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Abstract

A complete structure-preserving learning scheme for single-input/single-output (SISO) lin-
ear port-Hamiltonian systems is proposed. The construction is based on the solution,
when possible, of the unique identification problem for these systems, in ways that reveal
fundamental relationships between classical notions in control theory and crucial proper-
ties in the machine learning context, like structure-preservation and expressive power. In
the canonical case, it is shown that, up to initializations, the set of uniquely identified
systems can be explicitly characterized as a smooth manifold endowed with global Eu-
clidean coordinates, which allows concluding that the parameter complexity necessary for
the replication of the dynamics is only O(n) and not O(n2), as suggested by the standard
parametrization of these systems. Furthermore, it is shown that linear port-Hamiltonian
systems can be learned while remaining agnostic about the dimension of the underlying
data-generating system. Numerical experiments show that this methodology can be used
to efficiently estimate linear port-Hamiltonian systems out of input-output realizations,
making the contributions in this paper the first example of a structure-preserving machine
learning paradigm for linear port-Hamiltonian systems based on explicit representations of
this model category.

Keywords: Linear port-Hamiltonian system, machine learning, structure-preserving al-
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1. Introduction

Machine learning has experienced substantial development in recent years due to significant
advances in algorithmics and a fast growth in computational power. The universal approx-
imation properties of neural networks (Cybenko (1989); Hornik et al. (1989)) and other
similar families make it possible for them to learn any function with very few prior assump-
tions. A typical modus operandi in supervised machine learning is first to choose a neural
network architecture, to perform forward propagation using available data, to compute
some loss function, and then to carry out backward propagation, that is, gradient descent,
to recursively optimize the parameters. This paradigm has proved to be very successful in
the learning of numerous complicated tasks, including time-series forecasting (Hochreiter
and Schmidhuber (1997)), computer vision (Krizhevsky et al. (2012)), and natural language
processing (Devlin et al. (2018)).

In physics and engineering, machine learning is called to play an essential role in pre-
dicting and integrating the equations associated with physical dynamical systems. Physical
systems are primarily formulated in terms of ordinary, time-delay, and partial differential
equations that can be deduced mostly from variational principles. Consequently, some re-
searchers propose to learn adequately discretized versions of their corresponding vector fields
(see, for instance, Raissi and Karniadakis (2017),Qin et al. (2019), Long et al. (2018), and
references therein). In addition to vector fields learning, researchers have proposed “model-
free” methods like transformers (Shalova and Oseledets (2020); Acciaio et al. (2022)), reser-
voir computing (Jaeger and Haas (2004); Lu et al. (2018); Pathak et al. (2018a,b)), recurrent
neural networks (Bailer-Jones et al. (1998)), convolutional neural networks (Mukhopadhyay
and Banerjee (2020)), or LSTMs (Wang (2017)).

Various universal approximation properties theoretically explain the empirical success
of some of these approaches (see, for instance, Grigoryeva and Ortega (2018a,b); Gonon and
Ortega (2020, 2021)) of some of these learning paradigms. Nevertheless, for physics-related
problems, like in mechanics or optics, it is natural to build into the learning algorithm any
prior knowledge that we may have about the system based on physics’ first principles. This
may include specific forms of the laws of motion, conservation laws, symmetry invariance,
as well as other underlying geometric and variational structures. This observation regarding
the construction of structure-preserving schemes has been profusely exploited with much
success before the emergence of machine learning in the field of numerical integration (Gon-
zalez (2000); Marsden and West (2001); Leimkuhler and Reich (2004); McLachlan and
Quispel (2006)). Many examples in that context show how the failure to maintain specific
conservation laws can lead to physically inconsistent solutions.

The translation of this idea to the context of machine learning has led to the emergence
of a new domain collectively known as physics-informed machine learning (see Raissi et al.
(2017); Wu et al. (2018); Karniadakis et al. (2021) and references therein). In the spe-
cific case of Hamiltonian systems, the two main structural constraints are that the flow is
symplectic and the energy, that is,, the Hamiltonian, is conserved along the flow. Addition-
ally, symmetries are frequently present, which carries the emergence of additional conserved
quantities in the form of the so-called momentum maps via Noether’s Theorem (Abraham
and Marsden (1978); Marsden and Ratiu (1999); Ortega and Ratiu (2004)). These are all
examples of qualitative properties to be preserved by the learning algorithms. Needless
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to say, the above-mentioned “model-free” approaches generically fail to preserve all these
structures. With these in mind, several attempts have been made in the literature to develop
tailor-made learning algorithms for Hamiltonian systems. For example, in Greydanus et al.
(2019); Celledoni et al. (2023), neural methods are proposed to learn the Hamiltonian func-
tion directly. In Chen et al. (2020), a symplectic recurrent neural network is proposed that
uses symplectic integration while matching the predictions and observations and leads to
a structure-preserving paradigm. Other structure-preserving methods include the so-called
SympNet (Jin et al. (2020)), the generating function neural networks (GFNN) in Chen and
Tao (2021), and the symplectic reversible neural networks in Valperga et al. (2022). Symp-
Net constructs a universal approximating family of symplectic maps, while GFNN applies
a modified KAM theory to control long-term prediction error. Symplectic reversible neural
networks are also proposed as a family of universal approximating maps that concern, in
particular, reversible symplectic dynamics. In Zhong et al. (2020), a parametric framework
of learning Hamiltonian state dynamics with control is proposed, assuming that the Hamil-
tonian is separable. Under the same assumption, Tong et al. (2021) proposes to learn with
a parametrized Hamiltonian in a Taylor series form.

This paper’s focus differs from the references mentioned above in two ways. First, these
methods are designed to learn the state evolution of Hamiltonian systems, whereas our
approach focuses on learning the input-output dynamics of port-Hamiltonian systems while
remaining agnostic about the physical state space. As will be introduced later, these sys-
tems have an underlying Dirac structure that describes the geometry of numerous physical
systems with external inputs (van der Schaft and Jeltsema (2014)) and includes the dynam-
ics of the observations of Hamiltonian systems as a particular case. Even though various
learning schemes for these systems have already been proposed in the literature (Nageshrao
et al. (2015); Cherifi (2020); Desai et al. (2021); Beckers et al. (2022)), most works on the
learning of Hamiltonian systems deal with autonomous (separable) Hamiltonian systems
on which one assumes access to the entire phase space and not only to its observations.
Second, instead of a general nonlinear system for which only approximation error can be
possibly estimated, we consider, as a first approach exclusively linear systems, in which
case, we can obtain explicit representations of linear port-Hamiltonian systems in normal
form and characterize the symmetries and quotient spaces associated to the invariance by
system automorphisms. Thereby, we propose a structure-preserving learning paradigm with
a provable minimal parameter space.

The contributions in this paper are contained in several results that we briefly introduce
in the following lines. In Section 2, we define the notion of linear port-Hamiltonian systems
in normal form and present some necessary introductory concepts. We start in Theorem 7
by introducing system morphisms that allow us to represent any linear port-Hamiltonian
system in normal form as the image of another linear system of the same dimension in
which the state equation is in controllable canonical form. An obvious observation is that
since the constructed linear system and the original port-Hamiltonian system are linked by
a system morphism, the input/output relations of the former are input/output relations of
the latter once the initial state conditions have been properly set up. In particular, the
new system can be used to learn to reproduce the input/output dynamics of the original
port-Hamiltonian system (for a subspace of initial conditions) and this learning paradigm
is structure-preserving by construction. Similarly, Theorem 7 also contains another type of
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system morphisms that link any linear port-Hamiltonian system in normal form to some
linear system of the same dimension in observable canonical form. Consequently, the input-
ouput relations of the original port-Hamiltonian system with respect to any initial condition
can be captured by the observable Hamiltonian representation. Both representations are
derived based on classical techniques from control theory, the Cayley-Hamilton theorem,
and are ultimately corollaries of the Williamson normal form (Williamson (1936, 1937);
Ikramov (2018)). We show that the controllable and observable representations are closely
related to each other, and both system morphisms become isomorphisms for canonical port-
Hamiltonian systems. However, for the purpose of learning a general port-Hamiltonian
system that may not be canonical, we reveal that there is a trade-off between the structure-
preserving property and the expressive power. These results establish a strong link between
classical notions in the control theory, that is, controllability and observability, and those
in machine learning, namely, structure-preservation and expressive power.

Based on these explicit constructions and using the parametrizations that come with
them, we aim to tackle in Section 4 the unique identifiability of input-output dynamics
of linear port-Hamiltonian systems in normal form. Such a characterization is obviously
needed to solve the model estimation problem since, in applications, we only have access
to input/output data, and different state space systems can induce the same filter that
produces that data. This fact has important implications when it comes to the learning of
port-Hamiltonian systems out of finite-sample realizations of a given data-generating pro-
cess because such degeneracy makes impossible its exact recovery. Said differently, it is not
the space of port-Hamiltonian systems that needs to be characterized but its quotient space
with respect to the equivalence relation defined by the constraint on inducing the same in-
put/ouput filter. We shall see in Subsection 4.1 that the presence of non-canonical systems
in PHn and possible initialization inconsistencies make it, in general, difficult to directly
characterize that quotient space by filter-equivalence and we shall settle for the closest to
it that we can get, namely, the quotient space by system automorphisms that, as it will be
justified, approximates the general case in a certain sense and admits an explicit character-
ization as a Lie groupoid orbit space (Subsection 4.3). In Subsection 4.4, we restrict our
identification analysis to canonical port-Hamiltonian systems and show, first, that in that
situation eliminating the system isomorphisms completely identifies the set of input/output
systems up to state initializations (Sussmann (1976)), and second, that the corresponding
quotient spaces can be characterized as orbit spaces with respect to a group (as opposed
to a groupoid in the general unrestricted case) action, where the group is explicitly given
by a semi-direct product. Moreover, (see Subsection 4.6) this orbit space can be explicitly
endowed with a smooth manifold structure that has global Euclidean coordinates that can
be used at the time of constructing estimation algorithms. Consequently, up to state ini-
tializations, canonical port-Hamiltonian dynamics can be identified fully and explicitly in
either the controllable or the observable Hamiltonian representations and learned by esti-
mating an initial state condition and a unique set of parameters in a smooth manifold that
is obtained as a group orbit space.

Another learning-related problem that we tackle is that, in applications, one is obliged
to remain agnostic as to the dimension of the underlying data-generating port-Hamiltonian
system. This leads to the difficulty of choosing the dimension of the controllable/observable
Hamiltonian representations. We solve this issue by proving in Theorem 34 that, for m ≥ n,
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any 2n-dimensional linear port-Hamiltonian system in normal form can be regarded as the
restriction of a 2m-dimensional one to some subspace. This fact, together with some subse-
quent results, guarantees theoretically that we can choose a sufficiently large m in practice
and parametrize the observable Hamiltonian representation in dimension 2m and use it
for learning without assuming any knowledge about the dimension of the data generating
system. The paper concludes with some numerical examples in Section 7 that illustrate
the viability of the method that we propose in systems with various levels of complexity
and dimensions, as well as the computational advantages associated with using the param-
eter space in which unique identification is guaranteed. For the reader’s convenience, the
Python code necessary to reproduce these numerics is public and can be found in https:

//github.com/YINDAIYING/Learnability-of-Linear-Port-Hamiltonian-Systems.

2. Preliminaries

In this section, we introduce various notions and preliminary results necessary to understand
the context and the contributions of the paper.

2.1 State-space systems and morphisms

A continuous time state-space system is given by the following two equations
󰀫
ż = F (z, u),

y = h(z),
(1)

where u ∈ U is the input, z ∈ Z is the internal state and F : Z × U → Z is called the state
map. The first equation is called the state equation while the second one is usually referred
to as the observation equation. The solutions of (1) (when available and unique) yield an
input/output map that is by construction causal and time-invariant. State-space systems
will be sometimes denoted using the triplet (Z, F, h).

Definition 1 A map f : Z1 → Z2 is called a system morphism (see Grigoryeva and Ortega
(2021)) between the continuous-time state-space systems (Z1, F1, h1) and (Z2, F2, h2) if it
satisfies the following two properties:

(i) System equivariance: f(F1(z1, u)) = F2(f(z1), u), for all z1 ∈ Z1 and u ∈ U .

(ii) Readout invariance: h1(z1) = h2(f(z1)) for all z1 ∈ Z1.

As a direct consequence of this definition, the composition of system morphisms is again a
system morphism. In the case f is invertible and f−1 is also a morphism, we say that f is
a system isomorphism. An elementary but very important fact is that if f : Z1 → Z2 is a
linear system-equivariant map between (Z1, F1, h1) and (Z2, F2, h2) (Z1 and Z2 are in this
case vector spaces) then, for any solution z1 ∈ C1(I,Z1) of the state equation associated to
F1 and to the input u ∈ C1(I,U), with I ⊂ R an interval, its image f ◦ z1 ∈ C1(I,Z2) is a
solution for the state space system associated to F2 with the same input. Indeed, for any
t ∈ I we have, by the linearity and the system equivariance of f :

d

dt
[f(z1(t))] = Df(z1(t)) · ż1(t) = f(ż1(t)) = f(F1(z1(t), u(t))) = F2(f(z1(t)), u(t)).
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Notice that if at time t = 0, the output of both systems (Z1, F1, h1) and (Z2, F2, h2) are
the same, that is, the initial conditions z1(0) and z2(0) at the time of integrating (1) are
chosen so that h1(z1(0)) = h2(f(z1(0))), then the two systems (Z1, F1, h1) and (Z2, F2, h2)
have the same associated input/output relation, in the sense that we introduce later on
in definition (7). This observation has an important consequence, namely that, in general,
input/output systems are not uniquely identified since all the system-isomorphic state-space
systems with appropriate initializations yield the same input/output map.

2.2 Hamiltonian and port-Hamiltonian systems

Hamiltonian systems are dynamical systems whose behavior is governed by Hamilton’s
variational principle. Even though these autonomous systems can be in general formulated
on any symplectic manifold (Abraham and Marsden (1978)), we will restrict in this paper
to the case in which the phase space is the even-dimensional vector space R2n endowed with
the Darboux canonical symplectic form. In this case, the Hamiltonian system determined
by the Hamiltonian function H ∈ C1(R2n) is given by the differential equation

ż = J
∂H

∂z
, (2)

where J =

󰀗
0 In

−In 0

󰀘
is the so-called the canonical symplectic matrix. Note that −J = JT =

J−1 and hence endows R2n also with a complex structure. In this paper, we will denote the
canonical symplectic matrix as J, unless the context requires to specify the dimension, in
which case we denote it by Jn.

A linear Hamiltonian system is determined by a quadratic Hamiltonian function H(z) =
1
2z

TQz, where z ∈ R2n and Q ∈ M2n is a square matrix that without loss of generality can
be assumed to be symmetric. In this case, Hamilton’s equations (2) reduce to

ż = JQz. (3)

Port-Hamiltonian systems (see van der Schaft and Jeltsema (2014)) are state-space systems
that generalize autonomous Hamiltonian systems to the case in which external signals or
inputs control in a time-varying way the dynamical behavior of the Hamiltonian system. The
family of input-state-output port-Hamiltonian systems are those port-Hamiltonian systems
with no algebraic constraints on the state-space variables, and where the flow and effort
variables of the resistive, control and interaction ports are split into conjugated pairs. In
such cases, the implicit representation may be proved (see van der Schaft and Jeltsema
(2014)) to be equivalent to the following explicit form:

󰀻
󰁁󰀿

󰁁󰀽

ẋ = [J(x)−R(x)]
∂H

∂x
(x) + g(x)u,

y = gT (x)
∂H

∂x
(x),

(4)

where (u, y) is the input-output pair (corresponding to the control and output conjugated
ports), J(x) is a skew-symmetric interconnection structure andR(x) is a symmetric positive-
definite dissipation matrix. Our work concerns linear port-Hamiltonian systems in the
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normal form which we define now: a linear port-Hamiltonian system (4) is in normal form
if the skew-symmetric matrix J is constant and equal to the canonical symplectic matrix J,
the Hamiltonian matrix Q is symmetric positive-definite, and the energy dissipation matrix
R = 0, in which case (4) takes the form:

󰀫
ż = JQz+Bu,

y = BTQz,
(5)

with z ∈ R2n, u, y ∈ R, and where B ∈ R2n specifies the interconnection structure simulta-
neously at the input and output levels. By definition, such systems are fully determined by
the pair (Q,B), and hence we define by

ΘPHn :=
󰀋
(Q,B)|0 < Q ∈ M2n, Q = QT , B ∈ R2n

󰀌
(6)

the space of paramters of (5). Let θPHn : ΘPHn → PHn the map that associates to the
parameter (Q,B) ∈ θPHn the corresponding port-Hamiltonian state space system. For
convenience, we shall often use (Q,B) to denote elements in PHn unless there is a risk
of confusion. Note that the condition Q > 0 implies that the origin is a Lyapunov stable
equilibrium of (3). All these systems have the existence and uniqueness of solutions property
and hence determine a family of input/output systems, also known as filters, that will be
denoted by PHn. More specifically, the elements in PHn are maps U(Q,B) : C1([0, 1]) ×
R2n −→ C1([0, 1]) given by

U(Q,B) : C1([0, 1])× R2n −→ C1([0, 1])

(u,x0) 󰀁−→ U(Q,B)(u,x0)t = BTQeJQt
󰁫󰁕 t

0 e
−JQsBu(s) ds+ x0

󰁬
,

(7)
t ∈ [0, 1]. Note that PHn includes as a special case linear observations of autonomous
linear Hamiltonian systems (case B = 0). Note that as a manifold ΘPHn = S+

2n × R2n,
where S+

2n denotes the space of symmetric positive-definite matrices (SPD). We recall that
S+
2n has a natural differentiable manifold structure whose tangent space at any point is the

vector space of symmetric matrices S2n (see Quang Minh and Murino (2018), and references
therein).

Port-Hamiltonian systems are also closely linked to the so-called affine Hamiltonian
input-output systems that have been considered as a natural extension of Hamiltonian sys-
tems with external forces and studied extensively in the literature (see Crouch and van der
Schaft (1987) for the deterministic case and Bismut (1982); Lázaro-Camı́ and Ortega (2008)
for stochastic extensions), which take the form

󰀫
ẋ = XH(x) +Xg(x)u,

ỹ = g(x),
(8)

where XH and Xg are the Hamiltonian vector fields of H, g ∈ C1(R2n). In the linear case,
(8) reduces to

󰀫
ż = JQz− JBu,

ỹ = BT z,
(9)
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The relation between (9) and (5) is that ˙̃y = BT ż = BT JQz = (−JB)TQz, showing that
the time derivative of the affine Hamiltonian input-output system has a port-Hamiltonian
structure. Note that in the last equality, we used that BT JB = 0 since J is antisymmetric.

Consider now a general linear single-input/single-output system that takes the form

󰀫
ẋ = Ax+Bu,

y = CTx,
(10)

where A ∈ Mn, B,C ∈ Rn. Very often in control theory, it is the so-called transfer matrix
rather than the input/output system which is studied. The transfer matrix G(s) of (10) is
defined as G(s) = CT (Is−A)B and converts the differential equations in the time domain to
an algebraic equation in the Laplace frequency domain. It can be proved that the transfer
matrix of the port-Hamiltonian systems (5) satisfies G(s) = −G(−s) and that of systems
of the type (9) satisfies G(s) = G(−s). The converse statements also hold for canonical
realizations (see the definition in the next section and Brockett and Rahimi (1972), Maschke
and van der Schaft (1992)). These facts are a strong indication that the systems (5) and (9)
carry intrinsic symmetries that should be explicitly characterized. We shall do so in Section
4 for port-Hamiltonian systems but only using the original state-space representation.

2.3 Controllability and observability

Given a general linear system like (10), we recall that its controllability and observability
matrices are defined by

󰀅
B | AB | . . . | An−1B

󰀆
and

󰀵

󰀹󰀹󰀹󰀷

CT

CTA
...

CTAn−1

󰀶

󰀺󰀺󰀺󰀸
, respectively.

The system is called controllable (respectively, observable) if its controllability (respec-
tively, observability) matrix has full rank. Any linear controllable (respectively, observable)
system can be transformed into the so-called controllable (respectively, observable) canonical
forms by using appropriate linear system isomorphisms (see Polderman andWillems (1998)).
Conversely, systems in these canonical forms are automatically controllable (respectively,
observable). In the next section, we characterize the controllable/observable/canonical sys-
tems in the linear port-Hamiltonian category.

Controllability and observability are intertwined concepts in the linear port-Hamiltonian
category. Indeed, it can be proved (see Medianu et al. (2013)) that if a linear port-
Hamiltonian system without dissipation is controllable and det(Q) ∕= 0, then it is also
observable. Conversely, if it is observable, then this implies that det(Q) ∕= 0 and it is also
controllable (see Medianu et al. (2013)). As it is customary in systems theory, we say a
linear port-Hamiltonian system in normal form is canonical if it is both controllable and
observable. In view of the results that we just recalled, if det(Q) ∕= 0, then either control-
lability or observability is equivalent to the system being canonical. Furthermore, it can be
shown that being canonical is a generic property, that is, the set of canonical systems forms
an open and dense subset. We shall denote by PHcan

n ⊂ PHn the subset of PHn made of
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canonical linear port-Hamiltonian systems. Later on in the paper, the significance of these
observations will become apparent.

2.4 The symplectic Lie group and its Lie algebra

A square matrix S ∈ M2n in dimension 2n is called symplectic if it satisfies ST JS = J. The
set of all symplectic matrices forms a Lie group denoted by Sp(2n,R). It is well-known
that if S ∈ Sp(2n,R) then det(S) = ±1 and hence Sp(2n,R) is a subgroup of the general
linear group GL(2n,R). The Lie algebra sp(2n,R) of Sp(2n,R) is given by the matrices
A ∈ M2n that satisfy the identity AT J + JA = 0. Equivalently, A ∈ sp(2n,R) if and only
if A = JR, where R ∈ M2n is symmetric. We will refer to the elements in Sp(2n,R) as
symplectic matrices and to those in sp(2n,R) as infinitesimally symplectic.

Notably, the eigenvalues of the elements in sp(2n,R) appear in specific patterns that are
spelled out in the following classical proposition (see (Abraham and Marsden, 1978, Section
3.1)).

Proposition 2 The characteristic polynomial of any matrix in A ∈ sp(2n,R) is even.
Thus, if λ is an eigenvalue of A then so are −λ, λ̄, and −λ̄.

The importance of this group in our developments is that the (constant) vector field asso-
ciated with the Hamilton’s equations (3) is an element in sp(2n,R). Its flow determines
a one-parameter subgroup of elements in Sp(2n,R). We also introduce the unitary group
U(n,C), which consists of matrices U ∈ Mn(C) with UU∗ = U∗U = In, where U∗ denotes
the conjugate transpose of U . We denote by U(n) (see De Gosson (2006)) the image of
U(n,C) in Sp(2n,R) by the monomorphism

A+ iB →
󰀗
A −B
B A

󰀘
. (11)

The so-called 2-out-of-3 property (Arnold (1989)) implies that U(n) = O(2n,R)∩GL(n,C)∩
Sp(2n,R), and it is indeed the intersection of any two out of the three groups.

2.5 Williamson’s normal form

The following classical result can be found in Williamson (1936, 1937); Ikramov (2018);
De Gosson (2006).

Theorem 3 Let M ∈ M2n be a positive-definite symmetric real matrix. Then

(i) There exists a symplectic matrix S ∈ Sp(2n,R) such that M = ST

󰀗
D 0
0 D

󰀘
S, with

D = diag(d) an n-dimensional diagonal matrix with positive entries and d = (d1, . . . , dn)
T

.

(ii) The values d1, . . . , dn are independent, up to reordering, on the choice of the symplectic
matrix S used to diagonalize M .

10
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(iii) Assume S and S′ are two elements of Sp(2n,R) such that M = ST

󰀗
D 0
0 D

󰀘
S =

S′T
󰀗
D 0
0 D

󰀘
S′, where D is as above, then S(S′)−1 ∈ U(n).

Later in this paper, we always use the notation D = diag(d) to denote that D is a
diagonal matrix with diagonal entries given by the vector d = (d1, . . . , dn)

T . The elements
di in the above theorem are called the symplectic eigenvalues of M since they are also the
eigenvalues of JM .

Remark 4 The above theorem can be generalized to positive-semidefinite real symmetric
matrices. Indeed, it can first be shown that if the kernel of M is a symplectic subspace
of R2n of dimension 2m, then the statement of Theorem 3 still holds true holds with the
only added feature that exactly m of the diagonal entries in D are equal to 0 (see Son and
Stykel (2022)). More generally, without the symplecticity assumption, all that it can be

said is that there exists S ∈ Sp(2n,R) such that M = ST

󰀗
D1 0
0 D2

󰀘
S where D1 and D2

may contain diagonal zero entries (see Idel et al. (2017); Egusquiza and Parra-Rodriguez
(2022)).

3. Controllable and observable Hamiltonian representations

In this section, we state two representation results for linear port-Hamiltonian systems in
normal form, which are the main building blocks in our learnability results. More pre-
cisely, we define two subfamilies of linear systems of the type (10), that are respectively
called controllable/observable Hamiltonian representations, that are by construction con-
trollable/observable (Definition 5). We subsequently show in Theorem 7 that morphisms
can be established between the elements in these families and those in the category PHn

of normal form port-Hamiltonian systems.

As it will be spelled out later on in detail, the existence of these morphisms immediately
guarantees that the complexity of the family of filters PHn is actually not O(n2), as it
could be guessed from (5), but O(n). However, our proposed representations have certain
limitations for non-canonical port-Hamiltonian systems. For example, the observable repre-
sentation is guaranteed to capture all possible input-output dynamics of port-Hamiltonian
systems (full expressive power), but it does not always produce port-Hamiltonian dynam-
ics (fails to be structure-preserving). In the controllable case, structure preservation is
guaranteed, but there is, in general, no full expressive power. Fortunately, for canonical
port-Hamiltonian systems, all the morphisms that we shall introduce become isomorphisms,
meaning that they are both structure-preserving and have full expressive power. Roughly
speaking, the more canonical a port-Hamiltonian system is, the better the corresponding
representations behave in terms of structure-preserving properties and expressive power.

The representations introduced below can be seen as a reparametrization of the elements
(Q,B) ∈ PHn in terms of a diagonal matrix D = diag(d) ∈ Mn, d ∈ Rn, and a vector

v ∈ R2n, where D is obtained from Williamson’s Theorem 3 as Q = ST

󰀗
D 0
0 D

󰀘
S and

v = S · B. This makes it obvious that the learning problem for port-Hamiltonian systems

11
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has parameter complexity of at most O(n) even if the Hamiltonian matrix has complexity
O(n2).

We emphasize that even in the canonical situation, the availability of the control-
lable/observable representations does not yet provide a well-specified learning problem for
this category since the invariance of these systems under system automorphisms implies the
existence of symmetries (or degeneracies) in the parametrizations, which will be the focus
of the next section.

The proofs of all our results are provided in the appendices.

Definition 5 Given d = (d1, . . . , dn)
T ∈ Rn, with di > 0, and v ∈ R2n, we say that a 2n-

dimensional linear state space system is a controllable Hamiltonian (respectively, observable
Hamiltonian) representation if it takes the form

󰀫
ṡ = gctr1 (d) · s+ (0, 0, · · · , 0, 1)T · u,
y = gctr2 (d,v) · s,

󰀣
resp.,

󰀫
ṡ = gobs1 (d) · s+ gobs2 (d,v) · u,
y = (0, 0, · · · , 0, 1) · s,

󰀤
(12)

where gctr1 (d) ∈ M2n and gctr2 (d,v) ∈ M1,2n (respectively, gobs1 (d) ∈ M2n and gobs2 (d,v) ∈
R2n) are constructed as follows:

(i) Given d ∈ Rn, let {a0, a1, . . . , a2n−1} be the real coefficients that make λ2n +
󰁓2n−1

i=0 ai ·
λi = (λ2 + d21)(λ

2 + d22) . . . (λ
2 + d2n) an equality between the two polynomials in λ. Let

a2n = 1 by convention. Note that the entries ai with an odd index i are zero. Define:

gctr1 (d) :=

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

...
...

0 0 0 . . . 1
−a0 −a1 −a2 . . . −a2n−1

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸

2n×2n

,

(respectively, gobs1 (d) = gctr1 (d)⊤).

(ii) Given d and v, then

gctr2 (d,v) :=
󰀅
0 c2n−1 0 c2n−3 . . . 0 c1

󰀆
, (resp., gobs2 (d,v) = gctr2 (d,v)⊤)

where

c2k+1 = vT

󰀗
Fk 0
0 Fk

󰀘
v,

for k = 0, . . . , n− 1, and

Fk =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

f1

f2 0
. . .

0 fn−1

fn

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

with fl = dl ·
󰁓

j1,...,jk ∕=l
1≤j1<···<jk≤n

󰀃
dj1dj2 · · · djk

󰀄2
, l = 1, . . . , n.

12
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We denote CHn (respectively, OHn) the set of all systems of the form (12), and we call
them controllable Hamiltonian (respectively, observable Hamiltonian) representations. The
symbol CHn (respectively, OHn) denotes the set of input/output systems induced by the
state space systems in CHn (respectively, OHn). We emphasize that the elements of both
CHn and OHn can be parameterized with the set

ΘCHn = ΘOHn :=
󰀋
(d,v)|di > 0,v ∈ R2n

󰀌
.

Sometimes later on in the paper we shall write ai(d) and cj(d,v) to indicate that ai and cj
are functions of d and v.

Remark 6 Observe that the controllable and the observable Hamiltonian representations
of port-Hamiltonian systems are closely related to each other. The controllable Hamiltonian
matrix gctr1 is the transpose of the observable Hamiltonian matrix gobs1 . Moreover, as can
be directly observed from the construction, the input and readout matrices of the two
representations, that is, gctr2 and gobs2 , are transpose of each other.

Consider now the maps θCHn : ΘCHn → CHn and θOHn : ΘOHn → OHn that associate
to each parameter values the corresponding state-space system. Note that the elements
in CHn (respectively, in OHn) of the form (12) are in canonical controllable (respectively,
observable) form in the sense of Sontag (1998) and they are hence controllable (respectively,
observable). Our main result below establishes a relationship between port-Hamiltonian
systems and controllable (respectively, observable) Hamiltonian representations as defined
above, which will be used later on for considerations on the structure preservation and
expressiveness in the modeling of PHn.

Theorem 7 (i) There exists, for each S ∈ Sp(2n,R), a map

ϕS : CHn −→ PHn

θCHn(d,v) 󰀁−→ θPHn

󰀕
ST

󰀗
D 0
0 D

󰀘
S, S−1v

󰀖
,

with D = diag(d), such that the controllable Hamiltonian system θCHn(d,v) ∈ CHn and
the port-Hamiltonian image ϕS (θCHn(d,v)) ∈ PHn are linked by a linear system mor-

phism f
(d,v)
S : R2n → R2n.

(ii) Given a port-Hamiltonian system θPHn(Q,B) ∈ PHn, there exists an explicit linear
system morphism f (Q,B) : R2n → R2n between the state space of θPHn(Q,B) ∈ PHn

and that of an observable Hamiltonian system θOHn(d,v) ∈ OHn, where (d,v) ∈ ΘOHn

is determined by the Williamson’s normal form decomposition of Q determined by S ∈

Sp(2n,R), that is, Q = ST

󰀗
D 0
0 D

󰀘
S, D = diag(d) and v = S ·B.

Remark 8 We emphasize that given (Q,B) ∈ ΘPHn , the pair (d,v) ∈ ΘCHn/ΘOHn is not
uniquely determined by Williamson’s decomposition. This can be seen from Theorem 3
because the element S ∈ Sp(2n,R) in its statement is not unique and the entries di of d
are independent of S up to their ordering.
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Remark 9 (Controllability, observability, and invertibility)

(i) In the proof of the theorem above (available in the Appendix), we define the linear

system morphism f
(d,v)
S : R2n → R2n as z = f

(d,v)
S (s) := Ls and an explicit construction

of the matrix L is provided. It turns out that, the matrix L is invertible if and only if
the image port-Hamiltonian system (5) is controllable, or equivalently, observable. Indeed,
using the same notation as in the proof of Theorem 7, we have

L = S−1
󰀅
L1v L2v · · · L2nv

󰀆
=

󰀅
S−1L1v S−1L2v · · · S−1L2nv

󰀆
,

where

S−1L2n−kv = S−1

󰀥󰀕
Jn

󰀗
D 0
0 D

󰀘󰀖k

+ a2n−1 ·
󰀕
Jn

󰀗
D 0
0 D

󰀘󰀖k−1

+ · · ·+ a2n−k · I2n

󰀦
· v

= S−1
󰀓
(JnS−TQS−1)k + a2n−1 · (JnS−TQS−1)k−1 + · · ·+ a2n−k · I2n

󰀔
· SB

= S−1
󰀓
(SJnQS−1)k + a2n−1 · (SJnQS−1)k−1 + · · ·+ a2n−k · I2n

󰀔
· SB

=
󰀓
(JnQ)k + a2n−1 · (JnQ)k−1 + · · ·+ a2n−k · I2n

󰀔
·B.

Therefore, L can be transformed by elementary column operations into the controllability
matrix of (5) and hence L being invertible, that is, the two systems being isomorphic, is
equivalent to the controllability matrix of (5) having full rank (regardless of the choice
of S ∈ Sp(2n,R)), which is again equivalent to (5) being canonical. Additionally, the

condition for f
(d,v)
S to be invertible can also be formulated in terms of D and v directly,

which we will discuss in Subsection 4.4.

(ii) Systems in CHn are by construction in controllable canonical form, and are therefore
always controllable. If the image system (5) by ϕS that we want to learn is controllable (or
equivalently, observable), then by the previous point L is necessarily an invertible matrix
which means that (12) and (5) are isomorphic systems by construction. As a consequence,
(12) is not only controllable but also observable.

Remark 10 (Application to structure-preserving system learning)
As a corollary of the previous result, we can use controllable Hamiltonian representations
to learn port-Hamiltonian systems in an efficient and structure-preserving fashion. Indeed,
given a realization of a port-Hamiltonian system, a system of the type θCHn(d,v) ∈ CHn

can be estimated using an appropriate loss (see Section 7). A representation of this type is
more advantageous than the original port-Hamiltonian one for two reasons:

(i) The model complexity of the controllable Hamiltonian representation is only of order
O(n), as opposed to O(n2) for the original port-Hamiltonian one.

(ii) This learning scheme is automatically structure-preserving. Indeed, once a system
θCHn(d,v) ∈ CHn has been estimated for a given realization, we have shown that there
exists a family of linear morphisms, each of which is between the state space of θCHn(d,v) ∈
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CHn and some θPHn(Q,B) ∈ PHn, such that any solution of (12) is automatically a
solution of some system in PHn. Hence, even in the presence of estimation errors for
(d,v) ∈ ΘCHn , the solutions of θCHn(d,v) still correspond to a port-Hamiltonian system
and hence this structure is preserved by the learning scheme.

Remark 11 (System learning and expressive power)
Expressive power is an important property of any machine learning paradigm. As a contin-
uation of the previous remarks, we emphasize that there is an important relation between
the controllability of a system in PHn and the expressive power of the corresponding repre-
sentation in CHn. Indeed, if (5) is controllable, by point (ii) in Remark 9, the corresponding
preimage system θCHn(d,v) ∈ CHn can capture all possible solutions of (5), which amounts
to the learning scheme based on ΘCHn having full expressive power. To see this, let z0 be
an initial state of the controllable system θPHn(Q,B) ∈ PHn in (5). Since in that case we

can find an invertible system isomorphism f
(d,v)
S that links it to some θCHn(d,v) ∈ ΘCHn ,

there exists some corresponding initial state s0 =
󰀓
f
(d,v)
S

󰀔−1
(z0). Then, by Theorem 7 and

the uniqueness of the solutions of ODEs, the solution of (12) with initial state s0 is a repre-
sentation of the solution of (5) with initial state z0. However, if (5) fails to be controllable

(that is, f
(d,v)
S not invertible), then such an initial condition s0 may not exist. As a rule of

thumb, the more controllable a system of the type (5) is, the higher the rank of f
(d,v)
S is,

and then the more expressive the corresponding controllable Hamiltonian representations
are.

Remark 12 (Expressive power and structure-preservation)
We emphasize that systems in OHn always have full expressive power guaranteed by the
system morphism in Theorem 7. This implies that any input-output dynamics generated by
the original port-Hamiltonian system will be captured by some of the observable Hamilto-
nian representations in the statement. However, unlike in the controllable case, the system
morphism is between θPHn(Q,B) ∈ PHn and θOHn(d,v) ∈ OHn. Therefore, unless (Q,B)
is canonical, in which case the morphism becomes an isomorphism, we cannot, in general,
assert the structure-preserving property of this representation.

Remark 13 (Positive semi-definite Hamiltonians)
The above results can be easily generalized to positive semi-definite (PSD) Hamiltonians
with the aid of the generalized Williamson’s theorem in the references Son and Stykel
(2022); Idel et al. (2017); Egusquiza and Parra-Rodriguez (2022) that we briefly discussed
in Section 2.5. In general, the number of unknown parameters in the vector d is doubled
(because of the matrices D1 and D2 that appear in this case), and their relation with the
coefficients {a0, a1, . . . , a2n−1} has to be modified accordingly, that is, λ2n+

󰁓2n−1
i=0 ai ·λi =

(λ2+d1dn+1)(λ
2+d2dn+2) . . . (λ

2+dnd2n), where some of the di’s could be 0. The expression
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for gctr1 (d) remains the same, whereas the expression of

󰀗
Fk 0
0 Fk

󰀘
in gctr2 (d,v) becomes

󰀗
Fk,0 0
0 Fk,1

󰀘
, where

Fk,p =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

f1,p

f2,p 0
. . .

0 fn−1,p

fn,p

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

and fl,p = dnp+l ·
󰁓

j1,...,jk ∕=l
1≤j1<···<jk≤n

dj1dj2 · · · djkdj1+ndj2+n · · · djk+n for p = 0, 1, and l =

1, . . . , n. In this paper, we mainly deal with positive definiteQ, since the possible degeneracy
of a positive semi-definite Q destroys the symmetries studied later on in Section 4.

Remark 14 (Symmetries of the Hamiltonian representations)
The parameterizations of the systems in CHn and OHn exhibit obvious symmetries. For
example, the functions gctr1 (d) and gobs1 (d) are invariant under the permutation of the diag-
onal entries di. Moreover, gctr2 (d,v) (similarly for gobs2 (d,v)) contains entries c2k+1 of the

form vT

󰀗
Fk 0
0 Fk

󰀘
v =

󰁓n
i=1 F

(i)
k ·

󰀗
v2i + v2n+i

󰀘
, which is in particular invariant under the

rotation of the planes spanned by the i-th and (n + i)-th entries of v. These observations
will be central in the next section, in which we shall show that these and other symmetries
of the representations in CHn or OHn are closely related to the system automorphism group
of the space PHn.

4. Unique identification of linear port-Hamiltonian systems

In this section, we study the unique identifiability of input-output dynamics of linear port-
Hamiltonian systems in normal form. Such a characterization is obviously needed to solve
the model estimation problem. The rationale is that, in applications, we only have access to
input/output data, and different state space systems in PHn can induce the same filter that
produces that data. This fact has important implications when it comes to the learning
of port-Hamiltonian systems out of finite-sample realizations of a given data-generating
process (Q,B) ∈ PHn because such degeneracy makes impossible the exact recovery of
(Q,B) ∈ PHn in that context, no matter how good the properties of the algorithm used
for that task are or how much data we have at our disposal. This observation indicates
that it is not in the space PHn that we should look at for unique identification but the
quotient space associated to PHn with respect to certain equivalence relation ∼filter that
uniquely identifies port-Hamiltonian filters, that is, PHn

∼= PHn/ ∼filter. However, as we
shall see later on in Subsection 4.1, the presence of non-canonical systems in PHn makes
it, in general, difficult to directly characterize the quotient space PHn/ ∼filter.

As we pointed out after Definition 1, all the system-isomorphic state-space systems
with corresponding initializations yield the same filters or input/output map. However,
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we emphasize that a given filter can be realized by state-space systems that are not even
system-isomorphic (see Example 1 later on). On the other hand, ∼filter-equivalence requires
that the outputs of the two systems at time t = 0 are consistent with exactly the same ini-
tializations, whereas this is not part of the definition of ∼sys-equivalence. Motivated by this
fact, we study in Subsection 4.1 how ∼filter and ∼sys are related in terms of PHn and the
controllable Hamiltonian representations CHn (which by Theorem 7 automatically induce
port-Hamiltonian dynamics). In Subsection 4.2, we lower our expectations and characterize
PHn/ ∼sys as an approximation to PHn/ ∼filter. The term approximation in this sentence
is justified because ∼filter and ∼sys coincide on the set of canonical Hamiltonian represen-
tations CHcan

n , which is system-isomorphic as a set to PHcan
n , which is open and dense in

PHn. In particular, unique identifiability can be achieved in CHcan
n by studying ∼sys, that

is, Θcan
CHn

/ ∼filter
∼= Θcan

CHn
/ ∼sys.

In addition to the discussion regarding ∼filter and ∼sys, recall that in the previous
section, we have established a link between PHn and the representation spaces CHn and
OHn which, as we saw in Definition 5, are both parametrized by the set

ΘCHn = ΘOHn =
󰀋
(d,v) | v ∈ R2n,d ∈ Rn, di > 0, i ∈ {1, . . . , n}

󰀌
. (13)

Now, it is a natural question to ask what is the equivalence relation that corresponds to ∼sys

on the parameter space ΘCHn , and if it is possible to explicitly characterize the quotient
space PHn/ ∼sys on ΘCHn in a certain sense. All these questions are addressed step-by-step
in the following subsections.

In Subsection 4.1, we show that two canonical controllable Hamiltonian representations
are ∼filter-equivalent if and only if they are ∼sys-equivalent. In Subsection 4.2, we define an
equivalence relation ∼󰂏 on ΘCHn and we show that PHn/ ∼sys

∼= ΘCHn/ ∼󰂏 (see Theorem
22). In Subsection 4.3, we characterize the equivalence classes PHn/ ∼sys and ΘCHn/ ∼󰂏

as Lie groupoid orbit spaces.

In Subsection 4.4, we exclusively restrict our analysis to canonical port-Hamiltonian
systems PHcan

n . We first show that the parameter subset Θcan
CHn

⊂ ΘCHn that corresponds
to PHcan

n is open and dense in ΘCHn as it is determined by certain generic non-resonance
and nondegeneracy conditions. If we define on ΘCHn the equivalence relation ∼sys of system
automorphisms of the corresponding controllable/observable Hamiltonian representations
(see Definition 17), then it can be proved that, restricted to the canonical subset Θcan

CHn
, the

equivalence relation ∼󰂏 coincides with ∼sys, and hence

PHcan
n / ∼sys

∼= Θcan
CHn

/ ∼󰂏
∼= Θcan

CHn
/ ∼sys.

In Subsection 4.5, we prove that the fact that we restricted the above equivalence re-
lations to canonical subsets allows us to characterize the corresponding quotients as orbit
spaces with respect to a group (as opposed to groupoids in the general unrestricted case)
action, where the group is given by a semi-direct product Sn⋊φ Tn that will be specified in
detail later on. Finally, in Subsection 4.6, we show that the orbit space Θcan

CHn
/(Sn⋊φTn) can

be explicitly identified as a smooth manifold Rn
+↑ ×Rn

+ and endowed with global Euclidean
coordinates, and hence

PHcan
n / ∼sys

∼= Θcan
CHn

/ ∼󰂏
∼= Θcan

CHn
/ ∼filter

∼= Θcan
CHn

/ ∼sys
∼= Θcan

CHn
/(Sn ⋊φ Tn) ∼= Rn

+↑ × Rn
+.
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Consequently, up to initializations, canonical port-Hamiltonian dynamics can be identified
fully and explicitly in either the controllable or the observable Hamiltonian representations
(12) and learned by estimating an initial state condition and a unique set of parameters in
a smooth manifold that is obtained as a group orbit space.

4.1 The unique identification problem for filters in PHn

In the context of model estimation/machine learning, we would like to characterize and
identify the filters that constitute the elements in PHn. In Section 2.1, we have seen that
two systems that are system isomorphic and are initialized according to the isomorphism
induce the same input-output dynamics, which indicates that these isomorphisms are re-
dundancies/symmetries in PHn. Our aim is to quotient out the symmetries given by system
automorphisms and to investigate whether the quotient space uniquely identifies the filters
in PHn.

Definition 15 (PHn with equivalence relations ∼sys and ∼filter)

(i) The fact that two systems θPHn(Q1, B1) and θPHn(Q2, B2) in PHn induce the same fil-
ter defines an equivalence relation in PHn, which we denote by (Q1, B1) ∼filter (Q2, B2).
Consequently, we have by definition PHn = PHn/ ∼filter, which we call the unique iden-
tifiability space.

(ii) We observe that θPHn(Q1, B1) and θPHn(Q2, B2) in PHn are linearly system isomor-
phic according to Definition 1 if and only if there exists an invertible matrix L such that

󰀻
󰁁󰀿

󰁁󰀽

LJQ1 = JQ2L

LB1 = B2

BT
1 Q1 = BT

2 Q2L.

(14)

It is straightforward to check that system isomorphisms determine an equivalence re-
lation on PHn. If θPHn(Q1, B1) and θPHn(Q2, B2) are system isomorphic, we write
(Q1, B1) ∼sys (Q2, B2). We denote by PHn/ ∼sys the quotient space. The equivalence class
in PHn/ ∼sys that contains the element θPHn(Q,B) is denoted by [Q,B] ∈ PHn/ ∼sys.

It is a natural question to ask about the relation between PHn/ ∼sys and PHn/ ∼filter,
and if they are the same. However, in general, neither of the two equivalence relations
∼sys and ∼filter implies the other. To see ∼filter does not imply ∼sys, we note that in
the next Example 1, a filter in PHn could be realized by two elements in PHn that are
not ∼sys-equivalent since filters identify exclusively the canonical part (that is, the minimal
realization, see Kalman (1963)). To see the other direction, that is, ∼sys does not imply
∼filter, we can simply consider the value of the filter at time t = 0 induced by two systems
(Q1, B1) ∼filter (Q2, B2) from (7), which gives BT

1 Q1z0 = BT
2 Q2z0 for any z0, leading to

BT
1 Q1 = BT

2 Q2. On the other hand, we have seen in (14) that (Q1, B1) ∼sys (Q2, B2) only
guarantees BT

1 Q1 = BT
2 Q2L, but not BT

1 Q1 = BT
2 Q2, unless L can be shown to be the

identity matrix.
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Example 1 Consider two systems θPHn(Q1, B1), θPHn(Q2, B2) ∈ PHn where

Q1 =

󰀵

󰀹󰀹󰀷

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

󰀶

󰀺󰀺󰀸 , Q2 =

󰀵

󰀹󰀹󰀷

1 0 0 0
0 2 0 0
0 0 1 0
0 0 0 3

󰀶

󰀺󰀺󰀸 , B1 = B2 =

󰀵

󰀹󰀹󰀷

1
0
0
0

󰀶

󰀺󰀺󰀸 .

Both systems induce the same filter y(u, z0)t =
󰁕 t
0 cos(t− s)u(s)ds+ (cos t, 0, sin t, 0)T · z0,

where z0 is the initial state. However, these two systems cannot be system isomorphic,
since by (14) in that case there would exist an invertible L such that LJQ1 = JQ2L, and
hence JQ1 would have the same set of eigenvalues as JQ2, which is not the case.

We have seen from the above that, in general, PHn/ ∼filter and PHn/ ∼sys are differ-
ent objects, and neither one is a subset of the other. In practice, we are more interested
in characterizing the former, which appears to be difficult due to issues that involve ini-
tialization consistency. Nevertheless, we can partially solve the problem by restricting to
the generic subset of canonical port-Hamiltonian systems PHcan

n , and consider their corre-
sponding controllable Hamiltonian representations θCHn(Θ

can
CHn

) by system isomorphisms,
then, on those representations, the two equivalence relations will coincide exactly, that is,,
Θcan

CHn
/ ∼filter

∼= Θcan
CHn

/ ∼sys, which we ultimately characterize in Section 4.5. We present
rigorous definitions of these equivalence relations on the parameter space before we state
our main result Theorem 19.

Lemma 16 For (d1,v1) and (d2,v2) ∈ ΘCHn = ΘOHn, θCHn(d1,v1) ∼sys θCHn(d2,v2) if
and only if θOHn(d1,v1) ∼sys θOHn(d2,v2)

Proof The proof is basically a restatement of the fact that gctr1 (d) = gobs1 (d)T and
gctr2 (d,v) = gobs2 (d,v)T .

Definition 17 (ΘCHn with equivalence relations ∼sys and ∼filter)

(i) We shall denote (d1,v1) ∼sys (d2,v2) if θCHn(d1,v1) and θCHn(d2,v2) are system
isomorphic for (d1,v1), (d2,v2) ∈ ΘCHn. Note that system isomorphisms for control-
lable/observable Hamiltonian representations are indeed equivalent as we showed in Lemma
16.

(ii) We shall denote (d1,v1) ∼filter (d2,v2) if θCHn(d1,v1) and θCHn(d2,v2) induce the
same filter for (d1,v1), (d2,v2) ∈ ΘCHn. Note that, unlike ∼sys, ∼filter is defined specifi-
cally for ΘCHn, and could be different if one replace ΘCHn with ΘOHn.

Proposition 18 Given (d1,v1) and (d2,v2) in ΘCHn, then

(I) θCHn(d1,v1) ∼sys θCHn(d2,v2) if and only if ai(d1) = ai(d2) and ci(d1,v1) = ci(d2,v2)
for all i = 1, . . . , n. In other words, there exists a permutation matrix Pσ ∈ Mn such that,

for D = diag(d) and P =

󰀗
Pσ 0
0 Pσ

󰀘
, the following conditions hold true:
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(i) P

󰀗
D1 0
0 D1

󰀘
P T =

󰀗
D2 0
0 D2

󰀘

(ii) vT
1

󰀗
(F1)k 0
0 (F1)k

󰀘
v1 = vT

2

󰀗
(F2)k 0
0 (F2)k

󰀘
v2, k = 0, . . . , n− 1

The matrices Fi are defined in Theorem 7.

(II) θCHn(d1,v1) ∼filter θCHn(d2,v2) if and only if ci(d1,v1) = ci(d2,v2) and ei(d1,v1) =
ei(d2,v2) for all i = 1, . . . , n, where the scalar functions ei are defined recursively as

e1 = c1

e2 = c3 − a2n−2 · e1
e3 = c5 − a2n−2 · e2 − a2n−4 · e1
...

en = c2n−1 − a2n−2 · en−1 − a2n−4 · en−2 − · · ·− a2 · e1.

(15)

Theorem 19 Given (d1,v1) and (d2,v2) in Θcan
CHn

, then θCHn(d1,v1) ∼filter θCHn(d2,v2)
if and only if θCHn(d1,v1) ∼sys θCHn(d2,v2), that is, Θ

can
CHn

/ ∼filter
∼= Θcan

CHn
/ ∼sys

Proof The first part of the statement immediately follows from Proposition 18 and the
fact that e1 = c1 ∕= 0, which is guaranteed by the fact that we are considering canonical
systems, see the characterizations in Section 4.4.

4.2 Equivalence classes of port-Hamiltonian systems by system isomorphisms

We have seen that PHn/ ∼sys is not the set of port-Hamiltonian filters due to the pres-
ence of non-canonical systems and possible initialization inconsistencies. However, it is still
informative to study the quotient space PHn/ ∼sys because when restricted to the canon-
ical systems, PHcan

n / ∼sys uniquely identifies canonical port-Hamiltonian dynamics up to
initializations. Furthermore, PHcan

n / ∼sys is isomorphic to Θcan
CHn

/ ∼filter. In other words,
PHcan

n / ∼sys uniquely identifies the set of canonical controllable Hamiltonian representa-
tions CHcan

n . We shall make this point clearer in Sections 4.5 and 4.6.

In this section, we introduce a manageable characterization of the quotient space
PHn/ ∼sys by using parameter spaces. First, motivated by Williamson’s theorem, we
consider the space ΘCHn defined before as the set of all pairs of the form (d,v), where
d = (d1, d2, . . . , dn)

T with di > 0, and v = (v1, v2, . . . , v2n)
T ∈ R2n. Inspired by the

representation results, we now define an equivalence relation ∼󰂏 on ΘCHn as below whose
equivalence classes are denoted by [d,v]. The importance of the next definition is that,
as we shall prove in Theorem 22, the relation ∼󰂏 on ΘCHn plays the same role as ∼sys on
PHn.

Definition 20 The pairs (d1,v1) and (d2,v2) in ΘCHn are ∼󰂏-equivalent, that is,
(d1,v1) ∼󰂏 (d2,v2), if there exists a permutation matrix Pσ ∈ Mn and an invertible matrix
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A such that, for Di = diag(di), i ∈ {1, 2} and P =

󰀗
Pσ 0
0 Pσ

󰀘
, the following conditions hold

true:

(i) P

󰀗
D1 0
0 D1

󰀘
P T =

󰀗
D2 0
0 D2

󰀘

(ii) AT

󰀗
D1 0
0 D1

󰀘
Av1 =

󰀗
D1 0
0 D1

󰀘
v1

(iii) AJ
󰀗
D1 0
0 D1

󰀘
= J

󰀗
D1 0
0 D1

󰀘
A

(iv) v2 = PAv1.

Proposition 21 The relation ∼󰂏 defined in Definition 20 is an equivalence relation on
ΘCHn.

In the next subsection, we shall give meaning to ∼󰂏 in terms of groupoid orbits. Now,
we aim to characterize the ∼sys equivalence relation on PHn as the ∼󰂏 equivalence relation
on the space ΘCHn of (d,v)-pairs, that is, we shall prove that ΘCHn/ ∼󰂏

∼= PHn/ ∼sys.
This will be proved in three steps. First, we show that for an arbitrary S ∈ Sp(2n,R),
the map ϕS defined in Theorem 7 composed with θCHn is compatible with the equivalence
relations ∼󰂏 and ∼sys, that is, (d1,v1) ∼󰂏 (d2,v2) if and only if ϕS(θCHn(d1,v1)) ∼sys

ϕS(θCHn(d2,v2)). Then, we show that the unique map ψS induced by ϕS ◦ θCHn on the
quotient spaces does not depend on the choice of S and hence the family of maps ψS

parameterized by S ∈ Sp(2n,R) induces a unique map Φ : ΘCHn/ ∼󰂏→ PHn/ ∼sys which
is a homeomorphism.

Theorem 22 (Characterization of PHn/ ∼sys as ΘCHn/ ∼󰂏) Given any arbitrary S ∈
Sp(2n,R), the map ϕS ◦ θCHn induces on the quotient spaces a map Φ : ΘCHn/ ∼󰂏→
PHn/ ∼sys which does not depend on S ∈ Sp(2n,R) and is given by

Φ([d,v]󰂏) =

󰀗󰀗
D 0
0 D

󰀘
,v

󰀘

sys

,

where D = diag(d). Moreover, Φ is a homeomorphism with respect to the quotient topolo-
gies.

4.3 The quotient spaces as groupoid orbit spaces

Recall that from a category theory point of view, a group can be seen as a category with
a single object where all morphisms are invertible. Groupoids are a natural generalization
of this notion and refer to categories with possibly more than one object, where again all
morphisms are invertible (see Mackenzie (2005) for a comprehensive introduction). As it is
customary, groupoids will be denoted with the symbol α,β : G 󰃃 M (or simply G 󰃃 M),
where α and β are the target and the source maps, respectively. Given m ∈ M , the groupoid
orbit that contains this point is given by Om = α

󰀃
β−1(m)

󰀄
⊂ M . The orbit space associated

to G 󰃃 M is denoted by M/G.
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In this section, we provide an alternative point of view for Theorem 22 in terms of
groupoid orbits. More precisely, we show first that the set of equivalence classes PHn/ ∼sys

(resp. ΘCHn/ ∼󰂏) is the orbit space ΘPHn/Gn (resp. ΘCHn/Hn) of a groupoid Gn 󰃃 ΘPHn

(resp. Hn 󰃃 ΘCHn) which we construct in the following paragraphs. In a second step
we show that the statement in Theorem 22 is equivalent to saying that the orbit spaces
PHn/ ∼sys and ΘCHn/Hn of the two groupoids coincide.

Definition 23

1. Let Gn := {(L, (Q,B)) |L ∈ GL(2n,R), (Q,B) ∈ ΘPHn such that
(i) JTLJQL−1is symmetric positive-definite (ii) B = JTLT JLB}.

2. Let the target and source maps α,β : Gn → ΘPHn be defined as
α(L, (Q,B)) := (JTLJQL−1, LB) and β(L, (Q,B)) := (Q,B).

3. Define the set of composable pairs as

G(2)
n := {((L1, (Q1, B1)), (L2, (Q2, B2))) | β((L1, (Q1, B1))) = α((L2, (Q2, B2)))}.

4. Let the multiplication map m : G(2)
n → Gn be defined as

m((L1, (Q1, B1)), (L2, (Q2, B2))) = (L1L2, (Q2, B2)).

5. Let the identity section 󰂃 : ΘPHn → Gn be defined as 󰂃(Q,B) := (I2n, (Q,B)).

6. Let the inversion map i : Gn → Gn be defined as i(L, (Q,B)) := (L−1, (JTLJQL−1, LB)).

Proposition 24 The definition above determines a Lie groupoid Gn 󰃃 ΘPHn with Gn the
total space, ΘPHn the base space, and structure maps α,β,m, 󰂃, i. We refer to Gn 󰃃 ΘPHn

as the port-Hamiltonian groupoid. The orbit space of this groupoid ΘPHn/Gn coincides with
PHn/ ∼sys.

Definition 25

1. Let Hn :=
󰀋
((Pσ, A), (d,v)) |Pσ ∈ Mn is a permutation matrix, A ∈ GL(2n,R),

(d,v) ∈ ΘCHn , such that (i) AT

󰀗
D 0
0 D

󰀘
Av =

󰀗
D 0
0 D

󰀘
v, and

(ii) AJ
󰀗
D 0
0 D

󰀘
= J

󰀗
D 0
0 D

󰀘
A, where D = diag(d)

󰀌
.

2. Let the target and source maps α,β : Hn → ΘCHn be defined as

α((Pσ, A), (d,v)) := (d,v) and β((Pσ, A), (d,v)) := (Pσd, PAv), where P =

󰀗
Pσ 0
0 Pσ

󰀘
.

3. Define the set of composable pairs as

H(2)
n :=

󰀋󰀃
((Pσ,1, A1), (d1,v1)), ((Pσ,2, A2), (d2,v2))

󰀄
|

β((Pσ,2, A2), (d2,v2)) = α((Pσ,1, A1), (d1,v1))
󰀌
.

4. Let the multiplication map m : H(2)
n → Hn be defined as

m
󰀃
((Pσ,1, A1), (d1,v1)), ((Pσ,2, A2), (d2,v2))

󰀄

= ((Pσ,2Pσ,1, P
T
σ,1A2Pσ,1A1), (d1,v1)).
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5. Let the identity section 󰂃 : ΘCHn → Hn be defined as 󰂃(d,v) := ((In, I2n), (d,v)).

6. Let the inversion map i : Hn → Hn be defined as
i((Pσ, A), (d,v)) := ((P T

σ , PσA
−1P T

σ ), (Pσd, PAv)).

Proposition 26 The definition above determines a Lie groupoid Hn 󰃃 ΘCHn with Hn

the total space, ΘCHn the base space, and structure maps α,β,m, 󰂃, i. We refer to Hn 󰃃
ΘCHn as the reduced port-Hamiltonian groupoid. The orbit space of this groupoid ΘCHn/Hn

coincides with ΘCHn/ ∼󰂏.

Theorem 22 can now be restated in terms of the elements that we just introduced.

Theorem 27 The orbit spaces of the Lie groupoids Gn 󰃃 ΘPHn and Hn 󰃃 ΘCHn are
isomorphic.

4.4 Characterization of canonical port-Hamiltonian systems

In Subsections 4.2 and 4.3 we have provided a characterization of PHn/ ∼sys in terms
of ΘCHn/ ∼󰂏 and groupoid orbit spaces. Recall from Subsection 4.1 that the difficulty of
the unique identifiability of filters in PHn comes from two parts: the possible presence
of non-canonical systems, and the possible initialization inconsistency. We have shown in
Subsection 4.1 that, by restricting to canonical systems, the filters induced by controllable
Hamiltonian representations CHcan

n can be uniquely identified, even though we still cannot
do the same for PHcan

n . Hence, it is worth studying what the quotient spaces above look
like when restricted to the subset that contains only canonical port-Hamiltonian systems.
In this section, we take a step in that direction.

Recall that a port-Hamiltonian system in PHn of the form (5) is controllable (or equiv-
alently, observable/canonical) if and only if

det
󰀃󰀅
B | JQB | . . . | (JQ)2n−1B

󰀆󰀄
∕= 0. (16)

Using the Williamson decomposition of Q into D and S, and v := S · B, this is equivalent
to

det

󰀣󰀥

v

󰀏󰀏󰀏󰀏 J
󰀗
D 0
0 D

󰀘
v

󰀏󰀏󰀏󰀏 . . .

󰀏󰀏󰀏󰀏

󰀕
J
󰀗
D 0
0 D

󰀘󰀖2n−1

v

󰀦󰀤
∕= 0. (17)

By definition, we have that PHcan
n (respectively, Θcan

CHn
) is a subset of PHn (respectively,

ΘCHn) made of systems that satisfy (16) (respectively, (17)). We now characterize the space
of pairs (d,v) ∈ ΘCHn that correspond to canonical port-Hamiltonian systems in normal
form. The calculation of the determinant in (17) yields

󰀃󰁔n
i=1 di

󰀄
·
󰀃󰁔

1≤j<k≤n(dj+dk)
2(dj−

dk)
2
󰀄
·
󰀃󰁔n

l=1(v
2
l + v2n+l)

󰀄
up to the sign. Therefore,

Θcan
CHn

=
󰀋
(d,v) ∈ ΘCHn | entries of d are distinct and v2l + v2n+l > 0 for l ∈ {1, . . . , n}

󰀌
.

We shall refer to the statement on the entries of d being all different as the non-resonance
condition and to v2l + v2n+l > 0 for all l ∈ {1, . . . , n} as the nondegeneracy condition.
There might be a concern about whether different choices of the matrix S lead to different
vectors v and hence the notion of nondegeneracy would be ill-defined. This is indeed not a
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problem since, as we show in Remark 28 below, once the non-resonance condition is assumed,
different vectors v are obtained by rotating the planes spanned by each and every pair of
l-th and n+ l-th entries, which preserves the value of v2l + v2n+l. Thus, the nondegeneracy
condition is actually based on the non-resonance condition.

Remark 28 (Williamson’s decomposition in the canonical case) We have mention-
ed in Theorem 3 (iii) that two symplectic matrices S and S′ that Williamson decompose
the same Q differ by a unitary matrix. We now note that for an element Q that satisfies
the non-resonance condition, S and S′ do not only differ by an arbitrary U ∈ U(n), (see
(11) for the definition of U(n)) but by a special one R that has the form

R =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

cos θ1 0 − sin θ1 0
. . .

. . .

0 cos θn 0 − sin θn

sin θ1 0 cos θ1 0
. . .

. . .

0 sin θn 0 cos θn

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

. (18)

This fact accounts for part of the symmetry that we shall spell out later on. The proof
of this fact is purely computational: the assumption that the diagonal entries of D are all

positive and distinct, the fact that U satisfies the equation U

󰀗
D 0
0 D

󰀘
UT =

󰀗
D 0
0 D

󰀘
and,

at the same time, U ∈ U(n) = SO(2n,R) ∩ Sp(2n,R), guarantees the claim.

Remark 29 (Being canonical is a generic property) It is well-known that the set of
canonical systems, as a subset of all linear systems, corresponds to a Zariski open set, which
is open and dense in the usual topology (Tcho (1983)). In particular, this also holds for
linear port-Hamiltonian systems. Therefore, PHcan

n is open and dense in PHn. On the
other hand, using the characterization provided above, it is clear that Θcan

CHn
is also open

and dense in ΘCHn .

The isomorphism in Theorem 22 naturally restricts to canonical subsets, that is, PHcan
n / ∼sys

∼= Θcan
CHn

/ ∼󰂏. On the other hand, we will see below another isomorphism result involving
PHcan

n / ∼sys.

Proposition 30 (Characterization of PHcan
n / ∼sys as Θcan

CHn
/ ∼sys)

The map Φ : Θcan
CHn

/ ∼sys→ PHcan
n / ∼sys defined by Φ([d,v]sys) =

󰀗󰀗
D 0
0 D

󰀘
,v

󰀘

sys

, where

D = diag(d), is an isomorphism.

We just proved that both Θcan
CHn

/ ∼󰂏 and Θcan
CHn

/ ∼sys are isomorphic to PHcan
n / ∼sys,

and even via the same ismorphism Φ. Therefore, the equivalence relations ∼󰂏 and ∼sys

coincide when restricted to Θcan
CHn

. To summarize, we have proved in this subsection that

PHcan
n / ∼sys

∼= Θcan
CHn

/ ∼󰂏
∼= Θcan

CHn
/ ∼sys .

In the next subsection, we continue the investigation of the above chain of isomorphisms.
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4.5 The unique identifiability space for canonical port-Hamiltonian systems as
a group orbit space

In Subsection 4.3, it is proved that the quotient space PHn/ ∼sys can be treated as a Lie
groupoid orbit space. We now show that the restricted quotient space to canonical port-
Hamiltonian systems, that is, PHcan

n / ∼sys, is isomorphic to the orbit space of a certain
group action on Θcan

CHn
, where the group is a semi-direct product of the n-permutation group

and the n-torus, that is, Sn ⋊φ Tn. The intuition behind this fact is that restricting to the
subset of canonical systems PHcan

n removes the degeneracies in PHn, which allows to reduce
the symmetry of the Lie groupoid Gn 󰃃 ΘPHn to that of the Lie group Sn ⋊φ Tn.

We start by defining the group action. First, let the permutation group Sn act on Rn

by permuting the entries di of the vector d ∈ Rn. For each i ∈ {1, . . . , n} the circle S1 acts
on the plane spanned by the i-th and (n + i)-th entries of v by rotations. More precisely,
we define the action of Sn on elements d and v as

Γσ

󰀃
(d1, . . . , dn)

T
󰀄
= (dσ(1), . . . , dσ(n))

T = Pσ · (d1, . . . , dn)T

where Pσ is the corresponding permutation matrix and

Γσ

󰀃
(v1, . . . , v2n)

T
󰀄
= (vσ(1), . . . , vσ(n), vn+σ(1), . . . , vn+σ(n))

T =

󰀗
Pσ 0
0 Pσ

󰀘
· (v1, . . . , v2n)T ,

respectively. Then the σ-action on a pair (d,v) is understood as acting on d and v simul-
taneously. We also define the action of the i-th circle of the torus Tn as the planar rotation
of the space spanned by the i-th and (n+ i)-th entries of v. This torus action is understood
to leave d invariant. More concretely, it is the action

Γθi

󰀃
(d1, . . . , dn, v1, . . . , v2n)

T
󰀄

= (d1, . . . , dn, v1, . . . , vi−1, cosθivi − sinθivn+i, vi+1, . . . , vn,

vn+1, . . . , vn+i−1, sinθivi + cosθivn+i, vn+i+1, . . . , v2n)
T .

With these actions of the groups Sn and Tn on ΘCHn we define the map Γ(σ,(θ1,...,θn)T ) :

(Rn
+ × R2n) → (Rn

+ × R2n) as

Γ(σ,(θ1,...,θn)T )(d,v) = Γθ1 ◦ · · · ◦ Γθn ◦ Γσ(d,v)

= (Pσ · d,Γθ1 ◦ · · · ◦ Γθn

󰀕󰀗
Pσ 0
0 Pσ

󰀘
· v

󰀖
) = (Pσ · d, RP · v), (19)

which constitutes an action of the semi-direct product group Sn ⋊φ Tn, where φ : Sn →
Aut(Tn) is given by the permutation φ(σ)((θ1, . . . , θn)

T ) = Pσ · (θ1, . . . , θn)T . Note that the
matrix of Γθ1 ◦ · · ·◦Γθn is given by R in (18), Pσ is the permutation matrix that corresponds

to σ ∈ Sn, and P =

󰀗
Pσ 0
0 Pσ

󰀘
.

Proposition 31 The map Γ(σ,(θ1,...,θn)T ) defined as (19) for σ ∈ Sn and (θ1, . . . , θn)
T ∈ Tn

is a left group action of (Sn ⋊φ Tn) on ΘCHn.
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Using the definition of the (Sn ⋊φ Tn)-action on ΘCHn , two elements (d1,v1), (d2,v2) ∈
ΘCHn are in the same orbit if and only if the following conditions hold true for some σ ∈ Sn:

(i) d2,i = d1,σ(i),

(ii) v22,i + v22,n+i = v21,σ(i) + v21,n+σ(i), i = 1, . . . , n.

By Proposition 18 (I) parts (i) and (ii), it can be seen that there could be a close relation
between the (Sn ⋊φ Tn)-action and the equivalence relation ∼sys on ΘCHn . The next
proposition demonstrates that the orbit spaces of the (Sn ⋊φ Tn)-action coincide with the
equivalence classes of the relation ∼sys when we restrict our attention to the subset Θcan

CHn
.

Proposition 32 (Characterization of Θcan
CHn

/ ∼sys as Θcan
CHn

/(Sn ⋊φ Tn)) Given (d1,v1)
and (d2,v2) in Θcan

CHn
, then (d1,v1) ∼sys (d2,v2) if and only if (d1,v1) and (d2,v2) lie in

the same orbit of the (Sn ⋊φ Tn)-action.

4.6 Global Euclidean coordinates for the unique identifiability space of
canonical port-Hamiltonian systems

Recall from Section 4.4 that Θcan
CHn

contains pairs (d,v) where d ∈ Rn
+ and v ∈ R2n are

such that the entries dl’s are all distinct and v2l +v2n+l > 0 for all l = 1, . . . , n. We define for

convenience a function R : R2n → Rn
≥0 as R((v1, . . . , v2n)

T ) =
󰀃
v21 + v2n+1, . . . , v

2
n + v22n

󰀄T
.

Now observe that the quotient space Θcan
CHn

/(Sn⋊φTn) naturally has a smooth manifold
structure. We briefly prove this in the following lines. Note that the torus Tn is a connected
abelian compact Lie group. The symmetry group Sn is a finite group, and hence compact
as well. Thus, it is easy to see that the semi-direct product Sn ⋊φ Tn is also a compact
Lie group, and hence its action on Θcan

CHn
is automatically proper. On the other hand, since

Θcan
CHn

is the space of (d,v) pairs satisfying that d contains distinct entries and R(v)(l) > 0
for l = 1, . . . , n, it necessarily holds that the only element in Sn ⋊φ Tn that possibly keep
any element in Θcan

CHn
invariant is the identity, which implies the (Sn ⋊φ Tn)-action on

Θcan
CHn

is free. Classical results in Lie theory (Ortega and Ratiu, 2004, Proposition 2.3.8)
guarantee that Θcan

CHn
/(Sn ⋊φ Tn) admits a unique smooth structure such that the quotient

map π : Θcan
CHn

→ Θcan
CHn

/(Sn ⋊φ Tn) is a submersion. With this as a motivation, we try to
find the quotient space explicitly in the following.

For a fixed d, we denote by d↑ the reordered vector constructed out of d by placing the
entries in increasing order. Denote by Rn

+↑ the set of d ∈ Rn
+ with distinct positive entries

in increasing order. We have then the following proposition that explicitly characterizes the
quotient space Θcan

CHn
/(Sn ⋊φ Tn).

Proposition 33 (Global Euclidean coordinates for orbit space Θcan
CHn

/(Sn ⋊φ Tn))
The map f : Θcan

CHn
/(Sn ⋊φ Tn) → Rn

+↑ × Rn
+ defined by f([d,v]) = (d↑,R(Γσ(v))), where

σ ∈ Sn is the unique permutation such that Γσ(d) = d↑, is an isomorphism.

5. Linear port-Hamiltonian systems in normal form are restrictions of
higher dimensional ones

In this section, we prove a theorem (Theorem 34), inspired by the classical Kalman Decom-
position (Jacob and Zwart (2012)), which says the filter induced by any (Q,B) ∈ PHn can
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be regarded as that induced by some (Q′, B′) ∈ PHm, where m can be any integer that
is at least n. The motivation for these considerations is given by the fact that in many
practical situations in which an input/ouput system has to be learned, the dimension of the
underlying state-space system is not known. In that situation, we may want to have the
flexibility of considering the actual system that needs to be learned as a lower-dimensional
restriction of a much larger-dimensional one that we have picked for the learning task.

We shall carry this out by producing an explicit injective system morphism between
the state space of (Q,B) and that of (Q′, B′) in our next Theorem 34. In Proposition 35,
we show that the quotient space PHn/ ∼sys can be characterized as PHm,n/ ∼sys, where
PHm,n ⊂ PHm is the space containing all the systems of the form (Q′, B′). Motivated by
the developments in Section 4, we then characterize the pair (d′,v′) that corresponds to
(Q′, B′) in Proposition 36. Eventually, in Proposition 37, we show that the isomorphism
PHn/ ∼sys

∼= ΘCHn/ ∼󰂏 can be lifted to high dimension as well. We shall comment
further at the end of this section on the significance of the above-mentioned results in the
context of machine learning.

The following theorem states that the filter induced by (Q,B) ∈ PHn can be reproduced
using systems in an arbitrarily higher dimension.

Theorem 34 Given any system (Q,B) ∈ PHn, then

(i) For any m ≥ n, there exists an orthogonal matrix O ∈ O(2m,R) such that the filter

induced by (Q′, B′) =

󰀕
O

󰀗
Q 0
0 I2m−2n

󰀘
OT , O

󰀗
B
0

󰀘󰀖
∈ PHm coincides with that induced

by (Q,B).

(ii) The map f : R2n → R2m defined by f(z) = O

󰀗
I2n
0

󰀘
· z is an injective system morphism

between the state spaces of (Q,B) and (Q′, B′).

As it can be seen in the proof (included in Appendix 9.10), the matrix O ∈ O(2m,R)
above is constructed so that

O

󰀗
Jn 0
0 Jm−n

󰀘
OT = Jm. (20)

From now on, we denote by PHm,n ⊂ PHm the space of linear port-Hamiltonian sys-

tems parametrized by pairs (Q′, B′) of the form

󰀕
O

󰀗
Q 0
0 I2m−2n

󰀘
OT , O

󰀗
B
0

󰀘󰀖
, where O ∈

O(2m,R) satisfies (20), and equip it with the system automorphism relation ∼sys defined
on PHm. The following proposition states that, up to system isomorphism, PHn is indeed
the same as PHm,n. This means that, with appropriate initialization, we can exactly re-
produce the input/output dynamics of 2n-dimensional port-Hamiltonian systems in higher
dimension by simply considering the elements (Q′, B′) in PHm,n.

Proposition 35 The function f : PHn/ ∼sys→ PHm,n/ ∼sys defined by

f([Q,B]sys) =

󰀗
O

󰀗
Q 0
0 I2m−2n

󰀘
OT , O

󰀗
B
0

󰀘󰀘

sys

is an isomorphism, where O ∈ O(2m,R) is as in Theorem 34 and hence satisfies (20).
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Recall that for a system (Q,B) ∈ PHn, we derive the corresponding object (d,v) ∈

ΘCHn from Williamson’s decomposition Q = ST

󰀗
D 0
0 D

󰀘
S and v = S · B. We have seen

that (Q′, B′) ∈ PHm,n ⊂ PHm is also a linear port-Hamiltonian system in normal form.
Therefore, it makes sense to investigate the relation between (d,v) and the element (d′,v′)
which corresponds to (Q′, B′). The following proposition asserts that d′ can be obtained
from d by padding it with ones and, similarly, v′ can be obtained by splitting v and padding
each segment with zeros.

Proposition 36 (Symplectic eigenvalues of the higher dimensional system) Let
(Q,B) and (Q′, B′) be as in Theorem 34, and let d and d′ be their corresponding symplectic
eigenvalues. Then, up to reordering, d′= (d1, · · · , dn, 1, 1, . . . , 1)T . Even though v and v′

are not uniquely determined (See Remark 8), there exists a choice of v′ that is related to
v = (v1, · · · , vn, vn+1, · · · , v2n)T via

v′ =
󰀃
v1, · · · , vn, 0, · · · , 0󰁿 󰁾󰁽 󰂀

m−n

, vn+1, · · · , v2n, 0 · · · 0󰁿 󰁾󰁽 󰂀
m−n

󰀄T
.

From the above proposition, we call d′ the extended symplectic eigenvalues and v′ the
extended vector. Now we define the space ΘCHm,n as the set of all pairs of the form (d′,v′)
and equip ΘCHm,n with the equivalence relation ∼󰂏 as in Definition 20 but in dimension m
instead of n. Recall that we proved ΘCHn/ ∼󰂏

∼= PHn/ ∼sys. Now we proceed to show
that the above isomorphism in dimension 2n can be lifted to dimension 2m by considering
only the restricted parameter spaces with vectors of the form (d′,v′) and (Q′, B′).

Proposition 37 The function f : ΘCHm,n/ ∼󰂏−→ PHm,n/ ∼sys defined by

f([d′,v′]∼󰂏) =

󰀗󰀗
D′ 0
0 D′

󰀘
,v′

󰀘

sys

,

where D′ = diag(d′), is an isomorphism.

Note that in general d′ contains repeated symplectic eigenvalues because of all the ones used
in the extension and that v′2l + v′2m+l = 0 for l > n. Therefore, it is impossible that ΘCHm,n

contains canonical systems for m > n. In other words, lifting PHn to PHm,n introduces
degeneracies that exclude the possibility of the systems being canonical.

We emphasize that the above-mentioned series of results are crucial in machine learning
applications. Very often in practice, the dimension 2n of the underlying data-generating
process, that is, the latent port-Hamiltonian system (5), is not known, causing a problem
when choosing the dimension of the controllable/observable Hamiltonian representation for
learning. This issue can be solved by composing the morphism in Theorem 34 (ii) (which is
injective) and the one in Theorem 7 (not necessarily injective). The composition of system
morphisms is still a system morphism, this time between the underlying system θPHn(Q,B)
and the observable Hamiltonian representation in an arbitrarily higher dimension 2m ≥ 2n.
In this way, the observable Hamiltonian representations in dimension 2m still have full ex-
pressive power to represent any 2n-dimensional system in PHn, and hence can be used for
learning. Practically, one can choose a sufficiently large m, and parameterize the observ-
able Hamiltonian representation using (d,v) (we use the notation (d,v) instead of (d′,v′)
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because practically we do not know what n is) and then estimate them. We emphasize that
the higher-dimensional port-Hamiltonian systems are in general not canonical, hence the
(d,v)-pair that corresponds to the data-generating process is not guaranteed to be unique.
Still, we always know there is at least one choice of (d,v) that works no matter how large
an m we choose, and which is constructed using the recipe in Proposition 36.

6. Practical implementation of the results

We start with a diagram that summarizes the results that we have proved.

Theorem 38 The following diagram holds true using the isomorphisms explicitly con-
structed in all the preceding results. We denote the inclusion between one set and the
other by a one-directional arrow.

ΘCHm,n/ ∼󰂏 PHm,n/ ∼sys

ΘCHn/Hn ΘCHn/ ∼󰂏 PHn/ ∼sys ΘPHn/Gn

Θcan
CHn

/ ∼󰂏 PHcan
n / ∼sys

Θcan
CHn

/(Sn ⋊φ Tn) Θcan
CHn

/ ∼sys Θcan
CHn

/ ∼filter

Rn
+↑ × Rn

+

∼=

∼= ∼=
∼= ∼= ∼=

∼=

∼= ∼=
∼=

∼=

∼=

We now comment on how to use the results contained in the diagram above depending on
the different learning situations that we may encounter. Indeed, we can use our statements
to tackle three different learning scenarios:

• Case 1: The target port-Hamiltonian system (the data generating process that we want to
learn) is canonical and its state-space dimension is known, that is, θPHn(Q,B) ∈ PHcan

n

with n known. This is the most favorable situation in the sense that we can exactly rep-
resent the system θPHn(Q,B) by either the controllable or the observable Hamiltonian
representations, which are both isomorphic to the original system. Furthermore, since, in
this case, the input/output map can be uniquely identified by properly setting up the ini-
tialization, it can be learned by estimating an initial state condition of the representation
used and the unique parameters in Rn

+↑ × Rn
+.

• Case 2: The target port-Hamiltonian system is not guaranteed to be canonical but its
dimension is known, that is, θPHn(Q,B) ∈ PHn with n known. In this case, there is
a trade-off between the controllable Hamiltonian representation and the observable one.
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As mentioned before, the controllable one will be structure-preserving but its expressive
power depends on the controllability of the target system θPHn(Q,B). On the other hand,
the observable one always possesses full expressive power but does not always guarantee
the port-Hamiltonian structure of the induced filter.

• Case 3: We are agnostic about the dimension of the target port-Hamiltonian system,
that is, given θPHn(Q,B) ∈ PHn with n unknown. In this case, we need to choose a
sufficiently large m so that m ≥ n, then based on composition of system morphisms, it
suffices to learn some (d,v) ∈ ΘCHm and use the 2m-dimensional observable Hamiltonian
representation to reproduce the input-output dynamics of (Q,B). Due to the loss of the
canonical property, such a (d,v) pair may not be unique. Additionally, we do not know
the dimension 2n of the data generating process, and hence we are ignorant of how many
ones should be padded into d (and similarly, how many zeros are padded into the vector
v). However, we do know that an element (d,v) exists in some ΘCHm,n ⊂ ΘCHm that
captures the input/output dynamics, given by Proposition 36.

An important special case is when there is no input to the port-Hamiltonian system,
that is, u(t) = 0. In this case, the port-Hamiltonian system reduces to a linear Hamiltonian
system with an arbitrary linear readout matrix. We emphasize that the observable Hamil-
tonian representation in a higher dimension is totally independent of B since it is simply
given by

󰀫
ṡ = gobs1 (d) · s,
y = (0, 0, · · · , 0, 1) · s,

(21)

In other words, Hamiltonian systems with linear readout can be learned by adjusting
the initial state s0 and symplectic eigenvalues di, without even knowing the linear readout
function that yields the observations.

7. Numerical illustrations

In this section, we present two numerical examples to demonstrate the effectiveness of our
representation results from a learning point of view.

7.1 Non-dissipative circuit

Similar to an example in Medianu and Lefevre (2021), we consider a circuit consisting of
a power source with voltage V = u(t), together with five parallelizations, each of them
containing a capacitor Ci with charge Qi and an inductor Li with magnetic flux linkage
φi for i = 1, . . . , 5 (see Figure 1). Using Kirchhoff laws, we obtain the following port-
Hamiltonian system in normal form (22) and (23), where the Hamiltonian of the system
is

H(Q1, . . . , Q5,φ1, . . . ,φ5) =
Q2

1

2C1
+ · · ·+ Q2

5

2C5
+

φ2
1

2L1
+ · · ·+ φ2

5

2L5
.
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󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

Q̇1
...

Q̇5

φ̇1
...

φ̇5

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

=

󰀗
0 I5

−I5 0

󰀘
·

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

∂H
∂Q1

...
∂H
∂Q5

∂H
∂φ1

...
∂H
∂φ5

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

+

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

0
...
0
1
...
1

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

· u (22)

y =
∂H

∂φ1
+

∂H

∂φ2
+ · · ·+ ∂H

∂φ5
, (23)

V

C1
L1

C2
L2

· · ·

C5
L5

Figure 1: Lossless circuit port-Hamiltonian system

This port-Hamiltonian system treats the power supply V = u as input and the current
through the power supply, that is y, as output. One verifies that such a system is non-
canonical. Our purpose is to learn the input-output behavior of this system without any
access to the internal physical state and train only with input-output observations.

In our implementation, we choose for simplicity Ci = 1 and Li = 1 for i = 1, . . . , 5. We
choose to learn with a 10-dimensional observable Hamiltonian representation to show that
the dynamics can be captured even in the non-canonical case. (Indeed, with our choice of
Ci’s and Li’s, the system is readily checked to be noncanonical). We randomly generate
an initial condition for the ground-truth system and integrate it using Euler’s method
(see Appendix 9.14 for more sophisticated structure-preserving integration methods) with
a discretization step of 0.01 for 1000 time steps. The input is chosen as u(t) = sin(t). The
1000 pairs of input and output data will be used as training data. During the training
phase, we estimate the initial state x ∈ R10 as well as the parameters d ∈ R5

+ and v ∈ R10.
This is carried out via gradient descent using a learning rate of λ = 0.1 for 500 epochs. At
each gradient descent iteration we integrate the state-space equations corresponding to the
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current parameter values over 1000 times steps with Euler’s method and then we compute
the squared error with respect to the training set.

We set a testing period of 4000 time steps and demonstrate the robustness of our ap-
proach by not only testing our trained model on the original input u(t) = sin(t) but evalu-
ating on other three commonly used input signals (see Figure 2, 3, 4 and 5). The numerical
experiments provide a strong indication that the underlying system is learned independently
of the input signal and is robust with respect to various forms of inputs.

(a) Input signal u(t) (b) output y(t)

Figure 2: Training and testing on a sinusoidal signal.

(a) Input signal u(t) (b) output y(t)

Figure 3: Testing on a constant signal. The training had been carried out using a sinusoidal
signal. See Figure 2.

7.2 Positive definite Frenkel-Kontorova model

As a second example, we consider a modification of the well-known Frenkel-Kontorova model
such that it becomes a linear port-Hamiltonian system with a positive-definite Hamiltonian
function. Recall that the general form of Frenkel-Kontorova model describes the motion of
classical particles with nearest neighbor interactions using periodic potentials. The Hamil-
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(a) Input signal u(t) (b) output y(t)

Figure 4: Testing on a square signal. The training had been carried out using a sinusoidal
signal. See Figure 2.

(a) Input signal u(t) (b) output y(t)

Figure 5: Testing on a ramp signal. The training had been carried out using a sinusoidal
signal. See Figure 2.

tonian function can be written as

H =

N󰁛

n=1

󰀗
1

2
· q̇2n +

󰀕
1− cos qn +

1

2
g · (qn+1 − qn − a0)

2

󰀖󰀘
.

Since we are dealing with linear systems, we remove the periodic potential and rescale the
potential coefficient. By fixing a0 = 0, we obtain the Hamiltonian

H =
1

2
·

N󰁛

n=1

󰀅
q̇2n + (qn+1 − qn)

2
󰀆
.

In order to consider a Hamiltonian that is strictly positive definite, we add a term 1
2q

2
1

to the Hamiltonian, which carries the physical meaning that the particle q1 interacts with
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the origin via a spring. In summary, our model of interest now has the positive-definite
Hamiltonian

H =
1

2
·

N󰁛

n=1

󰀅
q̇2n + (qn+1 − qn)

2
󰀆
+

1

2
· q21 =

1

2
·

N󰁛

n=1

󰀅
p2n + (qn+1 − qn)

2
󰀆
+

1

2
· q21.

For the sake of simplicity, we consider in the above, a Hamiltonian system with N = 2
unit mass particles (so that pi = q̇i) and an external force F = u that is imposed on the
first particle. This gives a linear port-Hamiltonian system in normal form as below with
the output being the velocity of the first particle.

󰀵

󰀹󰀹󰀷

q̇1
q̇2

ṗ1
ṗ2

󰀶

󰀺󰀺󰀸 =

󰀗
0 I2

−I2 0

󰀘
·

󰀵

󰀹󰀹󰀹󰀹󰀷

∂H
∂q1
∂H
∂q2
∂H
∂p1
∂H
∂p2

󰀶

󰀺󰀺󰀺󰀺󰀸
+

󰀵

󰀹󰀹󰀷

0
0
1
0

󰀶

󰀺󰀺󰀸 · u (24)

y =
∂H

∂p1
. (25)

In contrast to the first example, this system is canonical. Therefore, based on our
theoretical results, any input-output dynamics can be captured by either a controllable
or an observable Hamiltonian representation, and furthermore, it is possible to uniquely
identify the system by learning an initial condition, and the parameters in the quotient
space R2

+↑ × R2
+.

For the sake of numerical illustration, we choose the initial state condition x = (2, 1,−3,−3)T

for the ground-truth system and integrate it 1000 time steps times using Euler’s method
with step of 0.01 (see Appendix 9.14 for more sophisticated structure-preserving integration
methods), where the input is chosen as u(t) = sin(t). The 1000 pairs of input and output
data are then used as training data.

As motivated above, we apply two different training mechanisms in which we learn
the initial state condition and the parameter values of the model using both the natural
parameters from ΘOHn of the observable Hamiltonian representation and those in the unique
identifiability space R2

+↑×R2
+. As in the previous example, we carry out the training using

gradient descent with a learning rate of λ = 0.02 over 1500 epochs out of randomly chosen
initial values for the initial state condition and the model parameters in ΘCHn and R2

+↑×R2
+.

We record the validation error during the 1500 gradient descent iterations of both train-
ing mechanisms to compare their convergence rates. Heuristically, it should be expected
that the rate of convergence is faster when the models are trained using the coordinates that
provide unique identifiability. This is empirically confirmed in Figure 6 (indeed, unique iden-
tifiability provides exponentially faster convergence). After 1500 iterations, the prediction
accuracy when training was carried out using the unique identifiability space significantly
outperforms the other setting, as can be seen in Figure 7. Moreover, we found that the
learned parameters d ∈ R2

+↑ are exactly the same as the eigenvalues of the Hamiltonian ma-
trix, which is theoretically guaranteed by the unique identifiability. It is worth emphasizing
that, despite the difference in the convergence rates, both mechanisms eventually lead to
perfect path continuations of the input-output dynamics after enough training iterations.
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Figure 6: Logarithm of validation errors of the two training mechanisms based on using the
natural parameters of the observable representation and the unique identifiability space

(a) Using observable representation (b) Using unique identifiability space

Figure 7: Training and testing performance of the two training mechanisms after 1500
gradient descent iterations based on using the natural parameters of the observable repre-
sentation (pane (a)) and the unique identifiability space (pane (b))

8. Conclusions

In this paper, we have introduced a complete structure-preserving learning scheme for single-
input/single-output (SISO) linear port-Hamiltonian systems. The construction is based on
the solution, when possible, of the unique identification problem for these systems, in ways
that reveal fundamental relationships between classical notions in control theory and crucial
properties in the machine learning context, like structure-preservation and expressive power.

The main building block in our construction is a representation result that we intro-
duced for linear port-Hamiltonian systems in normal form that provides two subfamilies
of linear systems that are by construction controllable and observable (Definition 5). We
showed that morphisms can be established between the elements in these families and those
in the category of normal form port-Hamiltonian systems. The existence of these mor-
phisms immediately guarantees that the complexity of a generic subset of the family of
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port-Hamiltonian filters is actually not O(n2), as it could be guessed from the standard
parametrization of this family, but O(n). We showed that the expressive power of our pro-
posed representations is limited for non-canonical port-Hamiltonian systems. Indeed, we
saw that the observable representation is guaranteed to capture all possible input-output
dynamics of port-Hamiltonian systems (full expressive power), but it does not always pro-
duce port-Hamiltonian dynamics (fails to be structure-preserving). In the controllable case,
structure preservation is guaranteed, but there is, in general, no full expressive power. For
canonical port-Hamiltonian systems, these representations are both structure-preserving
and have full expressive power.

We saw that even in the canonical situation, the availability of the controllable/observable
representations did not yet provide a well-specified learning problem for this category since
the invariance of these systems under system automorphisms implies the existence of sym-
metries (or degeneracies) in those parametrizations. We tackled this problem by solving the
unique identifiability of input-output dynamics of linear port-Hamiltonian systems in normal
form up to initializations by characterizing the quotient space by system automorphisms as
a Lie groupoid orbit space. Moreover, we showed that in the canonical case the correspond-
ing quotient spaces can be characterized as orbit spaces with respect to an explicit group
action and can be explicitly endowed with a smooth manifold structure that has global
Euclidean coordinates that can be used at the time of constructing estimation algorithms.
Consequently, we showed that canonical port-Hamiltonian dynamics can be identified fully
and explicitly in either the controllable or the observable Hamiltonian representations and
learned by estimating an initial state condition and a unique set of parameters in a smooth
manifold obtained as a group orbit space. Additionally, we complemented this learning
scheme with results that allow us to extend it to situations where we remain agnostic re-
garding the dimension of the underlying data-generating port-Hamiltonian system.

We concluded the paper with some numerical examples that illustrate the viability of
the method we propose in systems with various levels of complexity and dimensions and
the computational advantages associated with using the parameter space in which unique
identification is guaranteed.
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Glossary of Symbols

ΘCHm,n The space of parameters (d′,v′) for PHm,n

Rn
+↑ The set of n-tuples of distinct positive real numbers in increasing order

Tn The n-torus

CHn/OHn The space of filters induced by CHn/OHn

Gn 󰃃 ΘPHn Port-Hamiltonian groupoid, see Proposition 24
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Hn 󰃃 ΘCHn Reduced port-Hamiltonian groupoid, see Proposition 26

PHn The space of input-output dynamics/filters induced by systems in PHn

PHcan
n The space of input-output dynamics/filters induced by systems in PHcan

n

sp(2n,R) Lie algebra of the symplectic group

∼󰂏 An equivalence relation defined on ΘCHn

∼filter The equivalence relation of inducing the same filter

∼sys The equivalence relation of system automorphism

ΘCHn/ΘOHn The space of parameters (d,v) for CHn and/or OHn, which are the
same

θCHn/θOHn The map that send parameters in for ΘCHn/ΘOHn to the corresponding
state space system in CHn/OHn

Θcan
CHn

The subset of ΘCHn that corresponds to canonical systems

ΘPHn The space of parameters (Q,B) for PHn

θPHn The map that sends parameters in for ΘPHn to the corresponding state
space system in PHn

B Input matrix of a port-Hamiltonian system in normal form

CHn/OHn The space of 2n-dimensional controllable/observable Hamiltonian repre-
sentations

F : Z × U → Z State equation

H : R2n −→ R Hamiltonian function

PHn The space of 2n-dimensional linear normal form port-Hamiltonian sys-
tems (5)

PHcan
n The subspace of PHn consisting of canonical linear normal form port-

Hamiltonian systems

PHm,n The subspace of PHm containing all (Q′, B′) =

󰀕
O

󰀗
Q 0
0 I2m−2n

󰀘
OT , O

󰀗
B
0

󰀘󰀖
,

(Q,B) ∈ PHn, O ∈ O(2m,R)

Q Quadratic form that determines a linear Hamiltonian system

Sn Permutation group of n-elements

Sp(2n,R) Symplectic group

Jn =

󰀗
0 In

−In 0

󰀘
Canonical symplectic matrix
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9. Appendices

9.1 Proof of Theorem 7 (i)

Let (d,v) ∈ ΘCHn and let 󰀫
ṡ = gctr1 (d) · s+ (0, 0, · · · , 0, 1)T · u,
y = gctr2 (d,v) · s,

(26)

be the corresponding linear controllable state-space system. In the following paragraphs, we construct for
every S ∈ Sp(2n,R), a linear system morphism f

(d,v)
S : R2n → R2n between (26) and the port-Hamiltonian

system (Q,B) = ϕS(θCHn(d,v)) ∈ PHn in the statement. Notice, first of all that Q is by construction

symmetric and positive-definite. Let now L ∈ M2n be the matrix implementing the linear map f
(d,v)
S , that

is, f
(d,v)
S (s) = Ls, s ∈ R2n. We now explicitly construct L and prove that it provides a system morphism.

We start by denoting A := Jn
󰀗
D 0
0 D

󰀘
, and define for each k = 1, . . . , 2n, a matrix Lk ∈ M2n as

L2n−k := Ak + a2n−1 ·Ak−1 + · · ·+ a2n−k · I2n.

In particular, L2n = I2n. Then, L is constructed as L′ :=
󰀅
L1v L2v · · · L2nv

󰀆
, and L := S−1L′.

We now check that f
(d,v)
S (s) = Ls is indeed a system morphism between (26) and the port-Hamiltonian

system (5) with Q = ST

󰀗
D 0
0 D

󰀘
S and B = S−1v. This amounts to checking that

(i) L · gctr1 (d) = JnQL

(ii) L · (0, 0, · · · , 0, 1)T = B
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(iii) gctr2 (d,v) = BTQL.

We note that (ii) trivially holds. Now, (i) is equivalent to

S−1L′gctr1 (d) = JnST

󰀗
D 0
0 D

󰀘
SS−1L′ = S−1Jn

󰀗
D 0
0 D

󰀘
SS−1L′

⇐⇒ L′gctr1 (d) = Jn
󰀗
D 0
0 D

󰀘
L′

⇐⇒
󰀅
L1v L2v · · · L2nv

󰀆

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

...
...

0 0 0 . . . 1
−a0 −a1 −a2 . . . −a2n−1

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸
= A

󰀅
L1v L2v · · · L2nv

󰀆

We compare the k-th columns of the left and the right-hand sides in this equality. When k = 1, the difference
between the first columns in the left and the right-hand side is

AL1v + a0v = A(A2n−1 + a2n−1 ·A2n−2 + · · ·+ a1 · I)v + a0v

= (A2n + a2n−1A
2n−1 + · · ·+ a1A+ a0)v = 0. (27)

The last equality holds as a consequence of the Cayley-Hamilton theorem. Indeed, by the definition of the
entries {a0, a1, . . . , a2n−1} we have that the characteristic polynomial of A is

det (λI2n −A) = det

󰀕
λI2n −

󰀗
0 D

−D 0

󰀘󰀖
= det

󰀕󰀗
λIn −D
D λIn

󰀘󰀖

= det (λI2n) · det
󰀕
λI2n − (−D)

󰀕
1

λ
In
󰀖
D

󰀖

= (λ2 + d21)(λ
2 + d22) . . . (λ

2 + d2n) = λ2n +

2n−1󰁛

i=0

ai · λi.

Consequently, since by the Cayley-Hamilton theorem, A solves its characteristic polynomial, we can conclude
that A2n + a2n−1A

2n−1 + · · · + a1A + a0 = 0 and hence (27) follows. When 1 < k ≤ 2n, the difference
between the k-th columns in the left and the right-hand side is

(Lk−1v − ak−1v)−ALkv = (Lk−1 − ak−1I2n −ALk)v = 0,

since

Lk−1 − ak−1I2n −ALk = (A2n−k+1 + a2n−1 ·A2n−k + · · ·+ ak−1 · I2n)− ak−1 · I2n
−A(A2n−k + a2n−1 ·A2n−k−1 + · · ·+ ak · I2n) = 0.

We have hence proved that (i) holds. We now proceed to check (iii). This amounts to computing

BTQL = (S−1v)TST

󰀗
D 0
0 D

󰀘
SS−1L′ = vT

󰀗
D 0
0 D

󰀘
L′

= vT

󰀗
D 0
0 D

󰀘 󰀅
L1v L2v · · · L2nv

󰀆
. (28)

Let us denote

BTQL =
󰀅
c2n c2n−1 c2n−2 . . . c2 c1

󰀆
. (29)
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Then we observe that for k = 1, . . . , n,

c2k = vT

󰀗
D 0
0 D

󰀘
L2n−2k+1v

= vT

󰀗
D 0
0 D

󰀘 󰀥󰀕
Jn

󰀗
D 0
0 D

󰀘󰀖2k−1

+ a2n−1

󰀕
Jn

󰀗
D 0
0 D

󰀘󰀖2k−2

+ · · ·+ a2n−2k+1 · I2n

󰀦
v

= vT

󰀗
D 0
0 D

󰀘 󰀥󰀕
Jn

󰀗
D 0
0 D

󰀘󰀖2k−1

+ a2n−2

󰀕
Jn

󰀗
D 0
0 D

󰀘󰀖2k−3

+ · · ·+ a2n−2k+2

󰀕
Jn

󰀗
D 0
0 D

󰀘󰀖󰀦
v

= vT

󰀥
J2k−1
n ·

󰀗
D 0
0 D

󰀘2k

+ a2n−2 · J2k−3
n ·

󰀗
D 0
0 D

󰀘2k−2

+ · · ·+ a2n−2k+2 · Jn ·
󰀗
D 0
0 D

󰀘2
󰀦
v = 0,

The last equation follows from the fact that each summand is a skew-symmetric matrix. On the other hand,
for k = 0, . . . , n− 1,

c2k+1 = vT

󰀗
D 0
0 D

󰀘
L2n−2kv

= vT

󰀗
D 0
0 D

󰀘 󰀥󰀕
Jn

󰀗
D 0
0 D

󰀘󰀖2k

+ a2n−1

󰀕
Jn

󰀗
D 0
0 D

󰀘󰀖2k−1

+ · · ·+ a2n−2k · I2n

󰀦
v

= vT

󰀗
D 0
0 D

󰀘 󰀥󰀕
Jn

󰀗
D 0
0 D

󰀘󰀖2k

+ a2n−2

󰀕
Jn

󰀗
D 0
0 D

󰀘󰀖2k−2

+ · · ·+ a2n−2k · I2n

󰀦
v

= vT

󰀥
(−1)k ·

󰀗
D 0
0 D

󰀘2k+1

+ a2n−2 · (−1)k−1 ·
󰀗
D 0
0 D

󰀘2k−1

+ · · ·+ a2n−2k ·
󰀗
D 0
0 D

󰀘󰀦
v.

Substitute the values of coefficients a2k as expressions in terms of di’s, we obtain that

c2k+1 = vT

󰀗
Fk 0
0 Fk

󰀘
v,

for k = 0, . . . , n− 1, and

Fk =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

f1

f2 0
. . .

0 fn−1

fn

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

with fl = dl ·
󰁓

j1,...,jk ∕=l
1≤j1<···<jk≤n

󰀃
dj1dj2 · · · djk

󰀄2
, l = 1, . . . , n. This is exactly how we define gctr2 (d,v). Hence,

(iii) is also verified.

9.2 Proof of Theorem 7 (ii)

Let (Q,B) ∈ PHn. Obtain d and v from (Q,B) as in the statement of the theorem. We aim to construct a

linear system morphism f
(Q,B)
S : R2n → R2n between the port-Hamiltonian system (Q,B) ∈ PHn and the

observable Hamiltonian representation associated to (d,v) ∈ ΘOHn , that is,

󰀫
ṡ = gobs1 (d) · s+ gobs2 (d,v) · u,
y = (0, 0, · · · , 0, 1) · s.

(30)

Denote by L ∈ M2n the matrix implementing the linear map f
(Q,B)
S , that is, f

(Q,B)
S (s) = Ls, s ∈ R2n.

We now construct a L which yields a system morphism. We start by writing A := Jn
󰀗
D 0
0 D

󰀘
and define,
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for each k = 1, . . . , 2n, a matrix Lk ∈ M2n as

L2n−k := (JnQ)k + a2n−1 · (JnQ)k−1 + · · ·+ a2n−k · I2n

=
󰀃
S−1AS

󰀄k
+ a2n−1 ·

󰀃
S−1AS

󰀄k−1
+ · · ·+ a2n−k · I2n

= S−1(Ak + a2n−1 ·Ak−1 + · · ·+ a2n−k · I2n) · S.

In particular, L2n = I2n. Then, define L is as L :=

󰀵

󰀹󰀹󰀹󰀷

BTQL1

BTQL2

...
BTQL2n

󰀶

󰀺󰀺󰀺󰀸

2n×2n

.

We now check that f
(Q,B)
S (s) = Ls is indeed a system morphism between the port-Hamiltonian system

(5) and the observable Hamiltonian representation (30) with Q = ST

󰀗
D 0
0 D

󰀘
S and B = S−1v. This

amounts to checking that

(i) gobs1 (d) · L = LJnQ
(ii) LB = gobs2 (d,v)

(iii) BTQ = (0, 0, · · · , 0, 1) · L.
We note that (iii) is straightforward. Now, (i) is equivalent to

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀷

0 0 . . . 0 −a0

1 0 . . . 0 −a1

0 1
. . . 0 −a2

...
... · · ·

...
...

0 0 . . . 1 −a2n−1

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀸

󰀵

󰀹󰀹󰀹󰀷

BTQL1

BTQL2

...
BTQL2n

󰀶

󰀺󰀺󰀺󰀸
=

󰀵

󰀹󰀹󰀹󰀷

BTQL1

BTQL2

...
BTQL2n

󰀶

󰀺󰀺󰀺󰀸
· S−1AS.

Compare now the k-th rows of the left and the right-hand sides of this equality. When k = 1, the
difference between the first rows in the left and the right-hand sides are

BTQL1S
−1AS + a0B

TQL2n = BTQ(L1S
−1AS + a0I2n)

= BTQS−1(A2n + a2n−1A
2n−1 + · · ·+ a1A+ a0 · I2n)S = BTQ · 0 = 0.

The last equality follows, as in the proof of Theorem 7, from the Cayley-Hamilton theorem.
When 1 < k ≤ 2n, the difference between the k-th rows in the left and the right-hand sides are:

BTQLk−1 − ak−1B
TQL2n −BTQLkS

−1AS = BTQ(Lk−1 − ak−1 · I2n − LkS
−1AS)

= BTQS−1

󰀗
(A2n−k+1 + a2n−1 ·A2n−k + · · ·+ ak−1 · I2n)− ak−1 · I2n

− (A2n−k + a2n−1 ·A2n−k−1 + · · ·+ ak · I2n)A
󰀘
S = 0,

which shows that (i) holds. We now proceed to check (ii). This is equivalent to computing

LB =

󰀵

󰀹󰀹󰀹󰀷

BTQL1

BTQL2

...
BTQL2n

󰀶

󰀺󰀺󰀺󰀸
B.

Let us denote LB =
󰀅
c2n c2n−1 c2n−2 . . . c2 c1

󰀆T
. Then we have, for k = 1, . . . , 2n,

c2n−k+1 = BTQLkB = (S−1v)TST

󰀗
D 0
0 D

󰀘
SS−1(A2n−k + a2n−1 ·A2n−k−1 + · · ·+ ak · I2n)SS−1v

= vT

󰀗
D 0
0 D

󰀘
(A2n−k + a2n−1 ·A2n−k−1 + · · ·+ ak · I2n)v,
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which coincides exactly with the expression of c2n−k+1 in the equations (28) and (29) that we provided
in the controllable Hamiltonian case. Thus, for (iii) to hold, we simply need to require that gobs2 (d,v) =
(gctr2 (d,v))T .

9.3 Proof of Proposition 18

Proof of part (i). We have that (d1,v1) ∼sys (d2,v2) implies the existence of an invertible matrix L such
that 󰀻

󰁁󰁁󰀿

󰁁󰁁󰀽

L · gctr1 (d1) = gctr1 (d2) · L

L · (0, 0, · · · , 0, 1)T = (0, 0, · · · , 0, 1)T

gctr2 (d1,v1) = gctr2 (d2,v2) · L

The first condition implies that det(λI− gctr1 (d1)) = det(λI− gctr1 (d2)), meaning that

󰀃
λ2 + d21,1

󰀄
. . .

󰀃
λ2 + d21,n

󰀄
=

󰀃
λ2 + d22,1

󰀄
. . .

󰀃
λ2 + d22,n

󰀄
.

Therefore, (i) is clear. With the symmetry in (i), it is clear that gctr1 (d1) = gctr1 (d2). Note that the
second condition says the last column of L is (0, 0, · · · , 0, 1)T . Bring both facts into the first condition
L · gctr1 (d1) = gctr1 (d2) · L and compare both sides. This will deduce L can only be the identity. Thus the
third condition becomes gctr2 (d1,v1) = gctr2 (d2,v2), which is exactly (ii).
Conversely, with (i) and (ii) hold, we can check L being identity works. Thus, (d1,v1) ∼sys (d2,v2).

Proof of part (ii). Since θCHn(di,vi) (i = 1, 2) are linear systems, we can explicitly write down the filters
as

(yi(u), z0)t = gctr2 (di,vi)

󰁝 t

0

eg
ctr
1 (di)(t−s) · (0, 0, · · · , 0, 1)T u(s)ds+ gctr2 (di,vi)e

gctr1 (di)t · z0.

We consider two special cases. In the first case, we take time t = 0, then (yi(u), z0)0 = gctr2 (di,vi) ·z0. Since
z0 can be arbitrary, the two filters coincide if and only if cj(d1,v1) = cj(d2,v2) for all j = 1, . . . , n. In the
second case, we take z0 = 0, then

(yi(u),0)t = gctr2 (di,vi)

󰁝 t

0

󰀗
I+ gctr1 (di)(t− s) + (gctr1 (di))

2 (t− s)2

2!
+ · · ·

󰀘
· (0, 0, · · · , 0, 1)T u(s)ds.

By differentiating the above with respect to t, and using the fact that the input u(t) is arbitrary (and hence
can choose u(0) arbitrarily), we see that y1 and y2 coincide as filters if and only if gctr2 (d1,v1)(g

ctr
1 (d1))

k ·
(0, 0, · · · , 0, 1)T = gctr2 (d2,v2)(g

ctr
1 (d2))

k · (0, 0, · · · , 0, 1)T for all k ∈ N. Moreover, one verifies that
gctr2 (d,v)(gctr1 (d))k · (0, 0, · · · , 0, 1)T = 0 for odd k. Thus, if we define ei(d,v) = gctr2 (d,v)(gctr1 (d))2i ·
(0, 0, · · · , 0, 1)T , then y1 = y2 is equivalent to ei(d1,v1) = ei(d2,v2) for all i ∈ N. Now, one finds a
recursion in the values of ei’s, that is,, for all m ≤ n

em(d,v) = −a2n−2 · em−1(d,v)− a2n−4 · em−2(d,v)− · · ·− a2 · e1(d,v)− a0 · em−n(d,v).

More precisely, it can be checked that the following recursion holds true

e1 = c1

e2 = c3 − a2n−2 · e1
e3 = c5 − a2n−2 · e2 − a2n−4 · e1
...

en = c2n−1 − a2n−2 · en−1 − a2n−4 · en−2 − · · ·− a2 · e1.

On the other hand, (a2n−2, . . . , a2, a0) happens to be the coefficients of the characteristic polynomial of
gctr1 (d,v), therefore, by Cayley-Hamilton Theorem, em(d,v) = 0 for all m > n.

In conclusion, by combining the two special cases, we see that θCHn(d1,v1) and θCHn(d2,v2) induce
the same filter if and only if ci(d1,v1) = ci(d2,v2) and ei(d1,v1) = ei(d2,v2) for all 0 ≤ i ≤ n− 1,
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9.4 Proof of Theorem 22

ϕS ◦ θCHn is compatible with ∼󰂏 and ∼sys. Fix a choice of S ∈ Sp(2n,R). We need to show that
(d1,v1) ∼󰂏 (d2,v2) if and only if

󰀕
ST

󰀗
D1 0
0 D1

󰀘
S, S−1v1

󰀖
:= (Q1, B1) ∼sys (Q2, B2) :=

󰀕
ST

󰀗
D2 0
0 D2

󰀘
S, S−1v2

󰀖
.

This means there exists an invertible L such that (14) holds. We claim that L = S−1PAS does the job,
where P and A are given by Definition 20.

The first condition is

LJQ1 = JQ2L

⇐⇒ LJQ1L
−1 = JQ2

⇐⇒ S−1PASJST

󰀗
D1 0
0 D1

󰀘
SS−1A−1P−1S = JST

󰀗
D2 0
0 D2

󰀘
S

⇐⇒ S−1PASJST

󰀗
D1 0
0 D1

󰀘
A−1P−1S = S−1J

󰀗
D2 0
0 D2

󰀘
S

⇐⇒ PAJ
󰀗
D1 0
0 D1

󰀘
A−1P−1 = J

󰀗
D2 0
0 D2

󰀘

⇐⇒ AJ
󰀗
D1 0
0 D1

󰀘
A−1 = PT J

󰀗
D2 0
0 D2

󰀘
P

⇐⇒ AJ
󰀗
D1 0
0 D1

󰀘
= J

󰀗
D1 0
0 D1

󰀘
A.

The second condition is true by construction, namely

LB1 = B2 ⇐⇒ S−1PASS−1v1 = S−1v2 ⇐⇒ v2 = PAv1.

The third condition is

BT
1 Q1 = BT

2 Q2L

⇐⇒ vT
1 S

−TST

󰀗
D1 0
0 D1

󰀘
S

= vT
2 S

−TST

󰀗
D2 0
0 D2

󰀘
SS−1PAS

⇐⇒ vT
1

󰀗
D1 0
0 D1

󰀘
= vT

2

󰀗
D2 0
0 D2

󰀘
PA

⇐⇒ vT
1

󰀗
D1 0
0 D1

󰀘
= vT

1 A
TPT

󰀗
D2 0
0 D2

󰀘
PA

⇐⇒ vT
1

󰀗
D1 0
0 D1

󰀘
= vT

1 A
T

󰀗
D1 0
0 D1

󰀘
A.

Based on the compatibility result above, we know that ϕS◦θCHn induces a unique map ΦS : ΘCHn/ ∼󰂏→

PHn/ ∼sys defined as ΦS([d,v]󰂏) =

󰀗
ST

󰀗
D 0
0 D

󰀘
S, S−1v

󰀘

sys

. We now verify that ΦS does not depend on

the choice of S ∈ Sp(2n,R).

ΦS is independent of S. It suffices to check that, for S1 ∕= S2, we have

󰀕
ST
1

󰀗
D 0
0 D

󰀘
S1, S

−1
1 v

󰀖
:=

(Q′
1, B

′
1) ∼sys (Q′

2, B
′
2) :=

󰀕
ST
2

󰀗
D 0
0 D

󰀘
S2, S

−1
2 v

󰀖
, which again goes back to checking (14) holds for some
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invertible L. We claim that L = S−1
2 S1 does the job. The first condition is

LJQ′
1 = JQ′

2L

⇐⇒ LJQ′
1L

−1 = JQ′
2

⇐⇒ S−1
2 S1JST

1

󰀗
D 0
0 D

󰀘
S1S

−1
1 S2 = JST

2

󰀗
D 0
0 D

󰀘
S2

⇐⇒
󰀗
D 0
0 D

󰀘
=

󰀗
D 0
0 D

󰀘
.

The second condition is

LB′
1 = B′

2 ⇐⇒ S−1
2 S1S

−1
1 v = S−1

2 v ⇐⇒ v = v.

The third condition is

B′T
1 Q′

1 = B′T
2 Q′

2L

⇐⇒ vTS−T
1 ST

1

󰀗
D 0
0 D

󰀘
S1

= vTS−T
2 ST

2

󰀗
D 0
0 D

󰀘
S2S

−1
2 S1

⇐⇒ vT

󰀗
D 0
0 D

󰀘
= vT

󰀗
D 0
0 D

󰀘
.

Since ΦS does not depend on S ∈ Sp(2n,R), we may as well choose S = Jn and call it Φ. Then Φ has the

expression Φ([d,v]󰂏) =

󰀗󰀗
D 0
0 D

󰀘
,v

󰀘

sys

. We now verify that Φ is injective and surjective, and hence an

isomorphism.

Φ is surjective. For an arbitrary choice [Q,B]sys of equivalence class, we take a representative Q and B.

Since Q is symmetric positive-definite, by Williamson’s theorem, Q = ST

󰀗
D 0
0 D

󰀘
S for some S ∈ Sp(2n,R)

and the diagonal entries of D are nonnegative and can be identified with d. Let v = S · B. Then we have
ΦS([d,v]󰂏) = [Q,B]sys. Given that ΦS = Φ for any S, it holds that Φ([d,v]󰂏) = [Q,B]sys. This concludes
Φ being surjective.

Φ is injective. For

󰀕󰀗
D1 0
0 D1

󰀘
,v1

󰀖
∼sys

󰀕󰀗
D2 0
0 D2

󰀘
,v2

󰀖
, it means there exists some invertible L such

that the conditions in (14) are all satisfied. We aim to show that (d1,v1) ∼󰂏 (d2,v2). The first condition
gives

LJ
󰀗
D1 0
0 D1

󰀘
= J

󰀗
D2 0
0 D2

󰀘
L ⇒ LJ

󰀗
D1 0
0 D1

󰀘
L−1 = J

󰀗
D2 0
0 D2

󰀘

⇒ det

󰀕
λI− J

󰀗
D1 0
0 D1

󰀘󰀖
= det

󰀕
λI− J

󰀗
D2 0
0 D2

󰀘󰀖

⇒
󰀃
λ2 + d21,1

󰀄
. . .

󰀃
λ2 + d21,n

󰀄
=

󰀃
λ2 + d22,1

󰀄
. . .

󰀃
λ2 + d22,n

󰀄
.

Therefore, {d1,i|i = 1, . . . , n} is the same as {d2,i|i = 1, . . . , n} as a set, and this implies the existence of
some σ ∈ Sn such that d2,i = d1,σ(i) for i = 1, . . . , n. In other words, there exists some permutation matrix
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Pσ such that P

󰀗
D1 0
0 D1

󰀘
PT =

󰀗
D2 0
0 D2

󰀘
. Thus, (i) of Definition 20 holds. Further, we have

LJ
󰀗
D1 0
0 D1

󰀘
= J

󰀗
D2 0
0 D2

󰀘
L

⇐⇒ LJ
󰀗
D1 0
0 D1

󰀘
= JP

󰀗
D1 0
0 D1

󰀘
PTL

⇐⇒ LJ
󰀗
D1 0
0 D1

󰀘
= PJ

󰀗
D1 0
0 D1

󰀘
PTL

⇐⇒ PTLJ
󰀗
D1 0
0 D1

󰀘
= J

󰀗
D1 0
0 D1

󰀘
PTL

⇐⇒ AJ
󰀗
D1 0
0 D1

󰀘
= J

󰀗
D1 0
0 D1

󰀘
A,

if we denote A := PTL. Thus, (iii) of Definition 20 holds true. The second condition of (14) says v2 =
Lv1 = PAv1. Thus, (iv) of Definition 20 holds true. Lastly, the third condition implies

vT
1

󰀗
D1 0
0 D1

󰀘
= vT

2

󰀗
D2 0
0 D2

󰀘
L

⇐⇒ vT
1

󰀗
D1 0
0 D1

󰀘
= (PAv1)

T

󰀕
P

󰀗
D1 0
0 D1

󰀘
PT

󰀖
(PA)

⇐⇒ vT
1

󰀗
D1 0
0 D1

󰀘
= vT

1 A
T

󰀗
D1 0
0 D1

󰀘
A,

Thus, (ii) in Definition 20 holds. We conclude that Φ is injective.

Φ is a homeomorphism with respect to the quotient topology. Before we prove this statement, we
first quote a lemma (see, for instance, Abraham et al. (1988)).

Lemma 39 Let X and Y be sets equipped with equivalence relations ∼X and ∼Y respectively. If φ : X → Y
is a map such that, for any x1, x2 ∈ X, x1 ∼X x2 if and only if φ(x1) ∼Y φ(x2), then φ projects to a
unique map φ̃ : X/ ∼X→ Y/ ∼Y between the quotient spaces given by φ̃([x]∼X ) = [φ(x)]∼Y and such that
the following diagram commutes. In particular, if φ is a homeomorphism between two topological spaces X
and Y , then φ̃ is also a homeomorphism.

X Y

X/ ∼X Y/ ∼Y

φ

πX πY

φ̃

We now proceed with the proof.

(i) If (Q1, B1) and (Q2, B2) ∈ PHn are linked by some linear symplectic map S ∈ Sp(2n,R) by (Q2, B2) =
(S−TQ1S

−1, SB1), then (Q1, B1) ∼sys (Q2, B2). Therefore, as an immediate consequence of Williamson’s
normal form, we have PHn/ ∼sys= PHdiag

n / ∼sys, where

PHdiag
n :=

󰀝󰀕󰀗
D 0
0 D

󰀘
,v

󰀖 󰀏󰀏󰀏󰀏D = diag(d), di > 0,v ∈ R2n

󰀞
.

(ii) There is an obvious homeomorphism ϕ : ΘCHn → PHdiag
n given by ϕ(d,v) =

󰀕󰀗
D 0
0 D

󰀘
,v

󰀖
. There-

fore, by identifying PHn/ ∼sys with PHdiag
n / ∼sys, the induced map of ϕ on the quotients is exactly Φ.

By Lemma 39, Φ is also a homeomorphism.

To summarize, we have that the following diagram commutes.

ΘCHn PHn

ΘCHn/ ∼󰂏 PHn/ ∼sys

ϕS◦θCHn

π󰂏 πsys

∼=
ΦS=Φ
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9.5 Proof of Proposition 24

The axioms of being a groupoid mostly follow from the definition. Here, we only check the closure of the
multiplication operation m, that is, (L1L2, (Q2, B2)) ∈ Gn. Note that

JT (L1L2)JQ2(L1L2)
−1 = JTL1J(JTL2JQ2L

−1
2 )L−1

1 = JTL1JQ1L
−1
1

is symmetric positive-definite. On the other hand, we have

JT (L1L2)
T J(L1L2)B2 = JTLT

2 L
T
1 JL1L2B2 = JTLT

2 L
T
1 JL1B1

= JTLT
2 J(JTLT

1 JL1B1) = JTLT
2 JB1 = JTLT

2 JL2B2 = B2.

Thus, closure of multiplication is proved. We also need to show that α and β are submersions. Indeed, for
(L, (Q,B)) ∈ Gn and (N, (P,C)) ∈ T(L,(Q,B))Gn, it holds that

T(L,(Q,B))α(N, (P,C)) =
d

dt

󰀏󰀏󰀏󰀏
t=0

󰀕
JT (L+ tN)J(Q+ tP )(L+ tN)−1, (L+ tN)(B + tC)

󰀖

= (JTNJQL−1 + JTLJPL−1 − JTLJQL−1NL−1, LC +NB).

Obviously, LC +NB can traverse R2n with varying N ∈ GL(2n,R) and C ∈ R2n. For the first component,
we can take N = L such that it becomes JTLJPL−1. Since the tangent space of an open submanifold can
be identified with the tangent space of the whole manifold, plus the fact that the tangent space of a vector
space can be identified with itself, we naturally conclude that T(L,(Q,B))α is surjective and hence α is a
submersion. Similarly, one check that β is a submersion.
Then, the orbit of the groupoid containing (Q,B) is given by

α(β−1(Q,B)) = α({(L, (Q,B))|L satisfies 1.(i) and 1.(ii) in Definition 23 })

=
󰁱
(JTLJQL−1, LB)|L satisfies 1.(i) and 1.(ii) in Definition 23

󰁲

=
󰀋
(Q′, B′)|(Q′, B′) ∼sys (Q,B)

󰀌

9.6 Proof of Proposition 30

f is well-defined. If (d1,v1) ∼sys (d2,v2), then there exists an invertible matrix L0 such that
󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

L0 · gctr1 (d1) = gctr1 (d2) · L0

L0 · (0, 0, · · · , 0, 1)T = (0, 0, · · · , 0, 1)T

gctr2 (d1,v1) = gctr2 (d2,v2) · L0

Since we are restricting on canonical systems, we apply the representation theorem to deduce the existence
of some invertible matrices Li, i = 1, 2 such that

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

Li · gctr1 (di) = JQi · Li

Li · (0, 0, · · · , 0, 1)T = Bi

gctr2 (di,vi) = BT
i Qi · Li

Now, check L = L2L0L
−1
1 is invertible and satisfies

󰀻
󰁁󰀿

󰁁󰀽

LJQ1 = JQ2L

LB1 = B2

BT
1 Q1 = BT

2 Q2L.

Therefore, (Q1, B1) ∼sys (Q2, B2).

f is surjective. This is obvious, see the proof above.

f is injective. Given all the matrices are invertible, this can be shown by essentially reversing the proof of
f being well-defined.
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9.7 Proof of Proposition 31

We directly verify that

Γ(σ,(θ1,...,θn)T )◦(σ̄,(θ̄1,...,θ̄n)T )(d,v)

= Γ(σσ̄,(θ1,...,θn)T+Pσ·(θ̄1,...,θ̄n)T )(d,v)

= (Pσσ̄ · d,Γ(θ1,...,θn)T ◦ ΓPσ·(θ̄1,...,θ̄n)T

󰀕󰀗
Pσσ̄ 0
0 Pσσ̄

󰀘
v

󰀖
)

= (PσPσ̄ · d,

Γ(θ1,...,θn)T ◦

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

cos θ̄σ(1) 0 − sin θ̄σ(1) 0
. . .

. . .

0 cos θ̄σ(n) 0 − sin θ̄σ(n)

sin θ̄σ(1) 0 cos θ̄σ(1) 0
. . .

. . .

0 sin θ̄σ(n) 0 cos θ̄σ(n)

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

󰀗
Pσ 0
0 Pσ

󰀘 󰀗
Pσ̄ 0
0 Pσ̄

󰀘
v)

= (PσPσ̄ · d,Γ(θ1,...,θn)T

󰀗
Pσ 0
0 Pσ

󰀘
Γ(θ̄1,...,θ̄n)T

󰀗
Pσ̄ 0
0 Pσ̄

󰀘
v)

= Γ(σ,(θ1,...,θn)T )(Γ(σ̄,(θ̄1,...,θ̄n)T )(d,v)).

9.8 Proof of Proposition 32

Recall that (d1,v1) and (d2,v2) lie in the same (Sn ⋊φ Tn)-orbit if and only if for some σ ∈ Sn and
(θ1, . . . , θn) ∈ Tn.

(i) d2,i = d1,σ(i), i = 1, . . . , n.

(ii) v22,i + v22,n+i = v21,σ(i) + v21,n+σ(i).

Clearly, (i) above is equivalent to Proposition 18 (i). Moreover, Proposition 18 (ii) implies that for k =
0, . . . , n− 1,

vT
1

󰀗
F1,k 0
0 F1,k

󰀘
v1 = (PTv2)

T

󰀗
F1,k 0
0 F1,k

󰀘
PTv2

⇐⇒
n󰁛

i=1

F
(i)
1,k · (v21,i + v21,n+i)

=

n󰁛

i=1

F
(i)
1,k · (v22,σ−1(i) + v22,n+σ−1(i))

Now, let R̄1 = (R1,1, . . . , R1,n)
T , where R1,i = v21,i + v21,n+i. Let R̄2 = (R2,1, . . . , R2,n)

T , where R2,i =
v22,σ−1(i)+v22,n+σ−1(i). Identify the diagonal matrix F1,k as a row vector in Rn. Then, the above is equivalent

to saying that the inner product of F1,k with R̄1 and R̄2 are the same for all k = 0, . . . , n− 1. Rewrite these
inner products as matrix multiplication gives

󰀵

󰀹󰀹󰀹󰀷

F1,0

F1,1

...
F1,n−1

󰀶

󰀺󰀺󰀺󰀸
· (R̄1 − R̄2) = 0.

The determinant of this matrix is
󰀃󰁔n

i=1 di
󰀄
·
󰀃󰁔

1≤j<k≤n d2j − d2k
󰀄
. Since there are no repeated symplectic

eigenvalues, we must have R̄1 = R̄2, namely v21,i + v21,n+i = v22,σ−1(i) + v22,n+σ−1(i) for all i = 1, . . . , n. Thus,

(ii) holds by inversing the permutation σ. The converse is clearly true.
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9.9 Proof of Proposition 33

f is well-defined. Let (d1,v1) and (d2,v2) be in the same orbit of the (Sn ⋊φ Tn)-action. This means
there exists σ ∈ Sn and Θ ∈ Tn such that Γσ(d1) = d2 and ΓΘ(Γσ(v1)) = v2. This immediately implies
(d1)↑ = (d2)↑, as well as R(v2) = R(Γσ(v1)). Moreover, let σi ∈ Sn be the unique permutation such that
Γσi(di) = (di)↑, i = 1, 2. Then we have,

d2 = Γ
σ−1
2

((d2)↑) = Γ
σ−1
2

((d1)↑)

= (Γ
σ−1
2

◦ Γσ1)(d1)

= Γ
σ−1
2 σ1

(d1).

Since all the entries of d are distinct, we necessarily have σ = σ−1
2 σ1. We want to show R(Γσ1(v1)) =

R(Γσ2(v2)), but since R and Γσ commutes for any σ ∈ Sn, this is equivalent to

Γσ1(R(v1)) = Γσ2(R(v2))

⇐⇒ Γσ1(R(v1)) = Γσ2(R(Γσ(v1)))

⇐⇒ Γσ1(R(v1)) = Γσ2(R(Γ
σ−1
2 σ1

(v1)))

⇐⇒ Γσ1(R(v1)) = R(Γσ1(v1)),

which is clearly true.
f is surjective. This is obvious.
f is injective. Now suppose ((d1)↑,R(Γσ1(v1))) = ((d2)↑,R(Γσ2(v2))). This immediately implies the
existence of some σ ∈ Sn such that Γσ(d1) = d2. On the other hand, since di = Γ

σ−1
i

(di)↑, i = 1, 2,

we have σ = σ−1
2 σ1 and hence d2 = Γ

σ−1
2 σ1

(d1). On the other hand, R(Γσ1(v1)) = R(Γσ2(v2)) im-

plies R(Γ
σ−1
2 σ1

(v1)) = R(v2), which further implies the existence of some Θ ∈ Tn such that v2 =

ΓΘ(Γ
σ−1
2 σ1

(v1)). This concludes that (d1,v1) and (d2,v2) lie in the same orbit.

9.10 Proof of Theorem 34

Proof of part (i). Say we are given a latent system
󰀫
ż = JnQz+Bu

y = BTQz,
(31)

where Jn =

󰀗
0 In

−In 0

󰀘
, B ∈ R2n and Q a 2n by 2n symmetric, positive-definite matrix. Consider the matrix

󰀗
Jn 0
0 Jm−n

󰀘
=

󰀵

󰀹󰀹󰀷

0 In 0 0
−In 0 0 0
0 0 0 Im−n

0 0 −Im−n 0

󰀶

󰀺󰀺󰀸 .

There exists a conjugate transform by an orthogonal matrix that turns this matrix into Jm, since only
elementary row(column) permutation matrices are involved, and these elementary matrices are themselves

orthogonal. That is, there exists OOT = OTO = I2m such that O

󰀗
Jn 0
0 Jm−n

󰀘
OT = Jm. Now, consider the

following linear port-Hamiltonian system in normal form

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

˙̃z =

󰀕
O

󰀗
Jn 0
0 Jm−n

󰀘
OT

󰀖󰀕
O

󰀗
Q 0
0 I2m−2n

󰀘
OT

󰀖
z̃+O

󰀗
B
0

󰀘
u

= Jm
󰀕
O

󰀗
Q 0
0 I2m−2n

󰀘
OT

󰀖
z̃+O

󰀗
B
0

󰀘
u

y =

󰀕
O

󰀗
B
0

󰀘󰀖T 󰀕
O

󰀗
Q 0
0 I2m−2n

󰀘
OT

󰀖
z̃

=
󰀅
BTQ 0

󰀆
OT z̃
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with the change of variable z = OT z̃, which is equivalent to

󰀻
󰁁󰀿

󰁁󰀽

ż =

󰀗
JnQ 0
0 Jm−n

󰀘
z+

󰀗
B
0

󰀘
u

y =
󰀅
BTQ 0

󰀆
z,

which, restricted to the upper subspace, coinsides with (31). Moreover, the matrix O

󰀗
Q 0
0 I2m−2n

󰀘
OT is

again symmetric positive-definite by construction.

Proof of part (ii). According to the system morphism conditions, we just need to check

󰀻
󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰀽

LJnQ = JmO

󰀗
Q 0
0 I2m−2n

󰀘
OTL

LB = O

󰀗
B
0

󰀘

BTQ =
󰀅
BTQ 0

󰀆
OTL.

The first condition is

LJnQ = JmO

󰀗
Q 0
0 I2m−2n

󰀘 󰀗
I2n
0

󰀘

⇐⇒ OTLJnQ = OT JmO

󰀗
Q 0
0 I2m−2n

󰀘 󰀗
I2n
0

󰀘

⇐⇒
󰀗
I2n
0

󰀘
JnQ =

󰀗
Jn 0
0 Jm−n

󰀘 󰀗
Q 0
0 I2m−2n

󰀘 󰀗
I2n
0

󰀘

⇐⇒
󰀗
I2n
0

󰀘
JnQ =

󰀗
JnQ
0

󰀘
.

The second and third conditions are clear with L = O

󰀗
I2n
0

󰀘

9.11 Proof of Proposition 35

f is well-defined. Given (Q1, B1) ∼sys (Q2, B2), there exists an invertible L ∈ R2n such that (14) is

satisfied. Let L′ = O

󰀗
L 0
0 I2m−2n

󰀘
OT . Check that L′ satisfies the conditions (14) together with (Q′

1, B
′
1)

and (Q′
2, B

′
2). Therefore, (Q

′
1, B

′
1) ∼sys (Q′

2, B
′
2).

f is surjective. This is clear from definition of (Q′, B′).

f is injective. Given (Q′
1, B

′
1) ∼sys (Q′

2, B
′
2), it means there exists an invertible L′ ∈ R2m such that L′

satisfies the conditions in (14) together with (Q′
1, B

′
1) and (Q′

2, B
′
2). Write the matrix OTL′O in the form󰀗

L1 L2

L3 L4

󰀘
, where L1 ∈ R2n. Then check L1 satisfies the conditions (14) together with (Q1, B1) and (Q2, B2).

Therefore, (Q1, B1) ∼sys (Q2, B2).
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9.12 Proof of Proposition 36

Clearly, Q′ is also symmetric and positive-definite. Thus, again byWilliamson’s theorem, Q′ = (S′)T
󰀗
D′ 0
0 D′

󰀘
S′.

As before, we have

󰀃
λ2 + d′21

󰀄
· · ·

󰀃
λ2 + d′2m

󰀄

= det

󰀕
λI2m −

󰀗
0 D′

−D′ 0

󰀘󰀖

= det

󰀕
λI2m − (S′)−1

󰀗
0 D′

−D′ 0

󰀘
S′
󰀖

= det

󰀕
λI2m − Jm(S′)T

󰀗
D′ 0
0 D′

󰀘
S′
󰀖

= det(λI2m − JmQ′)

= det

󰀕
λI2m − JmO

󰀗
Q 0
0 I2m−2n

󰀘
OT

󰀖

= det

󰀕
λJm + JmO

󰀗
Q 0
0 I2m−2n

󰀘
OT JTm

󰀖

= det

󰀕
λJm + JmO

󰀗
Q 0
0 I2m−2n

󰀘
(JmO)−1

󰀖

= det

󰀕
λ(JmO)−1Jm(JmO) +

󰀗
Q 0
0 I2m−2n

󰀘󰀖

= det

󰀕
λOT JmO +

󰀗
Q 0
0 I2m−2n

󰀘󰀖

= det

󰀕󰀗
λJn 0
0 λJm−n

󰀘
+

󰀗
Q 0
0 I2m−2n

󰀘󰀖

= det(λJm−n + I2m−2n) · det(λJn +Q)

= (λ2 + 1)m−n · det(λI2n − JnQ)

= (λ2 + 1)m−n󰀃λ2 + d21
󰀄
· · ·

󰀃
λ2 + d2n

󰀄

If we fixed the order of symplectic eigenvalues d′ according to d′ = (d1, . . . , dn, 1, . . . , 1), then

Q′ = O

󰀗
Q 0
0 I2m−2n

󰀘
OT

= O

󰀵

󰀷S
T

󰀗
D 0
0 D

󰀘
S 0

0 I2m−2n

󰀶

󰀸OT

= O

󰀗
ST 0
0 Jm−n

󰀘
󰀵

󰀹󰀹󰀷

D 0
0 D

0

0 Im−n 0
0 Im−n

󰀶

󰀺󰀺󰀸

󰀗
S 0
0 Jm−n

󰀘
OT

= O

󰀗
ST 0
0 JTm−n

󰀘
OT

󰀵

󰀹󰀹󰀷

D 0
0 Im−n

0

0 D 0
0 Im−n

󰀶

󰀺󰀺󰀸O

󰀗
S 0
0 Jm−n

󰀘
OT
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Now, we check the matrix O

󰀗
S 0
0 Jm−n

󰀘
OT is symplectic, that is,

󰀕
O

󰀗
S 0
0 Jm−n

󰀘
OT

󰀖T

Jm
󰀕
O

󰀗
S 0
0 Jm−n

󰀘
OT

󰀖

= O

󰀗
ST 0
0 JTm−n

󰀘 󰀃
OT JmO

󰀄 󰀗S 0
0 Jm−n

󰀘
OT

= O

󰀗
ST 0
0 JTm−n

󰀘 󰀗
Jn 0
0 Jm−n

󰀘 󰀗
S 0
0 Jm−n

󰀘
OT

= O

󰀗
Jn 0
0 Jm−n

󰀘
OT = Jm.

Therefore, O

󰀗
S 0
0 Jm−n

󰀘
OT is a symplectic matrix diagonalizing Q′ in Williamson’s theorem. Then, we

deduce

v′ = S′B′ = O

󰀗
S 0
0 Jm−n

󰀘
OTO

󰀗
B
0

󰀘
= O

󰀗
SB
0

󰀘
= O

󰀗
v
0

󰀘
.

9.13 Proof of Proposition 37

Similar to the proof of Theorem 22, simply replace Q with O

󰀗
Q 0
0 I2m−2n

󰀘
OT , B with O

󰀗
B
0

󰀘
, S with

O

󰀗
S 0
0 Jm−n

󰀘
OT , D with

󰀗
D 0
0 Im−n

󰀘
, v =

󰀗
vupper

vlower

󰀘
with v̄ =

󰀅
vT
upper 0m−n vT

lower 0m−n

󰀆T
.

9.14 A note on the design of discrete integrators on the transformed space

Even though we used just a simple Euler integration scheme in the numerical illustration, structure-
preserving integration algorithms could have been used. In particular, we could have used an implicit
midpoint rule which is symplectic (see Marsden and West (2001)), that is, it preserves the symplectic form
dq ∧ dp. Recall that if LLag(q, q̇) is the Lagrangian function of the system of interest, then the midpoint
integrator is obtained by using the discrete Lagrangian

Lα
d (q0,q1, h) = hLLag((1− α)q0 + αq1,

q1 − q0

h
),

with α = 1
2
to approximate the exact discrete Lagrangian

LE
d (q0,q1, h) =

󰁝 h

0

LLag(q0,1(t), q̇0,1(t))dt.

Explicitly, the midpoint integrator for a linear autonomous Hamiltonian system is

zn+1 − zn = h · JQ
󰀓zn+1 + zn

2

󰀔
,

which in terms of the controllable Hamiltonian representation reads

L(sn+1 − sn) =
h

2
JQL(sn+1 + sn) =

h

2
L · gctr1 (d)(sn+1 + sn), (32)

where the second equality holds by the construction of L in the proof of Theorem 7 part (i).
Thus, for the symplectic structure to be preserved in the original space, we can merely integrate by

requiring sn+1 − sn = h
2
gctr1 (d)(sn+1 + sn), where gctr1 (d) as we have seen, takes the form

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

...
0 0 0 . . . 1

−a0 −a1 −a2 . . . −a2m−1

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸

2m×2m

.
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Therefore, the integrator is given by

sn+1 = (I2n − h

2
gctr1 (d))−1(I2n +

h

2
gctr1 (d)) · sn,

where the matrix inverse is well-defined for sufficiently small time step h. Indeed, the integrator can be
defined on the quotient space of L, since by (32), we may as well choose sn+1 such that

sn+1 − sn =
h

2
gctr1 (d)(sn+1 + sn) + sker

for an arbitrary sker ∈ ker(L).
By a similar argument, the midpoint rule in terms of observable Hamiltonian representation reads

sn+1 − sn = L(zn+1 − zn) =
h

2
LJQ(zn+1 + zn) =

h

2
gobs1 (d)(sn+1 + sn), (33)

where the last equality holds by construction of L from Theorem 7 Part (ii).
Therefore, the integrator is

sn+1 = (I2n − h

2
gobs1 (d))−1(I2n +

h

2
gobs1 (d)) · sn.

In the case of port-Hamiltonian system, if the system is driven by some fiber-preserving external force
fH , that is, some input as in our case, then the discrete Lagrange-d’Alembert Principle can be used to
construct variational integrators so that all the correspondence relationships and error analysis of standard
variational integrators still hold (see Marsden and West (2001)). For example, the midpoint rule applied to
the controllable Hamiltonian representation becomes

zn+1 − zn = h · JQ
󰀓zn+1 + zn

2

󰀔
+

󰀥
0

fH
󰀓

zn+zn+1

2

󰀔
󰀦

⇒L(sn+1 − sn) =
h

2
L · gctr1 (d)(sn+1 + sn) +

󰀥
0

fH
󰀓

L(sn+1+sn)

2

󰀔
󰀦
.

Note that this structure-preserving integrator is not explicit in general.
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