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Abstract

Stochastic gradient descent is one of the most common iterative algorithms used in machine
learning and its convergence analysis is a rich area of research. Understanding its convergence
properties can help inform what modifications of it to use in different settings. However,
most theoretical results either assume convexity or only provide convergence results in mean.
This paper, on the other hand, proves convergence bounds in high probability without
assuming convexity. Assuming strong smoothness, we prove high probability convergence
bounds in two settings: (1) assuming the Polyak- Lojasiewicz inequality and norm sub-
Gaussian gradient noise and (2) assuming norm sub-Weibull gradient noise. In the second
setting, as an intermediate step to proving convergence, we prove a sub-Weibull martingale
difference sequence self-normalized concentration inequality of independent interest. It
extends Freedman-type concentration beyond the sub-exponential threshold to heavier-tailed
martingale difference sequences. We also provide a post-processing method that picks a
single iterate with a provable convergence guarantee as opposed to the usual bound for the
unknown best iterate. Our convergence result for sub-Weibull noise extends the regime
where stochastic gradient descent has equal or better convergence guarantees than stochastic
gradient descent with modifications such as clipping, momentum, and normalization.

Keywords: stochastic gradient descent, convergence bounds, sub-Weibull distributions,
Polyak- Lojasiewicz inequality, Freedman inequality

1. Introduction

Stochastic gradient descent (SGD) and its variants are some of the most commonly used
algorithms in machine learning. In particular, they are used for training neural network and
transformer models, models that have achieved considerable success on image classification
and language processing tasks in recent years. The training in this case is non-convex and
smooth for many activation/attention functions, such as sigmoid, GELU, and softmax. Even
for ReLU, which is not differentiable, the training is smooth over most of the parameter
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space and avoidance of the non-smooth part is dealt with separately. Thus, the smooth
non-convex convergence analysis of SGD has far-reaching influence on the field of machine
learning.

There is a large literature on the almost sure and mean convergence of SGD assuming
strong smoothness. Bertsekas and Tsitsiklis (2000) prove that SGD almost surely converges
to a first-order stationary point assuming strong smoothness and the relaxed growth noise
condition; more recently, Patel (2021) showed the same result with a different proof technique.
Ghadimi and Lan (2013) prove that the mean of the squared gradient norm of SGD converges
to zero at a rate of O(1/

√
T ) assuming strong smoothness and the bounded variance noise

condition, where T is the number of SGD iterations. Khaled and Richtárik (2023) prove the
same but with the expected smoothness noise condition. Sebbouh et al. (2021) strengthen
this to an almost sure convergence rate. Assuming strong smoothness and convexity, the
tight mean convergence rate of the squared gradient norm of SGD is O(1/

√
T ) (Nemirovsky

and Yudin, 1983, Thm. 5.3.1). In fact, this is the optimal rate for all stochastic first-order
methods assuming only strong smoothness (Arjevani et al., 2023). Thus, the O(1/

√
T ) mean

convergence rate of Ghadimi and Lan (2013) is tight and shows that SGD is optimal in the
smooth non-convex setting.

However, mean convergence is not the end of the story. A convergence guarantee is
generally required with some arbitrary probability, 1− δ. For a single run of SGD, using
Markov’s inequality gives a 1/δ scaling to the bound. If one can re-run SGD many times (say,
r times), then by choosing the best run, δ can be relatively large since the overall success
is at least by 1 − δr. On the other hand, if just a single run of SGD is allowed, then the
1/δ factor leads to nearly vacuous results, and hence a direct high probability convergence
analysis is necessary to understand the behavior of unique runs of SGD.

Li and Orabona (2020) prove a O(log(T ) log(T/δ)/
√
T ) high probability convergence rate

for a weighted average of the squared gradient norms of SGD assuming strong smoothness
and norm sub-Gaussian noise. However, a series of recent papers (Gürbüzbalaban et al.,
2021; Şimşekli et al., 2019; Panigrahi et al., 2019) suggest that norm sub-Gaussian noise is
often not satisfied. While the central limit theorem can be used to heuristically justify norm
sub-Gaussian noise for mini-batch SGD with large batch-sizes, it cannot for small batch-sizes.
In particular, Panigrahi et al. (2019) provide examples where the noise is Gaussian for a
batch-size of 4096, is not Gaussian for a batch-size of 32, and starts out Gaussian then
becomes non-Gaussian for a batch-size of 256. Gürbüzbalaban et al. (2021) and Şimşekli
et al. (2019) suggest instead assuming that the pth moment of the norm of the noise is
bounded, where p ∈ (1, 2). Scaman and Malherbe (2020) prove a O(1/T (p−1)/p/δ(2+p)/(2p))
high probability convergence rate for SGD assuming strong smoothness and bounded pth
moment noise for p ∈ (1, 2). By allowing noise with possibly infinite variance, SGD converges
at a slower rate in terms of T . Moreover, the dependence on 1/δ is polynomial rather than
logarithmic. Cutkosky and Mehta (2021) prove a O(log(T/δ)/T (p−1)/(3p−2)) high probability
convergence rate for clipped SGD (which uses clipping, momentum, and normalization)
assuming strong smoothness and bounded pth moment noise for p ∈ (1, 2), thus improving
the dependence on 1/δ to logarithmic, but clipped SGD will still have a slower convergence
rate in terms of T even when the noise is norm sub-Gaussian. So, knowledge about the
type of noise should actually affect whether we use SGD or clipped SGD. This motivates
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the question: How heavy can the noise be for SGD to have a high probability
convergence rate that depends logarithmically on 1/δ?

Towards this end, we consider norm sub-Weibull noise. While it is much lighter tailed
than bounded pth moment noise for p ∈ (1, 2), it is a natural extension of norm sub-
Gaussian noise and it turns out that it admits a convergence rate for SGD with logarithmic
dependence on 1/δ. This leads us to the first contribution of our paper. Assuming strong
smoothness and norm sub-Weibull noise, we prove a O((log (T ) log (1/δ)2θ +
log (T/δ)min{0,θ−1} log (1/δ))/

√
T ) high probability convergence rate for a

weighted average of the squared gradient norms of SGD, where θ is the sub-
Weibull tail weight. This is given in Theorem 15. In the special case of norm sub-Gaussian
noise, which is θ = 1/2, this becomes O(log(T ) log(1/δ)/

√
T ), which slightly improves the

result of Li and Orabona (2020). For more general θ > 1/2, we make the additional
assumption that the objective function is Lipschitz continuous. At its most basic, the
Lipschitz continuity assumption says that the norm of the true gradient is bounded for all
of the iterates. Li and Liu (2022), building off of our pre-print, relax this to only assuming
that the step-size times the true gradient is bounded for all of the iterates, which is a weaker
assumption since the step-size goes to zero.

However, hidden within these convergence rates is a subtle issue that requires a post-
processing algorithm. All of these high probability convergence rates are for a weighted
average of the squared gradient norms of the iterates rather than being for the squared
gradient norm of a single iterate. While this implies a high probability convergence rate for
the iterate with the smallest squared gradient norm, to actually determine which iterate has
the smallest squared gradient norm, we would need to estimate the true gradient for each
iterate! This leads us to another question: Is there a post-processing strategy for a
single run of SGD that is as efficient as 2-RSG?

2-RSG is the algorithm of Ghadimi and Lan (2013) that takes multiple runs of SGD
and picks the best one to get a high probability convergence rate. First, it goes from a
mean convergence rate for the iterate with the smallest squared gradient norm to a mean
convergence rate for a particular iterate by randomly choosing the iterate. It does this for
Θ(log(1/δ)) runs of SGD. Then, it uses Θ(log(1/δ)σ2/δε) samples to estimate the Θ(log(1/δ))
gradients and pick the run with the smallest squared estimated gradient norm, where σ2

is the variance of the noise and ε is the convergence tolerance. To compete with this,
we introduce a post-processing algorithm that randomly chooses Θ(log (1/δ))
iterates of a single run of SGD and then picks the one with the smallest squared
estimated gradient norm using Θ(log (1/δ)σ2/δε) samples and we prove that our
high probability convergence rate applies to the squared gradient norm of this
iterate. The algorithm and the bound on the squared gradient norm of its output are in
Theorem 21. The result can be combined with any high probability convergence rate on a
weighted average of the squared gradient norm of the iterates of SGD, such as the results
of Li and Orabona (2020), Scaman and Malherbe (2020), and Cutkosky and Mehta (2021).
Moreover, the first part of it, going from a high probability bound on a weighted average
of random variables to a high probability bound on the smallest of a small subset of those
random variables, applies to more general stochastic sequences as shown in Theorem 19,
which is a probability result of independent interest.
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Underlying our convergence analysis are concentration inequalities. Vladimirova et al.
(2020), Wong et al. (2020), and Bakhshizadeh et al. (2023) prove concentration inequalities
for sub-Weibull random variables with deterministic scale parameters. However, we need
a concentration inequality for a sub-Weibull martingale difference sequence (MDS) where
the scale parameters are themselves random variables making up an auxiliary sequence.
MDS concentration inequalities upper bound the partial sum of the main sequence and
lower bound the partial sum of the auxiliary sequence simultaneously. When the lower
bound depends on the partial sum of the main sequence, we call the concentration inequality
self-normalized. Freedman (1975) proves a sub-Gaussian MDS concentration inequality. Fan
et al. (2015) proves a sub-exponential MDS concentration inequality. Harvey et al. (2019)
proves a sub-Gaussian MDS self-normalized concentration inequality. The proofs for these
results all rely on the moment generating function (MGF), which does not exist for sub-
Weibull random variables with θ > 1, i.e., heavier than sub-exponential. Nevertheless, we
are able to prove a sub-Weibull martingale difference sequence self-normalized
concentration inequality. This is given in Theorem 11. The proof uses the MGF
truncation technique of Bakhshizadeh et al. (2023) but applied to an MDS rather than i.i.d.
random variables. The truncation level is determined by the tail decay rate and shows up as
the log(T/δ)θ−1 in the SGD convergence rate.

We also consider convergence under the Polyak- Lojasiewicz (P L) inequality. Some
examples of problems with P L objectives are logistic regression over compact sets (Karimi
et al., 2016) and matrix factorization (Sun and Luo, 2016). Deep linear neural networks
satisfy the P L inequality in large regions of the parameter space (Charles and Papailiopoulos,
2018, Thm. 4.5), as do two-layer neural networks with an extra identity mapping (Li and
Yuan, 2017). Furthermore, sufficiently wide neural networks satisfy the P L inequality locally
around random initialization (Allen-Zhu et al., 2019a,b; Du et al., 2018, 2019; Liu et al.,
2022). While strong convexity implies the P L inequality, a P L function need not even be
convex, hence the P L condition is considerably more applicable than strong convexity in
the context of neural networks. Moreover, as pointed out by Karimi et al. (2016), the
convergence proof for gradient descent assuming strong smoothness and strong convexity is
actually simplified if we use the P L inequality instead of strong convexity. Thus, we would
like to find a simple, elegant proof for the high probability convergence of SGD assuming
strong smoothness and the P L inequality.

Assuming strong smoothness and strong convexity, the tight mean convergence rate
of SGD is O(1/T ) (Nemirovski et al., 2009). The same mean convergence rate can be
shown assuming strong smoothness and the P L inequality (Karimi et al., 2016; Orvieto
and Lucchi, 2019). But neither of these papers address high probability convergence. To
fill this gap, we prove a O(log (1/δ)/T ) high probability convergence rate for the
objective value of SGD assuming strong smoothness, the P L inequality, and
norm sub-Gaussian noise. This is given in Theorem 8. The proof relies on a novel
probability result, Theorem 9, that essentially shows that adding two kinds of noise to a
contracting sequence—sub-Gaussian noise with variance depending on the sequence itself
and sub-exponential noise—results in a sub-exponential sequence. Unfortunately, the proof
does not extend to the case of norm sub-Weibull noise. It is unclear if this is just an artifact
of the proof or if the faster convergence of SGD under the P L inequality really cannot be
maintained under norm sub-Weibull noise.
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Applicability of assumptions. Given the motivation from neural networks, it is
necessary to say a few words regarding the applicability of the Lipschitz continuity and
strong smoothness assumptions. First, we show in Lemmas 1 and 2 that these assumptions
are satisfied by simple neural network models that are, nevertheless, powerful enough to
interpolate generic data sets using only twice the minimal number of parameters required for
any model to do so. Second, they are satisfied if the iterates remain in a bounded set, which
is precisely what happens in the neural tangent kernel setting. In this setting, the local P L
constant of the least squares loss is sufficiently high (due to overparameterization) for the
iterates of SGD to converge to a point close to initialization (Oymak and Soltanolkotabi,
2020). Third, while it is true that Lipschitz continuity and strong smoothness may not be
satisfied in practice, our paper is guided by the principle of “how far can we relax assumptions
while still being able to prove high probability convergence rates?” An alternative principle
is “what can we prove given assumptions that are completely justified in practice?” This is
the principle guiding Patel et al. (2022). They provide a neural network counterexample that
does not even satisfy (L0, L1)-smoothness (Zhang et al., 2020), an alternative assumption to
strong smoothness. Then, they prove—assuming only (1) a lower bound on the objective
function, (2) local α-Hölder continuity of the gradient, (3) equality of the true and mean
gradients, and (4) that the pth moment of the norm of the stochastic gradient, for some
p ∈ (1, 2], is bounded by an upper semi-continuous function—that, with probability 1, either
(1) the norm of the iterates of SGD go to infinity, or (2) SGD almost surely converges to a
first order stationary point. These assumptions are much weaker than ours, but so is the
conclusion. We leave it as a future research direction to further relax our assumptions.

Organization. Section 2 establishes the optimization framework and reviews opti-
mization, probability, and sub-Weibull terminology and results. Section 3 proves the P L
convergence rate. Section 4 proves the MDS concentration inequality. Section 5 proves the
non-convex convergence rate. Section 6 establishes the post-processing algorithm. Section 7
trains a two layer neural network model on synthetic data with Weibull noise injected into
the gradient, showing the dependence of the tail of the convergence error on the tail of the
noise.

Notation. We use x, y, z for vectors and X, Y , Z, ξ, ψ for random variables. We
use et for the error vector and distinguish it from Euler’s number with the subscript (the
subscript will denote the iteration index). We use σ2 for the variance and so spell out sigma
for sigma algebra. We use O and Θ for big-O notation. When comparing two sequences
of real numbers, (at) and (bt): at = o(bt) if lim at/bt = 0, at = O(bt) if lim sup |at|/bt <∞,
and at = Θ(bt) if at = O(bt) and bt = O(at). We use [n] to denote the set {1, . . . , n} and Γ
to denote the gamma function.

2. Preliminaries

We are interested in the unconstrained optimization problem

min
x∈Rd

f(x), (1)

where f : Rd → R is a differentiable function, and the SGD iteration

xt+1 = xt − ηtgt ∀t ∈ N ∪ {0},
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where gt ∈ Rd is an estimate of ∇f(xt), ηt is the step-size, and x0 ∈ Rd is the initial
point. We restrict our attention to the setting where x0 is deterministic, but the results
easily extend to the setting where x0 is a random vector. We define the noise as the vector
et = ∇f(xt)− gt and assume that, conditioned on the previous iterates, it is unbiased and
its norm is sub-Weibull (which, as we will see in Lemma 6, implies that the variance of the
noise is bounded).

One of the main examples of Eq. (1) is the stochastic approximation problem: f =
E [F (·, ξ)] where (Ω,F , P ) is a probability space and F : Rd × Ω → R (Nemirovski et al.,
2009; Ghadimi and Lan, 2013; Bottou and Bousquet, 2008). In this case, we independently
sample ξ0, ξ1, . . . and set gt = ∇F (xt, ξt).

Another example is the sample average approximation problem which is the special case
of the stochastic approximation problem where there is a finite set {ξ1, . . . , ξn} such that
ξ = ξi with probability 1/n. In this setting, we define Fi = F (·, ξi) so that

f(x) =
1

n

n∑
i=1

Fi(x).

2.1 Optimization

We highlight a few key facts we use; see, e.g., Nesterov (2018), for more details. All definitions
are with respect to the Euclidean norm ‖ · ‖. Let f : Rd → R be differentiable, and assume
argminx∈Rdf(x) is non-empty and denote its minimum by f?.

If f is continuously differentiable, then f is ρ-Lipschitz if and only if ‖∇f(x)‖ ≤ ρ for all
x ∈ Rd. We say f is L-strongly smooth (or L-smooth for short) if its gradient is L-Lipschitz
continuous. If f is L-smooth, then a standard result using the Taylor expansion is

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖x− y‖2 ∀x, y ∈ Rd.

Applying this result with y = x− 1
L∇f(x) and using f(y) ≥ f?, we get

‖∇f(x)‖2 ≤ 2L(f(x)− f?), (2)

or taking x ∈ argminx′ f(x′), we get

f(y)− f? ≤ L

2
‖y − x?‖2.

Thus a convergence rate in terms of the iterates is stronger than one in terms of the objective,
which is stronger than one in terms of the norm of the gradient. We say f is µ-Polyak-
 Lojasiewicz (or µ-P L for short) if ‖∇f(x)‖2 ≥ 2µ(f(x)− f?) ∀x ∈ Rd. Combining this with
Eq. (2) shows that L ≥ µ.

To justify the Lipschitz continuity and strong smoothness assumptions in the context
of neural networks, we include the following lemmas, proved in Appendix A, which show
that both properties are satisfied by the least squares loss applied to the hidden layer of a
two layer neural network with, e.g., sigmoid functions such as tanh, arctan, and the logistic
function (applying the first lemma) or GELU activation (applying the second lemma). Note
that such a model (with fixed outer layer), while a simple example of a neural network,
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is already able to interpolate generic data sets with only twice the necessary number of
parameters for any model, including deeper ones, to do so (Madden and Thrampoulidis,
2024).

Lemma 1 Let m,n, d ∈ N and a ∈ R. Let φ : R → R be twice differentiable and assume
|φ(x)|, |φ′(x)|, |φ′′(x)| ≤ a ∀x ∈ R. Let X ∈ Rd×n, v ∈ Rm, and y ∈ Rn. Define

f : Rd×m → R : W 7→ 1

2
‖φ(X>W )v − y‖2.

Then f is Lipschitz continuous and strongly smooth.

Lemma 2 Let m,n, d ∈ N and a, b ∈ R. Let φ : R → R be twice differentiable. Assume
|φ′(x)| ≤ a and |φ′′(x)| ≤ b for all x ∈ R. Let X ∈ Rd×n, v ∈ Rm, and y ∈ Rn. Define

f : Rd×m → R : W 7→ 1

2
‖φ(X>W )v − y‖2.

Let α ≥ 1 and define the sublevel set W = {W ∈ Rd×m | f(W ) ≤ α}. Then, on W, f is

a‖v‖∞‖X‖2
√

2αm-Lipschitz continuous and(
a2‖v‖2∞‖X‖22m+ b‖v‖∞‖X‖2‖X‖1,2

√
2α
)

-strongly smooth.

2.2 Probability

See Section 20 of Billingsley (1995) for details on the convergence of random variables. A
sequence of random variables (Xt) converges to a random variable X:

◦ in probability if, for all ε > 0, limt P (|Xt −X| > ε) = 0, denoted Xt
p→ X;

◦ in mean if limt E|Xt −X| = 0, denoted Xt
L1

→ X;

◦ almost surely if P (limtXt = X) = 1, denoted Xt
a.s.→ X.

When the rate of convergence is of interest, we say a sequence of random variables (Xt)
converges to X:

◦ with mean convergence rate r(t) if, for all t, E|Xt −X| ≤ r(t);

◦ with high probability convergence rate r̃(t, δ) if, for all t and δ, P (|Xt −X| ≤ r̃(t, δ) ) ≥
1− δ.

All five kinds of convergence are interrelated:

◦ Convergence in mean and convergence almost surely both imply convergence in
probability.

◦ Mean convergence with rate r(t) such that r(t)→ 0 as t→∞ implies convergence in
mean.
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◦ By Markov’s inequality, mean convergence with rate r(t) implies high probability
convergence with rate r̃(t, δ) = r(t)/δ.

◦ By the Borel-Cantelli lemma (Billingsley, 1995, Thm. 4.3), high probability conver-
gence with rate r̃(t, δ) = r(t)p(δ) implies almost sure convergence if, for all a > 0,∑∞

t=0 min{1, p−1(a/r(t))} <∞. If p(δ) = 1/δc for some c > 0, then r(t) = o(1/tc) is
required. If p(δ) = log(1/δ), then only r(t) = O(1/tc) for some c > 0 is required.

See Section 35 of Billingsley (1995) for details on martingale difference sequences. Let
(Ω,F , P ) be a probability space. A sequence, (Fi), of nested sigma algebras in F (i.e.,
Fi ⊂ Fi+1 ⊂ F) is called a filtration, in which case (Ω,F , (Fi), P ) is called a filtered
probability space. A sequence of random variables (ξi) is said to be adapted to (Fi) if each
ξi is Fi-measurable. Furthermore, if E [ξi | Fi−1] = ξi−1 ∀i, then (ξi) is called a martingale.
On the other hand, if E [ξi | Fi−1] = 0 ∀i, then (ξi) is called a martingale difference sequence.

For the noise sequence (et), we define a corresponding filtration (Ft) by letting Ft be
the sigma algebra generated by e0, . . . , et for all t ≥ 0 and setting F−1 = {∅,Ω}. Note that
xt is Ft−1-measurable while et is Ft-measurable.

2.3 Sub-Weibull Random Variables

We consider sub-Gaussian, sub-exponential, and sub-Weibull random variables.

Definition 3 A random variable X is K-sub-Gaussian if E
[
exp

(
X2/K2

)]
≤ 2.

Definition 4 A random variable X is K-sub-exponential if E [exp (|X|/K)] ≤ 2.

Definition 5 A random variable X is K-sub-Weibull(θ) if E
[
exp

(
(|X|/K)1/θ

)]
≤ 2.

See Proposition 2.5.2 of Vershynin (2018) for equivalent definitions of sub-Gaussian,
Proposition 2.7.1 of Vershynin (2018) for equivalent definitions of sub-exponential, and
Theorem 2.1 of Vladimirova et al. (2020) for equivalent definitions of sub-Weibull. Note
that sub-Gaussian and sub-exponential are special cases of sub-Weibull using θ = 1

2 and
θ = 1, respectively. The tail parameter θ measures the heaviness of the tail—higher values
correspond to heavier tails—and the scale parameter K gives us the following bound on the
second moment.

Lemma 6 If X is K-sub-Weibull(θ) then E [|X|p] ≤ 2Γ(θp+ 1)Kp ∀p > 0. In particular,
E
[
X2
]
≤ 2Γ(2θ + 1)K2.

Proof First, for all t ≥ 0,

P (|X| ≥ t) = P
(

exp
(

(|X|/K)1/θ
)
≥ exp

(
(t/K)1/θ

))
≤ 2 exp

(
− (t/K)1/θ

)
.
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Second,

E [|X|p] =

∫ ∞
0

P (|X|p ≥ x) dx

≤ 2

∫ ∞
0

exp

(
−
(
x1/p/K

)1/θ)
= 2θpKp

∫ ∞
0

exp(−u)uθp−1du

= 2θpΓ(θp)Kp

= 2Γ(θp+ 1)Kp.

The proof demonstrates the general techniques for going between probability and expec-
tation in this type of analysis. To go from probability to expectation, the CDF formula is
used:

E [|Y |] =

∫ ∞
0

P (|Y | > t) dt.

To go from expectation to probability, Markov’s inequality is used:

P (|Y | > t) ≤ 1

t
E [|Y |] ∀t > 0.

In both cases, the trick is choosing what Y should be, e.g. Y = |X|p or Y = exp((λ|X|)1/θ).

Remark 7 Note that our definitions of sub-Gaussian, sub-exponential, and sub-Weibull do
not require the random variable to be centered. Thus, we do not center the constant random
variable X ≡ x to think of it as having scale parameter zero. Instead, for each θ > 0, X ≡ x
is |x|/ log(2)θ-sub-Weibull(θ).

We can apply Remark 7 in the following way to show how the sub-Weibull scale parameter
might scale with the tail parameter for the gradient noise in the sample average approximation
setting where f(x) = 1

n

∑n
i=1 Fi(x). Assume that ‖∇f(x)−∇Fi(x)‖ ≤ ρ for all x ∈ X ⊂ Rd

and all i ∈ [n]. Since [n] is a finite set, this follows for some ρ > 0 if X is compact. Then
we get that ‖∇f(x) − ∇Fξ(x)‖ is ρ/ log(2)θ-sub-Weibull(θ) for all x ∈ X and all θ > 0.
Thus, we can decrease the scale parameter by increasing the tail parameter. However, the
convergence rate in Theorem 15 has a coefficient of θ2θK2 when θ > 1/2, and θ2θρ2/ log(2)2θ

increases as θ increases. So, we cannot hope to erase the noise in the convergence rate by
increasing the scale parameter. On the other hand, it may be the case that there is some θ
slightly larger than 1/2 which minimizes the convergence bound when all of the constants
are considered.

3. P L Convergence

In this section, we prove the following convergence bound, proving Theorem 9, a probability
result, along the way. The convergence bound matches the optimal convergence rate in mean
of O(1/T ) and has log(1/δ) dependence on δ.
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Theorem 8 Assume f is L-smooth and µ-P L and that, conditioned on the previous iterates,
et is centered and ‖et‖ is σ-sub-Gaussian. Then, SGD with step-size

ηt =
2t+ 4κ− 1

µ(t+ 2κ)2
,

where κ = L/µ, constructs a sequence (xt) such that, w.p. ≥ 1− δ for all δ ∈ (0, 1),

f(xT )− f? = O

(
Lσ2 log(e/δ)

µ2T

)
.

Proof Assume f is L-smooth, hence

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖x− y‖2 (3)

for all x, y ∈ Rd. Set y = xt+1 = xt − ηtgt = xt − ηt(∇f(xt)− et) and x = xt and subtract
f?. Additionally assume f is µ-P L and ηt ≤ 1/L. Then

f(xt+1)− f?

≤ f(xt)− f? − ηt
(

1− Lηt
2

)
‖∇f(xt)‖2 + ηt(1− Lηt)〈∇f(xt), et〉+

Lη2t
2
‖et‖2

≤ f(xt)− f? −
ηt
2
‖∇f(xt)‖2 + ηt(1− Lηt)〈∇f(xt), et〉+

Lη2t
2
‖et‖2

≤ (1− µηt)(f(xt)− f?) + ηt(1− Lηt)〈∇f(xt), et〉+
Lη2t

2
‖et‖2 (4)

where the second inequality used ηt ≤ 1/L and the third used the P L inequality.
Note that

ηt =
2t+ 4κ− 1

µ(t+ 2κ)2
= Θ

(
1

µt

)
and, since ηt is decreasing in t for t ≥ 0,

ηt ≤
4κ− 1

µ(2κ)2
≤ 4κ

µ4κ2
=

1

L
,

so we can apply Eq. (4).
Define

Xt = (t+ 2κ− 1)2(f(xt)− f?)
Yt = ηt(1− Lηt)(t+ 2κ)2〈∇f(xt), et〉

Zt =
Lη2t (t+ 2κ)2

2
‖et‖2.

Then multiplying both sides of Eq. (4) by (t+ 2κ)2 and noting 1− µηt = (t+2κ−1)2
(t+2κ)2

we get

the recursion

Xt+1 ≤ Xt + Yt + Zt.

10
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Recall that we defined Ft as the sigma algebra generated by e0, . . . , et for all t ≥ 0 and
F−1 = {∅,Ω}. So, Xt is Ft−1-measurable, Yt is Ft-measurable, and Zt is Ft-measurable.

For all t ≥ 0, assume, conditioned on Ft−1, that et is centered and ‖et‖ is σ-sub-Gaussian.
Then, Yt is centered conditioned on Ft−1. Note that we can bound Yt using Cauchy-Schwarz
and Eq. (2) in the following way:

〈∇f(xt), et〉 ≤ ‖∇f(xt)‖ · ‖et‖ ≤
√

2L(f(xt)− f?)‖et‖.

But, if we use this to get a new recursion, then we get a sub-optimal convergence rate.
Instead, we need to keep the same recursion but use the bound on Yt in its MGF:

E

[
exp

(
Y 2
t

18L
µ2
Xtσ2

)∣∣∣∣ Ft−1
]
≤E

[
exp

(
η2t (1− Lηt)2(t+ 2κ)4‖∇f(xt)‖2‖et‖2

18L
µ2
Xtσ2

)∣∣∣∣ Ft−1
]

≤ E

exp

η2t (1− Lηt)2 (t+2κ)4

(t+2κ−1)2 2LXt‖et‖2
18L
µ2
Xtσ2

∣∣∣∣ Ft−1
 via (2)

≤ E
[

exp

(
18L
µ2
Xt‖et‖2

18L
µ2
Xtσ2

)∣∣∣∣ Ft−1
]

≤ 2.

Thus, Yt is 18L
µ2
Xtσ

2-sub-Gaussian conditioned on Ft−1. Similarly,

E

[
exp

(
Zt

2L
µ2
σ2

)∣∣∣∣ Ft−1
]
≤ E

[
exp

(
2L
µ2
‖et‖2

2L
µ2
σ2

)∣∣∣∣ Ft−1
]

≤ 2.

and so Zt is 2L
µ2
σ2-sub-exponential conditioned on Ft−1.

So, we have a recursion for a stochastic sequence with two types of additive noise—sub-
Gaussian noise, with variance depending on the sequence itself, and sub-exponential noise.
We prove that this makes the main sequence sub-exponential in the following theorem.

Theorem 9 Let (Ω,F , (Fi), P ) be a filtered probability space. Let (Xi+1), (Yi), and (Zi) be
adapted to (Fi), and X0 be deterministic. Let (αi) and (βi) be sequences of non-negative reals
and let (γi) be a sequence of positive reals. Assume Xi and Zi are non-negative almost surely.

Assume E[exp(λYi) | Fi−1] ≤ exp(λ
2

2 β
2
iXi) for all λ ∈ R and E[exp(λZi) | Fi−1] ≤ exp(λγi)

for all λ ∈ [0, γ−1i ]. Assume

Xi+1 ≤ αiXi + Yi + Zi.

Then, for any sequence of positive reals (Ki) such that K0 ≥ X0 and, for all i ≥ 0,
K2
i+1 ≥ (αiKi + 2γi)Ki+1 +β2iKi, and for any n ≥ 0, we have, w.p. ≥ 1− δ for all δ ∈ (0, 1),

Xn ≤ Kn log(e/δ).

11
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Proof We want to find requirements on a sequence (Ki) such that E [exp(λXi)] ≤
exp(λKi) ∀λ ∈ [0,K−1i ]. Then, by Markov’s inequality and taking λ = K−1n ,
P (Xn ≥ log(e/δ)Kn) = P (exp(Xn/Kn) ≥ e/δ) ≤ δ. Our proof is inductive. For the base
case, we need

(1) K0 ≥ X0.

For the induction step, assume E
[
exp(λ̃Xi)

]
≤ exp(λ̃Ki) ∀λ̃ ∈ [0,K−1i ]. Let λ ∈ [0,K−1i+1].

Then

E [exp(λXi+1)] ≤ E [exp(λαiXi + λYi + λZi)] by non-negativity

TE
= E [exp(λαiXi)E [exp(λYi) exp(λZi) | Fi−1]]
CS
≤ E

[
exp(λαiXi)E [exp(2λYi) | Fi−1]1/2 E [exp(2λZi) | Fi−1]1/2

]
(2)

≤ E
[

exp(λαiXi) exp

(
(2λ)2

2
β2iXi

)1/2

exp(2λγi)
1/2

]
if 2λ ∈ [0, γ−1i ]

= E
[
exp(λαiXi + λ2β2iXi + λγi)

]
= E

[
exp(λ(αi + λβ2i )Xi

]
exp(λγi)

(3)

≤ exp(λ((αi + λβ2i )Ki + γi)) via induction if λ̃ := λ(αi + λβ2i ) ≤ K−1i
(4)

≤ exp(λKi+1)

where TE denotes the law of total expectation, CS denotes the Cauchy-Schwarz inequality,
and (2)− (4) are the requirements

(2) 2λ ≤ γ−1i ⇐= 2K−1i+1 ≤ γ−1i ⇐⇒ Ki+1 ≥ 2γi

(3) λ(αi + λβ2i ) ≤ K−1i ⇐= K−1i+1(αi +K−1i+1β
2
i ) ≤ K−1i ⇐⇒ K2

i+1 ≥ αiKiKi+1 + β2iKi

(4) Ki+1 ≥ (αi + λβ2i )Ki + γi ⇐= Ki+1 ≥ (αi +K−1i+1β
2
i )Ki + γi

⇐⇒ K2
i+1 ≥ (αiKi + γi)Ki+1 + β2iKi.

The assumptions of the theorem imply requirements (2)− (4), completing the proof.

The proof is similar to the proof of Theorem 4.1 of Harvey et al. (2019) but with some key
differences. There, the recursion is Xi+1 ≤ αiXi + Yi

√
Xi + γi where E [exp(λYi) | Fi−1] ≤

exp
(
λ2

2 β
2
i

)
and γi is deterministic. We had to move the implicit dependence of the sub-

Gaussian term inside of the MGF. We also had to allow γi to be a sub-exponential random
variable Zi, and so applied Cauchy-Schwarz, which contributed the 2 in the recursion for
(Ki).

Note that if αi = 1, γi = γ, βi = β ∀i, then the assumptions on (Ki) are satisfied by, for
example, K0 = X0 and Ki+1 = Ki + 2γ + β2 ∀i. Returning to the proof of Theorem 8, for
absolute constants a and b, by Proposition 2.5.2 and Proposition 2.7.1 of Vershynin (2018),

12
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we can set β2t = 18aLσ2

µ2
and γt = 2bLσ2

µ2
and apply Theorem 9 with

KT :=X0 +
T−1∑
t=0

(2γt + β2t )

= X0 +
(18a+ 4b)Lσ2T

µ2
.

Dividing by (T + 2κ)2 completes the proof.

Remark 10 It is natural to ask whether we can relax the sub-Gaussian assumption to a
sub-Weibull assumption. In Theorem 9, we need a bound on the MGFs of both Yi and Zi.
But, if ‖et‖ is σ-sub-Weibull(θ) with θ > 1/2, then ‖et‖2 is σ2-sub-Weibull(2θ). Thus, Zi
would be sub-Weibull with tail parameter greater than 1, and so may have an infinite moment
generating function for all λ > 0.

A big take-away from the P L analysis is its simplicity, matching the simplicity of gradient
descent’s convergence analysis in the same setting. It also serves as a good warm-up for the
non-convex analysis that follows. Induction on the convergence recursion does not work for
the non-convex analysis. Instead it requires an MDS self-normalized concentration inequality,
which we state and prove in the next section.

4. Concentration Inequality

In this section, we prove the following MDS concentration inequality. For θ = 1/2 without α
(i.e., α = 0), Eq. (6), we recover the classical Freedman’s inequality (Freedman, 1975). For
θ ∈ (1/2, 1] without α, Eq. (8), we recover Theorem 2.6 of Fan et al. (2015). For θ = 1/2
with α, Eq. (5), we recover Theorem 3.3 of Harvey et al. (2019), called the “Generalized
Freedman” inequality.

Theorem 11 Let (Ω,F , (Fi), P ) be a filtered probability space. Let (ξi) and (Ki) be adapted
to (Fi). Let n ∈ N. For all i ∈ [n], assume Ki−1 ≥ 0 almost surely, E [ξi | Fi−1] = 0, and

E
[
exp

(
(|ξi|/Ki−1)

1/θ
)
| Fi−1

]
≤ 2

where θ ≥ 1/2. If θ > 1/2, assume there exist constants (mi) such that Ki−1 ≤ mi almost
surely for all i ∈ [n].

If θ = 1/2, then for all x, β ≥ 0, and α > 0, and λ ∈
[
0, 1

2α

]
,

P

 ⋃
k∈[n]

{ k∑
i=1

ξi ≥ x and
k∑
i=1

2K2
i−1 ≤ α

k∑
i=1

ξi + β

} ≤ exp(−λx+ 2λ2β), (5)

and for all x, β, λ ≥ 0,

P

 ⋃
k∈[n]

{ k∑
i=1

ξi ≥ x and
k∑
i=1

2K2
i−1 ≤ β

} ≤ exp

(
−λx+

λ2

2
β

)
. (6)

13
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If θ ∈
(
1
2 , 1
]
, define

a = (4θ)2θe2

b = (4θ)θe.

For all x, β ≥ 0, and α ≥ bmaxi∈[n]mi, and λ ∈
[
0, 1

2α

]
,

P

 ⋃
k∈[n]

{ k∑
i=1

ξi ≥ x and
k∑
i=1

aK2
i−1 ≤ α

k∑
i=1

ξi + β

} ≤ exp(−λx+ 2λ2β), (7)

and for all x, β ≥ 0, and λ ∈
[
0, 1

bmaxi∈[n]mi

]
,

P

 ⋃
k∈[n]

{ k∑
i=1

ξi ≥ x and

k∑
i=1

aK2
i−1 ≤ β

} ≤ exp

(
−λx+

λ2

2
β

)
. (8)

If θ > 1, let δ ∈ (0, 1). Define

a = (22θ+1 + 2)Γ(2θ + 1) +
23θΓ(3θ + 1)

3 log(n/δ)θ−1

b = 2 log(n/δ)θ−1.

For all x, β ≥ 0, and α ≥ bmaxi∈[n]mi, and λ ∈
[
0, 1

2α

]
,

P

 ⋃
k∈[n]

{ k∑
i=1

ξi ≥ x and
k∑
i=1

aK2
i−1 ≤ α

k∑
i=1

ξi + β

} ≤ exp(−λx+ 2λ2β) + 2δ,

and for all x, β ≥ 0, and λ ∈
[
0, 1

bmaxi∈[n]mi

]
,

P

 ⋃
k∈[n]

{ k∑
i=1

ξi ≥ x and

k∑
i=1

aK2
i−1 ≤ β

} ≤ exp

(
−λx+

λ2

2
β

)
+ 2δ. (9)

Proof Let (Ω,F , (Fi), P ) be a filtered probability space. Let (ξi) and (Ki) be adapted to
(Fi). Let n ∈ N. For all i ∈ [n], assume 0 ≤ Ki−1 ≤ mi almost surely, E [ξi | Fi−1] = 0, and

E
[
exp

(
(|ξi|/Ki−1)

1/θ
)
| Fi−1

]
≤ 2.

What we want to upper bound in this setting is

P

 ⋃
k∈[n]

{ k∑
i=1

ξi ≥ x and

k∑
i=1

K2
i−1 ≤ α

k∑
i=1

ξi + β

}
14
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for constants x, α > 0 and β ≥ 0. To understand how to use this, set β = 0 and observe

P

(
n∑
i=1

ξi ≥ x+
1

α

n∑
i=1

K2
i−1

)

≤ P
(

n∑
i=1

ξi ≥ x and

n∑
i=1

K2
i−1 ≤ α

n∑
i=1

ξi

)

≤ P

 ⋃
k∈[n]

{ k∑
i=1

ξi ≥ x and

k∑
i=1

K2
i−1 ≤ α

k∑
i=1

ξi

}
by monotonicity (A ⊂ B =⇒ P (A) ≤ P (B)). The stronger bound over the union of partial
sum bounds does not help us since the constants cannot depend on k. The union of partial
sum bounds arises in the proof from a stopping time defined as the first k such that the
corresponding set occurs.

Proving such a bound would typically involve using an MGF bound for ξi, but the
MGF is infinite in our setting. To get around this, we truncate ξi to an appropriate level.
By accounting for the probability of exceeding truncation, applying an MGF bound for
truncated random variables, and applying a concentration inequality for bounded MGF
martingale different sequence, we are able to prove a concentration inequality for sub-Weibull
martingale difference sequences.

Probability of exceeding truncation. Let δ ∈ (0, 1). We want to define the trunca-
tion level so that the probability of any of the ξi exceeding it is smaller than O(δ). This
ends up being ξ̃i = ξiI{ξi≤cKi−1} with c = log(n/δ)θ as we will see.

First, for any c > 0,

P (|ξi| ≥ cKi−1) = P
(

exp
(

(|ξi|/Ki−1)
1/θ
)
≥ exp

(
c1/θ

))
≤ exp

(
−c1/θ

)
E
[
exp

(
(|ξi|/Ki−1)

1/θ
)]

= exp
(
−c1/θ

)
E
[
E
[
exp

(
(|ξi|/Ki−1)

1/θ
)
| Fi−1

]]
≤ 2 exp

(
−c1/θ

)
where we use Markov’s inequality, the law of total expectation, and the sub-Weibull assump-
tion. In particular, P

(
ξi > log(n/δ)θKi−1

)
≤ 2δ/n.

Then, we can bound

P

 ⋃
k∈[n]

{ k∑
i=1

ξi ≥ x and

k∑
i=1

K2
i−1 ≤ α

k∑
i=1

ξi + β

}
by

P

 ⋃
k∈[n]

{ k∑
i=1

ξ̃i ≥ x and

k∑
i=1

K2
i−1 ≤ α

k∑
i=1

ξ̃i + β

}
15
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and

P

⋃
i∈[n]

{
ξi > log(n/δ)θKi−1

} ≤ n∑
i=1

P
(
ξi > log(n/δ)θKi−1

)
≤ 2δ.

and so proceed using ξ̃i while carrying around an additional 2δ probability.
MGF bound of truncated random variable. In order to bound the MGF of our

truncated random variables, we prove the following lemma which slightly modifies Corollary
2 of Bakhshizadeh et al. (2023) using the law of total expectation. The main subtlety in the
extension is where we use the following bound

P (|X| ≥ t | G) = P
(

exp
(

(|X|/K0)
1/θ
)
≥ exp

(
(t/K0)

1/θ
)
| G
)

≤ exp
(
−(t/K0)

1/θ
)
E
[
exp

(
(|X|/K0)

1/θ
)
| G
]

≤ 2 exp
(
−(t/K0)

1/θ
)

which we denote by ∗. Otherwise, the proof exactly follows theirs.

Lemma 12 Let (Ω,F , P ) be a probability space, G ⊂ F be a sigma algebra, and X and K0

be random variables. Assume K0 is G-measurable. Assume, conditioned on G, that X is
centered and K0-sub-Weibull(θ) with θ > 1. Define X̃ = XI{X≤cK0}. Then

E
[
exp(λX̃) | G

]
≤ exp

(
λ2

2
aK2

0

)
∀λ ∈

[
0,

1

bK0

]
where

a = (22θ+1 + 2)Γ(2θ + 1) +
23θΓ(3θ + 1)

3c1−1/θ

b = 2c1−1/θ.

Proof For convenience, define L0 = cK0. Let λ ∈
[
0, 1

bK0

]
. That is, λ ≥ 0 and

λL
1−1/θ
0 K

1/θ
0 ≤ 1

2 . Since λ ≥ 0, we have, by Lemma 4 of Bakhshizadeh et al. (2023),

E
[
exp(λX̃) | G

]
≤ exp

(
λ2

2

(
E
[
X2I{X<0} | G

]
+ E

[
X2 exp(λX)I{0≤X≤L0} | G

]))
.

Observe

E
[
X2I{X<0} | G

]
=

∫ ∞
0

P
(
X2I{X<0} > x | G

)
dx

=

∫ ∞
0

P
(
X2 > t2, X < 0 | G

)
2t dt

≤
∫ ∞
0

P (|X| > t | G) 2t dt

∗
≤ 2

∫ ∞
0

exp
(
−(t/K0)

1/θ
)

2t dt

= 2Γ(2θ + 1)K2
0

16



High-probability Convergence Bounds for Non-convex SGD

and

E
[
X2 exp(λX)I{0≤X≤L0} | G

]
=

∫ ∞
0

P
(
X2 exp(λX)I{0≤X≤L0} > x | G

)
dx

=

∫ ∞
0

P
(
X2 exp(λX) > t2 exp(λt), 0 ≤ X ≤ L0 | G

)
(2t+ λt2) exp(λt)dt

=

∫ ∞
0

P (|X| > t, 0 ≤ X ≤ L0 | G) (2t+ λt2) exp(λt)dt

≤
∫ L0

0
P (|X| > t | G) (2t+ λt2) exp(λt)dt

∗
≤ 2

∫ L0

0
exp

(
−
(

1− λt1−1/θK1/θ
0

)
(t/K0)

1/θ
)

(2t+ λt2)dt

≤ 2

∫ L0

0
exp

(
−
(

1− λL1−1/θ
0 K

1/θ
0

)
(t/K0)

1/θ
)

(2t+ λt2)dt

= 2

∫ L0

0
exp(−u)

 2K2
0θu

2θ−1(
1− λL1−1/θ

0 K
1/θ
0

)2θ +
λK3

0θu
3θ−1(

1− λL1−1/θ
0 K

1/θ
0

)3θ
 du

=
2K2

0Γ(2θ + 1)(
1− λL1−1/θ

0 K
1/θ
0

)2θ +
2λK3

0Γ(3θ + 1)

3
(

1− λL1−1/θ
0 K

1/θ
0

)3θ
≤
(

22θ+1Γ(2θ + 1) +
23θK0Γ(3θ + 1)

3L
1−1/θ
0 K

1/θ
0

)
K2

0

=

(
22θ+1Γ(2θ + 1) +

23θΓ(3θ + 1)

3 log(n/δ)θ−1

)
K2

0 .

Applying this to our setting, we get the MGF bound

E
[
exp(λξ̃i) | Ft−1

]
≤ exp

(
λ2

2
aK2

i−1

)
∀λ ∈

[
0,

1

bKi−1

]
(10)

where

a = (22θ+1 + 2)Γ(2θ + 1) +
23θΓ(3θ + 1)

3 log(n/δ)θ−1

b = 2 log(n/δ)θ−1.

Concentration inequality for MGF bound. Now we just need a self-normalized
concentration inequality in the following setting:

Let (Ω,F , (Fi), P ) be a filtered probability space. Let (ξi) and (Ki) be adapted to (Fi).
Let n ∈ N. For all i ∈ [n], assume 0 ≤ Ki−1 ≤ mi almost surely, E [ξ | Fi−1] = 0, and

E [exp(λξi) | Fi−1] ≤ exp

(
λ2

2
aK2

i−1

)
∀λ ∈

[
0,

1

bKi−1

]
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for constants a, b > 0.
We can recognize this as a centered sub-exponential type MGF bound from Proposition

2.7.1 of Vershynin (2018). Theorem 2.6 of Fan et al. (2015) proves a concentration inequality
in this setting, but not a self-normalized one. On the other hand, Theorem 3.3 of Harvey
et al. (2019) proves a self-normalized concentration inequality in the centered sub-Gaussian
setting, thus extending the original result of Freedman (1975) to a self-normalized result.
We use the same trick of Harvey et al. (2019) to extend Theorem 2.6 of Fan et al. (2015) to
a self-normalized result.

We distill the proof technique of Fan et al. (2015) into the following lemma so that we
can apply it in our setting.

Lemma 13 (Fan et al., 2015, Pf. of Thm. 2.1) Let (Ω,F , (Fi), P ) be a filtered probability
space. If (ψi) is adapted to (Fi) and (Ak) is a sequence of events; then

P

 ⋃
k∈[n]

Ak

 ≤ sup
k∈[n]

IAk

k∏
i=1

E [ψi | Fi−1]
ψi

.

Proof Defining Zk =
∏k
i=1

ψi
E[ψi|Fi−1]

, then (Zk) is a martingale. Let T be a stopping time.

Then the stopped process (Zk∧T ) is a martingale (where a∧ b denotes min{a, b}). Moreover,
Zk∧T is a probability density so define the conjugate probability measure dP ′ = Zn∧TdP .

Define the stopping time T (ω) = min{k ∈ [n] | ω ∈ Ak}. Then I∪k∈[n]Ak =
∑n

i=1 I{T=k}.
Observe,

P

 ⋃
k∈[n]

Ak

 = E′
[
Z−1n∧T

n∑
k=1

I{T=k}

]

=
n∑
k=1

E′
[
k∏
i=1

E [ψi | Fi−1]
ψi

I{T=k}

]

≤
(

sup
k∈[n]

IAk

k∏
i=1

E [ψi | Fi−1]
ψi

)
n∑
k=1

E′
[
I{T=k}

]
= sup

k∈[n]
IAk

k∏
i=1

E [ψi | Fi−1]
ψi

.

We apply Lemma 13 to our setting to get the following self-normalized concentration
inequality.

Lemma 14 Let (Ω,F , (Fi), P ) be a filtered probability space. Let (ξi) and (Ki) be adapted
to (Fi). Let n ∈ N. For all i ∈ [n], assume 0 ≤ Ki−1 ≤ mi almost surely, E [ξ | Fi−1] = 0,
and

E [exp(λξi) | Fi−1] ≤ exp

(
λ2

2
aK2

i−1

)
∀λ ∈

[
0,

1

bKi−1

]
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for constants a, b > 0. Then, for all x, β ≥ 0, and α ≥ bmaxi∈[n]mi, and λ ∈
[
0, 1

2α

]
,

P

 ⋃
k∈[n]

{ k∑
i=1

ξi ≥ x and
k∑
i=1

aK2
i−1 ≤ α

k∑
i=1

ξi + β

} ≤ exp(−λx+ 2λ2β).

Proof By Claim C.2 of Harvey et al. (2019), if 0 ≤ λ ≤ 1
2α , then ∃ c ∈ [0, 2] such that

1
2(λ+ αcλ2)2 = cλ2. Define

ψi = exp
(
(λ+ αcλ2)ξi

)
.

With 0 ≤ λ ≤ 1
2α , we want λ+ αcλ2 ≤ 1

bKi−1
. This is ensured by α ≥ bmaxi∈[n]mi.

Define

Ak =

{ k∑
i=1

ξi ≥ x and

k∑
i=1

aK2
i−1 ≤ α

k∑
i=1

ξi + β

}
.

Then ω ∈ Ak implies

k∏
i=1

E [ψi | Fi−1]
ψi

≤ exp

(
−(λ+ αcλ2)

k∑
i=1

ξi +
(λ+ αcλ2)2

2

k∑
i=1

aK2
i−1

)
≤ exp(−λx+ cλ2β)

≤ exp(−λx+ 2λ2β).

Final step. Putting everything together proves the θ > 1 and α > 0 case. The rest of
the work for the other cases is included in Appendix B.

5. Non-convex Convergence

In this section, we prove the following convergence bound.

Theorem 15 Assume f is L-smooth and that, conditioned on the previous iterates, et is
centered and ‖et‖ is K-sub-Weibull(θ) with θ ≥ 1/2. If θ > 1/2, assume f is ρ-Lipschitz.
Let δ1, δ2, δ3 ∈ (0, 1) and define δ = max{δ1, δ2, δ3}. Then, for T iterations of SGD with
ηt = c/

√
t+ 1 where c ≤ 1/L, w.p. ≥ 1− δ1 − δ2 − δ3,

1√
T

T−1∑
t=0

1√
t+ 1

‖∇f(xt)‖2

≤ 4(f(x0)− f?)
c
√
T

+
γ(θ) log(1/δ3)√

T
+

4LK2c(4eθ log(2/δ1))
2θ log(T + 1)√

T

= O

(
log(T ) log(1/δ)2θ + γ(θ) log(1/δ)√

T

)
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where

γ(θ) =



64K2 θ = 1/2

8 max
{

(4θ)θeKρ, 4(4θ)2θe2K2
}

θ ∈ (1/2, 1]

8 max

{
2 log(2T/δ2)

θ−1Kρ,

4

[
(22θ+1 + 2)Γ(2θ + 1) +

23θΓ(3θ + 1)

3 log(2T/δ2)θ−1

]
K2

} θ > 1

and observe γ(θ) = O
(
log(T/δ)min{0,θ−1}) for any θ ≥ 1

2

Proof As with the P L analysis we start the non-convex analysis with Eq. (3). From this,
we get a master bound on a weighted sum of the ‖∇f(xt)‖2. Our goal is a convergence rate
for a weighted average of the ‖∇f(xt)‖2 since this would imply convergence to a first-order
stationary point, which is the best one can hope for without further assumptions. The master
bound is in terms of two sums, an inner product sum and a norm sum. We bound the norm
sum using an established sub-Weibull concentration inequality. The inner product sum, on
the other hand, is the part that requires the MDS concentration inequality of Theorem 11.

Master bound. As in Section 3, again assume f is L-smooth, hence

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖x− y‖2

for all x, y ∈ Rd. Set y = xt+1 = xt − ηtgt = xt − ηt(∇f(xt)− et) and x = xt. Then we get

f(xt+1) ≤ f(xt)− ηt
(

1− Lηt
2

)
‖∇f(xt)‖2 + ηt(1− Lηt)〈∇f(xt), et〉+

Lη2t
2
‖et‖2.

Summing this and using f(xT ) ≥ f?, we get

T−1∑
t=0

ηt

(
1− Lηt

2

)
‖∇f(xt)‖2 ≤ f(x0)− f? +

T−1∑
t=0

ηt(1− Lηt)〈∇f(xt), et〉︸ ︷︷ ︸
inner product sum

+
L

2

T−1∑
t=0

η2t ‖et‖2︸ ︷︷ ︸
norm sum

.

(11)

We would like to bound

T−1∑
t=0

ηt(1− Lηt)〈∇f(xt), et〉 ≤ O
(
T−1∑
t=0

η2t ‖∇f(xt)‖2
)

and
L

2

T−1∑
t=0

η2t ‖et‖2 ≤ O
(
T−1∑
t=0

η2t

)

with high probability so that if ηt = Θ(1/
√
t+ 1), we get

min
0≤t≤T−1

‖∇f(xt)‖2 ≤
1√
T

T−1∑
t=0

1√
t+ 1

‖∇f(xt)‖2 ≤ O
(

log(T + 1)√
T

)
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with high probability. While these bounds are in big-O notation, the bounds we prove will
be precise.

Norm sum bound. Assume that, conditioned on the previous iterates, et is centered
and ‖et‖ is K-sub-Weibull(θ) with θ ≥ 1/2. Set ηt = c/

√
t+ 1 with c ≤ 1/L. Let δ1 ∈ (0, 1).

Using the law of total expectation,

E

[
exp

((
η2t ‖et‖2
η2tK

2

)1/2θ
)]
≤ 2.

Thus, η2t is η2tK-sub-Weibull(2θ) so we can apply the following sub-Weibull concentration
inequality.

Lemma 16 (Vladimirova et al., 2020, Thm. 1) (Wong et al., 2020, Lma. 5) Suppose
X1, . . . , Xn are sub-Weibull(θ) with respective parameters K1, . . . ,Kn. Then, for all γ ≥ 0,

P

(∣∣∣∣ n∑
i=1

Xi

∣∣∣∣ ≥ γ
)
≤ 2 exp

(
−
(

γ

v(θ)
∑n

i=1Ki

)1/θ
)
,

where v(θ) = (4e)θ for θ ≤ 1 and v(θ) = 2(2eθ)θ for θ ≥ 1.

Applying Lemma 16, we get, w.p. ≥ 1− δ1,

L

2

T−1∑
t=0

η2t ‖et‖2 ≤ LK2(4eθ log(2/δ1))
2θ
T−1∑
t=0

η2t

≤ LK2c2(4eθ log(2/δ1))
2θ log(T + 1).

Inner product sum bound. Assume that θ > 1. We will prove the easier cases of
θ = 1/2 and θ ∈ (1/2, 1] in the appendix. Assume f is ρ-Lipschitz continuous. Define

ξt = ηt(1− Lηt)〈∇f(xt), et〉
Kt−1 = ηt(1− Lηt)K‖∇f(xt)‖

and mt = ηt(1− Lηt)Kρ.
Recall that we defined Ft as the sigma algebra generated by e0, . . . , et for all t ≥ 0 and
F−1 = {∅,Ω}. So, ξt is Ft-measurable and Kt−1 is Ft−1-measurable; hence (ξt) and (Kt) are
adapted to (F t). We also have, for all t ≥ 0, 0 ≤ Kt−1 ≤ mt almost surely, E [ξt | Ft−1] = 0,
and

E
[
exp

(
(|ξt|/Kt−1)

1/θ
)
| Ft−1

]
≤ 2.

In other words, (ξt) is a sub-Weibull MDS and (Kt) captures the scale parameters. Let
δ2, δ3 ∈ (0, 1) and define

δ = δ2

β = 0

λ =
1

2α
and x = 2α log(1/δ3).
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Applying Theorem 11, we get, for all α ≥ bKρc, w.p. ≥ 1− 2δ2 − δ3,

T−1∑
t=0

ηt(1− Lηt)〈∇f(xt), et〉 ≤ 2α log(1/δ3) +
aK2

α

T−1∑
t=0

η2t (1− Lηt)2‖∇f(xt)‖2.

Combining this with the norm sum bound and master bound, we get, for all α ≥ bKρc,
w.p. ≥ 1− δ1 − 2δ2 − δ3,

T−1∑
t=0

ηtνt‖∇f(xt)‖2 ≤ f(x0)− f? + 2α log(1/δ3) + LK2c2(4eθ log(2/δ1))
2θ log(T + 1)

where

νt = 1− Lηt
2
− aK2

α
ηt(1− Lηt)2.

We want to bound νt away from zero. To do so, assume c ≤ 1
L and α ≥ 4aK2c. Then νt ≥ 1

4 .
Setting

α = max{bKρ, 4aK2}c

and plugging in a and b completes the proof.

Remark 17 Note that Lipschitz continuity follows immediately if the iterates are bounded.
This might lead one to consider using projected SGD, but there are certain issues preventing us
from analyzing it, which we discuss in Appendices C and D. But, is Lipschitz continuity even
a necessary assumption? Li and Liu (2022), building off of our pre-print, were actually able
to relax the Lipschitz continuity assumption to the assumption that 1√

t+1
‖∇f(xt)‖ ≤ ρ ∀t ≥ 0.

To see that this works, note that we can change the definition of mt to c(1−Lηt)Kρ and the
rest of the analysis, including the result, still holds.

Remark 18 Can we extend the analysis beyond sub-Weibull? Yes, but then we would not
get logarithmic dependence on 1/δ. For example, if we assume E [‖et‖p | Ft−1] for some
p > 2, then we could use Corollary 3 instead of Corollary 2 of Bakhshizadeh et al. (2023).
This would give us a O(log(1/δ)/

√
T + 1/(δaT b)) convergence rate for some b > 1/2. Thus,

we would not have a logarithmic dependence on 1/δ in general, but would approach such a
dependence as the number of iterations increases.

6. Post-processing

Note that the results of Theorem 15 are in terms of 1√
T

∑T−1
t=0

1√
t+1
‖∇f(xt)‖2 which is not

a particularly useful quantity by itself. To get a bound in terms of a single iterate, we prove
the following probability result, introduce a novel post-processing strategy which outputs a
single iterate x, and apply the probability result to bound ‖∇f(x)‖2 with high probability.
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Theorem 19 Let T ∈ N. For all t ∈ [T ], let Z = t with probability pt, where
∑T

t=1 pt = 1.
Let Z1, . . . , Zn be independent copies of Z. Let Y = {Z1, . . . , Zn}. Let X be an RT+-valued
random variable independent of Z. Then

P

(
min
t∈Y

Xt > eγ

)
≤ exp(−n) + P

(
T∑
t=1

ptXt > γ

)
∀γ > 0.

Proof First, letting γ > 0 and x ∈ RT+,

P

(
min
t∈Y

xt > γ

)
= P

(
n⋂
i=1

{xZi > γ}
)

(i)
=

n∏
i=1

P (xZi > γ)

= P (xZ > γ)n

(ii)

≤
(

1

γ
E [xZ ]

)n
=

(
1

γ

T∑
t=1

ptxt

)n
,

where (i) follows by the independence of the Zi and (ii) follows by Markov’s inequality since
xZ is non-negative almost surely. Next, define

A =

{
x ∈ RT+

∣∣∣∣ T∑
t=1

ptxt ≤ γ
}

B =

{
(x, y) ∈ RT+ × [T ]n

∣∣∣∣ xyi > eγ ∀i ∈ [n]

}
.

Observe,

P ((X,Y ) ∈ B)
(i)
= P (X ∈ A, (X,Y ) ∈ B) + P (X ∈ Ac, (X,Y ) ∈ B)

(ii)
=

∫
A
P ((x, Y ) ∈ B)µ(dx) +

∫
Ac
P ((x, Y ) ∈ B)µ(dx)

≤
∫
A

(
1

eγ

T∑
t=1

ptxt

)n
µ(dx) +

∫
Ac
µ(dx)

≤ exp(−n)

∫
A
µ(dx) + P (X ∈ Ac)

≤ exp(−n) + P

(
T∑
t=1

ptXt > γ

)
where (i) follows from the law of total probability and (ii) follows from Theorem 20.3 of
Billingsley (1995) since X and Y are independent.
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Corollary 20 Assume f is differentiable. Let δiter ∈ (0, 1) and T ∈ N. Set niter =
dlog(1/δiter)e. Sample niter indices with replacement from {0, . . . , T − 1} with probabilities
p0, . . . , pT−1 to form the set S = {s1, . . . , sniter}. Then, for T iterations of SGD with any
step-size sequence (ηt),

P

(
min
t∈S
‖∇f(xt)‖2 > eγ

)
≤ P

(
T−1∑
t=0

pt‖∇f(xt)‖2 > γ

)
+ δiter ∀γ > 0.

To combine the corollary with Theorem 15, we can set

pt =
1/
√
t+ 1∑T−1

t=0 1/
√
t+ 1

and use that
1∑T−1

t=0 1/
√
t+ 1

≤ 1√
T
.

To see the merit of this post-processing strategy, let’s compare it to a naive approach one
might take to apply the result of Theorem 15. The standard trick is to observe

min
0≤t≤T−1

‖∇f(xt)‖2 ≤
1√
T

T−1∑
t=0

1√
t+ 1

‖∇f(xt)‖2. (12)

So, we could keep track of ‖∇f(xt)‖ at every iteration and record the iterate where it is
lowest. However, this requires exact gradient information, which may be more costly than
the stochastic gradient used in the algorithm. In Ghadimi and Lan (2013), they pick index
s with probability proportional to 1/

√
s+ 1 so that E

[
‖∇f(xs)‖2

]
is proportional to the

right-hand side of Eq. (12). They do this for Θ(log(1/δ)) runs and pick the best of the runs.
Corollary 20, on the other hand, allows us to sample a set S of niter = Θ(log(1/δ)) indices
and pick the best iterate from among these samples. Hence, we call δiter the iterate sampling
failure probability.

But, Corollary 20 is not the end of the story since to compute even argmint∈S‖∇f(xt)‖2
still requires full gradient information. In the sample average approximation setting, this
can be obtained by running on the full batch of data (rather than a mini-batch). However, if
this is computationally infeasible or if we are in the stochastic approximation setting, then
we instead have to use empirical gradients over a test or validation set. This is what we do
for the full post-processing strategy presented in the following theorem.

Theorem 21 Let (Ω,F , P ) be a probability space. Let F : Rd × Ω → R and assume
F (·; ξ) is differentiable for all ξ ∈ Ω. Let f = E [F (·; ξ)]. Assume ∇f = E [∇F (·; ξ)]
and E

[
‖∇f(x)−∇F (x; ξ)‖2

]
≤ σ2 ∀x ∈ Rd. Let δiter, δemp ∈ (0, 1) and T ∈ N. Set

niter = dlog(1/δiter)e and nemp = d6(niter + 1)σ2/(eγδemp)e. Apply the following procedure:

1. Sample niter indices with replacement from {0, . . . , T−1} with probabilities p0, . . . , pT−1
to form the set S = {s1, . . . , sniter}.

2. Sample ξ1, . . . , ξnemp independently.

3. Run T iterations of SGD with any step-size sequence (ηt) to form (xt).
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4. Compute

x = argmin
t∈S

∥∥∥∥ 1

nemp

nemp∑
j=0

∇F (xt; ξj)

∥∥∥∥2.
Then,

P
(
‖∇f(x)‖2 > 5eγ

)
≤ P

(
T−1∑
t=0

pt‖∇f(xt)‖2 > γ

)
+ δiter + δemp ∀γ > 0.

Proof Apply Theorem 2.4 of Ghadimi and Lan (2013) to get

P
(
‖∇f(x)‖2 > 5eγ

)
≤ P

(
min
t∈S
‖∇f(xt)‖2 > eγ

)
+

6(niter + 1)σ2

eγnemp
∀γ, λ > 0.

Using the definitions of niter and nemp, and applying Corollary 20, proves the result.

We call δemp the empirical gradient failure probability. Note that if ‖∇f(x)−G(x, ξ)‖
is K-sub-Weibull(θ), then et is centered and ‖et‖ is K-sub-Weibull(θ), in which case both
Theorem 15 and Theorem 21 apply, with σ2 = 2Γ(2θ + 1)K2 (by Lemma 6) for the latter.
Also, note that for both Corollary 20 and Theorem 21, while we have to specify T in
advance, we only have to take maxS iterations to apply the bound from Theorem 15 to the
post-processing output.

7. Neural Network Example

Consider the two layer neural network model

x 7→ φ(xTW )a

where φ is a differentiable activation function applied coordinate-wise, x ∈ Rd is a data point
(feature vector), W ∈ Rd×m is the first-layer weights, and a ∈ {±1}m is the second-layer
weights. If we are given a data set X ∈ Rd×n and labels y ∈ Rn, then we can train W
(leaving a fixed for simplicity) using the squared loss:

f(W ) =
1

2
‖φ(XTW )a− y‖2.

In this case,

vec(∇f(W )) =
(
diag(a)φ′(W TX) ∗X

) (
φ(XTW )a− y

)
where ∗ is the Khatri-Rao product (Oymak and Soltanolkotabi, 2020). For our example, we
use the GELU activation, φ(x) = x[1 + erf(x/

√
2)]/2 (Hendrycks and Gimpel, 2016), which

satisfies |φ′(x)| ≤ 1.13 and |φ′′(x)| ≤ .11 for all x ∈ R. Thus, we can apply Lemma 2. Since
limx→∞ φ

′′(x) = 0 = limx→−∞ φ
′′(x), we heuristically set b = 0 in the lemma and estimate

the strong smoothness of f as ≈ m‖X‖22, setting our step-size accordingly.
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Figure 1: Empirical 1− δ convergence error, averaged over 10000 runs. The dashed lines
show the mean ± one standard deviation (computed over 5 blocks of 2000 runs
each). The data are less reliable for small δ.

In order to demonstrate the effect of gradient noise on convergence error, we train W
on a fixed synthetic data set while injecting noise into the gradient. The labels come from
a neural network model with width, m′, larger than the width of the training model. We
also make sure the total number of trainable parameters is less than n so that f? > 0. The
noise we inject has uniformly random direction and Weibull norm with scale parameter
K = 1 and shape parameter 1/θ, with θ ∈ {2, 3, 4}. We keep the same initialization for
all trials. We run 100 iterations of SGD and then define the convergence error to be the
best gradient norm squared divided by the initial gradient norm squared. We compute the
empirical CDF of the convergence error over 10000 trials and then consider δ in the ranges
[0.1, 0.2], [0.01, 0.1], and [0.001, 0.01]. We care about the dependence of the convergence
error on δ for small δ, but for too small of δ, the empirical CDF is not a good approximation
to the true CDF (see Fig. 1) due to the nature of order statistics. Our code can be found at
https://github.com/liammadden/sgd.

From Theorem 15, for a particular range of δ (and for fixed T ), the upper bound has
dependence either log(1/δ)θ, log(1/δ), or log(1/δ)2θ. For sufficiently small δ, the log(1/δ)2θ

will dominate, but the upper limit of this range of δ may be smaller than the lower limit
of the range of δ for which the empirical CDF is a good approximation to the true CDF.
In other words, if we showed that the true CDF for this particular example has log(1/δ)2θ

dependence for δ sufficiently small, then we would have shown that the δ-dependence of the
upper bound in Theorem 15 is tight. However, with the empirical CDF, we are only able to
show that the exponent increases as δ shrinks. Figure 1 shows the dependence for the three
different ranges. We assume the convergence error has dependence b log(1/δ)a and find the
line of best fit as log(b) + a log log(1/δ). The different values of a are given in Table 1.
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a δ ∈ [0.1, 0.2] δ ∈ [0.01, 0.1] δ ∈ [0.001, 0.01]

θ = 2 0.64 0.85 1.40

θ = 3 0.93 1.56 2.33

θ = 4 1.51 2.38 4.08

Table 1: Empirically estimated exponents of log(1/δ)
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δ ∈ [.1, .2]

δ ∈ [.01, .1] δ ∈ [.001, .01]

θ = 2

θ = 3

θ = 4

exponent 0.64

exponent 0.93

exponent 1.51

exponent 0.85

exponent 1.56

exponent 2.38

exponent 1.4

exponent 2.33

exponent 4.08

Figure 2: Same data as Fig. 1 but each line series is normalized, and the x-axis is log(1/δ)
and plotted on a logarithmic scale, so log(1/δ)a dependence shows us a straight
line with slope a. The δ range is from 0.2 (left side) to 0.01 (right side), since
any smaller δ has unreliable statistics. Lines of best fit using the exponents from
Table 1 are shown (with arbitrary shifts for clarity).

Our experiments suggest that injected Weibull noise results in convergence error with
dependence Ω(log(1/δ)c(δ)θ+d(δ)) where c(δ) increases as δ decreases, thus roughly corrobo-
rating our upper bound. In particular, by computing a line of best fit for the a values in
each of the three δ ranges, we can estimate that c(δ) increases from 0.43, to 0.77, to 1.34 and
d(δ) decreases from -0.28, to -0.7, to -1.42, suggesting that we are in the log(1/δ)θ−1 regime.

8. Conclusions

This paper analyzed the convergence of SGD for objective functions that satisfy the P L
condition and for generic non-convex objectives. Under a sub-Gaussian assumption on
the gradient error, we showed a high probability convergence rate matching the mean
convergence rate for P L objectives. Under a sub-Weibull assumption on the noise, we showed
a high probability convergence rate matching the mean convergence rate for non-convex
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objectives. We also provided and analyzed a post-processing method for choosing a single
iterate. To prove the convergence rate, we first proved a Freedman-type inequality for
martingale difference sequences that extends previous Freedman-type inequalities beyond
the sub-exponential threshold to allow for sub-Weibull tail-decay. Finally, we considered a
synthetic neural net problem and showed that the heaviness of the tail of the gradient noise
has a direct effect on the heaviness of the tail of the convergence error.
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Appendix A. Proof of Lemma 1

Here we prove Lemma 1.
Proof First,

f(W ) =
n∑
i=1

1

2

[
φ(x>i W )v − yi

]2
and

∂

∂ws,t

[
φ(x>i W )v − yi

]
=

∂

∂ws,t

m∑
j=1

vjφ(x>i wj) = vtφ
′(xTi wt)xs,i.

So,

∂

∂ws,t
f(W ) =

n∑
i=1

[
φ(x>i W )v − yi

]
vtφ
′(xTi wt)xs,i.

Thus,

∂2

∂w`,r∂ws,t
f(W ) =

n∑
i=1

vrφ
′(x>i wr)x`,ivtφ

′(x>i wt)xs,i

+ δr,t

n∑
i=1

[
φ(x>i W )v − yi

]
vtφ
′′(x>i wt)x`,ixs,i

where δ is the Kronecker delta. Let b be the largest absolute element of X. Then, viewing
W as a vector,

‖∇f(W )‖2 ≤
√
md‖∇f(W )‖∞ ≤

√
mdnab‖v‖∞(a

√
m‖v‖2 + ‖y‖∞)

and

‖∇2f(W )‖2 ≤ md‖∇2f(W )‖max ≤ mdn
(
a2b2‖v‖2∞ + ab2‖v‖∞(a

√
m‖v‖2 + ‖y‖∞)

)
,
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proving the result.

And here we prove Lemma 2.

Proof Define F : w 7→ φ(X>vec−1(w))v and L : w 7→ ‖F (w)− y‖22/2. Then ‖DF (w)‖2 ≤√
ma‖v‖∞‖X‖2 and ‖DF (w)−DF (u)‖2 ≤ b‖v‖∞‖X‖2‖X‖1,2‖w − u‖2 for all w, u ∈ Rmd

by Lemmas 3 and 5 of Oymak and Soltanolkotabi (2020). Let ρ =
√
ma‖v‖∞‖X‖2 and

L = b‖v‖∞‖X‖2‖X‖1,2. Observe

‖∇L(w)‖2 = ‖DF (w)>(F (w)− y)‖2 ≤ ‖DF (w)‖2‖F (w)− y‖2 ≤ ρ
√

2α

and

‖∇L(w)−∇L(u)‖ = ‖DF (w)>(F (w)− F (v))‖2 + ‖(DF (w)−DF (v))>(F (v)− y)‖2
≤ ‖DF (w)‖2‖F (w)− F (v)‖2 + ‖DF (w)−DF (v)‖2‖F (v)− y‖2
≤ ρ2‖w − v‖2 + L‖w − v‖2

√
2α = (ρ2 + L

√
2α)‖w − v‖2,

proving the result.

Appendix B. Remaining Work for Proof of Theorem 11

First we need the following two lemmas. Lemma 23 extends Proposition 2.7.1 of Vershynin
(2018) to interpolate between the sub-Gaussian and sub-exponential regimes.

Lemma 22 (Vershynin, 2018, Prop. 2.5.2(e)) If X is centered and K-sub-Guassian then
E [exp(λX)] ≤ exp(λ2K2) ∀λ ∈ R.

Lemma 23 If X is centered and K-sub-Weibull(θ) with θ ∈ (1/2, 1], then

E [exp(λX)] ≤ exp
(
λ2

2 (4θ)2θe2K2
)

for all λ ∈
[
0, 1

(4θ)θeK

]
.
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Proof First, using Lemma 6 and Γ(x+ 1) ≤ xx ∀x ≥ 1, we can get ‖X‖p ≤ (2θ)θKpθ for

all p ≥ 1/θ, and so, in particular, for all p ≥ 2. Thus, if λ ∈
[
0, 1

(4θ)θeK

]
, then

E [exp(λX)] = E

1 + λX +
∞∑
p=2

(λX)p

p!


= 1 +

∞∑
p=2

λp‖X‖pp
p!

≤ 1 +
∞∑
p=2

λp(2θ)θpKppθp

p!

≤ 1 +

∞∑
p=2

(
λ(2θ)θeK

p1−θ

)p

≤ 1 +

∞∑
p=2

(
λ(4θ)θ(e/2)K

)p
≤ 1 +

(
λ(4θ)θ(e/2)K

)2
1− λ(4θ)θ(e/2)K

≤ 1 + 2
(
λ(4θ)θ(e/2)K

)2
≤ exp

(
λ2

2
(4θ)2θe2K2

)
,

completing the proof.

Then, the next three lemmas allow us to include previous results as special cases of the
theorem.

Lemma 24 (Fan et al., 2015, Thm. 2.6) Let (Ω,F , (Fi), P ) be a filtered probability space.
Let (ξi) and (Ki) be adapted to (Fi). Let n ∈ N. For all i ∈ [n], assume 0 ≤ Ki−1 ≤ mi

almost surely, E [ξi | Fi−1] = 0, and

E [exp(λξi) | Fi−1] ≤ exp

(
λ2

2
aK2

i−1

)
∀λ ∈

[
0,

1

bKi−1

]
.

Then, for all x, β ≥ 0, and λ ∈
[
0, 1

bmaxi∈[r]mi

]
,

P

 ⋃
k∈[n]

{ k∑
i=1

ξi ≥ x and

k∑
i=1

aK2
i−1 ≤ β

} ≤ exp

(
−λx+

λ2

2
β

)
.

Proof Define

ψi = exp (λξi)
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and

Ak =

{ k∑
i=1

ξi ≥ x and
k∑
i=1

aK2
i−1 ≤ β

}
.

Then ω ∈ Ak implies

k∏
i=1

E [ψi | Fi−1]
ψi

≤ exp

(
−λ

k∑
i=1

ξi +
λ2

2

k∑
i=1

aK2
i−1

)

≤ exp

(
−λx+

λ2

2
β

)
.

Lemma 25 (Harvey et al., 2019, Thm. 3.3) Let (Ω,F , (Fi), P ) be a filtered probability
space. Let (ξi) and (Ki) be adapted to (Fi). Let n ∈ N. For all i ∈ [n], assume Ki−1 ≥ 0
almost surely, E [ξi | Fi−1] = 0, and

E [exp(λξi) | Fi−1] ≤ exp

(
λ2

2
aK2

i−1

)
∀λ ≥ 0.

Then, for all x, β, α ≥ 0, and λ ∈
[
0, 1

2α

]
,

P

 ⋃
k∈[n]

{ k∑
i=1

ξi ≥ x and
k∑
i=1

aK2
i−1 ≤ α

k∑
i=1

ξi + β

} ≤ exp(−λx+ 2λ2β).

Lemma 26 (Freedman, 1975) Let (Ω,F , (Fi), P ) be a filtered probability space. Let (ξi) and
(Ki) be adapted to (Fi). For all i ∈ [n], assume Ki−1 ≥ 0 almost surely, E [ξi | Fi−1] = 0,
and

E [exp(λξi) | Fi−1] ≤ exp

(
λ2

2
aK2

i−1

)
∀λ ≥ 0.

Then, for all x, β ≥ 0, and λ ≥ 0,

P

 ⋃
k∈[n]

{ k∑
i=1

ξi ≥ x and

k∑
i=1

aK2
i−1 ≤ β

} ≤ exp

(
−λx+

λ2

2
β

)
.

If the ξi’s are sub-Gaussian, that is, if θ = 1/2, then, from Lemma 22,

E [exp(λξi) | Fi−1] ≤ exp

(
λ2

2
2K2

i−1

)
∀λ ∈ R,

so we can apply Lemma 25 if α > 0 or Lemma 26 if α = 0.
If the ξi’s are at most sub-exponential, that is, if 1/2 < θ ≤ 1, then, from Lemma 23,

E [exp(λξi) | Fi−1] ≤ exp

(
λ2

2
(4θ)2θe2K2

i−1

)
∀λ ∈

[
0,

1

(4θ)θeKi−1

]
,

so we can apply Lemma 14 if α > 0 or Lemma 24 if α = 0.
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Figure 3: Contour plot of the P L function counter-example to projected gradient flow

Appendix C. P L Projected SGD

When optimizing over a constraint set, X ( Rd, if f is strongly convex, then so is f plus the
indicator function of X, and results for gradient descent methods easily extend to projected
gradient descent. On the other hand, if f is P L, then f plus the indicator function is not
KL (Kurdyka- Lojasiewicz). This has real impacts on gradient descent algorithms, where
gradient descent might converge while projected gradient descent does not. For example,
there is a smooth function, a mollified version of f(x, y) =

(
a(x)2+ − b (|y| − c)+

)
+

, such
that the P L inequality is satisfied but projected gradient descent does not converge to a
minimizer; we formalize this in the remark below.

Remark 27 Consider f(x, y) =
(
a(x)2+ − b (|y| − c)+

)
+

where (·)+ denotes max(·, 0) and

a, b > 0, c ≥ 0. The minimum of f is 0 and X? = {(x, y) | x ≤ 0 or |y| ≥ a
bx

2 + c}. If we
use ϕ(x) = XB1(0) · exp

(
−1/(1− ‖x‖2)

)
/Φ—where X denotes the indicator function, B1(0)

denotes the ball of radius 1 centered at 0, and Φ is the normalization constant—to mollify f ,
then, for ε < c, fε has P L constant 2a and smoothness constant 2a. Consider the starting
point (d, 0). For a, b, c, d chosen appropriately, the distance from (d, 0) to its projection onto
X? is strictly less than d. Thus, if we let X be the ball centered at (d, 0) with radius equal
to exactly that distance, then the constrained problem and the unconstrained problem have
the same minimum. However, projected gradient flow, starting from (d, 0), ends up stuck at
a non-minimizer: the point of X closest to (0, 0). See Figure 3 for the contour plot when
a = 1/10, b = 1 = c, and d = 10.

In order to generalize gradient methods to projected gradient methods under PL-like
assumptions, the proper generalization is that the function should satisfy a proximal P L
inequality (Karimi et al., 2016). However, such an assumption is quite restrictive compared
to the P L inequality. We leave the problem of convergence with just the P L inequality, via
added noise or a Frank-Wolfe type construction, as a future research direction.
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Appendix D. Non-convex Projected SGD

Consider xt+1 = proj(xt − ηtgt) = proj(xt − ηt(∇f(xt)− et)). Define

Gt =
xt − proj(xt − ηt∇f(xt))

ηt

Et =
xt+1 − proj(xt − ηt∇f(xt))

ηt
.

Note that if proj = I, then Gt = ∇f(xt) and Et = et. Moreover, xt = proj(xt) and
xt+1 = proj(xt+1) so, by the non-expansiveness of proj, ‖Gt‖ ≤ ‖∇f(xt)‖ and ‖Et‖ ≤ ‖et‖.
We can get even tighter bounds using the second prox theorem (Beck, 2017, Thm. 6.39):
‖Gt‖2 ≤ 〈∇f(xt), Gt〉 and 〈Gt, Et〉 ≤ 〈∇f(xt), Et〉.

It is easy to come up with an example where ‖∇f(xt)‖ does not go to zero, so we would
like to bound ‖Gt‖ instead. We start as usual:

f(xt+1) ≤ f(xt) + 〈∇f(xt), xt+1 − xt〉+
L

2
‖xt+1 − xt‖2.

Focusing on the norm term,

L

2
‖xt+1 − xt‖2 =

Lη2t
2
‖Gt‖2 − Lη2t 〈Gt, Et〉+

Lη2t
2
‖Et‖2.

Focusing on the inner product term,

〈∇f(xt), xt+1 − xt〉 = ηt〈∇f(xt), Et −Gt〉
= ηt〈∇f(xt), Et〉 − ηt〈∇f(xt), Gt〉
� ηt〈Gt, Et〉 − ηt‖Gt‖2.

Unfortunately, we cannot proceed any further. Ghadimi et al. (2016) are able to get around
this but at the cost of getting

∑T−1
t=0 ηt‖et‖2 = O(

√
T ) instead of

∑T−1
t=0 η

2
t ‖et‖2 = O(log(T )).

To mitigate this, they require an increasing batch-size. Reddi et al. (2016) were able to
remove this requirement, but only for non-convex projected SVRG not non-convex projected
SGD. Thus, we leave the analysis of non-convex projected SGD as an open problem.
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Léon Bottou and Olivier Bousquet. The tradeoffs of large scale learning. In Neural
Information Processing Systems (NeurIPS), volume 20, 2008.

Zachary Charles and Dimitris Papailiopoulos. Stability and generalization of learning
algorithms that converge to global optima. In International Conference on Machine
Learning (ICML), volume 80, pages 745–754, 2018.
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