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Abstract

We study the optimization landscape of deep linear neural networks with square loss. It is known
that, under weak assumptions, there are no spurious local minima and no local maxima. However,
the existence and diversity of non-strict saddle points, which can play a role in first-order algorithms’
dynamics, have only been lightly studied. We go a step further with a complete analysis of the
optimization landscape at order 2. Among all critical points, we characterize global minimizers,
strict saddle points, and non-strict saddle points. We enumerate all the associated critical values.
The characterization is simple, involves conditions on the ranks of partial matrix products, and sheds
some light on global convergence or implicit regularization that has been proved or observed when
optimizing linear neural networks. In passing, we provide an explicit parameterization of the set of
all global minimizers and exhibit large sets of strict and non-strict saddle points.

Keywords: Deep learning, landscape analysis, non-convex optimization, second-order geometry,
strict saddle points, non-strict saddle points, global minimizers, implicit regularization

1. Introduction

Deep learning has been widely used recently due to its good empirical performances in image
recognition, natural language processing, and speech recognition, among other fields. However,
there is still a gap between theory and practice. One of the aspects that are partially missing in
the picture is why gradient-based algorithms can achieve low training error despite a non-convex
objective. Another partially open question is why they generalize well to unseen data despite many
more parameters than the number of points in the training set, and how implicit regularization can
help. One important research direction analyses the landscape of the empirical risk. In this paper, we
characterize the local structures around critical points of the empirical risk, for deep linear neural
networks with the square loss.
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Before summarizing the related literature and our main contributions, we first recall definitions
that will be key throughout the paper.

1.1 Reminder: Minimizers, Critical Points of Order 1 or 2, Strict and Non-strict Saddle
Points

Let us recall the definitions of local structures of the landscape of the empirical risk, which are
important from the statistical and optimization points of view.

Forwww ∈ Rn, denote bywww 7−→ L(www) the function we want to minimize. Assume thatwww 7−→ L(www)
is C2, and denote by∇L and∇2L its gradient and its Hessian.1 We also write A � 0 to say that a
matrix A ∈ Rn×n is positive semi-definite. Recall the following four definitions, which are nested:

• w∗w∗w∗ is a global minimizer if and only if ∀www ∈ Rn, L(www∗) ≤ L(www).

• w∗w∗w∗ is a local minimizer if and only if there exists a neighbourhood O ⊂ Rn ofw∗w∗w∗ such that
∀www ∈ O, L(www∗) ≤ L(www).

• w∗w∗w∗ is a second-order critical point if and only if ∇L(www∗) = 0 and ∇2L(www∗) � 0. If, on the
contrary, the Hessian has a negative eigenvalue, we say that the point has a negative curvature.

• w∗w∗w∗ is a first-order critical point if and only if∇L(www∗) = 0.

We can also distinguish a specific type of first-order critical point: saddle points. As discussed
below, they can be second-order critical points or not.2

• w∗w∗w∗ is a saddle point if and only if it is a first-order critical point which is neither a local
minimizer nor a local maximizer.

– A saddle pointw∗w∗w∗ is strict if and only if it is not a second-order critical point (i.e., the
Hessian∇2L(www∗) has a negative eigenvalue). Figure 2 gives an example.

– A saddle pointw∗w∗w∗ is non-strict if and only if it is a second-order critical point. In that
case, the Hessian∇2L(www∗) is positive semi-definite and has at least one eigenvalue equal
to zero. Typically, in the direction of the corresponding eigenvectors, a higher-order term
makes it a saddle point (e.g., L(www) =

∑n
i=1w

3
i atwww∗ = 0). Figure 1 gives an example.

1.2 On the Importance of a Landscape Analysis at Order 2

When the function we are trying to minimize is smooth, convex, and has a global minimizer, the
gradient descent algorithm with a well-chosen learning rate converges to a first-order critical point,
which is a global minimizer (Nesterov, 1998). However, in general, finding a global optimum of a
non-convex function is an NP-complete problem (Murty and Kabadi, 1987); this is, in particular, the
case for a simple 3-node neural network (Blum and Rivest, 1989). Despite that, when optimizing
neural networks, the current practice is still to use gradient-based algorithms.

1. When the input parameter is not a vector, but, e.g., a sequence of matrices, the same definitions hold, where the
gradient and the Hessian are computed with respect to the vectorized version of the input parameters.

2. Defining the index of a critical point as the number of negative eigenvalues of its Hessian, we can equivalently define
strict saddle points as saddle points of index greater than or equal to 1. Similarly, non-strict saddle points are saddle
points of index 0. Note that the latter are degenerate, i.e., their Hessian is singular.
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Figure 1: Example of a landscape with a
plateau (non-strict saddle point).

Figure 2: Example of a landscape with a
strict saddle point at (0,0).

It has been known for decades that, even in the non-convex setting, for large classes of functions,
gradient-based algorithms converge to a first-order critical point, in the sense that the iterates produced
by the algorithm reach an arbitrary small gradient after a finite (polynomial) number of iterations
(Nesterov, 1998). Recent works have shown that classical first-order algorithms escape strict saddle
points (Lee et al., 2016, 2019). Well-chosen algorithms can be stopped at an output with arbitrarily
small gradient and nearly-positive semi-definite Hessian in polynomial time (Jin et al., 2017, 2018;
Daneshmand et al., 2018; Jin et al., 2021; Gadat and Gavra, 2022). Higher order algorithms, designed
to escape strict saddle points, have been constructed and have a faster convergence (e.g., Adolphs
et al., 2019; O’Neill and Wright, 2023). However, nothing prevents these algorithms to spend many
epochs in the vicinity of non-strict saddle points. This results in a long plateau during training.

To see that this behavior actually occurs in practice, consider the simple experiment whose results
are shown in Figures 3 and 4 (more details in Appendix G). For each run of this experiment, the
parameters of a linear neural network of depth 5 are optimized to fit random input/output pairs. The
discrepancy is measured with the square loss and we use the ADAM optimizer. Depending on the run,
the algorithm is initialized in the vicinity either of a strict saddle point (in red) or a non-strict saddle
point (in blue). The distance between the random initial iterate and the saddle point is purposely not
negligible: it is fixed to around 10% of the norm of the saddle point. Figure 3 shows the typical loss
evolution for both cases. We can see that ADAM rapidly escapes from the strict saddle point but
needs many epochs to escape the plateau in the vicinity of the non-strict saddle point. Figure 4 shows
that this observation generalizes to most runs. We compare the empirical distributions of a random
time (called escape epoch) defined as the epoch at which the loss has significantly decreased from its
initial value. When initialized in the vicinity of non-strict saddle points, the algorithm suffers from
an often large escape epoch and might be stopped there, without the possibility to distinguish this
non-strict saddle point from a global minimum. Improving the analysis beyond local minimizers and
characterizing strict and non-strict saddle points are therefore key to understanding gradient descent
dynamics and implicit regularization.

1.3 Related Works on Linear Networks

Despite the fact that they are rarely used to solve real-world applications3, many recent works have
focused on linear neural networks. These studies are motivated by the fact that the empirical risk of
linear networks is nonconvex and shares similar properties with practical nonlinear neural networks.

3. They indeed compute a linear map between the input and output spaces.
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Figure 3: The loss function during the it-
erative process, when initialized
around a strict saddle point (in
red) or a non-strict saddle point (in
blue).

Figure 4: Histogram of escape epochs, when
initialized around a strict (in red) or
a non-strict saddle point (in blue).
For clarity, the y-axis is endowed
with two scales. The right axis cor-
responds to the blue curve and the
left to the red one.

Indeed, as shown in Saxe et al. (2014), linear networks exhibit nonlinear learning phenomena similar
to those seen during the optimization of nonlinear networks, including long plateaus followed by
rapid transitions to lower error solutions. Also, the implicit regularization phenomena observed for
nonlinear networks (Safran et al., 2022; Timor et al., 2023; Jacot, 2022; Marion et al., 2024; Belkin,
2021; Bartlett et al., 2021) occurs also for linear networks (see the paragraph on this topic below).
Studying these phenomena for linear networks is a good starting point for rigorous work.

The study of linear neural networks can be divided into two categories. The first line of research
studies the geometric landscape of the empirical risk. The second line studies the trajectory of
gradient descent dynamics in linear networks. Our work falls into the first category.

Geometric landscape for linear networks: This first started with Baldi and Hornik (1989).
They proved that for a 1-hidden layer linear network, under some conditions on the data matrices, and
for the square loss, every local minimizer is a global minimizer. Kawaguchi (2016) later generalized
and extended this result to deep linear neural networks under mild conditions and again proved that
every local minimizer is a global minimizer (this part has been proved later by Lu and Kawaguchi
(2017) with weaker assumptions on the data and simpler proofs). This author also proved that every
other critical point is a saddle point, that for a 1-hidden layer linear network all saddle points are
strict, while for deeper networks, there exist non-strict saddle points (Kawaguchi (2016) exhibits a
space of non-strict saddle points where all but one weight matrix are equal to zero). Yun et al. (2018)
gave a condition for a critical point to be either a global minimizer or a saddle point. Zhou and Liang
(2018) removed all assumptions on the data and gave analytical forms for the critical points of the
empirical risk. In the characterization, the weight matrices are defined recursively and can be found
by solving equations; in particular, they gave a characterization of global minimizers. Nouiehed
and Razaviyayn (2022) showed using assumptions only on the width of the layers that every local
minimizer is a global minimizer. They prove that this assumption on the architecture is sharp in the
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sense that without it, and if we do not make assumptions on the data matrices as in previous works,
then there exists a poor local minimizer. Zhu et al. (2020) used assumptions only on the input data
matrix, to prove that for a 1-hidden layer linear network, every local minimizer is a global minimizer
and every other critical point has a negative curvature. Laurent and von Brecht (2018) proved for
different general convex losses that, under assumptions on the architecture, all local minima are
global. Finally, Trager et al. (2020) and Mehta et al. (2021) used results from algebraic geometry to
give other properties about critical points of linear networks.

Most of the previous works focus on local minimizers. None of these works provide simple
necessary and sufficient conditions for a saddle point to be strict or not.4 In particular, in the case of
more than two hidden layers, only very specific examples of non-strict saddle points were described.
Furthermore, global minimizers were characterized but not explicitly parameterized. See Section 3.4
for more details.

Gradient dynamics and implicit regularization for linear networks: In this line of research,
authors study the dynamics of first-order algorithms for linear networks, which they sometimes
combine with results about the loss landscape. Arora et al. (2019a) proved that gradient descent
converges to a global minimum at a linear rate, under assumptions on the width of the layers, the
initial iterate, and the loss at initialization. Other works also proved similar results with different
assumptions (Eftekhari, 2020; Bartlett et al., 2018; Wu et al., 2019). However, as noted by Shamir
(2019), these works consider strong assumptions on the loss at initialization. Indeed, Shamir (2019)
gave a negative result on a deep linear network of width 1, by proving that for standard initializations,
gradient descent can take exponential time to converge to the global minimizer. The author also
provided empirical examples of the same phenomenon happening for larger widths. On the other hand,
Du and Hu (2019) proved that if the layers are wide enough, convergence to a global minimimizer
can be achieved in polynomial time using a classical data-independent random Gaussian initialization
(known as Xavier initialization). The required minimum width of the network depends on the norm
of a global minimizer of the linear regression problem. As we will see in Section 3.4 this global
convergence result can be re-interpreted in terms of the loss landscape at order 2.

On a similar line of research, Chitour et al. (2023) proved using assumptions on the architecture
of the network and the data matrices that gradient flow almost surely converges to a global minimizer
for a 1-hidden layer linear network. Later, Bah et al. (2022) proved the same result under weaker
assumptions. They also proved that, in deep linear networks, the gradient flow almost surely
converges to global minimizers of the rank-constrained linear regression problem. This has been
extended to gradient descent in Nguegnang et al. (2024). In Jacot et al. (2022), the authors conjecture
that, for deep linear networks, the gradient flow initialized randomly in the vicinity of the origin,
asymptotically exhibits a saddle-to-saddle dynamics, where the rank of the linear map increases at
each new saddle.

This is related to another consequence of the landscape properties: implicit regularization.
Arora et al. (2019b) showed that, for matrix recovery, deep linear networks converge to low-rank
solutions even when all the hidden layers are of size larger than or equal to the input and output
sizes. Razin and Cohen (2020) proved that, in deep matrix factorization, implicit regularization may
not be explainable by norms, as all norms may go to infinity. They rather suggest seeing implicit
regularization as a minimization of the rank. Saxe et al. (2019) and Gidel et al. (2019) proved with

4. By “simple”, we mean an easier-to-exploit condition than just looking at the smallest eigenvalue of the Hessian.
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different assumptions on the data and a vanishing initialization that both gradient flow and discrete
gradient dynamics sequentially learn solutions of a rank-constrained linear regression problem with
a gradually increasing rank. Finally, Gissin et al. (2019) proved for a toy model that this incremental
learning happens more often (with larger initialization), when the depth of the network increases. As
we will see in Section 3.4, these results can be re-interpreted in the light of the landscape at order 2.

1.4 Summary of our Contributions

Our contributions on the optimization landscape of deep linear networks can be summarized as
follows.

• We characterize the square loss landscape of deep linear networks at order 2 (see Theorem 7
and Figure 6). That is, under some classical and weak assumptions on the data, we characterize,
among all first-order critical points, which are global minimizers, strict saddle points, and
non-strict saddle points. The characterization is simple and involves conditions on the ranks of
partial matrix products. To the best of our knowledge, this is the first simple, necessary and
sufficient condition that differentiates strict saddle points from non-strict saddle points.

• Several results follow from the characterization: under the same assumptions,

– we first immediately recover the fact that all saddle points are strict for one-hidden layer
linear networks;

– more importantly, for deeper networks, when proving that all cases considered in the
characterization can indeed occur, we exhibit large sets of strict and non-strict saddle
points (see Proposition 8 and its proof in Appendix B.8);

– we show that the non-strict saddle points are associated with rmax plateau values of the
empirical risk, where rmax is the size of the thinnest layer of the network (see Theorem
7). Typically these are values of the empirical risk that first-order algorithms can take for
some time, as in Figure 3, and which might be confused with a global minimum.

• As a by-product of our analysis, we obtain explicit parameterizations of sets containing or
included in the set of all first-order critical points (see Propositions 9 and 10). We also derive
an explicit parameterization of the set of all global minimizers (see Proposition 11).

The above results are compared in details with previous works in Section 3.4. In particular, our
second-order characterization sheds some light on two phenomena:

• Implicit regularization: we recover the fact that every non-strict saddle point corresponds to a
global minimizer of the rank-constrained linear regression problem, as shown in (Bah et al.,
2022, Proposition 35). Our characterization additionally shows that only a fraction of the
critical points corresponding to rank-constrained solutions are non-strict saddle points. The
others are strict saddle points. Given the differences in the behavior of first-order algorithms
in the vicinity of strict and non-strict saddle points as illustrated on Figures 3 and 4, our
results open new research directions related to the very nature of implicit regularization and its
stability.

• Our characterization can also be useful to understand recent global convergence results in
terms of the loss landscape at order 2. In particular, we show how to re-interpret a proof of
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Du and Hu (2019) to see that gradient descent with Xavier initialization on wide enough deep
linear networks meets no non-strict saddle points on its trajectory.

1.5 Outline of the Paper

The paper is organized as follows. We define the setting in Section 2 and state our results in Section 3.
We prove our main result (Theorem 7) in Section 4. More precisely, we detail the proof structure and
main arguments but defer all technical derivations to the appendix. We finally conclude our work in
Section 5.

Most technical details can be found in the appendix, which is organized as follows. Section A
contains additional notation and lemmas that will be useful in all subsequent sections. In Section B
we provide proofs of propositions and lemmas related to first-order critical points, while Section C
gathers the proofs for the parameterization of first-order critical points and global minimizers.
Sections D, E, and F contain proofs corresponding to each subsection of Section 4. Finally, in
Section G, we describe in more details the illustrative experiment underlying Figures 3 and 4.

2. Setting

In this section we formally define our setting (deep linear networks with square loss), set some
notation, and describe our assumptions on the data.

Model and notation: We consider a fully-connected linear neural network of depth H ≥ 2. The
neural network consists of H layers and maps any input x ∈ Rdx to an output WH · · ·W1x ∈ Rdy ,
where WH ∈ Rdy×dH−1 , . . . ,Wh ∈ Rdh×dh−1 , . . . ,W1 ∈ Rd1×dx , are the matrices associated
with the H layers (dh is the width of layer h). We set dH = dy and d0 = dx. The input layer is
of size dx and the output layer is of size dy. We also define the smallest width of the layers as
rmax = min(dH , . . . , d0).5 We denote the parameters of the model by W = (WH , . . . ,W1).

Let (xi, yi)i=1..m with xi ∈ Rdx and yi ∈ Rdy , be the training set that we gather column-wise in
matrices X ∈ Rdx×m and Y ∈ Rdy×m. We consider the empirical risk L defined by:

L(W) =
m∑
i=1

‖WHWH−1 · · ·W2W1xi − yi‖22 = ‖WH · · ·W1X − Y ‖2 ,

where ‖.‖2 is the Euclidean norm and ‖.‖ denotes the Frobenius norm of a matrix.
We set:

ΣXX =

m∑
i=1

xix
T
i = XXT ∈ Rdx×dx , ΣY Y =

m∑
i=1

yiy
T
i = Y Y T ∈ Rdy×dy ,

ΣXY =

m∑
i=1

xiy
T
i = XY T ∈ Rdx×dy , ΣY X =

m∑
i=1

yix
T
i = Y XT ∈ Rdy×dx ,

where, AT denotes the transpose of A.

5. The notation rmax comes from the fact that it is the maximum possible rank of the product WH · · ·W1.
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Assumption 1 Throughout the article, we assume that dy ≤ dx ≤ m, that ΣXX is in-
vertible, and that ΣXY is of full rank dy. We define Σ1/2 = ΣY XΣ−1XXX ∈ Rdy×m and
Σ = Σ1/2(Σ1/2)T = ΣY XΣ−1XXΣXY ∈ Rdy×dy . We assume that the singular values of Σ1/2 are all
distinct (i.e., that Σ has dy distinct eigenvalues).

These assumptions are exactly the ones considered in Kawaguchi (2016). Note that we do not make
any assumption on the width of the hidden layers. As noted by Baldi and Hornik (1989), full-rank
matrices are dense, and deficient-rank matrices are of measure 0. In general, m ≥ dx ≥ dy, which is
the classical learning regime, is essentially sufficient to have the other assumptions verified, due to
the randomness of the data.
Let

Σ1/2 = U∆V T (1)

be a singular value decomposition of Σ1/2, where U ∈ Rdy×dy and V ∈ Rm×m are orthogonal, and
the diagonal elements of ∆ ∈ Rdy×m are in decreasing order.
Since Σ = Σ1/2(Σ1/2)T , Σ can be diagonalized as Σ = UΛUT where Λ = diag(λ1, . . . , λdy), with
λ1 > · · · > λdy ≥ 0. Moreover, a consequence of Assumption 1 is that Σ is positive definite (see
Lemma 20); therefore, we have λdy > 0.

Additional notation: We list below some notation and conventions that will be used throughout
the paper.
For all integers a ≤ b, we denote by Ja, bK the set of integers between a and b (including a and b). If
a > b, Ja, bK is the empty set (e.g. J1, 0K = ∅).
If S = ∅, then

∑
i∈S λi = 0.

Given a matrix A ∈ Rp×q, col(A), Ker(A) and rk(A), denote respectively the column space, the
null space and the rank of A.
For a matrix A ∈ Rp×q, we write Ai ∈ Rp for the i-th column of A and AJ ∈ Rp×|J | for the
sub-matrix obtained by concatenating the column vectors Ai, for i ∈ J . The identity matrix of size
p will be denoted by Ip.
When we write Wh · · ·Wh′ for h > h′, the expression denotes the product of all Wj from j = h to
j = h′. To simplify later developments, we allow two additional cases: when h = h′, the expression
simply denotes Wh, and when h′ = h+ 1, it stands for the identity matrix Idh ∈ Rdh×dh .

Considering submatrices of compatible sizes, we define a block matrix by one of the three
following ways:

• [A,B] is the horizontal concatenation of the matrices A and B;

•
[
G
H

]
is the vertical concatenation of G and H;

•
[
C D
E F

]
is a 2 × 2 block matrix.

By convention, in block matrices, some blocks can have 0 lines or 0 columns; this means that
such blocks do not exist. However if we have a product between two matrices that have 0 as the
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common size (the number of columns for the first matrix, of the lines for the second matrix), then
their product equals a zero matrix, of the right size. More formally, if A ∈ Rn×0 and B ∈ R0×p,
then, by convention, AB = 0n×p. Note that the product of block matrices is compatible with this

convention (e.g., [A , B]

[
C
D

]
= AC +BD is still true if B ∈ Rn×0 and D ∈ R0×p).

Further notation that are used in the appendix can be found at the beginning of Appendix A.

3. Main Results

In this section, we state the main results of this paper. We start with a necessary condition for being a
first-order critical point of L (Proposition 1), to which we give a light reciprocal (Proposition 2). We
then move to our main result (Theorem 7), which is a second-order classification of all first-order
critical points. It distinguishes between global minimizers, strict saddle points and non-strict saddle
points. Finally, the third result is a necessary parameterization for critical points (Proposition 9) and
an explicit parameterization of all global minimizers (Proposition 11). These results are compared
with previous works in Section 3.4. All the proofs can be found in Section 4 or in the appendix,
where most technical derivations are deferred.

3.1 First-order Critical Points: Preliminary Results

In the next proposition, we restate in our framework a necessary condition for being a first-order
critical point, which was already present in Baldi and Hornik (1989) and most of the papers in this
line of research. This proposition will serve later to distinguish between different types of critical
points.

Proposition 1 (Global map and critical values) Suppose Assumption 1 in Section 2 holds true. Let
W = (WH , . . . ,W1) be a first-order critical point of L and set r = rk(WH · · ·W1) ∈ J0, rmaxK.
There exists a unique subset S ⊂ J1, dyK of size r such that:

WH · · ·W1 = USU
T
S ΣY XΣ−1XX ,

where U was defined in (1). We say that the critical point W is associated with S. The associated
critical value is

L(W) = tr(ΣY Y )−
∑
i∈S

λi.

The proof can be found in Appendix B.2. The result is true even for r = 0, using the conventions
from Section 2 (in this case, S = ∅).
Note that ΣY XΣ−1XX corresponds to the solution of the classical linear regression problem. Therefore,
we can see that for every critical point W of L, the product WH · · ·W1 is the projection of this
least-squares estimator onto a subspace generated by a subset of the eigenvectors of Σ. Note that
tr(ΣY Y ) = ‖Y ‖2.

The following proposition is a light reciprocal to Proposition 1, by showing that all subsets
S and the corresponding critical values tr(ΣY Y ) −

∑
i∈S λi are associated to an existing critical

point. In particular, the largest critical value is reached for S = ∅ and the smallest critical value for
S = J1, rmaxK.

9
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Proposition 2 Suppose Assumption 1 in Section 2 holds true. For any S ⊂ J1, dyK of size r ∈
J0, rmaxK, there exists a first-order critical point W associated with S.

The proof of Proposition 2 is deferred to Appendix B.6. The proof uses Proposition 10, which is
proved in Appendix B.5, before Appendix B.6.

3.2 Second-order Classification of the Critical Points of L

The main result of this section is Theorem 7 below, where we classify all first-order critical points
into global minimizers, strict saddle points and non-strict saddle points. To state Theorem 7 we first
need to introduce some definitions.

Let W = (WH , . . . ,W1) be a first-order critical point of L. Below, we introduce the notions
of complementary block, tightened pivot and tightened critical point that are key to the main results.
Consider the sequence ofH matricesWH , . . . ,W2,W1 and connect them by plugging ΣXY between
W1 and WH so as to form a cycle as on Figure 5. Note that the dimensions of these matrices
allow us to consider any product of consecutive matrices on this cycle, e.g., WHWH−1WH−2 or
W2W1ΣXYWH (the matrix ΣXY between W1 and WH is key here). Such products of consecutive
matrices in the cycle are what we call "blocks". In the sequel, we call "pivot" any pair of indices
(i, j) ∈ J1, HK, with i > j, and we consider blocks around a pivot (i, j), as defined formally below.

Definition 3 (Complementary blocks) Let W = (WH , . . . ,W1) be a first-order critical point of L.
For any pivot (i, j) ∈ J1, HK, (i > j), we define the two complementary blocks to (i, j) as:

Wj−1 · · ·W1ΣXYWH · · ·Wi+1 and Wi−1 · · ·Wj+1.

The general case is represented on Figure 5.
Note that, when i = j+ 1, the second complementary block is WjWj+1, which using the convention
in Section 2 is Idj . Similarly, if i = H and j = 1, the first complementary block is ΣXY . First we
state a proposition about the ranks of the complementary blocks which is key to our analysis.

Proposition 4 Suppose Assumption 1 in Section 2 holds true. Let W = (WH , . . . ,W1) be a first-
order critical point of L and r = rk(WH · · ·W1). For any pivot (i, j), the rank of each of the two
complementary blocks is larger than or equal to r.

The proof is in Appendix B.7. The boundary case when at least one of the two ranks is equal to r
plays a special role in the loss landscape at order 2.

Definition 5 (Tightened pivot) Let W = (WH , . . . ,W1) be a first-order critical point of L and let
r = rk(WH · · ·W1).
We say that a pivot (i, j) is tightened if and only if at least one of the two complementary blocks to
(i, j) is of rank r.

Definition 6 (Tightened critical point) Let W = (WH , . . . ,W1) be a first-order critical point of
L. We say that W is tightened if and only if every pivot (i, j) is tightened.

When H ≥ 3, note that a sufficient condition for a first-order critical point W to be tightened is
the existence of three weight matrices Wh1 , Wh2 and Wh3 of rank r = rk(WH · · ·W1). This is
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ΣXYWHW1

WiWj

Wi+1

Wj+1 Wi−1

Wj−1

First complementary block: Wj−1 · · ·W1ΣXYWH · · ·Wi+1

Second complementary block: Wi−1 · · ·Wj+1

Figure 5: Complementary blocks to the pivot (i, j) .

a simple intuition on tightened critical points, that the reader can keep in mind when reading the
article. A special case of this is when W is 0-balanced (Definition 1 in Arora et al. (2019a)), that
is, when W T

j+1Wj+1 = WjW
T
j for all j ∈ J1, H − 1K. Indeed, in that case, the weight matri-

ces Wj have equal ranks and (WH · · ·W1)(WH · · ·W1)
T = WH · · ·W2(W1W

T
1 )W T

2 · · ·W T
H =

WH · · ·W2(W
T
2 W2)W

T
2 · · ·W T

H = WH · · ·W3(W2W
T
2 )2W T

3 · · ·W T
H = . . . = (WHW

T
H)H , so

that rk(Wj) = rk(WH) = rk(WH · · ·W1) = r for all j ∈ J1, HK. Therefore, when H ≥ 3,
first-order critical points that are 0-balanced are tightened.

Note also that when H = 2, there is no tightened critical point with r < rmax, because the pivot
(2, 1) is not tightened (both complementary blocks ΣXY and Id1 are of full rank, which is larger than
or equal to rmax = min{dy, d1, dx}).

We can now state our main theorem, which characterizes the nature of any first-order critical
point W depending on the associated index set S and the tightening condition. The corresponding
classification is illustrated on Figure 6. Note that Theorem 7 precisely differentiates between first-
order critical points that are second-order critical points and those that are not. Combined with the
fact that every first-order critical point is either a global minimizer or a saddle point (Kawaguchi,
2016), we can distinguish global minimizers, strict saddle points and non-strict saddle points. The
main and most technical contribution is, in the case S = J1, rK, to distinguish between strict and
non-strict saddle points.

We recall that rmax = min(dH , . . . , d0) is the width of the thinnest layer, and that U corresponds
to the eigenvectors of Σ (see (1)).

Theorem 7 (Classification of the critical points of L) Suppose Assumption 1 in Section 2 holds
true.

Let W = (WH , . . . ,W1) be a first-order critical point of L and set r = rk(WH · · ·W1) ≤ rmax.
Following Proposition 1, we consider the index set S associated with W.

• When r = rmax:

– if S = J1, rmaxK, then W is a global minimizer.

– if S 6= J1, rmaxK, then W is not a second-order critical point (W is a strict saddle point).

• When r < rmax: W is a saddle point.

11



ACHOUR, MALGOUYRES, AND GERCHINOVITZ

W = (WH , . . . ,W1) is a first-order critical point of L

∃! S ⊂ J1, dyK of size r such that WH · · ·W1 = USU
T
S ΣY XΣ−1

XX . Also, L(W) = tr(ΣY Y )−
∑

i∈S λi

We look at S

W is a global minimizer

S = J1, rmaxK

W is a strict saddle point

S 6= J1, rmaxK

r = rmax

W is a saddle point

W is a strict saddle point

S 6= J1, rK

WH · · ·W1 = arg minR∈Rdy×dx ,rk(R)≤r ‖RX − Y ‖
2

W is a strict saddle point

W not tightened

W is a non-strict saddle point

W tightened

S = J1, rK

r < rmax

r := rk(WH · · ·W1)

Figure 6: Second-order classification of the critical points of L.

– if S 6= J1, rK, then W is not a second-order critical point (W is a strict saddle point).

– if S = J1, rK: we have WH · · ·W1 = USU
T
S ΣY XΣ−1XX ∈

arg minR∈Rdy×dx ,rk(R)≤r ‖RX − Y ‖2.

* if W is not tightened, then W is not a second-order critical point (W is a strict saddle
point).

* if W is tightened, then W is a second-order critical point (W is a non-strict saddle
point).

The proof of Theorem 7 is given in Section 4, with most technical derivations deferred to the
appendix. We now make several remarks. Note from the above that every non-strict saddle point
corresponds to a global minimizer of the rank-constrained linear regression problem, as already
shown by (Bah et al., 2022, Proposition 35).

The next proposition shows the existence of both tightened and non-tightened critical points for
H ≥ 3 (there are no tightened critical points when H = 2 and r < rmax). Combining this result
with Proposition 2 indicates that all conclusions of Theorem 7 can be observed. In particular, as
already established in Kawaguchi (2016), L is not a Morse function when H ≥ 3.

Proposition 8 Suppose Assumption 1 in Section 2 holds true. For H ≥ 3, for every S = J1, rK
with 0 ≤ r < rmax, there exist both a tightened critical point and a non-tightened critical point
associated with S.

The proof is postponed to Appendix B.8. It is constructive: we exhibit in the proof large sets of
tightened and non-tightened critical points.
We can draw additional consequences from Theorem 7 and Propositions 2 and 8:

• For H = 2, for any r < rmax, there exist strict saddle points satisfying WH · · ·W1 ∈
arg minR∈Rdy×dx ,rk(R)≤r ‖RX − Y ‖2.

12
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• For H ≥ 3, for any r < rmax, there exist both strict and non-strict saddle points satisfying
WH · · ·W1 ∈ arg minR∈Rdy×dx ,rk(R)≤r ‖RX − Y ‖2.

• In the special case r = 0, we have S = ∅ and ∅ = J1, rK by convention (see Section 2), so that
S = J1, rK. In this case, Theorem 7 and Proposition 8 together imply that their exist both strict
and non-strict saddle points W such that WH · · ·W1 = 0 when H ≥ 3.

Finally, recall from a previous remark that, when H ≥ 3, all first-order critical points that
are 0-balanced are tightened. We know from earlier works (e.g., Arora et al. (2019a, 2018)) that
the quantities W T

j+1Wj+1 − WjW
T
j are invariant under Gradient Flow. In particular, when we

initialize the weight matrices such that these quantities are equal to zero (the so-called 0-balanced
initialization), we have W T

j+1Wj+1 −WjW
T
j = 0 for all j ∈ J1, H − 1K along the whole trajectory

of Gradient Flow. In that case, all eventually visited saddle points associated to some S = J1, rK
are 0-balanced, hence tightened (by the remark after Definition 6) and therefore non-strict (by
Theorem 7).

3.3 Parameterization of First-order Critical Points and Global Minimizers

We now turn back to first-order critical points, and state all new related results. In our analysis, these
results precede the proof of Theorem 7. The presentation has been reversed in Section 3 to highlight
the main contribution of the article.
The next proposition provides an explicit parameterization of first-order critical points. Note that this
is only a necessary condition.

Proposition 9 Suppose Assumption 1 in Section 2 holds true. Let W = (WH , . . . ,W1) be a first-
order critical point ofL associated with S (cf Proposition 1), and letQ = J1, dyK\S . Then, there exist
invertible matrices DH−1 ∈ RdH−1×dH−1 , . . . , D1 ∈ Rd1×d1 and matrices ZH ∈ R(dy−r)×(dH−1−r),
Z1 ∈ R(d1−r)×dx and Zh ∈ R(dh−r)×(dh−1−r) for h ∈ J2, H − 1K such that if we denote W̃H =

WHDH−1 , W̃1 = D−11 W1 and W̃h = D−1h WhDh−1, for all h ∈ J2, H − 1K, then we have

W̃H = [US , UQZH ] (2)

W̃1 =

[
UTS ΣY XΣ−1XX

Z1

]
(3)

W̃h =

[
Ir 0
0 Zh

]
∀h ∈ J2, H − 1K (4)

W̃H · · · W̃2 = [US , 0] . (5)

The proposition is proved in Appendix C.1, and will be key to prove the last statement of Theorem 7.
Next, we give a sufficient condition for any W satisfying (2), (3) and (4), to be a first-order critical
point of L.

Proposition 10 Suppose Assumption 1 in Section 2 holds true. Let S ⊂ J1, dyK of size r ∈ J0, rmaxK
and Q = J1, dyK \ S. Let DH−1 ∈ RdH−1×dH−1 , . . . , D1 ∈ Rd1×d1 be invertible matrices and let
ZH ∈ R(dy−r)×(dH−1−r), Z1 ∈ R(d1−r)×dx and Zh ∈ R(dh−r)×(dh−1−r) for h ∈ J2, H − 1K. Let the
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parameter of the network W = (WH , . . . ,W1) be defined as follows:

WH = [US , UQZH ]D−1H−1

W1 = D1

[
UTS ΣY XΣ−1XX

Z1

]
Wh = Dh

[
Ir 0
0 Zh

]
D−1h−1 ∀h ∈ J2, H − 1K .

If r = rmax or if there exist h1 6= h2 such that Zh1 = 0 and Zh2 = 0, then, W is a first-order critical
point of L associated with S.

The proof of Proposition 10 is in Appendix B.5.
Note that, combining Propositions 9 and 10, we obtain an explicit parameterization of all critical
points W with a global map WH · · ·W1 of maximum rank rmax. In particular, it yields the next
proposition, which provides an explicit parameterization of all the global minimizers of L.

Proposition 11 (Parameterization of all global minimizers) Suppose Assumption 1 in Section 2
holds true. Set Smax = J1, rmaxK and Qmax = J1, dyK \ Smax = Jrmax + 1, dyK.
Then, W = (WH , . . . ,W1) is a global minimizer of L if and only if there exist invertible matrices
DH−1 ∈ RdH−1×dH−1 , . . . , D1 ∈ Rd1×d1 , and matrices ZH ∈ R(dy−rmax)×(dH−1−rmax), Zh ∈
R(dh−rmax)×(dh−1−rmax) for h ∈ J2, H − 1K, and Z1 ∈ R(d1−rmax)×dx such that:

WH = [USmax , UQmaxZH ]D−1H−1

W1 = D1

[
UTSmax

ΣY XΣ−1XX
Z1

]
Wh = Dh

[
Irmax 0

0 Zh

]
D−1h−1 ∀h ∈ J2, H − 1K .

The proof is in Appendix C.2. See in particular a remark in the same appendix on how to interpret
the above formulas precisely (some blocks Zh have 0 lines or columns).

3.4 Comparison with the State-of-the-art

Next we further detail our contributions in light of earlier works.

Parameterization of global minimizers. To the best of our knowledge, Proposition 11 is the
first explicit parameterization of the set of all global minimizers for deep linear networks and the
square loss. For H ≥ 2, it had been previously noted by Yun et al. (2018) that a critical point W
is a global minimizer if and only if rk(WH · · ·W1) = rmax and col(WH · · ·Wdp+1) = col(USmax),
where Smax = J1, rmaxK and where p is any layer with the smallest width rmax. This is an implicit
characterization.

Another previous work that characterized global minimizers is Zhou and Liang (2018), but their
characterization is not explicit: the weight matrices are defined recursively and should satisfy some
equations, while in Proposition 11 the weight matrices are given explicitly. The same remark holds
for their characterization of first-order critical points.

14
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Saddle points. Among saddle points, we give a characterization of those that are strict and those
that are not.
Previously, for H ≥ 3, it had been noted by Kawaguchi (2016) that (0, . . . , 0) is a non-strict saddle
point. This result also follows from Theorem 1 since any critical point is tightened whenever at least
3 weight matrices are of rank r = rk(WH · · ·W1) (which is the case for (0, . . . , 0) with r = 0).

Also, Theorem 7 generalizes two results from Kawaguchi (2016) and Chitour et al. (2023)
about sufficient conditions for strict saddle points. Indeed, it is proved in Kawaguchi (2016)
that, if W is a saddle point such that rk(WH−1 · · ·W2) = rmax, then W is a strict saddle point.
Chitour et al. (2023) proved under further assumptions on the data and the architecture that a
sufficient condition for a saddle point to be strict is that rk(WH−1 · · ·W2) > r = rk(WH · · ·W1).
Note that both results are special cases of Theorem 7, with the pivot (H, 1). More precisely,
assume that W is a saddle point such that either rk(WH−1 · · ·W2) = rmax = r = rk(WH · · ·W1)
or rk(WH−1 · · ·W2) > r = rk(WH · · ·W1) (which includes both conditions above). Then, if
S 6= J1, rK (whether r = rmax or not), by Theorem 7, W is a strict saddle point without any
condition on W. But if S = J1, rK with r < rmax, our assumption above implies that the pivot
(H, 1), and therefore W, is not tightened (recall that rk(ΣXY ) = dy ≥ rmax > r). In any case, W is
a strict saddle point.

Finally, Theorem 7 generalizes another result of Kawaguchi (2016) stating that all saddle points
are strict for one-hidden layer linear networks. Indeed, let H = 2 and assume that we have a saddle
point associated with S = J1, rK for r < rmax (the only case where we can expect to see non-strict
saddle points, by Theorem 7). Since H = 2, there is only one pivot which is (2, 1); this pivot is not
tightened because the complementary blocks are Id1 and ΣXY and both are of rank larger than or
equal to rmax. Therefore, by Theorem 7, when H = 2 (and under Assumption 1), all saddle points
are strict.

Convergence to global minimizer: an example where gradient descent meets no non-strict
saddle points. Some recent works on deep linear networks proved under assumptions on the data,
the initialization, or the minimum width of the network, that gradient descent or variants converge
to a global minimum in polynomial time (e.g., Arora et al., 2019a; Bartlett et al., 2018; Eftekhari,
2020; Du and Hu, 2019). Since for general non-convex functions, gradient descent may get stuck at a
non-strict saddle point, and since non-strict saddle points exist for any linear neural network of depth
H ≥ 3, it seemed impossible to deduce convergence to a global minimum using landscape results
only. Instead, papers such as Du and Hu (2019) chose to “directly analyze the trajectory generated
by [...] gradient descent”.

It turns out that our characterization of strict saddle points can help re-interpret such global
convergence results. Consider for instance the work of Du and Hu (2019), who proved that with
high probability gradient descent with Xavier initialization converges to a global minimum for any
deep linear network which is wide enough. They analyze a network where all hidden layers have a
width dhidden at least proportional to the number H of layers and to other quantities depending on
the data X,Y , the output dimension dy, and the desired probability level. In their analysis, (Du and
Hu, 2019, Section 7) prove that with high probability, a condition B(t) holds at every iteration t.
Importantly, this condition implies that the point W output by gradient descent at iteration t cannot
be a non-strict saddle point. Indeed, using our notation, the condition B(t) yields the lower-bound6

6. σmin(WH · · ·W2) denotes the minimum singular value of WH · · ·W2 ∈ Rdy×dhidden , among min{dy, dhidden} = dy
singular values in total (Du and Hu 2019 assume that dhidden ≥ dy).
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σmin(WH · · ·W2) ≥ 3
4d

(H−1)/2
hidden > 0, which in particular entails that the matrix product WH · · ·W2

is of full rank min{dhidden, dy} ≥ rmax. Let us check that if W is a saddle point, then it is necessarily
strict. By Theorem 7, either r = rk(WH · · ·W1) is equal to rmax, in which case the saddle point W
is indeed strict, or r < rmax, in which case the pivot (H, 1) is not tightened (since the two blocks
ΣXY and WH−1 · · ·W2 are of rank at least rmax), so that the saddle point W is strict, as previously
claimed.

As a consequence, our characterization of strict saddle points in Theorem 7 helps re-interpret the
analysis of (Du and Hu, 2019, Section 7): under Assumption 1, and for wide enough deep linear
networks, gradient descent with Xavier initialization meets no non-strict saddle points on its trajectory.

Implicit regularization. Implicit regularization, in the context of linear networks, refers to
statements showing that the iterates trajectory passes in the vicinity of critical points W such that
WH · · ·W1 = arg minR∈Rdy×dx ,rk(R)≤r ‖RX − Y ‖2, for increasing r ∈ J0, rmaxK. In such settings,
the gradient dynamics sequentially finds the best linear regression predictor in

Dr = {R ∈ Rdy×dx , rk(R) ≤ r},

for increasing r. The subset Dr ⊂ Rdy×dx is independent of X , Y and the network architecture, and
plays the role of a regularization constraint in the function space.

In the parameter space however, as indicated in Theorem 7 and Proposition 8, there exists both
non-strict and strict saddle points. As illustrated in Section 1.2, Figures 3 and 4, it takes more time to
a first order algorithm to escape non-strict saddle points than strict ones. When H ≥ 3, there exist
two phenomenon: a ’light’ implicit regularization, in the vicinity of strict saddle points, and a ’strong’
implicit regularization in the vicinity of non-strict saddle points.

In Bah et al. (2022), the authors proved that gradient flow converges almost surely to a global
minimizer or non-strict saddle points of L. The limit point corresponds to a global minimizer of
the rank-constrained linear regression problem. In Theorem 7 and Proposition 8, we prove the
existence and characterize such points, and in addition to non-strict saddle points we prove that some
W leading to the solution of the rank-constrained linear regression problem are strict saddle points.
Doing so, we characterize and drastically reduce the strong implicit regularization set.

In Gidel et al. (2019), the authors proved that for H = 2, for a vanishing initialization and
a sufficiently small learning-rate, the gradient algorithm sequentially learns solutions of the rank-
constrained linear regression problem with a gradually increasing rank. More precisely, the algorithm
avoids all critical points associated with S 6= J1, rK, but comes close to a critical point associated
with S = J1, rK, spends some time around it and decreases again. We know that for H = 2 all saddle
points are strict and that the phenomenon described by the authors corresponds to a ’light implicit
regularization’.

In Gissin et al. (2019), the authors proved for a toy linear network, that, forH = 2, the algorithms
need an exponentially vanishing initialization for this incremental learning to occur, while for H ≥ 3,
a polynomially vanishing initialization is enough. This indicates that this incremental learning
arises more frequently in deep networks. The difference might be explained by the ’strong’ implicit
regularization due to the existence of non-strict saddle points when H ≥ 3.

Authors have put to evidence the rank related implicit regularization depicted in Theorem 7
and Proposition 8 for similar problems. In Arora et al. (2019b), the authors exhibit that for small
initializations and learning-rate, for matrix recovery, deep matrix factorization favors solutions of low-
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rank. In the same context, the authors of Razin and Cohen (2020) state that, implicit regularization in
deep matrix completion should be seen as a minimization of rank rather than norms.

3.5 Perspectives

Implicit regularization. From Theorem 7, we know that the critical points such that WH · · ·W1 =
arg minR∈Rdy×dx ,rk(R)≤r ‖RX − Y ‖2 can be either strict saddle points or non-strict saddle points.
From Proposition 8 we know that both cases exist. We know from the experiment described in
Figures 3 and 4, that first order algorithms need more time to escape from the vicinity of non-strict
saddle points than strict saddle points. There are two phenomena: ’light’ and ’strong’ implicit
regularization. To the best of our knowledge, whether the saddle points approached by the iterates
trajectory are strict or non-strict and the impact of this property on the implicit regularization
phenomenon have not been studied.

Though this study goes beyond the scope of this paper, let us sketch the main trends that we
can anticipate from our results. On one side, as explained above, we anticipate the number of
iterations spent by a first-order algorithm in the vicinity of a non-strict saddle point to be larger
than in the vicinity of a strict saddle point. Said differently, the ’size’ of the flat region surrounding
non-strict saddle points is larger than the one surrounding strict saddle points. On the other side,
looking at the rank constraint in Definition 5 (which corresponds to the very last item of Theorem 7),
we anticipate that there are much fewer non-strict saddle points than strict saddle points. ’Strong’
implicit regularization therefore occurs at fewer locations. The influence of these two factors on the
trajectory of the iterates depends on the initialization and the chosen algorithm.

Extent of ’flat regions’. Beyond the behavior of the objective function captured by the deriva-
tives, it would be interesting to study the extent of the ’flat regions’. The goal would typically be to
provide estimates of the time spent by a (stochastic) first order algorithm to escape the flat region.
We observed in Figures 3 and 4, that the flat regions associated to non-strict saddle points are larger
but it would be interesting to extend this empirical study and to study formal estimates of the ’size’
of the flat regions.

Basins of attraction. Second order critical points can be limit points of gradient descent
algorithms. Even worse, the basin of attraction of such points can be of positive Lebesgue measure.
It would be interesting to exploit the tightness condition and the manifold of non-strict saddle points
to prove that, as conjectured in Chitour et al. (2023) and Bah et al. (2022), the gradient descent
algorithm almost surely converges to a global minimizer.

Generalizing the tightness condition. The tightness condition in the definitions 5 and 6 is for
instance satisfied as soon as three factors are of rank r. It is adapted to linear networks. It would be
interesting to generalize it to other problems such as matrix factorization, structured linear networks
or tensor problems, sharing the same ’compositional structure’.

4. Proof of Theorem 7

The proof of Theorem 7 proceeds in several steps. In the end (see page 22), it will directly
follow from Propositions 13, 14, 15 below and from Lemma 21 in Appendix A. In this sec-
tion, we outline the overall proof structure and state the main intermediate results. We also
provide proof sketches for these intermediate results, but defer many technical details to the appendix.
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In our proofs, we will not compute the Hessian ∇2L(W) explicitly since this might be quite
tedious. To show that a point W is (or is not) a second-order critical point of L, we will instead
Taylor-expand L(W + tW′) along any direction W′ and use the following lemma. Its proof follows
directly from Taylor’s theorem.

Lemma 12 (Characterization of first-order and second-order critical points) Let W =
(WH , . . . ,W1). Assume that, for all W′ = (W ′H , . . . ,W

′
1), the loss L(W+ tW′) admits the following

asymptotic expansion when t→ 0:

L(W + tW′) = L(W) + c1(W,W′)t+ c2(W,W′)t2 + o(t2). (6)

Then:

• W is a first-order critical point of L iff c1(W,W′) = 0 for all W′.

• W is a second-order critical point of L iff c1(W,W′) = 0 and c2(W,W′) ≥ 0 for all W′.
Therefore if for a first-order critical point W, we can exhibit a direction W′ such that
c2(W,W′) < 0, then W is not a second-order critical point.

We divide the proof of Theorem 7 into three parts. Recall that from Kawaguchi (2016), we know
that all first-order critical points are either global minimizers or saddle points (that is, there is no
local extrema apart from global minimizers). We refine this classification.

4.1 Global Minimizers and ’Simple’ Strict Saddle Points

In this section, we start by identifying simple sufficient conditions on the support S associated to
a first-order critical point W which guarantee that W is either a global minimizer or a strict saddle
point. More subtle strict saddle points and non-strict saddle points will be addressed in Sections 4.2
and 4.3.

Proposition 13 Suppose Assumption 1 in Section 2 holds true. Let W = (WH , . . . ,W1) be a
first-order critical point of L associated with S and set r = rk(WH · · ·W1) ≤ rmax.

• When r = rmax:

– if S = J1, rmaxK, then W is a global minimizer.
– if S 6= J1, rmaxK, then W is not a second-order critical point (W is a strict saddle point).

• When r < rmax: W is a saddle point.

– if S 6= J1, rK, then W is not a second-order critical point (W is a strict saddle point).

The proof is postponed to Appendix D. To prove that W associated with S 6= J1, rK , r ≤ rmax
is not a second-order critical point, we explicitly exhibit a direction W′ such that the second-order
coefficient c2(W,W′) in the Taylor expansion of L(W + tW′) around t = 0, in (6), is negative.
Using Lemma 12, we conclude that W is not a second-order critical point.
Recall from Proposition 1 that the loss at any first-order critical point is given by tr(ΣY Y )−

∑
i∈S λi.

The spirit of the proof is that critical points associated with S 6= J1, rK capture a smaller singular
value λj instead of a larger one λi with i < j. Thus, to see that the loss can be further decreased at
order 2 (and is therefore not a second-order critical point by Lemma 12), a natural proof strategy
is to perturb the singular vector corresponding to λj along the direction of the singular vector
corresponding to λi. This part of the proof is an adaption of the proof of Baldi and Hornik (1989).
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4.2 Strict Saddle Points Associated with S = J1, rK, r < rmax

We now address situations that to our knowledge, have never been addressed, in the literature. We
prove the following.

Proposition 14 Suppose Assumption 1 in Section 2 holds true. Let W = (WH , . . . ,W1) be a first-
order critical point of L associated with S = J1, rK, with 0 ≤ r < rmax.
If W is not tightened, then W is not a second-order critical point (W is a strict saddle point).

We sketch the main arguments below. We will again construct a direction W′ such that the second-
order coefficient c2(W,W′) in the asymptotic expansion of L(W + tW′) around t = 0, in (6), is
negative.
More precisely, for a first-order critical point W, for any β ∈ R, we will consider a well-chosen
W′β such that c2(W,W′β) = aβ2 + cβ for some constants a, c (possibly depending on W) such that
a ≥ 0 and c 6= 0. Taking

β =

{
−c if a = 0

− c
2a if a > 0

(7)

we obtain

c2(W,W′β) =

{
−c2 if a = 0

− c2

4a if a > 0

and therefore
c2(W,W′β) < 0.

Using Lemma 12, we can conclude that W is not a second-order critical point.
We now provide intuitions on how to choose W′. Since W is not tightened, there exists a pivot
(i, j), with i > j, which is not tightened. Depending on the values of i and j we will construct W′

differently. However, the strategy for constructing W′ is the same in all cases.
Recall again that from Proposition 1, at any first-order critical point W, the value of the loss is given
by tr(ΣY Y )−

∑
i∈S λi. Contrary to the previous section, since S = J1, rK there is no immediate

way to decrease the loss (at order 2) without increasing the rank of the product of the weight matrices.
Indeed, we have WH · · ·W1 = USU

T
S ΣY XΣ−1XX ∈ arg minrk(R)≤r ‖RX − Y ‖2.

Therefore, to be able to decrease the value of the loss, we need to perturb W in a way that the product
of the perturbed parameter weight matrices becomes of rank strictly larger than r. Also, to prove that
W is not a second-order critical point, we need to decrease the loss at order 2. This is possible when
W is not tightened. For the non-tightened pivot (i, j), we choose a perturbation W′ with all W ′h = 0
except for W ′i and W ′j . Furthermore, our construction of W ′i and W ′j depends on whether i and/or j
are on the boundary {1, H}. This is due to the fact that H and 1 play a special role in the product
of the perturbed weights (WH + tW ′H) · · · (W1 + tW ′1). This is why we distinguish the four cases
below:

• 1st case: i ∈ J2, H − 1K and j = 1. This case is treated in Appendix E.1.

• 2nd case: i = H and j = 1. This case is treated in Appendix E.2.

• 3rd case: i = H and j ∈ J2, H − 1K. This case is treated in Appendix E.3.

• 4th case: i, j ∈ J2, H − 1K with i > j. This case is treated in Appendix E.4.
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4.3 Non-strict Saddle Points

We now provide a sketch of the proof for the converse of Proposition 14, as stated in Proposition 15
below. All the proofs related to this section are deferred to Appendix F.

Proposition 15 Suppose Assumption 1 in Section 2 holds true. Let W = (WH , . . . ,W1) be a first-
order critical point of L associated with S = J1, rK, 0 ≤ r < rmax.
If W is tightened, then W is a second-order critical point (W is a non-strict saddle point).

To prove Proposition 15, we first state a proposition which indicates that multiplications by
invertible matrices do not change the nature of the critical point.

Lemma 16 For all h ∈ J1, H − 1K, let Dh ∈ Rdh×dh be an invertible matrix. We define W̃H =

WHDH−1 , W̃1 = D−11 W1 and W̃h = D−1h WhDh−1, for all h ∈ J2, H − 1K. Then

• W = (WH , . . . ,W1) is a first-order critical point of L if and only if W̃ = (W̃H , . . . , W̃1) is a
first-order critical point of L.

• W = (WH , . . . ,W1) is a second-order critical point of L if and only if W̃ = (W̃H , . . . , W̃1)
is a second-order critical point of L.

The lemma is proved in Appendix B.4.

Proposition 15 is then obtained using Proposition 9 (note that when W is tightened, W̃ is also
tightened since the rank of a matrix does not change when multiplied by invertible matrices), by
showing that W̃ = (W̃H , . . . , W̃1) as given by Proposition 9 is a second-order critical point of L and
using Lemma 16 to conclude that W is a second-order critical point. This is easier since W̃ has a
simpler form.

More precisely, we have the following result, from which Proposition 15 follows (see Appendix
F.2 for details).

Proposition 17 Suppose Assumption 1 in Section 2 holds true. Let W = (WH , . . . ,W1) be a first-
order critical point of L associated with S = J1, rK with 0 ≤ r < rmax such that there exist matrices
ZH ∈ R(dy−r)×(dH−1−r), Z1 ∈ R(d1−r)×dx and Zh ∈ R(dh−r)×(dh−1−r) for h ∈ J2, H − 1K with

WH = [US , UQZH ] (8)

W1 =

[
UTS ΣY XΣ−1XX

Z1

]
(9)

Wh =

[
Ir 0
0 Zh

]
∀h ∈ J2, H − 1K (10)

WH · · ·W2 = [US , 0] , (11)

where Q = J1, dyK \ S .
If W is tightened, then W is a second-order critical point of L.

Proposition 17 is proved in details in Section F.1. We provide a proof sketch below.
We denote, for t in the neighborhood of 0, and h ∈ J1, HK, Wh(t) = Wh + tW ′h where W ′h ∈
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Rdh×dh−1 is arbitrary.
We define W(t) := (WH(t), . . . ,W1(t)) and W (t) := WH(t) · · ·W1(t). As in the previous two
sections, we use Lemma 12. However, this time, we show that the second-order coefficient c2(W,W′)
is non-negative for all directions W′.
To compute the loss ‖W (t)X − Y ‖2, we expand

W (t) = WH(t) · · ·W1(t)

= (WH + tW ′H) · · · (W1 + tW ′1)

= WH · · ·W1 + t

H∑
i=1

WH · · ·Wi+1W
′
iWi−1 · · ·W1

+ t2
∑

H≥i>j≥1
WH · · ·Wi+1W

′
iWi−1 · · ·Wj+1W

′
jWj−1 · · ·W1 + o(t2) .

Therefore,

L(W(t)) =

∥∥∥∥∥WH · · ·W1X − Y + t
H∑
i=1

WH · · ·Wi+1W
′
iWi−1 · · ·W1X

+t2
∑

H≥i>j≥1
WH · · ·Wi+1W

′
iWi−1 · · ·Wj+1W

′
jWj−1 · · ·W1X + o(t2)

∥∥∥∥∥∥
2

.

We can now easily calculate the second-order coefficient c2(W,W′) in the Taylor expansion of
L(W(t)) around t = 0 (in (6)).
Recalling that c2(W,W′) is such that L(W(t)) = L(W) + c2(W,W′)t2 + o(t2) (since W is a
first-order critical point), we have

c2(W,W′) =

∥∥∥∥∥
H∑
i=1

WH · · ·Wi+1W
′
iWi−1 · · ·W1X

∥∥∥∥∥
2

+ 2

〈 ∑
H≥i>j≥1

WH · · ·Wi+1W
′
iWi−1 · · ·Wj+1W

′
jWj−1 · · ·W1X , WH · · ·W1X − Y

〉
,

where 〈A,B〉 = tr(ABT ). In order to simplify the notation and equations, we define, for all
i ∈ J1, HK,

Ti = WH · · ·Wi+1W
′
iWi−1 · · ·W1X , (12)

and for all i, j ∈ J1, HK with i > j:

Ti,j =
〈
WH · · ·Wi+1W

′
iWi−1 · · ·Wj+1W

′
jWj−1 · · ·W1X , WH · · ·W1X − Y

〉
. (13)

Then we set

FT =

∥∥∥∥∥
H∑
i=1

Ti

∥∥∥∥∥
2

, (14)
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and

ST = 2
∑

H≥i>j≥1
Ti,j . (15)

The coefficient becomes

c2(W,W′) =

∥∥∥∥∥
H∑
i=1

Ti

∥∥∥∥∥
2

+ 2
∑

H≥i>j≥1
Ti,j = FT + ST .

Using the fact that W is tightened, some weight products become simple (see Lemma 30) and we
can simplify Ti and Ti,j (see Lemmas 37 and 38 in Appendix F).
This allows us to establish that, for any W′, there exist matrices A2, A3, A4 and a non-negative scalar
a1 such that FT = a1 + ‖A2‖2 + ‖A3‖2 + ‖A4‖2 (see Appendix F.1.2) and ST = −2 〈A3, A4〉
(see Appendix F.1.3). Therefore

c2(W,W′) = FT + ST = a1 + ‖A2‖2 + ‖A3 −A4‖2 ≥ 0 ,

and using Lemma 12 we conclude that W is a second-order critical point.

We are now in a position to prove Theorem 7 as a direct corollary from the above results.
Proof [Proof of Theorem 7] The classification into global minimizers, strict saddle points, and
non-strict saddle points follows directly from Propositions 13, 14, and 15 above. As for the fact that

WH · · ·W1 = USU
T
S ΣY XΣ−1XX ∈ arg min

R∈Rdy×dx ,rk(R)≤r
‖RX − Y ‖2

when S = J1, rK, it follows from Proposition 1 above and from Lemma 21 in Appendix A.

5. Conclusion

We studied the optimization landscape of linear neural networks of arbitrary depth with the square
loss. We first derived a necessary condition for being a first-order critical point by associating
any of them with a set of eigenvectors of a data-dependent matrix. We then provided a complete
characterization of the landscape at order 2 by distinguishing between global minimizers, strict
saddle points, and non-strict saddle points. As a by-product of this analysis, we exhibited large sets
of strict and non-strict saddle points and derived an explicit parameterization of all global minimizers.
Our second-order characterization also sheds some light on the implicit regularization that may be
induced by first-order algorithms, by proving that non-strict saddle points and some strict saddle
points are among the global minimizers of the rank-constrained linear regression problem. It also
helps re-interpret a recent convergence result, stating that gradient descent with Xavier initialization
converges to a global minimum for any wide enough deep linear network.
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Appendix A. Notation and Useful Properties

In this section, we define some additional notation and terminology that will be used through all
subsequent appendices. We also state simple linear algebra facts (Section A.2), together with some
properties about the Moore-Penrose inverse (Section A.3). Since most of the proofs rely on linear
algebra, we recommend the unfamiliar reader to check classical textbooks.

Additional notation: If a matrix A has already a subscript like WH for example, we denote
by (WH).,i the i-th column and by (WH).,J the sub-matrix obtained by concatenating the column
vectors (WH).,i, for all i ∈ J . Also (WH)i,. denotes the i-th row ofWH and (WH)I,. the sub-matrix
obtained by concatenating the line vectors (WH)i,., for all i ∈ I. More generally (WH)I,J denotes
the matrix WH restricted to the index set I × J . For instance, (WH)1:r,r+1:dH−1

∈ Rr×(dH−1−r) is
the matrix formed from WH by keeping the rows from 1 to r and the columns from r + 1 to dH−1.
The symbol δi,j denotes the Kronecker index which equal to 0 if i 6= j and 1 if i = j.

Also, we define the partial gradients with respect to each weight matrix as follows.

A.1 Partial Gradients

Definition 18 (gradient and partial gradients of L) Since the input W = (WH , . . . ,W1) of L(W)
is not a vector but a sequence of matrices, we define the gradient ∇L(W) of L at W with a similar
format :

∇L(W) = (∇WH
L(W), . . . ,∇W1L(W)) ,

where each partial gradient ∇Wh
L(W) ∈ Rdh×dh−1 is the matrix whose entries are the partial

derivatives ∂L
∂(Wh)i,j

for i = 1, .., dh and j = 1, .., dh−1

The next lemma provides explicit formulas for the partial gradients of L. A proof can be found
at the end of Yun et al. (2018).

Lemma 19 Let h ∈ J2, H − 1K. The partial gradient of L with respect to Wh is:

∇Wh
L(W) = 2(WH · · ·Wh+1)

T (WH · · ·W1ΣXX − ΣY X)(Wh−1 · · ·W1)
T .

We also have the partial gradient with respect to WH :

∇WH
L(W) = 2(WH · · ·W1ΣXX − ΣY X)(WH−1 · · ·W1)

T .

Finally, the partial gradient with respect to W1 is:

∇W1L(W) = 2(WH · · ·W2)
T (WH · · ·W1ΣXX − ΣY X) .

7. https://www.deel.ai/
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A.2 Simple Linear Algebra Facts

Recall that Σ1/2 = ΣY XΣ−1XXX and Σ = Σ1/2(Σ1/2)T = ΣY XΣ−1XXΣXY . Recall also from (1)
that Σ1/2 = U∆V T is a Singular Value Decomposition, where U ∈ Rdy×dy and V ∈ Rm×m are
orthogonal matrices.

Lemma 20 Suppose Assumption 1 in Section 2 holds true. Then Σ is invertible.

Proof Given the definition of Σ1/2 , it is a standard fact of linear algebra that rk(Σ1/2) =
rk(ΣY XΣ−1XXX) ≤ rk(ΣY X). On the other hand, rk(Σ1/2) = rk(ΣY XΣ−1XXX) ≥
rk(ΣY XΣ−1XXXX

T ) = rk(ΣY X) since ΣXX = XXT . Therefore rk(Σ1/2) = rk(ΣY X) = dy
by Assumption 1. Finally, using another fact of linear algebra we have rk(Σ) = rk(Σ1/2(Σ1/2)T ) =
rk(Σ1/2), and therefore rk(Σ) = dy. Hence, Σ is invertible.

The next lemma is about global minimizers of the rank-constrained linear regression problem.

Lemma 21 Suppose Assumption 1 in Section 2 holds true. Let S = J1, rK. We have

USU
T
S ΣY XΣ−1XX ∈ arg min

R∈Rdy×dx ,rk(R)≤r
‖RX − Y ‖2.

Proof A proof can be found in Yun et al. (2018).

We now present a lemma with elementary properties that we will use frequently and that are
related to the orthogonality of U . The proof is straightforward.

Lemma 22 We have the following properties related to the orthogonality of the matrix U :

• We have Idy = UUT = UTU .

• For any i, j ∈ J1, dyK, we have UTi Uj = δi,j .

• For any I, J ⊂ J1, dyK such that I ∩ J = ∅, we have UTI UJ = 0|I|×|J |.

• For any I, J ⊂ J1, dyK such that I∩J = ∅ and I∪J = J1, dyK, we have Idy = UIU
T
I +UJU

T
J .

• For any J ⊂ J1, dyK, we have UTJ UJ = I|J | and rk(UJU
T
J ) = |J |.

Note that the same applies also to the other orthogonal matrix V ∈ Rm×m appearing in the Singular
Value Decomposition of Σ1/2 (we only replace dy by m).

Another useful lemma is the following:

Lemma 23 For any I, J ⊂ J1, dyK such that I ∩ J = ∅, we have

UTI ΣUJ = 0|I|×|J |.

In particular, for any S ⊂ J1, dyK and Q = J1, dyK \ S , we have UTS ΣUQ = 0 .

Proof We have, for any k ∈ J1, dyK, ΣUk = λkUk. Hence for j 6= k we have
UTj ΣUk = λkU

T
j Uk = 0 since U is orthogonal. Therefore, if we take two disjoint sets

J = {j1, . . . , jp},K = {k1, . . . , kn} ⊂ J1, dyK, the coefficient in the position (l,m) of the matrix
UTJ ΣUK is equal to UjlΣUkm which is zero, since jl 6= km. Therefore, UTJ ΣUK = 0. In particular,
UTS ΣUQ = 0.
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A.3 The Moore-Penrose Inverse and its Properties

The Moore-Penrose inverse is the most known and used generalized inverse8. It is defined as follows:
For A ∈ Rm×n, the pseudo-inverse of A is defined as the matrix A+ ∈ Rn×m which satisfies the 4
following criteria known as the Moore-Penrose conditions:

1. AA+A = A.

2. A+AA+ = A+.

3. (AA+)
T

= AA+.

4. (A+A)
T

= A+A.

A+ exists for any matrix A and is unique. We also have the following properties:

(i) A+ =
(
ATA

)+
AT .

(ii) rk(A) = rk(A+) = rk(AA+) = rk(A+A).

(iii) If the linear system Ax = b has any solutions, they are all given by

x = A+b+ (I −A+A)w

for arbitrary vector w. This is equivalent to

x = A+b+ u

for arbitrary u ∈ Ker(A).

(iv) PA := AA+ is the orthogonal projection onto the range of A, and is therefore symmetric
(P TA = PA) (follows from 3) and idempotent (P 2

A = PA) (follows from 1).

(v) In −A+A is the orthogonal projector onto the kernel of A.

Appendix B. Propositions and Lemmas for First-order Critical Points

In this section, we prove all lemmas about first-order critical points. We start by stating some
preliminary results.

B.1 Preliminaries

The following lemma gives a necessary condition for W to be a first-order critical point. It also
provides the global map of the network, defined by WH · · ·W1. Finally, it states that the projection
matrix PK and Σ commute, where K = WH · · ·W2. This is key in the rest of the analysis.

Lemma 24 Suppose Assumption 1 in Section 2 holds true. Let W = (WH , . . . ,W1) be a first-order
critical point of L. We define K = WH · · ·W2 and W = WHWH−1 · · ·W1 = KW1. Then, we
have

W1 = K+ΣY XΣ−1XX +M ,

8. en.wikipedia.org/wiki/Moore-Penrose_inverse
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where M ∈ Rd1×dx is such that KM = 0 and K+ is the Moore-Penrose inverse of K (see Appendix
A.3). As a consequence, {

W = PKΣY XΣ−1XX
rk(W ) = rk(PK) = rk(K)

where we recall that PK = KK+ ∈ Rdy×dy is the matrix of the orthogonal projection onto the
range of K. Finally,

ΣPK = PKΣ .

Note that ΣY XΣ−1XX is the global minimizer of the problem with one layer (i.e the classical linear
regression problem). Therefore, the global map WH · · ·W1 of any first-order critical point of L is
equal to the global minimizer of the linear regression projected onto the column space of K.
Proof Let W = (WH , . . . ,W1) be a first-order critical point of L. In particular, the partial gradients
of L with respect to W1 and WH are equal to zero at W. Using Lemma 19, this implies{

(WH · · ·W2)
TWH · · ·W1ΣXX = (WH · · ·W2)

TΣY X

WH · · ·W1ΣXX(WH−1 · · ·W1)
T = ΣY X(WH−1 · · ·W1)

T .

We substitute in these equations K = WHWH−1 · · ·W2 and W = WHWH−1 · · ·W1 = KW1.
Using that ΣXX is invertible, and multiplying the second equation on the right by W T

H , we obtain
that any critical point of L satisfies{

KTKW1 = KTΣY XΣ−1XX
WΣXXW

T = ΣY XW
T .

(16)

The first equation implies W1 = (KTK)+KTΣY XΣ−1XX + M , where M ∈ Rd1×dx is such that
KTKM = 0 (see Property (iii) in the reminder on Moore-Penrose inverse in Appendix A.3).
We have (KTK)+KT = K+(see Property (i) in Appendix A.3) and a standard fact of linear algebra
is that Ker(KTK) = Ker(K).
Therefore, using these properties, we obtain W1 = K+ΣY XΣ−1XX + M , where KM = 0. This
proves the first statement of the lemma. We then have,

W = KW1 = KK+ΣY XΣ−1XX +KM = PKΣY XΣ−1XX . (17)

where PK = KK+ is the orthogonal projection matrix onto the column space of K (see Appendix
A.3). Using Assumption 1, we have that ΣY XΣ−1XX is of full row rank, hence

rk(W ) = rk(PKΣY XΣ−1XX) = rk(PK) = rk(K) , (18)

where the last equality comes from the property (ii) in Section A.3. Therefore, (16) and (18) prove
the second statement of the lemma.
To prove that ΣPK = PKΣ, we remark that, using the second equation in (16), ΣY XW

T =
WΣXXW

T and since WΣXXW
T is symmetric and (ΣY X)T = ΣXY , we have

ΣY XW
T = WΣXY .

Substituting the expression of W from (17), and since PK and Σ−1XX are symmetric, we have

ΣY XΣ−1XXΣXY PK = PKΣY XΣ−1XXΣXY .
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Using the definition of Σ, this can be rewritten as

ΣPK = PKΣ ,

which concludes the proof.

Lemma 25 Suppose Assumption 1 in Section 2 holds true. Let W = (WH , . . . ,W1) be a first-order
critical point of L. We set K = WH · · ·W2 and r = rk(WH · · ·W1).
There exists a unique subset S ⊂ J1, dyK of size r such that:

PK = UISUT = USU
T
S ,

where IS ∈ Rdy×dy is the diagonal matrix such that, for all i ∈ J1, dyK, (IS)i,i = 1 if i ∈ S and 0
otherwise.

Proof Let W = (WH , . . . ,W1) be a first-order critical point of L. Using Lemma 24, we
have ΣPK = PKΣ. Substituting the diagonalization of Σ from Section 2, this becomes
UΛUTPK = PKUΛUT . Since U is orthogonal, multiplying by UT on the left and by U on the
right we obtain ΛUTPKU = UTPKUΛ. Hence, UTPKU commutes with a diagonal matrix
whose diagonal elements are all distinct. Therefore, Γ := UTPKU is diagonal, and PK = UΓUT

is a diagonalization of PK . From Lemma 24, we also have r = rk(PK). But, we know that
PK = KK+ ∈ Rdy×dy is the matrix of an orthogonal projection. Therefore, its eigenvalues are 1
with multiplicity r and 0 with multiplicity dy − r.

Therefore, there exists an index set S ⊂ J1, dyK of size r such that Γ = IS where IS ∈ Rdy×dy
is the diagonal matrix such that, for all i ∈ J1, dyK, (IS)i,i = 1 if i ∈ S and 0 otherwise.
Therefore,

PK = UISUT = UISISUT = USU
T
S .

If there exist S ′ such that Γ = IS′ , we get PK = UISUT = UIS′UT which implies IS = IS′ ,
hence S = S ′. Therefore, S is unique.

B.2 Proof of Proposition 1

In this proof, we use Lemmas 24 and 25 stated and proved in the previous section.
Recall that λ1 > · · · > λdy are the eigenvalues of Σ = ΣY XΣ−1XXΣXY ∈ Rdy×dy .
Let W = (WH , . . . ,W1) be a first-order critical point of L. We set K = WH · · ·W2, r =
rk(WH · · ·W1). Using Lemma 25, there exists a unique subset S ⊂ J1, dyK of size r such that:

PK = USU
T
S .

Therefore, using Lemma 24,

WH · · ·W1 = PKΣY XΣ−1XX = USU
T
S ΣY XΣ−1XX .
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This proves the first statement of Proposition 1.
To prove the second statement, notice that we have

L(W) = ‖WX − Y ‖2

= ‖WX‖2 − 2 〈WX , Y 〉+ ‖Y ‖2

= tr(WΣXXW
T )− 2 tr(WΣXY ) + tr(ΣY Y )

= tr(USU
T
S ΣY XΣ−1XXΣXXΣ−1XXΣXY USU

T
S )− 2 tr(USU

T
S ΣY XΣ−1XXΣXY ) + tr(ΣY Y )

= tr(USU
T
S USU

T
S Σ)− 2 tr(USU

T
S Σ) + tr(ΣY Y )

Since UTS US = Ir (see Lemma 22), using Lemma 25 and the fact that U diagonalizes Σ, this
becomes

L(W) = tr(ΣY Y )− tr(USU
T
S Σ)

= tr(ΣY Y )− tr(UISUTUΛUT )

= tr(ΣY Y )− tr(ISUTUΛUTU)

= tr(ΣY Y )− tr(ISΛ)

= tr(ΣY Y )−
∑
i∈S

λi .

This proves the second and last statement of Proposition 1.

B.3 Lemma 26

In this section we state and prove a lemma about first-order critical points which will be useful in
various proofs. This lemma gives a simpler form for K = WH · · ·W2 and W1.

Lemma 26 Suppose Assumption 1 in Section 2 holds true. Let W = (WH , . . . ,W1) be a first-order
critical point of L associated with S. We set r = rk(WH · · ·W1).
Then there exists an invertible matrixD ∈ Rd1×d1 , a matrixM ∈ Rd1×dx satisfyingWH · · ·W2M =
0, such that:

K = WH · · ·W2 =

[
US 0dy×(d1−r)

]
D

and

W1 = D−1
[
UTS ΣY XΣ−1XX

0(d1−r)×dx

]
+M .

Note that the result is still true when r = 0, provided that U∅ ∈ Rdy×0.
To prove Lemma 26, we use Lemmas 24 and 25 stated and proved in the preliminaries of

Appendix B.1. We will also need the following lemma

Lemma 27 Let n be a positive integer and ∅ 6= S ⊂ J1, dyK such that n ≥ r := |S|. Let A ∈ Rdy×n
such that AA+ = USU

T
S . Then there exists an invertible matrix D ∈ Rn×n such that

A = [US 0dy×(n−r)]D
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and

A+ = D−1
[

UTS
0(n−r)×dy

]
.

Proof [Proof of Lemma 27]
The matrix In −A+A is the orthogonal projection onto Ker(A) (see Appendix A.3), hence

rk(In −A+A) = dim Ker(A) = n− rk(A)

But we have (see Property (ii) in Appendix A.3) rk(A+A) = rk(A) = rk(AA+) and, using Lemma
22, rk(A+A) = rk(USU

T
S ) = r. Therefore, rk(A) = r and

rk(In −A+A) = n− r.

Let B ∈ Rn×(n−r) and C ∈ R(n−r)×n be such that In − A+A = BC (such matrices can be
obtained by considering the Singular Value Decomposition of In −A+A).

Denoting D =

[
UTS A
C

]
∈ Rn×n, we have

[A+US , B]D = [A+US , B]

[
UTS A
C

]
= A+USU

T
S A+BC = A+AA+A+ In −A+A .

Using Criteria 1 in Appendix A.3 we obtain

[A+US , B]D = A+A+ In −A+A = In .

Therefore, D is invertible and D−1 = [A+US , B]. We have

[US , 0dy×(n−r)]D = [US , 0dy×(n−r)]

[
UTS A
C

]
= USU

T
S A = AA+A = A ,

where the last equality follows from Criteria 1 in Appendix A.3. This proves the first equality of
Lemma 27 Finally,

D−1
[

UTS
0(n−r)×dy

]
= [A+US , B]

[
UTS

0(n−r)×dy

]
= A+USU

T
S = A+AA+ = A+ ,

where the last equality follows again from Criteria 2 in Appendix A.3. This concludes the proof of
Lemma 27.

Now we prove Lemma 26.
Proof [Proof of Lemma 26]

Let W = (WH , . . . ,W1) be a first-order critical point of L associated with S and r =
rk(WH · · ·W1).
Using Lemma 24, we have r = rk(WH · · ·W2).
If r = 0, the conclusion of Lemma 26 is trivial because of the convention U∅ ∈ Rdy×0.
When r ≥ 1, using Lemma 24 and Proposition 1, we have WH · · ·W1 = PKΣY XΣ−1XX =
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USU
T
S ΣY XΣ−1XX . Since ΣY X is of full row rank this implies PK = KK+ = USU

T
S . There-

fore, we can apply Lemma 27 with n = d1 and A = K to conclude that there exists an invertible
matrix D ∈ Rd1×d1 such that

K = [US , 0dy×(d1−r)]D

which is the form of K in Lemma 26. Moreover, Lemma 27 also guarantees that

K+ = D−1
[

UTS
0(d1−r)×dy

]
.

Using Lemma 24, we have W1 = K+ΣY XΣ−1XX + M with KM = 0. Therefore,

W1 = D−1
[
UTS ΣY XΣ−1XX

0(d1−r)×dx

]
+ M , with KM = 0. This concludes the proof of Lemma

26.

B.4 Proof of Lemma 16

For any h ∈ J1, H − 1K let Dh ∈ Rdh×dh be an invertible matrix. We define W̃ = (W̃H , . . . , W̃1)

by W̃H = WHDH−1, W̃1 = D−11 W1 and W̃h = D−1h WhDh−1 for all h ∈ J2, H − 1K.
Assume that W = (WH , . . . ,W1) is a first-order critical point. Then using Lemma 19 this is
equivalent to


∇Wh

L(W) = 2(WH · · ·Wh+1)
T (WH · · ·W1ΣXX − ΣY X)(Wh−1 · · ·W1)

T = 0 ∀h ∈ J2, H − 1K
∇WH

L(W) = 2(WH · · ·W1ΣXX − ΣY X)(WH−1 · · ·W1)
T = 0

∇W1L(W) = 2(WH · · ·W2)
T (WH · · ·W1ΣXX − ΣY X) = 0 .

(19)

Using the definition of W̃ above, we have
WH · · ·W1 = W̃H · · · W̃1

WH · · ·Wh+1 = W̃H · · · W̃h+1D
−1
h ∀h ∈ J1, H − 1K

Wh−1 · · ·W1 = Dh−1W̃h−1 · · · W̃1 ∀h ∈ J2, HK .

Therefore (19) is equivalent to
(D−1h )T (W̃H · · · W̃h+1)

T (W̃H · · · W̃1ΣXX − ΣY X)(W̃h−1 · · · W̃1)
TDT

h−1 = 0 ∀h ∈ J2, H − 1K
(W̃H · · · W̃1ΣXX − ΣY X)(W̃H−1 · · · W̃1)

TDT
H−1 = 0

(D−11 )T (W̃H · · · W̃2)
T (W̃H · · · W̃1ΣXX − ΣY X) = 0 .

This is equivalent to
∇Wh

L(W̃) = 2(W̃H · · · W̃h+1)
T (W̃H · · · W̃1ΣXX − ΣY X)(W̃h−1 · · · W̃1)

T = 0 ∀h ∈ J2, H − 1K
∇WH

L(W̃) = 2(W̃H · · · W̃1ΣXX − ΣY X)(W̃H−1 · · · W̃1)
T = 0

∇W1L(W̃) = 2(W̃H · · · W̃2)
T (W̃H · · · W̃1ΣXX − ΣY X) = 0 .
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which is equivalent to ∇Wh
L(W̃) = 0, for all h ∈ J1, HK . Therefore, W is a first-order critical

point if and only if W̃ is a first-order critical point. This proves the first part of the proposition.
Now assume that W = (WH , . . . ,W1) is a first-order critical point such that it is not a second-order
critical point. Note that from the first part of the proof W̃ = (W̃H , . . . , W̃1) is also a first-order
critical point. Let us prove that W̃ is not a second-order critical point. Using Lemma 12, since
W is not a second-order critical point, there exist W′ = (W ′H , . . . ,W

′
1) such that, if we denote

W(t) = W + tW′, the second-order term of L(W(t)) is strictly negative i.e c2(W,W′) < 0. We
will prove that there exist W̃

′
such that c2(W̃, W̃

′
) < 0 and, using again Lemma 12, we conclude.

As already said, we set Wh(t) = Wh + tW ′h, for all h ∈ J1, HK. We denote
W̃H(t) = W̃H + tW̃ ′H = W̃H + tW ′HDH−1

W̃1(t) = W̃1 + tW̃ ′1 = W̃1 + tD−11 W ′1
W̃h(t) = W̃h + tW̃ ′h = W̃h + tD−1h W ′hDh−1 ∀h ∈ J2, H − 1K
W̃
′
= (W̃ ′H , . . . , W̃

′
1) .

Hence, we have (where
∏2
h=H−1Ah should read as AH−1 · · ·A2)

W̃H(t) · · · W̃1(t)

= (WHDH−1 + tW ′HDH−1)

(
2∏

h=H−1
(D−1h WhDh−1 + tD−1h W ′hDh−1)

)
(D−11 W1 + tD−11 W ′1)

= (WH + tW ′H) · · · (W1 + tW ′1)

= WH(t) · · ·W1(t) .

Therefore, L(W̃(t)) = L(W(t)) and

c2(W̃, W̃
′
) = c2(W,W′) .

Since by hypothesis c2(W,W′) < 0, we conclude that c2(W̃, W̃
′
) < 0. Hence (W̃H , . . . , W̃1) is not

a second-order critical point.
We prove that if W̃ is not a second-order critical point then W is not a second-order critical point
in the same way, by changing Dh with D−1h for all h ∈ J1, HK. This proves the second part of the
proposition and concludes the proof.

B.5 Proof of Proposition 10

Let S ⊂ J1, dyK of size r ∈ J0, rmaxK and Q = J1, dyK \ S. Let ZH ∈ R(dy−r)×(dH−1−r),
Z1 ∈ R(d1−r)×dx and Zh ∈ R(dh−r)×(dh−1−r) for h ∈ J2, H − 1K. Let the parameter of the
network W = (WH , . . . ,W1) be defined as follows:

WH = [US , UQZH ]

W1 =

[
UTS ΣY XΣ−1XX

Z1

]
Wh =

[
Ir 0
0 Zh

]
∀h ∈ J2, H − 1K .

(20)
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Note that the above definition of W does not involve the matrices Dh ∈ Rdh×dh . In fact, using
Lemma 16, it suffices to prove that, when r = rmax or there exist h1 6= h2 such that Zh1 = 0 and
Zh2 = 0, the W defined above is a first-order critical point to conclude that Proposition 10 holds .
We have

WH · · ·W1 = [US , UQZH ]

[
Ir 0
0 ZH−1

]
· · ·
[
Ir 0
0 Z2

] [
UTS ΣY XΣ−1XX

Z1

]
= USU

T
S ΣY XΣ−1XX + UQZHZH−1 · · ·Z2Z1

If there exists h1 6= h2 such that Zh1 = 0 and Zh2 = 0, it immediately follows that WH · · ·W1 =
USU

T
S ΣY XΣ−1XX .

If r = rmax, then there exists h ∈ J0, HK such that r = dh.

• If r = dH = dy, then UQ ∈ Rdy×0 and ZH ∈ R0×(dH−1−r), which, using conventions in
Section 2, gives

UQZH = 0dy×(dH−1−r). (21)

Therefore, WH · · ·W1 = USU
T
S ΣY XΣ−1XX .

• If r = d0 = dx, then, since dx ≥ dy, we have r = dy, which we have already treated in the
previous item.

• If r = dh for some h ∈ J2, H − 1K, then Zh+1 ∈ R(dh+1−r)×0 and Zh ∈ R0×(dh−1−r), which,
using the conventions on Section 2, gives

Zh+1Zh = 0(dh+1−r)×(dh−1−r). (22)

Therefore, WH · · ·W1 = USU
T
S ΣY XΣ−1XX .

• If r = d1, then Z2 ∈ R(d2−r)×0 and Z1 ∈ R0×dx , which, using the conventions on Section 2,
gives

Z2Z1 = 0(d2−r)×dx . (23)

Therefore, WH · · ·W1 = USU
T
S ΣY XΣ−1XX .

Note that these results still hold if there is more than one layer with the minimum width.
Therefore, in all cases, when r = rmax or there exist h1 6= h2 such that Zh1 = 0 and Zh2 = 0 we
have,

WH · · ·W1 = USU
T
S ΣY XΣ−1XX . (24)

Let us prove that the gradient of L at W is equal to zero.
Recall that from Lemma 19 we have

∇Wh
L(W) = 2(WH · · ·Wh+1)

T (WH · · ·W1ΣXX − ΣY X)(Wh−1 · · ·W1)
T ∀h ∈ J2, H − 1K

∇WH
L(W) = 2(WH · · ·W1ΣXX − ΣY X)(WH−1 · · ·W1)

T

∇W1L(W) = 2(WH · · ·W2)
T (WH · · ·W1ΣXX − ΣY X) .

32



LOSS LANDSCAPE OF DEEP LINEAR NETWORKS

Using (24) and Lemma 22, we have

WH · · ·W1ΣXX − ΣY X = USU
T
S ΣY XΣ−1XXΣXX − ΣY X

= (USU
T
S − Idy)ΣY X

= −UQUTQΣY X .

Also, using (20), for all h ∈ J1, H − 1K,

WH · · ·Wh+1 = [US , UQZH ]

[
Ir 0
0 ZH−1

]
· · ·
[
Ir 0
0 Zh+1

]
= [US , UQZHZH−1 · · ·Zh+1]

and, for all h ∈ J2, HK,

Wh−1 · · ·W1 =

[
Ir 0
0 Zh−1

]
· · ·
[
Ir 0
0 Z2

] [
UTS ΣY XΣ−1XX

Z1

]
=

[
UTS ΣY XΣ−1XX
Zh−1 · · ·Z2Z1

]
.

We have, for all h ∈ J2, H − 1K,

1

2
(∇Wh

L(W))T = (Wh−1 · · ·W1)(WH · · ·W1ΣXX − ΣY X)T (WH · · ·Wh+1)

= −
[
UTS ΣY XΣ−1XX
Zh−1 · · ·Z2Z1

]
(UQU

T
QΣY X)T [US , UQZHZH−1 · · ·Zh+1]

= −
[
UTS ΣY XΣ−1XX
Zh−1 · · ·Z2Z1

]
ΣXY UQU

T
Q [US , UQZHZH−1 · · ·Zh+1]

= −
[
UTS ΣY XΣ−1XXΣXY UQ
Zh−1 · · ·Z2Z1ΣXY UQ

]
[UTQUS , U

T
QUQZHZH−1 · · ·Zh+1] .

Using the definition of Σ, Lemma 22 and Lemma 23, we have

1

2
(∇Wh

L(W))T = −
[

UTS ΣUQ
Zh−1 · · ·Z2Z1ΣXY UQ

]
[0(dy−r)×r, ZHZH−1 · · ·Zh+1]

= −
[

0r×(dy−r)
Zh−1 · · ·Z2Z1ΣXY UQ

]
[0(dy−r)×r, ZHZH−1 · · ·Zh+1]

= −
[

0r×r 0r×(dh−r)
0(dh−1−r)×r Zh−1 · · ·Z2Z1ΣXY UQZHZH−1 · · ·Zh+1

]
.

Proceeding similarly, we obtain

1

2
(∇WH

L(W))T = −
[

0r×dy
ZH−1 · · ·Z2Z1ΣXY UQU

T
Q

]
and

1

2
(∇W1L(W))T = −[0dx×r , ΣXY UQZHZH−1 · · ·Z2] .
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If there exists h1 6= h2 such that Zh1 = 0 and Zh2 = 0, we can easily see that the gradient is equal
to zero, i.e., W is a first-order critical point.
If r = rmax, then there exists h′ ∈ J1, HK such that r = dh′ . Using the same arguments as above
that yielded (21), (22) and (23), we have,

• For h = 1,

– if r = d1, we have Z2 ∈ R(d2−r)×0 and therefore ΣXY UQZHZH−1 · · ·Z2 ∈ Rdx×0.

– if r = dH , then UQZH = 0dy×(dH−1−r) and therefore ΣXY UQZHZH−1 · · ·Z2 =
0dx×(d1−r).

– if r = dh′ for some h′ ∈ J2, H−1K, then Zh′+1Zh′ = 0(dh′+1−r)×(dh′−1−r) and therefore
ΣXY UQZHZH−1 · · ·Z2 = 0dx×(d1−r).

Hence, in all cases,∇W1L(W) = 0.

• For h = H ,

– if r = dH = dy, then UQUTQ = 0dy×dy and therefore ZH−1 · · ·Z2Z1ΣXY UQU
T
Q =

0(dH−1−r)×dy .

– if r = dH−1, then ZH−1 ∈ R0×(dH−2−r) and therefore ZH−1 · · ·Z2Z1ΣXY UQU
T
Q ∈

R0×dy .

– if r = dh′ for some h′ ∈ J2, H−2K, then Zh′+1Zh′ = 0(dh′+1−r)×(dh′−1−r) and therefore
ZH−1 · · ·Z2Z1ΣXY UQU

T
Q = 0(dH−1−r)×dy .

– if r = d1, then Z2Z1 = 0(d2−r)×dx and therefore ZH−1 · · ·Z2Z1ΣXY UQU
T
Q =

0(dH−1−r)×dy .

Hence, in all cases,∇WH
L(W) = 0.

• For h ∈ J2, H − 1K,

– if r = dh−1, then Zh−1 ∈ R0×(dh−2−r) and therefore
Zh−1 · · ·Z2Z1ΣXY UQZHZH−1 · · ·Zh+1 ∈ R0×(dh−r).

– if r = dh, then Zh+1 ∈ R(dh+1−r)×0 and therefore
Zh−1 · · ·Z2Z1ΣXY UQZHZH−1 · · ·Zh+1 ∈ R(dh−1−r)×0.

– if r = dH , then UQZH = 0dy×(dH−1−r) and therefore
Zh−1 · · ·Z2Z1ΣXY UQZHZH−1 · · ·Zh+1 = 0(dh−1−r)×(dh−r).

– if r = d1, then Z2Z1 = 0(d2−r)×dx and therefore
Zh−1 · · ·Z2Z1ΣXY UQZHZH−1 · · ·Zh+1 = 0(dh−1−r)×(dh−r).

– if r = dh′ for some h′ ∈ J2, H − 1K \ {h, h− 1}, then Zh′+1Zh′ = 0(dh′+1−r)×(dh′−1−r)
and therefore
Zh−1 · · ·Z2Z1ΣXY UQZHZH−1 · · ·Zh+1 = 0(dh−1−r)×(dh−r).

Hence, in all cases,∇Wh
L(W) = 0.

Therefore, when r = rmax, W is also a first-order critical point of L.
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B.6 Proof of Proposition 2

Let S ⊂ J1, dyK such that |S| = r ≤ rmax, and Q = J1, dyK \ S .
We define W = (WH , . . . ,W1) by:

WH = [US , 0dy×(dH−1−r)]

Wh =

[
Ir 0r×(dh−1−r)

0(dh−r)×r 0(dh−r)×(dh−1−r)

]
∀h ∈ J2, H − 1K

W1 =

[
UTS ΣY XΣ−1XX

0(d1−r)×dx

]
,

By Proposition 10, W is a first-order critical point of L. Moreover, we have WH · · ·W1 =
USU

T
S ΣY XΣ−1XX . Therefore, W is a first-order critical point associated with S .

B.7 Proof of Proposition 4

Let W = (WH , . . . ,W1) be a first-order critical point and r = rk(WH · · ·W1), using Proposition 1
there exists a unique S ⊂ J1, dyK of size r such that

WH · · ·W1 = USU
T
S ΣY XΣ−1XX ,

which implies
WH · · ·W1ΣXY = USU

T
S Σ.

Let i, j ∈ J1, HK such that i > j. The complementary blocks are Wj−1 · · ·W1ΣXYWH · · ·Wi+1

and Wi−1 · · ·Wj+1.
Using Lemma 20 and UTS US = Ir, we have, for the second complementary block,

rk(Wi−1 · · ·Wj+1) ≥ rk(WH · · ·W1ΣXY ) = rk(USU
T
S Σ) ≥ rk(UTS (USU

T
S Σ)Σ−1US) = rk(Ir) = r .

For the first complementary block, using the same arguments, we have

rk(Wj−1 · · ·W1ΣXYWH · · ·Wi+1) ≥ rk(WH · · ·W1ΣXYWH · · ·W1ΣXY )

= rk(USU
T
S ΣUSU

T
S Σ)

≥ rk
(
UTS (USU

T
S ΣUSU

T
S Σ)Σ−1US

)
= rk(UTS ΣUS) .

Recall that, from the diagonalization of Σ, we have ΣU = UΛ, hence, ΣUS = USdiag((λs)s∈S)

rk(Wj−1 · · ·W1ΣXYWH · · ·Wi+1) ≥ rk(UTS USdiag((λs)s∈S))

= rk(diag((λs)s∈S))

= r .

This concludes the proof.
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B.8 Proof of Proposition 8

Let H ≥ 3, S = J1, rK with 0 ≤ r < rmax. We define W as follows:

WH = [US , 0]

Wh =

[
Ir 0

0 Zh

]
for h ∈ J2, H − 1K

W1 =

[
UTS ΣY XΣ−1XX

0

]
.

(25)

Using Proposition 10, W is a first-order critical point associated with S . Let us show that depending
on the choice of (Zh)h=2..H−1, W can be tightened or non-tightened.
Since H ≥ 3, there exists h ∈ J2, H − 1K. If we choose ZH−1, . . . , Z2 such that ZH−1 · · ·Z2 6= 0
(e.g. when only the top left entry of each Zh is nonzero, which is possible since r < rmax =
min(dH , . . . , d0)) then W is non-tightened. Indeed, the pivot (H, 1) is non-tightened because

rk(ΣXY ) = dy > r and rk(WH−1 · · ·W2) = rk

([
Ir 0
0 ZH−1 · · ·Z2

])
> r.

If we choose ZH−1, . . . , Z2 such that ZH−1 · · ·Z2 = 0 (e.g. Z2 = 0), then W is tightened. Indeed,

the pivot (H, 1) is tightened because WH−1 · · ·W2 =

[
Ir 0
0 0

]
is of rank r, and by construction

we have rk(WH) = rk(W1) = r. Hence, all the other pivots are tightened because at least one of
their complementary blocks includes WH or W1, and therefore, using Proposition 4, is of rank r.
Therefore, W is tightened.

Appendix C. Parameterization of First-order Critical Points and Global Minimizers

In this section, we prove Propositions 9 and 11 that were stated in Section 3.3.

C.1 Proof of Proposition 9

Before proving Proposition 9, we introduce and prove two lemmas.

Lemma 28 Let r be a nonnegative integer, and let n and p be two positive integers larger than or
equal to r. Let S ⊂ J1, dyK of size r and let Q = J1, dyK \ S . Let A ∈ Rdy×n and B ∈ Rn×p be two
matrices such that

AB = [US , 0] .

Then, there exist an invertible matrix D ∈ Rn×n and two matrices N ∈ R(dy−r)×(n−r) and
BDR ∈ R(n−r)×(p−r) such that

AD = [US , UQN ] (26)

D−1B =

[
Ir 0
0 BDR

]
. (27)

In the proof below, we can easily see that the result still holds for r = 0 and r = min(dy, n, p) with
the conventions adopted in Section 2.
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Proof Let n and p be non-negative integers such that n, p ≥ r and A ∈ Rdy×n and B ∈ Rn×p such
that

AB = [US , 0]. (28)

Recall that for any matrix C with n columns we write C = [C1, C2, . . . , Cn] where Ci represents
the i-th column of C.
We have from (28),

A[B1, B2, . . . , Br] = US . (29)

Since the columns of U are linearly independent, we have

rk(A[B1, B2, . . . , Br]) = rk(US) = r

and {B1, . . . , Br} are necessarily also linearly independent. Using the incomplete basis theo-
rem, we complement (B1, . . . , Br) to form a basis (B1, . . . , Br, Er+1, . . . , En). We set E =
[B1, . . . , Br, Er+1, . . . , En] ∈ Rn×n. By construction, the matrix E is invertible.

We now set A′ = AE and B′ = E−1B. In particular A′B′ = AB.
Also, note that

E

[
Ir
0

]
= [B1, . . . , Br] ,

so that

E−1[B1, . . . , Br] =

[
Ir
0

]
.

Therefore, we can write

B′ = E−1B =

[
Ir BUR
0 BDR

]
, (30)

with BUR ∈ Rr×(p−r) and BDR ∈ R(n−r)×(p−r) such that[
BUR
BDR

]
= E−1[Br+1, . . . , Bp] .

We define L ∈ Rr×(n−r) and N ∈ R(dy−r)×(n−r) by
[
L
N

]
= [US , UQ]−1[AEr+1, . . . , AEn]. We

have

[AEr+1, . . . , AEn] = [US , UQ]

[
L
N

]
= USL+ UQN . (31)

We also define the invertible matrix F =

[
Ir L
0 In−r

]
∈ Rn×n. Using (29) and (31) we have

A′ = AE

= A[B1, . . . , Br, Er+1, . . . , En]

= [US , USL+ UQN ]

= [US , UQN ]

[
Ir L
0 In−r

]
= [US , UQN ]F .
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Therefore, defining the invertible matrix D = EF−1 ∈ Rn×n, we finally have

AD = AEF−1 = [US , UQN ] . (32)

This proves (26).
We also have, using (30) and the definition of F

D−1B = FE−1B

= FB′

=

[
Ir L
0 In−r

] [
Ir BUR
0 BDR

]
=

[
Ir BUR + LBDR
0 BDR

]
. (33)

However, noticing that, since (28) holds,

(AD)(D−1B) = AB = [US , 0] ,

and using (32) and (33) we obtain

[US , UQN ]

[
Ir BUR + LBDR
0 BDR

]
= [US , 0] .

ThereforeUS(BUR+LBDR)+UQNBDR = 0 . Since [US , UQ] is invertible we getBUR+LBDR =
0 and NBDR = 0 .
Finally, (33) becomes

D−1B =

[
Ir 0
0 BDR

]
.

This proves (27) and concludes the proof.

The second lemma states that if the product of two factors takes the format of (27), then up to the
product by an invertible matrix, the two factors have the same format. In the proof of Proposition 9,
we will use this property several times to establish (4).

Lemma 29 Let r, q, n and p be positive integers such that r ≤ min(q, n, p). Let B ∈ Rq×n,
C ∈ Rn×p and P ∈ R(q−r)×(p−r) such that

BC =

[
Ir 0
0 P

]
.

Then, there exist an invertible matrix D ∈ Rn×n and two matrices BDR ∈ R(q−r)×(n−r) and
CDR ∈ R(n−r)×(p−r) such that

BD =

[
Ir 0
0 BDR

]
(34)

D−1C =

[
Ir 0
0 CDR

]
. (35)
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In the proof below, we can easily see that the result still holds for r = 0 and r = min(q, n, p) with
the conventions adopted in Section 2.
Proof Let r, q, n and p be positive integers such that r ≤ min(q, n, p). Let B ∈ Rq×n, C ∈ Rn×p
and P ∈ R(q−r)×(p−r) such that

BC =

[
Ir 0
0 P

]
. (36)

We have

B[C1, C2, . . . , Cr] =

[
Ir
0

]
. (37)

Since the columns of
[
Ir
0

]
are linearly independent,

rk(B[C1, C2, . . . , Cr]) = r

and the vectors C1, . . . , Cr are necessarily also linearly independent. Using the incomplete basis
theorem, we complement (C1, . . . , Cr) to form a basis (C1, . . . , Cr, Er+1, . . . , En). We denote
E = [C1, . . . , Cr, Er+1, . . . , En] ∈ Rn×n. By construction, the matrix E is invertible.
We now set B′ = BE and C ′ = E−1C. In particular

B′C ′ = BC. (38)

Also notice that

E

[
Ir
0

]
= [C1, . . . , Cr] ,

so that

E−1[C1, . . . , Cr] =

[
Ir
0

]
.

Therefore, we can write

C ′ = E−1C =

[
Ir CUR
0 CDR

]
, (39)

where CUR ∈ Rr×(p−r) and CDR ∈ R(n−r)×(p−r) are such that
[
CUR
CDR

]
= E−1[Cr+1, . . . , Cp].

Now notice that, using (37),

B′ = BE

= B[C1, . . . , Cr, Er+1, . . . , En]

=

[
Ir BUR
0 BDR

]
, (40)

where BUR ∈ Rr×(n−r) and BDR ∈ R(q−r)×(n−r) are such that
[
BUR
BDR

]
= B[Er+1, . . . , En] .

Plugging (40), (39) and (36) in the equality (38), we obtain[
Ir BUR
0 BDR

] [
Ir CUR
0 CDR

]
=

[
Ir 0
0 P

]
,
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which yields [
Ir CUR +BURCDR
0 BDRCDR

]
=

[
Ir 0
0 P

]
.

Therefore, CUR +BURCDR = 0 or, equivalently ,

CUR = −BURCDR . (41)

Define F =

[
Ir −BUR
0 In−r

]
. The matrix F is invertible. Moreover, using (39) and (41) we have

C ′ =

[
Ir −BURCDR
0 CDR

]
=

[
Ir −BUR
0 In−r

] [
Ir 0
0 CDR

]
= F

[
Ir 0
0 CDR

]
.

Therefore, if we define D = EF , D is invertible and

D−1C = F−1E−1C = F−1C ′ =

[
Ir 0
0 CDR

]
.

This proves (35).
In order to prove (34), we remark that, using (40) and the definition of F , we also have

BD = BEF

= B′F

=

[
Ir BUR
0 BDR

] [
Ir −BUR
0 In−r

]
=

[
Ir 0
0 BDR

]
.

This proves (34) and concludes the proof.

Now we prove Proposition 9.
Proof [Proof of Proposition 9]

Let W = (WH , . . . ,W1) be a first-order critical point of L. Then using Lemma 26 there exist
D ∈ Rd1×d1 invertible and a matrix M ∈ Rd1×dx which satisfies WH · · ·W2M = 0 such that

WH · · ·W2 = [US , 0]D (42)

W1 = D−1
[
UTS ΣY XΣ−1XX

0

]
+M . (43)

Denoting D1 = D−1 and using (42), we have WH · · ·W2D1 = [US , 0]. Then applying Lemma 28
with A = WH and B = WH−1 · · ·W2D1 , there exist an invertible matrix DH−1 ∈ RdH−1×dH−1 ,
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and matrices ZH ∈ R(dy−r)×(dH−1−r) and BDR ∈ R(dH−1−r)×(d1−r) such that

W̃H := WHDH−1 = [US , UQZH ]

D−1H−1WH−1 · · ·W2D1 =

[
Ir 0
0 BDR

]
. (44)

The first equality proves (2).
Then applying Lemma 29 to (44) with B = D−1H−1WH−1 and C = WH−2 · · ·W2D1 we get the
existence of an invertible matrix DH−2 ∈ RdH−2×dH−2 , CDR ∈ R(dH−2−r)×(d1−r) and ZH−1 ∈
R(dH−1−r)×(dH−2−r) such that

W̃H−1 := D−1H−1WH−1DH−2 =

[
Ir 0
0 ZH−1

]
,

and

D−1H−2WH−2 · · ·W2D1 =

[
Ir 0
0 CDR

]
.

Reiterating the process by using Lemma 29 multiple times with B = D−1h Wh and C =
Wh−1 · · ·W2D1 for h decreasing from H − 2 to 3, we can conclude that there exist invertible
matrices Dh ∈ Rdh×dh and matrices Zh ∈ R(dh−r)×(dh−1−r), for h ∈ J2, H − 1K, such that

W̃h := D−1h WhDh−1 =

[
Ir 0
0 Zh

]
∀h ∈ J2, H − 1K .

This entails (4).

We also have from (43) that W1 = D1

[
UTS ΣY XΣ−1XX

0

]
+M with WH · · ·W2M = 0. Therefore,

D−11 W1 =

[
UTS ΣY XΣ−1XX

0

]
+D−11 M .

Using (42), D1 = D−1 and WH · · ·W2M = 0, we obtain

[US , 0]D−11 M = 0 .

Writing D−11 M =

[
Z0

Z1

]
, where Z0 ∈ Rr×dx and Z1 ∈ R(d1−r)×dx , we have

0 = [US , 0]D−11 M

= [US , 0]

[
Z0

Z1

]
= USZ0 .

Multiplying on the left by UTS we obtain
Z0 = 0.
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Therefore D−11 M =

[
0
Z1

]
, which yields

W̃1 := D−11 W1 =

[
UTS ΣY XΣ−1XX

Z1

]
.

This proves (3).
Finally we have

W̃H · · · W̃2 = (WHDH−1)(D
−1
H−1WH−1DH−2) · · · (D−12 W2D1)

= WH · · ·W2D1

= [US , 0] ,

where the last equality is due to (42) and D1 = D−1. This entails (5) and concludes the proof.

C.2 Proof of Proposition 11

We first make a comment about notational subtleties to help understand the statement of Proposi-
tion 11, and then prove the proposition.

Recall that rmax = min(dH , . . . , d0), and dx = d0 ≥ dy = dH by assumption. Therefore, in the
statement of Proposition 11, some blocks Zh have 0 lines or 0 columns, and thus do not exist. For
example, depending on the value of rmax, we have{

WH = USmaxD
−1
H−1 if rmax = dH−1

W1 = D1U
T
Smax

ΣY XΣ−1XX if rmax = d1

and for h ∈ J2, H − 1K

Wh =


Dh

[
Irmax 0

]
D−1h−1 if rmax = dh < dh−1

Dh

[
Irmax

0

]
D−1h−1 if rmax = dh−1 < dh

DhIrmaxD
−1
h−1 if rmax = dh = dh−1

Also, if rmax = dy, then Qmax = ∅, hence UQmax ∈ Rdy×0 and ZH ∈ R0×(dH−1−rmax).
Then, using the convention in Section 2, UQmaxZH = 0dy×(dH−1−rmax), so that WH =

[USmax , 0dy×(dH−1−rmax)]D
−1
H−1 ∈ Rdy×dH−1 .

We are now ready to prove the proposition.
Proof [Proof of Proposition 11]

Let Smax = J1, rmaxK. Let us first prove that W is a global minimizer of L if and only if W is a
first-order critical point of L associated with Smax. From Lemma 21, we have

USmaxU
T
Smax

ΣY XΣ−1XX ∈ arg min
R∈Rdy×dx

rk(R)≤rmax

‖RX − Y ‖2 .
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Let W be a first-order critical point associated with Smax (note that from Proposition 2, such W
exist). We have WH · · ·W1 = USmaxU

T
Smax

ΣY XΣ−1XX , hence, for all W′ = (W ′H , . . . ,W
′
1), since

rk(W ′H · · ·W ′1) ≤ rmax, we have

L(W′) ≥ min
R∈Rdy×dx

rk(R)≤rmax

‖RX − Y ‖2 = ‖WH · · ·W1X − Y ‖2 = L(W) .

As a consequence, W is a global minimizer of L.
Conversely, if W is a global minimizer of L, then W is a first-order critical point of L. From Proposi-
tion 1, there exist S ⊂ J1, dyK of size r ∈ J0, rmaxK such that WH · · ·W1 = USU

T
S ΣY XΣ−1XX , and

we have L(W) = tr(ΣY Y ) −
∑

i∈S λi. But we have from Assumption 1, λ1 > . . . > λdy , and,
since Σ is invertible (see Lemma 20), then λdy > 0. Therefore, using Proposition 2, W is a global
minimizer of L implies that S = J1, rmaxK = Smax. Hence, W is a global minimizer of L if and
only if W is a first-order critical point of L associated with Smax.
Let us now prove Proposition 11.
Let W = (WH , . . . ,W1) be a first-order critical point associated with Smax = J1, rmaxK. Us-
ing Proposition 9, there exist invertible matrices DH−1 ∈ RdH−1×dH−1 , . . . , D1 ∈ Rd1×d1 , and
matrices ZH ∈ R(dy−rmax)×(dH−1−rmax), Zh ∈ R(dh−rmax)×(dh−1−rmax) for h ∈ J2, H − 1K, and
Z1 ∈ R(d1−rmax)×dx such that:

WH = [USmax , UQmaxZH ]D−1H−1

W1 = D1

[
UTSmax

ΣY XΣ−1XX
Z1

]
Wh = Dh

[
Irmax 0

0 Zh

]
D−1h−1 ∀h ∈ J2, H − 1K .

Conversely, consider matrices Dh, for h ∈ J1, H − 1K and Zh, for h ∈ J1, HK as in Proposition
11, and

WH = [USmax , UQmaxZH ]D−1H−1

W1 = D1

[
UTSmax

ΣY XΣ−1XX
Z1

]
Wh = Dh

[
Irmax 0

0 Zh

]
D−1h−1 ∀h ∈ J2, H − 1K .

Since |Smax| = rmax, using Proposition 10, we have that W is a first-order critical point associated
with Smax. This concludes the proof.

Appendix D. Global Minimizers and Simple Strict Saddle Points (Proof of
Proposition 13)

Recall that rmax = min(dH , . . . , d0).
Let W = (WH , . . . ,W1) be a first-order critical point of L associated with S of size

r = rk(WH · · ·W1) ≤ rmax.
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Case 1: S = J1, rmaxK = Smax. In this case, using Lemma 21,

WH · · ·W1 = USmaxU
T
Smax

ΣY XΣ−1XX ∈ arg min
R∈Rdy×dx

rk(R)≤rmax

‖RX − Y ‖2 .

Moreover, for all W′ = (W ′H , . . . ,W
′
1), since rk(W ′H · · ·W ′1) ≤ rmax, we have

L(W′) ≥ min
R∈Rdy×dx

rk(R)≤rmax

‖RX − Y ‖2 = ‖WH · · ·W1X − Y ‖2 = L(W) .

As a consequence, W is a global minimizer of L.
Case 2: In order to prove the two remaining statements, we assume that S 6= J1, rK with

0 < r ≤ rmax, and show that W is not a second-order critical point.
To do this we will find W′ = (W ′H , . . . ,W

′
1) such that c2(W,W′) < 0 (see Lemma 12 ). More

precisely, we find a linear trajectory of the form Wh(t) = Wh + tW ′h such that the second-order
coefficient of the asymptotic expansion of L((Wh(t))h=1..H) around t = 0 is negative. This proves
that W is not a second-order critical point.

Since S 6= J1, rK, and the eigenvalues (λk)k∈J1,dyK are distinct and in decreasing order (see
Section 2), there exist j ∈ S and i 6∈ S such that

λi > λj . (45)

We denote by S = {i1, . . . , ir}, hence there exists g ∈ J1, rK such that j = ig.
Note that,

US = U

r∑
k=1

Eik,k

where El,k ∈ Rdy×r is the matrix whose entries are all 0 except the one in position (l, k) which is
equal to 1.
Denote by Ut the matrix formed by replacing in US the column corresponding to uj by uj + tui.
More precisely, set

Ut = US + tUEi,g .

Set V = UEi,g ∈ Rdy×r and

Vt =

r∑
k=1

Eik,k + tEi,g ∈ Rdy×r. (46)

Hence we have

Ut = US + tV = UVt . (47)

Considering D ∈ Rd1×d1 as provided by Lemma 26, we set
W ′1 = D−1

[
V TΣY XΣ−1XX

0(d1−r)×dx

]
W ′h = 0 ∀h ∈ J2, H − 1K
W ′H = V UTSWH .
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and for all h ∈ J1, HK, Wh(t) = Wh + tW ′h. Note that

WH(t) = WH + tW ′H = (Idy + tV UTS )WH ,

and therefore
K(t) := WH(t) · · ·W2(t) = (Idy + tV UTS )K ,

where K = WH · · ·W2. Using Lemma 26, there exists M ∈ Rd1×dx satisfying KM = 0 such that

W1 = D−1
[
UTS ΣY XΣ−1XX

0(d1−r)×dx

]
+M .

Hence,

W1(t) = D−1
[
UTS ΣY XΣ−1XX

0(d1−r)×dx

]
+M + tW ′1 = D−1

[
(UTS + tV T )ΣY XΣ−1XX

0(d1−r)×dx

]
+M ,

where M ∈ Rd1×dx is such that KM = 0. Therefore

Wt : = WH(t) · · ·W1(t)

= K(t)W1(t)

= (Idy + tV UTS )

(
KD−1

[
(UTS + tV T )ΣY XΣ−1XX

0(d1−r)×dx

]
+KM

)
.

From Lemma 26, using that KM = 0 and K = [US 0dy×(d1−r)]D, this becomes

Wt = (Idy + tV UTS )[US 0dy×(d1−r)]DD
−1
[

(UTS + tV T )ΣY XΣ−1XX
0(d1−r)×dx

]
= (Idy + tV UTS )US(UTS + tV T )ΣY XΣ−1XX .

Using that UTS US = Ir (see Lemma 22), we obtain

Wt = (US + tV )(UTS + tV T )ΣY XΣ−1XX = UtU
T
t ΣY XΣ−1XX . (48)

Recall that our goal is to show that the asymptotic expansion of (49) around t = 0 has a negative
second-order coefficient. We calculate

L((Wh(t))h=1..H) = ‖WtX − Y ‖2

= tr
(
WtΣXXW

T
t

)
− 2 tr(WtΣXY ) + tr(ΣY Y ) . (49)

Let us simplify tr(WtΣXXW
T
t ) first. Using (48), we have

WtΣXXW
T
t = UtU

T
t ΣY XΣ−1XXΣXXΣ−1XXΣXY UtU

T
t = UtU

T
t ΣUtU

T
t .

Using (47), UTU = Idy , Σ = UΛUT and the cyclic property of the trace, we obtain

tr
(
WtΣXXW

T
t

)
= tr

(
UVtV

T
t U

TUΛUTUVtV
T
t U

T
)

= tr
(
VtV

T
t ΛVtV

T
t

)
= tr

((
VtV

T
t

)2
Λ
)
.
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We define (Ek,l)k=1..dy ,l=1..dy the canonical basis of Rdy×dy . More precisely, Ek,l ∈ Rdy×dy has all
its entries equal to 0, except a 1 at position (k, l). Note that for all a, c ∈ J1, dyK and b, d ∈ J1, rK

Ea,bE
T
c,d = δb,dEa,c ,

where δb,d equals 1 if b = d and 0 otherwise. Using the definition of Vt in (46) and j = ig, for
g ∈ J1, rK, we have

VtV
T
t =

(
r∑

k=1

Eik,k + tEi,g

)(
r∑

k′=1

ETik′ ,k′ + tETi,g

)

=

(
r∑

k=1

Eik,ik

)
+ tEig ,i + tEi,ig + t2Ei,i

=

(∑
k∈S

Ek,k

)
+ tEj,i + tEi,j + t2Ei,i . (50)

We also have for all a, b, c, d ∈ J1, dyK

Ea,bEc,d = δb,cEa,d .

Recalling that j ∈ S and i /∈ S, we obtain

(VtV
T
t )2 =

((∑
k∈S

Ek,k

)
+ tEj,i + tEi,j + t2Ei,i

)((∑
k′∈S

Ek′,k′

)
+ tEj,i + tEi,j + t2Ei,i

)

=

((∑
k∈S

Ek,k

)
+ tEj,i + 0 + 0

)
+ (0 + 0 + t2Ej,j + t3Ej,i)

+ (tEi,j + t2Ei,i + 0 + 0) + (0 + 0 + t3Ei,j + t4Ei,i)

=

(∑
k∈S

Ek,k

)
+ t2(1 + t2)Ei,i + t2Ej,j + t(1 + t2)Ei,j + t(1 + t2)Ej,i .

Finally, since for all a, b ∈ J1, dyK

Ea,bΛ = λbEa,b (51)

we have

tr
(
WtΣXXW

T
t

)
= tr

((
VtV

T
t

)2
Λ
)

=
∑
k∈S

λk + t2(1 + t2)λi + t2λj . (52)

Coming back to (49), we calculate the other term tr(WtΣXY ). Using (48), (47) and Σ = UΛUT ,
we obtain

tr(WtΣXY ) = tr(UtU
T
t Σ) = tr(UVtV

T
t U

TUΛUT ) = tr(VtV
T
t Λ) .
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Combining with (50) and (51), we get

tr(WtΣXY ) = tr(VtV
T
t Λ) =

∑
k∈S

λk + t2λi . (53)

Finally, substituting (52) and (53) in (49), we have

L((Wh(t))h=1..H) = tr(ΣY Y ) +
∑
k∈S

λk + t2(1 + t2)λi + t2λj − 2
∑
k∈S

λk − 2t2λi

= tr(ΣY Y )−
∑
k∈S

λk + t2(λj − λi) + λit
4 .

Using Proposition 1 and recalling (45), we finally get as t→ 0,

L((Wh(t))h=1..H) = L(W) + ct2 + o(t2) with c = λj − λi < 0 .

Therefore, we conclude from Lemma 12 that W = (WH , . . . ,W1) is not a second-order critical
point.

Appendix E. Strict Saddle Points with S = J1, rK, r < rmax (Proof of Proposition 14)

We refer the reader to Section 4.2, which introduces the 4 cases proved below. Recall that S = J1, rK
and we set Q = J1, dyK \ S = Jr + 1, dyK.
In this section, for each vector space Rdh , we will denote by em the m-th element of the canonical
basis of Rdh . That is, the entries of em ∈ Rdh are all equal to 0 except for the m-th coordinate which
is equal to 1. The size of em will not be ambiguous, once in context, so we do not include it in the
notation.
Remark about r = 0: Using the conventions of Section 2, in this case we have S = ∅ and
Q = J1, dyK. Hence US is the matrix with no column, UQ = U , and USUTS = 0dy×dy . For example,
we still have Idy = USU

T
S + UQU

T
Q . We can easily follow the proofs below with these conventions

and see that the result still holds.

E.1 1st Case: i ∈ J2, H − 1K and j = 1

In this case, the two complementary blocks are ΣXYWH · · ·Wi+1 andWi−1 · · ·W2. Recall that S =
J1, rK and r < rmax = min(dH , . . . , d0). Note that rk(ΣXYWH · · ·Wi+1) = rk(WH · · ·Wi+1)
because ΣXY is of full column rank (see Assumption 1, in Section 2) .
Since the pivot (i, j) is not tightened, using Proposition 4, we have{

rk(WH · · ·Wi+1) > r

rk(Wi−1 · · ·W2) > r.
(54)

Let us first show that there exists k ∈ Jr + 1, dyK and l ∈ J1, diK such that

UTk (WH · · ·Wi+1).,l 6= 0 . (55)

Indeed, assume by contradiction that for all k ∈ Jr + 1, dyK and l ∈ J1, diK we have

UTk (WH · · ·Wi+1).,l = 0.
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Recalling that Q = J1, dyK \ S = Jr + 1, dyK, we obtain UTQWH · · ·Wi+1 = 0. Using from Lemma
22 that Idy = USU

T
S + UQU

T
Q , we have

WH · · ·Wi+1 = (USU
T
S + UQU

T
Q)WH · · ·Wi+1

= USU
T
SWH · · ·Wi+1.

Therefore,
rk(WH · · ·Wi+1) = rk(USU

T
SWH · · ·Wi+1).

The latter is impossible since rk(USU
T
SWH · · ·Wi+1) ≤ |S| = r, which is not compatible with (54).

Therefore (55) holds.
Since W is a first-order critical point, using Lemma 26, there exists an invertible matrix D ∈ Rd1×d1
such that

WH · · ·W2 = [US , 0dy×(d1−r)]D (56)

and since W is associated with S, we have

WH · · ·W1 = USU
T
S ΣY XΣ−1XX . (57)

Using (54) and D invertible, we have rk(Wi−1 · · ·W2D
−1) = rk(Wi−1 · · ·W2) > r. Hence there

exists g ∈ Jr + 1, d1K such that

(Wi−1 · · ·W2D
−1).,g 6= 0 .

Therefore, there exists a ∈ Rdi−1 such that

aT (Wi−1 · · ·W2D
−1).,g = 1 . (58)

Recall that k, l satisfy (55). We define W′β = (W ′βH , . . . ,W
′β
1 ) by

W ′βi = βW ′i = βela
T ∈ Rdi×di−1 , where el ∈ Rdi

W ′β1 = W ′1 = D−1egU
T
k ΣY XΣ−1XX ∈ Rd1×dx , where eg ∈ Rd1

W ′βh = 0 ∀h ∈ J2, HK \ {i}

We set Wβ(t) = (W β
H(t), . . . ,W β

1 (t)) such that W β
h (t) = Wh + tW ′βh for h ∈ J1, HK. We have

W β(t) : = W β
H(t) · · ·W β

1 (t)

= WH · · ·Wi+1(Wi + tβW ′i )Wi−1 · · ·W2(W1 + tW ′1)

= WH · · ·W1 + t(βWH · · ·Wi+1W
′
iWi−1 · · ·W1 +WH · · ·W2W

′
1)

+ βt2WH · · ·Wi+1W
′
iWi−1 · · ·W2W

′
1 .

Using (56) and (57), we obtain

W β(t) = USU
T
S ΣY XΣ−1XX + t(βWH · · ·Wi+1W

′
iWi−1 · · ·W1 + [US , 0]DD−1egU

T
k ΣY XΣ−1XX)

+ βt2(WH · · ·Wi+1).,la
T (Wi−1 · · ·W2D

−1).,gU
T
k ΣY XΣ−1XX .
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Using (58) and g ∈ Jr + 1, d1K, we have

W β(t) = USU
T
S ΣY XΣ−1XX + tβWH · · ·Wi+1W

′
iWi−1 · · ·W1 + βt2(WH · · ·Wi+1).,lU

T
k ΣY XΣ−1XX .

Denoting N = WH · · ·Wi+1W
′
iWi−1 · · ·W1, we have

L(Wβ(t)) = ‖W β(t)X − Y ‖2

= ‖USUTS ΣY XΣ−1XXX − Y + tβNX + βt2(WH · · ·Wi+1).,lU
T
k ΣY XΣ−1XXX‖

2 .

Expanding the square, the second-order term c2(W,W′β)t2 has a coefficient equal to

c2(W,W′β) = β2‖NX‖2 + 2β tr((WH · · ·Wi+1).,lU
T
k ΣY XΣ−1XXXX

TΣ−1XXΣXY USU
T
S )

− 2β tr((WH · · ·Wi+1).,lU
T
k ΣY XΣ−1XXXY

T )

= β2‖NX‖2 + 2β tr((WH · · ·Wi+1).,lU
T
k ΣUSU

T
S )− 2β tr((WH · · ·Wi+1).,lU

T
k Σ)

= β2‖NX‖2 − 2βλkU
T
k (WH · · ·Wi+1).,l ,

where the last equality follows from Lemma 23 and k /∈ S , and UTΣ = ΛUT and the cyclic property
of the trace.
Using Lemma 20 and (55), we have λkUTk (WH · · ·Wi+1).,l 6= 0, hence we can choose β according
to (7), such that c2(W,W′β) < 0. Therefore, W is not a second-order critical point.

E.2 2nd Case: i = H and j = 1

In this case, the two complementary blocks are ΣXY and WH−1 · · ·W2. We follow again the same
lines as above. Since the pivot (i, j) is not tightened, using Proposition 4, we have

rk(WH−1 · · ·W2) > r . (59)

Again, since W is a first-order critical point, using Lemma 26, there exists an invertible matrix
D ∈ Rd1×d1 such that

WH · · ·W2 = [US , 0dy×(d1−r)]D (60)

and since W is associated with S, we have

WH · · ·W1 = USU
T
S ΣY XΣ−1XX . (61)

Using (59) and D invertible, we have rk(WH−1 · · ·W2D
−1) = rk(WH−1 · · ·W2) > r. Hence there

exists g ∈ Jr + 1, d1K such that

(Wi−1 · · ·W2D
−1).,g 6= 0 .

Therefore, there exists a ∈ RdH−1 such that

aT (WH−1 · · ·W2D
−1).,g = 1 . (62)
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We define W′β = (W ′βH , . . . ,W
′β
1 ) by

W ′βH = βW ′H = βUr+1a
T ∈ Rdy×dH−1

W ′β1 = W ′1 = D−1egU
T
r+1ΣY XΣ−1XX ∈ Rd1×dx , where eg ∈ Rd1

W ′βh = 0 ∀h ∈ J2, H − 1K .

We set Wβ(t) = (W β
H(t), . . . ,W β

1 (t)) such that W β
h (t) = Wh + tW ′βh , for all h ∈ J1, HK. We have

W β(t) : = W β
H(t) · · ·W β

1 (t)

= (WH + tβW ′H)WH−1 · · ·W2(W1 + tW ′1)

= WH · · ·W1 + t(βW ′HWH−1 · · ·W1 +WH · · ·W2W
′
1) + βt2W ′HWH−1 · · ·W2W

′
1 .

Using (60) and (61), then (62) and g ∈ Jr + 1, d1K, we obtain

W β(t) = USU
T
S ΣY XΣ−1XX + t(βW ′HWH−1 · · ·W1 + [US , 0]DD−1egU

T
r+1ΣY XΣ−1XX)

+ βt2Ur+1a
T (WH−1 · · ·W2D

−1).,gU
T
r+1ΣY XΣ−1XX

= USU
T
S ΣY XΣ−1XX + tβW ′HWH−1 · · ·W1 + βt2Ur+1U

T
r+1ΣY XΣ−1XX .

Denoting by N = W ′HWH−1 · · ·W1, we have

L(Wβ(t)) = ‖W β(t)X − Y ‖2

= ‖USUTS ΣY XΣ−1XXX − Y + tβNX + βt2Ur+1U
T
r+1ΣY XΣ−1XXX‖

2 .

As previously, expanding the square, we can see that the second-order coefficient c2(W,W′β) of the
polynomial L(Wβ(t)) is given by

c2(W,W′β) = β2‖NX‖2 + 2β tr(Ur+1U
T
r+1ΣY XΣ−1XXXX

TΣ−1XXΣXY USU
T
S )

− 2β tr(Ur+1U
T
r+1ΣY XΣ−1XXXY

T )

= β2‖NX‖2 + 2β tr(Ur+1U
T
r+1ΣUSU

T
S )− 2β tr(Ur+1U

T
r+1Σ) .

Using the cyclic property of the trace, UTS Ur+1 = 0 (see Lemma 22), and ΣUr+1 = λr+1Ur+1, we
obtain

c2(W,W′β) = β2‖NX‖2 − 2βλr+1U
T
r+1Ur+1

= β2‖NX‖2 − 2βλr+1 .

Using Lemma 20, we have λr+1 6= 0, hence we can choose β according to (7) such that c2(W,W′β) <
0. Therefore W is not a second-order critical point.

E.3 3rd Case: i = H and j ∈ J2, H − 1K

In this case, the two complementary blocks are Wj−1 · · ·W1ΣXY and WH−1 · · ·Wj+1. We follow
again the same lines as above. Since the pivot (i, j) is not tightened, using Proposition 4, we have{

rk(WH−1 · · ·Wj+1) > r

rk(Wj−1 · · ·W1ΣXY ) > r .
(63)
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Let us first show that there exist k ∈ Jr + 1, dyK and l ∈ J1, dj−1K such that

(Wj−1 · · ·W1)l,.ΣXY Uk 6= 0 . (64)

Indeed, assume by contradiction that for all k ∈ Jr + 1, dyK and l ∈ J1, dj−1K we have

(Wj−1 · · ·W1)l,.ΣXY Uk = 0.

Recalling that Q = J1, dyK \ S = Jr+ 1, dyK, we obtain Wj−1 · · ·W1ΣXY UQ = 0, and using, from
Lemma 22, that Idy = USU

T
S + UQU

T
Q , we have

Wj−1 · · ·W1ΣXY = Wj−1 · · ·W1ΣXY (USU
T
S + UQU

T
Q)

= Wj−1 · · ·W1ΣXY USU
T
S .

Therefore,
rk(Wj−1 · · ·W1ΣXY ) = rk(Wj−1 · · ·W1ΣXY USU

T
S ).

The latter is impossible since rk(Wj−1 · · ·W1ΣXY USU
T
S ) ≤ |S| = r is not compatible with (63).

Therefore (64) holds.
We know that rk(WH · · ·Wj+1) ≥ rk(WH · · ·W1) = r. Therefore, depending on the
value of rk(WH · · ·Wj+1), we distinguish two situations: either rk(WH · · ·Wj+1) > r or
rk(WH · · ·Wj+1) = r.
When rk(WH · · ·Wj+1) > r, since ΣXY is of full column rank, we have rk(ΣXYWH · · ·Wj+1) =
rk(WH · · ·Wj+1) > r. Also, using (63), we have rk(Wj−1 · · ·W2) ≥ rk(Wj−1 · · ·W1ΣXY ) > r.
Hence, in this case, the pivot (j, 1) is not tightened either. We have already proved in Section E.1 (be-
ware that the pivot is denoted (i, 1), not (j, 1), in Section E.1) that, when such a pivot is not tightened,
W is not a second-order critical point. This concludes the proof in the case rk(WH · · ·Wj+1) > r.
In the rest of the section we assume that rk(WH · · ·Wj+1) = r.
Using (63), we have rk(WH−1 · · ·Wj+1) > r = rk(WH · · ·Wj+1). Applying the rank-nullity
theorem we obtain

Ker(WH−1 · · ·Wj+1) ( Ker(WH · · ·Wj+1).

Therefore there exists b ∈ Rdj such that{
b ∈ Ker(WH · · ·Wj+1)

b /∈ Ker(WH−1 · · ·Wj+1) .
(65)

Hence, there also exists a ∈ RdH−1 such that

aTWH−1 · · ·Wj+1b = 1 . (66)

Recall that k, l satisfy (64). We define W′β = (W ′βH , . . . ,W
′β
1 ) by

W ′βH = βW ′H = βUka
T ∈ Rdy×dH−1

W ′βj = W ′j = beTl ∈ Rdj×dj−1 , where el ∈ Rdj−1

W ′βh = 0 ∀h ∈ J1, HK \ {i, j}
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We set Wβ(t) = (W β
H(t), . . . ,W β

1 (t)) such that W β
h (t) = Wh + tW ′βh for h ∈ J1, HK. We have

W β(t) : = W β
H(t) · · ·W β

1 (t)

= (WH + tβW ′H)WH−1 · · ·Wj+1(Wj + tW ′j)Wj−1 · · ·W1

= WH · · ·W1 + t(βW ′HWH−1 · · ·W1 +WH · · ·Wj+1W
′
jWj−1 · · ·W1)

+ t2βW ′H · · ·Wj+1W
′
jWj−1 · · ·W1 .

Using Proposition 1 and the definition of W′β above, we obtain

W β(t) = USU
T
S ΣY XΣ−1XX + t(βW ′HWH−1 · · ·W1 +WH · · ·Wj+1be

T
l Wj−1 · · ·W1)

+ βt2Uka
TWH−1 · · ·Wj+1b(Wj−1 · · ·W1)l,.

= USU
T
S ΣY XΣ−1XX + tβW ′HWH−1 · · ·W1 + βt2Uk(Wj−1 · · ·W1)l,. ,

where the last equality follows from (65) and (66) .
Denoting N = W ′HWH−1 · · ·W1, we have

L(Wβ(t)) = ‖W β(t)X − Y ‖2

= ‖USUTS ΣY XΣ−1XXX − Y + tβNX + βt2Uk(Wj−1 · · ·W1)l,.X‖2 .

Using the cyclic property of the trace, and, since k /∈ S , UTS Uk = 0, we get in this case a second-order
coefficient equal to

c2(W,W′β) = β2‖NX‖2 + 2β tr
(
Uk(Wj−1 · · ·W1)l,.XX

TΣ−1XXΣXY USU
T
S
)

− 2β tr(Uk(Wj−1 · · ·W1)l,.ΣXY )

= β2‖NX‖2 − 2β(Wj−1 · · ·W1)l,.ΣXY Uk .

Since from (64), (Wj−1 · · ·W1)l,.ΣXY Uk 6= 0, we can choose β according to (7), such that
c2(W,W′β) < 0. Therefore W is not a second-order critical point.

E.4 4th Case: i, j ∈ J2, H − 1K, with i > j

In this case, the two complementary blocks are Wj−1 · · ·W1ΣXYWH · · ·Wi+1 and Wi−1 · · ·Wj+1.
We follow again the same lines as above. Since the pivot (i, j) is not tightened, using Proposition 4,
we have {

rk(Wi−1 · · ·Wj+1) > r

rk(Wj−1 · · ·W1ΣXYWH · · ·Wi+1) > r .
(67)

Let us first show that there exist k ∈ J1, diK and l ∈ J1, dj−1K such that

(Wj−1 · · ·W1)l,.ΣXY UQU
T
Q(WH · · ·Wi+1).,k 6= 0 . (68)

Indeed, assume by contradiction that, for all k ∈ J1, diK and l ∈ J1, dj−1K, we have

(Wj−1 · · ·W1)l,.ΣXY UQU
T
Q(WH · · ·Wi+1).,k = 0.
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Then Wj−1 · · ·W1ΣXY UQU
T
QWH · · ·Wi+1 = 0, and so, using Idy = USU

T
S + UQU

T
Q , we would

have

Wj−1 · · ·W1ΣXYWH · · ·Wi+1 = Wj−1 · · ·W1ΣXY IdyWH · · ·Wi+1

= Wj−1 · · ·W1ΣXY

(
USU

T
S + UQU

T
Q

)
WH · · ·Wi+1

= Wj−1 · · ·W1ΣXY USU
T
SWH · · ·Wi+1 .

Therefore,

rk(Wj−1 · · ·W1ΣXYWH · · ·Wi+1) = rk(Wj−1 · · ·W1ΣXY USU
T
SWH · · ·Wi+1).

The latter is impossible since rk(Wj−1 · · ·W1ΣXY USU
T
SWH · · ·Wi+1) ≤ |S| = r is not

compatible with (67). Therefore (68) holds.

We know that rk(WH · · ·Wj+1) ≥ rk(WH · · ·W1) = r. Therefore, depending on the
value of rk(WH · · ·Wj+1), we distinguish two situations: either rk(WH · · ·Wj+1) > r or
rk(WH · · ·Wj+1) = r.
When rk(WH · · ·Wj+1) > r, since ΣXY is of full column rank, we have
rk(ΣXYWH · · ·Wj+1) = rk(WH · · ·Wj+1) > r. Also, using (67), we have rk(Wj−1 · · ·W2) ≥
rk(Wj−1 · · ·W1ΣXYWH · · ·Wi+1) > r. Hence, in this case, the pivot (j, 1) is not tightened either.
We have already proved in Section E.1 (beware that the pivot is denoted (i, 1), not (j, 1), in Section
E.1) that, when such a pivot is not tightened, W is not a second-order critical point. This concludes
the proof when rk(WH · · ·Wj+1) > r.
In the rest of the section we assume that rk(WH · · ·Wj+1) = r.
Using (67), we have rk(Wi−1 · · ·Wj+1) > r = rk(WH · · ·Wj+1). Applying the rank-nullity
theorem, we obtain

Ker(Wi−1 · · ·Wj+1) ( Ker(WH · · ·Wj+1).

Therefore there exists b ∈ Rdj such that{
b ∈ Ker(WH · · ·Wj+1)

b /∈ Ker(Wi−1 · · ·Wj+1) .
(69)

Hence, there also exists a ∈ Rdi−1 such that

aTWi−1 · · ·Wj+1b = 1 . (70)

Recall that k, l satisfy (68). We define W′β = (W ′βH , . . . ,W
′β
1 ) by

W ′βi = βW ′i = βeka
T ∈ Rdi×di−1 where ek ∈ Rdi

W ′βj = W ′j = beTl ∈ Rdj×dj−1 where el ∈ Rdj−1

W ′βh = 0 ∀h ∈ J1, HK \ {i, j} .

We set Wβ(t) = (W β
H(t), . . . ,W β

1 (t)) with W β
h (t) = Wh + tW ′βh for all h ∈ J1, HK. We have,

W β(t) : = W β
H(t) · · ·W β

1 (t)

= WH · · ·Wi+1(Wi + tβW ′i )Wi−1 · · ·Wj+1(Wj + tW ′j)Wj−1 · · ·W1

= WH · · ·W1 + t(βWH · · ·Wi+1W
′
iWi−1 · · ·W1 +WH · · ·Wj+1W

′
jWj−1 · · ·W1)

+ βt2WH · · ·Wi+1W
′
iWi−1 · · ·Wj+1W

′
jWj−1 · · ·W1 .
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Using Proposition 1 and the definition of W′β above, we obtain

W β(t) = USU
T
S ΣY XΣ−1XX + t(βWH · · ·Wi+1W

′
iWi−1 · · ·W1 +WH · · ·Wj+1be

T
l Wj−1 · · ·W1)

+ βt2(WH · · ·Wi+1).,ka
TWi−1 · · ·Wj+1b(Wj−1 · · ·W1)l,.

= USU
T
S ΣY XΣ−1XX + tβWH · · ·Wi+1W

′
iWi−1 · · ·W1 + βt2(WH · · ·Wi+1).,k(Wj−1 · · ·W1)l,. ,

where the last equality follows from (69) and (70) .
Denoting N = WH · · ·Wi+1W

′
iWi−1 · · ·W1, we have

L(Wβ(t)) = ‖W β(t)X − Y ‖2

= ‖USUTS ΣY XΣ−1XXX − Y + tβNX + βt2(WH · · ·Wi+1).,k(Wj−1 · · ·W1)l,.X‖2 .

The second-order coefficient of L(Wβ(t)) is equal to

c2(W,W′β) = β2‖NX‖2 + 2β tr
(
(WH · · ·Wi+1).,k(Wj−1 · · ·W1)l,.XX

TΣ−1XXΣXY USU
T
S
)

− 2β tr ((WH · · ·Wi+1).,k(Wj−1 · · ·W1)l,.ΣXY )

= β2‖NX‖2 + 2β tr
(
(WH · · ·Wi+1).,k(Wj−1 · · ·W1)l,.ΣXY (USU

T
S − Idy)

)
.

Using, from Lemma 22, that USUTS − Idy = −UQUTQ , and then the cyclic property of the trace, we
obtain

c2(W,W′β) = β2‖NX‖2 − 2β tr
(
(WH · · ·Wi+1).,k(Wj−1 · · ·W1)l,.ΣXY UQU

T
Q

)
= β2‖NX‖2 − 2β(Wj−1 · · ·W1)l,.ΣXY UQU

T
Q(WH · · ·Wi+1).,k .

Since from (68), (Wj−1 · · ·W1)l,.ΣXY UQU
T
Q(WH · · ·Wi+1).,k 6= 0, we can choose β according to

(7) such that c2(W,W′β) < 0. Therefore, W is not a second-order critical point.

Appendix F. Non-strict Saddle Points

In this section, we prove the results related to non-strict saddle points (see Section 4.3).

F.1 Proof of Proposition 17

To prove Proposition 17, we show that for any W′, c2(W,W′) ≥ 0, which is equivalent to say (see
Lemma 12) that W is a second-order critical point. We follow the proof strategy sketched in Section
4.3 after the statement of Proposition 17, and use the same notation introduced therein. Note that a
first-order critical point can only be tightened if H ≥ 3. Therefore, in all of this section we make
the assumption H ≥ 3. Recall that m is the number of examples in our sample, S = J1, rK, with
r < rmax. We set Q = Jr + 1, dyK.
Recall also that

Σ1/2 = ΣY XΣ−1XXX ∈ Rdy×m.

and

Σ1/2 = U∆V T
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is a Singular Value Decomposition of Σ1/2, where ∆ ∈ Rdy×m is such that ∆ii =
√
λi for all

i ∈ J1, dyK, and (λi)i=1..dy
are the eigenvalues of Σ.

We denote

∆(S) = diag(
√
λ1, . . . ,

√
λr) ∈ Rr×r (71)

and

∆(Q) = diag(
√
λr+1, . . . ,

√
λdy) ∈ R(dy−r)×(dy−r) . (72)

Recall that, from Section 4.3, c2(W,W′) = FT + ST .
In what follows, we are going to present a key lemma, then various quick technical lemmas, then we
simplify the expressions of FT and ST and conclude the proof of Proposition 17. Then, we prove
all the lemmas of Appendix F.1.
We present a lemma which uses that W is tightened to simplify some products of weight matrices
and lighten further calculations. This is a key lemma as it introduces indices p and q which will be
used multiple times in the proof.

Lemma 30 Suppose Assumption 1 in Section 2 holds true. Let W = (WH , . . . ,W1) be a first-
order critical point of L verifying the hypotheses of Proposition 17, and r, S, Q, (Zh)h=1..H as in
Proposition 17. If W is tightened, then, there exist p ∈ J3, HK and q ∈ J1,min(p− 1, H − 2)K such
that:

∀i ∈ J1, p− 1K, WH · · ·Wi+1 = [US , 0] (73)

∀i ∈ Jp,HK, Wi−1 · · ·W2 =

[
Ir 0
0 0

]
(74)

∀i ∈ Jq + 1, HK, Zi−1 · · ·Z2Z1ΣXY UQ = 0 (75)

∀i ∈ J1, qK, WH−1 · · ·Wi+1 =

[
Ir 0
0 0

]
. (76)

The proof of Lemma 30 is in Appendix F.1.5.

F.1.1 USEFUL TECHNICAL LEMMAS

We now present technical lemmas which will be useful in Sections F.1.2, F.1.3 and F.1.4. In all of
these Lemmas, we have S = J1, rK and Q = Jr + 1, dyK, and Assumption 1 holds true.

Lemma 31 We have
ΣXY UQ = XVQ∆(Q) .

The proof of Lemma 31 is in Appendix F.1.6.

Lemma 32 Let n be a positive integer. For any matrices A ∈ Rdy×n and B ∈ Rr×n we have

‖A+ USB‖2 = ‖UTS A+B‖2 + ‖UTQA‖2 .

The proof of Lemma 32 is in Appendix F.1.7.
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Lemma 33 Let n be any positive integer. For any matrices A ∈ Rn×r and B ∈ Rn×(dy−r) we have:〈
AUTS ΣY XΣ−1XXX , BV T

Q

〉
= 0 .

The proof of Lemma 33 is in Appendix F.1.8.

Lemma 34 Let n be any positive integer. Let W = (WH , . . . ,W1) be a first-order critical point of
L verifying the hypotheses of Proposition 17, and r, S, Q, (Zh)h=1..H as in Proposition 17. If W
is tightened, then, for q as in Lemma 30, for any matrices A ∈ Rn×(dq−r) and B ∈ Rn×(dy−r), we
have: 〈

AZq · · ·Z2Z1X , BV T
Q

〉
= 0 .

The proof of Lemma 34 is in Appendix F.1.9.

Lemma 35 For any matrix A ∈ R(dy−r)×r we have

‖AUTS ΣY XΣ−1XXX‖
2 =

r∑
a=1

dy∑
b=r+1

(λa − λb)(Ab−r,a)2 + ‖∆(Q)A‖2 .

The proof of Lemma 35 is in Appendix F.1.10.

Lemma 36 Let W = (WH , . . . ,W1) be a first-order critical point associated with S . For any matrix
A ∈ Rdy×dx , we have

〈AX , WH · · ·W1X − Y 〉 =
〈
A , −UQUTQΣY X

〉
.

The proof of Lemma 36 is in Appendix F.1.11.

F.1.2 SIMPLIFYING FT

In this section and the next one, we simplify the expressions of FT and ST as defined in (14) and
(15). In order to decompose FT = a1 + ‖A2‖2 + ‖A3‖2 + ‖A4‖2, with a1 ≥ 0, we first simplify the
terms Ti, for i ∈ J1, HK, defined in (12). Let us first consider W tightened satisfying the hypotheses
of Proposition 17, and p and q defined as in Lemma 30. The simplification of Ti depends on the
position of i with regard to 1 , q, p and H . We define J1 = Jp,H − 1K, J2 = Jq + 1, p − 1K and
J3 = J2, qK.
Note that, according to the convention in Section 2, these sets could be empty.

• if p = H , J1 = ∅

• if q = p− 1, J2 = ∅

• if q = 1, J3 = ∅ .

Note also that {1}, J3, J2, J1, {H} are disjoint and {1} ∪ J3 ∪ J2 ∪ J1 ∪ {H} = J1, HK.
Depending on the position of i, we need to distinguish four cases, in order to simplify Ti.
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Lemma 37 Suppose Assumption 1 in Section 2 holds true. Let W = (WH , . . . ,W1) be a first-order
critical point satisfying the hypotheses of Proposition 17, and r, S , Q, (Zh)h=1..H as in Proposition
17. Let i ∈ J1, HK. For any W′ = (W ′H , . . . ,W

′
1), recall that , as defined in (12),

Ti = WH · · ·Wi+1W
′
iWi−1 · · ·W1X .

If W is tightened, then, for p and q as defined in Lemma 30 and J1,J2,J3 as defined above, we have

• For i = H:

TH = (W ′H).,1:rU
T
S ΣY XΣ−1XXX (77)

• For i ∈ J1:

Ti = US(W ′i )1:r,1:rU
T
S ΣY XΣ−1XXX + UQZHZH−1 · · ·Zi+1(W

′
i )r+1:di,1:rU

T
S ΣY XΣ−1XXX

(78)

• For i ∈ J2 ∪ J3:

Ti = US(W ′i )1:r,1:rU
T
S ΣY XΣ−1XXX + US(W ′i )1:r,r+1:di−1

Zi−1 · · ·Z2Z1X (79)

• For i = 1:

T1 = US(W ′1)1:r,.X (80)

The proof of Lemma 37 is in Appendix F.1.12.
We now simplify FT . Substituting the formulas of Lemma 37 in (14) we have

FT =

∥∥∥∥∥
H∑
i=1

Ti

∥∥∥∥∥
2

=
∥∥(W ′H).,1:rU

T
S ΣY XΣ−1XXX

+
∑
i∈J1

(
US(W ′i )1:r,1:rU

T
S ΣY XΣ−1XXX + UQZHZH−1 · · ·Zi+1(W

′
i )r+1:di,1:rU

T
S ΣY XΣ−1XXX

)

+
∑

i∈J2∪J3

(
US(W ′i )1:r,1:rU

T
S ΣY XΣ−1XXX + US(W ′i )1:r,r+1:di−1

Zi−1 · · ·Z2Z1X
)

+ US(W ′1)1:r,.X

∥∥∥∥∥∥
2

.

FT can be identified with a term as ‖A+ USB‖2 if we take

A = (W ′H).,1:rU
T
S ΣY XΣ−1XXX +

∑
i∈J1

UQZHZH−1 · · ·Zi+1(W
′
i )r+1:di,1:rU

T
S ΣY XΣ−1XXX .

and

B =
∑
i∈J1

(W ′i )1:r,1:rU
T
S ΣY XΣ−1XXX

+
∑

i∈J2∪J3

(
(W ′i )1:r,1:rU

T
S ΣY XΣ−1XXX + (W ′i )1:r,r+1:di−1

Zi−1 · · ·Z2Z1X
)

+ (W ′1)1:r,.X .
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Applying Lemma 32, FT becomes:

FT = ‖UTS A+B‖2 + ‖UTQA‖2

=

∥∥∥∥∥∥UTS (W ′H).,1:rU
T
S ΣY XΣ−1XXX +

∑
i∈J1

UTS UQZHZH−1 · · ·Zi+1(W
′
i )r+1:di,1:rU

T
S ΣY XΣ−1XXX

+
∑
i∈J1

(W ′i )1:r,1:rU
T
S ΣY XΣ−1XXX

+
∑

i∈J2∪J3

(
(W ′i )1:r,1:rU

T
S ΣY XΣ−1XXX + (W ′i )1:r,r+1:di−1

Zi−1 · · ·Z2Z1X
)

+ (W ′1)1:r,.X

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥UTQ(W ′H).,1:rU
T
S ΣY XΣ−1XXX +

∑
i∈J1

UTQUQZHZH−1 · · ·Zi+1(W
′
i )r+1:di,1:rU

T
S ΣY XΣ−1XXX

∥∥∥∥∥∥
2

.

Using Lemma 22, we have UTS UQ = 0 and UTQUQ = Idy−r, hence we can write

FT = FT1 + FT2 ,

where

FT1 =

∥∥∥∥∥∥UTS (W ′H).,1:rU
T
S ΣY XΣ−1XXX +

∑
i∈J1

(W ′i )1:r,1:rU
T
S ΣY XΣ−1XXX

+
∑

i∈J2∪J3

(
(W ′i )1:r,1:rU

T
S ΣY XΣ−1XXX + (W ′i )1:r,r+1:di−1

Zi−1 · · ·Z2Z1X
)

+ (W ′1)1:r,.X

∥∥∥∥∥∥
2

,

and

FT2 =

∥∥∥∥∥∥UTQ(W ′H).,1:rU
T
S ΣY XΣ−1XXX +

∑
i∈J1

ZHZH−1 · · ·Zi+1(W
′
i )r+1:di,1:rU

T
S ΣY XΣ−1XXX

∥∥∥∥∥∥
2

.

Let us first simplify FT1.
Recall that m is the number of examples in our sample, V ∈ Rm×m is the orthogonal matrix defined
in (1) and Q = Jr + 1, dyK. We set S ′ = S ∪ Jdy + 1,mK = J1, rK ∪ Jdy + 1,mK such that
S ′ ∪Q = J1,mK.
Reordering the terms and, since V is orthogonal, using Im = V V T = VS′V

T
S′ + VQV

T
Q , we have

FT1 =

∥∥∥∥∥∥
UTS (W ′H).,1:r +

∑
i∈J1∪J2∪J3

(W ′i )1:r,1:r

UTS ΣY XΣ−1XXX

+
∑
i∈J2

(W ′i )1:r,r+1:di−1
Zi−1 · · ·Z2Z1X
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+

∑
i∈J3

(W ′i )1:r,r+1:di−1
Zi−1 · · ·Z2Z1X + (W ′1)1:r,.X

(VS′V T
S′ + VQV

T
Q

)∥∥∥∥∥∥
2

.

Since for i ∈ J2, we have i− 1 ≥ q, we denote

N :=
∑
i∈J2

(W ′i )1:r,r+1:di−1
Zi−1 · · ·Zq+1 ,

Recall that, using the convention in Section 2, for i− 1 = q, we have Zi−1 · · ·Zq+1 = Idq−r.
We also denote

M :=
∑
i∈J3

(W ′i )1:r,r+1:di−1
Zi−1 · · ·Z2Z1XVQ + (W ′1)1:r,.XVQ ,

J :=
∑
i∈J3

(W ′i )1:r,r+1:di−1
Zi−1 · · ·Z2Z1XVS′ + (W ′1)1:r,.XVS′ ,

L := UTS (W ′H).,1:r +
∑

i∈J1∪J2∪J3

(W ′i )1:r,1:r .

Therefore, we obtain

FT1 =
∥∥LUTS ΣY XΣ−1XXX +NZq · · ·Z2Z1X + JV T

S′ +MV T
Q

∥∥2
=
∥∥LUTS ΣY XΣ−1XXX +NZq · · ·Z2Z1X + JV T

S′
∥∥2 +

∥∥MV T
Q

∥∥2
+ 2

〈
LUTS ΣY XΣ−1XXX +NZq · · ·Z2Z1X + JV T

S′ , MV T
Q

〉
.

Using Lemma 33 and Lemma 34 and V T
Q VS′ = 0 (since V is orthogonal), the cross-product is equal

to zero.
Noting also that since V is orthogonal ‖MV T

Q ‖2 = tr(MV T
Q VQM

T ) = tr(MMT ) = ‖M‖2 =

‖MT ‖2, we have

FT1 =
∥∥LUTS ΣY XΣ−1XXX +NZq · · ·Z2Z1X + JV T

S′
∥∥2 +

∥∥MT
∥∥2

= ‖A2‖2 + ‖A4‖2

where

A2 := LUTS ΣY XΣ−1XXX +NZq · · ·Z2Z1X + JV T
S′

= UTS (W ′H).,1:rU
T
S ΣY XΣ−1XXX +

∑
i∈J1

(W ′i )1:r,1:rU
T
S ΣY XΣ−1XXX

+
∑
i∈J2

(
(W ′i )1:r,1:rU

T
S ΣY XΣ−1XXX + (W ′i )1:r,r+1:di−1

Zi−1 · · ·Z2Z1X
)

+
∑
i∈J3

(
(W ′i )1:r,1:rU

T
S ΣY XΣ−1XXX + (W ′i )1:r,r+1:di−1

Zi−1 · · ·Z2Z1XVS′V
T
S′
)

+ (W ′1)1:r,.XVS′V
T
S′

(81)
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A4 := MT =

∑
i∈J3

(W ′i )1:r,r+1:di−1
Zi−1 · · ·Z2Z1XVQ + (W ′1)1:r,.XVQ

T

. (82)

Let us now simplify FT2.
We have FT2 =

∥∥AUTS ΣY XΣ−1XXX
∥∥2, with

A := UTQ(W ′H).,1:r +
∑
i∈J1

ZHZH−1 · · ·Zi+1(W
′
i )r+1:di,1:r ∈ R(dy−r)×r .

Hence, using Lemma 35, we have

FT2 =
r∑

a=1

dy∑
b=r+1

(λa − λb)(Ab−r,a)2 + ‖∆(Q)A‖2

=
r∑

a=1

dy∑
b=r+1

(λa − λb)

UTb (W ′H).,a +
∑
i∈J1

(ZH)b−r,.ZH−1 · · ·Zi+1(W
′
i )r+1:di,a

2

+

∥∥∥∥∥∥∆(Q)

UTQ(W ′H).,1:r +
∑
i∈J1

ZHZH−1 · · ·Zi+1(W
′
i )r+1:di,1:r

∥∥∥∥∥∥
2

= a1 + ‖A3‖2 ,

where

a1 :=
r∑

a=1

dy∑
b=r+1

(λa − λb)

UTb (W ′H).,a +
∑
i∈J1

(ZH)b−r,.ZH−1 · · ·Zi+1(W
′
i )r+1:di,a

2

(83)

A3 := ∆(Q)

UTQ(W ′H).,1:r +
∑
i∈J1

ZHZH−1 · · ·Zi+1(W
′
i )r+1:di,1:r

 (84)

Finally,

FT = FT1 + FT2

= a1 + ‖A2‖2 + ‖A3‖2 + ‖A4‖2 , (85)

where a1, A2, A3, A4 are defined in (83), (81), (84), (82). Notice that, since λ1 > · · · > λdy , we
have

a1 ≥ 0 . (86)

F.1.3 SIMPLIFYING ST

In this section, we prove that ST = −2 〈A3, A4〉, where ST , A3 and A4 are defined in (15), (84)
and (82). In order to do so, we first state a lemma that simplifies the terms Ti,j defined in (13). We
remind that the sets J1, J2 and J3 are defined at the beginning of Section F.1.2.

60



LOSS LANDSCAPE OF DEEP LINEAR NETWORKS

Lemma 38 Suppose Assumption 1 in Section 2 holds true. Let W = (WH , · · · ,W1) be a first-order
critical point satisfying the hypotheses of Proposition 17, and r, S, Q, (Zh)h=1..H defined as in
Proposition 17. Let (i, j) ∈ J1, HK2, with i > j. For any W′ = (W ′H , . . . ,W

′
1), recall that , as

defined in (13),

Ti,j =
〈
WH · · ·Wi+1W

′
iWi−1 · · ·Wj+1W

′
jWj−1 · · ·W1X , WH · · ·W1X − Y

〉
.

If W is tightened, then, for p and q as defined in Lemma 30 and J1,J2,J3 as defined above, we have

• For i = H:

– For j ∈ J3:

TH,j = −
〈

∆(Q)UTQ(W ′H).,1:r ,
(
(W ′j)1:r,r+1:dj−1

Zj−1 · · ·Z2Z1XVQ
)T〉

. (87)

– For j = 1:

TH,1 = −
〈

∆(Q)UTQ(W ′H).,1:r ,
(
(W ′1)1:r,.XVQ

)T〉
. (88)

– For j ∈ J1 ∪ J2:

TH,j = 0 . (89)

• For i ∈ J1:

– For j ∈ J3:

Ti,j = −
〈

∆(Q)ZHZH−1 · · ·Zi+1(W
′
i )r+1:di,1:r ,

(
(W ′j)1:r,r+1:dj−1

Zj−1 · · ·Z2Z1XVQ
)T〉

.

(90)

– For j = 1:

Ti,1 = −
〈

∆(Q)ZHZH−1 · · ·Zi+1(W
′
i )r+1:di,1:r , ((W ′1)1:r,.XVQ)T

〉
. (91)

– For j ∈ J1 ∪ J2:

Ti,j = 0 . (92)

• For i ∈ J2 ∪ J3, for all j < i, we have

Ti,j = 0 . (93)

The proof of Lemma 38 is in Appendix F.1.13.
Let us now prove that ST = −2 〈A3, A4〉. We remind that J1, HK = {H} ∪ J1 ∪ J2 ∪ J3 ∪ {1} and
separate the sum appearing in (15) accordingly.
We then substitute the formulas of Lemma 38 in (15) and obtain

ST = 2
∑

H≥i>j≥1
Ti,j
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= 2

 ∑
j∈J1∪J2

TH,j +
∑
j∈J3

TH,j + TH,1 +
∑
i∈J1

∑
j∈J1∪J2,
j<i

Ti,j +
∑
i∈J1

∑
j∈J3

Ti,j +
∑
i∈J1

Ti,1 +
∑

i∈J2∪J3

i−1∑
j=1

Ti,j


= −2

∑
j∈J3

〈
∆(Q)UTQ(W ′H).,1:r ,

(
(W ′j)1:r,r+1:dj−1

Zj−1 · · ·Z2Z1XVQ
)T〉

− 2
〈

∆(Q)UTQ(W ′H).,1:r , ((W ′1)1:r,.XVQ)T
〉

− 2
∑
i∈J1

∑
j∈J3

〈
∆(Q)ZHZH−1 · · ·Zi+1(W

′
i )r+1:di,1:r ,

(
(W ′j)1:r,r+1:dj−1

Zj−1 · · ·Z2Z1XVQ
)T〉

− 2
∑
i∈J1

〈
∆(Q)ZHZH−1 · · ·Zi+1(W

′
i )r+1:di,1:r , ((W ′1)1:r,.XVQ)T

〉

= −2

〈
∆(Q)UTQ(W ′H).,1:r ,

∑
j∈J3

(W ′j)1:r,r+1:dj−1
Zj−1 · · ·Z2Z1XVQ + (W ′1)1:r,.XVQ

T〉

− 2

〈
∆(Q)

∑
i∈J1

ZHZH−1 · · ·Zi+1(W
′
i )r+1:di,1:r ,∑

j∈J3

(W ′j)1:r,r+1:dj−1
Zj−1 · · ·Z2Z1XVQ + (W ′1)1:r,.XVQ

T〉

= −2

〈
∆(Q)

UTQ(W ′H).,1:r +
∑
i∈J1

ZHZH−1 · · ·Zi+1(W
′
i )r+1:di,1:r

 ,

∑
j∈J3

(W ′j)1:r,r+1:dj−1
Zj−1 · · ·Z2Z1XVQ + (W ′1)1:r,.XVQ

T〉
= −2 〈A3, A4〉 , (94)

where we remind that A3 and A4 are defined in (84) and (82).

F.1.4 CONCLUDING THE PROOF OF PROPOSITION 17

Using the simplifications (85) and (94) above, for any W satisfying the hypotheses of Proposition 17,
if W is tightened, then for any W′,

c2(W,W′) = FT + ST

= a1 + ‖A2‖2 + ‖A3‖2 + ‖A4‖2 − 2 〈A3, A4〉
= a1 + ‖A2‖2 + ‖A3 −A4‖2 .

Using (86), we find c2(W,W′) ≥ 0.
Therefore, W = (WH , . . . ,W1) is a second-order critical point.
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F.1.5 PROOF OF LEMMA 30

First note that, for r = 0, we can easily follow the same proof and see that the result still holds with
the conventions adopted in Section 2.
Let us prove (73).
Consider the pivot (i, j) = (2, 1). Its complementary blocks are ΣXYWH · · ·W3 and Id1 . Since
W is tightened and rk(Id1) = d1 ≥ rmax > r, we have rk(ΣXYWH · · ·W3) = r. Since ΣXY is
full-column rank, we obtain rk(WH · · ·W3) = r.
Let p ∈ J3, HK be the largest index such that

rk(WH · · ·Wp) = r . (95)

Using (8) and (10), we have WH · · ·Wp = [US , UQZHZH−1 · · ·Zp].
Since rk(WH · · ·Wp) = r and since the columns of UQZHZH−1 · · ·Zp are in the vector space
spanned by the columns of UQ (which are orthogonal to the columns of US), (95) implies

ZHZH−1 · · ·Zp = 0 .

Therefore,

WH · · ·Wp = [US , 0] .

Using (10), for all i ∈ J1, p− 1K,

WH · · ·Wi+1 = (WH · · ·Wp)(Wp−1 · · ·Wi+1)

= [US , 0]

[
Ir 0
0 Zp−1 · · ·Zi+1

]
= [US , 0] .

This proves (73).
Let us prove (74).
We consider the pivot (p, 1). Its complementary blocks are ΣXYWH · · ·Wp+1 and Wp−1 · · ·W2.
We have, by definition of p, rk(WH · · ·Wp+1) > r. Therefore, since ΣXY is full-column rank, we
have rk(ΣXYWH · · ·Wp+1) = rk(WH · · ·Wp+1) > r. Note that this holds both for p = H and for
p < H . Hence, since W is tightened, the second complementary block is of rank r, i.e.

rk(Wp−1 · · ·W2) = r .

Using (10), we also have Wp−1 · · ·W2 =

[
Ir 0
0 Zp−1 · · ·Z2

]
.

Then, since rk(Wp−1 · · ·W2) = r, we have Zp−1 · · ·Z2 = 0 and

Wp−1 · · ·W2 =

[
Ir 0
0 0

]
.

Using (10) again, for all i ∈ Jp,HK,

Wi−1 · · ·W2 = (Wi−1 · · ·Wp)(Wp−1 · · ·W2)
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=

[
Ir 0
0 Zi−1 · · ·Zp

] [
Ir 0
0 0

]
=

[
Ir 0
0 0

]
.

This proves (74).
Let us now prove (75).
Using Proposition 1, Lemma 20 and Lemma 22, we have

rk(Wp−1 · · ·W1ΣXY ) ≥ rk(WH · · ·W1ΣXY ) = rk(USU
T
S Σ) ≥ rk(UTS (USU

T
S Σ)Σ−1US) = rk(Ir) = r .

Using (74) for i = p, we also have rk(Wp−1 · · ·W1ΣXY ) ≤ rk(Wp−1 · · ·W2) = r. Hence,
rk(Wp−1 · · ·W1ΣXY ) = r.
Notice that, considering the tightened pivot (H,H − 1), since rk(IdH−1

) = dH−1 ≥ rmax > r, we
obtain rk(WH−2 · · ·W1ΣXY ) = r.
We consider q ∈ J1,min(p− 1, H − 2)K the smallest index such that rk(Wq · · ·W1ΣXY ) = r.
Using (10) and (9), we have

Wq · · ·W1ΣXY =

[
UTS Σ

Zq · · ·Z2Z1ΣXY

]

=


λ1U

T
1

...
λrU

T
r

Zq · · ·Z2Z1ΣXY

 .

Since rk(Wq · · ·W1ΣXY ) = r, every row of Zq · · ·Z2Z1ΣXY lies in Vec(UT1 , . . . , U
T
r ), hence we

have

Zq · · ·Z2Z1ΣXY UQ = 0 .

Finally, we conclude that, for all i ∈ Jq + 1, HK,

Zi−1 · · ·Z2Z1ΣXY UQ = Zi−1 · · ·Zq+1Zq · · ·Z2Z1ΣXY UQ

= Zi−1 · · ·Zq+10

= 0 .

This proves (75).
Let us now prove (76).
Consider the pivot (H, q). Its complementary blocks are Wq−1 · · ·W1ΣXY and WH−1 · · ·Wq+1.
We have, by definition of q, rk(Wq−1 · · ·W1ΣXY ) > r. Hence, since W is tightened, the other
complementary block is of rank r, i.e. rk(WH−1 · · ·Wq+1) = r. Using (10), we have

WH−1 · · ·Wq+1 =

[
Ir 0
0 ZH−1 · · ·Zq+1

]
.

Therefore, ZH−1 · · ·Zq+1 = 0 and

WH−1 · · ·Wq+1 =

[
Ir 0
0 0

]
.
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Finally, using (10), for all i ∈ J1, qK,

WH−1 · · ·Wi+1 = WH−1 · · ·Wq+1Wq · · ·Wi+1

=

[
Ir 0
0 0

] [
Ir 0
0 Zq · · ·Zi+1

]
=

[
Ir 0
0 0

]
.

This proves (76) and concludes the proof.

F.1.6 PROOF OF LEMMA 31

Recall that Σ1/2 = ΣY XΣ−1XXX . We have

ΣXY = XY T

= XXT (XXT )−1XY T

= X(Σ1/2)T .

Using (1), we obtain
ΣXY = XV∆TUT ,

and, since U is orthogonal, we have

ΣXY U = XV∆T .

Restricting the equality to the columns in Q, we obtain

ΣXY UQ = XVQ∆(Q) ,

where ∆(Q) is defined in (72). This concludes the proof.

F.1.7 PROOF OF LEMMA 32

Let A ∈ Rdy×n and B ∈ Rr×n. We have

‖A+ USB‖2 = ‖A‖2 + ‖USB‖2 + 2 〈A , USB〉
= tr(ATA) + tr(BTUTS USB) + 2

〈
UTS A , B

〉
.

Using Lemma 22, this becomes

‖A+ USB‖2 = tr
(
AT (USU

T
S + UQU

T
Q)A

)
+ tr

(
BTB

)
+ 2

〈
UTS A , B

〉
= tr(ATUQU

T
QA) + tr(ATUSU

T
S A) + tr(BTB) + 2

〈
UTS A , B

〉
= ‖UTQA‖2 + ‖UTS A‖2 + ‖B‖2 + 2

〈
UTS A , B

〉
= ‖UTQA‖2 + ‖UTS A+B‖2 .
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F.1.8 PROOF OF LEMMA 33

Recall that Σ1/2 = ΣY XΣ−1XXX has a Singular Value Decomposition Σ1/2 = U∆V T (see (1)).
Hence, we have Σ1/2V = U∆ and therefore Σ1/2VQ = UQ∆(Q), where ∆(Q) is defined in (72).
As a consequence,

UTS ΣY XΣ−1XXXVQ = UTS Σ1/2VQ

= UTS UQ∆(Q)

= 0 ,

where the last equality follows from Lemma 22. Finally, we obtain for any A ∈ Rn×r, B ∈
Rn×(dy−r) 〈

AUTS ΣY XΣ−1XXX , BV T
Q

〉
= tr(AUTS ΣY XΣ−1XXXVQB

T )

= 0 .

F.1.9 PROOF OF LEMMA 34

Using Lemma 31, we have ΣXY UQ = XVQ∆(Q), then replacing this formula in (75) with i = q+ 1,
we have

Zq · · ·Z2Z1XVQ∆(Q) = 0 .

Since ∆(Q) is diagonal and its diagonal elements are non-zero, it is invertible, hence

Zq · · ·Z2Z1XVQ = 0 .

Finally, for any matrices A ∈ Rn×(dq−r) and B ∈ Rn×(dy−r), we have〈
AZq · · ·Z2Z1X , BV T

Q

〉
= tr(AZq · · ·Z2Z1XVQB

T )

= 0 .

F.1.10 PROOF OF LEMMA 35

Recall that ∆(S) is defined in (71) and Σ = UΛUT . Let A ∈ R(dy−r)×r, we have∥∥AUTS ΣY XΣ−1XXX
∥∥2 = tr(AUTS ΣUSA

T )

= tr(A diag(λ1, . . . , λr)A
T )

=
∥∥∥A∆(S)

∥∥∥2
=

r∑
a=1

dy∑
b=r+1

λa(Ab−r,a)
2

=

r∑
a=1

dy∑
b=r+1

(λa − λb)(Ab−r,a)2 +

r∑
a=1

dy∑
b=r+1

λb(Ab−r,a)
2

=

r∑
a=1

dy∑
b=r+1

(λa − λb)(Ab−r,a)2 + ‖∆(Q)A‖2 .
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F.1.11 PROOF OF LEMMA 36

Let W = (WH , . . . ,W1) be a first-order critical point associated with S verifying the hypotheses of
Proposition 17 and let A ∈ Rdy×dx . Using (11), (9), and Lemma 22, we have

〈AX , WH · · ·W1X − Y 〉 =
〈
A , WH · · ·W1XX

T − Y XT
〉

=
〈
A , USU

T
S ΣY XΣ−1XXXX

T − ΣY X

〉
=
〈
A , USU

T
S ΣY X − ΣY X

〉
=
〈
A , −UQUTQΣY X

〉
.

F.1.12 PROOF OF LEMMA 37

Let W = (WH , · · · ,W1) be a tightened first-order critical point satisfying the hypotheses of
Proposition 17, and r, S, Q, (Zh)h=1..H defined as in Proposition 17. Since W satisfies the
hypotheses of Proposition 17, we are going to use all the equations (8), (9), (10) and (11) defined by
these hypotheses and (73), (74), (75) and (76) of Lemma 30.
Let W′ = (W ′H , . . . ,W

′
1) and i ∈ J1, HK. Recall that Ti is defined in (12) and J1 = Jp,H − 1K,

J2 = Jq + 1, p− 1K, J3 = J2, qK, where p and q are defined as in Lemma 30.

Consider the case i = H .
Substituting (74) and (9) in (12), we have

TH = W ′H(WH−1 · · ·W2)W1X

= W ′H

[
Ir 0
0 0

] [
UTS ΣY XΣ−1XX

Z1

]
X

= W ′H

[
UTS ΣY XΣ−1XX

0

]
X

= (W ′H).,1:rU
T
S ΣY XΣ−1XXX .

This proves (77).

Consider now the case i ∈ J1.
Substituting (8), (10), (74) and (9), in (12), we have, for i ∈ J1

Ti = WH(WH−1 · · ·Wi+1)W
′
i (Wi−1 · · ·W2)W1X

= [US , UQZH ]

[
Ir 0
0 ZH−1

]
· · ·
[
Ir 0
0 Zi+1

]
W ′i

[
Ir 0
0 0

] [
UTS ΣY XΣ−1XX

Z1

]
X

= [US , UQZHZH−1 · · ·Zi+1]W
′
i

[
UTS ΣY XΣ−1XX

0

]
X

= [US , UQZHZH−1 · · ·Zi+1] (W ′i ).,1:rU
T
S ΣY XΣ−1XXX

= US(W ′i )1:r,1:rU
T
S ΣY XΣ−1XXX + UQZHZH−1 · · ·Zi+1(W

′
i )r+1:di,1:rU

T
S ΣY XΣ−1XXX .

Note that the above calculations are still valid in the case i = H−1. In this case using the convention
in Section 2, WH−1 · · ·Wi+1 = IdH−1

and ZH−1 · · ·Zi+1 = IdH−1−r.
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This proves (78).

Consider now the case i ∈ J2 ∪ J3 = J2, p− 1K.
Substituting (73), (10) and (9), in (12), we have, for i ∈ J2 ∪ J3,

Ti = (WH · · ·Wi+1)W
′
i (Wi−1 · · ·W2)W1X

=

[
US , 0

]
W ′i

[
Ir 0
0 Zi−1

]
· · ·
[
Ir 0
0 Z2

] [
UTS ΣY XΣ−1XX

Z1

]
X

= US(W ′i )1:r,.

[
UTS ΣY XΣ−1XX
Zi−1 · · ·Z2Z1

]
X

= US(W ′i )1:r,1:rU
T
S ΣY XΣ−1XXX + US(W ′i )1:r,r+1:di−1

Zi−1 · · ·Z2Z1X .

Note that the above calculations are still valid in the case i = 2. In this case, using the conventions
of Section 2, Wi−1 · · ·W2 = Id1 and Zi−1 · · ·Z2 = Id2−r.
This proves (79).

Consider finally the case i = 1.
Substituting (73) in (12), we have

T1 = (WH · · ·W2)W
′
1X

= [US , 0]W ′1X

= US(W ′1)1:r,.X .

This proves (80).
Note that, using the conventions of Section 2, the proof still holds for r = 0. In this case, Ti = 0,∀i.
This concludes the proof.

F.1.13 PROOF OF LEMMA 38

Let W = (WH , · · · ,W1) be a tightened first-order critical point satisfying the hypotheses of
Proposition 17, and r, S, Q, (Zh)h=1..H defined as in Proposition 17. Since W satisfies the
hypotheses of Proposition 17, we are going to use all the equations (8), (9), (10) and (11) defined by
these hypotheses and (73), (74), (75) and (76) of Lemma 30.
Let W′ = (W ′H , . . . ,W

′
1) and (i, j) ∈ J1, HK2, with i > j. Recall that Ti,j is defined in (13) and

J1 = Jp,H − 1K, J2 = Jq + 1, p− 1K, J3 = J2, qK, where p and q are defined as in Lemma 30.

Consider the case i ∈ {H} ∪ J1 and j ∈ J1 ∪ J2 with i > j.
Applying Lemma 36 to (13) and using (10) and (9), we obtain

Ti,j =
〈
WH · · ·Wi+1W

′
iWi−1 · · ·Wj+1W

′
jWj−1 · · ·W1X , WH · · ·W1X − Y

〉
=
〈
WH · · ·Wi+1W

′
iWi−1 · · ·Wj+1W

′
jWj−1 · · ·W1 , −UQUTQΣY X

〉
= −tr

(
WH · · ·Wi+1W

′
iWi−1 · · ·Wj+1W

′
jWj−1 · · ·W1ΣXY UQU

T
Q

)
= −tr

(
(WH · · ·Wi+1W

′
iWi−1 · · ·Wj+1W

′
j

[
UTS ΣUQ

Zj−1 · · ·Z2Z1ΣXY UQ

]
UTQ

)
.
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Using Lemma 23 and since j ≥ q + 1, using (75), we obtain

Ti,j = 0.

This proves (89) and (92).

Consider now the case i = H and j ∈ J3.
Applying Lemma (36) to (13) and using (76), (10) and (9), we obtain

TH,j =
〈
W ′HWH−1 · · ·Wj+1W

′
jWj−1 · · ·W1X , WH · · ·W1X − Y

〉
=
〈
W ′HWH−1 · · ·Wj+1W

′
jWj−1 · · ·W1 , −UQUTQΣY X

〉
=

〈
W ′H

[
Ir 0
0 0

]
W ′j

[
UTS ΣY XΣ−1XX
Zj−1 · · ·Z2Z1

]
, UQU

T
QΣY X

〉
= −tr

(
W ′H

[
Ir 0
0 0

]
W ′j

[
UTS ΣUQU

T
Q

Zj−1 · · ·Z2Z1ΣXY UQU
T
Q

])
.

Using Lemma 31, Lemma 23 and the cyclic property of the trace, we have

TH,j = −tr
(

(W ′H).,1:r(W
′
j)1:r,.

[
0

Zj−1 · · ·Z2Z1XVQ∆(Q)UTQ

])
= −tr

(
(W ′H).,1:r(W

′
j)1:r,r+1:dj−1

Zj−1 · · ·Z2Z1XVQ∆(Q)UTQ

)
= −tr

(
∆(Q)UTQ(W ′H).,1:r(W

′
j)1:r,r+1:dj−1

Zj−1 · · ·Z2Z1XVQ

)
= −

〈
∆(Q)UTQ(W ′H).,1:r ,

(
(W ′j)1:r,r+1:dj−1

Zj−1 · · ·Z2Z1XVQ
)T〉

.

This proves (87).

Consider now the case i = H and j = 1.
Applying Lemma 36 to (13) and using (76) and Lemma 31, we obtain

TH,1 =
〈
W ′HWH−1 · · ·W2W

′
1X , WH · · ·W1X − Y

〉
=
〈
W ′HWH−1 · · ·W2W

′
1 , −UQUTQΣY X

〉
= −

〈
W ′H

[
Ir 0
0 0

]
W ′1 , UQ(XVQ∆(Q))T

〉
= −

〈
(W ′H).,1:r(W

′
1)1:r,. , UQ∆(Q)V T

QX
T
〉

= −
〈

∆(Q)UTQ(W ′H).,1:r , V
T
QX

T
(
(W ′1)1:r,.

)T〉
= −

〈
∆(Q)UTQ(W ′H).,1:r ,

(
(W ′1)1:r,.XVQ

)T〉
.

This proves (88).

Consider now the case i ∈ J1 and j ∈ J3.
Applying Lemma 36 to (13) and using (8), (10) and (9) , we obtain

Ti,j =
〈
WH · · ·Wi+1W

′
iWi−1 · · ·Wj+1W

′
jWj−1 · · ·W1X , WH · · ·W1X − Y

〉
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=
〈
WH · · ·Wi+1W

′
iWi−1 · · ·Wj+1W

′
jWj−1 · · ·W1 , −UQUTQΣY X

〉
= −

〈
[US , UQZHZH−1 · · ·Zi+1]W

′
iWi−1 · · ·Wj+1W

′
j

[
UTS ΣY XΣ−1XX
Zj−1 · · ·Z2Z1

]
, UQU

T
QΣXY

〉
= −tr

(
[US , UQZHZH−1 · · ·Zi+1]W

′
iWi−1 · · ·Wj+1W

′
j

[
UTS Σ

Zj−1 · · ·Z2Z1ΣXY

]
UQU

T
Q

)
= −tr

([
UTQUS , U

T
QUQZHZH−1 · · ·Zi+1

]
W ′iWi−1 · · ·Wj+1W

′
j

[
UTS ΣUQ

Zj−1 · · ·Z2Z1ΣXY UQ

])
.

Using Lemma 22 and Lemma 23, we have

Ti,j = −tr
(

[0 , ZHZH−1 · · ·Zi+1]W
′
iWi−1 · · ·Wj+1W

′
j

[
0

Zj−1 · · ·Z2Z1ΣXY UQ

])
= −tr

(
ZHZH−1 · · ·Zi+1(W

′
i )r+1:di,.Wi−1 · · ·Wj+1(W

′
j).,r+1:dj−1

Zj−1 · · ·Z2Z1ΣXY UQ
)
.

(96)

Here, since W is tightened, taking the tightened pivot (i, j) we have two possible cases: either
rk(Wi−1 · · ·Wj+1) = r or rk(Wj−1 · · ·W1ΣXYWH · · ·Wi+1) = r . We treat the two cases sepa-
rately.
In the first case, using (10) we have

Wi−1 · · ·Wj+1 =

[
Ir 0
0 Zi−1

]
· · ·
[
Ir 0
0 Zj+1

]
=

[
Ir 0
0 Zi−1 · · ·Zj+1

]
.

Hence, rk(Wi−1 · · ·Wj+1) = r implies Zi−1 · · ·Zj+1 = 0 and we conclude that

Wi−1 · · ·Wj+1 =

[
Ir 0
0 0

]
.

Then, using this last equality, (96) becomes

Ti,j = −tr
(
ZHZH−1 · · ·Zi+1(W

′
i )r+1:di,.

[
Ir 0
0 0

]
(W ′j).,r+1:dj−1

Zj−1 · · ·Z2Z1ΣXY UQ

)
= −tr

(
ZHZH−1 · · ·Zi+1(W

′
i )r+1:di,1:r(W

′
j)1:r,r+1:dj−1

Zj−1 · · ·Z2Z1ΣXY UQ
)
. (97)

In the second case, we have rk(Wj−1 · · ·W1ΣXYWH · · ·Wi+1) = r. Let us prove that (97) also
holds in this case. Using (10), (9), (8), Lemma 23 and S = J1, rK, we have

Wj−1 · · ·W1ΣXYWH · · ·Wi+1

=

[
UTS Σ

Zj−1 · · ·Z2Z1ΣXY

]
[US , UQZHZH−1 · · ·Zi+1]

=

[
UTS ΣUS UTS ΣUQZHZH−1 · · ·Zi+1

Zj−1 · · ·Z2Z1ΣXY US Zj−1 · · ·Z2Z1ΣXY UQZHZH−1 · · ·Zi+1

]
=

[
diag(λ1, · · · , λr) 0

Zj−1 · · ·Z2Z1ΣXY US Zj−1 · · ·Z2Z1ΣXY UQZHZH−1 · · ·Zi+1

]
.
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Therefore since rk(Wj−1 · · ·W1ΣXYWH · · ·Wi+1) = r and for all i ∈ J1, rK, λi 6= 0, we must
have

Zj−1 · · ·Z2Z1ΣXY UQZHZH−1 · · ·Zi+1 = 0 . (98)

Using the above equation, and the cyclic property of the trace, (96) becomes

Ti,j = −tr
(
ZHZH−1 · · ·Zi+1(W

′
i )r+1:di,.Wi−1 · · ·Wj+1(W

′
j).,r+1:dj−1

Zj−1 · · ·Z2Z1ΣXY UQ
)

= −tr
(
Zj−1 · · ·Z2Z1ΣXY UQZHZH−1 · · ·Zi+1(W

′
i )r+1:di,.Wi−1 · · ·Wj+1(W

′
j).,r+1:dj−1

)
= 0 .

We can use (98) again to write the equation Ti,j = 0 in the format of equation (97). Indeed, we have

− tr
(
ZHZH−1 · · ·Zi+1(W

′
i )r+1:di,1:r(W

′
j)1:r,r+1:dj−1

Zj−1 · · ·Z2Z1ΣXY UQ
)

= −tr
(
Zj−1 · · ·Z2Z1ΣXY UQZHZH−1 · · ·Zi+1(W

′
i )r+1:di,1:r(W

′
j)1:r,r+1:dj−1

)
= 0

= Ti,j .

Therefore, in both cases we have

Ti,j = −tr
(
ZHZH−1 · · ·Zi+1(W

′
i )r+1:di,1:r(W

′
j)1:r,r+1:dj−1

Zj−1 · · ·Z2Z1ΣXY UQ
)
.

Using Lemma 31, it becomes

Ti,j = −tr
(
ZHZH−1 · · ·Zi+1(W

′
i )r+1:di,1:r(W

′
j)1:r,r+1:dj−1

Zj−1 · · ·Z2Z1XVQ∆(Q)
)

= −tr
(

∆(Q)ZHZH−1 · · ·Zi+1(W
′
i )r+1:di,1:r(W

′
j)1:r,r+1:dj−1

Zj−1 · · ·Z2Z1XVQ

)
= −

〈
∆(Q)ZHZH−1 · · ·Zi+1(W

′
i )r+1:di,1:r ,

(
(W ′j)1:r,r+1:dj−1

Zj−1 · · ·Z2Z1XVQ
)T〉

.

This proves (90).

Consider now the case i ∈ J1 and j = 1.
Using Lemma 36 to simplify (13), we have

Ti,1 =
〈
WH · · ·Wi+1W

′
iWi−1 · · ·W2W

′
1X , WH · · ·W1X − Y

〉
=
〈
WH · · ·Wi+1W

′
iWi−1 · · ·W2W

′
1 , −UQUTQΣY X

〉
.

Using Lemma 31 and substituting (8), (10), and since i ≥ p, using (74) , this becomes

Ti,1 = −
〈

[US , UQZHZH−1 · · ·Zi+1]W
′
i

[
Ir 0
0 0

]
W ′1 , UQ(XVQ∆(Q))T

〉
= −

〈
∆(Q)

[
UTQUS , U

T
QUQZHZH−1 · · ·Zi+1

]
(W ′i ).,1:r(W

′
1)1:r,. , (XVQ)T

〉
.

Using Lemma 22, it becomes

Ti,1 = −
〈

∆(Q) [0 , ZHZH−1 · · ·Zi+1] (W ′i ).,1:r(W
′
1)1:r,. , (XVQ)T

〉
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= −
〈

∆(Q)ZHZH−1 · · ·Zi+1(W
′
i )r+1:di,1:r , ((W ′1)1:r,.XVQ)T

〉
.

This proves (91).

Consider now the case i ∈ J2 ∪ J3 = J2, p− 1K and j < i.
Applying Lemma 36 to (13) and , since i < p, using (73), we obtain

Ti,j =
〈
WH · · ·Wi+1W

′
iWi−1 · · ·Wj+1W

′
jWj−1 · · ·W1X , WH · · ·W1X − Y

〉
=
〈
WH · · ·Wi+1W

′
iWi−1 · · ·Wj+1W

′
jWj−1 · · ·W1 , −UQUTQΣY X

〉
= −tr([US , 0]W ′iWi−1 · · ·Wj+1W

′
jWj−1 · · ·W1ΣXY UQU

T
Q)

The cyclic property of the trace and Lemma 22 lead to

Ti,j = −tr([UTQUS , 0]W ′iWi−1 · · ·Wj+1W
′
jWj−1 · · ·W1ΣXY UQ)

= 0 .

This proves (93) and concludes the proof.
Note that, with the convention of Section 2, the proof still holds for r = 0. In this case, Ti,j =
0,∀i > j.

F.2 Proof of Proposition 15

Let W = (WH , . . . ,W1) be a tightened first-order critical point associated with S = J1, rK with
r < rmax. Then, using Proposition 9 there exist invertible matricesDH−1 ∈ RdH−1×dH−1 , . . . , D1 ∈
Rd1×d1 and matrices ZH ∈ R(dy−r)×(dH−1−r), Z1 ∈ R(d1−r)×dx and Zh ∈ R(dh−r)×(dh−1−r) for
h ∈ J2, H − 1K such that if we denote W̃H = WHDH−1 , W̃1 = D−11 W1 and W̃h = D−1h WhDh−1

for all h ∈ J2, H − 1K, and W̃ = (W̃H , . . . , W̃1), then

W̃H = [US , UQZH ]

W̃1 =

[
UTS ΣY XΣ−1XX

Z1

]
W̃h =

[
Ir 0
0 Zh

]
∀h ∈ J2, H − 1K

W̃H · · · W̃2 = [US , 0] .

Then, due to Lemma 16, and since W is a first-order critical point, we have that W̃ is a first-order
critical point. We also have W̃H · · · W̃1 = WH · · ·W1. Hence, according to Proposition 1 W̃ is also
associated with S.
Since W is tightened and multiplication by invertible matrices does not change the rank, W̃ is also
tightened. Hence, W̃ satisfies the hypotheses of Proposition 17 and therefore is a second-order
critical point. Finally, using Lemma 16, we conclude that W is a second-order critical point. Since
r < rmax and Σ is invertible (Lemma 20), using Proposition 1, we have

L(W) = tr(ΣY Y )−
r∑
i=1

λi > tr(ΣY Y )−
rmax∑
i=1

λi .

Therefore, W is not a global minimizer, hence W is a non-strict saddle point.
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Appendix G. A Simple Illustrative Experiment

Next we provide more details on the experiment whose results were plotted in Figures 3 and 4. The
goal is to illustrate the behavior of the ADAM optimizer in the vicinity of strict or non-strict saddle
points.

Experimental setting. We optimize a linear neural network starting in the vicinity either of a
strict saddle point (10000 runs in total) or of a non-strict saddle point (10000 runs in total). For each
run, the setting is the following:

• Network architecture: dx = 10, dy = 4, H = 5 and d4 = d3 = d2 = d1 = 10.

• Data construction: m = 100 i.i.d. data points (x1, y1), . . . , (xm, ym) ∈ Rdx × Rdy such
that, for all i = 1, . . . ,m, the points xi and yi are drawn independently at random from the
Gaussian distributions N (0, Idx) and N (0, Idy) respectively.

• Initial iterate: we define it as (W1, . . . ,WH) = Wcp + (V1, . . . , VH), for a critical point Wcp

(defined later) and a random perturbation (V1, . . . , VH) whose components (Vh)i,j are drawn

independently from the distributions N (0, σ2h), with σh = 0.1
‖W cp

h ‖F√
dh−1dh

. The critical point

Wcp is defined as in (25) in Appendix B.8, for r = 2 (S = {1, 2}) and

Zh =

{
Idh−2 for all h ∈ J2, 4K, for runs starting at a strict saddle point;
0(dh−2)×(dh−2) for all h ∈ J2, 4K, for runs starting at a non-strict saddle point.

Since d4 = d3 = d2 = d1, note that the sizes of the above matrices Zh are consistent with (25).
As explained in Appendix B.8, when Zh = Idh−2 for all h ∈ J2, 4K, the critical point Wcp is
non-tightened and therefore Theorem 7 guarantees that it is a strict saddle point. Similarly,
when Zh = 0(dh−2)×(dh−2) for all h ∈ J2, 4K, the critical point Wcp is tightened and Theorem
7 guarantees that it is a non-strict saddle point.

• Optimizer: we use the ADAM optimizer of the Keras library, with the default parameters.

Observations. Figure 3 in Section 1.2 shows the evolution of the loss along the optimization
process for two representative runs (initialization near a strict or a non-strict saddle point). We can
see that, when initialized in the vicinity of the strict saddle point, ADAM rapidly decreases below the
initial value L(Wcp). On the contrary, ADAM needs many epochs to exit the plateau at the critical
value of the non-strict saddle point.

In order to assess the importance of this phenomenon, we repeated the above experiment 10000
times for both strict saddle points and non-strict saddle points. For each run, we define and compute
the escape epoch as the first epoch such that L(W) < L(Wcp) − λ3

2 (the average of the critical
values associated with S = {1, 2} and S ′ = {1, 2, 3}). On Figure 4 (Section 1.2) the histograms of
the escape epoch are displayed separately for runs corresponding to strict saddle points (in red) or
non-strict saddle points (in blue). We can see that, while ADAM quickly escapes from the vicinity of
the strict saddle points, it takes many more epochs to escape from the vicinity of the non-strict saddle
points. In the last case, the plateau can easily be confused with a global minimum.
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