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Abstract

In this paper, we present a comprehensive study on the convergence properties of
Adam-family methods for nonsmooth optimization, especially in the training of non-
smooth neural networks. We introduce a novel two-timescale framework that adopts
a two-timescale updating scheme, and prove its convergence properties under mild
assumptions. Our proposed framework encompasses various popular Adam-family
methods, providing convergence guarantees for these methods in training nonsmooth
neural networks. Furthermore, we develop stochastic subgradient methods that in-
corporate gradient clipping techniques for training nonsmooth neural networks with
heavy-tailed noise. Through our framework, we show that our proposed methods
converge even when the evaluation noises are only assumed to be integrable. Ex-
tensive numerical experiments demonstrate the high efficiency and robustness of our
proposed methods.
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1. Introduction

In this paper, we consider the following unconstrained nonlinear optimization problem

min
x∈Rn

f (x), (UNP)

where f is nonconvex, locally Lipschitz continuous and possibly nonsmooth over Rn.
The optimization problem in the form of UNP has numerous important applications

in machine learning and data science, especially in training deep neural networks. In
these applications of UNP, we usually only have access to the stochastic evaluations of
the exact gradients of f . The stochastic gradient descent (SGD) is one of the most popular
methods for solving UNP, and incorporating the momentum terms to SGD for acceleration
is also very popular in practice. In SGD, the updating rule depends on the stepsizes (i.e.,
learning rates), where all of the coordinates of the variable x are equipped with the same
stepsize. Recently, a variety of accelerated versions for SGD are proposed. In particular, the
widely used Adam algorithm (Kingma and Ba, 2015) is developed based on the adaptive
adjustment of the coordinate-wise stepsizes and the incorporation of momentum terms in
each iteration. These enhancements have led to its high efficiency in practice. Motivated
by Adam, a number of efficient Adam-family methods are developed, such as AdaBelief
(Zhuang et al., 2020), AMSGrad (Reddi et al., 2018), NAdam (Dozat, 2016), Yogi (Zaheer
et al., 2018), etc.

Towards the convergence properties of these Adam-family methods, Kingma and Ba
(2015) shows the convergence properties for Adam with constant stepsize in minimizing a
Lipschitz continuously differentiable objective function f . Then a great number of existing
works are conducted to establish the convergence properties of Adam-family methods, see
(De et al., 2018; Zaheer et al., 2018; Zou et al., 2019; Barakat and Bianchi, 2021; Guo et al.,
2021; Shi et al., 2021; Zhang et al., 2022; Wang et al., 2022) for more information. Some of
these existing works (Zou et al., 2019; Guo et al., 2021; Shi et al., 2021; Barakat and Bianchi,
2021; Wang et al., 2022; Zhang et al., 2022) adopt diminishing stepsizes to ensure the almost
surely convergence to stationary points of f for Adam, while some other existing works
(De et al., 2018; Zaheer et al., 2018) fix the stepsize as constant and show that the sequence
converges to a neighborhood of the stationary points of f . A comparison of the results of
these existing works is presented in Table 1.

Despite extensive studies on Adam-family methods, most existing works focus on the
cases where f is differentiable over Rn, as depicted in Table 1. However, nonsmooth activa-
tion functions, including ReLU and leaky ReLU, are very popular choices in building neu-
ral networks in practice (Ming et al., 2018; Fu et al., 2020, 2021; Wang et al., 2023), and most
of the existing works (e.g., the works listed in Table 1) test their analyzed Adam-family
methods on the neural networks built by nonsmooth activation functions. As highlighted
in (Bolte and Pauwels, 2021; Bianchi et al., 2022), when we build a neural network by
nonsmooth blocks, the corresponding loss function is typically nonsmooth and not Clarke
regular. Consequently, although numerous existing works establish the convergence prop-
erties for Adam and its variants, their results are not applicable to the analysis of these
Adam-family methods in training nonsmooth neural networks. This naturally leads us to
the following question:
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Beyond differentiability Beyond global Lipschitz Nesterov mo. A.s. convergence Stepsize
Our work 3 3 3 3 o(1/ log(k))

Dozat (2016) 7 7 3 7 No convergence result
De et al. (2018) 7 7 7 7 Constant

Zou et al. (2019) 7 7 7 3 O(k−s), s ∈ (0, 1]
Zaheer et al. (2018) 7 7 7 7 Constant

Guo et al. (2021) 7 7 7 3 Square-summable
Shi et al. (2021) 7 7 7 3 Square-summable

Barakat and Bianchi (2021) 7 3 7 3 Square-summable
Wang et al. (2022) 7 3 7 3 Square-summable
Zhang et al. (2022) 7 7 7 3 Square-summable
Chen et al. (2022) 7 7 7 3 O(k−s), s ∈ (0, 1]

Table 1: Comparison of existing results on the convergence of Adam. Here “mo.” is the abbrevi-
ation for “momentum”. The term “A.s. convergence” refers to whether the sequence converges to
stationary points of f rather than to a neighborhood of these stationary points almost surely.

Do Adam-family methods have any convergence guarantees in minimizing
nonsmooth functions under practical settings, especially in training nonsmooth
neural networks?

1.1 Challenges from Training Nonsmooth Neural Networks

In training nonsmooth neural networks, one of the major challenges lies in how to dif-
ferentiate their loss functions. These functions are typically formulated as compositions of
elementary blocks that may not be smooth. To address this issue, automatic differentia-
tion (AD) algorithms have been widely adopted in various well-known machine learning
packages, such as PyTorch, TensorFlow, JAX, MindSpore, and PaddlePaddle. Based on
the chain rule, the AD algorithms can efficiently compute the gradients for those functions
expressed through the composition of elementary differentiable blocks. However, as the
chain rule fails for Clarke subdifferential, when we differentiate a neural network built
from nonsmooth blocks by those AD algorithms, the results may not be contained in the
Clarke subdifferential of its loss function. As pointed out in Bolte and Pauwels (2021),
most of the existing works ignore this issue. They use AD algorithms in training nons-
mooth neural networks, but assume differentiability or weak convexity for the objective
functions in their theoretical analysis to bypass these theoretical issues arising from the
application of AD algorithms. Based on the chain rule for directional derivatives, some
existing works (Barton et al., 2018) propose specifically designed forward mode AD algo-
rithms for evaluating the elements in lexicographic subdifferential (Nesterov, 2005), which
is contained in the Clarke subdifferential. However, as described in Bolte et al. (2021), these
approaches have expensive computational costs and require significant modifications to
the algorithms in existing machine learning packages, and hence are less applicable to
practical scenarios.

To understand how AD algorithms differentiate the loss functions of nonsmooth neural
networks, Bolte and Pauwels (2021) introduces the concept of the conservative field as a gen-
eralization of Clarke subdifferential for its corresponding potential functions. The class of
potential functions includes semi-algebraic functions, semi-analytic functions, and func-
tions whose graphs are definable in some o-minimal structures, hence covering the ob-
jective functions in a wide range of real-world applications (Davis et al., 2020; Bolte and
Pauwels, 2021). The conservative field preserves the validity of the chain rule for nons-
mooth functions, explaining the results generated by AD algorithms from various popular
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numerical libraries such as PyTorch, TensorFlow, JAX, etc. Based on the concept of con-
servative field, we can characterize the stationarity and design algorithms for the uncon-
strained nonsmooth optimization, especially when the objective function is differentiated
by AD algorithms. Interested readers can refer Bolte and Pauwels (2021) for more detailed
properties of the conservative field.

The theoretical properties of the conservative field enable us to investigate the conver-
gence properties of stochastic subgradient algorithms, especially when applied to train
nonsmooth neural networks with AD algorithms. Some existing frameworks (Benaı̈m
et al., 2005; Davis et al., 2020; Bolte and Pauwels, 2021) establish the convergence prop-
erties for stochastic subgradient methods by analyzing the limiting behaviour of their
corresponding differential inclusions, and prove that these methods converge to station-
ary points of f in the sense of its corresponding conservative field D f . Based on these
frameworks, some recent works (Davis et al., 2020; Bolte and Pauwels, 2021; Hu et al.,
2023) prove the convergence properties for SGD and proximal SGD. Moreover, Castera
et al. (2021) proposes the inertial Newton algorithm (INNA), which can be regarded as a
variant of SGD with heavy-ball momentum. Additionally, Ruszczyński (2020); Le (2023)
show the convergence property of SGD with heavy-ball momentum for nonsmooth non-
convex functions from the Norkin class. For Adam and its variants, some existing works
(Da Silva and Gazeau, 2020; Barakat and Bianchi, 2021; Gadat and Gavra, 2022) estab-
lished the convergence properties of Adam for Lipschitz smooth f by analyzing the limit-
ing behaviour of its corresponding differential equation. However, their approaches rely
on some time-dependent differential equations, which are challenging to be extended to
nonsmooth cases based on the frameworks in (Benaı̈m et al., 2005; Davis et al., 2020; Bolte
and Pauwels, 2021). To the best of our knowledge, no existing work addresses the conver-
gence properties of Adam-family methods for nonsmooth optimization.

Furthermore, Bolte and Pauwels (2021) demonstrate that the Clarke subdifferential is a
subset of the conservative field for any potential functions. For nonsmooth neural net-
works, the conservative fields associated with AD algorithms may introduce infinitely
many spurious stationary points (Bolte et al., 2021; Bianchi et al., 2022). Therefore, when
we design stochastic subgradient methods based on the conservative field, the results in
some existing frameworks (Benaı̈m et al., 2005; Davis et al., 2020; Bolte and Pauwels, 2021)
can only ensure the convergence to stationary points in the sense of conservative field.
As demonstrated in (Bolte et al., 2021; Bianchi et al., 2022), these results fail to guarantee
the convergence to meaningful stationary points of f . To this end, Bianchi et al. (2022) es-
tablishes that under mild assumptions with randomized initial points and stepsizes, SGD
can find Clarke stationary points for nonsmooth neural networks almost surely. However,
their analysis is limited to SGD without any momentum term, and how to extend their
results to Adam-family methods remains an open question.

1.2 Challenges from Heavy-tailed Evaluation Noises

Another challenge for solving UNP lies in the noises when evaluating the stochastic
subgradient of the objective function. The evaluation noises in a great number of existing
works are assumed to have finite second-order moment or even uniformly bounded, for
the sake of convenience when analyzing their theoretical properties. However, in various
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Beyond differentiability Assumption on noises Adaptive stepsize Heavy-ball mo. Nesterov mo. Convergence
Our work 3 L1 3 3 3 3

Zhang et al. (2020a) 7 L∞ 7 7 7 3

Gorbunov et al. (2020) 7 L2 7 7 7 3
Zhang et al. (2020b) 7 Ls for s ∈ (1, 2] 7 7 7 3
Zhang et al. (2020b) 7 No convergence result 3 7 7 7

Mai and Johansson (2021) 3(a) L2 7 7 7 3
Qian et al. (2021) 7 L∞ 7 7 7 3

Elesedy and Hutter (2023) 7 L2 7 7 7 3

Reisizadeh et al. (2023) 7 L2 7 7 7 3

Table 2: Comparison of existing convergence results of stochastic (sub)gradient methods with
gradient clipping techniques. Here “mo.” is the abbreviation for “momentum”. (a): The proof
techniques in Mai and Johansson (2021) relies on weak convexity on f and cannot be applied to
non-regular cases.

machine learning tasks, such as classification models (Mahoney and Martin, 2019; Sim-
sekli et al., 2019, 2020; Camuto et al., 2021; Wan et al., 2023) and language models (Zhang
et al., 2020a,b), some recent works (Simsekli et al., 2019; Zhang et al., 2020b) illustrate that
the evaluation noises of the stochastic subgradients could be heavy-tailed (i.e., only have
bounded s-order moment for some s ∈ [1, 2) (Zhang et al., 2020a)). As illustrated in Zhang
et al. (2020a), the heavy-tailed evaluation noises have a higher probability of producing
extreme values or outliers when compared to normal distributions, and hence may under-
mine the performance of SGD in these tasks. Even in finite-sum settings, the frequently oc-
curred extreme values in the evaluation of stochastic subgradients can result in extremely
large variance (Simsekli et al., 2019). These results explain the empirical observations in
training neural networks, including the long-standing failure cases of SGD methods in
training recurrent neural networks (Pascanu et al., 2012), and the superior performance of
adaptive methods over SGD methods in training language models (Zhang et al., 2020b).

To address the challenges in solving UNP with heavy-tailed evaluation noises, the gra-
dient clipping technique has been developed. Gradient clipping normalizes the stochastic
gradient, thus preventing extreme values in evaluating the stochastic gradients that can
cause instability or divergence in the optimization algorithms. With the gradient clipping
technique, some recent works (Zhang et al., 2020a) show that SGD converges when the
evaluation noises are bounded in Ls (i.e., the noises {ξk} satisfy supk≥0 E[||ξk||s] < +∞)
for some s ∈ (1, 2). Table 2 exhibits the related works on the convergence properties
of stochastic subgradient methods with gradient clipping (Zhang et al., 2020a; Gorbunov
et al., 2020; Zhang et al., 2020b; Mai and Johansson, 2021; Qian et al., 2021; Elesedy and
Hutter, 2023; Reisizadeh et al., 2023). As illustrated in Table 2, all of these existing works
rely on the weak convexity of the objective function f , hence they are not applicable for
training nonsmooth neural networks.

Moreover, most of these existing works focus on the standard SGD method without
the momentum term. Although Zhang et al. (2020b); Pan and Li (2023) introduce stochas-
tic Adam-family methods with gradient clipping, they did not provide any convergence
guarantee for their proposed method. Therefore, a significant gap exists between the ex-
isting theoretical analysis (Zhang et al., 2020a; Gorbunov et al., 2020; Zhang et al., 2020b;
Mai and Johansson, 2021; Qian et al., 2021; Elesedy and Hutter, 2023; Reisizadeh et al.,
2023) and practical implementations for stochastic subgradient methods with heavy-tailed
noise, and how to fill that gap is challenging and remains unexplored.
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1.3 Contributions

In this paper, we aim to establish the convergence properties of Adam-family methods
for nonsmooth optimization, especially in the context of training nonsmooth neural net-
works. To this end, we employ the concept of the conservative field to characterize how
the objective function f is differentiated, and consider the following set-valued mapping
G : Rn ×Rn ×Rn ⇒ Rn ×Rn ×Rn,

G(x, m, v) :=


(|v|+ ε)−γ � (m + αd)

τ1m− τ1d
τ2v− τ2u

 : d ∈ D f (x), u ∈ U (x, m, v)

 . (1)

Here D f refers to the conservative field that characterizes how we differentiate the objec-
tive function f , and α, γ, ε, τ1, τ2 are hyper-parameters. Moreover, � and (·)γ refer to the
element-wise multiplication and power, respectively. Furthermore, U : Rn ×Rn ×Rn ⇒
Rn is a set-valued mapping that determines how the estimator vk is updated. Then we
propose the following generalized framework for Adam-family methods (AFM),

(xk+1, mk+1, vk+1) = (xk, mk, vk)− ηk(dx,k, dm,k, dv,k)− θk(ξx,k, ξm,k, ξv,k). (AFM)

In (AFM), (dx,k, dm,k, dv,k) denotes the updating direction, which is an approximated evalu-
ation for G(xk, mk, vk), while (ξx,k, ξm,k, ξv,k) refers to the evaluation noise. Moreover, {ηk}
and {θk} are the two-timescale stepsizes for updating directions and evaluation noises re-
spectively, in the sense that they may satisfy ηk/θk → 0 as k→ ∞.

We prove that under mild conditions, any cluster point of the sequence xk generated
by our proposed framework (AFM) with stepsizes in the order of o(1/ log(k)) is a D f -
stationary point of f . Furthermore, we establish that under mild conditions with randomly
chosen initial points and stepsizes, almost surely, any cluster point of the sequence xk is a
Clarke stationary point of f , independent of the chosen conservative field D f .

Based on our proposed framework (AFM), we demonstrate that our proposed frame-
work can be employed to analyze the convergence properties for a class of Adam-family
methods with diminishing stepsize, including Adam, AdaBelief, AMSGrad, NAdam, and
Yogi. We prove that these Adam-family methods converge to stationary points of f in
both senses of conservative field and Clarke subdifferential under mild conditions, thus
providing theoretical guarantees for their performance in training nonsmooth neural net-
works with AD algorithms.

Another application of our proposed framework (AFM) lies in investigating the con-
vergence properties of stochastic subgradient methods that incorporate the gradient clip-
ping technique. We prove that under heavy-tailed evaluation noises that are only assumed
to be integrable, our proposed gradient clipping methods conform to the proposed frame-
work (AFM). As a result, the convergence properties of these gradient clipping methods
directly follow those established for our proposed framework (AFM), under mild condi-
tions.

Furthermore, we perform extensive numerical experiments to evaluate the performance
of our proposed Adam-family methods. By comparing with the implementations of Adam-
family methods in PyTorch that utilize fixed stepsize in updating their momentum terms
and variance estimators, we demonstrate that our proposed Adam-family methods achieve
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similar accuracy and training loss. Moreover, when the evaluation noises are heavy-tailed,
the numerical examples demonstrate that our proposed Adam-family methods outper-
form existing approaches in terms of training efficiency and robustness.

1.4 Organization

The rest of this paper is organized as follows. In Section 2, we define the notations
used throughout the paper and present some essential concepts related to probability the-
ory, nonsmooth analysis and differential inclusion. In Section 3, we focus on the analysis
of the convergence properties of our proposed framework (AFM), in both senses of the
conservative field and Clarke subdifferential. Section 4 illustrates the application of our
framework (AFM) in establishing the convergence properties for a class of Adam-family
methods, including Adam, AdaBelief, AMSGrad, NAdam, and Yogi, under practical set-
tings with mild conditions. Section 5 demonstrates another application of our framework
(AFM) by illustrating the convergence properties of stochastic subgradient methods with
gradient clipping technique under heavy-tailed evaluation noises. In Section 6, we present
the results of our numerical experiments that investigate the performance of our proposed
Adam-family methods for training nonsmooth neural networks. Finally, we conclude the
paper in the last section.

2. Preliminary

2.1 Basic Notations

For any vectors x and y in Rn and δ ∈ R, we denote x � y, xδ, x/y, |x|, x + δ as the
vectors whose i-th entries are respectively given by xiyi, xδ

i , xi/yi, |xi| and xi + δ. Moreover,
for any setsX ,Y ⊂ Rn, we denoteX �Y := {x� y : x ∈ X , y ∈ Y}, (X )p := {xp : x ∈ X}
and |X | := {|x| : x ∈ X}. In addition, for any z ∈ Rn, we denote z + X := {z}+ X and
z�X := {z} � X .

We define the set-valued mappings sign : Rn ⇒ Rn and s̃ign : Rn ⇒ Rn as follows:
For any x ∈ Rn,

(sign(x))i =


{−1} xi < 0;
[−1, 1] xi = 0;
{1} xi > 0.

, and
(

s̃ign(x)
)

i
=


{−1} xi < 0;
{0} xi = 0;
{1} xi > 0.

Then it is easy to verify that s̃ign(x)� sign(x) = (s̃ign(x))2 holds for any x ∈ Rn.
In addition, we denote Rn

+ := {x ∈ Rn : xi ≥ 0 for any 1 ≤ i ≤ n}. Moreover, µd refers
to the Lebesgue measure on Rd, and when the dimension d is clear from the context, we
write the Lebesgue measure as µ for brevity. Furthermore, we say a measurable set A is
zero-measure if µ(A) = 0, and A is full-measure if µ(Ac) = 0.

2.2 Probability Theory

In this subsection, we present some essential concepts from probability theory, which
are necessary for the proofs in this paper.
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Definition 1 Let (Ω,F , P) be a probability space. We say {Fk}k∈N is a filtration if {Fk} is a
collection of σ-algebras that satisfies F0 ⊆ F1 ⊆ · · · ⊆ F∞ ⊆ F .

Definition 2 We say that a stochastic series {ξk} is a martingale if the following conditions hold.

• The sequence of random vectors {ξk} is adapted to the filtration {Fk}. That is, for any k ≥ 0,
ξk is measurable with respect to the σ-algebra Fk.

• The equation E[ξk+1|Fk] = ξk holds almost surely for every k ≥ 0.

Definition 3 We say that a stochastic series {ξk} is a supermartingale if {ξk} is adapted to the
filtration {Fk} and E[ξk+1|Fk] ≤ ξk holds almost surely for every k ≥ 0.

Definition 4 We say that a stochastic series {ξk} is a martingale difference sequence if the follow-
ing conditions hold.

• The sequence of random vectors {ξk} is adapted to the filtration {Fk}.

• For each k ≥ 1, almost surely, it holds that E[|ξk|] < +∞ and E [ξk|Fk−1] = 0.

The following proposition plays an important role in establishing the convergence
properties for our proposed framework (AFM). In this proposition, we improve the re-
sults in (Benaı̈m, 2006, Proposition 4.4) and demonstrate that with appropriately chosen
{ηk} and {θk}, the uniform boundedness of the martingale difference sequence {ξk} leads
to the validity of the regularity conditions in (Benaı̈m et al., 2005, Section 1.5).

Proposition 1 Suppose {ηk} and {θk} are two diminishing positive sequences of real numbers
that satisfy

lim
k→+∞

θ2
k

ηk
log(k) = 0.

Let λ0 := 0, λi := ∑i−1
k=0 ηk, and Λ(t) := sup{k ≥ 0 : t ≥ λk}. Then for any T > 0, and any

uniformly bounded martingale difference sequence {ξk}, almost surely, it holds that

lim
s→+∞

sup
s≤i≤Λ(λs+T)

∥∥∥∥∥ i

∑
k=s

θkξk

∥∥∥∥∥ = 0.

Proof Since the martingale difference sequence {ξk} is uniformly bounded, ξk is sub-
Gaussian for any k ≥ 0. Then there exists a constant M > 0 such that for any w ∈ Rn, it
holds for any k ≥ 0 that

E [exp (〈w, ξk+1〉) |Fk] ≤ exp
(

M
2
‖w‖2

)
,

holds almost surely. Therefore, for any w ∈ Rn and any C > 0, let

Zi := exp

[〈
Cw,

i

∑
k=s

θkξk

〉
− MC2

2

i

∑
k=s

θ2
k ‖w‖

2

]
.
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Then for any i ≥ 0, we have that E[Zi+1|Fi] ≤ Zi. Hence for any δ > 0, and any C > 0, it
holds that

P

(
sup

s≤i≤Λ(λs+T)

〈
w,

i

∑
k=s

θkξk

〉
> δ

)
= P

(
sup

s≤i≤Λ(λs+T)

〈
Cw,

i

∑
k=s

θkξk

〉
> Cδ

)

≤ P

(
sup

s≤i≤Λ(λs+T)
Zi > exp

(
Cδ− MC2

2

Λ(λs+T)

∑
k=s

θ2
k ‖w‖

2

))

≤ exp

((
M
2
‖w‖2

Λ(λs+T)

∑
k=s

θ2
k

)
C2 − δC

)
.

Here the second inequality holds since {Zk} is a nonnegative super-martingale and E[Zs] ≤
1. Then from the arbitrariness of C, set C = δ

M‖w‖2 ∑
Λ(λs+T)
k=s θ2

k

, it holds that

P

(
sup

s≤i≤Λ(λs+T)

〈
w,

i

∑
k=s

θkξk

〉
> δ

)
≤ exp

(
−δ2

2M ‖w‖2 ∑Λ(λs+T)
k=s θ2

k

)
.

From the arbitrariness of w, there exists constants C1 and C2 that only depend on n such
that

P

(
sup

s≤i≤Λ(λs+T)

∥∥∥∥∥ i

∑
k=s

θkξk

∥∥∥∥∥ > δ

)
≤ C1 exp

(
−δ2

2MC2 ∑Λ(λs+T)
k=s θ2

k

)
≤ C1 exp

 −δ2

2MC2T
θ2

k′
ηk′

 ,

holds for some k′ ∈ [s, Λ(λs + T)]. Here {ηk} refers to the diminishing sequence of real
numbers as defined in the condition of this proposition.

Therefore, for any j ≥ 0, there exists k j ∈ [Λ(jT), Λ((j + 1)T)], such that

+∞

∑
j=0

P

(
sup

Λ(jT)≤i≤Λ(jT+T)

∥∥∥∥∥ i

∑
k=s

θkξk

∥∥∥∥∥ ≥ δ

)

≤
+∞

∑
j=0

C1 exp

 −δ2

2MC2Tη−1
k j

θ2
k j

 ≤ +∞

∑
k=0

2C1 exp

 −δ2

2MC2T θ2
k

ηk

 < +∞.

Here the last inequality holds from the fact that limk→+∞
θ2

k
ηk

log(k) = 0. Therefore, we can
conclude that

lim
j→+∞

P

 sup
Λ(jT)≤i≤Λ(jT+T)

∥∥∥∥∥∥
i

∑
k=Λ(jT)

θkξk

∥∥∥∥∥∥ ≥ δ

 = 0,

holds almost surely for any δ > 0. Then the arbitrariness of δ illustrates that almost surely,
we have

lim
j→+∞

sup
Λ(jT)≤i≤Λ(jT+T)

∥∥∥∥∥∥
i

∑
k=Λ(jT)

θkξk

∥∥∥∥∥∥ = 0.
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Finally, notice that for any jT ≤ s ≤ jT + T, it holds that

sup
s≤i≤Λ(λs+T)

∥∥∥∥∥∥
i

∑
k=Λ(jT)

θkξk

∥∥∥∥∥∥
≤ 2 sup

Λ(jT)≤i≤Λ(jT+T)

∥∥∥∥∥∥
i

∑
k=Λ(jT)

θkξk

∥∥∥∥∥∥+ sup
Λ((j+1)T)≤i≤Λ((j+2)T)

∥∥∥∥∥∥
i

∑
k=Λ(jT+T)

θkξk

∥∥∥∥∥∥ .

Then we achieve that

lim
s→+∞

sup
s≤i≤Λ(λs+T)

∥∥∥∥∥ i

∑
k=s

θkξk

∥∥∥∥∥ = 0,

holds almost surely. Hence we complete the proof.

2.3 Nonsmooth Analysis

2.3.1 CLARKE SUBDIFFERENTIAL

In this part, we introduce the concept of Clarke subdifferential (Clarke, 1990), which
plays an important role in characterizing the stationarity and designing efficient algo-
rithms for nonsmooth optimization problems.

Definition 5 (Clarke (1990)) For any given locally Lipschitz continuous function f : Rn → R

and any x ∈ Rn, the generalized directional derivative of f at x in the direction d ∈ Rn, denoted
by f ◦(x; d), is defined as

f ◦(x; d) := lim sup
x̃→x, t↓0

f (x̃ + td)− f (x̃)
t

.

Then the generalized gradient or the Clarke subdifferential of f at x, denoted by ∂ f (x), is defined as

∂ f (x) := {w ∈ Rn : 〈w, d〉 ≤ f ◦(x; d), for all d ∈ Rn} .

Then based on the concept of generalized directional derivative, we present the defini-
tion of (Clarke) regular functions.

Definition 6 (Clarke (1990)) For any given locally Lipschitz continuous function f : Rn → R

and any x ∈ Rn, we say that f is (Clarke) regular at x ∈ Rn if for every direction d ∈ Rn, the
one-sided directional derivative

f ?(x; d) := lim
t↓0

f (x + td)− f (x)
t

exists and f ?(x; d) = f ◦(x; d).

10
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2.3.2 CONSERVATIVE FIELD

In this part, we present a brief introduction on the conservative field, which can be
applied to characterize how the nonsmooth neural networks are differentiated by AD al-
gorithms.

Definition 7 A set-valued mapping D : Rn ⇒ Rs is a mapping from Rn to a collection of subsets
of Rs. D is said to have closed graph (or D is graph-closed) if the graph of D, defined by

graph(D) := {(w, z) ∈ Rn ×Rs : w ∈ Rn, z ∈ D(w)} ,

is a closed subset of Rn ×Rs.

Definition 8 A set-valued mappingD : Rn ⇒ Rs is said to be locally bounded if, for any x ∈ Rn,
there is a neighborhood Vx of x such that ∪y∈VxD(y) is bounded.

Definition 9 (Aumann’s integral) Let (Θ,F , P) be a measurable space, andD : Rn×Θ ⇒ Rn

be a measurable set-valued mapping. Then for all x ∈ Rn, the integral of D with respect to P is
defined as

Es∼P [D(x, s)] :=
{∫

Θ
χ(x, s) dP(s) : χ(x, ·) is integrable, and χ(x, s) ∈ D(x, s) for any s ∈ Θ

}
.

The following lemma illustrates that the composition of two locally bounded graph-
closed set-valued mappings is locally bounded and graph-closed. Therefore, we can easily
verify the graph-closeness for the composition of set-valued mappings, which plays an
important role in our theoretical analysis.

Lemma 1 (Lemma 2.5 in (Xiao et al., 2023)) Suppose D1 : Rn ⇒ Rs and D2 : Rd ⇒ Rn are
two locally bounded graph-closed set-valued mappings, then their composition D1 ◦ D2 is locally
bounded and graph-closed.

In the following definitions, we present the definition for the conservative field and its
corresponding potential function.

Definition 10 An absolutely continuous curve is a continuous mapping γ : R+ → Rn whose
derivative γ′ exists almost everywhere in R+ and γ(t)− γ(0) equals to the Lebesgue integral of γ′

between 0 and t for all t ∈ R+, i.e.,

γ(t) = γ(0) +
∫ t

0
γ′(u)du, for all t ∈ R+.

Definition 11 Let D be a set-valued mapping from Rn to subsets of Rn. Then we call D as a
conservative field whenever it has closed graph, nonempty compact valued, and for any absolutely
continuous curve γ : [0, 1]→ Rn satisfying γ(0) = γ(1), we have∫ 1

0
max

v∈D(γ(t))

〈
γ′(t), v

〉
dt = 0, (2)

where the integral is understood in the Lebesgue sense.

11
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It is important to note that any conservative field is locally bounded (Bolte and Pauwels,
2021, Remark 3). We now introduce the definition of the potential function corresponding
to the conservative field.

Definition 12 Let D be a conservative field in Rn. Then with any given x0 ∈ Rn, we can define a
function f : Rn → R through the path integral

f (x) = f (x0) +
∫ 1

0
max

v∈D(γ(t))

〈
γ′(t), v

〉
dt = f (x0) +

∫ 1

0
min

v∈D(γ(t))

〈
γ′(t), v

〉
dt, (3)

for any absolutely continuous curve γ that satisfies γ(0) = x0 and γ(1) = x. Then f is called
a potential function for D, and we also say D admits f as its potential function, or that D is a
conservative field for f .

The following two lemmas characterize the relationship between the conservative field
and the Clarke subdifferential.

Lemma 2 (Theorem 1 in Bolte and Pauwels (2021)) Let f : Rn → R be a potential function
that admits D f as its conservative field. Then D f (x) = {∇ f (x)} almost everywhere.

Lemma 3 (Corollary 1 in Bolte and Pauwels (2021)) Let f : Rn → R be a potential function
that admits D f as its conservative field. Then ∂ f is a conservative field for f , and for all x ∈ Rn, it
holds that

∂ f (x) ⊆ conv
(
D f (x)

)
.

Definition 13 Let f : Rn → R be a potential function that admits D f as its conservative field,
then we say x is a D f -stationary point of f if 0 ∈ D f (x). In particular, we say x is a ∂ f -stationary
point of f if 0 ∈ ∂ f (x).

It is worth mentioning that the class of potential functions is general enough to cover
the objectives in a wide range of real-world problems. As shown in Davis et al. (2020, Sec-
tion 5.1), any Clarke regular function is a potential function. Another important function
class is the definable functions (i.e. the functions whose graphs are definable in an o-
minimal structure) (Davis et al., 2020, Definition 5.10). As demonstrated in Van den Dries
and Miller (1996), any definable function is also a potential function (Davis et al., 2020;
Bolte and Pauwels, 2021). To characterize the definable functions, the Tarski–Seidenberg
theorem (Bierstone and Milman, 1988) shows that any semi-algebraic function is definable.
Moreover, Wilkie (1996) shows there exists an o-minimal structure that contains both the
graph of the exponential function and all semi-algebraic sets. As a result, numerous com-
mon activation and loss functions, including sigmoid, softplus, ReLU, `1-loss, MSE loss,
hinge loss, logistic loss, and cross-entropy loss, are all definable. Additionally, Bolte et al.
(2021) reveals that parameterized solutions in a broad class of optimizations are definable.

Additionally, it should be noted that definability is preserved under finite summation
and composition (Davis et al., 2020; Bolte and Pauwels, 2021). As a result, for any neural
network built from definable blocks, its loss function is definable and thus is a potential
function. Moreover, the Clarke subdifferential of definable functions are definable (Bolte
and Pauwels, 2021). Therefore, for any neural network built from definable blocks, the

12
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conservative field corresponding to the AD algorithms is definable. The following propo-
sition shows that the definability of f andD f leads to the nonsmooth Morse–Sard property
(Bolte et al., 2007) for UNP.

Proposition 2 (Theorem 5 in Bolte and Pauwels (2021)) Let f be a potential function that ad-
mits D f as its conservative field. Suppose both f and D f are definable over Rn, then the set
{ f (x) : 0 ∈ D f (x)} is finite.

2.4 Differential Inclusion and Stochastic Subgradient Methods

In this subsection, we introduce some fundamental concepts related to the differential
equation (i.e., differential inclusion) that are essential for the proofs presented in this paper.

Definition 14 For any locally bounded set-valued mapping D : Rn ⇒ Rn that is nonempty
compact convex valued and has closed graph. We say the absolutely continuous path x(t) in Rn is
a solution for the differential inclusion

dx
dt
∈ D(x), (4)

with initial point x0 if x(0) = x0, and ẋ(t) ∈ D(x(t)) holds for almost every t ≥ 0.

Definition 15 For any given set-valued mapping D : Rn ⇒ Rn and any constant δ ≥ 0, the
set-valued mapping Dδ is defined as

Dδ(x) := {w ∈ Rn : ∃z ∈ Bδ(x), dist(w,D(z)) ≤ δ}. (5)

For the differential inclusion (4), we introduce the concept on its perturbed solution in
the following definition.

Definition 16 (Definition II in Benaı̈m et al. (2005)) We say an absolutely continuous func-
tion γ is a perturbed solution to (4) if there exists a locally integrable function u : R+ → Rn, such
that

• For any T > 0, it holds that lim
t→+∞

sup
0≤l≤T

∥∥∥∫ t+l
t u(s) ds

∥∥∥ = 0.

• There exists δ : R+ → R such that lim
t→+∞

δ(t) = 0 and

γ̇(t)− u(t) ∈ Dδ(t)(γ(t)).

Now consider the sequence {xk} generated by the following updating scheme,

xk+1 = xk + ηk(dk + ξk), (6)

where {ηk} is a diminishing positive sequence of real numbers. We define the (continuous-
time) interpolated process of {xk} generated by (6) as follows.

13
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Definition 17 The (continuous-time) interpolated process of {xk} generated by (6) is the mapping
w : R+ → Rn such that

w(λi + s) := xi−1 +
s

λi − λi−1
(xi − xi−1) , s ∈ [0, ηi).

Here λ0 := 0, and λi := ∑i−1
k=0 ηk.

The following lemma is an extension of (Benaı̈m et al., 2005, Proposition 1.3). Com-
pared with (Benaı̈m et al., 2005, Proposition 1.3), Lemma 4 allows for inexact evaluations
of the set-valued mapping D, and shows that the interpolated process of {xk} from (6) is a
perturbed solution of the differential inclusion (4).

Lemma 4 Let D : Rn ⇒ Rn be a locally bounded set-valued mapping that is nonempty compact
convex valued with closed graph. Suppose the following conditions hold in (6):

1. For any T > 0, it holds that

lim
s→+∞

sup
s≤i≤Λ(λs+T)

∥∥∥∥∥ i

∑
k=s

ηkξk

∥∥∥∥∥ = 0.

2. There exist a positive sequence {δk} such that limk→+∞ δk = 0 and dk ∈ Dδk(xk).

3. supk≥0 ‖xk‖ < +∞, supk≥0 ‖dk‖ < +∞.

Then the interpolated process of {xk} is a perturbed solution for (4).

Proof Let w : R+ → Rn denote the interpolated process for (6). Then define u : R+ → Rn

as
u(λj + s) := ξ j, for any j ≥ 0.

Therefore, for any t > 0, it holds that

ẇ(t) = u(t) + dΛ(t).

Let
δ(t) :=

∥∥∥w(t)− xΛ(t)

∥∥∥+ sup
k≥Λ(t)

δk.

Then it holds that
ẇ(t)− u(t) ∈ Dδ(t)(w(t)).

From the definition of δ(t), it holds that

lim sup
t→+∞

δ(t) ≤ lim sup
t→+∞

(
ηΛ(t)

∥∥∥ξΛ(t) + dΛ(t)

∥∥∥+ sup
k≥Λ(t)

δk

)
= 0.

In addition, from the definition of u(t), we achieve

lim
t→+∞

sup
0≤l≤T

∥∥∥∥∫ t+l

t
u(s)ds

∥∥∥∥ = lim
s→+∞

sup
s≤i≤Λ(λs+T)

∥∥∥∥∥ i

∑
k=s

ηkξk

∥∥∥∥∥ = 0.

Therefore, from Definition 16, we can conclude that w is a perturbed solution for (4). This
completes the proof.
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3. A General Framework for Convergence Properties

3.1 Convergence to D f -stationary Points

In this subsection, we aim to show the convergence properties of the proposed abstract
framework (AFM). We first make the following assumptions on f .

Assumption 1 For the problem UNP, we assume f is locally Lipschitz continuous, bounded from
below. Moreover, there exists a compact convex valued mapping D f : Rn ⇒ Rn that has closed
graph such that

1. f is a potential function that admits D f as its conservative field.

2. The set { f (x) : 0 ∈ D f (x)} has empty interior in R. That is, the complementary of { f (x) :
0 ∈ D f (x)} is dense in R.

As discussed in Section 2.3, Assumption 1(1) is satisfied in a wide range of applications of
UNP. Moreover, Assumption 1(2) is the weak Sard’s theorem, which has been shown to be
a mild assumption, as demonstrated in (Davis et al., 2020; Castera et al., 2021).

Furthermore, we make the following assumptions on the framework (AFM).

Assumption 2 1. The parameters satisfy α, γ ≥ 0, and ε, τ1, τ2 > 0.

2. The sequences of iterates {xk}, {mk} and {vk} are almost surely bounded, i.e.,

sup
k≥0
‖xk‖+ ‖mk‖+ ‖vk‖ < +∞

holds almost surely.

3. U is a locally bounded set-valued mapping that is convex compact valued with closed graph.
Moreover, there exists a constant κ ≥ 0 such that for any x, m, v ∈ Rn, it holds that

s̃ign(v)�U (x, m, v) ≥ κ|v| ≥ 0.

4. (dx,k, dm,k, dv,k) is an approximated evaluation for G(xk, mk, vk) in the sense that there exists
a positive sequence of real numbers {δk} such that limk→+∞ δk = 0 and

(dx,k, dm,k, dv,k) ∈ Gδk(xk, mk, vk).

5. {(ξx,k, ξm,k, ξv,k)} is a uniformly bounded martingale sequence. That is, almost surely, it
holds for any k ≥ 1 that

E[(ξx,k, ξm,k, ξv,k)|Fk−1] = 0, and sup
k≥0
‖(ξx,k, ξm,k, ξv,k)‖ < +∞.

6. The stepsizes {ηk} and {θk} are positive and satisfy

+∞

∑
k=0

ηk = +∞,
+∞

∑
k=0

θk = +∞, lim
k→+∞

ηk log(k) = 0, and lim
k→+∞

θ2
k

ηk
log(k) = 0.

15



XIAO, HU, LIU, AND TOH

Here are some comments for Assumption 2. Assumption 2(2) assumes that the gen-
erated sequence {(xk, mk, vk)} and the updating directions {(dx,k, dm,k, dv,k)} are uniformly
bounded, which is a common assumption in various existing works (Benaı̈m et al., 2005;
Benaı̈m, 2006; Davis et al., 2020; Bolte and Pauwels, 2021; Castera et al., 2021). Assumption
2(3) enforces regularity conditions on the set-valued mapping U , which are satisfied in
a wide range of adaptive stochastic gradient methods such as Adam, AdaBelief, AMS-
Grad, NAdam, Yogi, as discussed later in Section 4. Assumption 2(4) illustrates how
(dx,k, dm,k, dv,k) approximates G(xk, mk, vk), which is a mild assumption commonly used in
existing works (Benaı̈m et al., 2005; Benaı̈m, 2006; Bolte and Pauwels, 2021; Castera et al.,
2021). In addition, Assumption 2(5) is a prevalent assumption in various existing works
(Bolte and Pauwels, 2021; Castera et al., 2021).

Furthermore, Assumption 2(6) allows for a flexible choice of the stepsize ηk in (AFM),
enabling it to be set in the order of o(1/ log(k)). It is easy to verify that a simple choice
of θk = ηk satisfies Assumption 2(6). Hence the framework (AFM) includes those cases
where the evaluation noises are uniformly bounded. More importantly, Assumption 2(6)
allows for a two-timescale scheme for (AFM) in the sense that we can choose {θk} satis-
fying θk/ηk → +∞, since we can always set θk = ηk (ηk log(k))−s for any s ∈ (0, 1

2 ). As
shown in Section 4, the two-timescale framework is crucial for developing adaptive sub-
gradient methods with gradient clipping techniques when the evaluation noises are only
assumed to be integrable. The two-timescale updating scheme assumed in Assumption 2
distinguishes our proposed framework (AFM) from existing frameworks in (Benaı̈m et al.,
2005; Davis et al., 2020; Bolte and Pauwels, 2021).

Remark 1 It is worth mentioning that some existing works have investigated the conditions to
ensure the sequence of iterates to be uniformly bounded almost surely, including the proximal
stochastic subgradient descent method (Davis et al., 2020), the SGD method with constant step-
size (Bianchi et al., 2022), and noiseless heavy-ball SGD method (Josz and Lai, 2023). However,
their analysis is limited within specific subgradient methods, making it challenging to establish
similar results for adaptive methods.

On the other hand, when f is assumed to be differentiable, Barakat and Bianchi (2021); Gadat
and Gavra (2022); Li and Milzarek (2022) utilize the Robbins-Siegmund theorem (Robbins and
Siegmund, 1971) to prove that the function values of their merit functions are uniformly bounded
almost surely. Then based on the coercivity of their employed merit functions, they establish the uni-
form boundedness of the sequence generated by adaptive methods. However, when f is assumed to
be nonsmooth and nonconvex, it is challenging to estimate the decrease of the objective function over
the iterations. As a result, their proof techniques cannot be applied to prove the uniform bounded-
ness of {(xk, mk, vk)} within the context of the framework (AFM) under nonsmooth settings. How
to establish the uniform boundedness for the sequence {(xk, mk, vk)} under the framework (AFM)
still remains open.

To prove the convergence properties of (AFM), we consider the following differential
inclusion (

dx
dt

,
dm
dt

,
dv
dt

)
∈ −G(x, m, v). (7)
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Let the function φ : Rn ×Rn ×Rn → R be defined as,

φ(x, m, v) := f (x) +
1

2τ1

〈
m, (|v|+ ε)−γ �m

〉
,

and let the set B be chosen as B := {(x, m, v) ∈ Rn ×Rn ×Rn : 0 ∈ D f (x), m = 0}. Then
we have the following lemma to illustrate the relationship between D f -stationary points
of f and B. The proof for Lemma 5 is straightforward, hence we omit it for simplicity.

Lemma 5 The function φ is locally Lipschitz continuous over Rn ×Rn ×Rn, and { f (x) : 0 ∈
D f (x)} = {φ(x, m, v) : (x, m, v) ∈ B}.

In the following lemma, we illustrate that φ is a potential function whenever f is a
potential function for D f , and investigate the expression of the conservative field for φ.
Lemma 6 directly follows from the expressions for φ and the validity of the chain rule for
the conservative field (Bolte and Pauwels, 2021), hence we omit the proof for Lemma 6 for
simplicity.

Lemma 6 Suppose f is a potential function that admits D f as its conservative field, then φ is a
potential function that admits the conservative field Dφ defined by

Dφ(x, m, v) =

 D f (x)
1
τ1
(|v|+ ε)−γ �m

− γ
2τ1

m2 � (|v|+ ε)−γ−1 � sign(v)

 .

The following proposition illustrates that φ is a Lyapunov function for B with respect
to the differential inclusion (7). When f is assumed to be differentiable, similar Lyapunov
functions have been proposed in (Barakat et al., 2021; Barakat and Bianchi, 2021; Gadat
and Gavra, 2022).

Proposition 3 Suppose Assumption 1 and Assumption 2 hold with (1− κ)γτ2 ≤ 2τ1. For any
(x0, m0, v0) /∈ B, let (x(t), m(t), v(t)) be any trajectory of the differential inclusion (7) with initial
point (x0, m0, v0). Then for any t > 0, it holds that

φ(x(t), m(t), v(t)) < φ(x(0), m(0), v(0)).

That is, φ is the Lyapunov function for B with respect to the differential inclusion (7).

Proof From the definition of (7), for any (x(t), m(t), v(t)) that is a trajectory of the differ-
ential inclusion (7), there exists measurable functions l f (s) and lv(s) such that for almost
every s ≥ 0, l f (s) ∈ D f (x(s)), lv(s) ∈ U (x(s), m(s), v(s)), and

(ẋ(s), ṁ(s), v̇(s)) = −

(|v(s)|+ ε)−γ �
(
m(s) + αl f (s)

)
τ1m(s)− τ1l f (s)
τ2v(s)− τ2lv(s)

 .
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Therefore, from the expression of Dφ, we can conclude that〈
(ẋ(s), ṁ(s), v̇(s)),Dφ(x(s), m(s), v(s))

〉
=
〈
D f (x(s)),−(|v(s)|+ ε)−γ �

(
m(s) + αl f (s)

)〉
+

1
τ1

〈
(|v(s)|+ ε)−γ �m(s),−τ1m(s) + τ1l f (s)

〉
+
−γ

2τ1

〈
m(s)2 � (|v(s)|+ ε)−γ−1 � s̃ign(v(s)), (−τ2v(s) + τ2lv(s))

〉
3 − α

〈
l f (s), (|v(s)|+ ε)−γ � l f (s)

〉
−
〈
m(s), (|v(s)|+ ε)−γ �m(s)

〉
+

γτ2

2τ1

〈
m(s)2, (|v(s)|+ ε)−γ−1 � |v(s)|

〉
− γτ2

2τ1

〈
m(s)2 � (|v(s)|+ ε)−γ−1, s̃ign(v(s))� lv(s)

〉
.

Notice that for any v ∈ Rn,

(|v|+ ε)−γ−1 � |v| = (|v|+ ε)−γ − ε(|v|+ ε)−γ−1,

we have that

−
〈
m(s), (|v(s)|+ ε)−γ �m(s)

〉
+

γτ2

2τ1

〈
m(s)2, (|v(s)|+ ε)−γ−1 � |v(s)|

〉
= −

(
1− γτ2

2τ1

) 〈
m(s), (|v(s)|+ ε)−γ �m(s)

〉
− εγτ2

2τ1

〈
m(s), (|v(s)|+ ε)−γ−1 �m(s)

〉
.

(8)
Moreover, Assumption 2(3) illustrates that s̃ign(v(s))�U(x(s), m(s), v(s)) ≥ κ|v(s)|. Hence
for any s > 0, we have 〈

m(s)2 � (|v(s)|+ ε)−γ−1, s̃ign(v(s))� lv(s)
〉

≥ κ
〈

m(s)2 � (|v(s)|+ ε)−γ−1, |v(s)|
〉
≥ 0.

(9)

Additionally, under Assumption 2, let the positive constant δγ be defined as

δγ =

{
1, γ = 0;
γτ2
2τ1

, γ > 0.

Then when γ = 0, it holds that(
1− (1− κ)γτ2

2τ1

) 〈
m(s), (|v(s)|+ ε)−γ �m(s)

〉
=
〈
m(s), (|v(s)|+ ε)−γ �m(s)

〉
≥ ε

〈
m(s), (|v(s)|+ ε)−γ−1 �m(s)

〉
= εδγ

〈
m(s), (|v(s)|+ ε)−γ−1 �m(s)

〉
On the other hand, when γ > 0, it holds from the definition of δγ that

εγτ2

2τ1

〈
m(s), (|v(s)|+ ε)−γ−1 �m(s)

〉
= εδγ

〈
m(s), (|v(s)|+ ε)−γ−1 �m(s)

〉
.
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Therefore, we can conclude that under Assumption 2, it holds for any γ ≥ 0 that(
1− (1− κ)γτ2

2τ1

) 〈
m(s), (|v(s)|+ ε)−γ �m(s)

〉
+

εγτ2

2τ1

〈
m(s), (|v(s)|+ ε)−γ−1 �m(s)

〉
≥ εδγ

〈
m(s), (|v(s)|+ ε)−γ−1 �m(s)

〉
.

(10)
As a result, for any s ≥ 0, we have

inf
dφ∈Dφ(x(s),m(s),v(s))

〈
(ẋ(s), ṁ(s), v̇(s)), dφ

〉
≤ − α

〈
l f (s), (|v(s)|+ ε)−γ � l f (s)

〉
−
〈
m(s), (|v(s)|+ ε)−γ �m(s)

〉
+

γτ2

2τ1

〈
m(s)2, (|v(s)|+ ε)−γ−1 � |v(s)|

〉
− γτ2

2τ1

〈
m(s)2 � (|v(s)|+ ε)−γ−1, s̃ign(v(s))� lv(s)

〉
≤ −

〈
m(s), (|v(s)|+ ε)−γ �m(s)

〉
+

γτ2

2τ1

〈
m(s)2, (|v(s)|+ ε)−γ−1 � |v(s)|

〉
− γτ2

2τ1

〈
m(s)2 � (|v(s)|+ ε)−γ−1, s̃ign(v(s))� lv(s)

〉
≤ − εδγ

〈
m(s), (|v(s)|+ ε)−γ−1 �m(s)

〉
.

Here the last inequality directly follows (8), (9), and (10).
Then for any t > 0, from Definition 12, we have

φ(x(t), m(t), v(t))− φ(x(0), m(0), v(0))

=
∫ t

0
inf

dφ∈Dφ(x(s),m(s),v(s))

〈
(ẋ(s), ṁ(s), v̇(s)), dφ

〉
ds

≤ −
∫ t

0
εδγ

〈
m(s), (|v(s)|+ ε)−γ−1 �m(s)

〉
ds ≤ 0.

Therefore, for any s1 > s2 ≥ 0, we have

φ(x(s1), m(s1), v(s1)) ≤ φ(x(s2), m(s2), v(s2)), (11)

which illustrates that φ(x(t), m(t), v(t)) is non-increasing for any t > 0.
Now we prove that φ is a Lyapunov function for B. When (x, m, v) /∈ B, we first

consider the cases where m(0) 6= 0. From the continuity of the path (x(t), m(t), v(t)), there
exists T > 0 such that m(t) 6= 0 for any t ∈ [0, T]. Therefore, we can conclude that for any
t > 0,

φ(x(t), m(t), v(t))− φ(x(0), m(0), v(0))

≤ −
∫ t

0
εδγ

〈
m(s), (|v(s)|+ ε)−γ−1 �m(s)

〉
≤ −

∫ min{t,T}

0
εδγ

〈
m(s), (|v(s)|+ ε)−γ−1 �m(s)

〉
< 0.

On the other hand, when (x(0), m(0), v(0)) /∈ B with m(0) = 0, then it holds that
0 /∈ D f (x(0)). Therefore, by the hyperplane separation theorem, there exists w ∈ Rn such
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that ‖w‖ = 1 and infd∈D f (x(0)) 〈d, w〉 > 0. Then from the outer-semicontinuity of D f and
the continuity of m(t), there exists a constant c > 0 and time T > 0 such that

inf
d∈D f (x(t))

〈d, w〉 > c, and ‖m(t)‖ ≤ c
2

, ∀t ∈ [0, T].

As a result, for any t ∈ [0, T], we have

〈m(t), w〉 =
∫ t

0
〈ṁ(s), w〉ds =

∫ t

0
τ1
〈
m(s)−D f (x(s)), w

〉
ds

≤
∫ t

0
−τ1c

2
ds = −τ1ct

2
< 0.

Then for any t > 0, it holds that∫ t

0
‖m(s)‖2 ds ≥

∫ t

0
〈m(s), w〉2 ds >

∫ t

0

(τ1cs
2

)2
ds > 0.

As a result, let M := supt∈[0,T] ‖|v(t)|+ ε‖, we achieve

φ(x(t), m(t), v(t))− φ(x(0), m(0), v(0))

≤ −
∫ min{t,T}

0
εδγ

〈
m(s), (|v(s)|+ ε)−γ−1 �m(s)

〉
≤ − εδγ

Mγ+1

∫ min{t,T}

0
‖m(s)‖2 ds < 0.

Thus we can conclude that

φ(x(t), m(t), v(t)) < φ(x(0), m(0), v(0)),

holds whenever (x, m, s) /∈ B. Hence, φ is a Lyapunov function for the set B with respect
to the differential inclusion (7). This completes the proof.

Proposition 3 requires the parameters in the framework (AFM) to satisfy (1− κ)γτ2 ≤
2τ1. When κ is 0, the Assumption 2(3) becomes s̃ign(v)� U (x, m, v) ≥ 0 for any x, m, v ∈
Rn. As demonstrated in Section 4, this condition can be satisfied by numerous popular
Adam-family methods, including Adam, AdaBelief, AMSGrad, NAdam, and Yogi. More-
over, it can be proven that the corresponding set-valued mapping U in AMSGrad satisfies
Assumption 2(3) with κ = 1. Consequently, as discussed later in Corollary 2, AMSGrad
converges with any combinations of τ1, τ2 > 0 within the framework (AFM).

Based on Proposition 3 and (Benaı̈m et al., 2005, Proposition 3.27), the following theo-
rem illustrates the global almost sure convergence properties for (AFM).

Theorem 1 For any sequence {(xk, mk, vk)} generated by (AFM). Suppose Assumption 1 and
Assumption 2 hold, and the parameters in (AFM) satisfy (1− κ)γτ2 ≤ 2τ1. Then almost surely,
any cluster point of {xk} lies in {x ∈ Rn : 0 ∈ D f (x)}, and the sequence { f (xk)} converges.
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Proof Firstly, we aim to prove the uniform boundedness of the sequence {(dx,k, dm,k, dv,k)}.
From Assumption 2(4), it is easy to verify that limk→+∞ dist(mk − dm,k, τ1Dδk

f (xk)) = 0.
Moreover, Assumption 2(2) assumes that the sequence of iterates {(xk, mk, vk)} is uni-
formly bounded almost surely. Then as the local boundedness of D f and U implies the
local boundedness of G, we can conclude that the sequence {(dx,k, dm,k, dv,k)} is uniformly
bounded almost surely. In addition, asD f and U are assumed to be convex-valued, it holds
that the set-valued mapping G is also convex-valued.

Moreover, Proposition 1 controls the summation of the noises in the framework (AFM)
(i.e., ∑i

k=j θk(ξx,k, ξm,k, ξv,k)). From Proposition 1 and Assumption 2(5), for any T > 0, al-
most surely, we have that,

lim
j→+∞

sup
j≤i≤Λ(λj+T)

∥∥∥∥∥ i

∑
k=j

θk(ξx,k, ξm,k, ξv,k)

∥∥∥∥∥ = 0.

Together with Assumption 2(2), we can conclude that for almost every ω ∈ Ω, the inter-
polation for {(xk(ω), mk(ω), vk(ω))} is a perturbed solution for the differential inclusion
(7). Then Proposition 3 illustrates that φ is a Lyapunov function for the set B with respect
to the differential inclusion (7).

Let Mm,ω := supk≥0 ‖mk(ω)‖, Mv,ω := supk≥0 ‖vk(ω)‖, Mx,ω := supk≥0 ‖xk(ω)‖ and
Cω := BMx,ω (0)×BMm,ω (0)×BMv,ω (0), then the set B ∩ Cω is a compact set. Then for al-
most every ω ∈ Ω, (Benaı̈m et al., 2005, Proposition 3.27) illustrates that any cluster point
of {(xk(ω), mk(ω), vk(ω))} lies in B ∩ Cω, and {φ(xk(ω), mk(ω), vk(ω))} converges. From
Lemma 5, we can conclude that for almost every ω ∈ Ω, any limit point of {xk(ω)} lies in
{x : 0 ∈ D f (x)}, and { f (xk(ω))} converges. Hence we complete the proof.

3.2 Convergence to ∂ f -stationary Points with Random Initialization

In training nonsmooth neural networks, the conservative fields associated with AD al-
gorithms may introduce infinitely many spurious stationary points (Bolte and Pauwels,
2020; Bolte et al., 2021; Bianchi et al., 2022). To address these issues, several existing
works Bolte and Pauwels (2020); Bianchi et al. (2022) demonstrate that the SGD method
can avoid the spurious stationary points introduced by conservative field almost surely.
For the SGD method with diminishing stepsizes and mini-batch random sampling, Bolte
and Pauwels (2020) prove that it can avoid these spurious stationary points almost surely.
Moreover, Bianchi et al. (2022) prove that with randomly chosen initial points and step-
sizes, the vanilla SGD method with constant stepsizes converges to a neighborhood of the
∂ f -stationary points of UNP. Their results guarantee that the vanilla SGD method is able
to yield meaningful stationary points in training nonsmooth neural works, regardless of
the chosen conservative field.

In this subsection, to establish similar properties for Adam-family methods, we adopt
the techniques from (Bolte and Pauwels, 2020; Bianchi et al., 2022) and extend their results
to analyze the following abstract framework that employs diminishing stepsizes,

zk+1 − zk ∈ −cskQk(zk, ωk), (12)
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where zk ∈ Rd refers to the iteration points, sk ∈ R refers to the stepsizes, c ∈ R is a
scaling parameter for the stepsizes, Ξ is a probability space and {ωk} ⊂ Ξ characterizes the
stochasticity in (12). Moreover, for any k ≥ 0, Qk : Rd × Ξ ⇒ Rd is a set-valued mapping.
Furthermore, for almost every ω, we assume the set-valued mapping Qk(·, ω) : Rd ⇒ Rd

is almost everywhere C1 for any k ≥ 0.

Definition 18 A measurable mapping q : Rd → Rd is almost everywhere C1 if for almost every
z ∈ Rd, q is locally continuously differentiable in a neighborhood of z.

Moreover, a set-valued mappingQ : Rd ⇒ Rd is almost everywhere C1 if there exists an almost
everywhere C1 mapping q : Rd → Rd such that for almost every z ∈ Rd, Q(z) = {q(z)}.

For any k ≥ 0, let qk : Rd × Ξ → Rd be the mapping that is locally continuously
differentiable for almost every z ∈ Rd and Qk(z, ω) = {qk(z, ω)} holds for almost every
ω ∈ Ξ. Then we define the mapping Ts,ω,k as

Ts,ω,k(z) = z− sqk(z, ω).

The following proposition illustrates that for almost every s ∈ R, the mapping T−1
s,ω,k maps

zero-measure subsets into the zero-measure subsets over Rd.

Proposition 4 Suppose qk(·, ω) is almost everywhere C1 for almost every ω ∈ Ξ and any k ≥ 0.
Then for almost every ω ∈ Ξ, there exists a full-measure subset Sk of R such that for any s ∈ Sk
and any zero-measure set A ⊂ Rd, the subset

{z ∈ Rd : Ts,ω,k(z) ∈ A} (13)

is zero-measure.

Proof From Definition 18, there exists a full-measure subset Γφ ⊆ Rd such that for almost
every ω ∈ Ω and any z ∈ Γφ, qk(·, ω) is continuously differentiable in a neighborhood of
z ∈ Γφ.

For any fixed k ≥ 0, ω ∈ Ω, and z ∈ Γφ, denote the Jacobian of qk with respect to z as
Jqk . Then the Jacobian of Ts,ω,k can be expressed as

JTs,ω,k(z) = In − sJqk(z, ω).

Notice that for any fixed z ∈ Γφ, det(JTs,ω,k(z)) is a non-trivial d-th order polynomial of s in
R, hence its roots are zero-measure in R. Therefore, we can conclude that for any ω ∈ Ω
and any z ∈ Γφ,

{s ∈ R : det(JTs,ω,k(z)) = 0}

is zero-measure in R. From Fubini’s theorem, we can conclude that for almost every given
ω ∈ Ω, there exists a full-measure subset Sk of R such that for any s ∈ Sk,

Γφ,s,ω,k := {z ∈ Γφ : det(JTs,ω,k(z)) 6= 0} (14)

is full-measure in Rd.
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By inverse function theorem, for any k ≥ 0, almost every given ω ∈ Ω, s ∈ Sk and
z ∈ Γφ,s,ω,k, the mapping Ts,ω,k is a local diffeomorphism in a neighborhood of z. Let
Ṽz := Bz(δ̃z), where δ̃z > 0 and Ts,ω,k is a local diffeomorphism in Bz(δ̃z) (i.e., Ts,ω,k is
continuously differentiable and has non-singular Jacobian over Bz(δ̃z)). Therefore, Vz :=
Ts,ω,k(Bz(δ̃z)) is an open set for any z ∈ Γφ,s,ω,k.

Notice that {Vz}z∈Γφ,s,ω,k is an open cover for Γφ,s,ω,k. Based on Lindelof’s lemma (Kelley,
2017) and the fact that Rd is a second-countable space, there exists {zi}i∈N+ ⊂ Γφ,s,ω,k

such that Γφ,s,ω,k ⊆
⋃

i∈N+
Vzi ⊆

⋃
i∈N+

Ṽzi . Given any zero-measure set A ⊂ Rd, for
any i ∈ N+, since Ts,ω,k is a local diffeomorphism in Ṽzi , we can conclude that the set
{z ∈ Ṽzi : Ts,ω,k(z) ∈ A} is zero-measure. Then the set⋃

i∈N+

{z ∈ Ṽzi : Ts,ω,k(z) ∈ A}

is zero-measure, hence the set {z ∈ Γφ,s,ω,k : Ts,ω,k(z) ∈ A} is zero-measure. Combined
with the fact that Γφ,s,k is a full-measure subset of Rd, we can conclude that the set {z ∈
Rd : Ts,ω,k(z) ∈ A} satisfies

{z ∈ Rd : Ts,ω,k(z) ∈ A} ⊂ Γc
φ,s,ω,k ∪ {z ∈ Γφ,s,ω,k : Ts,ω,k(z) ∈ A}.

Then from the definition of Γφ,s,ω,k in (14), for almost every ω ∈ Ξ, for any s ∈ Sk, the set
Γc

φ,s,ω,k is zero-measure. This completes the proof.

Based on Proposition 4, the following proposition illustrates that for almost every pre-
fixed ω ∈ Ξ and s ∈ R+, the mapping T−1

s,ω,0 ◦ T−1
s,ω,1 ◦ · · · T

−1
s,ω,k maps zero-measure subsets

of Rd into zero-measure subsets for all k ≥ 0.

Proposition 5 SupposeQk(·, ω) is almost everywhere C1 for almost every ω ∈ Ξ and any k ≥ 0.
Then for any given zero-measure set A ⊂ Rd, for almost every ω ∈ Ξ, there exists a full-measure
subset Sinit,ω of Rd ×R such that for any sequence {zk} that employ the following update scheme

zk+1 = zk − sQk(zk, ω), (15)

with (z0, s) ∈ Sinit,ω, we have that

{zk : k ≥ 0}
⋂

A = ∅.

Proof According to Proposition 4, given any zero-measure subset A ⊂ Rd, for any k ≥ 0
and ω ∈ Ξ, there exists a full-measure subset Sω,k ⊆ R+ such that for any s ∈ Sω,k and any
zero-measure subset A of Rd, the set {z ∈ Rd : z− sQk(z, ω) ∩ A 6= ∅} is a zero-measure
subset of Rd.

Then let Sω := ∪k≥0Sω,k, it is easy to verify that for any s ∈ Sω, the set {z ∈ Rd : z−
sQi(z) ∩ A 6= ∅ for some i ≥ 0} is a zero-measure subset of Rd. As a result, let Ỹ0,ω,s = A,
and recursively define

Ỹk+1,ω,s = {z ∈ Rd : (z− sQi(z, ω)) ∩ (Ỹk,ω,s ∪ A) 6= ∅ for some i ≥ 0}.
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Then Proposition 4 illustrates that Ỹk,ω,s is a zero-measure subset of Rd for any k ≥ 0.
Moreover, from the definition of Ỹk,ω,s, we can conclude that for any j ≥ 0, any s ∈ Sω,
and for any sequence {zk} that follows equation (15) with an initial condition z0 /∈ Ỹj,ω,s, it
holds true that {zk : k ≤ j} ∩ A = ∅.

Let Yω,s = (∪k≥0Ỹk,ω,s)
c, then for any k ≥ 0, any s ∈ Sω, and any z0 ∈ Yω,s, we have

that Yω,s is a zero-measure subset of Rd and the sequence {zk} ∩ (Ỹk,ω,s ∪ A) = ∅. Then
from Fubini’s theorem, the subset {(z0, s) : s ∈ Sc

ω or z0 ∈ Yc
ω,s} is a zero-measure subset

of Rd ×R+. As a result, Sinit,ω = {(z0, s) : s ∈ Sω, z0 ∈ Yω,s} is a full-measure subset of
Rd ×R+. Moreover, from the choices of Sω and Yω,s, for any (z0, s) ∈ Sinit,ω, the sequence
{zk} that follows the scheme in (15) satisfies {zk} ∩ A = ∅. This completes the proof.

Next, we present the following theorem to illustrate that under mild assumptions, with
random initialization for the initial point z0 and the scaling parameter c, the sequence
generated by (12) can avoid any zero-measure subset A of Rd. As shown later in Section
4 and Section 5, Theorem 2 directly implies the almost sure convergence to ∂ f -stationary
points of UNP for the analyzed stochastic subgradient methods.

Theorem 2 Suppose Qk(·, ω) is almost everywhere C1 for almost every ω ∈ Ξ and any k ≥ 0.
Then for any zero-measure subset A ⊂ Rd, there exists a full-measure subset Sinit ⊆ Rd ×R and
Sω ⊆ Ω, such that for any (z0, c) ∈ Sinit, almost surely in Ξ, it holds that the sequence {zk}
generated by (12) satisfies {zk} ⊂ Ac.

Proof As illustrated in Proposition 5, for almost every ω ∈ Ξ, there exists a full-measure
subset Sinit,ω of Rd ×R+ such that for any (z0, c) ∈ Sinit,ω, almost surely in Ξ, it holds that
the sequence {zk} generated by (12) satisfies {zk} ⊂ Ac.

Notice that for almost every ω ∈ Ξ, the set Sinit,ω is a full-measure subset of Rd ×R+.
Then by applying Fubini’s theorem, the set T = {(ω, z0, s) : ω ∈ Ξ, (z0, s) ∈ Sinit,ω} is
a full-measure subset of Ξ×Rd ×R+. Then by applying Fubini’s theorem again, we can
conclude that there exists a full-measure subset Sinit of Rd such that for any (z0, s) ∈ Sinit,
the subset {ω : (ω, z0, s) ∈ T} is a full-measure subset of Ξ. This completes the proof.

4. Applications: Convergence Guarantees for Adam-family Methods

In this section, we establish the convergence properties of ADAM, AMSGrad, Yogi and
AdaBelief for solving UNP based on our proposed framework when the objective function
f takes the following form,

f (x) := Es∼P[ fs(x)]. (16)

Here (Θ,F , P) is a probability space, where Θ refers to the sample space, F is the cor-
responding σ-algebra, and P is the probability distribution. Throughout this section, we
make the following assumptions on f .

Assumption 3 There exists a measurable set-valued mapping D : Rn ×Θ→ Rn such that

1. The mapping (x, s) 7→ fs(x) is measurable over Rn ×Θ;
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2. For almost every s ∈ Rn, x 7→ D(x, s) is a definable conservative field that admits fs as its
potential function. Moreover, there exists a measurable mapping χ : Rn × Θ → Rn such
that χ(x, s) ∈ D(x, s) for all x ∈ Rn and almost every s ∈ Θ.

3. There exists an integrable function pΘ : Θ → R+ such that for all x ∈ Rn and s ∈ Θ, it
holds that

sup
d∈D(x,s)

‖d‖ ≤ pΘ(s).

4. The set { f (x) : 0 ∈ conv (Es∼P[D(x, s)])} has empty interior in R.

Based on the results from (Bolte et al., 2023, Theorem 3.10), the integral of D with
respect to the measure P (i.e., Es∼P[D(x, s)] as defined in Definition 9) is a conservative
field that admits f as its potential function. As a result, in this section, we choose the
conservative field D f in the framework (AFM) as

D f (x) = conv (Es∼P[D(x, s)]) .

Moreover, the mapping χ defined in Assumption 3(2) is called a (measurable) selection of
the set-valued mappingD. From Definition 9, it is easy to verify that Es∼P[χ(x, s)] ∈ D f (x)
holds for all x ∈ Rn.

Remark 2 It is worth mentioning that Assumption 3 is mild in practice. For the loss function
of any neural network that is built from definable blocks, Bolte and Pauwels (2021) show that the
results returned by the AD algorithms are contained within a definable conservative field. This
illustrates that Assumption 3(1)-(3) are easy to be satisfied in practice.

Moreover, Bolte and Pauwels (2021, Theorem 5) illustrates that the set { f (x) : 0 ∈ D f (x)}
is finite whenever both f and D f are definable. As discussed in (Bolte and Pauwels, 2021), when
the set Θ is finite, the f can be expressed in a finite-sum formulation. Under such settings, both
f and D f are definable whenever both fs and D(·, s) are definable for any s ∈ Θ. On the other
hand, for the cases where Θ contains infinitely many elements, Bolte et al. (2023, Theorem 4.8)
guarantees the definability of f and D f under appropriate conditions. In particular, Bolte et al.
(2023) shows that when we assume Θ = Rq for some q > 0, the probability measure P has a semi-
algebraic density function, and D is assumed to be convex-valued and semi-algebraic, then D f is
semi-algebraic. These results illustrate that Assumption 3(4) is also mild in practice.

Inspired by the pioneering works (Barakat and Bianchi, 2021; Barakat et al., 2021; Gadat
and Gavra, 2022), we consider a class of Adam-family methods with diminishing stepsizes
for minimizing f over Rn. The detailed algorithm is presented in Algorithm 1. In step 6 of
Algorithm 1, different Adam-family methods employ different schemes for updating the
estimator {vk}, which is characterized by a specific mapping RU : Rn ×Rn ×Rn → Rn.
Table 3 summarizes the updating rules for Adam, AdaBelief, AMSGrad, NAdam and Yogi,
their corresponding set-valued mappings U in the framework (AFM), and the settings for
the parameters α and κ.

To establish the convergence properties for Algorithm 1, we make some mild assump-
tions as follows.
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Algorithm 1 Stochastic subgradient-based Adam for nonsmooth optimization problems.
Require: Initial point x0 ∈ Rn, m0 ∈ Rn and v0 ∈ Rn

+, parameters α ≥ 0, and τ1, τ2, ε > 0,
and χ as a selection of stochastic subgradients;

1: Set k = 0;
2: while not terminated do
3: Independently sample sk ∼ P, and compute gk = χ(xk, sk);
4: Choose the stepsize ηk;
5: Update the momentum term by mk+1 = (1− τ1ηk)mk + τ1ηkgk;
6: Update the estimator vk+1 from gk, mk+1 and vk by

vk+1 = vk − τ2ηkRU (gk, mk+1, vk).

7: Compute the scaling parameters ρm,k+1 and ρv,k+1;
8: Update xk by

xk+1 = xk − ηk(ρv,k+1|vk+1|+ ε)−
1
2 � (ρm,k+1mk+1 + αgk);

9: k = k + 1;
10: end while
11: Return xk.

Assumption 4 1. The sequence {xk} is almost surely bounded. That is,

sup
k≥0
‖xk‖ < +∞

holds almost surely.

2. The sequence of stepsizes {ηk} is positive and satisfies
+∞

∑
k=0

ηk = +∞, lim
k→+∞

ηk log(k) = 0.

3. The scaling parameters {ρm,k} and {ρv,k} satisfy

lim
k→+∞

ρm,k = 1, lim
k→+∞

ρv,k = 1.

4. There exists a constant MΘ > 0 such that pΘ(s) ≤ MΘ holds for almost every s ∈ Θ. Here
pΘ(s) is the auxiliary function defined in Assumption 3(3).

Remark 3 For the set-valued mapping S in Table 3, it is worth mentioning that under Assumption
4(4), for any x ∈ Rn and almost every s ∈ Θ, we have supd∈S(x,s) ‖d‖ ≤ (pΘ(s))2, and pΘ(x)2

is integrable in Θ. Therefore, based on (Shapiro and Xu, 2007, Theorem 2), we can conclude that
Es∼P[S(x, s)] has closed graph and is compact valued. Hence the set-valued mapping U corre-
sponding to Adam has closed graph and is compact valued. Similarly, based on (Shapiro and Xu,
2007, Theorem 2) and Assumption 4(4), it is easy to verify that all the set-valued mappings U listed
in Table 3 has closed graph and is compact valued, and Es∼P[RU (D(x, s), m, v)] ∈ v−U (x, m, v)
holds for any (x, m, v) ∈ Rn ×Rn ×Rn

+.
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Adam-family methods Expression of RU for updating {vk} Corresponding U in (AFM) α and κ

Adam (Kingma and Ba, 2015) RU (g, m, v) = v− g2 sign(v)� S(x) α = 0, κ = 0
AdaBelief (Zhuang et al., 2020) RU (g, m, v) = v− (g−m)2 sign(v)� S̃(x, m, v) α = 0, κ = 0
AMSGrad (Reddi et al., 2018) RU (g, m, v) = v−max{v, g2} sign(v)� (Es∼P [max{|v|,S(x, s)}]) α = 0, κ = 1

NAdam (Dozat, 2016) RU (g, m, v) = v− g2 sign(v)� S(x) α > 0, κ = 0
Yogi (Zaheer et al., 2018) RU (g, m, v) = v− sign(v− g2)� g2 sign(v)� (Es∼P [{|v| − sign(|v| − d)� d : d ∈ S(x, s)}]) α = 0, κ = 0

Table 3: Different updating schemes for {vk} in Step 6 of Algorithm 1 that describe Adam,
AdaBelief, AMSGrad, NAdam and Yogi. Here S(x, s) := conv ({d� d : d ∈ D(x, s)}),
S(x) := Es∼P[S(x, s)], and S̃(x, m, v) := Es∼P[{(d−m)2 : d ∈ D(x, s)}].

The following lemma illustrates that the sequence {(xk, mk, vk)} is uniformly bounded
under Assumption 4.

Lemma 7 For any sequence {xk} generated by Algorithm 1. Suppose Assumption 3 and Assump-
tion 4 hold, and the sequence {vk} follows the schemes in Table 3. Then almost surely, it holds
that

sup
k≥0
‖xk‖+ ‖mk‖+ ‖vk‖ < +∞.

Proof Based on Assumption 3(3), Assumption 4(1) and Assumption 4(4), we have

sup
k≥0
‖gk‖ ≤ sup

k≥0
sup

d∈D(xk ,sk)

‖d‖ ≤ sup
k≥0

pΘ(sk) ≤ MΘ. (17)

From the updating rule in Algorithm 1, it holds for any k ≥ 0 that

‖mk+1‖ ≤ (1− τ1ηk) ‖mk‖+ τ1ηk ‖gk‖ ≤ max

{
‖m0‖ , sup

k≥0
‖gk‖

}
. (18)

Therefore, we can conclude that supk≥0 ‖mk‖ < +∞.
Next, we prove that the sequence {vk} is uniformly bounded for all the updating

schemes in Table 3.
Adam and NAdam: For any k ≥ 0, it holds that

‖vk+1‖ ≤ (1− τ2ηk) ‖vk‖+ τ2ηk
∥∥g2

k
∥∥ ≤ max

{
‖v0‖ , sup

k≥0

∥∥g2
k
∥∥} .

Therefore, we can conclude that supk≥0 ‖vk‖ < +∞.
AdaBelief: For any k ≥ 0, it holds that

‖vk+1‖ ≤ (1− τ2ηk) ‖vk‖+ τ2ηk
∥∥(gk −mk+1)

2∥∥ ≤ max

{
‖v0‖ , sup

k≥0

∥∥(gk −mk+1)
2∥∥} .

Therefore, we can conclude that supk≥0 ‖vk‖ < +∞.
AMSGrad: For any k ≥ 0, it holds that

sup
k≥0
‖vk+1‖ =

∥∥vk + τ2ηk max{0, g2
k − vk}

∥∥ ≤ max{‖v0‖ , sup
k≥0

∥∥g2
k
∥∥} < +∞.
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Yogi: For any k ≥ 0, it holds that

‖vk+1‖ ≤ max
{
‖vk‖ , (1 + τ2ηk)

∥∥g2
k
∥∥} .

Therefore, we can conclude that

sup
k≥0
‖vk+1‖ ≤ max

{
‖v0‖ , sup

k≥0
(1 + τ2ηk)

∥∥g2
k
∥∥} < +∞.

Combined with the above inequalities, we can conclude that for any of the updating
schemes in Table 3, it holds that

sup
k≥0
‖xk‖+ ‖mk‖+ ‖vk‖ < +∞.

This completes the proof.

Next, we establish the convergence properties for Algorithm 1 by relating it to the
framework (AFM). The following corollary demonstrates that Algorithm 1 fits the frame-
work (AFM) when choosing the updating scheme for the estimators {vk} specified in Table
3. Consequently, the convergence properties of Algorithm 1 directly follow from Theorem
1.

Corollary 1 For any sequence {xk} generated by Algorithm 1. Suppose Assumption 3 and As-
sumption 4 hold, the sequence {vk} follows the schemes in Table 3, and (1− κ)τ2 ≤ 4τ1. Then
almost surely, every cluster point of {xk} is a D f -stationary point of f and the sequence { f (xk)}
converges.

Proof We first check the validity of Assumption 2. Lemma 7 implies that Assumption 2(2)
holds. Moreover, as discussed in (Bolte et al., 2023, Theorem 3.10), D f is a conservative
field that admits f as its potential function. Then it follows from Lemma 1 that U has
closed graph and is locally bounded, hence Assumption 2(3) holds with U chosen as the
formulations in Table 3 and γ = 1

2 . In addition, Lemma 7 illustrates that ‖mk+1 −mk‖+
‖vk+1 − vk‖ converges to 0 as k goes to infinity. Then combined with Assumption 4(3), we
can conclude that Assumption 2(4) holds. Furthermore, Assumption 2(5) directly follows
from (17), and Assumption 2(6) directly follows from Assumption 4(2) by choosing θk = ηk.

On the other hand, as the results in (Bolte et al., 2023, Theorem 3.10) show that under
Assumption 3(1)-(3), f is a potential function that admitsD f as its conservative field. Then
the validity of Assumption 1 directly follows from Assumption 3.

Therefore, we can conclude that Algorithm 1 follows the framework in (AFM). Then
from Theorem 1, we can conclude that almost surely, every cluster point of {xk} is a D f -
stationary point of f and the sequence { f (xk)} converges. This completes the proof.

Since κ can be set to 1 in AMSGrad, the following corollary illustrates that AMSGrad
converges with any combination of the parameters τ1, τ2 > 0. This improves the results in
Reddi et al. (2018), where f is assumed to be differentiable, while the stepsizes are chosen
as ηk = O(k−

1
2 ).
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Corollary 2 For any sequence {xk} generated by Algorithm 1 with AMSGrad updating scheme
in Table 3. Suppose Assumption 3 and Assumption 4 hold. Then almost surely, every cluster point
of {xk} is a D f -stationary point of f and the sequence { f (xk)} converges.

Finally, the following corollary demonstrates that under mild assumptions, with almost
every initial point and stepsize in Algorithm 1, the generated sequence {xk} can find the
stationary points in the sense of Clarke subdifferential almost surely. Therefore, although
AD algorithms may introduce spurious stationary points for f , Algorithm 1 can avoid such
spurious stationary points for almost every choice of initial points and stepsizes.

Corollary 3 Suppose Assumption 3 holds. Moreover, for any sequence {xk} generated by Algo-
rithm 1 with the update schemes in Table 3, we assume that

1. There exists a prefixed positive sequence {νk} and parameters 0 < cmin < cmax, such that the
stepsizes {ηk} in Algorithm 1 are set as ηk = cνk for any k ≥ 0 with some c ∈ (cmin, cmax).

2. There exists a non-empty open subset K ⊂ Rn ×Rn ×Rn
+ such that Assumption 4 holds

with any (x0, m0, v0, c) ∈ K× (cmin, cmax).

Then for almost every (x0, m0, v0, c) ∈ K × (cmin, cmax), it holds almost surely that every cluster
point of {xk} is a ∂ f -stationary point of f and the sequence { f (xk)} converges.

Proof Let A = {x ∈ Rn : D f (x) 6= ∂ f (x)}. Then it holds from Bolte and Pauwels (2021)
that A is a zero-measure subset of Rn. Therefore, the set {(x, m, v) ∈ Rn ×Rn ×Rn

+ : x ∈
A} is zero-measure in Rn ×Rn ×Rn

+.
Let

Q(1)
k (x, m, v, sk) =

[
0

τ1m− τ1D(x, sk)
0

]
, Q(2)

k (x, m, v, sk) =

[
0
0

τ2RU (D(x, sk), m, v)

]
,

and

Q(3)
k (x, m, v, sk) =

(ρv,k+1|v|+ ε)−
1
2 � (ρm,k+1m + αD(x, sk))

0
0

 .

For almost every s ∈ Θ, fs is a definable function that admits x 7→ D(x, s) as its conser-
vative field, Bolte and Pauwels (2021, Theorem 4) illustrates that the set-valued mapping
x 7→ D(x, s) is almost everywhere C1. Moreover, from the update schemes from Table 3,
we can conclude that all the listed RU is semi-algebraic. Therefore, the set-valued map-
pings Q(1)

k , Q(2)
k and Q(3)

k are almost everywhere C1 for almost every s ∈ Θ and any k ≥ 0.
Moreover, Algorithm 1 can be expressed as(

xk+ 1
3
, mk+ 1

3
, vk+ 1

3

)
∈ (xk, mk, vk)− ηkQ(1)

k (xk, mk, vk, sk),(
xk+ 2

3
, mk+ 2

3
, vk+ 2

3

)
∈ (xk+ 1

3
, mk+ 1

3
, vk+ 1

3
)− ηkQ(2)

k

(
xk+ 1

3
, mk+ 1

3
, vk+ 1

3
, sk

)
,

(xk+1, mk+1, vk+1) ∈
(

xk+ 2
3
, mk+ 2

3
, vk+ 2

3

)
− ηkQ(3)

k

(
xk+ 2

3
, mk+ 2

3
, vk+ 2

3
, sk

)
.
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From Theorem 2 we can conclude that there exists a full-measure subset Sinit of K ×
[cmin, cmax] such that for any (x0, m0, v0, c) ∈ Sinit, almost surely, it holds that {(xk, mk, vk) :
k = 0, 1

3 , 2
3 , 1, ...} ⊂ Ac, implying that Esk∼P[gk] = Esk∼P[χ(xk, sk)] ∈ ∂ f (xk) holds for any

k ≥ 0. Therefore, by fixingD f as ∂ f in Theorem 1, we can conclude that every cluster point
of {xk} is a ∂ f -stationary point of f and the sequence { f (xk)} converges almost surely. This
completes the proof.

5. Applications: Gradient Clipping for Stochastic Subgradient Methods

In this section, we present stochastic subgradient methods with gradient clipping tech-
nique to solve UNP, under the assumption that the evaluation noises for subgradients are
heavy-tailed. Then we prove the convergence properties for our proposed methods based
on the framework (AFM).

For a clearer and more comprehensive presentation of our proposed methods, we fol-
low the settings and notations in Section 4 throughout this section. In particular, we as-
sume the objective function f in UNP can be expressed as

f (x) = Es∼P[ fs(x)],

where (Θ,F , P) is the probability space.
For any given compact and convex subset S ⊂ Rn such that 0 lies in its interior, we

define the clipping mapping Clip(·)(·) : R+ ×Rn → Rn as,

ClipC(g) := arg min
x∈CS

‖x− g‖ , (19)

where CS = {Cs : s ∈ S}. Intuitively, the clipping mapping avoids the extreme values in
evaluating the gradients by restricting them in a compact region, and hence helps enforce
the convergence of stochastic subgradient methods with heavy-tailed evaluation noises.

The explicit expression of the clipping mapping depends on the choice of the convex
compact set S . When S is chosen as the n-dimensional hypercube [−1, 1]n, the corre-
sponding clipping mapping ClipC can be expressed as ClipC(g) = min{max{g,−C}, C},
which is a coordinate-wise mapping and can be computed easily. Furthermore, when S
is chosen as the unit ball in Rn, the corresponding clipping mapping becomes ClipC(g) =

g ·min
{

1, C
‖g‖

}
, which coincides with the clipping mapping employed in (Zhang et al.,

2020a). Note that it is not a coordinate-wise mapping. It is worth mentioning that the con-
vergence properties of our analyzed stochastic subgradient methods are independent of
the specific choice of S . Hence we do not specify the choice of S in the clipping mapping
ClipC(·) in the rest of this section.

5.1 SGD with Gradient Clipping

In this subsection, we consider a general framework of SGD that incorporates the gra-
dient clipping technique to deal with heavy-tailed evaluating noises in its stochastic sub-
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gradients:

Sample sk ∼ P and choose gk = χ(xk, sk),
ĝk = ClipCk

(gk),

mk+1 = (1− τ1ηk)mk + τ1ηk ĝk,
xk+1 = xk − ηk(mk+1 + αĝk).

(SGD-C)

Here χ is a selection of the set-valued mapping D, as defined in Assumption 3(2). More-
over, τ1 and α refer to the parameters for heavy-ball momentum and Nesterov momentum,
respectively. Therefore, compared to existing works that concentrate on the convergence of
standard SGD without any momentum term, the updating scheme in SGD-C encompasses
various popular variants of SGD, including SGD (Bolte and Pauwels, 2021; Bianchi et al.,
2022), and its momentum accelerated variants (Nesterov, 2003; Loizou and Richtárik, 2017;
Castera et al., 2021).

To establish the convergence properties for SGD-C method, we make the following
assumptions.

Assumption 5 1. The parameters satisfy α ≥ 0, τ1 > 0.

2. The sequence {xk} is almost surely bounded. That is,

sup
k≥0
‖xk‖ < +∞

holds almost surely.

3. The stepsizes {ηk} and clipping parameters {Ck} are positive and satisfy

+∞

∑
k=0

ηk = +∞, lim
k→+∞

ηk log(k) = 0, lim
k→+∞

Ck = +∞, and lim
k→+∞

C2
k ηk log(k) = 0.

Different from the existing works, in this section, we only assume the evaluation noises
to be integrable in Assumption 3(3), without any further assumptions of the uniform
boundedness such as Assumption 4(4). As far as we know, such an assumption is among
the weakest ones in the relevant literature (Zhang et al., 2020a; Gorbunov et al., 2020;
Zhang et al., 2020b; Mai and Johansson, 2021; Qian et al., 2021; Elesedy and Hutter, 2023;
Reisizadeh et al., 2023). Moreover, Assumption 5(3) is mild, as we can always choose

Ck = C0 (ηk log(k))−
1
3 in SGD-C.

Let the σ-algebras {Fk} be chosen as Fk = σ(xj, mj, gj, sj : j < k), dk = Esk∼P[ĝk], and
ξk =

ĝk−dk
Ck

. Then ĝk = dk + Ckξk. Hence the update scheme in SGD-C can be rewritten as

mk+1 = (1− τ1ηk)mk + τ1ηk(dk + Ckξk),
xk+1 = xk − ηk(mk+1 + α(dk + Ckξk)).

Here (−(mk+1 + αdk), τ1(−mk + dk)) is regarded as the noiseless update direction for (xk, mk),
while (αCkξk, τ1Ckξk) can be interpreted as the corresponding evaluation noises. We first
present Lemma 8 to exhibit some basic properties of the sequence {dk} and {ξk}.
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Lemma 8 Suppose Assumption 3 and Assumption 5(1) hold, then there exists a sequence of non-
negative constants {δk} such that limk→+∞ δk = 0,

dk ∈ Dδk
f (xk), ∀k ≥ 0,

and {ξk} is a uniformly bounded martingale difference sequence.

Proof Let εS = minx/∈S ‖x‖, and MS = maxx∈S ‖x‖. Then from the definition of ĝk, it
holds for any C > 0 and k ≥ 0 that

Esk∼P[
∥∥gk −ClipC(gk)

∥∥] = Esk∼P

[∥∥gk −ClipC(gk)
∥∥ · 1{gk /∈CS}

]
≤ Esk∼P

[
‖gk‖ · 1{‖gk‖≥CεS}

]
≤ Esk∼P

[
‖gk‖ · 1{pΘ(sk)≥CεS}

]
≤ Esk∼P

[
pΘ(sk) · 1{pΘ(sk)≥CεS}

]
.

As a result, from the fact that pΘ is integrable over Θ, it holds that

lim
C→+∞

sup
k≥0

Esk∼P
[∥∥gk −ClipC(gk)

∥∥] = 0.

Therefore, let δk = Esk∼P

[∥∥∥gk −ClipCk
(gk)

∥∥∥], then it is easy to verify that limk→+∞ δk = 0.
Moreover, from the definition of δk, we have

dist
(
dk,D f (xk)

)
≤ ‖Esk∼P[ĝk]−Esk∼P[gk]‖ =

∥∥∥Esk∼P

[
gk −ClipCk

(gk)
]∥∥∥

≤ Esk∼P

[∥∥∥gk −ClipCk
(gk)

∥∥∥] = δk.

Furthermore, from the definition of {ξk}, it holds for any k ≥ 0 that ‖ĝk‖ ≤ Ck MS
almost surely. Then we can conclude that almost surely, supk≥0 ‖ξk‖ ≤ MS . Moreover,
as sk is chosen independently from {s0, ..., sk−1}, it holds that E[ξk|Fk−1] = Esk∼P[ξk] = 0.
Therefore, we can conclude that {ξk} is a uniformly bounded martingale difference se-
quence. This completes the proof.

Next, we show that the sequence {mk} is almost surely uniformly bounded in the fol-
lowing proposition, even if the corresponding evaluation noises are not uniformly bounded.
The proof for Proposition 6 is presented in Appendix A.

Proposition 6 Suppose Assumption 3 and Assumption 5 hold, then we have

sup
k≥0
‖mk‖ < +∞.

In the following theorem, we demonstrate that the framework SGD-C conforms to the
framework (AFM), and directly establish its convergence properties based on Theorem 1
and Theorem 2.

Theorem 3 Let {xk} be the sequence generated by SGD-C. Suppose Assumption 3 and Assump-
tion 5 hold. Then, almost surely, any cluster point of {xk} is a D f -stationary point of f , and the
sequence { f (xk)} converges.
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Proof Let dk = Esk∼P[ĝk], then from Lemma 8, it holds that limk→+∞ dist
(
dk,D f (xk)

)
= 0,

and {ξk} is a uniformly bounded martingale difference sequence.
Then we set θk = Ckηk in the framework (AFM). With γ = 0, ε = 1, and U (x, m, v) =

{0} in (1), SGD-C can be reformulated as the following scheme,

(xk+1, mk+1, vk+1) = (xk, mk, vk)− ηk(dx,k, dm,k, dv,k)− θk(αξk,−τ1ξk, 0),

where (dx,k, dm,k, dv,k) = (mk + αdk, τ1mk − τ1dk, τ2v).
Next, we check the validity of Assumption 2. Assumption 5(1)-(2) and Proposition

6 imply Assumption 2(1)-(2), while Assumption 2(3) holds as we set U (x, m, v) = {0}
in (AFM). Moreover, from the uniform boundedness of {(xk, mk)} and Lemma 8, it is
easy to verify that there exists a diminishing sequence {δk} such that (dx,k, dm,k, dv,k) ∈
Gδ(xk, mk, vk) with γ = 0, ε = 1, and U (x, m, v) = {0} in (1). Then the validity of Assump-
tion 2(4) is guaranteed. In addition, Assumption 2(5) follows from the fact that {ξk} is a
martingale difference sequence, as illustrated in Lemma 8. Furthermore, Assumption 2(6)
directly follows Assumption 5(4) with θ = Ckηk. Therefore, from Theorem 1, we can con-
clude that any cluster point of {xk} is a D f -stationary point of f , and the sequence { f (xk)}
converges. This completes the proof.

The following theorem illustrates that under mild assumptions with almost every ini-
tial points and stepsizes, any sequence generated by SGD-C converges to ∂ f -stationary
points of f , hence avoids the spurious stationary points introduced by conservative field
D f .

Theorem 4 Suppose Assumption 3 holds. Moreover, for the sequence {xk} generated by SGD-C,
we assume that

1. There exists a prefixed positive sequence {νk} and the parameters 0 < cmin < cmax such that
the stepsizes {ηk} are chosen as ηk = cνk for any k ≥ 0 with some c ∈ (cmin, cmax).

2. There exists a non-empty open subset K of Rn ×Rn such that Assumption 5 holds with any
(x0, m0, c) ∈ K× (cmin, cmax).

Then for almost every (x0, m0, c) ∈ K× (cmin, cmax), it holds almost surely that every cluster point
of {xk} is a ∂ f -stationary point of f and the sequence { f (xk)} converges.

Proof For almost every s ∈ Θ, since fs is definable, we can conclude that the set-valued
mapping x 7→ ∂ fs(x) is almost everywhere C1. Then we consider the following set-valued
mappings

Q(1)
k (x, m, sk) =

[
0

−τ1m + τ1ClipCk
(D(x, sk))

]
and

Q(2)
k (x, m, sk) =

[
−m− αClipCk

(D(x, sk))

0

]
.

From the definability of fs and D(·, s), D(·, s) is almost everywhere C1 over Rn (Bolte and
Pauwels, 2021, Theorem 4). As a result, from the continuity of clipping mapping ClipC, we
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can conclude that for any k ≥ 0 and almost every s ∈ Θ, both Q(1)(·, ·, s) and Q(2)(·, ·, s)
are almost everywhere C1 over Rn ×Rn.

From the expression ofQ(1) andQ(2), the update scheme in SGD-C can be reshaped as

(xk+ 1
2
, mk+ 1

2
) ∈ (xk, mk)− ηkQ

(1)
k (xk, mk, sk),

(xk+1, mk+1) ∈ (xk+ 1
2
, mk+ 1

2
)− ηkQ

(2)
k (xk+ 1

2
, mk+ 1

2
, sk).

Notice that the set A := {(x, m) ∈ Rn × Rn : D f (x) 6= ∂ f (x)} is zero-measure in
Rn ×Rn as illustrated in Bolte and Pauwels (2021). Therefore, Theorem 2 illustrates that
for almost every (x0, m0, c) ∈ K × (cmin, cmax), it holds almost surely that the sequence
{(xk, mk)} generated by SGD-C satisfies {(xk, mk)} ⊂ Ac.

From the definition of A, we can conclude that D f (x) = ∂ f (x) holds for any x ∈ Ac.
Therefore, for any sequence {(xk, mk)} with those initial points (x0, m0) ∈ K and scaling
parameter c ∈ (cmin, cmax), the corresponding conservative field D f can be directly chosen
as ∂ f sinceD f (xk) = ∂ f (xk) holds for any k ≥ 0. Therefore, Theorem 1 illustrates that with
those initial points (x0, m0) ∈ K and scaling parameter c ∈ (cmin, cmax), any cluster point
of {xk} is a ∂ f -stationary point and the sequence { f (xk)} converges. This completes the
proof.

5.2 Adam-family Method with Gradient Clipping

In this subsection, we consider developing an Adam-family method (ADAM-C) that
employs the gradient clipping technique for solving UNP under heavy-tailed evaluation
noises. Then we establish its convergence properties based on our proposed framework
(AFM). The detailed method is summarized by the following update scheme.

Sample sk ∼ P and choose gk = χ(xk, sk),
ĝk = ClipCk

(gk),

mk+1 = (1− τ1ηk)mk + τ1ηk ĝk,
vk+1 = (1− τ2ηk)vk + τ2ηk|ĝk|,
xk+1 = xk − ηk(ρv,k+1|vk+1|+ ε)−1 � (ρm,k+1mk+1 + αgk).

(ADAM-C)

Here the χ is a selection of the set-valued mapping D, as defined in Assumption 3(2).
Moreover, the estimator vk is updated for tracking the first-order moment of |gk|.

It is worth mentioning that the estimators {vk} in ADAM-C adopt a different up-
date scheme as those in the original Adam (Kingma and Ba, 2015), since the evaluation
noises are assumed to be heavy-tailed. In the original Adam, the estimators vk estimate
the noise level of each coordinate by tracking the second-order moment of the stochastic
subgradients gk. However, when the evaluation noise of gk is assumed to be heavy-tailed,
E[ClipC(gk)

2] may diverge to infinity as C → +∞. As a result, the sequence {vk} may
not be uniformly bounded in Adam under heavy-tailed noises, leading to the absence of
convergence guarantees.
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To estimate the noise level of each coordinate under heavy-tailed evaluation noises, we
consider tracking the first-order moment of {|gk|} by {vk}, and employ the (|vk+1|+ ε)−1

as the coordinate-wise adaptive stepsizes. Under Assumption 3, Esk∼P[|gk|] exists and
takes finite values almost surely. As a result, the estimators {vk} in ADAM-C can be
proved to be uniformly bounded, which is crucial in establishing the convergence proper-
ties for ADAM-C based on the framework (AFM).

To establish the convergence properties for ADAM-C, we make the following assump-
tions.

Assumption 6 1. The parameters satisfy α ≥ 0, τ1, τ2, ε > 0 and τ2 ≤ 2τ1.

2. The sequence {xk} is almost surely bounded, i.e.,

sup
k≥0
‖xk‖ < +∞

holds almost surely.

3. The stepsizes {ηk} and clipping parameters {Ck} are positive and satisfy

+∞

∑
k=0

ηk = +∞, lim
k→+∞

ηk log(k) = 0, lim
k→+∞

Ck = +∞, and lim
k→+∞

C2
k ηk log(k) = 0.

4. The scaling parameters {ρm,k} and {ρv,k} satisfy

lim
k→+∞

ρm,k = 1, lim
k→+∞

ρv,k = 1.

We first present Proposition 7 to illustrate that the uniform boundedness of {xk} im-
plies the uniformly boundedness of {mk} and {vk}. The proof of Proposition 7 follows the
same techniques as in Proposition 6, hence we omit its proof for simplicity.

Proposition 7 Suppose Assumption 3 and Assumption 6 hold. Then we have supk≥0 ‖mk‖ +
‖vk‖ < +∞.

Next, we present the following theorem that illustrates the convergence properties of
ADAM-C.

Theorem 5 Let {xk} be the sequence generated by ADAM-C. Suppose Assumption 3 and As-
sumption 6 hold. Then, almost surely, any cluster point of {xk} is a D f -stationary point of f , and
the sequence { f (xk)} converges.

Proof Let W(x) = conv (Es[|D(x, s)|]). Then following Assumption 3(3), we can con-
clude that for any x ∈ Rn and almost every s ∈ Θ, it holds that supd∈|D(x,s)| ‖d‖ ≤ pΘ(s).
Then together with (Shapiro and Xu, 2007, Theorem 2) and the fact that the set-valued
mapping x 7→ |D(x, s)| is locally bounded and graph closed for almost every s ∈ Θ, we
can conclude thatW(x) is convex compact valued, graph closed and locally bounded.

Then with U (x, m, v) = W(x) in (1), we can show that ADAM-C fits in the frame-
work (AFM). Moreover, similar to the proof in Theorem 3, we can verify the validity of
Assumption 2. Then from Theorem 1 we can conclude that any cluster point of {xk} is a
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D f -stationary point of f and the sequence { f (xk)} converges. This completes the proof.

Similar to Theorem 4, we can show that under mild assumptions with almost every
initial point and stepsize, any sequence generated by ADAM-C is capable of finding ∂ f -
stationary points of f , regardless of the chosen conservative field in ADAM-C.

Theorem 6 Suppose Assumption 3 holds. Moreover, for the sequence {(xk, mk, vk)} generated by
ADAM-C, we assume that

1. There exists a prefixed sequence {νk} and the parameters 0 < cmin < cmax such that the
stepsizes {ηk} in ADAM-C are chosen as ηk = cνk for any k ≥ 0 with some c ∈ (cmin, cmax).

2. There exists a non-empty open subset K of Rn ×Rn ×Rn
+ such that Assumption 6 holds

with any (x0, m0, v0, c) ∈ K× (cmin, cmax).

Then for almost every (x0, m0, v0, c) ∈ K × (cmin, cmax), it holds almost surely that every cluster
point of {xk} is a ∂ f -stationary point of f and the sequence { f (xk)} converges .

Proof Let A := {(x, m, v) ∈ Rn ×Rn ×Rn : D f (x) 6= ∂ f (x)}, and for any k ≥ 0, we define
the set-valued mappings

Q(1)
k (x, m, v, s) :=

 0
τ1m− τ1ClipCk

(D(x, s))
0

 , Q(2)
k (x, m, v, s) :=

 0
0

τ2v− τ2|ClipCk
(D(x, s))|

 ,

and

Q(3)
k (x, m, v, s) :=

(ρv,k+1|v|+ ε)−1 � (ρm,k+1m + αClip(D(x, s)))
0
0

 .

Then for any k ≥ 0 and almost every s ∈ Θ, Q(1)
k (·, ·, ·, s), Q(2)

k (·, ·, ·, s), and Q(3)
k (·, ·, ·, s)

are almost everywhere C1 in Rn × Rn × Rn. More importantly, the update scheme in
(ADAM-C) can be reshaped as(

xk+ 1
3
, mk+ 1

3
, vk+ 1

3

)
∈ (xk, mk, vk)− ηkQ(1)

k (xk, mk, vk, sk),(
xk+ 2

3
, mk+ 2

3
, vk+ 2

3

)
∈ (xk+ 1

3
, mk+ 1

3
, vk+ 1

3
)− ηkQ(2)

k

(
xk+ 1

3
, mk+ 1

3
, vk+ 1

3
, sk

)
,

(xk+1, mk+1, vk+1) ∈
(

xk+ 2
3
, mk+ 2

3
, vk+ 2

3

)
− ηkQ(3)

k

(
xk+ 2

3
, mk+ 2

3
, vk+ 2

3
, sk

)
.

Notice that the set A is zero-measure in Rn ×Rn ×Rn, following the same techniques
as Theorem 4, we can prove that for almost every (x0, m0, v0, c) ∈ K× (cmin, cmax), it holds
that {(xk, mk, vk) : k = 0, 1

3 , 2
3 , 1, ...} ⊂ Ac. As a result, for almost every (x0, m0, v0, c) ∈

K× (cmin, cmax), we can choose the conservative field D f in ADAM-C as ∂ f in Theorem 5.
Therefore, Theorem 1 illustrates that every cluster point of {xk} is a ∂ f -stationary point of
f and the sequence { f (xk)} converges almost surely. This completes the proof.
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Remark 4 Following the updating schemes in Table 3, we can also choose the updating scheme for
the estimators {vk} in ADAM-C as one of the followings.

• AdaBelief-C: vk+1 = (1− τ2ηk)vk + τ2ηk|ĝk −mk+1|;

• AMSGrad-C: vk+1 = vk + τ2ηk max{0, |ĝk| − vk};

• Yogi-C: vk+1 = vk − τ2ηksign(vk − |ĝk|)� |ĝk|.
Then for these stochastic adaptive subgradient methods with gradient clipping, we can establish
the same convergence properties by following the same proof routines as those in Theorem 5 and
Corollary 6, hence we omit these proofs for simplicity.

6. Numerical Experiments

In this section, we evaluate the numerical performance of our analyzed Adam-family
methods for training nonsmooth neural networks. All the numerical experiments in this
section are conducted on a server equipped with an Intel Xeon 6342 CPU and a NVIDIA
GeForce RTX 3090 GPU, running Python 3.8 and PyTorch 1.9.0.

6.1 Comparison with Implementations in PyTorch

In this subsection, we evaluate the numerical performance of Algorithm 1 by compar-
ing it with the Adam-family methods available in PyTorch and torch-optimizer packages.
In view of the great popularity of Adam-family methods in training nonsmooth neural
networks, we aim to investigate whether we can preserve their high efficiency while pro-
viding convergence guarantees with minimal modifications to their implementations.

It is important to note that the Adam-family methods in PyTorch can be viewed as
Algorithm 1 with a fixed ηk = η0 in updating the momentum terms {mk} and estima-
tors {mk} (i.e., Steps 5-6 in Algorithm 1). Moreover, β1 := 1− τ1η0 and β2 := 1− τ2η0
are commonly referred to as the momentum parameters for these Adam-family methods
in PyTorch. To our best knowledge, these Adam-family methods with constant stepsizes
in updating the momentum terms {mk} and estimators {mk} do not have any conver-
gence guarantees in training nonsmooth neural networks. More importantly, some exist-
ing works (Reddi et al., 2018; Zhang et al., 2022) illustrate that Adam may diverge when
β1 <

√
β2 and f is assumed to be differentiable.

In our numerical experiments, we investigate the performance of these compared Adam-
family methods on training ResNet-50 (He et al., 2016) for image classification tasks on the
CIFAR-10 and CIFAR-100 data sets (Krizhevsky et al., Toronto, ON, Canada, 2009). We set
the batch size to 128 for all test instances and select the regularization parameter ε as ε =
10−15. Furthermore, at the k-th epoch, we choose the stepsize as ηk =

η0√
k+1

for all the tested
algorithms. Following the settings in Castera et al. (2021), we use a grid search to find a
suitable initial stepsize η0 and parameters τ1, τ2 for the Adam-family methods provided in
PyTorch. We select the initial stepsize η0 from {k1 × 10−k2 : k1 = 1, 3, 5, 7, 9, k2 = 3, 4, 5},
and choose the parameters τ1, τ2 from {0.1/η0, 0.05/η0, 0.01/η0, 0.005/η0, 0.001/η0}, to
find a combination of (η0, τ1, τ2) that yields the most significant increase in accuracy af-
ter 20 epochs. All other parameters for these Adam-family methods in PyTorch remain
fixed at their default values.
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For our proposed algorithms (i.e., Adam-family methods with diminishing stepsizes
for {mk} and {vk} as in Algorithm 1), we keep all other parameters the same as those
available in PyTorch, as we aim to perform minimal modifications to their released coun-
terparts. Moreover, to investigate the performance of our proposed Adam-family methods
with the Nesterov momentum term, in each test instance, we choose the Nesterov momen-
tum parameter α as 0 and 0.1, respectively. We run each test instance five times with differ-
ent random seeds. In each test instance, all compared methods are tested using the same
random seed and initialized with the same random weights by the default initialization
function in PyTorch.

The numerical results are presented in Figure 1 and Figure 2. These figures demon-
strate that our proposed Adam-family methods with diminishing stepsizes exhibit the
same performance as the existing Adam-family methods available in PyTorch and torch-
optimizer packages. These empirical results highlight the effectiveness of our proposed
Adam-family methods, as they achieve comparable performance to their widely used
counterparts in the community. Furthermore, we note that the integration of Nesterov mo-
mentum can potentially lead to increased accuracy and reduced test loss across all tested
Adam-family methods in our numerical experiments, especially in the classification tasks
on the CIFAR-10 data set. These empirical results, together with our presented theoretical
analysis, demonstrate that by simply choosing diminishing stepsizes for the momentum
terms and estimators in existing Adam-family methods, we can preserve their high perfor-
mance in practice while benefiting from the convergence guarantees in training nonsmooth
neural networks.

6.2 Gradient Clipping

In this subsection, we evaluate the numerical performance of our proposed stochastic
subgradient methods with gradient clipping technique by comparing them to the opti-
mizers provided by PyTorch. We conduct numerical experiments using the LeNet (LeCun
et al., 1998) for the classification task on the MNIST data set (LeCun, 1998). Following
the settings in (Grandvalet et al., 1997; Maaten et al., 2013), the training samples are ran-
domly perturbed by noise following the Levy stable distribution, with the stability param-
eter of 1.1, the skewness parameter of 1, and the scale of 0.2. Consequently, the imposed
perturbation noise exhibits zero mean without finite second-order moment (hence it is
heavy-tailed). In addition, we test the numerical performance of these compared stochas-
tic subgradient methods in training language models (Vaswani et al., 2017), and present
the results in Appendix C.

In our numerical experiments, we set the batch size to 64 for all test instances and select
the regularization parameter ε = 10−15 for all the Adam-family methods. Moreover, at the
k-th epoch, we choose the stepsize as ηk =

η0√
k+1

for all tested algorithms. For all compared
optimizers, we choose the initial stepsize η0 and the momentum parameters τ1, τ2 using the
same grid search method as in Section 6.1, and retain all other parameters at their default
values for the optimizers in PyTorch. We run each test instance 5 times with different
random seeds. In each test instance, all compared algorithms are tested using the same
random seed and initialized with the same random weights by the default initialization
function in PyTorch.
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Figure 1: Test results on CIFAR-10 data set with ResNet50. Here “acc.” is the abbreviation
of “accuracy”.

The numerical results are presented in Figure 3. These figures indicate that our pro-
posed SGD-C and ADAM-C converge successfully and achieve high accuracy. In contrast,
without gradient clipping, SGD fails to converge and Adam converges much slower than
ADAM-C. Moreover, compared with SGD-C, ADAM-C achieves improved accuracy and
a faster decrease in the loss curve. Therefore, we can conclude that with the gradient
clipping technique, our proposed Adam-family method (12) outperforms SGD-C and the
Adam provided in PyTorch. These observations further demonstrate the great potential
of our proposed stochastic subgradient methods with gradient clipping in solving UNP in
the presence of heavy-tailed noises.

39



XIAO, HU, LIU, AND TOH

0 50 100 150 200 250 300
Epochs

0

10

20

30

40

50

60

70
Ac

cu
ra

cy
 (%

)

Adam_PyTorch
Adam_ours, = 0
Adam_ours, = 0.1

(a) Test accuracy

200 220 240 260 280 300
Epochs

68.5

69.0

69.5

70.0

70.5

71.0

71.5

72.0

Ac
cu

ra
cy

 (%
)

Adam_PyTorch
Adam_ours, = 0
Adam_ours, = 0.1

(b) Test acc. after 200 epochs

0 50 100 150 200 250 300
Epochs

10 4

10 3

10 2

Lo
ss

Adam_PyTorch
Adam_ours, = 0
Adam_ours, = 0.1

(c) Train loss

0 50 100 150 200 250 300
Epochs

2 × 100

3 × 100

4 × 100

Lo
ss

Adam_PyTorch
Adam_ours, = 0
Adam_ours, = 0.1

(d) Test loss

0 50 100 150 200 250 300
Epochs

0

10

20

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

AdaBelief_PyTorch
AdaBelief_ours, = 0
AdaBelief_ours, = 0.1

(e) Test accuracy

200 220 240 260 280 300
Epochs

65

66

67

68

69

70

71
Ac

cu
ra

cy
 (%

)

AdaBelief_PyTorch
AdaBelief_ours, = 0
AdaBelief_ours, = 0.1

(f) Test acc. after 200 epochs

0 50 100 150 200 250 300
Epochs

10 4

10 3

10 2

Lo
ss

AdaBelief_PyTorch
AdaBelief_ours, = 0
AdaBelief_ours, = 0.1

(g) Train loss

0 50 100 150 200 250 300
Epochs

2 × 100

3 × 100

4 × 100

6 × 100

Lo
ss

AdaBelief_PyTorch
AdaBelief_ours, = 0
AdaBelief_ours, = 0.1

(h) Test loss

0 50 100 150 200 250 300
Epochs

0

10

20

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

AMSGrad_PyTorch
AMSGrad_ours, = 0
AMSGrad_ours, = 0.1

(i) Test accuracy

200 220 240 260 280 300
Epochs

65

66

67

68

69

70

71

72

73

Ac
cu

ra
cy

 (%
)

AMSGrad_PyTorch
AMSGrad_ours, = 0
AMSGrad_ours, = 0.1

(j) Test acc. after 200 epochs

0 50 100 150 200 250 300
Epochs

10 5

10 4

10 3

10 2

Lo
ss

AMSGrad_PyTorch
AMSGrad_ours, = 0
AMSGrad_ours, = 0.1

(k) Train loss

0 50 100 150 200 250 300
Epochs

2 × 100

3 × 100

4 × 100

6 × 100

Lo
ss

AMSGrad_PyTorch
AMSGrad_ours, = 0
AMSGrad_ours, = 0.1

(l) Test loss

0 50 100 150 200 250 300
Epochs

0

10

20

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

Yogi_PyTorch
Yogi_ours, = 0
Yogi_ours, = 0.1

(m) Test accuracy

200 220 240 260 280 300
Epochs

70.5

71.0

71.5

72.0

72.5

73.0

73.5

74.0

Ac
cu

ra
cy

 (%
)

Yogi_PyTorch
Yogi_ours, = 0
Yogi_ours, = 0.1

(n) Test acc. after 200 epochs

0 50 100 150 200 250 300
Epochs

10 5

10 4

10 3

10 2

Lo
ss

Yogi_PyTorch
Yogi_ours, = 0
Yogi_ours, = 0.1

(o) Train loss

0 50 100 150 200 250 300
Epochs

2 × 100

3 × 100

4 × 100

Lo
ss

Yogi_PyTorch
Yogi_ours, = 0
Yogi_ours, = 0.1

(p) Test loss

Figure 2: Test results on CIFAR-100 data set with ResNet50. Here “acc.” is the abbreviation
of “accuracy”.

7. Conclusion

Adam-family methods are powerful tools for nonsmooth optimization, especially in
training neural networks. However, as most of the neural networks are built from non-
smooth blocks, their loss functions are typically nonsmooth and not Clarke regular, thus
leading to great difficulties in analyzing the convergence properties for these methods. Ad-
ditionally, the presence of heavy-tailed evaluation noises in numerous applications of UNP
poses significant challenges in designing efficient algorithms and establishing theoretical
guarantees for UNP.
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Figure 3: Test results on MNIST data set with LeNet.

The primary contributions of this paper can be summarized as follows:

• A novel framework for Adam-family methods
To establish convergence properties for Adam-family methods, we first introduce
a two-timescale framework (AFM) that assigns different stepsizes to the updating
directions and evaluation noises, respectively. Then we establish convergence prop-
erties for (AFM) in the sense of conservative field under mild assumptions. Further-
more, we prove that under mild assumptions with almost every initialized stepsize
and initial point, any cluster point of the sequence generated by our proposed frame-
work is a Clarke stationary point of the objective function. These results provide
theoretical guarantees for our proposed framework (AFM). In particular, although
AD algorithms may introduce spurious stationary points to UNP, we prove that our
proposed framework (AFM) can avoid these spurious stationary points for almost
every initial point and stepsize.

• Convergence properties for Adam-family methods
We show that Adam, AdaBelief, AMSGrad, NAdam and Yogi, when equipped with
diminishing stepsizes, follow our proposed framework (AFM). Consequently, through
our established results for (AFM), we provide a convergence analysis for these Adam-
family methods under mild assumptions in the sense of both conservative field and
Clarke subdifferential. These results are applicable to a wide range of neural network
training problems, hence providing convergence guarantees for the application of
these Adam-family methods in training nonsmooth neural networks.

• Gradient clipping technique for heavy-tailed noises
We develop stochastic subgradient methods that incorporate the gradient clipping
technique based on our proposed framework. Under mild assumptions and ap-
propriately chosen clipping parameters, we show that these stochastic subgradi-
ent methods conform to our proposed framework (AFM) even when the evaluation
noises are only assumed to be integrable. Therefore, by employing the gradient clip-
ping technique to tackle heavy-tailed evaluation noises, a wide range of stochastic
subgradient methods can be developed with guaranteed convergence properties for
solving UNP.
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Furthermore, we conduct extensive numerical experiments to illustrate that our pro-
posed Adam-family methods are as efficient as the widely employed Adam-family meth-
ods provided by PyTorch. Additionally, preliminary numerical experiments demonstrate
the high efficiency and robustness of our proposed stochastic subgradient methods with
gradient clipping in training neural networks with heavy-tailed evaluation noises. There-
fore, we can conclude that our results have provided theoretical guarantees for Adam-
family methods in practical settings, especially when the neural networks are nonsmooth
or the evaluation noises are heavy-tailed.

Future research questions of this work include establishing convergence rates and com-
plexity results for Adam-family methods in minimizing nonsmooth and non-regular func-
tions, which are extremely challenging to tackle. Most existing works focus on SGD with
the exact evaluation of the Clarke subdifferential, or only consider the convergence rate of
the trajectories of the corresponding noiseless differential inclusions (Castera et al., 2021).
To the best of our knowledge, there is no existing result for establishing the complexity for
stochastic subgradient methods in the form of Algorithm 1 when f is only assumed to be
a potential function. Furthermore, as the gradient clipping technique is widely employed
in various natural language processing tasks, future works of this paper could investigate
the performance of our proposed stochastic subgradient methods with gradient clipping
in these real-world applications of UNP.
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Appendix A. Proof for Proposition 6

In this section, we present the proof for Proposition 6. We begin our proof with the
following auxiliary proposition, which employs a similar proof technique as (Xiao et al.,
2023, Proposition 4.10).

Proposition 8 Suppose {ξk} is a sequence of uniformly bounded martingale difference sequence,
{ηk} and {Ck} are positive sequences that satisfies

lim
k→+∞

ηk = 0, lim
k→+∞

Ck = +∞, and lim
k→+∞

C2
k ηk log(k) = 0.
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Then almost surely, it holds that

lim
k→+∞

k

∑
i=0

(
ηi

k

∏
j=i+1

(1− ηj)

)
Ciξi = 0.

Proof Let zk = ∑k
i=0

(
ηi ∏k

j=i+1(1− ηj)
)

Ciξi and z0 = 0, ρk,i := Ciηi ∏k
j=i+1(1− ηj) and

ρk,k := Ckηk, then there exists K > 0 such that |ρk,i| ≤ Ciηi holds for any k ≥ i ≥ K. Without
loss of generality, we assume that ρk,i ≥ 0 holds for any k ≥ i ≥ K. Moreover, from the
expression of zk, we can conclude that

zk =
k

∑
i=0

ρk,iξi.

Since the martingale difference sequence {ξm,k} is uniformly bounded, it holds that
ξm,k is sub-Gaussian for any k ≥ 0. Then there exists a constant M > 0 such that for any
w ∈ Rn, it holds for any k ≥ 0 that

E [exp (〈w, ξm,k+1〉) |Fk] ≤ exp
(

M
2
‖w‖2

)
.

Therefore, for any s > K, T > 0, w ∈ Rn and any C > 0, let

Zi := exp

[〈
Cw,

i

∑
k=s

ρΛ(λs+T),kξm,k

〉
− MC2

2

i

∑
k=s

ρ2
Λ(λs+T),k ‖w‖

2

]
,

where Λ(0) := 0, Λ(i) := ∑i−1
k=0 ηk, and Λ(t) := sup{k ≥ 0 : t ≥ Λ(k)}. Then for any i ≥ s,

we have that E[Zi+1|Fi] ≤ Zi. Hence for any δ > 0, and any C > 0, it holds that

P

(
sup

s≤i≤Λ(λs+T)

〈
w,

i

∑
k=s

ρΛ(λs+T),kξk

〉
> δ

)

= P

(
sup

s≤i≤Λ(λs+T)

〈
Cw,

i

∑
k=s

ρΛ(λs+T),kξk

〉
> Cδ

)

≤ P

(
sup

s≤i≤Λ(λs+T)
Zi > exp

(
Cδ− MC2

2

Λ(λs+T)

∑
k=s

ρ2
Λ(λs+T),k ‖w‖

2

))

≤ exp

((
M
2
‖w‖2

Λ(λs+T)

∑
k=s

ρ2
Λ(λs+T),k

)
C2 − δC

)
.

Here the second inequality holds since {Zi} is nonnegative, E[Zi+1|Fi] ≤ Zi holds for any
i ≥ 0 and E[Zs] ≤ 1. Then from the arbitrariness of C, we can set C = δ

M‖w‖2 ∑
Λ(λs+T)
k=s ρ2

Λ(λs+T),k

to obtain that

P

(
sup

s≤i≤Λ(λs+T)

〈
w,

i

∑
k=s

ρΛ(λs+T),kξk

〉
> δ

)
≤ exp

 −δ2

2M ‖w‖2 ∑Λ(λs+T)
k=s ρ2

Λ(λs+T),k

 .
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From the arbitrariness of w and the fact that ρΛ(λs+T),k ≤ ηk, we can deduce that there
exists constants C1, C2 that only depend on n, such that

P

(
sup

s≤i≤Λ(λs+T)

∥∥∥∥∥ i

∑
k=s

ρΛ(λs+T),kξm,k

∥∥∥∥∥ > δ

)

≤ C1 exp

 −δ2

2C2M ∑Λ(λs+T)
k=s ρ2

Λ(λs+T),k

 ≤ C1 exp

(
−δ2

2C2M ∑Λ(λs+T)
k=s C2

k η2
k

)

≤ C1 exp

(
−δ2

2C2Mηk′C2
k′ ∑

Λ(λs+T)
k=s ηk

)
≤ exp

(
−δ2

2MTηk′C2
k′

)
,

holds for some k′ ∈ [s, Λ(λs + T)].
Therefore, for any j ≥ 0, there exists k j ∈ [Λ(jT), Λ((j + 1)T)], such that

+∞

∑
j=0

P

 sup
Λ(jT)≤i≤Λ(jT+T)

∥∥∥∥∥∥
i

∑
k=Λ(jT)

ρΛ(jT+T),kξk

∥∥∥∥∥∥ > δ


≤

+∞

∑
j=0

exp

(
−δ2

2MTηk j C
2
k j

)
≤

+∞

∑
k=0

exp

(
−δ2

2MTηkC2
k

)
< +∞.

(20)

Here the last inequality holds from the fact that limk→+∞ ηkC2
k log(k) = 0.

Therefore, let Ej denote the event
{

supΛ(jT)≤i≤Λ(jT+T)

∥∥∥∑i
k=Λ(jT) ρΛ(jT+T),kξk

∥∥∥ > δ
}

. From

the Borel-Cantelli lemma and (20), we can conclude that P
(

limj→+∞ ∩+∞
j=1 ∪

+∞
l=j El

)
= 0.

Therefore, we can conclude that, almost surely,

lim
j→+∞

sup
Λ(jT)≤i≤Λ(jT+T)

∥∥∥∥∥∥
i

∑
k=Λ(jT)

ρΛ(jT+T),kξk

∥∥∥∥∥∥ ≤ δ.

Then the arbitrariness of δ illustrates that, almost surely, we have

lim
j→+∞

sup
Λ(jT)≤i≤Λ(jT+T)

∥∥∥∥∥∥
i

∑
k=Λ(jT)

ρΛ(jT+T),kξk

∥∥∥∥∥∥ = 0. (21)

Notice that for any j ≥ 0 such that Λ(jT) ≥ K, it holds that

zΛ(jT+T) =

Λ(jT+T)

∏
k=Λ(jT)

(1− ηk)

 zΛ(jT) +
Λ(jT+T)

∑
k=Λ(jT)

ρΛ(jT+T),kξk,

which illustrates that almost surely,

∥∥∥zΛ(jT+T)

∥∥∥ ≤ exp(−T)
∥∥∥zΛ(jT)

∥∥∥+
∥∥∥∥∥∥

Λ(jT+T)

∑
k=Λ(jT)

ρΛ(jT+T),kξm,k

∥∥∥∥∥∥ , (22)
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hence limj→+∞

∥∥∥zΛ(jT)

∥∥∥ = 0.
Finally, for any i such that Λ(jT) ≤ i ≤ Λ(jT + T), it holds that

∥∥∥zΛ(jT+T)

∥∥∥ =

∥∥∥∥∥
(

Λ(jT+T)

∏
k=i

(1− ηk)

)
zi +

Λ(jT+T)

∑
k=i

ρΛ(jT+T),kξk

∥∥∥∥∥
≥ exp(−T) ‖zi‖ −

∥∥∥∥∥Λ(jT+T)

∑
k=i

ρΛ(jT+T),kξk

∥∥∥∥∥
≥ exp(−T) ‖zi‖ − 2 sup

Λ(jT)≤i≤Λ(λs+T)

∥∥∥∥∥∥
i

∑
k=Λ(jT)

ρΛ(λs+T),kξk

∥∥∥∥∥∥ .

As a result, we have

sup
Λ(jT)≤i≤Λ(jT+T)

‖zi‖

≤ exp(T)

∥∥∥zΛ(jT)

∥∥∥+ 2 sup
Λ(jT)≤i≤Λ(λs+T)

∥∥∥∥∥∥
i

∑
k=Λ(jT)

ρΛ(λs+T),kξk

∥∥∥∥∥∥
 .

(23)

Combining (21), (22), and (23) together, we achieve that,

lim sup
k→+∞

‖zk‖ = lim
j→+∞

sup
Λ(jT)≤i≤Λ(jT+T)

‖zi‖

≤ exp(T) lim
j→+∞

∥∥∥zΛ(jT)

∥∥∥+ 2 exp(T) lim
j→+∞

sup
Λ(jT)≤i≤Λ(λs+T)

∥∥∥∥∥∥
i

∑
k=Λ(jT)

ρΛ(λs+T),kξk

∥∥∥∥∥∥
= 0.

holds almost surely. This completes the proof.

With Proposition 8, we now present the proof for Proposition 6.
Proof of Proposition 6:

For any k ≥ 0, the mk+1 in SGD-C can be expressed as

mk+1 =
k

∑
i=0

(
k

∏
j=i+1

(1− τ1ηj)

)
τ1ηi ĝi

=
k

∑
i=0

(
k

∏
j=i+1

(1− τ1ηj)

)
τ1ηi(di + Ciξi)

=
k

∑
i=0

(
k

∏
j=i+1

(1− τ1ηj)

)
τ1ηidi +

k

∑
i=0

(
k

∏
j=i+1

(1− τ1ηj)

)
τ1ηiCiξi.

Here we set ∏i
i+1(1− τ1ηj) = 1 for simplicity.

45



XIAO, HU, LIU, AND TOH

As illustrated in Proposition 8, almost surely, it holds that

lim
k→+∞

k

∑
i=0

(
k

∏
j=i+1

(1− τ1ηj)

)
τ1ηiCiξi = 0,

which implies that supk≥0

∥∥∥∑k
i=0

(
∏k

j=i+1(1− τ1ηj)
)

τ1ηiCiξi

∥∥∥ < +∞.
On the other hand, Lemma 8 illustrates that there exists a nonnegative diminishing

sequence {δk} such that dk ∈ Dδk
f (xk) holds for any k ≥ 0. Then from the local boundedness

ofD f and the uniform boundedness of the sequence {xk}, we have that supk≥0 ‖dk‖ < +∞
holds almost surely. Then for any k > 0, it holds that∥∥∥∥∥ k

∑
i=0

(
k

∏
j=i+1

(1− τ1ηj)

)
τ1ηidi

∥∥∥∥∥ ≤ k

∑
i=0

(
k

∏
j=i+1

(1− τ1ηj)

)
τ1ηi ‖di‖ ≤ sup

0≤i≤k
‖di‖ .

Then we can conclude that

sup
k≥0
‖mk‖ ≤ sup

k≥0
‖dk‖+ sup

k≥0

∥∥∥∥∥ k

∑
i=0

(
k

∏
j=i+1

(1− τ1ηj)

)
τ1ηiCiξi

∥∥∥∥∥ < +∞.

This completes the proof of Proposition 6.

Appendix B. Supplementary Numerical Experiments for Section 6.1

In this section, we present the supplementary results for the numerical experiments
in Section 6.1. In Figure 4, we present the performance of all the compared Adam-family
methods, in the aspects of test accuracy, test error, and train error. In particular, the curves
of all the compared Adam-family methods are plotted in a single subfigure in Figure 4, for
a better illustration on the performances of different Adam-family methods.

Appendix C. Supplementary Numerical Experiments for Section 6.2

In this section, we present numerical experiments on testing the efficiency of our pro-
posed stochastic subgradient methods with clipping on the natural language processing
(NLP) tasks. In these numerical experiments, different from the settings in Section 6.2, we
do not introduce any corruption to the training samples.

We first evaluate the performance of (SGD-C) and (ADAM-C) by training language-
translation model (Vaswani et al., 2017) on the Multi30k data set (Elliott et al., 2016). In our
numerical experiments, we choose the language translation model as the Seq2Seq network
with transformer proposed by (Vaswani et al., 2017). Similar to the settings in Section 6.2,
we set the batch size to 128 for all test instances and select the regularization parameter
ε = 10−15 for all the Adam-family methods. Moreover, at the k-th epoch, we choose the
stepsize as ηk =

η0√
k+1

for all tested algorithms. For all compared optimizers, we choose the
initial stepsize η0 and the momentum parameters τ1, τ2 using the same grid search method
as in Section 6.1, and retain all other parameters at their default values for the optimizers
in PyTorch. We run each test instance 5 times with different random seeds. In each test
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(a) Test accuracy, CIFAR-10
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(f) Test loss, CIFAR-100

Figure 4: Test results on CIFAR data sets with ResNet50.

instance, all compared algorithms are tested using the same random seed and initialized
with the same random weights by the default initialization function in PyTorch.

Then we evaluate the efficiency of all the compared methods in training 3-layer long
short-term memory (LSTM) models. In all the numerical experiments, we consistently
train our models for 200 epochs while employing a batch size of 128. These settings adhere
to the commonly used experimental setup for training LSTM models, as demonstrated in
previous works (Zhuang et al., 2020).
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(c) Train perplexity on Penn Treebank with LSTM

0 25 50 75 100 125 150 175 200
Epochs

66

68

70

72

74

76

78

80

Te
st 

pe
rp

lex
ity

SGD_PyTorch
SGD-C
Adam_PyTorch
Adam-C

(d) Test perplexity on Penn Treebank with LSTM

Figure 5: Numerical results on NLP tasks.

Figure 5 exhibits the results of our numerical experiments with error bars. Notably,
although we run each compared method for 5 times with different random seeds, the loss
curves seem to be very close. As depicted in Figure 5, the method outlined in (SGD-C)
slightly outperforms the default SGD method in PyTorch. Moreover, the ADAM-C method
achieves slightly lower training loss than the build-in Adam method in PyTorch, although
the test loss for ADAM-C is slightly worse than that of Adam-PyTorch. These observations
illustrate that even when the training samples are finite, the stochastic subgradient meth-
ods with gradient clipping exhibit slightly better performance in the training of language
models. Combined with the results in Section 6.2, our numerical experiments results illus-
trate the potential of our proposed stochastic subgradient methods with gradient clipping
technique for solving UNP.
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