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Abstract

Numerical evaluations of the memory capacity (MC) of recurrent neural networks reported
in the literature often contradict well-established theoretical bounds. In this paper, we
study the case of linear echo state networks, for which the total memory capacity has been
proven to be equal to the rank of the corresponding Kalman controllability matrix. We
shed light on various reasons for the inaccurate numerical estimations of the memory, and
we show that these issues, often overlooked in the recent literature, are of an exclusively
numerical nature. More explicitly, we prove that when the Krylov structure of the linear MC
is ignored, a gap between the theoretical MC and its empirical counterpart is introduced. As
a solution, we develop robust numerical approaches by exploiting a result of MC neutrality
with respect to the input mask matrix. Simulations show that the memory curves that are
recovered using the proposed methods fully agree with the theory.

Keywords: reservoir computing, linear recurrent neural networks, echo state networks,
memory capacity, Krylov iterations

1. Introduction

Recurrent Neural Networks (RNNs) are among the most widely used machine learning tools
for sequential data processing (Sutskever et al., 2014). Despite the rising popularity of
transformer deep neural architectures (Vaswani et al., 2017; Galimberti et al., 2022; Acciaio
et al., 2024), in particular, in natural language processing, RNNs remain more suitable in
a significant range of real-time and online learning tasks that require handling one element
of the sequence at a time. The key difference is that transformers are designed to process
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entire time sequences at once, using self-attention mechanisms to focus on particular entries
of the input, while RNNs use hidden state spaces to retain a memory of previous elements
in the input sequence, which makes memory one of the most important features of RNNs.
Multiple attempts have been made in recent years to design quantitative measures and
characterize memory in neural networks in general (Vershynin, 2020; Koyuncu, 2023) and
their recurrent versions, in particular, (Haviv et al., 2019; Li et al., 2021).

The notion of memory capacity (MC) in recurrent neural networks was first intro-
duced in Jaeger (2002), with a particular focus on the so-called echo state networks (ESNs)
(Matthews, 1992; Matthews and Moschytz, 1994; Jaeger and Haas, 2004), which are a
popular family of RNNs within the reservoir computing (RC) strand of the literature that
have shown to be universal approximants in various contexts (Grigoryeva and Ortega, 2018;
Gonon and Ortega, 2020, 2021). RC models are state-space systems whose state map pa-
rameters are randomly generated and which can be seen as RNNs with random inner neuron
connection weights and a readout layer that is trained depending on the learning task of
interest. Memory capacity has been proposed as a measure of the amount of information
stored in the states of a state-space system in relation to past inputs. It has been commonly
accepted as a valuable metric to evaluate the network’s ability to store and extract impor-
tant information from processed input signals over time. Extensive work has been done in
the reservoir computing literature both in the setting of linear (Hermans and Schrauwen,
2010; Dambre et al., 2012; Barancok and Farkas, 2014; Couillet et al., 2016b; Goudarzi et al.,
2016; Xue et al., 2017), echo state shallow (White et al., 2004; Farkas et al., 2016; Verzelli
et al., 2019), and deep architectures (Gallicchio et al., 2017; Gallicchio, 2018). Memory ca-
pacity definitions exploited extensively in the literature are based on a natural observation
that the ability of the network to memorize previous inputs can be quantitatively assessed
by the correlation between the outputs of the network and its past inputs. Originally, inde-
pendent and identically distributed input sequences were used for these measurements and
only some recent references discuss the case of temporary dependent inputs (for example,
Dambre et al. 2012; Charles et al. 2014; Grigoryeva et al. 2016b; Charles et al. 2017; Marzen
2017; Gonon et al. 2020). Proposals of other memory measures have also been discussed
in the literature, with Fischer information-based criteria (Ganguli et al., 2008; Tino and
Rodan, 2013; Livi et al., 2016; Tino, 2018) among those.

Over the past few years, a series of papers presented analytical expressions for the capac-
ity of time-delay reservoirs (Grigoryeva et al., 2015, 2016a). The main interest of memory
measures, in general, and capacities, in particular, is related to their use in architecture de-
sign. Once the memory capacity expression as a function of the network (hyper-)parameters
is available, one could use it in order to design memory-optimal network architectures. This
seemed to be especially important for nontrainable random connectivity neural networks,
where the choice of sampling and network structure can be informed by maximizing network
capacities. This direction was pursued in numerous studies, with many of those focusing
on linear and echo state networks (Ortin et al., 2012; Grigoryeva et al., 2014; Ort́ın and
Pesquera, 2019, 2020).

In this paper, we place ourselves in the setting of linear recurrent neural networks. A
recent contribution in the literature in this framework is Gonon et al. (2020). Interestingly,
it is proved in this reference that linear systems with white noise inputs (not necessarily in-
dependent) and non-singular state autocovariance matrices automatically have full memory
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capacity, which coincides with the dimension of the state space or, equivalently, the num-
ber of neurons in the hidden layer. Moreover, while Jaeger (2002) shows that the memory
capacity is maximal if and only if Kalman’s controllability rank condition (Kalman, 2010;
Sontag, 1991, 1998) is satisfied, Gonon et al. (2020) also proves that the memory capacity
of linear systems is given exactly by the rank of the Kalman controllability matrix. These
results contradict numerous studies in the literature that report empirical evaluations
of the memory capacity of linear recurrent networks inconsistent with the result in Gonon
et al. (2020). We shall use the term linear memory gap to denote the difference between
empirically measured memory capacities of linear networks and their provable theoretical
values. To the best of our knowledge, this paper is the first to shed light on the nature of
this incoherence. We argue that the memory gap originates from pure numerical artifacts
overlooked by many previous studies and propose robust techniques that allow for accurate
estimation of the memory capacity, which renders full memory results for linear RNNs in
agreement with the well-known theoretical results. We claim that multiple efforts in the
literature to optimize the memory capacity of linear recurrent networks are hence afflicted
by numerical pathologies and convey misleading results.

Specific numerical issues that arise at the time of memory computation and which, as
we explain later, are attributed to the ill-conditioning of Krylov matrices, were noticed by
some authors in empirical experiments. However, no rigorous explanation has been found
so far. Instead, the literature has been developing in the following two directions: the first
one designs specific network architectures that are not susceptive to these phenomena, and
the second one tunes the hyperparameters to achieve empirical capacity maximization for
a given network architecture.

The first research strand finds configurations for which the memory gap is absent or
minimal. For example, for ESNs with nonlinear hyperbolic tangent activation, based on
empirical insights, Farkas et al. (2016) proposes an orthogonalization process that improves
memory capacity evaluation in simulations (similar ideas in the vein of orthogonal neural
networks are also developed in White et al. 2004). Strauss et al. (2012) provides designs for
ESN reservoir matrices, called RingOfNeurons and ChainOfNeurons, that are inspired by
rotation matrices and are based on the memory capacity maximization idea. Full memory
of the delay-line and cyclic reservoirs has also been reported in Rodan and Tino (2011,
2012). Tino and Rodan (2013) contribute to the same direction characterizing the MC for
a particular type of reservoir connectivity, namely symmetric reservoir matrices. In this
paper, we rigorously show how and why particular choices of connectivity matrices in the
linear setting surpass the ill-conditioning problem and hence exhibit no memory gap by
construction.

The second strand of the literature focuses on the question of whether some hyperpa-
rameter choices may maximize the memory capacity of the network. We find that many of
these contributions propose explanations of the empirical findings that, in the light of Gonon
et al. (2020), are not always entirely correct. In particular, they focus on hyperparameters
or sampling distributions of the state map matrix parameters (within the family of regular
laws) that have provably no effect on the memory capacity. For example, Gallicchio (2020)
makes a numerical argument for the sparsity in ESN reservoir matrices, since it claims that
it maximizes memory and the “effective dimension” of the state space. This claim is based
on a numerical artifact that is mainly due to the different spectral properties of random
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matrix ensembles of different sparsity degrees. Another example is Aceituno et al. (2020)
which studies the average eigenvalue modulus of the reservoir matrix as a proxy for memory
and suggests, in particular, using circulant matrices to maximize memory.

We conclude this brief literature review by mentioning a few references, which, in our
view, are the closest to obtaining a satisfactory explanation of the memory gap phenomenon.
Whiteaker and Gerstoft (2022b) correctly identifies the importance of the controllability
matrix rank, even though it considers a nonlinear setting. Some intuitive links between the
rank of the controllability matrix and memory capacity are discussed in Verzelli et al. (2021)
and Whiteaker and Gerstoft (2022a). MC is studied in that paper through simulations that
yield an incorrect conclusion as to the imperfect memory in some linear ESN (LESN)
designs. Finally, Hermans and Schrauwen (2010) studies memory in the case of continuous-
time models and contains a version of the result of input mask neutrality that we present
later in the paper.

This paper contains two main contributions. First, we address the methods of empirical
memory estimation commonly exploited in the literature. In particular, while Gonon et al.
(2020) together with Grigoryeva et al. (2023) prove that N -dimensional linear state-space
or RNN systems with randomly sampled matrix parameters of the state map have almost
surely full memory of N , both Monte Carlo simulation and algebraic techniques, which we
call näıve, exhibit numerical issues and lead either to over- or underestimation of the memory
capacity in this setting. Unfortunately, these approaches were followed in many studies and
led to the devising of recommendations for optimal random architectures based on numerical
pathologies, which we discussed in previous paragraphs. Second, the insight into numerical
issues led us to develop numerically robust algorithms for memory capacity evaluations. One
of the results that we derive is the so-called neutrality of memory capacity to input mask,
which we build upon in order to propose a numerically stable memory capacity empirical
evaluation scheme using subspace methods. We call these newly introduced techniques
the orthogonalized subspace and averaged orthogonalized subspace methods. We
hope with our proposal to give closure to a long line of contributions in the literature that
attempts to maximize capacities that are almost surely and provably full, to begin with.

The paper is structured as follows. In Section 2 we present memory capacity estimation
approaches as currently used in the literature of reservoir computing and, specifically, ESN
models. We highlight the main issues that arise with these methods, which have lead to
significant efforts to seemingly maximize memory properties of linear echo state networks.
In Section 3 we present our new method based on linear subspaces induced by the Krylov
structure of the controllability matrix. This approach recovers the theoretical memory
properties of LESNs and is immediate to implement; we also proposed an improved version
that relies on a novel result of the invariance of memory capacity with respect to the choice
of the input mask. We conclude with Section 5.

1.1 Code

All codes necessary to reproduce numerical results presented in the paper are publicly
available at https://github.com/Learning-of-Dynamic-Processes/memorycapacity.
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1.2 Notation

Column vectors are denoted by bold lowercase symbols like r. Given a vector v ∈ Kn, we
denote its entries by vi, with i ∈ {1, . . . , n}. We denote by Mn,m the space of K-valued
n ×m matrices with m,n ∈ N. The choice of K is either C or R, which will be clear from
the context. When n = m, we use the symbol Mn to refer to the space of square matrices
of order n. Given a vector v ∈ Kn, we denote by diag(v) the diagonal matrix in Mn with
the elements of v as diagonal entries. Given a matrix A ∈Mn,m, we denote its components
by Aij and we write A = (Aij), with i ∈ {1, . . . , n}, j ∈ {1, . . .m}. Given a vector v ∈ Rn,
the symbol ‖v‖ stands for its Euclidean norm. For any A ∈ Mn,m, ‖A‖ denotes its matrix
norm induced by the Euclidean norms in Km and Kn, and satisfies that ‖A‖ = σmax(A),
with σmax(A) the largest singular value of A (Horn and Johnson, 2013). Whenever K = C,
for A ∈ Mn,m, we denote by A∗ ∈ Mm,n its conjugate transpose defined by (A∗)ij = Aji,

where the bar denotes the complex conjugate. For A ∈ Mn,m, A> denotes its transpose,
while C(A) ⊂ Kn and C(A>) ⊂ Km are its column and row spaces, respectively.

2. Linear Memory Capacity

Consider the linear echo state network (LESN) defined by the following two equations:

xt = Axt−1 + Czt + ζ, (2.1)

yt = W>xt, (2.2)

for t ∈ Z−, where z ∈ (Rd)Z− are the inputs, x ∈ (RN )Z− are the states, and y ∈ (Rm)Z−

are the outputs, d,m,N ∈ N. The states in (2.1) are defined using the reservoir (connec-
tivity) matrix A ∈ MN , the input mask C ∈ MN,d, and the input shift ζ ∈ RN , and
are mapped to the outputs via the affine readout map with associated readout weights
matrix W ∈ MN,m which can be adjusted to incorporate the intercept term. In the rest
of the paper, we consider one-dimensional inputs and outputs and hence use bold symbols
C,W ∈ RN to denote the input mask and the readouts vectors, respectively.

We shall focus on state-space systems of the type (2.1)-(2.2) that determine an in-
put/output system. This happens in the presence of the so-called echo state property
(ESP), that is, when for any z ∈ RZ− there exists a unique y ∈ RZ− such that (2.1)-(2.2)
hold. One can require that the ESP holds only on the level of the state equation, that is that
for any z ∈ (Rd)Z− there exists a unique x ∈ (RN )Z− such that (2.1) holds. In Proposition
4.2 in Grigoryeva and Ortega (2021) it is proved that the state equation associated to (2.1)
has a unique state-solution x ∈ `∞− (RN ) for each input in z ∈ `∞− (R) (we call this property
the (`∞− (RN ), `∞− (R))-ESP) if and only if the spectral radius of A is strictly smaller than
1, that is ρ(A) < 1. We recall that the inputs z ∈ `∞− (R) and the inputs x ∈ `∞− (RN )
are the left-infinite RN - and R-valued sequences, respectively, with finite supremum norm
‖ · ‖∞, that is ‖z‖∞ := supt∈Z−{|zt|} <∞ and ‖x‖∞ := supt∈Z−{‖xt‖} <∞ with ‖ · ‖ the

Euclidean norm. Under the hypothesis ρ(A) < 1, the unique solution x ∈ `∞− (RN ) of (2.1)
associated to the input z ∈ RZ− is given by the series

xt =
∞∑
j=0

AjCzt−j , t ∈ Z−. (2.3)
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In this paper, we consider inputs that are realizations of variance-stationary discrete-
time stochastic R-valued processes z = (zt)t∈Z− . Additionally, since we study only the
memory reconstruction information processing tasks, the target process y is a forward-
shifted version of the input process z. In the stochastic setting, one can show that the same
condition ρ(A) < 1 is sufficient for the almost sure unique existence of a solution of (2.1).
More explicitly, if ρ(A) < 1 and the input process z is such that Var(zt) < c for all t ∈ Z−
and a finite constant c > 0, then there exists an a.s. unique sequence of random variables
x such that

T∑
j=0

AjCzt−j
L2

−−−−→
T→∞

xt, t ∈ Z−. (2.4)

This statement is a corollary of Lütkepohl (2005), Proposition C.9, which requires the
absolute summability of the sequence

{
AjC

}
j∈N which is, in turn, a consequence of the

hypothesis ρ(A) < 1 and part (i) of Proposition 4.2 in Grigoryeva and Ortega (2021).
Additionally, a proof similar to the one of Proposition 4.1 in Gonon et al. (2020) guarantees
that if z is variance stationary, then so is x. Statements of this type in which the L2

convergence is replaced by metric convergence in the Wasserstein space can be found in
Manjunath and Ortega (2023).

In contrast to conventional recurrent neural networks, where all the network weights
(parameters) are subject to training, the parameters of the state equations of reservoir
systems are fixed, and exclusively the readout map is estimated based on the learning task of
interest. More explicitly, within the reservoir computing paradigm, in the case of LESN, the
matrix parameters A, C and ζ are sampled randomly from (matrix) probability distributions
prescribed a priori and W is estimated. The choice of the law and the properties of these
parameters are known to have a significant impact on the performance of the ESN in
practical applications.

2.1 Memory Capacity

The notion of memory capacities (MCs) has been introduced in Jaeger (2002) in the con-
text of recurrent neural networks and echo state networks (Matthews, 1992; Matthews and
Moschytz, 1994; Jaeger and Haas, 2004) as a way to measure the amount of information
contained in the states of a state-space system about the past inputs and to characterize the
ability of the network to extract the dynamic features of processed signals. Following Gonon
et al. (2020), given a variance-stationary input stochastic process z = (zt)t∈Z− , a state map
that satisfies the ESP, and the associated variance-stationary state process x = (xt)t∈Z− ,

x ∈ RN , the τ -lag memory capacity of the state-space system with respect to z, with τ ∈ N,
is defined as

MCτ := 1− 1

Var(zt)
min

W∈RN
E
[(
zt−τ −W>xt

)2]
, (2.5)

where we will often use that Var(zt) = γ(0) with γ : Z 7→ R being the autocovariance
function of z.
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The total memory capacity of an ESN is then given by the sum of the capacities at
all lags, that is,

MC :=

∞∑
τ=0

MCτ . (2.6)

It is important to underline that in contrast to what is sometimes defined in the literature
(for example, Rodan and Tino 2011), our definition of MC includes lag 0. We are interested
in the complete history of the process zt embedded in the states xt, including the present.
This is consistent with the fact that a LESN where A = ON has no memory of inputs at
lags τ > 0, but if N = 1, it still retains maximal memory as long as C 6= 0. By definition,
MCτ measures how much of the variance of input zt−τ can be linearly reconstructed from
the states xt. The higher MCτ is for large τ , the longer the states contain the past history
of a sequence of inputs.

Under the assumption that Γx := Var(xt) is non-singular, MCτ has the closed-form
expression (see Lemma 3.2, Gonon et al. 2020)

MCτ =
Cov(zt−τ ,xt)Γ

−1
x Cov(xt, zt−τ )

Var(zt)
, τ ∈ N. (2.7)

Example 1 (Delay reservoir) Consider the delay (or Takens) reservoir given by the
reservoir matrix whose only non-zero elements are Aij = 1 for all j ∈ {1, . . . , N − 1},
i = j + 1 (this is usually called a shift matrix), the input mask C whose all elements are
zero except for the first one which is set to one, and the zero input shift ζ. In this case, for
any t ≥ N

xt =

 zt
...

zt−N


and MCτ = 1 for τ ∈ {0, . . . , N} while MCτ = 0 for all τ ≥ N + 1.

2.1.1 Fischer Memory

An alternative concept developed in the literature that pertains to the memory features
of recursive neural networks is that of the Fischer memory curve (FMC). The idea is
introduced in Ganguli et al. (2008) and consists in quantifying the impact of small variations
on the current state xt. More precisely, assume that in (2.1) the states are perturbed by
i.i.d. noise (εt)t∈Z− and that ζ = 0. The state equation then reads

xt = Axt−1 + Czt + εt.

The Fischer memory matrix is given by

Fi,j((zt)t∈Z−) := −Ep(xt|(zt)t∈Z− )

[
∂2 log

(
p(xt|(zt)t∈Z−)

)
∂zt−i+1 ∂zt−j+1

]
,

where p(xt|(zt)t∈Z−) is the input-conditional state distribution, and the Fischer memory
curve is given by its diagonal entries, Fτ ≡ Fτ+1,τ+1 for τ ≥ 0. Assuming that εt, for
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all t ∈ Z−, are mean-zero Gaussian distributed with variance σ2ε IN , one obtains (see the
detailed derivations in Ganguli et al. 2008; Tino and Rodan 2013) that p(xt|(zt)t∈Z−) is
Gaussian with the covariance matrix

Rx = σ2ε

∞∑
j=0

Aj(A>)j ,

and hence the FMC can be written as

Fτ = C>(A>)τR−1x AτC.

One may easily notice that this formula does not depend on input z and measures memory
based only on the architecture properties of the state-space system.

2.1.2 Relation Between Memory Capacities and Fischer Memory

The relation between these two notions of memory is not straightforward. Theorem 1 in
Tino and Rodan (2013) shows that

MCτ = σ2εFτ + C>(A>)τO−1AτC,

where O = Γx(Rx/σ
2
ε − Γx)−1Γx + Γx, and that it follows MCτ > σ2εFτ for all τ > 0.

Due to the complex properties of matrix O, Tino and Rodan (2013) does not establish
further general results while providing explicit calculations of both MC and FMC when
A is symmetric or orthonormal. Tino (2018) contains further derivations regarding the
asymptotic Fischer memory capacity of particular classes of ESN models.

The reasons why in this paper we focus on memory capacity (2.5) instead of the Fischer
memory curve are two-fold. First, FMC measures memory only in the state space, and
the observation equation (2.2) does not have any impact on the FMC computation. Our
primary interest is to evaluate memory in terms of real-world applications, which inevitably
requires studying the effect of the linear projection of states onto targets encoded by W.
Second, important theoretical contributions towards analyzing the impact of noise on the
statistical properties of the states and the linear reservoir systems, in general, have already
been made in Couillet et al. (2016a,b). Finally, we emphasize that in Section 3, we are able
to show that MC is neutral to the choice of input mask, which is not the case for Fischer
memory. As we explain in the following sections, this fact allows us to develop a particular
numerical method that is insensitive to numerical artifacts and yields results fully coherent
with theory.

2.2 Linear Models Generically Have Maximal Memory

Memory capacities of echo state networks with independent inputs have been originally
analyzed in Jaeger (2002). Already in this work, it was shown that

1 ≤ MC ≤ N.

This statement was extended to more general recurrent neural networks in Gonon et al.
(2020), where N is in that case the state space dimension. Two results that have recently

8



Memory of Recurrent Networks: Do We Compute It Right?

appeared in the literature show that linear echo state networks generically achieve maximal
memory capacity, that is, for almost all LESNs it holds that MC = N . Due to their
importance in the sequel of the paper and for the sake of completeness, we collect some of
those statements in the following result. The first one is contained in Gonon et al. (2020),
Corollary 4.2, and we reproduce it in the next proposition with an illustrative proof that
will be useful for some derivations later on.

Proposition 1 (LESN Memory Capacity) Consider a linear ESN model in (2.1)-(2.2)
and let ζ = 0. Let A be diagonalizable and such that ρ(A) < 1, with ρ(A) the spectral radius
of the matrix A. Suppose that all the eigenvalues of A are distinct. Let any of the following
equivalent conditions hold

(i) The vectors {AC, A2C, . . . , ANC} form a basis of RN .

(ii) The Kalman controllability condition holds.

(iii) A has full rank and C is neither the zero vector nor an eigenvector of A.

If (zt)t∈Z− is a weakly stationary white noise process, then MC = N .

Proof Under the assumption ρ(A) < 1 and of the stationarity and the finite second-order
moments of z, the statement (2.4) guarantees that the expression

xt =

∞∑
j=0

AjC zt−j ,

determines almost surely a unique second-order stationary process. If Var(zt) = γ(0), the
(time-independent) second moment of the state process is

Γx = γ(0)

∞∑
j=0

AjC C>(Aj)> (2.8)

and the covariance of the state and the input process is

Cov(xt, zt−τ ) = AτC γ(0).

Substituting these expressions into (2.7), we conclude that the τ -lag memory capacity is

MCτ = C>(A>)τ

 ∞∑
j=0

AjCC>(Aj)>

−1AτC, τ ∈ N, (2.9)

where the inverse is well-defined whenever any of the conditions (i), (ii), or (iii) is satisfied
(see Proposition 4.3, Gonon et al. (2020)). Summing over all lags and using the fact that
MCτ is a scalar, for all τ ∈ N, yields

MC =
∞∑
τ=0

C>(A>)τ

 ∞∑
j=0

AjCC>(Aj)>

−1AτC
9
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=
∞∑
τ=0

tr

 ∞∑
j=0

AjCC>(A>)j

−1AτCC>(Aτ )>


= tr

 ∞∑
j=0

AjCC>(Aj)>

−1 ∞∑
τ=0

AτCC>(Aτ )>

 = tr(IN ) = N,

as required.

The second important result was originally presented in Grigoryeva et al. (2023)1 and
guarantees that the conditions (i)-(iii) in Proposition 1 are satisfied almost surely, when-
ever, as it is customary in reservoir computing, the connectivity matrix A and the input
mask C of the linear system (2.1)-(2.2) are randomly drawn from some regular probability
distribution. We recall that a random variable X : Ω → R defined on a probability space
(Ω,F ,P) and with values on a Borel measurable space R is regular whenever P (X = a) = 0
for all a ∈ R. The result is stated in the following proposition.

Proposition 2 (Grigoryeva et al. (2023)) Let N ∈ N, A ∈ MN , and C ∈ RN and
assume that the entries of A and C are drawn using independent regular real-valued distri-
butions. Then the following statements hold:

(i) The vectors {C, AC, A2C, . . . , AN−1C} are linearly independent almost surely.

(ii) Given m distinct complex numbers λ1, . . . , λm ∈ C, where m ≤ N , the event that
1, λ1, ..., λm /∈ σ(A) (σ(A) is the spectrum of A) and that the vectors

(I− λjA)−1(I−A)−1(I−AN )C, j = 1, . . . ,m

are linearly independent holds almost surely.

Proposition 1 (see also Corollary 4.2 in Gonon et al. 2020) together with Proposition 2
give a definite answer to the question of whether some reservoir architectures have the-
oretically more memory capacity than others in the linear setting. In theory, as we just
showed, all linear ESNs with the connectivity matrix A and the input mask C drawn from
regular distributions achieve almost surely their upper memory bound regardless of the un-
derlying design under minimal algebraic conditions. This means that the discussions about
optimizing the components of a LESN reservoir’s state map to achieve maximal theoretical
memory capacity are not justified. Regardless of the LESN architecture, in the setting of
Proposition 1, the memory of any LESN is generically maximal.

However, empirical estimates in the literature of the memory capacity in applied memory
tasks may differ from the theoretical value of N , which has motivated multiple studies with
attempts to design LESNs that render “maximized” memory. In the following sections, we
characterize the problems associated with the most common ways of numerical estimation of
MCs and explain computational issues that yield misleading empirical results. We show that

1. The authors of Grigoryeva et al. (2023) acknowledge that the proof of the proposition has been commu-
nicated to them by Friedrich Philipp.
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purely numerical pathologies in empirical MC evaluation emerge in a plethora of memory
“maximization” techniques applied to LESN architectures. As a solution, we shall propose
a simple numerical scheme to combat the numerical inconsistency of empirical estimates
with the theoretical result in Proposition 1.

2.3 Monte Carlo Estimation of Memory Capacities

In this section, we address important issues that arise when estimating memory capacities
using standard Monte Carlo simulation tools. The definitions and the results discussed
in this section show that even in the simplified setting of the so-called regular linear sys-
tems, the simulation-based estimation of network capacities may be misleading. We use this
section exclusively to motivate the necessity of designing other numerical methods for ca-
pacity estimation that do not suffer from the poor statistical properties of näıve approaches
based on plug-in estimators. In the following paragraphs, we spell out the finite-sample
properties of the natural sample estimator of (total) memory capacity and illustrate the
limitations of the sample-based approach that may lead to incorrect memory estimates that
are incompatible with the generic N -memory capacity of LESNs.

The availability of the closed-form solution (2.7) facilitates the computation of capaci-
ties. However, even for linear specifications, the ill-conditioning of the associated covariance
matrices of states leads to technical difficulties. Some of those problems can be handled by
using equivalent state-space representations. Proposition 2.5 in Gonon et al. (2020) proves
that new representations obtained out of linear injective system morphisms leave capaci-
ties invariant and hence can be used to produce systems with more technically tractable
properties.

Proposition 3 (Standardization of state-space realizations, Gonon et al. 2020)
Consider a state-space system as in (2.1)-(2.2) and suppose that ρ(Ã) < 1. Let z : Ω −→
RZ− be a stationary mean-zero input process and let x̃ : Ω −→ (RN )Z− be the associated
stationary state process given by (2.4). Suppose that the covariance matrix Γx̃ := Cov(x̃t, x̃t)

is non-singular. Then, the map f : RN −→ RN given by f(x̃) := Γ
−1/2
x̃ x̃ is a system

isomorphism between the system (2.1)-(2.2) and the one with state map

F̃ (x, z) := Ax + Cz (2.10)

and readout

h̃(x) := W>x, (2.11)

with A := Γ
−1/2
x ÃΓ

1/2
x , C := Γ

−1/2
x C̃, and W = Γ

−1/2
x W̃. Moreover, the state process x

associated to the system F̃ and the input z is covariance stationary and

E[xt] = 0, and Cov(xt,xt) = IN . (2.12)

This result of invariance of memory capacities with respect to the system isomorphism

f(x) := Γ
−1/2
x x allows us to work directly with the standardized state-space systems and

assume that Γx = IN without loss of generality.
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Definition 4 Let z : Ω −→ RZ−, D ⊂ R, be a variance-stationary input process and let
the state map F̃ : RN ×R→ RN be given by F̃ (x, z) := Ax + Cz with ρ(A) < 1. We call a
system with the state map F̃ a regular linear system whenever the covariance matrix Γx

of the associated covariance-stationary state process x : Ω −→ (RN )Z− satisfies Γx = IN .

A straightforward approach to estimate the memory capacity of an echo state network
is to simulate the mean zero and variance one process (zt)

T
t=1, to compute the associated

states (xt)
T
t=1 and to use in (2.7) the plug-in sample estimator

γ̂xz(τ) := Ĉov(xt, zt−τ ) =
1

T − τ

T∑
t=τ+1

xt zt−τ . (2.13)

This leads to the sample memory capacity estimator

M̂Cτ := γ̂xz(τ)>γ̂xz(τ) =
∥∥γ̂xz(τ)

∥∥2
2
, (2.14)

that we refer to as the Monte Carlo estimator. Letting N be fixed, under suitable assump-
tions of stationarity and sufficiently many finite moments, it is well-known that the above
sample estimators are consistent and asymptotically normal (see Brockwell and Davis 2006;
Hamilton 1994 and Lütkepohl 2005 for the details). These assumptions hold trivially when

zt is sampled as i.i.d. standard Gaussian noise and we show further that M̂Cτ
p→ MCτ as

T →∞ for any fixed τ .
However, if N is growing with T , Ĉov(xt, zt−τ ) may be inconsistent. In practical im-

plementations of echo state network architectures N can be large, of the order of 104 or
more. Hence, T must also be appropriately chosen for the Monte Carlo approximations
to be valid. These considerations imply the necessity to study memory estimators in the
high-dimensional time series setting (see e.g. Chen et al. 2013 or Zhang and Wu 2017 for
examples of such discussions). We show in the following paragraphs that inaccuracies when

numerically evaluating M̂Cτ even when the ratio T/N is small (in practice T/N < 10 can
already be problematic) mean that the estimator (2.14) is a poor approximation of the
LESN memory capacity. This issue can be even more significant when one wishes to quan-
tify MCτ for τ large. We now provide a quick analysis of these phenomena using standard
statistical arguments.

Proposition 5 Let N ∈ N, A ∈ MN , C ∈ RN , and ζ = 0, and suppose that the resulting
linear system is regular. Let (zt)

T
t=1, T ∈ N, be mean-zero i.i.d. Gaussian with Var(zt) =

γ(0) = 1 and let (xt)
T
t=1 be the associated states (obtained using a trivial initialization).

Then the memory capacity sample estimator for any τ ∈ N, τ < T , is given by

M̂Cτ (T ) =
∥∥γ̂xz(τ)

∥∥2
2

(2.15)

with γ̂xz(τ) as in (2.13) and the total memory capacity estimator on τmax ∈ N sample of
memory capacities is

M̂C(T ) =
1

τmax

τmax−1∑
τ=0

M̂Cτ (T ). (2.16)

These estimators have the following properties:

12
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(i) M̂Cτ (T ) is a biased estimator of MCτ with bias BMC given by

BMC := E[M̂Cτ (T )]−MCτ =
N

T − τ
+

2

T − τ

τ∑
j=0

γxz(j)
>γxz(2τ − j), (2.17)

which is positive for large τ .

(ii) M̂Cτ (T ) is an asymptotically unbiased estimator, that is (E[M̂Cτ (T )] − MCτ ) → 0

as T → ∞, and a weakly consistent estimator of MCτ , that is M̂Cτ (T )
p→ MCτ as

T →∞.

(iii) M̂C(T ) is a biased and asymptotically unbiased estimator of MC. Moreover, it is

weakly consistent, that is M̂C(T )
p→ MC with τmax = O(T ) and T →∞.

Proof
Both (2.15) and (2.16) are immediate consequences of the definition (2.14). To show

(i), we use that by Definition 4, ρ(A) < 1 and obtain that

E
[∥∥γ̂xz(τ)

∥∥2
2

]
=E

( 1

T − τ

T∑
t=τ+1

xt zt−τ

)>(
1

T − τ

T∑
s=τ+1

xs zs−τ

)
=

1

(T − τ)2
E


 T∑
t=τ+1

∞∑
j=0

AjC zt−j zt−τ

>( T∑
s=τ+1

∞∑
k=0

AkC zt−k zs−τ

)
=

1

(T − τ)2
E

C>


T∑

t=τ+1

T∑
s=τ+1

∞∑
j=0

∞∑
k=0

(Aj)>Akzt−τ zt−jzs−τzs−k

C


=

1

(T − τ)2

{
T∑

t=τ+1

C>(Aτ )>AτCE
[
z4t−τ

]
+
∑
t6=s

C>(Aτ )>AτCE
[
z2t−τ z

2
s−τ
]

+

T∑
t=τ+1

∞∑
j=0,j 6=τ

C>(Aj)>AjCE
[
z2t−τ z

2
t−j
]

+

T∑
t=τ+1

2τ∑
j=0,j 6=τ

C>(Aj)>A2τ−jCE
[
z2t−τ z

2
t−j
]}

=
1

T − τ
{

3‖γxz(τ)‖22 + (T − τ − 1)‖γxz(τ)‖22 + γ(0)tr(Γx)− ‖γxz(τ)‖22

+

2τ∑
j=0

C>(Aj)>A2τ−jCγ(0)2 − ‖γxz(τ)‖22
}

=‖γxz(τ)‖22 +
1

(T − τ)
γ(0)tr(Γx) +

1

(T − τ)

2τ∑
j=0

γxz(j)
>γxz(2τ − j),

where we can use that Γx = IN and that γ(0) = 1, which yields (2.17).
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Further, using that for any ε > 0 there exists a matrix norm |||·||| such that |||A||| = ρ(A)+ε
(see Lemma 7.6.12 in Horn and Johnson 2013), the second term in BMC can be bounded
as follows

1

T − τ

2τ∑
j=0

|γxz(j)>γxz(2τ − j)| =
γ(0)2

T − τ

2τ∑
j=0

|C>(Aj)>A2τ−jC|

≤ γ(0)2

T − τ

2τ∑
j=0

|||C|||2
∣∣∣∣∣∣∣∣∣(A>)j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣A2τ−j∣∣∣∣∣∣
≤ γ(0)2

T − τ
|||C|||2

2τ∑
j=0

∣∣∣∣∣∣∣∣∣A>∣∣∣∣∣∣∣∣∣j |||A|||2τ−j
=
τ + 1

T − τ
γ(0)2|||C|||2(ρ(A) + ε)2τ ,

and hence decays exponentially fast with τ . It is also easy to see that BMC is always positive
for large enough τ .

In order to show (ii), notice that (i) together with the Markov inequality gives M̂Cτ (T ) =

Op(T
−1) which yileds asymptotic unbiasedness as T →∞ and weak consistency of M̂Cτ (T )

as an estimator of MCτ . Finally, in (iii) one can mimic the proof of (ii) and use that,

by Gelfand’s formula (Lax, 2002), lim
k→∞

∣∣∣∣∣∣Ak∣∣∣∣∣∣1/k = ρ(A) < 1, which implies the existence

of a number k0 ∈ N such that
∣∣∣∣∣∣Ak∣∣∣∣∣∣ < 1, for all k ≥ k0. Consequently, this implies the

finiteness of all the sums in M̂Cτ (T ) with τmax = O(T ) and T →∞.

This result shows that even though the estimator of the memory capacity is asymptot-
ically unbiased, in finite samples MCτ is always positively biased above zero. This means
that, even with large T summing up τmax terms in the sequence {MCτ}∞τ=0 may yield a
memory capacity estimate that is above the theoretical limit given by Proposition 1. This
happens even when reservoir matrices are well-conditioned. Figure 1 illustrates the case
when N = 100, A is a scaled random orthogonal matrix, and C is a 2-norm-scaled random
normal vector. Taking τmax = 500 to estimate MC, we show that even in those Monte Carlo
simulations where T/N ≈ 100 non-negligible memory overestimation errors are committed.

2.4 Näıve Algebraic Memory Estimation

In this section, we consider another possibility for the evaluation of the memory using a
purely algebraic approach and without relying on Monte Carlo simulations. Again, we show
that numerical issues are also encountered with this approach. We start by noticing that,
under the hypotheses in Proposition 1, the memory capacity can be computed using (2.9),
namely, for any τ ∈ N

MCτ = C>(Aτ )>G−1x AτC, (2.18)
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Figure 1: Illustration of memory capacity inflation due to the inconsistent estimation of MCτ

for LESN with N = 100, orthogonal A with ρ(A) = 0.9, and input mask C = C/‖C‖ with

C = (ci)
N
i=1 ∼ i.i.d. N (0, 1): (a) memory curves M̂Cτ (T ); (b) bar chart of normalized total

memory capacity M̂C(T )/N . Memory curves M̂Cτ (T ) are computed for τ ∈ {0, 1, ..., 5N}
(in (a), M̂Cτ (T ) is plotted only up to τ = 2N for the sake of clarity). Estimators are
computed from simulated (zt)

T
t=1 ∼ i.i.d. N (0, 1), with T ∈ {1000, 1500, . . . , 10000}.

where Gx := γ(0)−1Γx denotes the normalized version of the state autocovariance matrix
in (2.8) and can be written as

Gx =
∞∑
j=0

AjCC>(Aj)>. (2.19)

The infinite series in the definition of Gx may be hard to approximate well with a finite
number of terms if the spectral radius of A is very close to one, a choice that is quite common
in applications. This concern can be easily mitigated by noting that under the hypotheses
of Proposition 1 a closed-form expression of Gx in terms of the eigendecomposition of A
can be derived (for details, we refer the reader to the proof of Proposition 4.3 in Gonon
et al. (2020)). Let {v1, . . . ,vN} be an eigenbasis of A and {λ1, . . . , λN} be the associated
eigenvalues. By expressing C as C =

∑N
i=1 ci vi it is straightforward to show that

Gx =
N∑

i,j=1

cic̄j

1− λiλ̄j
vi v

∗
j . (2.20)

and hence Gx can be readily and precisely computed. Unfortunately, Gx can still be signif-
icantly poorly conditioned for moderately large N and commonly chosen distributions for
the entries of A. This problem is easy to illustrate by plotting the norm of the eigenvalues
of Gx for A sampled from laws that are standard in the literature.

We provide an example demonstrating this phenomenon in Figure 2 using two reservoirs
of size N = 50 and N = 150. More precisely, for five commonly used choices of connectivity
matrices, we plot the absolute values of the eigenvalues of Gx in decreasing order. We
compare them with the standard double-precision of floating point numbers eps in our
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Figure 2: Eigenvalue plot (in absolute values) for Gx for various types of connectivity
matrices. Gx was computed using 1000 series terms in (2.18), a connectivity matrix A ∈MN

with spectral radius ρ(A) = 0.9 and a unit norm input mask C ∈ RN . Computations
are performed in MATLAB with the standard double-precision of floating point numbers
eps = 2−52 ≈ 2.2× 10−16 marked with the black horizontal solid line.

software of choice, MATLAB. Notice that all the eigenvalues in absolute value smaller than
eps will be numerically treated as zero by linear algebra routines. This poor conditioning
does not by itself mean that software packages will fail to solve the linear system given by
Gx u = AτC; rather, the numerical solution for u will be inaccurate (Horn and Johnson,
2013, Section 5.8). This numerical instability is at the origin of the seemingly suboptimal
memory performance of LESNs observed in implementations. Further, note that even if Γx

is estimated using a Monte Carlo simulation, due to its consistency as T →∞, the sample
estimator Γ̂x inherits the conditioning issues of its theoretical counterpart. This effectively
implies that the simulation of Gx is not a feasible way to mitigate the conditioning problem,
even asymptotically. Regularization methods, such as Tikhonov, also do not solve this as
they modify the covariance eigenvalue structure.

The following example about the so-called cyclic reservoirs is much studied in the lit-
erature under the name “RingOfNeurons” (see Strauss et al. 2012, for example, or more
recently in Verzelli et al. 2021). Cyclic architectures yield memory curves that are com-
putable in closed form, and the ill-conditioning of Gx can be explicitly demonstrated. Cyclic
ESNs fall into the more general category of orthogonal recurrent neural networks, for which
White et al. (2004) has also derived some theoretical memory properties. However, there
the authors consider the case in which the states may be contaminated by noise, a situation
that we do not discuss in this work.
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Example 2 (Cyclic reservoirs) Consider a N -dimensional cyclic reservoir with the un-
scaled orthogonal connectivity matrix

Ã =



0 0 . . . 0 1

1 0
. . . 0 0

0
. . .

. . .
...

...
...

. . .
. . . 0 0

0 . . . 0 1 0


∈MN ,

which is rescaled with some ρA < 1 by setting A = ρAÃ.
In the literature, both Ã and Ã> are referred to as the cyclic reservoir matrices, and the

state dynamics they define are identical up to a permutation of the reservoir nodes (Rodan
and Tino, 2011). Let C = e1 be the first canonical basis vector of RN . First, observe that

AC = e2, A2C = e3, . . . , A
N−1C = eN ,

which justifies the use of the term cyclic.2 Second, note that in this case we can obtain the
explicit expression of the normalized state covariance matrix as follows:

Gx = diag

( ∞∑
j=0

ρ
i(2N)
A ,

∞∑
j=0

ρ
i(2N)+2
A , . . . ,

∞∑
j=0

ρ
i(2N)+2(N−1)
A

)
=

diag

(
1

1− ρ2NA
,

ρ2A
1− ρ2NA

, . . . ,
ρ
2(N−1)
A

1− ρ2NA

)

and hence

G−1x = diag

(
1− ρ2NA ,

1− ρ2NA
ρ2A

, . . . ,
1− ρ2NA
ρ
2(N−1)
A

)
.

This formula shows that if N is large, inversion of Gx can be an ill-conditioned problem
depending on ρA. Finally, for 0 ≤ τ ≤ N − 1 it holds

MCτ = e>1 (Aτ )>G−1x Aτe1 = ρτA

(
1− ρ2NA
ρ2τA

)
ρτA = 1− ρ2NA ,

while in general for kN ≤ τ ≤ k(N + 1)− 1, k > 1, one has

MCτ = ρkN+τ
A

(
1− ρ2NA
ρ2τA

)
ρkN+τ
A = ρ2kNA (1− ρ2NA ).

These computations are a special case of more general results in Rodan and Tino (2011),
although we have made explicit the values of MCτ . Rodan and Tino (2011) further proved
that such memory capacities arise for generic C when A is chosen to be a regular rotation
based on the input mask.

2. Further, in Proposition 6 we prove that memory capacities MCτ are invariant with respect to the choice
of C. Hence, our selection of input mask does not imply any loss of generality.
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3. Robust Memory Computation

In this section, we propose simple but effective methods to compute the memory capacity
MCτ for linear ESNs. These methods are not affected by the problems discussed in Section 2.
First, we show a strong neutrality result of the memory capacity with respect to input
masks. Second, we discuss the origin of numerical instabilities of memory computation
and the so-called memory gaps, borrowing from the theory of Krylov subspaces. Finally,
we propose new computational methods based on the Arnoldi iteration algorithm for the
leading eigenvector computation and on the memory neutrality with respect to the input
mask. We call our proposed methods robust, since they do not suffer explicitly from the
conditioning issues that arise in the näıve algebraic and statistical methods presented in
the previous section and render empirical results that are in agreement with the theory.

3.1 Input Mask Memory Neutrality

A fundamental aspect of memory capacity is its dependence on the structure of the con-
nectivity matrix A and the input mask C. We recall that by Proposition 1, we know that
as long as A and C satisfy a controllability condition, the total memory MC of a LESN
is maximal. Moreover, by Proposition 2 this holds almost surely whenever both A and C
are sampled from some regular distribution. We now prove a much stronger result: in the
linear setup, under the same controllability conditions, the input mask C does not have any
impact on individual τ -lag memory capacities MCτ .

Proposition 6 (Input mask neutrality) For any linear echo state network under the
assumptions of Proposition 1, the memory capacity is input mask neutral, that is, MCτ is
invariant with respect to the choice of C, for all τ ∈ N.

Proof Let {v1, . . . ,vN} be an eigenbasis of A and {λ1, . . . , λN} be the associated eigen-
values. Denote Λ := diag(λ1, . . . , λN ), V := (v1|v2| . . . |vN ), and

V −1 =

 v∗1
...

v∗N

 ,

and notice that by the hypothesis of diagonalizability of A one has A = V ΛV −1. Using the
eigenbasis of A, or using the columns of V , it holds for the input mask that C =

∑N
i=1 ci vi

with c := (c1, . . . , cN )> the vector of coefficients. We now recall that by (2.20)

Gx =

∞∑
j=0

AjCC>(Aj)> =
N∑

i,j=1

ϕi,j vi v
∗
j ,

with ϕi,j := (cicj)/(1− λiλj), and hence it holds that

V −1Gx(V ∗)−1 =

 N∑
i,j=1

ϕi,j
(
v∗k vi v

∗
j vl
)N

k,l

= (ϕk,l)
N
k,l .
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Finally, using this expression in (2.18), we can write MCτ as follows:

MCτ = C>(Aτ )>G−1x AτC = C>(V ∗)−1(Λ∗)τV ∗G−1x V ΛτV −1C

= C>(V −1)∗(Λ∗)τ
(

(ϕk,l)
N
k,l

)−1
ΛτV −1C = c∗(Λ∗)τ

(
(ϕk,l)

N
k,l

)−1
Λτc

= c∗(Λ∗)τ

(
diag (c)

(
1

1− λkλl

)N
k,l

diag (c∗)

)−1
Λτc

= c∗(Λ∗)τdiag (c∗)−1
((

1

1− λkλl

)N
k,l

)−1
diag (c)−1 Λτc

= ι>N (Λ∗)τ
((

1

1− λkλl

)N
k,l

)−1
Λτ ιN , (3.1)

where ιN = (1, . . . , 1)> ∈ RN . The last equality in the derivation follows from the commu-
tative property of the product of diagonal matrices. Hence, MCτ is independent of C for
all τ ∈ N under the stated assumptions.

A complementary result in continuous time with stationary inputs was derived by Her-
mans and Schrauwen (2010). To the best of our knowledge, the previous proposition is the
first derivation of this property in the context of discrete-time models. A generalization
of the memory neutrality for weakly stationary inputs (possibly autocorrelated) is given in
Theorem 9 in Appendix A.

3.1.1 Another Formula for Memory Capacity

The proof of Proposition 6 offers another additional strategy that one may follow in order
to compute memory capacities. Indeed, the resulting closed-form expression (3.1) can be
used to evaluate the memory curve. More precisely, for a chosen reservoir matrix A it is
sufficient to compute its eigendecomposition A = V ΛV −1, then construct the matrix

LA :=

(
1

1− λkλl

)N
k,l

,

and finally compute
MCτ = ι>N (Λ∗)τL−1A Λτ ιN .

Unfortunately, similarly to all the previous approaches, this strategy still exploits the struc-
ture of the spectrum of A and may suffer from the same ill-conditioning issues. Simple
simulations, which, for the sake of brevity, we do not report, immediately show that regular
matrix distributions produce LA matrices with eigenvalues decaying as quickly as those of
the respective Gx. This makes the direct application of Proposition 6 for memory evaluation
also an infeasible option.

Despite the fact that the result of the neutrality of the LESN memory with respect to
the choice of the input mask in Proposition 6 yields no immediate numerical advantages, it
is nevertheless at the origin of robust numerical techniques for empirical memory evaluation
that we present in the following sections. More explicitly, we shall show how to use the
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memory neutrality property to design a memory capacity estimation procedure that recov-
ers full memory in linear ESN models and is robust with respect to the numerical issues
discussed in Section 2.

3.2 Krylov Conditioning

In Section 2.4 we showed that the normalized covariance matrices Gx intervene in the
computation of capacities MCτ , τ ∈ N. We now explain how one of the sources of numerical
problems in memory capacity evaluation is due to the poor conditioning of Krylov matrices
that are implicitly used in numerical procedures when evaluating Gx.

For N ∈ N, A ∈MN , and C ∈ RN define the Krylov matrix

K :=
(
C |AC |A2C | . . .

)
,

which is infinite in the column dimension. Under the hypothesis ρ(A) < 1, Gelfand’s formula
(Lax, 2002) guarantees that there exists k0 ∈ N such that

∣∣∣∣∣∣Ak0∣∣∣∣∣∣∞ < 1 and hence for any

ε > 0 there exists k ∈ N such that
∣∣∣∣∣∣Ak∣∣∣∣∣∣∞ < ε. We can use this fact to truncate the matrix

K to m columns so that ‖AmC‖∞ < eps, with eps denoting the double-precision of floating
numbers of the researcher’s numerical software. Therefore, when using numerical tools, the
finite-dimensional m-column Krylov matrix is used. We denote this matrix by

Km :=
(
C |AC |A2C | . . . |Am−1C

)
(3.2)

and notice that Gx can be approximated by the product of finite-dimensional matrices,

G̃x = KmK
>
m. (3.3)

A useful factorization of the finite-dimensional Krylov matrices is given by the following
result, which we adapt from Lemma 2.4 in Meurant and Duintjer Tebbens (2020) using our
notation.

Lemma 7 Let A ∈ MN be diagonalizable with A = V ΛV −1, where matrix Λ is diagonal,
and let c = V −1C. Then, the Krylov matrices Km defined in (3.2) can be factorized as

Km = V DcWm, (3.4)

where Dc = diag(c) and Wm ∈MN,m is the Vandermonde matrix

Wm :=


1 λ1 · · · λm−11

1 λ2 · · · λm−11
...

...
. . .

...

1 λN · · · λm−1N


constructed using the eigenvalues of A.

It is well-known that Krylov matrices are difficult to treat numerically. As pointed
out in Meurant and Duintjer Tebbens (2020), Km is often lacking in numerical rank when
compared to the theoretical rank N , and, more importantly, it can have exponentially
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increasing conditioning number as m grows. In our case, this phenomenon can be observed
by noting that the eigenvalues of G̃x = KmK

>
m are the same as nonzero eigenvalues of

K>mKm for which it holds that

K>mKm = W ∗mD
∗
cV
∗V DcWm.

The right-hand side of this expression, under the assumption that A is normal and Dc = IN ,
results in the positive-definite Hankel matrix W ∗mWm. Tyrtyshnikov (1994) proved that for
real positive-definite Hankel matrices and general Krylov matrices the spectral condition
number has exponential lower bounds in m, which means that G̃x can indeed be extremely
ill-conditioned in many common setups.

3.3 Memory Gaps and Krylov Subspace Squeezing

As we already pointed out several times, Theorem 4.4 in Gonon et al. (2020) states that
the total memory capacity MC of a LESN equals

MC = rank{KN},

with KN ∈MN as in (3.2). We refer to the discrepancy between this theoretical result and
its numerical estimation as memory gap. The next paragraphs propose an explanation of
why so often there is a disagreement between theoretical and empirically computed memory
capacities.

3.3.1 Geometric Interpretation of Krylov Subspace Squeezing

We start by introducing the Krylov subspaces and their squeezing, which results in memory
gaps in empirical exercises. We refer the reader to some interesting literature regarding the
theory of Krylov subspace methods (Bellalij et al., 2016), its geometric aspects (Eiermann
and Ernst, 2001), and use for linear (Meurant and Duintjer Tebbens, 2020) and nonlinear
systems (Hashimoto et al., 2020).

Definition 8 (Krylov subspace) The jth-order Krylov subspace generated by a ma-
trix A ∈MN and a vector C ∈ RN is the linear subspace of RN given by

Kj(A,C) = span
{
C, AC, A2C, . . . , Aj−1C

}
.

Let now N be large and consider the QR decomposition of the Krylov matrix

KN = (q1|q2| . . . |qN )


r1,1 r1,2 . . . r1,N
0 r2,2 . . . r2,N
...

...
. . .

...
0 0 . . . rN,N

 = QR.

If Q and R are obtained via Gram-Schmidt orthogonalization, then the diagonal entries of
R have a clear geometric interpretation: each rj,j represents the norm of the orthogonal
component in vector AjC with respect to the subspace spanned by the columns of the
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Krylov matrix Kj , or equivalently Kj(A,C). Here, we ignore the fact that the Gram-
Schmidt implementation of QR is numerically unstable and instead focus on the fact that
matrix R inherits the rank structure of KN .

In practice, we observe that the size of rj,j decays superexponentially compared to the
decay of powers of ρ(A), a phenomenon that we term Krylov subspace squeezing. This
means that for A with ρ(A) < 1 and with large enough N there exists a positive integer
` < N such that numerically

R ≈
(

R1 R2

ON−`,` ON−`,N−`

)
.

This implies that näıve methods, which do not control for the ill-conditioning of Gx, lead
to the incorrect estimate

MC = rank{R} ≈ `.

We construct a simulation to showcase the Krylov subspace squeezing phenomenon for
commonly chosen distributions of the reservoir connectivity matrix A.

Let j ∈ N and denote as θj+1 = perpKj(A,C)(A
jC) ∈ Kj(A,C)⊥ the orthogonal com-

ponent of AjC with respect to Kj(A,C), with ‖θ1‖ = ‖C‖ and hence ‖θ1‖ = 1 due to
normalization. To compute θj in a robust fashion, we employ two different approaches.
Firstly, one can use the Arnoldi iteration approach (Arnoldi, 1951), which is specially
designed to handle the orthogonalization of Krylov iterations. Alternatively, one can define
the projection P cj : RN −→ Kj(A,C), or, equivalently, P cj : RN −→ C(Kj), with the corre-

sponding projection matrix P cj = Kj(K
>
j Kj)

−1K>j . Additionally, we may take the singular
value decomposition of Kj given by

Kj = Uj ΣjW
>
j , (3.5)

where the columns of Uj ∈ MN,j and Wj ∈ Mj are the orthonormal left-singular and
right-singular vectors of Kj , respectively, and Σj ∈ Mj with j singular values of Kj on
its diagonal, respectively. Hence, one obtains that the orthogonal components θj for every
1 ≤ j ≤ N have the norm

‖θj+1‖ = ‖ (IN − P cj )AjC‖ = ‖ (IN − Uj ΣjW
>
j (WjΣjU

>
j Uj ΣjW

>
j )−1WjΣjU

>
j )AjC‖

= ‖ (IN − UjU>j )AjC‖.

We call this singular value decomposition approach the orthogonal method, as it explicitly
removes dependence on the ill-conditioning that is now incorporated in the singular values
matrices Σj .

3

The results of our simulations with LESN models of size N = 100 are shown in Figure 3,
which also include a rank estimation of KN . As one can notice, even with a logarithmic
ordinate axis, the decay for most random sampling distributions is faster than exponen-
tial when compared to the powers of the leading eigenvalue. Only when using a random
orthogonal matrix the decay of ‖θj‖ is close to ρ(A)j−1, as shown in panel (d).

3. An alternative option is, of course, to use a standard linear projection argument i.e. least-squares to
compute θj . Due to the Krylov structure, however, this method is very ill-conditioned.
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Additionally, we make an important empirical observation: the value of ‖θj‖ as a func-
tion of j is well approximated by the ordered cumulative product of the absolute values of
eigenvalues of A. Our empirical finding can be seen in panels of Figure 3 by considering
the dashed black line, which plots such cumulative eigenvalue product. This observation,
combined with knowledge of the spectral properties of random matrices, allows getting a
more precise understanding of the ill-conditioning of the reservoir autocovariance matrix,
as we argue now.

3.3.2 Random Matrix Theory Insights

A fundamental result of random matrix theory (RMT) is the celebrated circular law, which
broadly speaking states that the (appropriately scaled) eigenvalues of families of random
matrices are asymptotically uniformly distributed on the complex unit circle as N → ∞
(see Tao 2012 for an introductory discussion). A general statement of the circular law
for ensembles of matrices with i.i.d. entries with unit variance was given by Tao et al.
(2010). Matrix ensembles with sparse entries also obey the circular law, as proven by
Wood (2012) and Basak and Rudelson (2019). In particular, the degree of sparsity controls
the probability of singularity, although in appropriate settings such probability remains
exponentially small (Basak and Rudelson, 2017). Figure 6 in the Appendix shows the
distribution of eigenvalues for commonly used ESN reservoir matrices. Notice that for
ensembles of Gaussian, sparse Gaussian, and uniform entries, the associated eigenvalues
have a close-to-uniform distribution on the complex unit circle. We highlight that attempts
to use RMT to gain insights on reservoir models have already been made: Zhang et al.
(2012) use the circular law to derive explicit bounds on spectral scaling factors; Couillet
et al. (2016a) and Couillet et al. (2016b) apply results from random matrix theory to make
performance analyses of linear echo state networks effected by exogenous noise. However,
to the best of our knowledge, our empirical observations are new.

With the circular law in mind, in linear reservoirs where A is drawn randomly from
standard matrix ensembles, we know that for its eigenvalues it approximately holds that
|λi|2 ∼ U(0, ρ(A)), i ∈ {1, . . . , N}. We can thus derive the following closed-form approxi-
mation, call it κj , for the value of ‖θj‖, given by κ1 = 1 and

κj+1 =

√
ρ(A)

N !

N j(N − j)!
, ∀j ≥ 1.

This expression can be derived easily by noting that |λi| are approximately distributed as√
ρ(A)Zi where Zi ∼ U(0, 1). When N is large, we may further approximate realizations

(Zi)
N
i=1 with a uniform grid of knots over (0, 1). Computing the cumulative product of these

knots in descending order gives the formula for κj above. It shows that the decay of ‖θj‖
can be indeed much faster than that of powers of ρ(A) under the circular law. In theory, a
sharper formula could be derived by noting that most eigenvalues of a random matrix come
in conjugate complex pairs, so knots should also be chosen in couples. This would require
knowing the expected ratio of real to complex eigenvalues of a random matrix ensemble,
which is beyond the scope of this discussion. Yet, as shown with the dashed black lines in
Figure 3, we empirically find that our RMT approximation is remarkably precise at fitting
the faster-than-exponential decay of ‖θj‖.
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(a) Aij ∼ i.i.d. N (0, 1)
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(b) Aij ∼ i.i.d. U(−1, 1)

0 20 40 60 80 100 120 140
10-25

10-20

10-15

10-10

10-5

100

N = 100rank(KN) = 69

eps

Arnoldi
Ortho
Eigen

(c) Aij ∼ i.i.d. spN (0, 1, 0.1)
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(d) A ∼ O(N (0, 1))

Figure 3: Krylov subspace squeezing effects as measured using the norm of the orthogonal
component for reservoir matrix A = (Aij) ∈ MN , ρ(A) = 0.9, sampled N (0, 1) in (a),
U(−1, 1) in (b), sparse standard Gaussian with the degree of sparsity 0.1, spN (0, 1, 0.1), in
(c), and orthogonal standard Gaussian in (d), and for Krylov matrix Km ∈ MN,m, where
in all plots N = 100 and m = 5N . Input mask is C = ιN = (1, . . . , 1)> ∈ RN . The
black dotted line shows the exponential decay of leading eigenvalue ρ(A), while the black
dashed line illustrates the approximate decay law derived using random matrix theory in
Section 3.3.2. A solid black horizontal line shows the numerical double-precision of floating
numbers in MATLAB, eps = 2−52 ≈ 2.22× 10−16.
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3.4 Subspace Methods

Now that we have discussed the ill-posed nature of inverse problems involving Gx and how
it relates to its Krylov structure, we propose two approaches that can correctly recover the
full memory capacity as well as individual lag-τ capacities. Our methods boil down to the
idea of using appropriate matrix decompositions to remove those parts of the singular values
spectrum from normalized reservoir autocovariance Gx that lead to its ill-conditioning.

3.4.1 Orthogonalized Subspace Method

We start by recalling again the expression of the τ -lag memory capacity of the LESN given
in (2.18), namely

MCτ = C>(Aτ )>G−1x AτC, (3.6)

where, as we explained in Subsection 3.2, Gx can be approximated by

G̃x = KmK
>
m (3.7)

with Km ∈ MN,m a Krylov matrix with the column dimension truncated up to m as in
(3.2). In this case, the approximate memory capacities in (3.6) can be computed as the
diagonal elements of the following matrix:

P rm := K>m(KmK
>
m)−1Km. (3.8)

It is easy to see that this is a projection matrix corresponding to the projection operator
P rm : Rm −→ C(K>m) ⊂ Rm. Using the singular value decomposition Km = Um ΣmW

>
m , with

Um ∈ MN full-rank orthogonal with the left-singular vectors of Km as columns, Σm ∈ MN

diagonal, and Wm ∈ Mm,N with the right-singular orthonormal vectors of Km as columns
(notice that this SVD is different from the one used in (3.5)), we write (3.8) as

P rm = WmΣmU
>
m(UmΣmW

>
mWmΣmU

>
m)−1UmΣW>m = WmW

>
m .

Therefore each τ -lag memory capacity of the LESN, 1 ≤ τ ≤ m, is well approximated by
(P rm)τ,τ .

It is important to underline that this method of memory capacity computation does
not suffer from any of the previously mentioned matrix or linear system inversion issues, as
it sidesteps the computation of G−1x altogether. The core idea is to explicitly exploit the
subspace structure of the Krylov matrix Km and, by using the singular value decomposition,
to extract the projection matrix associated with the LESN memory capacity. We term this
approach the orthogonalized subspace method (OSM) and define

MCOSM
τ = (WmW

>
m)τ,τ . (3.9)

Figures 4-5 show that the orthogonalized subspace method computes memory curves consis-
tent with full memory. One also notices one of the downsides of this method when inspecting
the memory curves recovered by OSM in all the panels of Figure 4 and in subfigure (a) and
(b) of Figure 5. More precisely, OSM results in memory capacity curves that need not be
monotonically decreasing. This is in contrast to the known monotonicity of memory proven
in Jaeger (2002). A reason for this is that, while the subspace methods avoid a costly and
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unstable matrix inversion, it still relies on the computation of singular value decomposi-
tion factors. Formula (3.9) does not guarantee that the diagonal entries are numerically
non-increasing. Monotonicity hinges on recursively identifying the largest leading singular
direction at each step of the decomposition. Accordingly, the accuracy of the estimated
MCτ is tied to the accuracy of the singular value decomposition, and the ill-conditioning of
Km still plays some role in it.

3.4.2 Averaged Orthogonalized Subspace Method

Finally, we propose an improved version of our subspace memory computation method that
exploits the input mask memory neutrality result established in Proposition 6. Our goal is
to leverage this property to produce a better approximation of MCτ that is also monotonic.

We first notice that even though the expression of the true memory capacity MCτ in
(3.1) does not depend on C, its numerical computation with OSM in (3.9) is impacted by the
input mask. To recover the true memory capacity out of (3.9), one is ultimately interested
in computing EC[(WmW

>
m)τ,τ ], 1 ≤ τ ≤ m, m ∈ N, which, by Proposition 6, should not

depend on a particular choice of the distribution pC of the input mask. Although one can
potentially choose any pC that would allow one to evaluate this integral, we do not find
obtaining its expression in a closed form feasible. Our proposal is to adhere to the sample
estimator or the Monte Carlo estimator of EC[(WmW

>
m)τ,τ ], 1 ≤ τ ≤ m, m ∈ N which we

will call the averaged orthogonalized subspace method, or simply OSM+.
More explicitly, consider a sample of L independent and identically distributed according

to some arbitrary chosen law pC input masks {C(1), . . . ,C(L)}, and using (3.9) construct
the following memory capacity curve estimator:

MCOSM+
L,τ =

1

L

L∑
`=1

(
W (`)
m W (`)

m

>)
τ,τ
, 1 ≤ τ ≤ m, (3.10)

for which the weak law of large numbers implies that

MCOSM+
L,τ

p−−−−→
L→∞

EC[(WmW
>
m)τ,τ ], 1 ≤ τ ≤ m.

As mentioned above, one of the key advantages of this construction is the fact that the
OSM+ method allows choosing any type of pC as long as the conditions of Proposition 6
are satisfied. Moreover, OSM+ is straightforward to implement numerically, as shown
by the pseudo-code in Algorithm 1. Note that construction of the Krylov matrix can
be done iteratively, and therefore the most computationally expensive operation is the
singular value decomposition. Figures 4 and 5 show that the averaged subspace memory
curves produced by OSM+ are indeed monotonic, in contrast to the one-step subspace
approximation produced by OSM. Here, we do not make any suggestion as for the choice
of the distribution for the entries of C since Figure 4 indicates that common choices yield
very similar results for moderate resampling size L = 1000.

We emphasize that the näıve memory capacity computation discussed in Section 2.4 is
able to recover full memory only for some particular choices of the connectivity architectures
for which, by construction, the ill-conditioning problem is not pronounced. Indeed, the
subplots (c) and (d) in Figure 5 indicate that all three methods, namely näıve, OSM, and
OSM+, in these cases correctly quantify full memory of linear recurrent networks.
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(a) C ∼ i.i.d. N (0, 1)
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(b) C ∼ i.i.d. U(−1, 1)
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(c) C ∼ i.i.d. spN (0, 1, 0.1)
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(d) C ∼ i.i.d. spU(0, 1, 0.1)

Figure 4: Memory capacity curves of LESNs with connectivity matrix A = (Aij) ∈ MN

with ρ(A) = 0.9. In all panels Ai,j are sampled as i.i.d. degree 0.1 sparse standard normal,
spN (0, 1, 0.1), and the input mask C = (ci) ∈ RN is sampled as N (0, 1) in (a), U(−1, 1)
in (b), degree 0.1 sparse Gaussian, spN (0, 1, 0.1), in (c), and degree 0.1 sparse uniform,
spU(0, 1, 0.1), in (d). C is normalized after sampling to have a unit norm. Total MC is
estimated as the sum of MCτ ’s up to 1.5N terms. For OSM+ the input mask C is resampled
L = 1000 times to compute the average memory curve (lines) and 90% frequency bands for
MCτ (shaded).
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(a) A ∼ i.i.d. N (0, 1)
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(b) A ∼ i.i.d. U(−1, 1)
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(c) A ∼ O(N (0, 1))
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(d) A ∼ spCN (0, 1, 0.1, 0.7)

Figure 5: Memory capacity curves of LESNs with input mask C = (ci) ∈ RN and connec-
tivity matrix A = (Aij) ∈ MN , ρ(A) = 0.9, sampled from different standard distributions
(in panel (d) spCN (0, 1, 0.1, 0.7) stands for sparse standard Gaussian with sparsity degree
0.1 and condition number 0.7). In all panels ci ∼ i.i.d. spN (0, 1, 0.1). C is normalized after
sampling to have a unit norm. Total MC is computed as the sum of MCτ ’s up to 1.5N
terms. For OSM+ the input mask C is resampled L = 1000 times to compute the average
memory curve (lines) and 90% frequency bands for MCτ (shaded).
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Algorithm 1: Averaged Orthogonalized Subspace Method (OSM+)

Input : Reservoir connectivity matrix A ∈MN , distribution pC of input matrix
C, Krylov matrix truncation order m ∈ N, sampling budget L ∈ N

Output: Memory capacity curve MCτ for 0 ≤ τ ≤ m
mc curve ← zeros(m+1, 1); # initialize MC curve vector

for `← 1 to L do

C(`) ← sample rand matrix(pC; N, 1); # sample input matrix

K
(`)
m ← ( C(`) |AC(`) |A2C(`) | . . . |Am−1C(`) ); # construct Krylov matrix

U
(`)
m ,Σ

(`)
m ,W

(`)
m

>
← svd(K

(`)
m );

mc curve ← mc curve + L−1diag(W
(`)
m W

(`)
m

>
); # update estimate

4. Discussion

Given the fact that in this paper we have recalled (Section 2) and newly introduced (Sec-
tion 3) many methods to compute the memory capacity of linear recurrent networks, specif-
ically focusing on LESN models, we now wish to provide an overview of the key insights we
have gathered by comparing them.

Simulations and näıve algebraic methods are both plagued by significant issues. In
the former case, estimating moments of a stochastic process with simulated data always
introduces some positive bias in the calculation of MCτ , yielding memory curves that are
inconsistent with the theoretical properties of memory. In the latter case, näıve algebraic
applications of close-form formulas for memory eventually resort to inverting generally ill-
poised covariance matrices, see (2.19)–(2.20) and Figure 2. The numerical instability in the
inversion ofGx is the core issue with these approaches, and it is unavoidable by all techniques
that directly rely on expression (2.7). Indeed, this means that simulation methods, too, are

eventually impacted, as in extremely large simulations the conditioning of V̂ar(xt) is close
to that of Γx, and thus, ultimately, Gx.

While our OSM and, especially, OSM+ proposals are theoretically grounded and nu-
merically well-conditioned approaches to estimating MCτ , it is important also to mention
that in this paper we do not provide theoretical results on the convergence properties of
these algorithms. From a practical perspective, it would be interesting to derive a rate of
convergence for subspace methods as m→∞ and τ is fixed or τ →∞. The former seems
easier, while the latter seems useful in providing a better understanding of how memory
behaves at the “state dimension boundary”, τ ≈ N , as N → ∞, too. We leave these
developments to future work.

Lastly, we mention how our results may be generalized to forecasting capacity . Fol-
lowing again Gonon et al. (2020), recall that the forecasting capacity of an ESN is given by

FCτ =
Cov(zt,xt−τ )Γ−1x Cov(xt−τ , zt)

Var(zt)
, τ ∈ N+, (4.1)

where the states xt−τ are now lagged and not the inputs. Then, FCτ is a linear measure of
the predictability of future inputs with respect to the currently available state. Following
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our discussion above on the implications of relying on (2.7), computations of FCτ based
on either simulations or näıve algebraic derivations are bound to provide inherently poor
results. Although it is, in principle, possible to extend our OSM(+) methods also to compute
FCτ in a robust fashion, Corollary 3.5 in Gonon et al. (2020) proves that, for generic ESN
models (not necessarily linear), if (zt)t∈Z− is a sequence of independent random variables,
then FCτ = 0 and thus FC :=

∑∞
τ=0 FCτ = 0. Therefore, for other types of stochastic

inputs, forecasting capacity should be analyzed not as an inherent property of the (L)ESN
model, but rather as a quantity based on the interaction between the model and inputs.

5. Conclusion

In this paper, we have provided an overview of the existing literature on memory capacity
measures for recurrent neural networks and the approaches that have been extensively used
in designing memory-optimal network architectures.

We have focused on explaining and providing solutions for what we call the linear mem-
ory gap, which refers to the difference between empirically measured memory capacities and
their provable theoretical values. We have demonstrated that this discrepancy arises due
to numerical artifacts that have been overlooked in previous studies.

We propose robust techniques for the accurate estimation of memory capacity, which
result in full memory results for linear RNNs, as should be generically expected. Our findings
suggest that previous efforts to optimize memory capacity for linear recurrent networks
may have been plagued with numerical artifacts, leading to incorrect results. We base our
findings on the fact that the capacities of linear systems are generically full, disregarding
the particular choice of architecture. We also show that the memory capacity is neutral to
the choice of the input mask. We propose two orthogonalized subspace methods that allow
empirically recovering the full memory of linear systems and render results consistent with
the theory.

We hope, with this conclusive work, to close the door to forthcoming attempts at memory
optimization for linear RNNs that are not justified from a theoretical point of view.
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Appendix A. Memory Neutrality to Input Mask Under Stationarity

We now show that we can generalize Proposition 6 to the case of weakly stationary input
processes that are not necessarily white noises. This provides a discrete-time counterpart to
the result in Hermans and Schrauwen (2010) and allows us to apply our memory estimation
methods in more general setups in which just the stationarity of the input is needed.

Theorem 9 Under the controllability assumptions of Proposition 1, for any weakly station-
ary input (zt)t∈Z (not necessarily white noise), the memory of a linear echo state network
is neutral to the choice of the input mask C.

Proof We shall mimic the proof of Proposition 6. We start by noticing that under the
assumptions of the theorem, the stationarity of the input process implies stationarity of the
associated states process (xt)t∈Z as well as of the joint process (zt+τ ,xt)t∈Z for any τ ∈ N
(see Corollary 2.4 in Gonon et al. 2020), and calculate

Cov(xt, zt+τ ) = Cov(x0, zτ ) = E

 ∞∑
j=0

AjCz−jzτ

 =
N∑
k=1

∞∑
j=0

λjkE [z−jzτ ] ckvk

=
N∑
k=1

 ∞∑
j=0

λjkγ(τ − j)

 ckvk =
N∑
k=1

gk(τ)ckvk,

The state autocovariance matrix is given by

Γx = E

( ∞∑
i=0

AiCz−i

) ∞∑
j=0

AjCz−j

>


= E

 ∞∑
i=0

AiCC>(A>)iz2−i +
∑
j≥1

∞∑
i=0

{
AiCC>(A>)i+j +Ai+jCC>(A>)i

}
z−iz−i−j


=

∞∑
i=0

AiCC>(A>)iγ(0) +
∑
j≥1

∞∑
i=0

{
AiCC>(A>)i+j +Ai+jCC>(A>)i

}
γ(j).

We now analyze all three summands separately:

∞∑
i=0

AiCC>(A>)iγ(0) = γ(0)
N∑

k,l=1

ckcl
1

1− λkλl
vkv

∗
l ,

∞∑
i=0

AiCC>(A>)i+jγ(j) = γ(j)

N∑
k,l=1

ckcl
λ
j
l

1− λkλl
vkv

∗
l ,

∞∑
i=0

Ai+jCC>(A>)iγ(j) = γ(j)
N∑

k,l=1

ckcl
λik

1− λkλl
vkv

∗
l ,
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and can simplify Γx as

Γx =

N∑
k,l=1

ckcl

 γ(0)

1− λkλl
+
∑
j≥1

γ(j)
λjk + λ

j
l

1− λkλl

vkv
∗
l =

N∑
k,l=1

ckcl
hk,l

1− λkλl
vkv

∗
l .

We can now mimic the derivation in the proof of Proposition 6 as follows

MCτ = γ(0)−1Cov(xt, zt−τ )∗Γ−1x Cov(xt, zt−τ )

= γ(0)−1

(
N∑
k=1

gk(τ)ckvk

)∗ N∑
k,l=1

ckcl
hk,l

1− λkλl
vkv

∗
l

−1( N∑
k=1

gk(τ)ckvk

)

= γ(0)−1c∗G(τ)∗
(

diag (c)

(
hk,l

1− λkλl

)N
k,l

diag (c∗)

)−1
G(τ) c

= ι>N G(τ)∗
(
γ(0)

(
hk,l

1− λkλl

)N
k,l

)−1
G(τ) ιN .

Notice that the final expression does not depend on C, which proves the neutrality of the
memory capacity with respect to the choice of the input mask, as required.
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Appendix B. Additional Plots
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(d) Aij ∼ O(N (0, 1))

-1.5 -1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

(e) Aij ∼ cyclic(N)
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Figure 6: Eigenvalues (blue) for random and non-random reservoir matrices and the complex
unit circle (gray), N = 100. For specifications with entries Aij ∼ i.i.d.N , spN and U (upper

row) the matrices are normalized according to the circular law rates N−1/2, (0.1N)−1/2 and

(N/3)−1/2, respectively. In (f) spCN (0, 1, 0.1, 0.7) stands for sparse standard Gaussian with
sparsity degree 0.1 and condition number 0.7.
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