j-th elements are denoted by Xt,j and xt,j ,
respectively. The same convention applies to the data vector Y t and its realization yt.

For a vector xt ∈ Rm and an index j, it is convenient to group a subset of elements
as follows. The vector xt,<j = (xt,1, . . . , xt,j-1) collects the first j − 1 elements, and the
vector xt,>j = (xt,j+1, . . . , xt,m) collects the last m− j elements. Similarly, we have xt,≤j =
(xt,1, . . . , xt,j), xt,≥j = (xt,j , . . . , xt,m), and xt,≤m ≡ xt,≥0 ≡ xt.

We consider probability measures absolutely continuous with respect to the Lebesgue
measure. We denote normalized posterior probability densities in the sequential learning
problems by p and its unnormalized version by π. Approximations to these densities are
denoted by p̂ and π̂, respectively. The Hellinger distance between random variables with
densities p and p̂ is defined by

DH(p, p̂) =
(1

2

∫ (√
p(x)−

√
p̂(x)

)2
dx
) 1

2
.

We denote the m-dimensional uniform random variable on a unit hypercube by Ξ ∼
uniform(ξ; [0, 1]m), in which we drop [0, 1]m in the definition when no confusion arises.

Consider a diffeomorphism S :X →U , where X ,U ⊆ Rm. The density of the transformed
variable S(X) where X ∼ p, is the pushforward of p under S, which takes the form

S] p(u) = p
(
S−1(u)

) ∣∣∇S−1(u)
∣∣.
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Similarly, the density of the transformed variable S−1(U), where U ∼ η, is the pullback of
the density of U under S, which takes the form

S] η(x) = η
(
S(x)

) ∣∣∇S(x)
∣∣.

Here | · | denotes the absolute value of the determinant of a matrix.

2. TT-based recursive posterior approximation

We first discuss the recursive formula outlining the design principle of sequential learning
problems. We then introduce the TT decomposition and present a basic implementation of
the TT-based sequential learning algorithm.

2.1 Recursive state and parameter learning

Following the definition of the joint density of (Θ,X0:t,Y 1:t) in (3), the density of the
posterior random variables (Θ,X0:t|Y 1:t = y1:t) also has a recursive form

p(θ,x0:t|y1:t) =
p(θ,x0:t-1|y1:t-1)f(xt|xt-1,θ)g(yt|xt,θ)

p(yt|y1:t-1)
, (9)

where p(yt|y1:t-1) is a computationally intractable conditional evidence. Marginalizing both
sides over X0:t-2, the parameter Θ and the adjacent states (Xt,Xt-1) jointly follow the
posterior density

p(θ,xt,xt-1|y1:t) =
p(θ,xt-1|y1:t-1)f(xt|xt-1,θ)g(yt|xt,θ)

p(yt|y1:t-1)
. (10)

The above formula outlines basic steps needed by a sequential estimation algorithm to solve
the filtering problem (5) and the parameter estimation problem (6):

1. At time t−1, the posterior random variables (Θ,Xt-1|Y 1:t-1 = y1:t-1) has the density
p(θ,xt-1|y1:t-1).

2. At time t, using the state transition density f(xt|xt-1,θ) and the likelihood function
g(yt|xt,θ), we can compute the joint posterior density p(θ,xt,xt-1|y1:t), up to the
unknown conditional evidence p(yt|y1:t-1).

3. We obtain the density of the new posterior random variables (Θ,Xt|Y 1:t = y1:t) by
solving a marginalization problem

p(θ,xt|y1:t) =

∫
p(θ,xt,xt-1|y1:t)dxt-1. (11)

In these steps, the marginalization in (11) plays a key role in sequentially updating the
joint posterior random variables (Θ,Xt|Y 1:t = y1:t). For example, the bootstrap filter
(Gordon et al., 1993) solves the marginalization using a weighted update of conditional

samples—it first draws conditional random variables X
(i)
t |X

(i)
t-1 that follow the state transi-

tion density f(xt|X(i)
t-1) conditioned on each of the previous particles, and then updates the
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weights using the likelihood function g(yt|X(i)
t ). The path estimation (7) and the smooth-

ing (8) can be solved by additional backward propagation steps given the solutions to the
filtering and parameter estimation problems. In the rest of this section, we will introduce
the TT decomposition that solves the marginalization problem (11) by function approxima-
tion, and then present a basic TT-based algorithm to outline the procedure for solving the
filtering and parameter estimation problems. Algorithms for solving the smoothing problem
will be discussed in later sections.

2.2 TT decomposition

The central computational tool used in this work is the functional TT decomposition (Bigoni
et al., 2016; Gorodetsky et al., 2019). Consider we have a general multivariate function
h : X → R where X ∈ Rm is a Cartesian product. Then, one can approximately decompose
h(x) in the following form

h(x) ≈ ĥ(x) =

r0∑

α0=1

r1∑

α1=1

· · ·
rm∑

αm=1

H
(α0,α1)
1 (x1) · · ·H(αk-1,αk)

k (xk) · · ·H(αm-1,αm)
m (xm),

where r0 = rm = 1 and the summation ranges r0, r1, . . . , rm are called TT ranks. Each

scalar-valued univariate function H
(αk-1,αk)
k (xk) is represented as a linear combination of a

set of `k basis functions {φ(1)
k (xk), . . . , φ

(`k)
k (xk)}, which yields

H
(αk-1,αk)
k (xk) =

`k∑

j=1

φ
(j)
k (xk)Ak[αk-1, j, αk],

where Ak ∈ Rrk-1×`k×rk is an order-3 coefficient tensor. Examples of the basis functions
include piecewise polynomials, orthogonal functions, radial basis functions, etc. Grouping

all scalar-valued univariate functions H
(αk-1,αk)
k (xk) for each coordinate xk yields a matrix-

valued function Hk(xk) : Xk → Rrk-1×rk , which is referred to as the k-th tensor core. This
way, the decomposed function can also be expressed as a sequence of multiplications of
matrix-valued univariate functions, which is given by

ĥ(x) = H1(x1) · · ·Hk(xk) · · ·Hm(xm).

The TT decomposition can be efficiently computed via alternating linear schemes to-
gether with cross interpolation (Bigoni et al., 2016; Gorodetsky et al., 2019; Oseledets and
Tyrtyshnikov, 2010). We employ the functional extension of the alternating minimal en-
ergy method with a residual-based rank adaptation of Dolgov and Savostyanov (2014). It
requires only O(m`r2) evaluations of the function f and O(m`r3) floating point operations,
where ` = maxk `k and r = maxk rk. In general, the maximal rank r depends on the dimen-
sion m and can be large when the function h concentrates in some part of its domain. Some
theoretical results exist that provide rank bounds. For example, the work of Rohrbach
et al. (2022) establishes specific bounds for certain multivariate Gaussian densities that
depend poly-logarithmically on m, while the work of Griebel and Harbrecht (2023) proves
dimension-independent bounds for general functions in weighted spaces with dominating
mixed smoothness.
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The integral of the factorized function ĥ can be simplified to the integral of certain
univariate tensor cores. For example, the integral over xk can be calculated as

∫
ĥ(x1, x2, . . . , xm)dxk =

∫
H1(x1) · · ·Hk(xk) · · ·Hm(xm)dxk

= H1(x1) · · ·Hk · · ·Hm(xm),

where the overlined matrix Hk =
∫
Hk(xk)dxk ∈ Rrk-1×rk is obtained by integrating the k-th

tensor core elementwisely. This way, the cost of the integration problem scales linearly in
the number of variables and quadratically in tensor ranks. This opens the door to solving
the marginalization step in sequential learning problems.

2.3 Basic algorithm

We integrate the TT decomposition and the recursive formula in Section 2.1 to design
a basic TT-based algorithm for solving the sequential learning problems. Although this
basic algorithm does not require a particular variable ordering, we order the variables as
(xt,θ,xt-1) to be compatible with algorithms that will be introduced in Section 3.2.

At time t−1, we suppose the density of the posterior variables (Θ,Xt-1|Y 1:t-1 = y1:t-1)
is approximated by a TT decomposition, that is,

p(θ,xt-1|y1:t-1) ∝∼ π̂(θ,xt-1|y1:t-1).

Here h1(x) ∝∼ h2(x) denotes that h1(x) is approximately proportional to h2(x), that is,
they are close to each other after normalization:

h1(x)∫
h1(x)dx

≈ h2(x)∫
h2(x)dx

.

Then, for the new observed data yt, we can recursively approximate the new density of the
joint posterior random variables (Θ,Xt|Y 1:t = y1:t), the filtering density of (Xt|Y 1:t =
y1:t) and the posterior parameter density (Θ|Y 1:t = y1:t) as follows.

Algorithm 1: TT-based sequential estimation.

(a) Non-separable approximation. Following (10), the density of the joint posterior
random variables (Xt,Θ,Xt-1|Y 1:t = y1:t) yields a non-separable, unnormalized ap-
proximation qt in the form of

qt(xt,θ,xt-1) := π̂(xt-1,θ|y1:t-1)f(xt|xt-1,θ)g(yt|xt,θ), (12)

which can be evaluated pointwisely.
(b) Separable approximation. We re-approximate the non-separable unnormalized den-

sity qt by a TT decomposition π̂, that is,

qt(xt,θ,xt-1) ≈ π̂(xt,θ,xt-1|y1:t)

= F1(xt,1) · · ·Fm(xt,m)G1(θ1) · · ·Gd(θd)H1(xt-1,1) · · ·Hm(xt-1,m),

where F, G and H denote tensor cores for the state at time t, the parameters, and the
state at time t−1, respectively.
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(c) Integration. By integrating the TT-approximation π̂, we are able to approximate the
density of the posterior random variables (Θ,Xt|Y 1:t = y1:t) by

π̂(xt,θ|y1:t) =

∫
π̂(xt,θ,xt-1|y1:t)dxt-1

= F1(xt,1) · · ·Fm(xt,m)G1(θ1) · · ·Gd(θd)(H1 · · ·Hm),

and the normalizing constant

ct =

∫
π̂(xt,θ,xt-1|y1:t)dxtdθdxt-1 = F1 · · ·FmG1 · · ·GdH1 · · ·Hm.

The densities of the posterior parameters (Θ|Y 1:t = y1:t) and the filtering state (Xt|Y 1:t =
y1:t) can be approximated in a similar way.

In the next step t+ 1, we can apply the same procedure using the newly computed approx-
imation π̂(xt,θ|y1:t).

The above basic TT-based algorithm reveals some key principles of the algorithms intro-
duced in this paper. Given the existing approximation π̂(xt-1,θ|y1:t-1), the joint posterior
random variables (Xt,Θ,Xt−1|Y 1:t = y1:t) yield a non-separable, unnormalized approx-
imate density qt in step (a) of Alg. 1. Since qt cannot be directly marginalized, we re-
approximate qt using a new TT in step (b) of Alg. 1, which enables further marginalizations
in step (c) of Alg. 1.

In Section 3, we design new algorithms to remove estimation biases due to approximation
errors. In Alg. 1, the rank truncation used by TT may not preserve non-negativity of
density functions. An analogue is that the truncated singular value decomposition of a
non-negative matrix may contain negative entries. Non-negativity is essential for designing
transport maps for debiasing. We will overcome this barrier by using an alternative form
of the TT decomposition in Section 3. Then in Section 4, we analyze the accumulation of
approximation errors over time. Since the complexity and the approximation power of TT-
based algorithms crucially rely on the tensor ranks, we develop preconditioning methods in
Section 5 to improve the efficiency of our proposed algorithms.

3. Squared-TT algorithms, debiasing and smoothing

We first review the squared-TT method for building KR rearrangements, which is originally
introduced in Cui and Dolgov (2022). We then integrate the resulting transport maps into
the recursive procedure defined in Section 2.3 to sequentially solve the filtering problem
(5) and the parameter estimation problem (6) with sample-based debiasing. Furthermore,
we also design an algorithm to solve the path estimation problem (7) and the smoothing
problem (8) with additional backward propagation steps.

3.1 Squared TT and KR rearrangement

Consider the normalized target probability density p(x) = 1
zπ(x) with x ∈ Rm, in which

z is an unknown constant, and we can only evaluate the unnormalized density π(x). To

10
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preserve non-negativity in function approximation, one can decompose the square root of
π(x), that is, √

π(x) ≈ φ(x) = H1(x1) · · ·Hm(xm).

Then, the approximate density function φ(x)2 is non-negative for all x by construction.
Given some reference tensor-product probability density λ(x) :=

∏m
i=1 λi(xi) such that

supx π(x)/λ(x) < ∞ and a sufficiently small constant τ > 0, we can further construct a
defensive version of the approximate density function

p̂(x) =
1

ẑ
π̂(x), π̂(x) = φ(x)2 + τλ(x), ẑ =

∫
π̂(x)dx. (13)

The approximate density p̂ with the defensive term λ(x) satisfies

sup
x

p(x)

p̂(x)
= sup

x

ẑp(x)

φ(x)2 + τλ(x)
<

ẑ

τz
sup
x

π(x)

λ(x)
<∞.

We introduce the defensive term τλ(x) to ensure that the target density p(x) is absolutely
continuous with respect to the approximate density p̂(x). This way, when the approxi-
mation p̂(x) is used as the proposal density in importance sampling, for example, in the
case of correcting the bias of our recursive posterior approximation scheme, the resulting
estimators can fulfil the requirement of the central limit theorem. Under mild assumptions,
the following lemma establishes the L2 error of

√
π̂ and the Hellinger distance between the

normalized density p and its approximation p̂.

Lemma 1 Suppose the TT approximation φ satisfies ‖φ − √π‖L2 ≤ ε and the constant τ
satisfies τ ≤ ‖φ−√π‖2L2 . Then, the L2 error of

√
π̂ defined in (13) satisfies ‖√π̂−√π‖L2 ≤√

2ε. The Hellinger distance between p and its normalized approximation p̂ defined in (13)
satisfies

DH(p̂, p) ≤
√

2√
z
‖√π̂ −√π‖L2 ≤ 2ε√

z
.

Proof The bounds on the L2 error and the Hellinger distance are shown in Proposition 4
and Theorem 1 of Cui and Dolgov (2022), respectively.

As outlined in Section 2.3, marginalization of the approximation is a key operation in
deriving the recursive algorithm. For the squared TT approximation defined in (13), the
following (Cui and Dolgov, 2022, Proposition 2) gives its marginal density.

Proposition 2 We consider the normalized approximation p̂ defined in (13). For the TT
decomposition φ(x) = H1(x1) · · ·Hm(xm) and a given index 1 ≤ k < m, we define the
left accumulated tensor core as H≤k(x≤k) = H1(x1) · · ·Hk(xk) ∈ R1×rk and the right ac-
cumulated tensor core as H>k(x>k) = Hk+1(xk+1) · · ·Hm(xm) ∈ Rrk×1. Then the marginal
density of p̂ takes the form

p̂(x≤k) =

∫
p̂(x)dx>k =

1

ẑ

( rk∑

γk=1

( rk∑

αk=1

H
(αk)
≤k (x≤k)L

(αk,γk)
>k

)2
+ τλ(x≤k)

)
, (14)

11
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where λ(x≤k) =
∏k
i=1 λi(xi) and L>k ∈ Rrk×rk is the (lower-triangular) Cholesky decompo-

sition of the accumulated mass matrix

M
(αk,βk)
>k =

∫
H

(αk)
>k (x>k)H

(βk)
>k (x>k)dx>k, αk = 1, . . . , rk, βk = 1, . . . , rk.

As shown in Cui and Dolgov (2022), the Cholesky decomposition in Proposition 2 can
be recursively computed from k = m− 1 to k = 1. The normalizing constant ẑ can also be
computed in a similar way as the last iteration of the recursion. Computing all the marginal
densities p̂(x1), . . . , p̂(x≤m-1) requires O(m`r3) floating point operations (flops).

The normalized approximate density p̂ defines a new random variable X̂ . Then us-
ing the marginal densities constructed in Proposition 2, the densities of random variables
X̂ 1,X̂ 2|X̂ 1, . . . ,X̂ k|X̂<k, . . . ,X̂m|X̂<m are given by p̂(x1) and

p̂(xk|x<k) =
p̂(x≤k)

p̂(x<k)
=
φ(x≤k)

2 + τλ(x≤k)

φ(x<k)2 + τλ(x<k)
, k = 2, 3, . . . ,m,

respectively. The corresponding distribution functions

F1(x1) =

∫ x1

−∞
p̂(x′1)dx′1 and Fk(xk|x<k) =

∫ xk

−∞
p̂(x′k|x<k)dx′k

define an order-preserving map F : Rm 7→ [0, 1]m in the form of

F(x) =
[
F1(x1), . . . , Fk(xk|x<k), . . . , Fm(xm|x<m)

]>
,

which is referred to as the KR rearrangement (Rosenblatt, 1952; Knothe et al., 1957). The
map F transforms a random variable X̂ ∼ p̂(x) into a uniform random variable Ξ ∼
uniform(ξ), that is, Ξ = F(X̂ ). Since the k-th component of F depends on only the
previous k−1 coordinates, both F and its inverse F−1 have triangular structures, and thus
can be evaluated dimension-by-dimension.

The construction of the marginal densities in (14), and hence the conditional densities
{p̂(xk|x<k)}mk=1, requires O(m`r3) flops. These conditional densities can be constructed
before evaluating the transformations F and F−1. Evaluating the KR rearrangement F
consists of the dimension-by-dimension evaluation of the conditional densities p̂(xk|x<k)
and the computation of the corresponding distribution functions {Fk}mk=1. For each sam-
ple, the former is essentially a sequence of vector-matrix products with a total cost of
O(m`r2) flops, while the latter can be computed algebraically exactly with a total cost
of O(m`(log ` + r) + m`) flops, where the O(m`(log ` + r)) term is for applying pseudo-
spectral methods to construct the distribution function and the O(m`) term is for eval-
uating the resulting distribution function. This way, evaluating F for N samples costs
O(m`r3 + Nm`r2 + Nm`(log ` + r) + Nm`). For evaluating the inverse transformation
F−1, we need to numerically solve a sequence of root finding problems for inverting each
distribution function Fk. Since Fk is strictly increasing and bounded by construction,
applying either the regula falsi method or Newton’s method for a fixed number of iter-
ations (denoted by c) can accurately invert Fk up to machine precision, where c is of-
ten less than 10. This way, evaluating the inverse transform F−1 for N samples costs
O(m`r3 + Nm`r2 + Nm`(log ` + r) + Nm`c) flops. Therefore, for cases where the sample
size N is large and the TT rank r is sufficiently high, the evaluations of F and F−1 cost
O(Nm`r2) flops.

12
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Remark 3 The marginal densities p̂(x≥k) where k = 2, . . . ,m, can be computed in a similar
way from the first coordinate to the last coordinate. This way, the resulting KR rearrange-
ment is upper-triangular, that is,

Fu(x) =
[
F1(x1|x>1), . . . , Fk(xk|x>k), . . . , Fm(xm)

]>
,

as the variable dependency follows a reverse order.

3.2 Non-negativity-preserving algorithm and conditional maps

Following the steps of the basic algorithm (Alg. 1), we first define a new sequential learning
algorithm using the non-negativity-preserving approximation presented in (13), and then
construct the associated conditional KR rearrangements. The conditional KR rearrange-
ments will be used to sequentially generate weighted samples to correct for the approxima-
tion bias.

Algorithm 2: Sequential estimation using squared-TT approximations.

(a) Non-separable approximation. At time t−1, suppose the posterior random variables
(Θ,Xt-1|Y 1:t-1) has a TT-based (unnormalized) approximate density π̂(θ,xt-1|y1:t-1).
The density of the new joint posterior random variables (Xt,Θ,Xt-1|Y 1:t = y1:t) yields
a non-separable, unnormalized approximation

qt(xt,θ,xt-1) := π̂(xt-1,θ|y1:t-1)f(xt|xt-1,θ)g(yt|xt,θ). (15)

(b) Separable approximation. We re-approximate the square root of qt by a TT decom-
position φt, that is,

√
qt(xt,θ,xt-1) ≈ φt(xt,θ,xt-1)

= G1(xt,1)· · ·Gm(xt,m)F1(θ1) · · ·Fd(θd)H1(xt-1,1) · · ·Hm(xt-1,m).

and choose a constant τt such that τt ≤ ‖φt −
√
qt‖2L2 . Following the construction in

(13), this gives a non-negative approximation

π̂(xt,θ,xt-1|y1:t) = φt(xt,θ,xt-1)2 + τtλ(xt)λ(θ)λ(xt-1). (16)

(c) Integration. Applying Proposition 2 from the right variable xt-1,m to the left variable
xt-1,1, we obtain π̂(xt,θ|y1:t) =

∫
π̂(xt,θ,xt-1|y1:t) dxt-1.

In the next step t+1, we can apply the same procedure using the newly computed marginal
approximation π̂(xt,θ|y1:t).

Using Proposition 2, we can integrate the approximate density π̂(xt,θ,xt-1|y1:t) from the
right variable xt-1,m to the left variable xt,1 to define the lower-triangular KR rearrangement

13
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F lt : X ×Θ×X → [0, 1]2m+d in the form of

F lt(xt,θ,xt-1) =



F lt,t (xt)

F lt,θ (θ |xt)
F lt,t-1(xt-1|xt,θ)


 =




Ft,t,1 (xt,1)
...

Ft,t,m (xt,m |xt,<m)
...

Ft,θ,k (θk |xt,θ<k)
...

Ft,t-1,1 (xt-1,1 |xt,θ)
...

Ft,t-1,m (xt-1,m|xt,θ,xt-1,<m)




, (17)

in which each scalar-valued function Ft,·,· is a (conditional) distribution function. For ex-
ample, we have

Ft,t-1,k(xt-1,k|xt,θ,xt-1,<k) =

∫ xt-1,k

−∞

π̂(xt,θ,xt-1,<k, x
′
t-1,k|y1:t)

π̂(xt,θ,xt-1,<k|y1:t)
dx′t-1,k. (18)

The inverse map (F lt)−1 transforms uniform random variables to the approximate posterior
random variables (X̂ t,Θ̂ ,X̂ t-1|Y 1:t = y1:t) ∼ p̂, where p̂(xt,θ,xt-1|y1:t) ∝ π̂(xt,θ,xt-1|y1:t).

Note that the construction of conditional distribution function, for example, (18), does
not require the normalizing constant of the approximate density π̂, because the marginal
densities share the same normalizing constant. Thus, by only integrating the state xt-1
dimension-by-dimension from the right variable xt-1,m to the left variable xt-1,1, we obtain
the lower conditional KR rearrangement

F lt,t-1(xt-1|xt,θ) =



Ft,t-1,1 (xt-1,1 |xt,θ)

...
Ft,t-1,m (xt-1,m|xt,θ,xt-1,<m)


 . (19)

The following proposition shows that the lower conditional map F lt,t-1 defines a back-
ward sampler, which generates samples backward in time from the conditional density
p̂(xt-1|xt,θ,y1:t). This is particularly useful for defining smoothing algorithms.

Proposition 4 Conditioned on X̂ t = xt and Θ̂ = θ, inverting the lower conditional KR
rearrangement F lt,t-1 defined in (19), we transform a uniform random variable to the con-
ditional random variable

(X̂ t-1|X̂ t = xt,Θ̂ = θ,Y 1:t = y1:t) ∼ p̂(xt-1|xt,θ,y1:t).

Proof Conditioned on X̂ t = xt and Θ̂ = θ, the Jacobian of F lt,t-1(·|xt,θ), denoted by
J ∈ Rm×m, is a lower triangular matrix with diagonal entries

Jkk =
∂Ft,t-1,k(xt-1,k|xt,θ,xt-1,<k)

∂xt-1,k
= p̂(xt-1,k|xt,θ,xt-1,<k,y1:t), k = 1, . . . ,m,

by (18). Thus, the pullback of the uniform density under F lt,t-1(·|xt,θ) is

(F lt,t-1)]uniform(xt) = |J| =
m∏

k=1

p̂(xt-1,k|xt,θ,xt-1,<k,y1:t) = p̂(xt-1|xt,θ,y1:t).
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This concludes the result.

Similarly, one can integrate the state xt in the approximation π̂(xt,θ,xt-1|y1:t) from the
left variable xt,1 to the right variable xt,m to define an upper conditional KR rearrangement

Fut,t(xt|θ,xt-1) =



Ft,t,1 (xt,1 |xt,>1,θ,xt-1)

...
Ft,t,m (xt,m|θ,xt-1)


 , (20)

Inverting the conditional map Fut,t, we are able to transform a uniform random variable to
the conditional random variable

(X̂ t|Θ̂ = θ,X̂ t-1 = xt-1,Y 1:t = y1:t) ∼ p̂(xt|θ,xt-1,y1:t).

This way, the upper conditional map Fut,t defines a forward sampler that generates samples
forward in time. This will be used in particle filtering.

3.3 Particle filter

The upper conditional map Fut,t in (20) naturally define a particle filter accompanying

the recursive approximations in Alg. 2. Suppose weighted samples {Θ̂(i)
,X̂

(i)
0:t-1,W

(i)
t-1}Ni=1

follow the joint posterior density p(θ,x0:t-1|y1:t-1) at time t−1. Conditioned on each pair of

{Θ̂(i)
,X̂

(i)
t-1}Ni=1, we can invert Fut,t to obtain a new sample

X̂
(i)
t = (Fut,t)−1(Ξ

(i)|Θ̂(i)
,X̂

(i)
t-1), Ξ

(i) ∼ uniform(ξ; [0, 1]m). (21)

The sample X̂
(i)
t follows the conditional density p̂(xt|θ,xt-1,y1:t). Expanding the sample

state path X̂
(i)
0:t-1 by X̂

(i)
t , the updated weighted samples {Θ̂(i)

,X̂
(i)
0:t,W

(i)
t-1}Ni=1 jointly follow

the normalized density
p̂(xt|θ,xt-1,y1:t) p(θ,x0:t-1|y1:t-1). (22)

After applying the sampling procedure in (21), we can update the weights of the up-

dated samples {Θ̂(i)
,X̂

(i)
0:t,W

(i)
t-1}Ni=1 according to the ratio of the new joint posterior density

p(θ,x0:t|y1:t) in (9) to the sampling density in (22), which take the form

rf(θ,x0:t) =
p(θ,x0:t|y1:t)

p̂(xt|θ,xt-1,y1:t)p(θ,x0:t-1|y1:t-1)
.

Following the recursive form of p(θ,x0:t|y1:t) in (9), we have

rf(θ,x0:t) ∝ ωf(θ,xt-1:t) :=
f(xt|xt-1,θ)g(yt|xt,θ)

p̂(xt|θ,xt-1,y1:t)
. (23)

Thus, by updating the weights using W
(i)
t = W

(i)
t-1 ωf(Θ̂

(i)
,X̂

(i)
t-1:t) followed by the renormal-

ization

W
(i)
t =

W
(i)
t∑N

i=1W
(i)
t

for i = 1, . . . , N,
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we have the reweighed samples {Θ̂(i)
,X̂

(i)
0:t,W

(i)
t }Ni=1 that follow the joint posterior density

p(θ,x0:t|y1:t). Alg. 3 provides details of the particle filter accompanying the sequential
learning procedure in Alg. 2.

Algorithm 3: One iteration of the particle filter accompanying Alg. 2.

(a) At time t−1, suppose we have weighted samples {Θ̂(i)
,X̂

(i)
0:t-1,W

(i)
t-1}Ni=1 following the

joint density p(θ,x0:t-1|y1:t-1).

(b) At time t, given the approximate density π̂(xt,θ,xt-1|y1:t) computed in Alg. 2, apply
Proposition 2 to integrate π̂ from the left variable xt,1 to the right variable xt,m to define
a conditional KR rearrangement Fut,t in the form of (20).

(c) For each of {Θ̂(i)
,X̂

(i)
0:t-1}Ni=1, invert Fut,t as in (21) to generate a new sample X̂

(i)
t , and

then update the weights according to W
(i)
t = W

(i)
t-1 ωf(Θ̂

(i)
,X̂

(i)
t-1:t), where the function

ωf(·, ·) is defined in (23).

(d) Renormalize the weights W
(i)
t ←W

(i)
t /

∑N
i=1W

(i)
t .

In Alg. 3, constructing the conditional densities in step (b), which defines the con-
ditional KR rearrangement Fut,t, requires O(m`r3) flops. This step does not involve any
sampling, and thus its cost is independent of the sample size N . Then, in step (c), gener-
ating N samples from the resulting conditional KR rearrangement requires an additional
O(Nm`(r2 + log `+ r+ c)) flops, where c is the maximum number of iterations used in the
root finding algorithms, as discussed in Sec. 3.1.

In summary, Alg. 3 can be viewed as a standard particle filter with TT approximations
to be the proposal density. Commonly used resampling techniques in SMC methods can
also be used in Alg. 3 as a rejuvenation to re-balance the weights.

3.4 Path estimation and smoothing

Similar to other particle filter algorithms, weights computed by Alg. 3 may degenerate
over time. This has an intuitive explanation in the joint state and parameter estimation
context. The locations of the parameter samples are fixed at the initial time, so that the
weights (and hence the effective sample size) necessarily degenerate because the posterior
parameter density may concentrate with more data observed over time. We overcome this
issue by drawing random samples from the last approximation p̂(xT ,θ,xT -1|y1:T )—which is
conditioned on all available data by construction—and removing the approximation bias by
designing a path estimation algorithm accompanying Alg. 2 to replace the particle filtering.
The path estimation algorithm also naturally leads to particle smoothing.

Our path estimation algorithm uses the same sequence of non-negativity-preserving ap-
proximations constructed in Alg. 2. It starts at the final time T and recursively samples
backward in time using the lower conditional map F lt,t-1 defined in (19). At time T , ini-

tial samples {X̂ (i)
T -1,X̂

(i)
T ,Θ̂

(i)}Ni=1 are generated from p̂(xT ,θ,xT -1|y1:T ) using a full KR
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rearrangement F lT defined in (17). Then, at each of steps t = T−1, . . . , 1, for each of

{Θ̂(i)
,X̂

(i)
t:T }Ni=1, we invert the lower conditional map F lt,t-1 to obtain

X̂
(i)
t-1 = (F lt,t-1)−1(Ξ

(i)
t-1|Θ̂

(i)
,X̂

(i)
t ), Ξ

(i)
t-1 ∼ uniform(ξ; [0, 1]m). (24)

Following from Proposition 4, after completing backward recursion, each pair of the param-

eter sample and state path sample in {Θ̂(i)
,X̂

(i)
0:T }Ni=1 follows the joint density

p̂(θ,x0:T |y1:T ) = p̂(xT ,θ,xT -1|y1:T )

T−1∏

t=1

p̂(xt-1|θ,xt,y1:t). (25)

Conditioned on θ and xt, the state xt-1 is independent of the data yt:T observed at future
times, and hence we have p(xt-1|θ,xt,y1:t) = p(xt-1|θ,xt,y1:T ). Using this identity, the
original joint posterior density p(θ,x0:T |y1:T ) defined in (4) has the same factorized form
as the density in (25). Therefore, the above backward sampling procedure can have a
reasonable efficiency if the approximations built in Alg. 2 are sufficiently accurate.

Θ̂ X̂T X̂T -1 X̂T -2 X̂T -3 . . . X̂2 X̂1 X̂0

Ξθ . . . Ξθ = Fl
T,θ (Θ̂|X̂T )

ΞT . . . ΞT = Fl
T,T (X̂T )

ΞT -1 . . . ΞT -1 = Fl
T,T -1 (X̂T -1|X̂T , Θ̂)

ΞT -2 . . . ΞT -2 = Fl
T -1,T -2(X̂T -2|X̂T -1, Θ̂)

ΞT -3 . . . ΞT -3 = Fl
T -2,T -3(X̂T -3|X̂T -2, Θ̂)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

Ξ1 . . . Ξ1 = Fl
2,1 (X̂1|X̂2, Θ̂)

Ξ0 . . . Ξ0 = Fl
1,0 (X̂0|X̂1, Θ̂)

Figure 1: Conditional dependency structures of the joint map F used in particle smoothing.
The blue entries indicate the conditional dependency on the states, and the orange entries
indicate the conditional dependency on the parameters. The 2 × 2 sub-matrix in the top
left corner represents the structure of the first two blocks of the map F lT .

In fact, the backward recursion can be considered as the inverse of a joint KR rear-
rangement F : Θ×X T+1 → [0, 1]d+(m+1)×T that transforms approximate posterior random
variables (Θ̂,X̂ 0:T |Y 1:T = y1:T ) that follow the density (25), to the reference uniform ran-
dom variables. As illustrated in Figure 1, the joint KR rearrangement F has a block sparse
structure. The non-zero blocks in the first column reflect the conditional dependency of each
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of the state variables on the parameter, while the non-zero blocks on the first sub-diagonal
reflect the Markov dependency of state variables. From this perspective, our TT-based
construction of the joint KR rearrangement F can be viewed as a constructive proof and
a numerical implementation of the decomposition theorem (Spantini et al., 2018, Theorem
12) for the joint parameter and state estimation in general state-space models.

For a pair of sample parameter and sample state path (Θ̂
(i)

= θ,X̂
(i)
0:T = x0:T ) generated

by the backward recursion, it yields a weighted representation of the posterior sample with
the importance weight

rb(θ,x0:T ) =
p(θ,x0:T |y1:T )

p̂(θ,x0:T |y1:T )
.

Following the recursive form of p(θ,x0:t|y1:t), the ratio rb(θ,x0:T ) has an unnormalized
computable form

rb(θ,x0:T ) ∝ ωb(θ,x0:T )

:= p(θ)p(x0|θ)
(T−1∏

t=1

f(xt|xt-1,θ)g(yt|xt,θ)

p̂(xt-1|θ,xt,y1:t)

)f(xT |xT -1,θ)g(yT |xT ,θ)

p̂(xT ,θ,xT -1|y1:T )
. (26)

We summarize the particle smoothing procedure in Alg. 4. The set of weighted samples

{Θ̂(i)
,X̂

(i)
0:T ,W

(i)}Ni=1 is an unbiased representation of the joint posterior random variables
(Θ,X0:T |y1:T ). It mitigates the particle degeneracy because the samples are drawn condi-
tioned all observed data y1:T .

Algorithm 4: Path estimation algorithm accompanying Alg. 2.

(a) Generate samples {X̂ (i)
T ,Θ̂

(i)
,X̂

(i)
T -1}Ni=1 from p̂(xT ,θ,xT -1|y1:T ) using F lT .

(b) For t = T − 1, . . . , 1, do the following

• For each of {Θ̂(i)
,X̂

(i)
t:T }Ni=1, invert the lower conditional map F lt,t-1 as in (24) to

generate a new sample X̂
(i)
t-1.

(c) For each of {Θ̂(i)
,X̂

(i)
0:T }Ni=1, compute the weight W (i) using (26).

(d) Normalize the weights as W (i) ←W (i)/
∑N

i=1W
(i).

In our setting, applying one step of particle filtering and applying one step of particle
smoothing have the same computational complexity. For particle filtering, integrals used
for constructing the upper conditional map Fut,t in (20) take the opposite direction to the
integrals used for building π̂(xt,θ|y1:t) in Alg. 2. This incurs an additional O(m`r3) flops.
In comparison, constructing the lower conditional map F lt,t-1 in (19) for particle smoothing
shares the same integrals as in Alg. 2, and thus does not incur additional computational
cost.

Marginalizing the square TT approximation (16) from either end has an O(`r3) compu-
tational complexity per coordinate. This is much lower than marginalizing variables in the
middle, which has an O(`r6) computational complexity per coordinate. Thus, the variable
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ordering (xt,θ,xt-1) is computationally advantageous for both smoothing and filtering. One
can also consider the variable ordering (θ,xt,xt-1) if only the smoothing algorithm is used
for debiasing, as Alg. 2 and the lower conditional map in Alg. 4 only need to integrate the
state xt-1.

4. Error analysis

At the core of Alg. 1 and 2 is the recursive approximation of the joint densities of the pos-
terior random variables (Xt,Θ,Xt-1|Y 1:t = y1:t). We begin this section with an analysis
of the accumulation of approximation errors in general state-space models. Based on this
result, we provide an upper bound on the TT-approximation errors of Alg. 1 and show
the stability of Alg. 2. Although most of the analysis presented centers around the TT
decomposition, our results on the error accumulation rate are readily generalizable to other
function approximation schemes applied to state-space models. For instance, one can con-
sider the deep polynomial method of Cui et al. (2023) and the sum-of-square approximation
of Zanger et al. (2024). The same error accumulation analysis will apply.

4.1 Error decomposition and propagation

Starting with the initial unnormalized joint posterior density

π(x1,θ,x0|y1) = p(θ)p(x0|θ)f(x1|x0,θ)g (y1|x1,θ) ,

we define the unnormalized joint posterior density recursively as

π(xt,θ,xt-1|y1:t) =

∫
π(xt-1,θ,xt-2|y1:t-1)dxt-2 f (xt|xt-1,θ) g (yt|xt,θ)

= π(xt-1,θ|y1:t-1)f (xt|xt-1,θ) g (yt|xt,θ) ,

which follows a similar derivation to that of (10). We use shorthands pt(xt,θ,xt-1) :=
p(xt,θ,xt-1|y1:t) and p̂t(xt,θ,xt-1) := p̂(xt,θ,xt-1|y1:t) to respectively denote the joint pos-
terior density at time t and its TT-based approximation. Similar notation is adopted for rep-
resenting their unnormalized counterparts. We omit the input variables when no confusion
arises. The density πt has the normalizing constant zt :=

∫
π(xt,θ,xt-1|y1:t)dxt dθ dxt-1,

which is indeed the evidence p(y1:t) introduced in (4).
Recall that in each iteration of Alg. 1 and 2, the unnormalized joint posterior density πt

cannot be directly evaluated since it is the density of marginal random variables. Instead, we
introduce the non-separable, unnormalized approximation qt in step (a) of both algorithms,
and then approximate qt using a TT-based approximation π̂t in step (b). As shown in (12)
and (15), the function qt takes the form

qt(xt,θ,xt-1) = π̂(xt-1,θ|y1:t-1)f(xt|xt-1,θ)g(yt|xt,θ),

where π̂(xt-1,θ|y1:t-1) is the marginalization of the previous TT-based approximation. The
construction of the function qt enables pointwise function evaluations that are necessary for
building the new TT decomposition used by π̂t.

This reveals that each iteration of Alg. 1 and 2 can be considered as a two-step ap-
proximation procedure: the unnormalized joint density πt is approximated by the function
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qt, from which we construct the TT-based approximation π̂t. Considering the triangle
inequality for some distance metric D(·, ·), the error D(π̂t, πt) has the decomposition

D(π̂t, πt) ≤ D(π̂t, qt) +D(qt, πt), (27)

where D(π̂t, qt) is the approximation error in the current iteration and D(qt, πt) is the
propagation error from the previous iteration. In particular, we consider the L1 distance of
unnormalized densities and the L2 distance of the square roots of unnormalized densities as
the distance metrics for bounding these errors. The L1 distance is useful for approximations
that cannot preserve non-negativity (for example, Alg. 1) and is analogous to the total
variation distance of probability measures. The L2 distance on square-root densities is
directly related to the Hellinger distance (see Lemma 1) and we use it to analyze Alg. 2.
We aim to understand how the approximation errors accumulate over time in the recursive
algorithms. Based on the following assumption, we first analyze the propagation error in
Propositions 5 and 6.

Assumption 1 For the state transition process and the observation process, we assume
either of the following bounds holds

C
(g)
t = sup

xt∈X ,θ∈Θ
g(yt|xt,θ) <∞, (28)

C
(f)
t = sup

xt-1∈X ,θ∈Θ

∫
f(xt|xt-1,θ)g(yt|xt,θ)dxt <∞. (29)

Generally speaking, any Lipschitz continuous f and g satisfy the above assumptions,
which are usually the case in many applications. For example, an observation model with

the commonly used Gaussian noise has a bounded C
(g)
t for all t.

Proposition 5 Suppose either bound of Assumption 1 holds. The propagation error ‖qt −
πt‖L1 at time t is bounded by the previous total error

‖qt − πt‖L1 ≤ C(h)
t ‖π̂t-1 − πt-1‖L1 , h ∈ {f, g}.

Proof By the construction of qt, we express the propagation error as

‖qt − πt‖L1 =

∫ ∣∣∣π̂(xt-1,θ|y1:t-1)− π(xt-1,θ|y1:t-1)
∣∣∣r(xt-1,θ)dxt-1dθ,

where r(xt-1,θ) =
∫
f(xt|xt-1,θ)g(yt|xt,θ)dxt. Either condition (28) or (29) leads to

supxt-1∈X ,θ∈Θ r(xt-1,θ) ≤ C(h)
t for h ∈ {f, g}, and thus we have

‖qt − πt‖L1 ≤ C(h)
t

∥∥π̂(xt-1,θ|y1:t-1)− π(xt-1,θ|y1:t-1)
∥∥
L1 .

Applying Lemma 15 in Appendix A, the L1 distance of the marginal densities is bounded
by that of the joint densities as

∥∥π̂(xt-1,θ|y1:t-1)− π(xt-1,θ|y1:t-1)
∥∥
L1 ≤ ‖π̂t-1 − πt-1‖L1 ,

which leads to the result.
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Proposition 6 Suppose either bound of Assumption 1 holds. The propagation error ‖√qt−√
πt‖L2 at time t is bounded by the previous total error

‖√qt −
√
πt‖L2 ≤ √C(h)

t ‖
√
π̂t-1 −

√
πt-1‖L2 , h ∈ {f, g}.

Proof By the construction of qt, we express the squared propagation error as

‖√qt −
√
πt‖2L2 =

∫ (√
π̂(xt-1,θ|y1:t-1)−

√
π(xt-1,θ|y1:t-1)

)2
r(xt-1,θ)dxt-1dθ,

where r(xt-1,θ) =
∫
f(xt|xt-1,θ)g(yt|xt,θ)dxt. Either condition (28) or (29) leads to

supxt-1∈X ,θ∈Θ r(xt-1,θ) ≤ C(h)
t for h ∈ {f, g}, and thus we have

‖√qt −
√
πt‖L2 ≤

(
C

(h)
t

∫ (√
π̂(xt-1,θ|y1:t-1)−

√
π(xt-1,θ|y1:t-1)

)2
dxt-1dθ

)1/2

=
√
C

(h)
t

∥∥√π̂(xt-1,θ|y1:t-1)−
√
π(xt-1,θ|y1:t-1)

∥∥
L2 .

Applying Lemma 14 in Appendix A, the L2 distance between the marginal densities is
bounded by the L2 distance between the joint densities as

∥∥√π̂(xt-1,θ|y1:t-1)−
√
π(xt-1,θ|y1:t-1)

∥∥
L2 ≤ ‖

√
π̂t-1 −

√
πt-1‖L2 ,

which leads to the result.

Based on the error propagation bounds, we can then analyze the total approximation
errors of our sequential estimation algorithms. In the following, we show the total errors of
Alg. 1 and 2 assuming the approximation error in each iteration is bounded.

Theorem 7 Suppose either bound of Assumption 1 holds and the approximation π̂t in Alg. 1
satisfies ‖π̂t − qt‖L1 ≤ εt. For t > 0, the total error satisfies

‖π̂t − πt‖L1 ≤ C(h)
t ‖πt-1 − π̂t-1‖L1 + εt ≤

t∑

k=1

Ct−kεk, C = sup
t
C

(h)
t ,

for h ∈ {f, g}.

Proof The result follows from the triangle inequality (27) and induction.

Theorem 8 Suppose either bound of Assumption 1 holds and the approximation π̂t in
Alg. 2 satisfies ‖√π̂t −

√
qt‖L2 ≤ εt. For t > 0, the Hellinger distance between pt and

its approximation p̂t is bounded by

DH(p̂t, pt) ≤
√

2√
p(y1:t)

t∑

k=1

C(t−k)/2εk,

where C = suptC
(h)
t with h ∈ {f, g} and p(y1:t) is the evidence.
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Proof We recall that there is no approximation used in Alg. 2 at the initial step t = 0, that
is, ε0 = 0, as we only have the prior for X0 and Θ. Applying the triangle inequality (27)
and induction, we have

‖√π̂t −
√
πt‖L2 ≤ √C(h)

t ‖
√
πt-1 −

√
π̂t-1‖L2 + εt ≤

t∑

k=1

C(t−k)/2εk.

Applying Lemma 1, the Hellinger distance between p̂t and pt is bounded by the L2 distance
between

√
π̂t and

√
πt, that is,

DH(p̂t, pt) ≤
√

2√
zt
‖√π̂t −

√
πt‖L2 ,

where zt = p(y1:t) by definition. This concludes the result.

By Lemmas 13 and 15 in Appendix A, either the Hellinger distance or the L1 distance
between the exact marginal and the approximate marginal is bounded from above by the
corresponding distance between the joint densities. Thus, approximations of the filtering
density p(xt|y1:t) and the posterior parameter density p(θ|y1:t) obtained by Alg. 1 and 2,
which are marginalizations of the joint approximation p̂(xt,θ,xt-1|y1:t), follow the same
error bounds derived here.

4.2 Error analysis for TT approximations

For Alg. 1, we first show in Proposition 9 that the approximation error ‖π̂t − qt‖L1 can be
bounded based on certain Sobolev-type smoothness assumptions. Then, we can apply the
result of Theorem 7 to bound the total error.

Proposition 9 For any time t > 0, we express the product of the state transition density
and the likelihood function as

ht(xt,θ,xt-1) = f(xt|xt-1,θ)g(yt|xt,θ).

We assume that state space X and the parameter space Θ are compact in the sense that
they admit finite Lebesgue measures and there exist some K ∈ N and s ≥ 1 such that
ht ∈ WK+1,2s(X × Θ × X ). At time t = 1, we further assume that the (unnormalized)
prior density π(x0,θ) := π(x0|θ)π(θ) belongs to WK+1,2r(X ×Θ) for some r ≥ 1 such that
1
r + 1

s = 1. Then, for some error controlling factor εt ∈ (0, 1) at time t > 0, there exists a
TT decomposition π̂t(xt,θ,xt-1) with ranks

r1 = dε−1/K
t e and rk = dε−k/Kt e for k = 2, 3, . . . , 2m+ d− 1,

such that the approximation error in step (b) of Alg. 1 is bounded by

‖π̂t − qt‖L1 ≤ CTT

√
Ω(X ×Θ×X )(2m+ d− 1) εt,

where Ω(·) denotes the measure of the space and CTT is a constant independent of π̂t, qt,
and the dimension.
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Proof Our goal is to establish the Sobolev-type smoothness of the function qt, so that
results of Griebel and Harbrecht (2023) can be used to derive the TT ranks for some target
error measured in the L2 norm. The bound on the L1 norm follows from that on the L2

norm using the Cauchy–Schwartz inequality.
For brevity, we define the previous marginal density π̂(xt-1,θ|y1:t-1) as

ϕ̂t(xt,θ,xt-1) =

{
π̂(xt-1,θ|y1:t-1), t > 1
π(x0,θ), t = 1

,

which takes a constant value over xt. For t > 1, since the marginal TT approximation
π̂(xt-1,θ|y1:t-1) is a linear combination of multivariate polynomial basis functions, the func-
tion ϕ̂t is an analytical function. Thus, we have ϕ̂t ∈WK+1,2r(X ×Θ×X ) for any K ∈ N,
r ≥ 1/2, and t > 1.

For t > 0, the L2 norm of qt can be expressed as ‖qt‖2L2 = ‖ϕ̂2
t h

2
t ‖L1 . Applying the

Hölder inequality, we have

‖qt‖L2 ≤ ‖ϕ̂2
t ‖1/2Lr ‖h2

t ‖1/2Ls = ‖ϕ̂t‖L2r‖ht‖L2s ,

for r, s ∈ [0,∞] with 1
r + 1

s = 1. This way, we have ‖qt‖L2 < ∞ for all t > 0 by our
assumptions and the analyticity of ϕ̂t for t > 1. For derivatives of qt, with the multi-index
notation and the general Leibniz rule (see Constantine and Savits (1996)), we have

∂αqt =
∑

β≤α

(
α

β

)(
∂α−βϕ̂t

)(
∂βht

)
,

where α,β are multi-indices. Following a similar derivation as in the L2 norm case, we
can show that ‖∂αqt‖L2 < ∞ for all |α| ≤ K + 1, where |α| =

∑
αi. Therefore, we have

qt ∈WK+1,2(X ×Θ×X ) for all t > 0.
Given a target error controlling factor εt ∈ (0, 1), Theorem 4 of Griebel and Harbrecht

(2023) states that there exists a TT decomposition π̂t with ranks r1 = dε−1/K
t e and rk =

dε−2k/K
t e for k = 2, 3, . . . , 2m+d−1 such that ‖π̂t − qt‖L2 ≤ CTT

√
2m+ d− 1 εt. Then, by

the Cauchy–Schwartz inequality, we have

‖π̂t − qt‖L1 ≤ CTT

√
Ω(X ×Θ×X ) ‖π̂t − qt‖L2 ,

and thus the result follows.

Proposition 9 only considers bounded spaces. This can be easily extended to unbounded
spaces by considering a weight measure and a slightly modified approximation scheme. See
Cui and Dolgov (2022); Cui et al. (2023) and references therein for details. The result of
Griebel and Harbrecht (2023) establishes sufficient conditions of the a priori error bound
of TT decompositions using smoothness. In practice, there are many examples of low-rank
functions that do not satisfy the smoothness assumption, for example, products of discontin-
uous univariate functions. To the authors’ knowledge, the analysis of TT ranks for general
functions is still an active research area and the results of Griebel and Harbrecht (2023)
may not provide a precise practical guideline for building TT decompositions. Nonetheless,
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Proposition 9 provides some confidence in applying TT decompositions in the sequential
state and parameter learning problems.

It is worth mentioning that the error controlling factor εt in Proposition 9 determines
the TT ranks and hence the computational complexity for building a TT decomposition.
Proposition 9 suggests that with a prescribed εt, the error of a TT decomposition may
increase with the dimensionality of the problem. For a class of high-dimensional problems
where the Sobolev norm is equipped with suitably decaying weights (Dick et al., 2013;
Griebel and Harbrecht, 2023; Sloan and Woźniakowski, 1998), one can obtain a dimension-
free error bound. Although such dimension-free bounds are not discussed here, extending
Proposition 9 to such weighted Sobolev norms is trivial.

Corollary 10 Suppose either bound of Assumption 1 holds and the smoothness of the den-
sities f and g fulfil the requirement of Proposition 9. In each step of Alg. 1, suppose further
the ranks of a TT approximation is chosen according to Proposition 9 so that it satisfies

‖π̂t − qt‖L1 ≤ CTT

√
Ω(X ×Θ×X )(2m+ d− 1) εt

for some error controlling factor εt ∈ (0, 1). Then, for t > 0, the total error satisfies

‖π̂t − πt‖L1 ≤ CTT

√
Ω(X ×Θ×X )(2m+ d− 1)

t∑

k=1

Ct−kεk,

where C = suptC
(h)
t with h ∈ {f, g}.

Proof The result is a direct consequence of Theorem 7.

In Alg. 2, the previous marginal density π̂(xt-1,θ|y1:t-1) can be expressed as a sum of
squares of multivariate polynomial functions (each in the TT form) to ensure non-negativity
together with a defensive term (cf. Proposition 2). Applying the multivariate Faa di
Bruno formula (Constantine and Savits, 1996), one can show that the square root of the
previous marginal density

√
π̂(xt-1,θ|y1:t-1) yields a bounded Sobolev norm for a finite

order of differentiability K. However, the bound on the Sobolev norm may increase with
K. Although Theorem 4 of Griebel and Harbrecht (2023) may still apply in this case
for a finite K, it requires further analysis to understand the impact of increasing Sobolev
norm on the a priori error analysis of the TT decomposition. In our numerical examples
(Section 6.1), we demonstrate that Alg. 1 and 2 achieve comparable approximation accuracy.
In the rest, we focus on analyzing the impact of the additional defensive term used in Alg. 2.
We bound the approximation error ‖√π̂t−

√
qt‖L2 in Proposition 11—we omit the proof as

it is a direct consequence of Lemma 1. Then in Corollary 12, we apply Theorem 8 to bound
the total Hellinger error of Alg. 2 to complete the analysis.

Proposition 11 In each iteration of Alg. 2, suppose a TT decomposition φt is constructed
according to Proposition 9 such that its L2 error satisfies

‖φt −
√
qt‖L2 < CTT

√
2m+ d− 1 εt
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for some error controlling factor εt ∈ (0, 1). Suppose further the constant τt in the defensive
term satisfies τt ≤ ‖φt −

√
qt‖2L2 . Then, the approximation error satisfies ‖√π̂t −

√
qt‖L2 ≤

CTT

√
2 (2m+ d− 1) εt.

Corollary 12 Suppose Proposition 11 and either bound of Assumption 1 hold. For t > 0,
the total Hellinger distance between pt and its approximation p̂t in Alg. 2 satisfies

DH(p̂t, pt) ≤
2CTT

√
2m+ d− 1√
p(y1:t)

t∑

k=1

C(t−k)/2εk,

where C = suptC
(h)
t with h ∈ {f, g} and p(y1:t) is the evidence.

5. Preconditioning methods

The key step of Alg. 2 is to approximate the square root of the non-separable, unnormal-
ized density qt by a TT decomposition φq,t. In many applications, the temporally increasing
data size and complex nonlinear interactions among parameters and states may concentrate
posterior densities to some submanifold, and hence lead to potentially high ranks in φq,t.
This can make the TT-based algorithms computationally demanding. Rather than directly
approximating qt, here we present a preconditioning framework to improve TT’s approxi-
mation efficiency and discuss how to apply the resulting preconditioned approximations in
our sequential estimation algorithms (Alg. 2–4).

5.1 General framework

Our preconditioning procedure is guided by a (possibly unnormalized) bridging density
ρt(xt,θ,xt-1) that is easier to approximate than qt(xt,θ,xt-1). We introduce general refer-
ence random variables (U t,U θ,U t-1) with tensor-product normalized density η(ut,uθ,ut-1)
= η(ut)η(uθ)η(ut-1), where (U t,U t-1) take values in Rm and U θ takes values Rd. The pre-
conditioning procedure has the following conceptual steps.

1. Change of coordinates. We first construct a preconditioning KR rearrangement Tt
such that

(Tt)] ρt(ut,uθ,ut-1) = ρt
(
T −1
t (ut,uθ,ut-1)

)∣∣∇T −1
t (ut,uθ,ut-1)

∣∣
∝ η(ut,uθ,ut-1). (30)

The map Tt defines a change of coordinates from (xt,θ,xt-1) to (ut,uθ,ut-1).

2. Preconditioning. Applying the identity in (30), the pushforward of qt under Tt takes
form

(Tt)] qt(ut,uθ,ut-1) = qt
(
T −1
t (ut,uθ,ut-1)

)∣∣∇T −1
t (ut,uθ,ut-1)

∣∣
∝ q],t(ut,uθ,ut-1),

where

q],t(ut,uθ,ut-1) :=
qt
(
T −1
t (ut,uθ,ut-1)

)

ρt
(
T −1
t (ut,uθ,ut-1)

)η(ut,uθ,ut-1) (31)
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is a non-negative function that can be evaluated pointwise. The pushforward density q],t
can be viewed as the reference density η perturbed by the ratio qt/ρt in the transformed
coordinates (ut,uθ,ut-1). With a suitable bridging density, the ratio qt/ρt is significantly
less concentrated, and hence may be easier to approximate. See Fig. 2 for an illustration.

3. TT-approximation. By approximating
√
q],t using a TT φ],t, that is,

√
q],t(ut,uθ,ut-1) ≈ φ],t(ut,uθ,ut-1),

we can follow the squared-TT approximation outlined in Section 3.1 to define an un-
normalized approximate density

ν̂],t(ut,uθ,ut-1) := φ],t(ut,uθ,ut-1)2 + τ],tη(ut,uθ,ut-1) (32)

where τ],t ≤ ‖φ],t −
√
q],t‖2L2 . Applying Proposition 2 and denoting the normalized

density by µ̂],t ∝ ν̂],t, we obtain a KR rearrangement St such that

(St)] µ̂],t(ξt, ξθ, ξt-1) = uniform(ξt, ξθ, ξt-1).

4. Composition. The above steps define a composite transformation St ◦ Tt that approx-
imately pushes forward the normalized version of the density qt(xt,θ,xt-1) to a uniform
density. Equivalently, we have

qt(xt,θ,xt-1) ∝∼ (St ◦ Tt)]uniform(xt,θ,xt-1).

Thus, the pullback of the uniform density under St◦Tt defines a normalized approximate
posterior density, which takes the form

p̂(xt,θ,xt-1|y1:t) = (St ◦ Tt)]uniform(xt,θ,xt-1)

= |∇(St ◦ Tt)(xt,θ,xt-1)|
(30)
=

µ̂],t
(
Tt(xt,θ,xt-1)

)

η
(
Tt(xt,θ,xt-1)

) ρt(xt,θ,xt-1)

=
1

ẑt
π̂(xt,θ,xt-1|y1:t),

where

π̂(xt,θ,xt-1|y1:t) =
ν̂],t
(
Tt(xt,θ,xt-1)

)

η
(
Tt(xt,θ,xt-1)

) ρt(xt,θ,xt-1) (33)

is the unnormalized approximate posterior density and

ẑt =

∫
π̂(xt,θ,xt-1|y1:t)dxtdθdxt-1 =

∫
ν̂],t(ut,uθ,ut-1)dutduθdut-1,

is the normalizing constant. The last equality follows from the change of coordinates
defined by Tt.

There are many ways to defining the bridging density ρt and building the preconditioning
map Tt. In the following, we provide some examples of bridging densities relying on the
particular structure of qt, which is defined in (15).
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Figure 2: Left: approximation of qt (gray contours) using a single layer of TT-based ap-
proximation (red contours), in which Fourier basis of order 30 and a TT rank 24 is used.
Middle: preconditioned density using the tempering technique (cf. Section 5.3), in which
the nonlinear preconditioning transform is defined by a TT with Fourier basis of order 30
and a rank 12. Right: approximation of qt (gray contours) using the preconditioned ap-
proximation (blue contours), in which Fourier basis of order 30 and a TT rank 12 is used
in the preconditioned approximation.

5.2 Gaussian bridging and linear preconditioning

We consider a Gaussian approximation to the density qt as the bridging density, that is,
ρt(·) := N (·;µt,Σt), where µt ∈ R2m+d is the mean vector and Σt ∈ R(2m+d)×(2m+d) is
the covariance matrix. In each iteration, we can draw random variables from the previous
marginal approximation π̂(θ,xt-1|y1:t-1) and use one step of particle filter—for example,
a bootstrap filter—to estimate (µt,Σt) using particles. With ρt(·) := N (·;µt,Σt), we
compute the Cholesky factorization of Σt to obtain LtLt

> = Σt, where Lt is lower-triangular.
This defines a lower-triangular linear KR rearrangement T lt (xt,θ,xt-1) = L−1

t

(
[xt,θ,xt-1]>−

µt
)

that transforms (Xt,Θ,Xt-1) ∼ ρt into reference variables (U t,U θ,U t-1) following a
tensor-product zero mean standard Gaussian density η. The upper-triangular linear KR
rearrangement can also be derived by permuting the variables.

5.3 Tempering and nonlinear preconditioning

We employ the tempering idea, for example, Beskos et al. (2016); Gelman and Meng (1998);
Herbst and Schorfheide (2019) and Kantas et al. (2014), to build an unnormalized bridging
density

ρt(xt,θ,xt-1) = π̂(θ,xt-1|y1:t−1)βπf (xt|xt-1,θ)βf g (yt|xt,θ)βg , (34)

with some constants βπ, βf , βg ∈ [0, 1]. When βπ = βf = βg = 1, it recovers the target
density qt. By choosing appropriate constants (βπ, βf , βg)—for example, using the adap-
tation strategy discussed in Beskos et al. (2016) and Kantas et al. (2014)—to construct ρt
that is less concentrate than qt but retains some features of qt. We can apply the squared
approximation procedure to decompose

√
ρt into a TT φρ,t, approximate ρt by

ρ̂t(xt,θ,xt-1) := φρ,t(xt,θ,xt-1)2 + τρ,tλ(xt,θ,xt-1), (35)

with some τρ,t > 0, and derive the corresponding KR rearrangement Rt such that

(Rt)]ρ̂t(ξt, ξθ, ξt-1) ∝ uniform(ξt, ξθ, ξt-1).
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Given a diagonal map D such that D] η(ξt, ξθ, ξt-1) = uniform(ξt, ξθ, ξt-1), composing D−1

and Rt, we obtain Tt = D−1 ◦ Rt such that

(Tt)]ρ̂t(ut,uθ,ut-1) ∝ η(ut,uθ,ut-1).

In this construction, the preconditioned target density q],t—which is originally defined
in (31)—becomes

q],t(ut,uθ,ut-1) :=
qt
(
T −1
t (ut,uθ,ut-1)

)

ρ̂t
(
T −1
t (ut,uθ,ut-1)

)η(ut,uθ,ut-1),

where the exact bridging density ρt is replaced with ρ̂t, which is the pushforward of the
reference density under the preconditioning map Tt. As a consequence, the unnormalized
approximate density in (33) becomes

π̂(xt,θ,xt-1|y1:t) =
ν̂],t
(
Tt(xt,θ,xt-1)

)

η
(
Tt(xt,θ,xt-1)

) ρ̂t(xt,θ,xt-1).

5.4 Marginalization and conditional maps

After building the preconditioned approximation, we need to integrate the approximate
density π̂(xt,θ,xt-1|y1:t) over xt-1, so that the marginal density

π̂(xt,θ|y1:t) =

∫
π̂(xt,θ,xt-1|y1:t)dxt-1

can be used in the next iteration of Alg. 2. In addition, we also need to derive the lower and
upper conditional KR rearrangements to be used in path estimation and particle filtering,
respectively. We use the lower-triangular KR rearrangements S lt and T lt , which respectively
take the form

S lt(ut,uθ,ut-1) =



S lt,t (ut)

S lt,θ (uθ |ut)
S lt,t-1(ut-1|ut,uθ)


 and T lt (xt,θ,xt-1) =



T lt,t (xt)

T lt,θ (θ |xt)
T lt,t-1(xt-1|xt,θ)


 ,

as well as nonlinear preconditioning defined above, to outline how to carry the marginal-
izations and conditional sampling.

Because the composition S lt◦T lt is also lower triangular, we can apply a similar derivation
to that of Proposition 4 to compute the marginal density π̂(xt,θ|y1:t). The necessary steps
for computing π̂(xt,θ|y1:t) is integrated with the preconditioned density approximation
procedure, and thus we summarize them together in Alg. 5, which replace steps (b) and (c)
of the sequential estimation algorithm (Alg. 2).

Algorithm 5: Preconditioned replacements for steps (b) and (c) of the sequential estimation
algorithm (Alg. 2).

(b.1) Approximate the bridging density ρt(xt,θ,xt-1) by the TT-based approximate density
ρ̂t(xt,θ,xt-1) defined in (35).
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(b.2) Integrate ρ̂t(xt,θ,xt-1) from the right variable xt-1,m to the left variable xt,1 using
Proposition 2 to define lower-triangular preconditioning map T lt , the lower conditional
map T lt,t-1(xt-1|xt,θ), and the marginal density ρ̂t(xt,θ).

(b.3) Approximate the pushforward density q],t(ut,uθ,ut-1) by the TT-based approxima-
tion ν̂],t(ut,uθ,ut-1) defined in (32).

(c.1) Integrate the last block of ν̂],t(ut,uθ,ut-1) from the right variable ut-1,m to the left
variable ut-1,1 using Proposition 2 to define the marginal density ν̂],t(ut,uθ) and the
lower conditional map S lt,t-1(ut-1|ut,uθ).

(c.2) Using the lower-triangular transformation (ut,uθ) = (T lt,t(xt), T lt,θ(θ|xt)), we have the
marginal density

π̂(xt,θ|y1:t) =
ν̂],t
(
T lt,t(xt), T lt,θ(θ|xt)

)

η
(
T lt,t(xt), T lt,θ(θ|xt)

) ρ̂t(xt,θ),

which will be used in the next iteration of the sequential estimation.

As a byproduct, steps (b.2) and (c.1) of Alg. 5 also define the last block of the composite
map S lt ◦ T lt , which can be expressed as

F lt,t-1(xt-1|xt,θ) := S lt,t-1
(
T lt,t-1(xt-1|xt,θ)

∣∣T lt,t(xt), T lt,θ(θ|xt)
)
.

This precisely gives the lower conditional map for the path estimation (Alg. 4).

6. Numerical results

We provide several numerical examples to demonstrate the efficiency of our TT-based meth-
ods. These include a linear Kalman filter controlled by unknown parameters, in which the
posterior density of the parameters has an analytical form; a stochastic volatility model
(cf. Example 1) commonly used in the literature for benchmarking sequential algorithms;
a high-dimensional compartmental susceptible-infectious-removed model following the Aus-
trian state adjacency map; and a dynamical system modelling the interaction of a predator-
prey system. We also compare our method to SMC2 when it is applicable. For all the
numerical examples reported here, we compute the 25%, 50%, 75% quantiles of the effective
sample sizes using 40 repeated experiments from smoothing samples obtained in Alg. 4.

6.1 Linear Kalman filter with unknown parameters

Setup. Our first example considers a linear Kalman filter with unknown parameters, in
which the state process and the observation process take the form:

{
Xt − µ = b (Xt-1 − µ) + aε

(x)
t

Y t = CXt + dε
(y)
t

, (36)

where ε
(x)
t and ε

(y)
t follow independent Gaussian distributions N (0, Im) and N (0, In), and

C ∈ Rn×m is the observation matrix. Here Im represents an m ×m identity matrix. The
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prior density of the initial state X0 is given by p(x0|µ) := N (x0;µ1, Im), where 1 is the
m-dimensional vector filled with ones. The parameters controlling the model are collected
as θ = (µ, a, b, d).

Conditioned on the parameters, the joint state filtering density p(x0:t|θ,y1:t) follows
a multivariable Gaussian distribution, which can be derived from the classical Kalman
filter. Integrating over the states, we obtain an explicit form of the posterior parameter
density p(θ|y1:t) =

∫
p(x0:t,θ|y1:t)dx0:t. Although the posterior parameter density cannot

be directly sampled, we can evaluate the density pointwisely for any given parameter θ,
and thus we can use the model in (36) to benchmark the performance of various estimation
algorithms—for example, this enables us to estimate the Hellinger distance between the
exact posterior parameter density p(θ|y1:t) and its approximation p̂(θ|y1:t) obtained by
Alg. 2. For the sake of completeness, we include the derivation of the posterior parameter
density p(θ|y1:t) in Appendix B.

In our numerical experiment, we take m and n to be three and let the total number
of time steps T be 50. Additionally, we set µ = 0 and set the observation matrix C to
be a prescribed random value. We impose the condition a2 + b2 = 1 such that the state
process Xt is stationary. Thus, the parameters to be estimated are reduced to θ = (a, d).
We impose a uniform prior density p(θ) := uniform(θ; [0.4, 1]2) on the parameters, and
generate the synthetic data Y t using a = 0.8 and d = 0.5 in the numerical experiments.
When building TT approximations, we transform the parameters to an unbounded domain
using the inverse distribution function of the standard Gaussian distribution to facilitate
the linear preconditioning techniques in Sec. 5.2.

Comparison of Alg. 1 and 2. We start with the comparison between Alg. 1 and 2.
For both algorithms, we use 5 alternating least square (ALS) iterations to construct TT
decompositions. Note that using two ALS iterations is sufficient in most of the situations
presented here. We use a rather large number of ALS iterations to eliminate possible error
sources in our benchmarks. The TT decomposition used here employs a piecewise Lagrange
basis function defined by four subintervals and polynomials with order eight. We consider
maximum TT ranks r ∈ {10, 20, 30} in this comparison.

Following the discussion of Section 4, we use the relative L1 error of posterior parameter
densities, ‖π̂(θ|y1:t)− π(θ|y1:t)‖L1/‖π(θ|y1:t)‖L1 , to benchmark the accuracy of these TT-
based algorithms. Note that the denominator ‖π(θ|y1:t)‖L1 is also the normalizing constant
of the posterior density. Fig. 3 shows the change of the relative L1 error over time. For both
algorithms, we observe that the error accumulations behave similarly, and relative errors
reduce with increasing TT ranks. For all TT ranks, Alg. 2 is more accurate than Alg. 1.
In the other numerical experiments, we only demonstrate the performance of Alg. 2 and its
accompanying sampling algorithms.

Demonstration of Alg. 2 and debiasing. Since the non-negativity-preserving Alg. 2
is the workhorse of this paper, here we thoroughly demonstrate its accuracy and the sam-
pling performance of the accompanying path estimation algorithm (Alg. 4) with various
algorithmic settings. In all experiments, we use five ALS iterations to construct TT decom-
positions and piecewise basis functions defined on four subintervals with Lagrange polyno-
mials. We denote the number of degrees of freedom of the basis functions by `.

In the first set of numerical experiments, we vary the number of degrees of freedom of
the piecewise basis functions ` and the maximum TT rank r to investigate their impacts
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Figure 3: Linear Kalman filter with unknown parameters. The relative L1 error of approx-
imations of posterior parameter densities built by Alg. 1 and 2.
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Figure 4: Linear Kalman filter with unknown parameters. The Hellinger distances (blue
lines) between the theoretical posterior parameter density and its TT approximation, and
the ESS (red lines) for the joint posterior of the states and the parameters at time t ∈
{30, 50}. Left: changing the number of degrees of freedom of the basis functions ` with a
fixed maximum TT rank r = 15. Right: changing the maximum TT rank r with a fixed
number of degrees of freedom of the basis functions ` = 33.

on the accuracy of TT-based methods. We first fix the maximum TT rank r to be 15 and
vary ` = {17, 25, 33, 41, 49} by fixing the number of subintervals to be four and increasing
the order of the Lagrange polynomials. For each `, we run Alg. 2 for t up to 50 and apply
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the path estimation (Alg. 4) using N = 1000 sample paths at t ∈ {30, 50}. For each of
the approximate posterior parameter densities, we report the Hellinger distance and the
effective sample size (ESS)—for the joint density p(θ,x0:t|y1:t)—at t ∈ {30, 50} in the left
plot of Fig. 4. We observe that increasing the number of degrees of freedom of the basis
functions only marginally improves the accuracy. Then we fix the number of degrees of
freedom ` to be 33 with order-eight Lagrange polynomials on four subintervals, and vary
the maximum TT rank r ∈ {10, 15, 20, 25, 30}. The resulting Hellinger distances and ESSs
are shown in the right plot of Fig. 4. In this case, we observe a significant error reduction
with increasing TT ranks.
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time step

DH, parameter

0 25 50
50%

75%

100%

time step

ESS, joint

rank 15
rank 30
nonlinear

0 25 50
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100%

time step
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Figure 5: Linear Kalman filter with unknown parameters. Left: the Hellinger distance
between the theoretical posterior parameter density p(θ|y1:t) and its TT approximations
versus time. Middle: the ESS of the path estimation (Alg. 4) for sampling the joint posterior
p(θ,x0:t|y1:t) versus time. Right: the ESS for sampling the posterior parameter density
p(θ|y1:t) versus time.

In the second set of numerical experiments, we demonstrate the impact of precondi-
tioning techniques. Here we consider two approximation ansatzes with (`, r) = (33, 15)
and (`, r) = (33, 30) using linear preconditioning (cf. Section 5.2) and another ansatz
(`, r) = (33, 15) using nonlinear preconditioning (cf. Section 5.3). For nonlinear pre-
conditioning, we use a standard multivariate Gaussian for the reference density η and
βπ = βf = βg = 0.4 to construct the bridging density. For each t ∈ {5, 10, . . . , 50}, we
report the Hellinger distance, the ESS of the path estimation (Alg. 4) for the joint den-
sity, and the ESS of the approximate posterior parameter density. The results are shown
in Fig. 5. In the linear preconditioning case, we observe that the approximation ansatz
(`, r) = (33, 30) outperforms the approximation ansatz (`, r) = (33, 15) at all time steps,
which is expected. We also observe that the performance of the nonlinear precondition-
ing technique using the approximation ansatz (`, r) = (33, 15) is comparable with that of
linear preconditioning with a higher-rank approximation ansatz (`, r) = (33, 30). For both
(`, r) = (33, 15) using nonlinear preconditioning and (`, r) = (33, 30) using linear precondi-
tioning, the Hellinger distance remains below 0.05 for all time steps, while the ESSs for the
joint densities and the marginal parameter densities are respectively around 80% and 98%
after 50 time steps. These results provide strong evidence of the reliability of the TT-based
sequential estimation methods.

Comparison with SMC2. We compare Alg. 2 with (`, r) = (33, 30) and (`, r) =
(33, 15) to the SMC2 method. We consider two setups for the SMC2 method. One uses a
particle size Nθ = 500 for the parameters and another one uses an increased particle size
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Figure 6: Linear Kalman filter with unknown parameters. The contours of posterior den-
sities of θ = (a, d) at different time. From the top row to the bottom row, blue lines are
results obtained by Alg. 2 with (`, r) = (33, 15), Alg. 2 with (`, r) = (33, 30), SMC2 with
500 particles, and SMC2 with 5000 particles, respectively. The marginal densities are shown
by red curves on each side. The analytical solutions are plotted as thick gray curves at the
background. For SMC2, the marginal densities are results obtained from 5 batches, whereas
the contours are results obtained by putting all batches together.

Nθ = 5000. In all numerical experiments, the particle size for the states is initially set to
Nx = 100 and adaptively increased so that the acceptance rate of the parameter particles
remains a relatively high level (Chopin et al., 2013). In our setup, the computational cost
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of running SMC2 with (Nθ, Nx) = (500, 100) is about the same as running Alg. 2 with
(`, r) = (33, 30). Both take roughly 10 minutes using a 3.20 GHz Intel i7-8700 CPU. In
Fig. 6, we present contours of the posterior parameter densities and their one-dimensional
marginals at t ∈ {10, 30, 50} estimated using various algorithms. For SMC2, we follow the
setup of Chopin et al. (2013) to run five independent batches of particles, and then apply the
kernel density estimation (KDE) method (Silverman, 1986; Peter D, 1985) to estimate the
joint density using the union of the five batches and the one-dimensional parameter marginal
density of each batch. Both TT-based setups perform better than the SMC2-based setups.
The approximate posterior parameter densities from TT with (`, r) = (33, 30) accurately
capture the true densities at all time steps, while those from SMC2 do not have a consistent
result across different batches, especially with (Nθ, Nx) = (500, 100).

6.2 Stochastic volatility

Our second numerical example uses the stochastic volatility model defined in Example 1.
We test Alg. 2 and Alg. 4 on synthetic data sets and a real-world data set taken from the
S&P 500 index.

Synthetic data. We fix σ = 1 and aim to estimate parameters θ = (γ, β). We
consider the sequential estimation problems for T = 1000 steps. Here γ = 0.6 and β =
0.4 are used to generate synthetic data. We set the prior density of the initial state to
be p(x|θ) := N (x; 0, 1/(1 − γ2)) and the prior density of the parameters to be p(θ) :=
uniform(θ; [0.1, 0.9]2). Since the analytical marginal densities are no longer available in this
example, we can only evaluate the 1002-dimensional joint posterior density of the parameters
and all the states (θ,x0:1000), and then estimate the corresponding joint ESS as a measure
of the approximation errors.
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Figure 7: Stochastic volatility model with synthetic data. The ESS for the joint posterior
density versus time, computed using different maximum TT ranks r ∈ {5, 10, 20}.

Similarly to the linear Kalman filter case, we use the piecewise Lagrange polynomial with
the number of degrees of freedom ` to be 33 as the basis function, linear preconditioning,
and five ALS iterations for building TT decompositions in Alg. 2. The accompanying path
estimation algorithm (Alg. 4) is used to generate weighted samples from the resulting TT-
based approximations. We set the maximum TT rank to be r ∈ {5, 10, 20} and show the
change of ESS over time in Fig. 7. We observe that with r = 5, the TT-based approximation
yields a reliable result with ESS above 20% even after 1000 steps, while with r = 10 it
provides nearly 100% ESS at almost all time steps. Fig. 8 presents the trajectories of the
states estimated from the approximate posterior state path density p̂(x0:1000|y1:1000) using
rank r = 10. We observe the true states are well followed by the trajectories estimated
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Figure 8: Stochastic volatility model with synthetic data. The thick brown line represents
the path of the true state and crosses are the observations. Estimated using the approximate
posterior state path density p̂(x0:1000|y1:1000) defined in (25) with a maximum TT rank
r = 10, the black line and the shaded region represent the median path and the credible
interval bounded between 5% and 95% percentiles, respectively.
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Figure 9: Stochastic volatility model with synthetic data. The brown line and the shaded
region in the horizontal (t, γ)-plane show the evolution of the median and the credible inter-
val of the posterior estimates of γ bounded between 5% and 95% percentiles. The density
profiles in the vertical axis show the approximate posterior parameter density p̂(γ|y1:t) at
different time.

from the approximations. In Fig. 9, we also show the approximate filtering densities of the
parameter γ from the TT-based approximations, that is, p̂(γ|y1:t) over time. We observe
that the densities get concentrated around the true value γ = 0.6 (for generating the data)
with an increasing amount of data observed over time.

Next, we compare the TT-based method with r = 10 to SMC2 with 5 independent
batches, each batch with Nθ = 1000 parameter particles and initially Nx = 100 state
particles. Fig. 10 shows the contours and the marginals of the posterior parameter densities
at t ∈ {400, 700, 1000} obtained by the TT-based method and SMC2. Both methods yield
densities that concentrate around the true values of the parameters used to generate the
data, that is, (γ, β) = (0.6, 0.4). However, the computation time of the TT-based method
is about one hour using a 3.20 GHz Intel i7-8700 CPU, while that for one batch of SMC2

method is over eight hours.

S&P 500 index. We then apply our algorithms to the daily returns of the S&P 500
index. The historical data of the stock prices are obtained from Yahoo Finance1. The
data set contains 1009 observations from 31st of December 2019 to 29th of December 2023,
excluding weekends and holidays. We compute the continuously compounded daily returns
{yt}Tt=1 from the stock prices, where T = 1008.

1. https://au.finance.yahoo.com/
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Figure 10: Stochastic volatility model with synthetic data. The contours of posterior den-
sities of θ = (γ, β) at different time. The top and bottom rows show results obtained by
Alg. 2 and SMC2 respectively. The marginal densities are shown on each side. For SMC2,
the marginal densities shown are results obtained from 5 batches with 1000 particles in each
batch, whereas the contours are results obtained by putting all batches together.

We aim to estimate the states {Xt}Tt=0 and all the three parameters Θ = (γ, σ, β) from
the observed daily returns {yt}Tt=1 of the S&P 500 index. Following the common practice
in econometrics (Zhang and Maxwell, 2008; Yu et al., 2006), we set the priors for Θ and
X0 as:

• (γ + 1)/2 ∼ Beta(ω1, ω2), with ω1 = 20, ω2 = 1.5.

• σ2 ∼ IG(ζ/2, Sσ/2), with ζ = 2, Sσ = 0.01, where IG stands for the inverse Gamma
distribution.

• log(β)|σ ∼ N (β0, σ
2/q0), with β0 = 0, q0 = 0.8.

• X0|γ, σ ∼ N
(
0, σ2/(1− γ2)

)
.

When building TT approximations, we transform the parameters and the states in the
stochastic volatility model to

Θ′ =
(
Φ−1(γ), log(σ), log(β)/σ

)
,

X ′t = Xt/σ,

where Φ denotes the distribution function of the standard Gaussian random variable. The
transformed parameters and states take values in an unbounded domain, so that the linear
preconditioning techniques developed in Sec. 5.2 can be applied. After obtaining the ap-
proximate densities of (Θ′,X ′t) using our TT-based methods, we transform them back to
the original variables (Θ,Xt) to present the estimation results.

We set the maximum TT rank to be r ∈ {5, 10, 20} and maintain the other TT con-
figurations used in the synthetic case. Fig. 11 shows the change of ESS over time. The
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Figure 11: Stochastic volatility model with the S&P500 returns. The ESS for the joint
posterior density at different time, computed using maximum TT ranks r ∈ {5, 10, 20}.
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Figure 12: Stochastic volatility model with the S&P500 returns. The observed returns
(top) and the estimated trajectories of squared volatilities (bottom). In the bottom plot,
the black line and the shaded region represent the median path and the credible interval
bounded between 5% and 95% percentiles, respectively. These estimation results are ob-
tained using the approximate posterior state path density p̂(x0:1008|y1:1008) defined in (25)
with a maximum TT rank r = 20.
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Figure 13: Stochastic volatility model with the S&P500 returns. The contours of posterior
densities of θ = (γ, σ, β) at T = 1008, estimated by Alg. 2. The marginal densities are
shown on each side.

ESS clearly increases with the TT rank, reaching around 70% after 1008 steps for r = 20.
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Fig. 12 shows the observed returns of the S&P 500 index during the selected period and
the trajectories of the squared volatilities estimated from the approximate posterior state
path density p̂(x0:1008|y1:1008) using rank r = 20. We observe that the highly volatile
returns around t = 300 are well captured by the peak of the estimated volatilities, and
the increasing variability of the returns after t = 800 is also captured by the increase in
the estimated volatilities in the corresponding timeframe. In Fig. 13, we also present the
approximate posterior densities of the parameters θ = {γ, σ, β} from the TT-based approx-
imations p̂(θ|y1:1008). We observe a highly nonlinear pattern between β and the other two
parameters. These results demonstrate that our TT-based sequential estimation methods
are effective for real-world data in this case.

6.3 Susceptible-infectious-removed model

We then apply our TT-based methods to a high-dimensional compartmental susceptible-
infectious-removed (SIR) model to demonstrate its dimension scalability. The SIR model
describes the numbers of susceptible, infectious and removed individuals across J ∈ N spa-
tially dependent demographic compartments, denoted by Sj(t), Ij(t) and Rj(t), respectively.
The interaction between them are modelled by the following coupled ODEs:





dSj
dt

= −κjSjIj + 1
2

∑
i∈Ij (Si − Sj)

dIj
dt

= κjSjIj − νjIj + 1
2

∑
i∈Ij (Ii − Ij)

dRj
dt

= νjIj + 1
2

∑
i∈Ij (Ri −Rj)

, (37)

where κj and νj are the parameters representing the infection and recovery rates, and Ij
is the index set containing all neighbors of the j-th compartment. We fix the parameters
κj = 0.1 and νj = 18 for j = 1, 2, . . . , J , and focus on the inference for Sj , Ij and Rj .

In the SIR model, it is sufficient to infer any two of the three random processes in
each compartment, and the third process is known given the other two. Here we infer the
processes Sj and Ij , and set the state to be

x = (S1, I1, . . . , SJ , IJ) ∈ R2J .

Then, the dynamic for the state follows

dx

dt
= G(x),

where G(x) is defined by the right-hand side of the first two equations in (37). To formulate
the state-space model, we discretize the dynamical system at discrete time points t = k∆t,

where ∆t = 0.02, and perturb the states using Gaussian noises ε
(x)
k ∼ N (0, I2J). Thus,

conditioned on the state Xk-1 at time (k − 1)∆t, the state Xk at time k∆t is given by

Xk = Xk-1 +

∫ k∆t

(k-1)∆t
G
(
x(t)

)
dt+ ε

(x)
k .
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We use the explicit fourth-order Runge-Kutta formula with constant time step sizes ∆t =
0.005 to numerically solve the above time integration problem. For the observation process,
we assume only Ij(t) is observable at each time step, and the observations are perturbed

by Gaussian noises ε
(y)
k ∼ N (0, 100 IJ). This defines the observation process

Y k,j = Xk,2j + ε
(y)
k,j , k = 1, 2, . . . , T, j = 1, 2, . . . , J.

V

T

Sa

K

St

O N

W

B

V - Vorarlberg

T - Tyrol

Sa - Salzburg

K - Carinthia

St - Styria

O - Upper Austria

N - Lower Austria

W - Vienna

B - Burgenland

Figure 14: Compartment connectivity graph of the Austrian states (Cui et al., 2024).

We consider the same realistic setting as in Cui et al. (2024), with J = 9 compartments
following the Austrian state adjacency map shown in Fig 14. We generate the synthetic
data for T = 20 time steps, with fixed inhomogeneous initial states Sj(0) = 485 + j and
Ij(0) = 15 − j, for j = 1, 2, . . . , 9. Subsequently, we impose a Gaussian prior on the
initial states p(x0) := N (x0;µ0, I18) where µ0 =

(
S1(0), I1(0), . . . , S9(0), I9(0)

)
. We aim to

estimate the 18-dimensional states from the partial observations, which poses a challenging
high-dimensional inference problem.

0 5 10 15 20

20%

60%

100%

time step

ESS
TT rank 40

TT rank 20

TT rank 10

Figure 15: SIR model. The ESS for the joint posterior density versus time, computed using
maximum TT ranks r ∈ {10, 20, 40}.

Similarly to the previous experiments, we employ Alg. 2 with linear preconditioning,
the piecewise Lagrange polynomial with the number of degrees of freedom ` to be 33, and
five ALS iterations. Nevertheless, we increase the maximum TT rank to r ∈ {10, 20, 40}
to accommodate the larger state dimensions in this experiment. Fig. 15 shows the change
of ESS over time. We observe that the large state dimension in this example requires TT
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Figure 16: SIR model. The trajectories of the number of susceptible and infectious indi-
viduals in Vorarlberg (left) and Styria (right). The thick brown curves are the true state
trajectories. The black curves represent the median posterior state path obtained by the
approximate density p̂(x0:20|y1:20), and the shaded region is the credible interval bounded
between 5% and 95% percentiles of the approximate smoothing densities.

ranks above r = 20 to achieve accurate results. In Fig. 16, we present the trajectories of
the first and middle dimensions of the state (Vorarlberg and Styria), estimated from the
approximate posterior state path density p̂(x0:20|y1:20) using rank r = 40. We observe
that the true dynamics are closely followed by the estimated trajectories, despite Sj being
unobservable and the observations for Ij being far from the true dynamics. These results
demonstrate a strong dimension scalability of our TT-based sequential estimation methods
in this case.

6.4 Predator-prey model

Finally, we consider the predator-prey model, which is a time-invariant dynamical system
in the form of 




dP

dt
= rP

(
1− P

K

)
− s
( P Q

a+ P

)

dQ

dt
= u

( PQ

a+ P
− vQ

) , (38)

where P and Q denote the prey population and the predator population, respectively.
There are six parameters, θ = (r,K, a, s, u, v), that control the behavior of the system.
To formulate the state-space model, we represent P and Q as x = (P,Q). This way, the
dynamical system in (38) can be equivalently expressed as

dx

dt
= G(x;θ),

where G(x;θ) is defined by the right-hand side of (38). Similarly to the previous SIR model,
we discretize the dynamical system at discrete time points t = k∆t, where ∆t = 2, and
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perturb the states using Gaussian noises ε
(x)
k ∼ N (0, 4 I2). This way, the state transition

process is given by

Xk = Xk-1 +

∫ k∆t

(k-1)∆t
G(x(t);θ)dt+ ε

(x)
k .

We still use the explicit fourth-order Runge-Kutta formula with constant time step sizes
∆t = 0.1 to numerically solve the above time integration problem. We observe x at the
same sequence of discrete time points, and the observations are perturbed by Gaussian

noises ε
(y)
k ∼ N (0, 4 I2). This defines the observation process

Y k = Xk + ε
(y)
k .

We generate synthetic observations using θ = (0.6, 114, 25, 0.3, 0.5, 0.5) and x0 = [50, 5]>

up to the terminal time T = 20. We impose a uniform prior on the parameters, p(θ) :=
uniform(x; [a,b]), where [a,b] ≡ [a1, b1] × · · · × [a6, b6] is a hypercube defined by a =
(0.1, 110, 20, 0.1, 0, 0) and b = (1.1, 130, 30, 1.1, 1, 1). Furthermore, we impose a Gaussian
prior on the initial states p(x0) := N (x0;µ0, I2) where µ0 = (50, 5).

0 2 4 6 8 10
0%

25%

50%

75%

100%

time step

ESS

nonlinear precondioning

linear preconditioning

Figure 17: Predator-prey model. The ESS for the joint posterior density versus time,
computed using different preconditioning techniques.
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Figure 18: Predator-prey model. The thick brown curves are the true trajectories, disconti-
nuity indicates the state noises at discrete time steps, and blue crosses are the observations.
The black curves represent the median posterior state path obtained by the approximate
density p̂(x0:20|y1:20), and the shaded region is the credible interval bounded between 5%
and 95% percentiles of the approximate smoothing densities.
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We first employ Alg. 2 with linear preconditioning, the piecewise Lagrange polynomial
with the number of degrees of freedom ` to be 33, a maximum TT rank r = 20, and five
ALS iterations. The accompanying path estimation algorithm (Alg. 4) is used to generate
weighted samples from the resulting TT-based approximations. In Fig. 17, the ESSs for the
joint posterior density of the parameters and all the states are represented by square markers
in blue. In this case, the ESS decreases rapidly. Instead of brutally increasing the rank to
enhance the approximation power of TT, we keep the same TT rank and apply the nonlinear
preconditioning technique. Here we use the bridging density (34) with βπ = βf = βg = 0.4
and a standard multivariate Gaussian reference density. With nonlinear preconditioning,
the ESSs are shown by red circles in Fig. 17. We observe that nonlinear preconditioning
significantly increases the ESS, where it remains at about 40% after 20 steps. In Fig. 18, we
also present the trajectories of the states estimated from the approximate posterior state
path density p̂(x0:20|y1:20) with nonlinear preconditioning and the true state trajectory.
The curves between the two adjacent states xk-1 and xk are the solution of the dynamical
system (38) with initial condition x = xk-1. We observe that the true trajectories are well
followed by the approximations.

7. Conclusion and further extensions

We present new TT-based methods to sequentially learn the posterior distributions of states
and parameters of state-space models. Our main innovation is the recursive approximation
of posterior densities using TT rather than relying on (weighted) particle representations.
Using the square-root approximation technique (cf. Section 3), we derive conditional KR
rearrangements that map reference random variables to the approximated posterior ran-
dom variables. As a result, this defines the particle filtering, path estimation and particle
smoothing algorithms accompanying the recursive TT-based approximations.

This work opens the door to many future research directions. For example, one can
integrate our TT-based methods into SMC methods (Chopin et al., 2013; Crisan and Miguez,
2018), in which TT-based methods can potentially provide more efficient particle filters and
MCMC proposal kernels for SMC. The KR rearrangements offered by our methods also
open the door to integrating other structured particle sets—for instance, quasi Monte Carlo
points, see Dick et al. (2013) and references therein—into sequential learning algorithms to
improve the rate of convergence of estimators. This integration can significantly complement
the Hilbert space-filling curve technique used by the sequential quasi Monte Carlo method
(Gerber and Chopin, 2015).

Further research is needed to understand the rank structure of TT decompositions in
state-space models—particularly on the impact of the Markov property—which may provide
a posteriori error bounds to certify the algorithms presented here. The function approx-
imation perspective of the work presented here is not limited to the TT decomposition.
Other function approximation methods based on separable bases—for example, Gaussian
processes and radial basis functions (Wendland, 2004; Williams and Rasmussen, 2006) with
product-form kernels, multivariate wavelet and Fourier bases (Daubechies, 1992; de Boor
et al., 1993; DeVore and Popov, 1988; Mallat, 1989), and sparse grids and spectral poly-
nomials (Bungartz and Griebel, 2004; Shen et al., 2011; Xiu and Karniadakis, 2002)—can
also be used to approximate posterior densities and compute their marginal densities. See
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Cui et al. (2023) for the preliminary investigations in stationary inference problems. This
offers a pathway to designing problem-specific function approximation methods for sequen-
tial learning. For instance, state transition processes governed by certain partial differential
equations may yield a hyperbolic-cross structure (Dũng et al., 2018) suitable for sparse
spectral polynomials.

Dimension scalability is a limitation of the TT decomposition and general transport-
map methods. Although the complexity of building the TT decomposition can be dimension
independent for functions equipped with rapid decaying weights (Griebel and Harbrecht,
2023)—which is the case for many high- or infinite-dimensional problems (Stuart, 2010)—it
is still computationally prohibitive to operate with the apparent state and parameter dimen-
sions for very high-dimensional systems such as weather forecasts. A possibility of reducing
the number of variables in the approximation problem is to use the conditional Gaussian
structure of certain state-space models (Chen et al., 2022, 2018; Chen and Majda, 2018) to
marginalize high-dimensional conditional Gaussian variables analytically. Then, one only
needs to apply TT-based approximations to the rest of the non-Gaussian variables. For
a broader range of state-space models, there may exist approximate conditional Gaussian
structures and similar structures that allow for analytical marginalization. In ongoing work,
we are extending likelihood-informed subspace methods (Cui et al., 2014; Cui and Tong,
2022; Zahm et al., 2022) to state-space models to identify these intrinsic structures.
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Appendix A. f-divergence of marginal random variables

Commonly used statistical divergences such as the Kullback–Leibler divergence, the total
variation distance and the squared Hellinger distance are instances of the f -divergence.
Briefly, given a convex function f(·), the f -divergence is defined as

Df (p‖q) =

∫
f
(p(x)

q(x)

)
q(x)dx.

The following lemma bounds the f -divergence of marginal random variables by the corre-
sponding f -divergence of joint random variables.

Lemma 13 Let p1(x1,x2) and p2(x1,x2) be two joint densities, and p̄1(x1) and p̄2(x1) be
the marginal densities of p1 and p2, respectively. The f -divergence of p̄1 from p̄2 is bounded
from above by that of p1 from p2, that is, Df (p̄1‖p̄2) ≤ Df (p1‖p2).

Proof Since the function f is convex, applying Jensen’s inequality, we have

Df (p1‖p2) = Ep2(x1,x2)

[
f
(p1(X1,X2)

p2(X1,X2)

)]
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=

∫ (∫
f
(p1(x1,x2)

p2(x1,x2)

)p2(x1,x2)

p̄2(x1)
dx2

)
p̄2(x1)dx1

≥
∫
f
(∫ p1(x1,x2)

p2(x1,x2)

p2(x1,x2)

p̄2(x1)
dx2

)
p̄2(x1)dx1

=

∫
f
(∫ p1(x1,x2)

p̄2(x1)
dx2

)
p̄2(x1)dx1

=

∫
f
( p̄1(x1)

p̄2(x1)

)
p̄2(x1)dx1 = Df (p̄1‖p̄2),

which concludes the proof.

When the densities are only known up to some constants, the L2 distance between the
square root of the unnormalized marginal densities is also bounded by the L2 distance
between their unnormalized joint densities. This is shown in the following lemma.

Lemma 14 Let π1(x1,x2) and π2(x1,x2) be two unnormalized densities. Then, we de-
note their corresponding unnormalized marginal densities by π̄1(x1) =

∫
π1(x1,x2)dx2 and

π̄2(x1) =
∫
π2(x1,x2)dx2. The L2 distance between

√
π̄1 and

√
π̄2 is bounded from above

by the L2 distance between
√
π1 and

√
π2, that is, ‖√π̄1 −

√
π̄2‖L2 ≤ ‖√π1 −

√
π2‖L2 .

Proof The L2 distance between
√
π1 and

√
π2 can be expressed as

‖√π1 −
√
π2‖2L2 =

∫ ∫ (√
π1(x1,x2)−

√
π2(x1,x2)

)2
dx1dx2

=

∫ ∫ (√
π1(x1,x2)

π2(x1,x2)
− 1

)2

π2(x1,x2)dx1dx2

=

∫ ∫ (√
π1(x1,x2)

π2(x1,x2)
− 1

)2π2(x1,x2)

π̄2(x1)
dx2π̄2(x1)dx1.

Since f(r) = (
√
r−1)2, r ≥ 0 is a convex function, applying Jensen’s inequality to the inner

integral over x2, the rest of the proof follows the same steps of Lemma 13.

Lemma 14 is useful to establish the bound for the divergence between two unnormal-
ized marginal densities given the divergence bound between their joint densities. However,
Lemma 14 implicitly assumes that both unnormalized joint functions (densities) are non-
negative by construction, which is generally not true when π2 is a function approximation
of π1. The following lemma does not restrict the approximate functions to be non-negative,
and gives a similar result under the L1 distance, which is analogous to the total variation
distance for normalized densities.

Lemma 15 Let π1(x1,x2) be an unnormalized density and π̄1(x1) =
∫
π1(x1,x2)dx2 be

its marginal density. Suppose π1(x1,x2) has an approximation π2(x1,x2), which does not
preserve non-negativity, and let π̄2(x1) =

∫
π2(x1,x2)dx2 be the corresponding marginal

function. The L1 distance between π̄1 and π̄2 is bounded from above by the L1 distance
between π1 and π2, that is, ‖π̄1 − π̄2‖L1 ≤ ‖π1 − π2‖L1 .
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Proof The L1 distance between π1 and π2 can be expressed as

‖π1 − π2‖L1 =

∫ ∫ ∣∣π1(x1,x2)− π2(x1,x2)
∣∣dx1dx2

=

∫ ∫ ∣∣∣∣
π2(x1,x2)

π1(x1,x2)
− 1

∣∣∣∣π1(x1,x2)dx1dx2

=

∫ ∫ ∣∣∣∣
π2(x1,x2)

π1(x1,x2)
− 1

∣∣∣∣
π1(x1,x2)

π̄1(x1)
dx2π̄1(x1)dx1.

Since f(r) = |r − 1| is a convex function, applying Jensen’s inequality to the inner integral
over x2, the rest of the proof follows the same steps of Lemma 13.

Appendix B. Posterior densities of the linear Kalman filter with
unknown parameters

We recall that the linear Kalman filter specifies the state and observation processes as
{
Xt − µ = b (Xt-1 − µ) + a ε

(x)
t

Y t = CXt + d ε
(y)
t

, (39)

where ε
(x)
t and ε

(y)
t follow respectively independent Gaussian distributions N (0, Im) and

N (0, In), and C ∈ Rn×m is the observation matrix. Here Im represents an m ×m identity
matrix. The prior density of the initial state X0 is given by p(x0|µ) := N (x0;µ1m, Im),
where 1m is an m-dimensional vector filled with ones. Without loss of generality, we set µ
to be zero to simplify notation used in the derivation. This way, the parameters controlling
the model are collected as θ = (a, b, d). It is well known that the filtering density (Xt|Θ =
θ,Y 1:t = y1:t) and the smoothing density (Xk|Θ = θ,Y 1:t = y1:t) for any k < t are
Gaussian conditioned on Θ = θ. See Särkkä (2013) and reference therein for details. Using
this property, here we derive the analytical form of the posterior parameter density p(θ|y1:t).

As a starting point, we collect all the quantities from time 0 to t in vectorized forms,

X̄ = [X0; . . . ;Xt] ∈ Rm(t+1),

Ȳ = [Y 1; . . . ;Y t] ∈ Rnt,

ε̄(x) = [ε
(x)
0 ; . . . ; ε

(x)
t ] ∈ Rm(t+1),

ε̄(y) = [ε
(y)
1 ; . . . ; ε

(x)
t ] ∈ Rnt,

where ε
(x)
0 ∼ N (0, Im) is independent of the other state noises ε

(x)
k , k ≥ 1. Corresponding to

the collected states X̄ and the collected observations Ȳ , we define the joint state transition
matrix Aθ ∈ Rm(t+1)×m(t+1) and the joint observation matrix H ∈ Rnt×m(t+1) as

Aθ =




a Im
−b Im Im

−b Im Im
. . .

. . .

−b Im Im




and H =




0 C
0 C

0 C
. . .

. . .

0 C



,
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respectively, where 0 denotes a matrix of size n×m filled with zeros. Then, the state and
observation processes defined in (39) can be equivalently expressed as

X̄ = aA−1
θ ε̄(x), Ȳ = HX̄ + d ε̄(y). (40)

The joint posterior density of the state path X0:t ≡ X̄ and the parameters Θ takes the
form

p(x̄,θ|ȳ) =
1

p(ȳ)
p(ȳ|x̄,θ)p(x̄|θ)p(θ).

Our goal is to derive the posterior parameter density

p(θ|ȳ) =

∫
p(x̄,θ|ȳ)dx̄ =

1

p(ȳ)
p(θ)p(ȳ|θ), (41)

where p(ȳ|θ) is the marginal likelihood defined as

p(ȳ|θ) =

∫
p(ȳ|x̄,θ)p(x̄|θ)dx̄.

Combining the two equations in (40), we obtain

Ȳ = aHA−1
θ ε̄(x) + d ε̄(y).

Note that ε̄(x) and ε̄(y) are independent Gaussian random variables. Thus, conditioned on
the parameters Θ = θ, the observations Ȳ follow a multivariate Gaussian distribution:

(Ȳ |Θ = θ) ∼ N (ȳ; 0, Σ̄θ) where Σ̄θ = a2HA−1
θ A−>θ H> + d2 Int.

To be more specific, we have

p(ȳ|θ) = (2π)−nt/2 det(Σ̄θ)−1/2 exp
(
− 1

2
ȳ>Σ̄−1

θ ȳ
)
.

The explicit form of the posterior parameter density follows from (41).
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