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Abstract

We investigate the generalization and optimization properties of shallow neural-network
classifiers trained by gradient descent in the interpolating regime. Specifically, in a realizable
scenario where model weights can achieve arbitrarily small training error ε and their distance
from initialization is g(ε), we demonstrate that gradient descent with n training data achieves
training error O(g(1/T )2/T ) and generalization error O(g(1/T )2/n) at iteration T , provided
there are at least m = Ω(g(1/T )4) hidden neurons. We then show that our realizable
setting encompasses a special case where data are separable by the model’s neural tangent
kernel. For this and logistic-loss minimization, we prove the training loss decays at a rate
of Õ(1/T ) given polylogarithmic number of neurons m = Ω(log4(T )). Moreover, with
m = Ω(log4(n)) neurons and T ≈ n iterations, we bound the test loss by Õ(1/n). Our
results differ from existing generalization outcomes using the algorithmic-stability framework,
which necessitate polynomial width and yield suboptimal generalization rates. Central to
our analysis is the use of a new self-bounded weak-convexity property, which leads to a
generalized local quasi-convexity property for sufficiently parameterized neural-network
classifiers. Eventually, despite the objective’s non-convexity, this leads to convergence and
generalization-gap bounds that resemble those found in the convex setting of linear logistic
regression.

Keywords: Generalization Error, Neural Networks, Optimization, Over-parameterization,
Interpolation.

1. Introduction

Neural networks have remarkable expressive capabilities and can memorize a complete
dataset even with mild overparameterization. In practice, using gradient descent (GD)
on neural networks with logistic or cross-entropy loss can result in the objective reaching
zero training error and close to zero training loss. Zero training error, often referred to as
“interpolating” the data, indicates perfect classification of the dataset. Despite their strong
memorization ability, these networks also exhibit remarkable generalization capabilities to
new data. This has motivated a surge of studies in recent years exploring the optimization
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and generalization properties of first-order gradient methods in overparameterized neural
networks, with a specific focus in the so-called Neural Tangent Kernel (NTK) regime. In
the NTK regime, the model operates as the first-order approximation of the network at a
sufficiently large initialization or at the large-width limit (Jacot et al., 2018; Chizat et al.,
2019). Prior works on this topic mostly focused on quadratic-loss minimization and their
optimization/generalization guarantees required network widths that increased polynomially
with the sample size n. This, however, is not in line with practical experience. Improved
results were obtained more recently by Ji and Telgarsky (2020a); Chen et al. (2020) who
have investigated the optimization and generalization of ReLU neural networks with logistic
loss, which is more suitable for classification tasks. Assuming that the NTK with respect to
the model can interpolate the data (i.e. separate them with positive margin), they showed
through a Rademacher complexity analysis that GD on neural networks with polylogarithmic
width can achieve generalization guarantees that decrease with the sample size n at a rate
of Õ( 1√

n
).

In this paper, we provide rate-optimal optimization and generalization analyses of
GD for shallow neural networks of minimal width assuming that the model itself can
interpolate the data. We focus on two-layer networks with smooth activations that can
almost surely separate n training samples from the data distribution. Concretely, we consider
a realizability condition where data and initialization are such that model weights can achieve
arbitrarily small training error ε while their distance from initialization is g(ε) for some
function g : R+ → R+. Under this condition, we demonstrate generalization guarantees of

order O(
g( 1
T

)2

n ). More generally, for any iteration T of GD and assuming network width

m = Ω(g( 1
T )4), we obtain an expected test-loss rate O(

g( 1
T

)2

T +
g( 1
T

)2

n ). Additional to the
generalization bounds, we provide optimization guarantees under the same setting by showing

that the training loss approaches zero at rate O(
g( 1
T

)2

T ). We note that these results are
derived without NTK-type analyses. For demonstration and also for connection to prior
works on neural-tangent data models, we specialize our generalization and optimization
results to the class of NTK-separable data. We show this is possible because the NTK-data
separability assumption implies our realizability condition holds. Thus, for logistic-loss
minimization on NTK-separable data, we show that the expected test loss of GD is Õ( 1

T + 1
n)

provided polylogarithmic number of neurons m = Ω(log4(T )). This further suggests that a
network of width m = Ω(log4(n)), attains expected test loss Õ( 1

n) after T ≈ n iterations.

In contrast to prior optimization and generalization analyses that often depend on the
NTK framework, which requires the first-order approximation of the model, we build on
the algorithmic stability approach (Bousquet and Elisseeff, 2002) for shallow neural-network
models of finite width. Although the stability analysis has been utilized in previous studies
to derive generalization bounds for (stochastic) gradient descent in various models, most
results that are rate-optimal heavily rely on the convexity assumption. Specifically, the
stability-analysis framework has been successful in achieving optimal generalization bounds
for convex objectives in (Lei and Ying, 2020a; Bassily et al., 2020; Schliserman and Koren,
2022). On the other hand, previous studies on non-convex objectives either resulted in
suboptimal bounds or relied on assumptions that are not in line with the actual practices
of neural network training. For instance, Hardt et al. (2016) derived a generalization

bound of O(T
βc/(βc+1)

n ) for general β-smooth and non-convex objectives, but this required
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a time-decaying step-size ηt ≤ c/t, which can degrade the training performance. More
recently, Richards and Rabbat (2021) explored the use of the stability approach specifically
for logistic-loss minimization of a two-layer network. By refining the model-stability analysis
framework introduced by (Lei and Ying, 2020a), they derived generalization-error bounds
provided the hidden width increases polynomially with the sample size. In comparison, our
analysis leads to significantly improved generalization and optimization rates and under
standard separability conditions such as NTK-separability, only requires a polylogarithmic
width for both global convergence and generalization.

Notation

We define [n] := {1, 2, · · · , n}. We use the standard notation O(·),Ω(·) and use Õ(·), Ω̃(·)
to hide polylogarithmic factors. Occasionally we use . to hide numerical constants. The
Gradient and Hessian of a function Φ : Rd1×d2 → R with respect to the ith input (i = 1, 2)
are denoted by ∇iΦ and ∇2

iΦ, respectively. All logarithms are in base e. We use ‖·‖ for the
`2 norm of vectors and the operator norm of matrices. We denote [w1, w2] := {w : w =
αw1 + (1− α)w2, α ∈ [0, 1]} the line segment between w1, w2 ∈ Rd′ .

2. Problem Setup

Given n i.i.d. samples (xi, yi) ∼ D, i ∈ [n] from data distribution D, we study unconstrained
empirical risk minimization with objective F̂ : Rd′ → R:

min
w∈Rd′

{
F̂ (w) :=

1

n

n∑
i=1

F̂i(w) =
1

n

n∑
i=1

f (yiΦ (w, xi))
}
. (1)

This serves as a proxy for minimizing the test loss F : Rd′ → R:

F (w) := E(x,y)∼D [f (yΦ(w, x))] . (2)

We introduce our assumptions on the data (x, y), the model Φ(·, x), and the loss function
f(·), below. We start by imposing the following mild assumption on the data distribution.

Assumption 1 (Bounded features). Assume any (x, y) ∼ D has almost surely bounded
features, i.e. ‖x‖≤ R, and binary label y ∈ {±1}.

The model Φ : Rd′ × Rd → R is parameterized by trainable weights w ∈ Rd′ and takes
input x ∈ Rd. For our main results, we assume Φ is a one-hidden layer neural-net of m
neurons, i.e.

Φ(w, x) :=
1√
m

m∑
j=1

aj σ(〈wj , x〉), (3)

where σ : R→ R is the activation function, wj ∈ Rd denotes the weight vector of the jth
hidden neuron and

aj√
m
, j ∈ [m] are the second-layer weights. For the second layer weights,

we assume that they are fixed during training taking values aj ∈ {±1}. We assume that
for half of second layer weights aj = 1 and for the other half aj = −1. On the other hand,

3



Taheri and Thrampoulidis

all the first-layer weights are updated during training. Thus, the total number of trainable
parameters is d′ = md and we denote w = [w1;w2; . . . ;wm] ∈ Rd′ the vector of trainable
weights. Throughout, we make the following assumptions on the activation function.

Assumption 2 (Lipschitz and smooth activation). The activation function σ : R → R
satisfies the following for non-negative constants `, L:

|σ′(u)| ≤ `, |σ′′(u)|≤ L, ∀u ∈ R.

We note that the smoothness assumption which is required by our framework excludes the
use of ReLU. Examples of activation functions that satisfy the smoothness condition include
Softplus σ(u) = log(1 + eu), Gaussian error linear unit (GELU) σ(u) = 1

2u(1 + erf( u√
2
)),

and Hyperbolic-Tangent where σ(u) = eu−e−u
eu+e−u . On the other hand, Lipschitz assumption is

rather mild, since it is possible to restrict the parameter space to a bounded domain.

Next, we discuss conditions on the loss function. Of primal interest is the commonly
used logistic loss function f(u) = log(1 + e−u). However, our results hold for a broader class
of convex, non-negative and monotonically decreasing functions (limu→∞ f(u) = 0) that
satisfy the following:

Assumption 3 (Lipschitz and smooth loss). The convex loss function f : R→ R+ satisfies
for all u ∈ R :

3.A: Lipschitzness: |f ′(u)|≤ Gf .

3.B: Smoothness: f ′′(u) ≤ Lf .

Assumption 4 (Self-bounded loss). The convex loss function f : R→ R+ is self-bounded
with some constant βf > 0, i.e., |f ′(u)|≤ βff(u),∀u ∈ R.

The self-boundedness Assumption 4 is the key property of the loss that drives our analysis
and justifies the polylogarithmic width requirement, as will become evident. Note that
the logistic loss naturally satisfies Assumptions 3.A and 3.B (with Gf = 1, Lf = 1/4), as
well as, Assumption 4 with βf = 1. Other interesting examples of loss functions satisfying
those assumptions include polynomial losses, with the tail behavior f(u) = 1/uβ for β > 0,
which we discuss in Remark 2. To lighten the notation and without loss of generality, we set
Gf = Lf = βf = 1 for the rest of the paper. We remark that our training-loss results also
hold for the exponential loss e−u. The exponential loss is self-bounded and while it is not
Lipschitz or smooth it satisfies a second-order self-bounded property f ′′(u) ≤ f(u), which
we can leverage instead; see Appendix A for details.

3. Main Results

We present bounds on the train loss and generalization gap of gradient-descent (GD) under
the setting of Section 2. Formally, GD with step-size η > 0 optimizes (1) by performing the
following updates starting from an initialization w0:

∀t ≥ 0 : wt+1 = wt − η∇F̂ (wt).
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3.1 Key properties

The key challenge in both the optimization and generalization analysis is the non-convexity of
f(yΦ(·, x)), and consequently of the train loss F̂ (·). Despite non-convexity, we derive bounds
analogous to the convex setting, e.g. corresponding bounds on linear logistic regression
in (Ji and Telgarsky, 2018; Shamir, 2021; Schliserman and Koren, 2022). We show this is
possible provided the loss satisfies the following key property, which we call self-bounded
weak convexity.

Definition 1 (Self-bounded weak convexity). We say a function F̂ : Rd′ → R is self-bounded
weakly convex if there exists constant κ > 0 such that for all w,

λmin

(
∇2F̂ (w)

)
≥ −κ F̂ (w) . (4)

Recall a function G : Rd′ → R is weakly convex if ∃κ ≥ 0 such that uniformly over all
w ∈ Rd′ , λmin

(
∇2G(w)

)
≥ −κ. If κ = 0, the function is convex. Instead, property (4) lower

bounds the curvature by −κG(w) that changes proportionally with the function value G(w).
We explain below how this is exploited in our setting.

To begin with, the following lemma shows that property (4) holds for the train loss under
the setting of Section 2: training of a two-layer net with smooth activation and self-bounded
loss. The lemma also shows that the gradient of the train loss is self bounded. Those two
properties together summarize the key ingredients for which our analysis applies.

Lemma 3.1 (Key self-boundedness properties). Consider the setup of Section 2 and let
Assumptions 1-2 hold. Further assume the loss is self-bounded as per Assumption 4. Then,
the objective satisfies the following self-boundedness properties for its Gradient and Hessian:

1. Self-bounded gradient:
∥∥∥∇F̂i(w)

∥∥∥ ≤ `R F̂i(w), ∀i ∈ [n].

2. Self-bounded weak convexity: λmin

(
∇2F̂ (w)

)
≥ −LR2

√
m
F̂ (w).

Both of these properties follow from the self-boundedness of the convex loss f combined
with Lipshitz and smoothness of σ. The self-boundedness of the gradient is used for
generalization analysis and in particular in obtaining the model stability bound. The
self-bounded weak convexity plays an even more critical role for our optimization and
generalization results. In particular, the wider the network the closer the loss to having
convex-like properties. Moreover, the “self-bounded” feature of this property provides
another mechanism that favors convex-like optimization properties of the loss. To see
this, consider the minimum Hessian eigenvalue λmin(∇2F̂ (wt)) at gradient descent iterates
{wt}t≥1: As training progresses, the train loss F̂ (wt) decreases, and thanks to the self-
bounded weak convexity property, the gap to convexity also decreases. We elaborate on the
role of self-bounded weak convexity in our proofs in Section 5.

3.2 Training loss

We begin with a general bound on the training loss and the parameter’s norm, which is also
required for our generalization analysis.

5



Taheri and Thrampoulidis

Theorem 3.2 (Training loss – General bound). Suppose Assumptions 1-4 hold. Fix any
training horizon T ≥ 0 and any step-size η ≤ 1/L

F̂
where L

F̂
is the objective’s smooth-

ness parameter. Assume any w ∈ Rd′ and hidden-layer width m such that ‖w − w0‖2≥
max{ηT F̂ (w), ηF̂ (w0)} and m ≥ 182L2R4‖w − w0‖4. Then, the training loss and the
parameters’ norm satisfy

F̂ (wT ) ≤ 1

T

T∑
t=1

F̂ (wt) ≤ 2F̂ (w) +
5‖w − w0‖2

2ηT
, (5)

∀t ∈ [T ] : ‖wt − w0‖ ≤ 4‖w − w0‖.

A few remarks are in place regarding the theorem. First, Eq. (5) upper bounds the
running average (also known as regret) of train loss for iterations 1, . . . , T by the value, at
an arbitrarily chosen point w, of a ridge-regularized objective with regularization parameter
inversely proportional to ηT . Because of smoothness and Lipschitz Assumption 3 of f , it
turns out that the training objective is L

F̂
-smooth. Hence, by the descent lemma of GD for

smooth functions, the same upper bound holds in Eq. (5) for the value of the loss at time
T , as well. Moreover, the theorem provides a uniform upper bound of the norm of all GD
iterates in terms of ‖w − w0‖. Notably, and despite the non-convexity in our setting, our
bounds are same up to constants to analogous bounds for logistic linear regression in Shamir
(2021); Schliserman and Koren (2022). As discussed in Sec. 3.1 this is possible thanks to
the self-bounded weak convexity property.

The condition m & ‖w − w0‖4 on the norm of the weights controls the maximum
deviations of weights w from initialization (with respect to network width) required for our
results to guarantee arbitrarily small train loss. Specifically, to get the most out of Theorem
3.2 we need to choose appropriate w that satisfies both the condition m & ‖w − w0‖4 and
keeps the associated ridge-regularized loss F̂ (w) + ‖w − w0‖2/(ηT ) small. This combined
requirement is formalized in the neural-net realizability Assumption 5 below. As we will
discuss later in Section 4, this assumption translates into an assumption on the underlying
data distribution that ultimately enables the application of Theorem 3.2 to achieve vanishing
training error.

Assumption 5 (NN–Realizability). There exists a decreasing function g : R+ → R+ which
measures the norm of deviations from initialization of models that achieve arbitrarily small
training error.

Formally, for almost surely all n training samples and for any sufficiently small ε > 0
there exists w(ε) ∈ Rd′ such that

F̂ (w(ε)) ≤ ε, and g(ε) =
∥∥∥w(ε) − w0

∥∥∥ .
Since Assumption 5 holds for arbitrarily small ε, it guarantees that the model has

enough capacity to interpolate the data, i.e., attain train error that is arbitrarily small (ε).
Additionally, this is accomplished for model weights whose distance from initialization is
managed by the function g(ε). By using these model weights to select w in Theorem 3.2 we
obtain train loss bounds for interpolating models.
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Theorem 3.3 (Training loss under interpolation). Let Assumptions 1-5 hold. Let η ≤
min{ 1

L
F̂
, g(1)2, g(1)2

F̂ (w0)
} and assume the width satisfies m ≥ 182L2R4 g( 1

T )4 for a fixed training

horizon T . Then,

F̂ (wT ) ≤ 2

T
+

5 g( 1
T )2

2ηT
, (6)

∀t ∈ [T ] : ‖wt − w0‖ ≤ 4 g(
1

T
).

To interpret the theorem’s conclusions suppose that the function g(·) of Assumption 5 is
at most logarithmic; i.e., g( 1

T ) = O(log(T )). Then, Theorem 3.3 implies that m = Ω(log4(T ))

neurons suffice to achieve train loss Õ( 1
T ) while GD iterates at all iterations satisfy ‖wt−w0‖=

O(log(T )). In Section 4 (see also Remark 1), we will give examples of data separability
conditions that guarantee the desired logarithmic growth of g(·) for logistic loss minimization,
which in turn imply the favorable convergence guarantees described above. Under the same
conditions we will show that the step-size requirement simplifies to η ≤ min{3, 1/L

F̂
} (see

Corollary 4.1.1). Finally, we remark that Theorem 3.3 provides sufficient parameterization
conditions under which GD with T = Ω̃(n) iterations finds weights wT that yield an
interpolating classifier and thus, achieve zero training error. To see this, assume logistic loss
and observe setting T & n in Eq. (6) gives F̂ (wT ) ≤ log(2)/n. This in turn implies that
every sample loss satisfies F̂i(wT ) ≤ log(2), equivalently yi = sign (Φ(wT , xi)).

3.3 Generalization

Our main result below bounds the generalization gap of GD for training two-layer nets with
self-bounded loss functions. We remark that all expectations that appear below are over the
training set.

Theorem 3.4 (Generalization gap – General bound). Suppose Assumptions 1-4 hold. Fix
any time horizon T ≥ 1 and any step size η ≤ 1/L

F̂
where L

F̂
is the objective’s smoothness

parameter. Let any w ∈ Rd′ such that ‖w−w0‖2≥ max{ηT F̂ (w), ηF̂ (w0)}. Suppose hidden-
layer width m satisfies m ≥ 642L2R4‖w − w0‖4. Then, the generalization gap of GD at
iteration T is bounded as

E
[
F (wT )− F̂ (wT )

]
≤ 8`2R2

n
E
[
ηT F̂ (w) + 2‖w − w0‖2

]
.

A few remarks regarding the theorem are in place. The theorem’s assumptions are
similar to those in Theorem 3.2, which bounds the training loss. The condition ‖w −w0‖2≥
max{ηT F̂ (w), ηF̂ (w0)} needs to hold almost surely over the training data, which is non-
restrictive, as in later applications of the theorem, the choice of w arises from Assumption 5.
The condition m ≥ 642L2R4‖w−w0‖4 on the width of the network, is also the same as that
of Theorem 3.2 but with a larger constant. This means that the last-iterate train loss bound
from Theorem 3.2 (Eq. (5)) holds under the setting of Theorem 3.4. Hence, it applies to
the expected train loss E[F̂ (wT )] and, combined with the generalization-gap bound, yields a
bound on the expected test loss E[F (wT )].

To optimize the bound, a proper w must be selected by minimizing the population
version of a ridge-regularized training objective. In interpolation settings, the procedure
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for selecting w follows the same guidelines as in Assumption 5 and in a similar style as
obtaining Theorem 3.3.

Theorem 3.5 (Generalization gap under interpolation). Let Assumptions 1-5 hold. Fix

T ≥ 1 and let m ≥ 642L2R4 g( 1
T )4. Then, for any η ≤ min{ 1

L
F̂
, g(1)2, g(1)2

F̂ (w0)
} the expected

generalization gap at iteration T satisfies

E
[
F (wT )− F̂ (wT )

]
≤

24`2R2 g( 1
T )2

n
. (7)

Note the width condition is similar in order to that of Theorem 3.3. Thus, provided
g( 1

T ) . log(T ) (see Remark 1 and Section 4 for examples), we have generalization gap of

order Õ( 1
n) with m = Ω(log4(T )) neurons. Combined with the training loss guarantees from

Theorem 3.3, we have test loss rate Õ( 1
T + 1

n). This further implies that with m ≈ log4(n)

neurons and T = n iterations, the test loss reaches the optimal rate of Õ( 1
n). On the other

hand, previous stability-based generalization bounds (e.g., Richards and Rabbat (2021))
required polynomial width m & T 2 and eventually obtained sub-optimal generalization rates
of order O(Tn ). We further discuss the technical novelties resulting in these improvements in
Section 5.

Remark 1 (Example: Linearly-separable data). Consider logistic-loss minimization, tanh

activation σ(u) = eu−e−u
eu+e−u and data distribution that is linearly separable with margin γ,

i.e., for almost surely all n samples there exists unit-norm vector v? ∈ Rd such that
mini∈[n] yi〈v?, xi〉 = γ. We initialize the weights to zero, i.e. w0 = 0 and show that
the realizability Assumption 5 naturally holds in this setting. To see this, for any fixed
ε > 0, set α = 2 log(1/ε)/γ

√
m and assume m ≥ 4 log2(1/ε). With this choice, select weights

w
(ε)
j := αv?, aj = 1√

m
for j ∈ [1, · · · , m2 ] and w

(ε)
j := −αv?, aj = −1√

m
for j ∈ {m2 + 1, · · · ,m}.

Then, the model output for any sample (xi, yi) satisfies

yiΦ(w(ε), xi) =
yi
√
m

2
(σ(α〈v?, xi〉)− σ(−α〈v?, xi〉))

= yi
√
mσ(α〈v?, xi〉) ≥

√
mσ(αγ) ≥

√
m

2
αγ = log(1/ε),

where the second equality uses the fact that tanh is odd, the first inequality follows by
the increasing nature of tanh and data separability, and the last inequality follows since
αγ ≤ 1 and σ(u) ≥ u/2 for all u ∈ [0, 1]. Thus, the loss satisfies F̂ (w(ε)) ≤ ε since for the
logistic function log(1 + eu) ≤ eu. Moreover, our choice of α implies g(ε) = ‖w(ε) − w0‖=
‖w(ε)‖= α

√
m = 2 log(1/ε)/γ. To conclude, the NN-Realizability Assumption 5 holds with

g(ε) = 2 log(1/ε)/γ and thus applying Theorems 3.3 and 3.5 shows that with m = Ω(log4(T ))
neurons, the training loss and generalization gap are respectively bounded by Õ( 1

γ2T
) and

Õ( 1
γ2n

), which are known to be optimal under this data assumption. We note that the same
conclusion as above holds for other smooth activations such as Softmax or GELU.
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4. On Realizability of NTK-Separable Data

In this section, we interpret our results for NTK-separable data by showing that our
realizability condition holds for this class. We recall the definition of NTK-separability below
Nitanda et al. (2019); Chen et al. (2020); Cao and Gu (2020).

Assumption 6 (Separability by NTK). For almost surely all n training samples from the
data distribution there exists w? ∈ Rd′ and γ > 0 such that ‖w?‖= 1 and for all i ∈ [n],

yi

〈
∇1Φ(w0, xi), w

?
〉
≥ γ. (8)

We also assume a bound on the model’s output at initialization. Similar assumptions,
but for the value of the loss, also appear in prior works that study generalization using the
algorithmic stability framework Richards and Kuzborskij (2021); Lei et al. (2022).

Assumption 7 (Initialization bound). There exists parameter C such that ∀i ∈ [n] :
|Φ(w0, xi)|≤ C, for almost surely all n training samples from the data distribution

The next proposition relates the NTK-separability assumption to our realizability as-
sumption. The proofs for this section are given in Appendix C.

Proposition 4.1 (Realizability of NTK-separable data). Let Assumptions 1-2,6-7 hold.

Assume f(·) to be the logistic loss. Fix ε > 0 and let m ≥ L2R4

4γ4C2 (2C + log(1/ε))4. Then the

realizability Assumption 5 holds with g(ε) = 1
γ (2C + log(1/ε)). In other words, there exists

w(ε) such that

F̂ (w(ε)) ≤ ε, and
∥∥∥w(ε) − w0

∥∥∥ =
1

γ
(2C + log(1/ε)) . (9)

Having established realizability, the following is an immediate corollary of the general
results presented in the last section.

Corollary 4.1.1 (Results under NTK-separability). Let Assumptions 1-2,6-7 hold and

assume logistic loss. Suppose m ≥ 642L2R4

γ4
(2C + log(T ))4 for a fixed training horizon T .

Then for any η ≤ min{3, 1
L
F̂
}, the training loss and generalization gap are bounded as follows:

F̂ (wT ) ≤ 5(2C + log(T ))2

γ2ηT
,

E
[
F (wT )− F̂ (wT )

]
≤ 24`2R2

γ2n
(2C + log(T ))2 .

A few remarks are in place regarding the corollary. By Corollary 4.1.1, we can conclude
that the expected generalization rate of GD on logistic loss and NTK-separable data as per
Assumption 6 is Õ( 1

n) provided width m = Ω(log4(T )). Moreover, the expected training

loss is E[F̂ (wT )] = Õ( 1
T ). Thus, the expected test loss after T steps is Õ( 1

T + 1
n). In

particular for T = Ω(n), the expected test loss becomes Õ( 1
n). This rate is optimal with

respect to sample size and only requires polylogarithmic hidden width with respect to n,
specifically, m = Ω(log4(n)). Notably, it represents an improvement over prior stability
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results, e.g., (Richards and Rabbat, 2021) which required polynomial width and yielded
suboptimal generalization rates of order O(T/n). It is worth noting that the test loss
bound’s dependence on the margin, particularly the 1

γ2n
-rate obtained in our analysis, bears

similarity to the corresponding results in the convex setting of linearly separable data
recently established in (Shamir, 2021; Schliserman and Koren, 2022). Additionally, our
results improve upon corresponding bounds for neural networks obtained via Rademacher
complexity analysis (Ji and Telgarsky, 2020a; Chen et al., 2020) which yield generalization
rates Õ( 1√

n
). Moreover, these works have a γ−8 dependence on margin for the minimum

network width, whereas in Corollary 4.1.1 this is reduced to γ−4. We also note that in
general, both γ and C may depend on the data distribution, the data dimension, or the
nature of initialization. This is demonstrated in the next section where we apply the corollary
above to the noisy XOR data distribution and Gaussian initialization.

Remark 2 (Benefits of exponential tail). We have stated Corollary 4.1.1 for the logistic
loss, which has an exponential tail behavior. For general self-bounded loss functions and by
following the same steps, we can show a bound on generalization gap of order O( 1

n(f−1( 1
T ))2)

provided m = Ω((f−1( 1
T ))4). Hence, the tail behavior of f controls both the generalization gap

and minimum width requirement. In particular, under Assumption 6, polynomial losses with
tail behavior f(u) ∼ 1/uβ result in generalization gap O(T 2/β/n) for m = Ω(T 4/β). Thus,
increasing the rate of decay β for the loss, improves both bounds on generalization and width.
This suggests the benefits of self-bounded fast-decaying losses such as exponentially-tailed
loss functions for which the dependence on T is indeed only logarithmic.

Example: Noisy XOR data

Next, we specialize the results of the last section to the noisy XOR data distribution Wei et al.
(2019) and derive the corresponding margin and test-loss bounds. Consider the following 2d

points,

xi = (x1
i , x

2
i , · · · , xdi ) ∈ {(1, 0), (0, 1), (−1, 0), (0,−1)} × {−1, 1}d−2,

where × denotes the Cartesian product and the labels are determined as yi = −1 if x1
i = 0

and yi = 1 if x1
i = ±1. Moreover, consider normalization xi = 1√

d−1
xi so that R = 1. The

noisy XOR data distribution is the uniform distribution over the set with elements (xi, yi).
For this dataset and Gaussian initialization, Ji and Telgarsky (2020a) have shown for ReLU
activation that the NTK-separability assumption holds with margin γ = Ω(1/d). In the
next result, we compute the margin for activation functions that are convex, Lipshitz and
locally strongly convex.

Proposition 4.2 (Margin). Consider the noisy XOR data (xi, yi) ∈ Rd × {±1}. Assume
the activation function is convex, `-Lipschitz and µ-strongly convex in the interval [−2, 2] for
some µ > 0, i.e., mint∈[−2,2] σ

′′(t) ≥ µ. Moreover, assume Gaussian initialization w0 ∈ Rd′

with entries iid N(0, 1). If m ≥ 802d3`2

2µ2
log(2/δ), then with probability at least 1− δ over the

initialization, the NTK-separability Assumption 6 is satisfied with margin γ = µ
80d .

An interesting example of an activation function that satisfies the mentioned assumptions
is the Softplus activation where σ(u) = log(1 + eu). This activation function has µ = 0.1
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and ` = 1, and it is also smooth with L = 1/4. Therefore, the results on generalization
and training loss presented in Corollary 4.1.1 hold for it. For noisy XOR data, Proposition
4.2 shows the margin in Assumption 6 is γ & 1/d. Additionally, for standard Gaussian
initialization we have by Lemma C.5 that with high-probability the initialization bound in
Assumption 7 satisfies C .

√
d. Putting these together, and applying Corollary 4.1.1 shows

that GD with n training samples reaches test loss rate Õ(d
3

n ) after T ≈ n iterations and

given m = Ω̃(d6) neurons. It is worth noting that the number of training samples can be
exponentially large with respect to d. In this case the minimum width requirement is only
polylogarithmic in n.

5. Proof Sketches

We discuss here high-level proof ideas for both optimization and generalization bounds of
Theorems 3.2 and 3.4. Formal proofs are deferred to Appendices A and B.

5.1 Training loss

As already discussed in Section 3.1, the key insight we use to obtain bounds that are
analogous to results for optimizing convex objectives, is to exploit the self-bounded weak
convexity property of the objective in Eq. (4). Thanks to this property, the Hessian minimum
eigenvalue λmin(∇2F̂ (wt)) becomes less negative at the same rate at which the train loss
F̂ (wt) decreases.

The technical challenge at formalizing this intuition arises as follows. Controlling the
rate at which F̂ (wt) converges to F̂ (w) for the theorem’s w requires controlling the Hessian
at all intermediate points wαt := αwt + (1− α)w,α ∈ [0, 1] between w and GD iterates wt.
This is due to Taylor’s theorem used to relate F̂ (wt) to the target value F̂ (w) as follows:

F̂ (w) ≥ F̂ (wt) +
〈
∇F̂ (wt), w − wt

〉
+

1

2
λmin

(
∇2F̂ (wαt)

)∥∥∥w − wt∥∥∥2
.

Thus from self-bounded weak convexity, to control the last term above we need to control
F̂ (wαt) for any intermediate point wαt along the GD trajectory. This is made possible by
establishing the following generalized local quasi-convexity property.

Proposition 5.1 (Generalized Local Quasi-Convexity). Suppose F̂ : Rd′ → R satisfies the
self-bounded weak convexity property in Eq. (4) with parameter κ. Let w1, w2 ∈ Rd′ be two

arbitrary points with distance ‖w1 − w2‖ ≤ D <
√

2/κ . Set τ :=
(
1− κD2/2

)−1
. Then,

max
v∈[w1,w2]

F̂ (v) ≤ τ ·max{F̂ (w1), F̂ (w2)}. (10)

Recall that quasi-convex functions satisfy Eq. (10) with τ = 1 and D can be unboundedly
large. The Proposition 5.1 indicates that our neural-net objective function is approximately
quasi-convex (since τ > 1) and this property holds locally, i.e. provided that w1, w2 are
sufficiently close.

Applying (10) for w1 = wt, w2 = w allows controlling F̂ (wαt) in terms of the train loss
F̂ (wt) and the target loss F̂ (w). The only additional requirement in Proposition 5.1 for this
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to hold is that

1/κ ∝
√
m & ‖wt − w‖2. (11)

This condition exactly determines the required neural-net width. Formally, we have the
following.

Corollary 5.1.1 (GLQC of sufficiently wide neural nets). Let Assumptions 1,2, 4 hold.
Fix arbitrary w1, w2 ∈ Rd′, any constant λ > 1, and m large enough such that

√
m ≥

λLR
2

2 ‖w1 − w2‖2. Then,

max
v∈[w1,w2]

F̂ (v) ≤ (1− 1/λ)−1 ·max{F̂ (w1), F̂ (w2)}. (12)

To conclude, using Corollary 5.1.1, we can show the regret bound in Eq. (5) provided
(by (11)) that

√
m & ‖wt − w‖2 is true for all t ∈ [T ]. To make the width requirement

independent of wt, we then use a recursive argument to prove that ‖wt − w‖≤ 3‖w − w0‖.
These things put together, lead to the parameter bound ‖wt − w0‖≤ 4‖w − w0‖ and the
width requirement

√
m & ‖w − w0‖2 in the theorem’s statement. We note that the GLQC

property is also crucially required for the generalization analysis which we discuss next.

5.2 Generalization gap

We bound the generalization gap using stability analysis Bousquet and Elisseeff (2002);
Hardt et al. (2016). In particular, we use (Lei and Ying, 2020a, Thm. 2) that relates the
generalization gap to the “on average model stability”. Formally, let w¬it denote the t-th
iteration of GD on the leave-one-out loss F̂¬i(w) := 1

n

∑
j 6=i F̂j(w). As before, wt denotes the

GD output on full-batch loss F̂ . We will use the fact (see Corollary D.2.1) that f(yΦ(·, x))
is G

F̂
-Lipschitz with G

F̂
= `R under Assumptions 2 and 3.A. Then, using (Lei and Ying,

2020a, Thm. 2(a)) (cf. Lemma B.3) it holds that

E
[
F (wT )− F̂ (wT )

]
≤ 2G

F̂
E
[ 1

n

n∑
i=1

‖wT − w¬iT ‖
]
. (13)

In order to bound the on-average model-stability term on the right-hand side above we
need to control the degree of expansiveness of GD. Recall that for convex objectives GD is
non-expansive (e.g. Hardt et al. (2016)), that is ‖(w−η∇F̂ (w))−(w′−η∇F̂ (w′))‖≤ ‖w−w′‖
for any w,w′. For the non-convex objective in our setting, the lemma below establishes
a generalized non-expansiveness property via leveraging the structure of the objective’s
Hessian for the two-layer net.

Lemma 5.2 (GD-Expansiveness). Let Assumptions 1 and 2 hold. For any w,w′ ∈ Rd′,
any step-size η > 0, and wα := αw + (1 − α)w′ it holds for H(w) := ηLR

2
√
m
F̂ ′(w) +

max
{

1, η`2R2F̂ ′′(w)
}

that∥∥∥(w − η∇F̂ (w)
)
−
(
w′ − η∇F̂ (w′)

)∥∥∥ ≤ max
α∈[0,1]

H(wα)
∥∥w − w′∥∥ ,

where we define F̂ ′(w) := 1
n

∑n
i=1|f ′(yiΦ(w, xi))| and F̂ ′′(w) := 1

n

∑n
i=1 f

′′(yiΦ(w, xi)).
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This lemma can be further simplified for the class of self-bounded loss functions. Specif-
ically, using |f ′(u)|≤ f(u) and f ′′(u) ≤ 1 from Assumptions 4 and 3.B, we immediately
deduce the following.

Corollary 5.2.1 (Expansiveness for self-bounded losses). In the setting of Lemma 5.2,
further assume the loss satisfies Assumptions 3.B and 4. Provided η ≤ 1/(`2R2), it holds
for all w,w′ ∈ Rd′ that∥∥∥(w − η∇F̂ (w)

)
−
(
w′ − η∇F̂ (w′)

)∥∥∥ ≤ (1 + η
LR2

√
m

max
α∈[0,1]

F̂ (wα)
)∥∥∥w − w′∥∥∥ . (14)

In Eq. (14) the expansiveness is weaker than in a convex scenario, where the coefficient

would be 1 instead of 1 + ηLR2
√
m

maxα∈[0,1] F̂ (wα). However, for self-bounded losses (i.e.

|f ′(u)| ≤ f(u)) the “gap to convexity” ηLR2
√
m

maxα∈[0,1] F̂ (wα) in Corollary 5.2.1 is better

than the gap from Lemma 5.2 for 1-Lipschitz losses (i.e. |f ′(u)| ≤ 1), which would be ηLR2
√
m

.

Indeed, after unrolling the GD iterates, the latter eventually leads to polynomial width
requirements Richards and Rabbat (2021).

Instead, to obtain a polylogarithmic width, we use the expansiveness bound in Eq.
(14) for self-bounded losses together with the generalized-local quasi-convexity property in
Corollary 5.1.1 as follows. From Corollary 5.1.1, if m is large enough such that

√
m ≥ LR2‖wt − w¬it ‖2, ∀t ∈ [T ], ∀i ∈ [n],

then Eq. (12) holds on the GD path. This further simplifies the result of Corollary 5.2.1
applied for w = wt, w

′ = w¬it into∥∥∥(wt − η∇F̂¬i(wt))− (w¬it − η∇F̂¬i(w¬it ))
∥∥∥ ≤ H̃ i

t

∥∥∥wt − w¬it ∥∥∥ ,
where H̃ i

t := 1 + 2ηLR2
√
m

max{F̂¬i(wt), F̂¬i(w¬it )}. Now from the optimization analyses in Sec.

5.1, we know intuitively that F̂¬i(wt) ≤ F̂ (wt) decays at rate Õ(1/t); thus, so does F̂¬i(w¬it ).
Therefore, for all i ∈ [n] the expansivity coefficient H̃ i

t in the above display is decaying to 1
as GD progresses.

To formalize all these and connect them to the model-stability term in (13), note using
triangle inequality and the Gradient Self-boundedness property of Lemma 3.1 that∥∥∥wt+1 − w¬it+1

∥∥∥ ≤ ∥∥∥(wt − η∇F̂¬i(wt))− (w¬it − η∇F̂¬i(w¬it ))
∥∥∥+

η`R

n
F̂i(wt) .

Unrolling this display over t ∈ [T ], averaging over i ∈ [n], and using our expansiveness bound
above we show in Appendix B the following bound for the model stability term

1

n

n∑
i=1

∥∥wT − w¬iT ∥∥ ≤ η`Reβ

n

T−1∑
t=0

F̂ (wt) , (15)

where β .
(∑T

t=1 F̂ (wt) +
∑T

t=1 F̂
¬i(w¬it )

)
/
√
m. But, we know from training-loss bounds

in Theorem 3.2 that
∑T

t=1 F̂ (wt) . ‖w − w0‖2 (and similar for
∑T

t=1 F̂
¬i(w¬it )). Thus,
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β . ‖w − w0‖2/
√
m. At this point, the theorem’s conditions guarantees

√
m & ‖w − w0‖2,

so that β = O(1). Plugging back in (15) we conclude with the following stability bound:
1
n

∑n
i=1‖wT − w¬iT ‖.

∑T
t=0 F̂ (wt)/n. Applying the train-loss bounds of Theorem 3.2 once

more completes the proof.

6. Prior Works

The theoretical study of generalization properties of neural networks (NN) is more than two
decades old (Bartlett, 1996; Bartlett et al., 1998). Recently, there has been an increased
interest in understanding and improving generalization of SGD/GD on over-parameterized
neural networks, e.g. (Allen-Zhu et al., 2019a; Oymak and Soltanolkotabi, 2020; Javanmard
et al., 2020; Richards and Rabbat, 2021). These results however typically require very large
width where m = poly(n). We discuss most-closely related-works below.

Quadratic loss. For quadratic loss, Li and Liang (2018); Soltanolkotabi et al. (2018);
Allen-Zhu et al. (2019b); Zou and Gu (2019); Liu et al. (2022) showed that sufficiently
over-parameterized neural networks of polynomial width satisfy a local Polyak- Lojasiewicz
(PL) condition ‖∇F̂ (w)‖2≥ 2µ(F̂ (w)− F̂ ?), where µ is at least the smallest eigenvalue of
the neural tangent kernel matrix. The PL property in this case implies that the training loss
converges linearly with the rate F̂ (wt) = O((1− ηµ)t) if the GD iterates remain in the PL
region. Moreover, Charles and Papailiopoulos (2018); Lei and Ying (2020b), have used the
PL condition to further characterize stability properties of corresponding non-convex models.
Notably, Lei and Ying (2020b) derived order-optimal rates O( 1

µn) for the generalization loss.
However these rates only apply to quadratic loss. Models trained with logistic or exponential
loss on separable data do not satisfy the PL condition even for simple interpolating linear
models. Aside from the PL condition-related results, but again for quadratic loss, Oymak
et al. (2019) showed under specific assumptions on the data translating to low-rank NTK,
that logarithmic width is sufficient to obtain classification error of order O(n−1/4). In general,
they achieve error rate O(n−1/2), but for m = Ω̃(n2).

Logistic-loss minimization with linear models. Logistic-loss minimization is more
appropriate for classification and rate-optimal generalization bounds for GD have been
obtained recently in the linear setting, where the training objective is convex. In particular,
for linear logistic regression on data that are linearly separable with margin γ > 0, Shamir

(2021) proved a finite-time test-error bound O( log2 T
γ2T

+ log2 T
γ2n

). Ignoring log factors, this is
order-optimal with the sample size n and training horizon T. Their proof uses exponential-
decaying properties of the logistic loss to control the norm of gradient iterates, which it
cleverly combines with Markov’s inequality to bound the fraction of well-separated datapoints
at any iteration. This in turn translates to a test-error bound by standard margin-based
generalization bounds. More recently, Schliserman and Koren (2022) used algorithmic-
stability analysis proving same rates (up to log factors) for the test loss. Their results hold
for general convex, smooth, self-bounded and decreasing objectives under a realizability
assumption suited for convex objectives (analogous to Assumption 5). Specifically, this
includes linear logistic regression with linearly separable data. Here, we show that analogous
rates on the test loss hold true for more complicated nonconvex settings where data are
separable by shallow neural networks.
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Stability of GD in NN. State-of-the-art generalization bounds on shallow neural networks
via the stability-analysis framework have appeared very recently in (Richards and Rabbat,
2021; Richards and Kuzborskij, 2021; Lei et al., 2022). For Lipschitz losses, Richards and
Rabbat (2021) shows that the empirical risk is weakly convex with a weak-convexity parameter
that improves as the neural-network width m increases. Leveraging this observation, they
establish stability bounds for GD iterates at time T provided sufficient parameterization
m = Ω̃(T 2). Since the logistic loss is Lipschitz, these bounds also apply to our setting.
Nevertheless, our work improves upon Richards and Rabbat (2021) in that: (i) we require
significantly smaller width, poly-logarithmic rather than polynomial, and (ii) we show Õ(1/n)
test loss bounds in the realizable setting, while their bounds are O(T/n). Central to our
improvements is a largely refined analysis of the curvature of the loss via identifying and
proving a generalized quasi-convexity property for neural networks of polylogarithmic width
trained with self-bounded losses (see Section 5 for details). Our results also improve upon
the other two works Richards and Kuzborskij (2021); Lei et al. (2022), which both require
polynomial widths. However, we note that these results are not directly comparable since
Richards and Kuzborskij (2021); Lei et al. (2022) focus on quadratic-loss minimization. See
also Appendix E.

Uniform convergence in NN. Uniform bounds on the generalization loss have been
derived in literature via Rademacher complexity analysis (Bartlett and Mendelson, 2002);
see for example (Neyshabur et al., 2015; Arora et al., 2019; Golowich et al., 2020; Vardi
et al., 2022; Frei et al., 2022a) for a few results in this direction. These works typically
obtain the bounds of order O( R√

n
), where R depends on the Rademacher complexity of

the hypothesis space. Recent works by Ji and Telgarsky (2020a); Chen et al. (2020) also
utilized Rademacher complexity analysis to obtain test loss rates of O(1/

√
n) under an

NTK separability assumption (see also (Nitanda et al., 2019)) with polylogarithmic width
requirement for shallow and deep networks, respectively. Instead, while maintaining minimal
width requirements, we obtain test-loss rates Õ(1/n), which are order-optimal. Our approach,
which is based on algorithmic-stability, is also different and uncovers new properties of the
optimization landscape, including a generalized local quasi-convexity property. On the other
hand, the analysis in (Ji and Telgarsky, 2020a; Chen et al., 2020) applies to ReLU activation
and bounds the test loss with high-probability over the sampling of the training set. Instead,
we require smooth activations similar to other studies such as (Oymak et al., 2019; Chatterji
et al., 2021; Bai and Lee, 2020; Nitanda et al., 2019; Richards and Rabbat, 2021; Richards
and Kuzborskij, 2021; Lei et al., 2022) and we bound the test loss in expectation over the
training set. Finally, we also note that data-specific generalization bounds for two-layer nets
have also appeared recently in (Cao et al., 2022; Frei et al., 2022b). However, those results
require that data are nearly-orthogonal.

Convergence/implicit bias of GD. Convergence and implicit bias of GD for logis-
tic/exponential loss functions on linear models and neural networks have been investigated
in (Ji and Telgarsky, 2018; Soudry et al., 2018; Nacson et al., 2019; Lyu and Li, 2020; Chizat
and Bach, 2020; Chatterji et al., 2021; Taheri and Thrampoulidis, 2023). Early works by
(Zou et al., 2020; Cao and Gu, 2019) have proved convergence and generalization of deep
networks trained by logistic loss under polynomial width conditions. Moreover, Lyu and
Li (2020); Ji and Telgarsky (2020b) have shown for homogeneous neural-networks that GD
converges in direction to a max-margin solution. While certainly powerful, this implicit-bias
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convergence characterization becomes relevant only when the number T of GD iterations
is exponentially large. Instead, our convergence bounds apply for finite T (on the order of
sample size), thus are more practically relevant. Moreover, their results assume a GD iterate
t0 such that F̂ (wt0) ≤ log(2)/n. Similar assumption appears in (Chatterji et al., 2021),
which require initialization F̂ (w0) ≤ 1/n1+C for constant C > 0. Our approach is entirely
different: we prove that sufficient parameterization benefits the loss curvature and suffices
for GD steps to find an interpolating model and attain near-zero training loss, provided data
satisfy an appropriate realizability condition.

7. Conclusions

In this paper we study smooth shallow neural networks trained with self-bounded loss
functions, such as logistic loss. Under interpolation, we provide minimal sufficient parame-
terization conditions to achieve rate-optimal generalization and optimization bounds. These
bounds improve upon prior results which require substantially large over-parameterization
or obtain sub-optimal generalization rates. Specifically, we significantly improve previous
stability-based analyses in terms of both relaxing the parameterization requirements and
obtaining improved rates. Although our focus was on binary classification with shallow net-
works, our approach can potentially be extended to other architectures such as transformers;
for preliminary results in this direction see Deora et al. (2023). Extending our results to the
stochastic case by analyzing SGD is another important future direction. Moreover, as the
width condition m = Ω(log4(T )) depends on the time horizon, early stopping is necessary for
obtaining bounded width conditions. It is interesting to investigate whether this temporal
dependence can be removed. Furthermore, while our current treatment relies on smoothness
of the activation function to exploit properties of the curvature of the training objective, we
aim to examine the potential of our results to extend to non-smooth activations. Finally,
our generalization analysis bounds the expectation of the test loss (over data sampling) and
it is an important future direction extending these guarantees to a high-probability setting.
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Appendix A. Training Loss Analysis

This section includes the proofs of the results stated in Section 3.2.

A.1 Proof of Theorem 3.2

We begin with proving the general train-loss and parameter-norm bounds of Theorem 3.2.
In fact, we state and prove a slightly more general statement of the theorem which includes
non-smooth and non-Lipschitz losses (such as expoential loss) that satisfy a second order
self-bounded property described below.

Assumption 8 (2nd order self-boundedness). The convex loss function f : R→ R+ satisfies
the 2nd order self-boundedness property, i.e.

f ′′(u) ≤ f(u), ∀u ∈ R.

Theorem A.1 (General statement of Theorem 3.2). Let Assumptions 1-2 hold. Assume the
loss function satisfies self-bounded Assumption 4. Moreover, suppose either Assumption 3 or
Assumption 8 hold. Fix any T ≥ 0. Let the step-size satisfy the assumptions of the descent

lemma (Lemma A.2). Assume any w and m such that ‖w−w0‖2≥ max
{
ηT F̂ (w), ηF̂ (w0)

}
and m ≥ 182L2R4‖w − w0‖4. Then, the training loss and the parameters’ norm satisfy

1

T

T∑
t=1

F̂ (wt) ≤ 2F̂ (w) +
5‖w − w0‖2

2ηT
, (16)

∀t ∈ [T ] : ‖wt − w0‖≤ 4‖w − w0‖.

To prove Theorem A.1, we first state our descent lemma for both self-bounded losses
and lipschitz-smooth losses.

Lemma A.2 (Descent lemma). Let Assumptions 1-2 hold. Assume the loss function satisfies
self-boundedness Assumptions 4,8. Then, for any η < 1

R2 F̂ (wt)
min{ 1

`2+L
, 1√

L`
} the descent

property holds, i.e.,

F̂ (wt+1) ≤ F̂ (wt)−
η

2
‖∇F̂ (wt)‖2.

Moreover, if f satisfies Assumption 3 then the descent property holds for any η ≤ 1/L
F̂

where L
F̂

:= `2R2 + LR2
√
m

is the smoothness parameter of the training objective.

Proof Due to self-boundedness Assumption 8, as well as Assumptions 1-2 the objective is also

self-bounded according to Corollary D.2.1, i.e., ‖∇2F̂ (w)‖≤
(
`2R2 + LR2

√
m

)
F̂ (w), ‖∇F̂ (w)‖≤

`R F̂ (w).
By Taylor’s expansion, there exists a w′ ∈ [wt, wt+1] such that,

F̂ (wt+1) = F̂ (wt) +
〈
∇F̂ (wt), wt+1 − wt

〉
+

1

2

〈
wt+1 − wt,∇2F̂ (w′) (wt+1 − wt)

〉
≤ F̂ (wt) +

〈
∇F̂ (wt), wt+1 − wt

〉
+

1

2
max

v∈[wt,wt+1]

∥∥∥∇2F̂ (v)
∥∥∥ · ‖wt+1 − wt‖2

≤ F̂ (wt)− η‖∇F̂ (wt)‖2+
η2
(
`2R2 + LR2

√
m

)
2

max
v∈[wt,wt+1]

F̂ (v) ·
∥∥∥∇F̂ (wt)

∥∥∥2
.
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By Corollary A.7.1, for
√
m ≥ η2L`2R4F̂ 2(wt) ≥ LR2‖η∇F̂ (wt)‖2= LR2‖wt+1 − wt‖2 it

holds that
max

v∈[wt,wt+1]
F̂ (v) ≤ 2 max{F̂ (wt), F̂ (wt+1)},

which yields

F̂ (wt+1) ≤ F̂ (wt)− η‖∇F̂ (wt)‖2+η2

(
`2R2 +

LR2

√
m

)
max

{
F̂ (wt), F̂ (wt+1)

}
· ‖∇F̂ (wt)‖2.

(17)

We note that the condition on m simplifies to m ≥ 1 if η ≤ 1√
L`R2

1

F̂ (wt)
.

Back to (17), if F̂ (wt+1) ≥ F̂ (wt) by our condition η < 1
`2R2+LR2/

√
m

1

F̂ (wt)
it holds that

F̂ (wt+1) ≤ F̂ (wt) + η‖∇F̂ (wt)‖2
(
F̂ (wt+1)

F̂ (wt)
− 1

)

≤ F̂ (wt) + η`2R2F̂ 2(wt)

(
F̂ (wt+1)

F̂ (wt)
− 1

)
.

Since η < 1
`2R2

1

F̂ (wt)
,

F̂ (wt+1) < F̂ (wt) + F̂ (wt)

(
F̂ (wt+1)

F̂ (wt)
− 1

)
= F̂ (wt+1) ,

which is a contradiction. Thus it holds that F̂ (wt+1) < F̂ (wt). Continuing from Eq. (17)
with the assumption η < 1

`2R2+LR2/
√
m

1

F̂ (wt)
, we conclude that

F̂ (wt+1) ≤ F̂ (wt)− η‖∇F̂ (wt)‖2+
1

2
η2

(
`2R2 +

LR2

√
m

)
F̂ (wt) · ‖∇F̂ (wt)‖2

≤ F̂ (wt)−
η

2
‖∇F̂ (wt)‖2.

This completes the proof for self-bounded losses.
Next, suppose f is 1-smooth and 1-Lipschitz. Then, as per Corollary D.2.1, F̂ is smooth

with the constant

L
F̂

:= `2R2 +
LR2

√
m
.

Following similar steps as in the beginning of proof and assuming step-size η ≤ 1/L
F̂

we
immediately conclude that,

F̂ (wt+1) ≤ F̂ (wt)− η‖∇F̂ (wt)‖2+
η2L

F̂

2
‖∇F̂ (wt)‖2

≤ F̂ (wt)−
η

2
‖∇F̂ (wt)‖2.
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This completes the proof.

As a remark, the descent property implies that the loss decreases by each step, i.e.,
F̂ (wt) ≤ F̂ (w0). Thus for self-bounded losses the condition η < 1

R2 F̂ (w0)
min{ 1

`2+L
, 1√

L`
}

is sufficient. We also note that the Lipschitz-smoothness and 2nd order self-bounded
assumptions are only required for the descent lemma above, which results in conditions
on the step-size based on the properties of loss. In the rest of the proof we only use the
self-bounded Assumption 4 in order to use the self-bounded weak convexity property of the
objective (see Def. 1).

Next lemma finds a general relation for the training loss in terms of an arbitrary point
w ∈ Rd′ and the fluctuations of loss between w and GD iterates wt.

Lemma A.3. Let Assumptions 1-2 hold. Assume the loss function satisfies the self-bounded
Assumption 4. Moreover, suppose F̂ and step-size η are such that the following descent
condition is satisfied for all t ≥ 0:

F̂ (wt+1) ≤ F̂ (wt)−
η

2
‖∇F̂ (wt)‖2. (18)

Then, for any w ∈ Rd′ it holds that

1

T

T∑
t=1

F̂ (wt) ≤ F̂ (w) +
‖w − w0‖2

ηT
+

1

2

LR2

√
m

1

T

T−1∑
t=0

max
α∈[0,1]

F̂ (wαt) ‖w − wt‖2,

where we set wαt := αwt + (1− α)w.

Proof
Fix any w. By Taylor, there exists wαt, α ∈ [0, 1] such that

F̂ (w) = F̂ (wt) +
〈
∇F̂ (wt), w − wt

〉
+

1

2

〈
w − wt,∇2F̂ (wαt) (w − wt)

〉
≥ F̂ (wt) +

〈
∇F̂ (wt), w − wt

〉
+

1

2
λmin

(
∇2F̂ (wαt)

)
‖w − wt‖2

≥ F̂ (wt) +
〈
∇F̂ (wt), w − wt

〉
− 1

2

LR2

√
m
F̂ (wαt) ‖w − wt‖2.

The last line is true by Corollary D.2.1. Thus, for any w,

F̂ (w) ≥ F̂ (wt) +
〈
∇F̂ (wt), w − wt

〉
− 1

2

LR2

√
m

max
α∈[0,1]

F̂ (wαt) ‖w − wt‖2.

Plugging this in (18) gives

F̂ (wt+1) ≤ F̂ (w)−
〈
∇F̂ (wt), w − wt

〉
− η

2

∥∥∥∇F̂ (wt)
∥∥∥2

+
1

2

LR2

√
m

max
α∈[0,1]

F̂ (wαt) ‖w − wt‖2

= F̂ (w) +
1

η

(
‖w − wt‖2−‖w − wt+1‖2

)
+

1

2

LR2

√
m

max
α∈[0,1]

F̂ (wαt) ‖w − wt‖2. (19)

23



Taheri and Thrampoulidis

where the second line follows by completion of squares using wt+1 − wt = −η∇F̂ (wt).

Telescoping the above display for t = 0, . . . , T − 1, we arrive at the desired.

Next, when m is large enough so that we can invoke the generalized-local quasi-
convexity property, the bound of Lemma A.3 takes the following convenient form

Lemma A.4. Let the assumptions of Lemma A.3 hold. Assume w and m such that√
m ≥ 2LR2‖w − wt‖2 for all t ∈ [T − 1] then

1

T

T∑
t=1

F̂ (wt) ≤ 2F̂ (w) +
2‖w − w0‖2

ηT
+
F̂ (w0)

2T
. (20)

Proof We invoke Corollary A.7.1 with λ = 4 to deduce that for all t ∈ [T − 1]

max
α∈[0,1]

F̂ (wαt) ≤
4

3
max{F̂ (w), F̂ (wt)} <

4

3
F̂ (wt) +

4

3
F̂ (w). (21)

Noting the assumption on m and recalling Lemma A.3,

1

T

T∑
t=1

F̂ (wt) ≤ F̂ (w) +
‖w − w0‖2

ηT
+

1

2

LR2

√
m

1

T

T−1∑
t=0

max
α∈[0,1]

F̂ (wαt) ‖w − wt‖2

≤ 4

3
F̂ (w) +

‖w − w0‖2

ηT
+

1

3T

T−1∑
t=0

F̂ (wt)

≤ 4

3
F̂ (w) +

‖w − w0‖2

ηT
+

1

3T

T∑
t=0

F̂ (wt).

Arranging terms yields the desired result.

Finally, using the about bounds on the training loss, we can bound the parameter-norm
using a recursive argument presented in the lemma below.

Lemma A.5 (Iterates-norm bound). Suppose the assumptions of Lemma A.3 hold. Fix any
T ≥ 0 and assume any w and m such that

‖w − w0‖2≥ max{ηT F̂ (w), ηF̂ (w0)}. (22)

and

√
m ≥ 18LR2‖w − w0‖2, (23)

Then, for all t ∈ [T ],

‖wt − w‖≤ 3‖w − w0‖. (24)
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Proof Denote At = ‖wt − w‖. Start by recalling from (19) that for all t:

A2
t+1 ≤ A2

t + ηF̂ (w)− ηF̂ (wt+1) + η
LR2

2
√
m

max
α∈[0,1]

F̂ (wαt)A
2
t . (25)

We will prove the desired statement (24) using induction. For t = 0, A0 = ‖w − w0‖.
Thus, the assumption of induction holds. Now assume (24) is correct for t ∈ [T − 1], i.e.
At ≤ 3‖w − w0‖, ∀t ∈ [T − 1]. We will then prove it holds for t = T .

The first observation is that by induction hypothesis
√
m ≥ 18LR2‖w − w0‖2≥ 2LR2A2

t

for all t ∈ [T−1]. Thus, for all t ∈ [T−1], the condition of the generalized local quasi-convexity
Corollary 5.1.1 holds for λ = 4 implying (see also (21))

∀t ∈ [T − 1] : max
α∈[0,1]

F̂ (wαt) ≤
4

3
F̂ (wt) +

4

3
F̂ (w).

Using this in (25) we find for all t ∈ [T − 1] that

A2
t+1 ≤ A2

t + ηF̂ (w)− ηF̂ (wt+1) + η
LR2 ·A2

t

2
√
m

(
4

3
F̂ (wt) +

4

3
F̂ (w)

)
≤ A2

t + ηF̂ (w)− ηF̂ (wt+1) + η

(
1

3
F̂ (wt) +

1

3
F̂ (w)

)
where in the second inequality we used again that

√
m ≥ 2LR2A2

t . We proceed by telescoping
the above display over t = 0, 1, . . . , T − 1 to get

A2
T ≤ A2

0 +
4

3
ηT F̂ (w) +

1

3
ηF̂ (w0) +

1

3
η
T−1∑
t=0

F̂ (wt)− ηF̂ (wT )

≤ A2
0 +

4

3
ηT F̂ (w) +

2

3
ηF̂ (w0) +

1

3
η

T∑
t=1

F̂ (wt),

where the second line follows by nonegativity of the loss.
Now, to bound the last term above, observe that the condition of Lemma A.4 holds since√

m ≥ 2LR2A2
t for all t ∈ [T − 1] by induction hypothesis. Hence, using (20), we conclude

that

A2
T ≤ A2

0 +
4

3
ηT F̂ (w) +

2

3
ηF̂ (w0) +

1

3
ηT

(
2F̂ (w) +

2A2
0

ηT
+
F̂ (w0)

2T

)
=

5

3
A2

0 + 2ηT F̂ (w) +
5

6
ηF̂ (w0)

≤ 5

3
‖w − w0‖2+2‖w − w0‖2+

5

6
‖w − w0‖2=

9

2
‖w − w0‖2 =⇒ AT ≤ 3‖w − w0‖.

(26)

In the last inequality, we used the assumptions of the lemma on ‖w−w0‖ and A0 = ‖w−w0‖.
This completes the proof.
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Completing the proof of Theorem A.1.
The proof follows from combining the bounds on the training loss and parameters’ growth

from Lemmas A.4-A.5 and noting that with condition on ‖w−w0‖2 from Lemma A.5 we have
F̂ (w0) ≤ ‖w−w0‖2/η to derive (16). Moreover, we have ‖wt −w0‖≤ ‖wt −w‖+‖w−w0‖≤
4‖w − w0‖.

A.2 Proof of Theorem 3.3

Here we prove training loss bound for interpolating NN as asserted by Theorem 3.3. Similar
to the previous section, we prove a more general result where the loss is not necessarily
Lipschitz or smooth. We are now ready to prove Theorem 3.3 for general self-bounded losses.
In particular, Theorem 3.3 follows directly from the next result by choosing f to be Lipschitz
and smooth.

Theorem A.6 (General statement of Theorem 3.3). Suppose Assumptions 1-2, 4 hold.
Moreover, assume the objective and data satisfy the Assumption 5. Let the step-size satisfy

the assumptions of Descent Lemma A.2. Moreover, assume η ≤ min{g(1)2, 1
L
F̂
, g(1)2

F̂ (w0)
} and

m ≥ 182L2R4 g( 1
T )4 for a fixed training horizon T . Then,

F̂ (wT ) ≤ 2

T
+

5 g( 1
T )2

2ηT
,

∀t ∈ [T ] : ‖wt − w0‖ ≤ 4 g(
1

T
).

Proof According to Assumption 5, for any sufficiently small ε > 0, there exists a w(ε)

such that F̂ (w(ε)) ≤ ε and ‖w(ε) − w0‖= g(ε). Pick ε = 1/T . With the condition η ≤
min{g(1)2, g(1)2/F̂ (w0)} we have

max
{
ηT F̂ (w(1/T )), ηF̂ (w0)

}
≤ g(1)2 ≤ g(

1

T
)2 = ‖w(1/T ) − w0‖2,

where in the second inequality we used the fact that g is a decreasing function. The desired
result is obtained by Theorem A.1.

A.3 Generalized local quasi-convexity property

In the remainder of this section, we prove the generalized local quasi-convexity property.

Proposition A.7 (Restatement of Proposition 5.1). Suppose F̂ : Rd′ → R satisfies the
self-bounded weak convexity property in Eq. 4 with parameter κ. Let w1, w2 ∈ Rd′ be two
arbitrary points with distance ‖w1 − w2‖ ≤ D <

√
2/κ . Set τ :=

(
1− κD2/2

)−1
. Then,

max
v∈[w1,w2]

F̂ (v) ≤ τ ·max{F̂ (w1), F̂ (w2)}. (27)

Proof Assume the claim of the proposition is incorrect, then

max
v∈[w1,w2]

F̂ (v) > τ ·max{F̂ (w1), F̂ (w2)} > max{F̂ (w1), F̂ (w2)}. (28)
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Define w? := arg maxv∈[w1,w2] F̂ (v). Note that w? is an interior point. Thus by the
optimality condition it holds 〈

∇F̂ (w?), w1 − w2

〉
= 0. (29)

By Taylor’s approximation theorem for two points w1, w ∈ Rd′ , there exists a wβ ∈ [w,w1],
such that

F̂ (w1) = F̂ (w) +
〈
∇F̂ (w), w1 − w

〉
+

1

2

〈
w − w1,∇2F̂ (wβ) (w − w1)

〉
(30)

Pick w = w? = α?w1 + (1− α?)w2 in Eq. (30), and note that〈
∇F̂ (w?), w1 − w?

〉
= −(1− α?)

〈
∇F̂ (w?), w1 − w2

〉
= 0.

Therefore,

F̂ (w1) = F̂ (w?) +
1

2

〈
w? − w1,∇2F̂ (wβ) (w? − w1)

〉
≥ F̂ (w?) +

1

2
λmin(∇2F̂ (wβ))

∥∥∥w? − w1

∥∥∥2

≥ F̂ (w?)−
1

2
κ F̂ (wβ)

∥∥∥w? − w1

∥∥∥2
.

where in the last line we used the self-bounded weak convexity property i.e., λmin

(
∇2F̂ (wβ)

)
≥

−κF̂ (wβ).
This leads to

F̂ (w1) ≥ F̂ (w?)−
(1− α?)2

2
κ F̂ (wβ)

∥∥∥w1 − w2

∥∥∥2

> F̂ (w?)−
1

2
κ F̂ (wβ)

∥∥∥w1 − w2

∥∥∥2
.

Note that wβ ∈ [w?, w1] ⊂ [w1, w2], thus F̂ (wβ) ≤ F̂ (w?) by definition of w?. Therefore,

F̂ (w?) <
1

1− 1
2κ ‖w1 − w2‖2

F̂ (w1)

≤ 1

1− 1
2κD

2
F̂ (w1),

which is in contradiction with (28). This proves the statement of the proposition.

Specializing this property to two-layer neural networks yields the following.

Corollary A.7.1 (Restatement of Corollary 5.1.1). Let Assumptions 1,2, 4 hold. Fix

arbitrary w1, w2 ∈ Rd′ , any constant λ > 1, and m large enough such that
√
m ≥ λLR2

2 ‖w1−
w2‖2. Then,

max
v∈[w1,w2]

F̂ (v) ≤ (1− 1/λ)−1 ·max{F̂ (w1), F̂ (w2)}. (31)
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Proof By our assumptions and Corollary D.2.1 the objective’s Hessian satisfies

λmin

(
∇2F̂ (w)

)
≥ −LR

2

√
m
F̂ (w).

Invoking Proposition A.7 with κ := LR2
√
m

concludes the claim.

Appendix B. Generalization Analysis

This section includes the proofs of the generalization results stated in Section 3.3.

B.1 Proof of Theorem 3.4

We prove the generalization gap of Theorem 3.4 for Lipshitz-smooth losses. The proof follows
the steps of our proof sketch in Sec. 5.2.

First, the proofs of exansiveness of GD in NN (Lemma 5.2) and the corresponding model
stability bound are given next.

Lemma B.1 (GD-Expansiveness). Let Assumptions 1-2 hold. For any w,w′ and wα =
αw + (1− α)w′ it holds that∥∥∥(w − η∇F̂ (w)

)
−
(
w′ − η∇F̂ (w′)

)∥∥∥ ≤ max
α∈[0,1]

H(wα)
∥∥w − w′∥∥ ,

H(w) := η
LR2

√
m
F̂ ′(w) + max

{
1, η`2R2F̂ ′′(w)

}
,

where we define F̂ ′(w) := 1
n

∑n
i=1|f ′(yiΦ(w, x1))| and F̂ ′′(w) := 1

n

∑n
i=1 f

′′(yiΦ(w, x1)).

Proof Fix u : ‖u‖= 1 and define gu : Rd′ → R:

gu(w) := 〈u,w〉 − η〈u,∇F̂ (w)〉.

Note ∥∥∥w −∇F̂ (w)− (w′ −∇F̂ (w′))
∥∥∥ = max

‖u‖=1

∣∣gu(w)− gu(w′)
∣∣ .

For any w,w′, we have

gu(w)− gu(w′) =

∫ 1

0
u>
(
I − η∇2F̂ (w′ + α(w − w′))

)
(w − w′)dα

≤ max
α∈[0,1]

∥∥∥(I − η∇2F̂ (w′ + α(w − w′))
)∥∥∥∥∥∥w − w′∥∥∥. (32)

For convenience denote wα := αw+ (1− α)w′ and Aα := ∇2F̂ (wα). Then, for any α ∈ [0, 1]
we have that ∥∥∥I − η∇2F̂ (wα)

∥∥∥ = max
{
|1− ηλmin(Aα)|, |1− ηλmax(Aα)|

}
. (33)
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For convenience, let β := 1√
m
LR2F̂ ′(wα) ≥ 0 and note from Lemma D.2 that λmin(Aα) ≥

−β. Using this, we will show that

|1− ηλmin(Aα)| ≤ max{1 + ηβ, ηλmax(Aα)}. (34)

To show this consider two cases. First, if ηλmin(Aα) ∈ [−ηβ, 1], then

|1− ηλmin(Aα)| = 1− ηλmin(Aα) ≤ 1 + ηβ.

On the other hand, if ηλmin(Aα) ≥ 1, then

|1− ηλmin(Aα)| = ηλmin(Aα)− 1 ≤ ηλmin(Aα) ≤ ηλmax(Aα),

which shows (34).

Next, we will show that

|1− ηλmax(Aα)| ≤ max{1 + ηβ, ηλmax(Aα)}. (35)

We consider again three cases. First, if ηλmax(Aα) ∈ [0, 1], then

|1− ηλmax(Aα)| = 1− ηλmax(Aα) ≤ 1.

Second, if ηλmax(Aα) ≥ 1

|1− ηλmax(Aα)| = ηλmax(Aα)− 1 ≤ ηλmax(Aα).

Otherwise, it must be that −β ≤ λmin(Aα) ≤ λmax(Aα) ≤ 0. Thus,

|1− ηλmax(Aα)| = 1− ηλmax(Aα) ≤ 1− ηλmin(Aα) ≤ 1 + ηβ.

To complete the proof of the lemma combine (33) with (34) and (35):

‖I − η∇2F̂ (wα)‖≤ max{1 + ηβ, ηλmax(Aα)},

and further use from Lemma D.2 that ηλmax(Aα) ≤ η`2R2F̂ ′′(w) + ηβ.

For the stability analysis below, recall the definition of the leave-one-out (loo) training
loss for i ∈ [n]: F̂¬i(w) := 1

n

∑
j 6=i F̂j(w). With these, define the loo model updates of GD

on the loo loss:

w¬it+1 := w¬it − η∇F̂¬i(w¬it ), t ≥ 0, w¬i0 = w0.

Theorem B.2 (Model stability bound). Suppose Assumptions 1, 2, 3, 4 hold. Fix any time
horizon T ≥ 1 and any step size η > 0. Set the regret and the leave-one-out regrets of GD
updates as follows:

Reg :=
1

T

T∑
t=1

F̂ (wt) and Regloo :=
1

T
max
i∈[n]

T∑
t=1

F̂¬i(w¬it ).
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Suppose that the width m is large enough so that it satisfies the following two conditions:

√
m ≥ 4LR2 max

{
‖wt − w0‖2, ‖w¬it − w0‖2

}
, ∀i ∈ [n], t ∈ [T ] , (36)

and

√
m ≥ 6LR2ηT max {Reg,Regloo} . (37)

Then, the leave-one-out model stability is bounded as follows:

1

n

n∑
i=1

∥∥∥wT − w¬iT ∥∥∥ ≤ 2η`R

n

(
F̂ (w0) + T · Reg

)
.

Proof Using self-boundedness Assumption 4 together with Corollary 5.2.1 it holds for all
i ∈ [n]:∥∥∥wt+1 − w¬it+1

∥∥∥ ≤ ∥∥∥(wt − η∇F̂¬i(wt))− (w¬it − η∇F̂¬i(w¬it )
)∥∥∥+

η

n

∥∥∥∇F̂i(wt)∥∥∥
≤
∥∥∥(wt − η∇F̂¬i(wt))− (w¬it − η∇F̂¬i(w¬it )

)∥∥∥+
η`R

n
F̂i(wt)

≤
(

1 + η
LR2

√
m

max
α∈[0,1]

F̂¬i(w¬iαt)

) ∥∥∥wt − w¬it ∥∥∥+
η`R

n
F̂i(wt), (38)

where we denote for convenience w¬iαt = αwt + (1− α)w¬it .

Moreover, by the theorem’s condition in Eq. (36), it holds for all t ∈ [T ] and all i ∈ [n]
that

√
m ≥ 2LR2(‖wt − w0‖2+‖w¬it − w0‖2) ≥ LR2

∥∥wt − w¬it ∥∥2
.

Thus, we can apply Corollary 5.1.1 for λ = 2, which gives the following generalized-local
quasi-convexity property for the loo objective:

max
α∈[0,1]

F̂¬i(w¬iαt) ≤ 2 max
{
F̂¬i(wt), F̂

¬i(w¬it )
}
.

In turn applying this back in (38) we have shown that∥∥∥wt+1 − w¬it+1

∥∥∥ ≤ (1 + η
2LR2

√
m

max
{
F̂¬i(wt), F̂

¬i(w¬it )
})∥∥∥wt − w¬it ∥∥∥+

η`R

n
F̂i(wt) (39)

To continue, denote for convenience

βit := η
2LR2

√
m

max
{
F̂¬i(wt), F̂

¬i(w¬it )
}

and ρ := η`R,

so that: ∥∥∥wt+1 − w¬it+1

∥∥∥ ≤ (1 + βit
) ∥∥∥wt − w¬it ∥∥∥+

ρ

n
F̂i(wt), ∀i ∈ [n], t ∈ [T ] .
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By unrolling the iterations over t ∈ [T ] and noting w0 = w¬i0 , we obtain the following for
the leave-one-out parameter distance at iteration T :

∥∥∥wT − w¬iT ∥∥∥ ≤ ρ

n

T−1∑
t=0

(
T−1∏
τ=t+1

(1 + βiτ )

)
F̂i(wt)

≤ ρ

n

T−1∑
t=0

exp

(
T−1∑
τ=t+1

βiτ

)
F̂i(wt)

≤ ρ

n

T−1∑
t=0

exp

(
T−1∑
τ=1

βiτ

)
F̂i(wt) = exp

(
T−1∑
τ=1

βiτ

)
ρ

n

T−1∑
t=0

F̂i(wt)

≤ ρ

n
exp

(
max
j∈[n]

T−1∑
τ=1

βjτ

)
T−1∑
t=0

F̂i(wt), ∀i ∈ [n] . (40)

It remains to bound β := maxi∈[n]

∑T−1
τ=1 β

i
τ . We do this as follows:

β =
2ηLR2

√
m

max
i∈[n]

{
max

{
T∑
t=1

F̂¬i(wt) ,

T∑
t=1

F̂¬i(w¬it )

}}

≤ 2ηLR2

√
m

max
i∈[n]

{
max

{
T∑
t=1

F̂ (wt) ,

T∑
t=1

F̂¬i(w¬it )

}}

=
2ηLR2

√
m

max

{
T∑
t=1

F̂ (wt) , max
i∈[n]

T∑
t=1

F̂¬i(w¬it )

}

=
2ηLR2

√
m

T max {Reg , Regloo} ≤ 2/3 ,

where: (i) in the first inequality we used nonnegativity of f(·) to conclude for any i ∈ [n]
and any w that F̂¬i(w) ≤ F̂ (w); (ii) in the last line, we recalled the definition of the regret
terms and we used the theorem’s condition (43) on large enough m.

Using this in (40) and averaging over i ∈ [n] yields

1

n

∑
i∈[n]

∥∥∥wT − w¬iT ∥∥∥ ≤ ρeβ

n

T−1∑
t=0

1

n

n∑
i=1

F̂i(wt)

≤ η`Re2/3

n

T−1∑
t=0

F̂ (wt) .

The advertised bound follows by using e2/3 ≤ 2 and writing

1

T

T−1∑
t=0

F̂ (wt) ≤
1

T

T∑
t=0

F̂ (wt) =
F̂ (w0)

T
+ Reg.

31



Taheri and Thrampoulidis

To bound the generalization gap in terms of model stability we rely on the following
result.

Lemma B.3 (Lei and Ying (2020a)). Suppose the sample loss f(·, z) is G
F̂

-Lipschitz for
almost surely all data points z ∼ D. Then, the following relation holds between expected
generalization loss and model stability at any iterate T ,

E
[
F (wT )

]
− E

[
F̂ (wT )

]
≤ 2G

F̂
E
[ 1

n

n∑
i=1

‖wT − w¬iT ‖
]
. (41)

With the two results above, we are ready to prove Theorem 3.4.

Theorem B.4 (Restatement of Theorem 3.4). Suppose Assumptions 1- 4 hold. Fix any time
horizon T ≥ 1 and any step size η ≤ 1/L

F̂
where L

F̂
is the objective’s smoothness parameter.

Let any w ∈ Rd′ such that ‖w − w0‖2≥ max{ηT F̂ (w), ηF̂ (w0)}. Suppose hidden-layer width
m satisfies m ≥ 642L2R4‖w − w0‖4. Then, the generalization gap of GD at iteration T is
bounded as

E
[
F (wT )− F̂ (wT )

]
≤ 8`2R2

n
E
[
ηT F̂ (w) + 2‖w − w0‖2

]
,

where all expectations are over the training set.

Proof The proof essentially follows by combining Theorem B.2 with Theorem 3.2. Note
that the assumptions of Theorem 3.2 are met. Thus, the regret and parameter-norm are
bounded as follows:

Reg ≤ 2F̂ (w) +
5‖w − w0‖2

2ηT
and max

t∈[T ]
‖wt − w0‖ ≤ 4‖w − w0‖ . (42)

We can also use Theorem 3.2 to the leave-one-out objective F̂¬i and the corresponding loo
GD updates w¬it . This bounds the loo regret and the norm of the loo parameter, as follows:

Regloo ≤ 2F̂ (w) +
5‖w − w0‖2

2ηT
and max

i∈[n]
max
t∈[T ]

‖w¬it − w0‖ ≤ 4‖w − w0‖ .

We use these two displays to show that m is by assumption large enough so that Eqs.
(36) and (43) hold. Indeed, we have

√
m ≥ 64LR2‖w − w0‖2= 4LR2 (4‖w − w0‖)2 ≥ 4LR2 max

{
‖wt − w0‖2, ‖w¬it − w0‖2

}
and

√
m ≥ 64LR2‖w − w0‖2 > 6LR2 · 5‖w − w0‖2

> 6LR2 · (2ηT F̂ (w) + 5‖w − w0‖2/2)

≥ 6LR2ηT max {Reg,Regloo} .

In the second display we also used the theorem’s assumption that ‖w − w0‖2≥ ηT F̂ (w).
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Thus, we can apply Theorem B.2 to find that

1

n

n∑
i=1

∥∥∥wT − w¬iT ∥∥∥ ≤ 2`R

n

(
ηF̂ (w0) + ηT · Reg

)
≤ 2`R

n

(
ηF̂ (w0) + 2ηT F̂ (w) + 5‖w − w0‖2/2

)
≤ 2`R

n

(
2ηT F̂ (w) + 7‖w − w0‖2/2

)
where in the penultimate line we used (42) and in the last line we used the theorem’s
assumption that ‖w − w0‖2≥ ηF̂ (w0).

To conclude the proof, simply take expectations over the train set on the above display
and apply Lemma B.3 recalling G

F̂
= `R.

B.2 Proof of Theorem 3.5

Here we prove the generalization gap for interpolating neural networks as per Theorem 3.5.

Theorem B.5 (Restatement of Theorem 3.5). Let Assumptions 1-5 hold. Fix T ≥ 1 and let

m ≥ 642L2R4 g( 1
T )4. Then, for any η ≤ min{ 1

L
F̂
, g(1)2, g(1)2

F̂ (w0)
} the expected generalization

gap at iteration T satisfies

E
[
F (wT )− F̂ (wT )

]
≤

24`2R2 g( 1
T )2

n
. (43)

Proof According to Assumption 5, for any sufficiently small ε > 0, there exists w(ε) such
that F̂ (w(ε)) ≤ ε and ‖w(ε) − w0‖= g(ε). Recall from Theorem 3.4 that,

E
[
F (wT )− F̂ (wT )

]
≤ 8`2R2

n

(
ηT F̂ (w) + 2‖w − w0‖2

)
. (44)

In particular let ε = 1/T and replace w with w(ε). This is possible since after T ≥ 1
steps and with the decreasing nature of g and the condition on step-size it holds that
‖w(1/T )−w0‖2= g(1/T )2 ≥ g(1)2 ≥ max{ηT F̂ (w(1/T )), ηF̂ (w0)}. Thus continuing from (44)
we have,

E
[
F (wT )− F̂ (wT )

]
≤ 8`2R2

n

(
η + 2g(

1

T
)2

)
.

Recalling η ≤ g(1)2 ≤ g( 1
T )2 leads to the claim of the theorem.

Appendix C. Proofs for Section 4

We first prove proposition 4.1, which we repeat here for convenience.
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Proposition C.1 (Restatement of Proposition 4.1). Let Assumptions 1-2,6-7 hold. Assume

f(·) to be the logistic loss. Fix ε > 0 and let m ≥ L2R4

4γ4C2 (2C + log(1/ε))4. Then the

realizability Assumption 5 holds with g(ε) = 1
γ (2C + log(1/ε)). In other words, there exists

w(ε) such that

F̂ (w(ε)) ≤ ε, and
∥∥∥w(ε) − w0

∥∥∥ =
1

γ
(2C + log(1/ε)) . (45)

Proof By Taylor there exists w′ ∈ [w,w0] such that,

yiΦ(w, xi) = yiΦ(w0, xi) + yi

〈
∇1Φ(w0, xi), w − w0

〉
+

1

2
yi

〈
w − w0,∇2

1Φ(w′, xi)(w − w0)
〉

(46)

Pick w = w(ε) := w0 + w?

γ (2C + log(1/ε)) for w? defined in Assumption 6. Since ‖w?‖= 1,

we automatically derive the desired for ‖w(ε)−w0‖. Next, we show that F̂i(w
(ε)) ≤ ε. Based

on Lemma D.1, ‖∇2
1Φ(w′, xi)‖≤ LR2

√
m
. Continuing from Eq. (46), we deduce the following,

yiΦ(w, xi) ≥ − |yiΦ(w0, xi)|+ yi

〈
∇1Φ(w0, xi), w

(ε) − w0

〉
− 1

2

∥∥∥∇2
1Φ(w′, xi)

∥∥∥∥∥∥w(ε) − w0

∥∥∥2

≥ −C + 2C + log(1/ε)− LR2

2γ2
√
m

(2C + log(1/ε))2

≥ log(1/ε).

The last step is due to the condition on m. The inequality above implies that F̂i(w) :=
f(yiΦ(w, xi)) ≤ log(1 + ε) ≤ ε, and thus F̂ (w) ≤ ε as desired. This completes the proof.

With this, we many now prove Corollary 4.1.1.

Corollary C.1.1 (Restatement of Corollary 4.1.1). Let Assumptions 1-2,6-7 hold and

assume logistic loss. Suppose m ≥ 642L2R4

γ4
(2C + log(T ))4 for a fixed training horizon T .

Then, for any η ≤ min{3, 1
L
F̂
} the training loss and generalization gap are bounded as follows:

F̂ (wT ) ≤ 5(2C + log(T ))2

γ2ηT
,

E
[
F (wT )− F̂ (wT )

]
≤ 24`2R2

γ2n
(2C + log(T ))2.

Proof The given assumption on m satisfies the conditions of Proposition 4.1 for ε = 1
T ,

g(1/T ) = 1
γ (2C + log(T )). We can apply the results of our optimization and generalization

results from Theorems 3.3 and 3.5 for a fixed T which satisfies T ≥ 1. Note that we can
assume without loss of generality that γ ≤ 1 which implies that g(1)2 = 4C2/γ2 ≥ 4.

Moreover, for logistic loss it holds g(1)2/F̂ (w0) ≥ 4C2

γ2 log(1+eC)
≥ 3 for all C ≥ 1. Therefore

the condition on step-size simplifies to η ≤ min{3, 1/L
F̂
}. This completes the proof.
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C.1 Proof of Proposition 4.2

The proof of Proposition 4.2 has the following steps: First, we consider an infinite-width
NTK separability assumption (Assumption 9) and show in Lemma C.2 that it is equivalent
with high-probability to the NTK-separability in Assumption 6 given logarithmic number of
neurons. We then prove that the noisy-XOR dataset satisfies Assumption 9 for convex and
locally strongly-convex activations. The result of Proposition 4.2 then follows by combining
the two lemmas.

Assumption 9 (Infinite-width NTK-separability). There exists w(·) : Rd → Rd and γ > 0
such that ‖w(z)‖2≤ 1 for all z ∈ Rd, and for all (x, y) ∼ D,

y

∫
Rd
σ′ (〈z, x〉) · 〈w(z), x〉 dµN(z) ≥ γ,

where µN (·) denotes the standard Gaussian measure.

Lemma C.2. Let {(xi, yi)} be any dataset of size ñ under Assumption 1, satisfying the
separability condition of Assumption 9 with some margin γ̃ > 0. Consider initialization
w0 ∈ Rd′ where w0 ∼ N(0, Id′). Then, with probability at least 1− δ the dataset is separable
under Assumption 6 with margin at least γ = γ̃ − `R√

2m
log1/2(ñ/δ), i.e., there exists unit

norm w? such that for all i ∈ [ñ] : yi〈∇1Φ(w0, xi), w
?〉 ≥ γ.

Proof By the model’s gradient we have for any w? ∈ Rd′ ,

φi := yi

〈
∇1Φ(w0, xi), w

?
〉

= yi

m∑
j=1

aj√
m
σ′(〈w0,j , xi〉)〈xi, w?j 〉. (47)

Let w?j =
aj√
m
w(w0,j). Then ‖w?‖≤ 1 and by Hoeffding’s inequality it holds for all t ≥ 0,

Pr
(
φi ≥ γ̃ − t

)
≥ 1− exp

(
−2t2m

`2R2

)
. (48)

This leads to the desired result with an extra union bound over i ∈ [ñ].

Lemma C.3. Consider the noisy XOR data distribution {(x̄i, yi)} and two-layer neural
network with a convex activation which is µ-strongly convex in [−2, 2] i.e., mint∈[−2,2] σ

′′(t) ≥
µ for some µ > 0. Then the separability assumption 9 is satisfied with margin γ = µ

40d .

Proof The proof is essentially similar to (Ji and Telgarsky, 2020a, Prop. 5.3) and thus we
follow their notation and omit the details for brevity. While their proof relies rather crucially
on the ReLU activation, it can be appropriately modified to obtain a similar margin bound
under our different assumptions on the activation function. To see this, note that due to
convexity of activation function, the integrand in the line above Eq. (D.4) is non-negative.
Therefore, we can lower-bound the integral (which evaluates the margin) by restricting A1 to
|p1|< 1. With this restriction we can use the local strong convexity of activation function to
lower-bound the margin, i.e., to uniformly lower-bound yi

∫
Rd σ

′ (〈z, xi〉)·〈w̄(z), xi〉 dµN(z) for
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all i ∈ [n]. Specifically, note that with strong convexity in [−2, 2], Eq. (D.4) in Ji and Telgar-
sky (2020a) changes to ≥ 2p1

d−1U(p1) mint∈[−2,2] σ
′′(t) ≥ 2p1µ

d−1 U(p1) where U(t) :=
∫ t
−t ϕ(τ)dτ

is the probability that a standard Gaussian random variable falls in [−t, t]. This leads to the
final value for margin being 2µ

d−1

∫
p1 U(p1) 1 [p ∈ A1] dµN (p) ≥ 8µ

(2πe)3/2(d−1)

∫ 1
0 p

3
1dp1 ≥ µ

40d ,

as desired.

Proposition C.4 (Restatement of Proposition 4.2). Consider the noisy XOR data dis-
tribution {(x̄i, yi)}. Assume the activation function is convex, `-Lipschitz and µ-strongly
convex in the interval [−2, 2] for some µ > 0, i.e., mint∈[−2,2] σ

′′(t) ≥ µ. Moreover, assume

Gaussian initialization w0 ∈ Rd′ with entries iid N(0, 1). If m ≥ 802d3`2

2µ2
log(2/δ), then

with probability at least 1− δ over the initialization, the NTK-separability Assumption 6 is
satisfied with margin γ = µ

80d .

Proof The claim follows by combining the last two lemmas. In particular, we derive the
infinite width NTK-separability for the entire data distribution (of size 2d) with margin
γ̃ = µ

40d and by the assumption on width and noting ñ = 2d, we have γ-separability by

NTK for the entire distribution with probability 1 − δ where γ = γ̃ − `R√
2m

log1/2(ñ/δ) =

µ
40d −

`R
√
d√

2m
log1/2(1/δ) ≥ µ

80d . This completes the proof.

Finally, we show how to control the parameter C that bounds the model output at Gaussian
initialization.

Lemma C.5 (Initialization bound). Let Assumption 1 hold and assume the activation
function to be `-Lipschitz. Consider initialization w0 ∈ Rd′ where w0 ∼ N(0, Id′). Given
any δ ∈ (0, 1), then with probability at least 1− δ, it holds for all i ∈ [ñ] that

|Φ (w0, xi)| ≤ `R
√

2 log(2ñ/δ). (49)

Proof Recall that if a function φ : Rd′ → R is G-Lipschitz then for Gaussian vector
Z = (Z1, Z2, · · · , Zd′) where each component is i.i.d. standard Gaussian Zi ∼ N(0, 1), it

holds for all t ≥ 0 that Pr[|φ(Z) − E[φ(Z)]|≥ t] ≤ 2 exp(− t2

2G2 ). Note that according to
Lemma D.1, Φ(·, xi) is (`R)-Lipschitz for any data point xi. Therefore, with the given
initialization for w0, we have

Pr
[∣∣∣Φ(w0, xi)− E[Φ(w0, xi)]

∣∣∣ ≥ t] ≤ 2 exp

(
− t2

2`2R2

)
.

It also holds that E[Φ(w0, xi)] = 0. This is true since for half of second layer weights aj = 1

and for the rest aj = −1. Thus, we have Pr [|Φ(w0, xi)|≥ t] ≤ 2 exp(− t2

2`2R2 ). A union bound

yields that uniformly over i ∈ [ñ], we have Pr [|Φ(w0, xi)|≥ t] ≤ 2ñ · exp(− t2

2`2R2 ) which
concludes the claim of lemma.
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Appendix D. Gradients and Hessian calculations

D.1 Definitions

Assume IID data (x, y) ∼ D, x ∈ Rd, y ∈ {±1}. Denote for convenience z := yx. Suppose
two-layer neural network model

Φ(w, xi) =
1√
m

∑
j∈[m]

ajσ(〈wj , x〉) (50)

aj ∈ {±1}, j ∈ [m] and first-layer weights trained by GD on

F̂ (w) =
1

n

∑
i∈[n]

f(yiΦ(w, xi)) =:
1

n

∑
i∈[n]

f(w, zi) . (51)

for loss function f : R→ R.
For convenience define

F̂ ′(w) =
1

n

∑
i∈[n]

|f ′(yiΦ(w, xi))| (52a)

F̂ ′′(w) =
1

n

∑
i∈[n]

|f ′′ (yiΦ(w, xi))| (52b)

D.2 Model’s Gradient/Hessian

Lemma D.1. The following are true for the model (50) under Assumption 2.

1. ‖∇1Φ(w, x)‖≤ `R.

2. ‖∇2
1Φ(w, x)‖≤ LR2

√
m

.

Proof Direct calculation yields that,

∇1Φ(w, x) =
1√
m


a1σ

′(〈w1, x〉)x
·
·

amσ
′(〈wm, x〉)x


Noting that σ′(·) ≤ `,

‖∇1Φ(w, x)‖2 =
1

m

m∑
j=1

d∑
i=1

(x(i)σ′(〈wj , x〉))2 (53)

≤ `2‖x‖2

≤ `2R2.

For the Hessian,

∂2Φ(w, x)

∂wij∂wk`
=

1√
m
x(j)x(`)aiσ

′′(〈wi, x〉)1{i=k}. (54)
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Thus,

∇2
1Φ(w, x) =

1√
m

diag
(
a1σ

′′(〈w1, x〉)xxT , . . . , amσ′′(〈wm, x〉)xxT
)

for any unit norm vector u ∈ Rmd, define ūi := [u(i−1)m+1 : uim] ∈ Rd. Moreover, define

the matrix ∇2
wiΦ(w, x) ∈ Rd×d such that [∇2

wiΦ(w, x)]j` = ∂2Φ(w,x)
∂wij∂wi`∥∥∥u>∇2

1Φ(w, x)
∥∥∥2

=
m∑
i=1

∥∥∥u>i ∇2
wiΦ(w, x)

∥∥∥2

≤
m∑
i=1

∥∥∥∇2
wiΦ(w, x)

∥∥∥2
‖ūi‖2

≤
m∑
i=1

L2

m
‖x‖4‖ūi‖2

≤ L2R4

m
.

This completes the proof.

D.3 Objective’s Gradient/Hessian

Lemma D.2. Let Assumption 2 hold. Then, the following are true for the loss gradient
and Hessian:

1. ‖∇F̂ (w)‖≤ `R F̂ ′(w).

2. ‖∇2F̂ (w)‖≤ `2R2F̂ ′′(w) + LR2
√
m
F̂ ′(w).

3. λmin

(
∇2F̂ (w)

)
≥ −LR2

√
m
F̂ ′(w).

Proof The loss gradient is derived as follows,

∇F̂ (w) =
1

n

n∑
i=1

f ′(yiΦ(w, xi))yi∇1Φ(w, xi)

Recalling that yi ∈ {±1}, we can write∥∥∥∇F̂ (w)
∥∥∥ =

1

n

∥∥∥ n∑
i=1

f ′(yiΦ(w, xi))yi∇1Φ(w, xi)
∥∥∥

≤ 1

n

n∑
i=1

|f ′(yiΦ(w, xi))|
∥∥∥∇1Φ(w, xi)

∥∥∥.
≤ `RF ′(w). (55)
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For the Hessian of loss, note that

∇2F̂ (w) =
1

n

n∑
i=1

f ′′(yiΦ(w, xi))∇1Φ(w, xi)∇1Φ(w, xi)
> + f ′(yiΦ(w, xi))yi∇2

1Φ(w, xi).

(56)

It follows that∥∥∥∇2F̂ (w)
∥∥∥ =

∥∥∥∥∥ 1

n

n∑
i=1

f ′(yiΦ(w, xi))yi∇2
1Φ(w, xi) + f ′′(yiΦ(w, xi))∇1Φ(w, xi)∇1Φ(w, xi)

>

∥∥∥∥∥
≤ 1

n

n∑
i=1

|f ′(yiΦ(w, xi))|
∥∥∥∇2

1Φ(w, xi)
∥∥∥+ |f ′′(yiΦ(w, xi))|

∥∥∥∇1Φ(w, xi)∇1Φ(w, xi)
>
∥∥∥

≤ 1

n

n∑
i=1

|f ′(yiΦ(w, xi))|
∥∥∥∇2

1Φ(w, xi)
∥∥∥+ |f ′′(yiΦ(w, xi))|

∥∥∥∇1Φ(w, xi)
∥∥∥2

≤ LR2

√
m
F ′(w) + `2R2F ′′(w). (57)

To lower-bound the minimum eigenvalue of Hessian, note that f is convex and thus f ′′(·) ≥ 0.
Therefore the first term in (56) is positive semi-definite and the second term can be lower-
bounded as follows,

λmin(∇2F̂ (w)) ≥ −

∥∥∥∥∥ 1

n

n∑
i=1

yif
′(yiΦ(w, xi))∇2

1Φ(w, xi)

∥∥∥∥∥
≥ − 1

n

n∑
i=1

|yif ′(yiΦ(w, xi))|
∥∥∥∇2

1Φ(w, xi)
∥∥∥

≥ −LR
2

√
m
F ′(w).

Corollary D.2.1 (Self-boundedness of Objective). Let Assumption 2 hold.
If the loss satisfies Assumptions 4 (with βf = 1) and 8, then

1. ‖∇F̂ (w)‖≤ `R F̂ (w).

2. ‖∇2F̂ (w)‖≤
(
`2R2 + LR2

√
m

)
F̂ (w).

3. λmin

(
∇2F̂ (w)

)
≥ −LR2

√
m
F̂ (w).

If in addition the loss satisfies Assumptions 3.A and 3.B with Lf = Gf = 1, then

6. ‖∇F̂ (w)‖≤ `R.
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7. ‖∇2F̂ (w)‖≤ `2R2 + LR2
√
m
.

Proof For self-bounded losses we have F̂ ′(w) ≤ F̂ (w) and F̂ ′′(w) ≤ F̂ (w). If the loss is
1-Lipschitz and 1-smooth we have F̂ ′(w) ≤ 1 and F̂ ′′(w) ≤ 1. Thus, the claims immediately
follow from Lemma D.2.

Appendix E. Detailed technical comparison to most-closely related works

In terms of techniques, the most closely related works to our paper are the recent works
Richards and Rabbat (2021); Richards and Kuzborskij (2021); Lei et al. (2022), which also
utilize the stability-analysis framework to derive test-loss bounds of GD for shallow neural
networks.

Richards and Rabbat (2021) investigates the generalization gap of weakly-convex losses
for which λmin(∇2F̂ (w)) ≥ −ε for a constant ε > 0. Note by Lemma D.2 that our empirical
loss is weakly convex with ε = LR2/

√
m since the logistic loss is 1-Lipschitz. Within

the stability analysis framework, Richards and Rabbat (2021) leverage the weak-convexity
property to establish an approximate expansiveness property of GD iterates that in our
setting translates to∥∥∥(w − η∇F̂ (w)

)
−
(
w′ − η∇F̂ (w′)

)∥∥∥ .

(
1 +

ηLR2

√
m

)∥∥w − w′∥∥ . (58)

When using this inequality to bound the model stability term at iteration t, and in order to
obtain non-vacuous bounds, the extra term in (58) must be chosen such that ηLR2/

√
m . 1/t.

This leads to polynomial-width parameterization requirement m & t2. In this work, we reduce
the requirement to logarithmic m & log(t), by significantly tightening (58). This is achieved
by introducing two crucial ideas. The first is to exploit the self-boundedness property
of loss function, which yields a stronger self-bounded weak convexity λmin(∇2F̂ (w)) ≥
−LR2F̂ (w)/

√
m. With this, we show in Corollary 5.2.1 that∥∥∥(w − η∇F̂ (w)

)
−
(
w′ − η∇F̂ (w′)

)∥∥∥ ≤ (1 +
ηLR2

√
m

max
α∈[0,1]

F̂ (wα)

)∥∥w − w′∥∥ (59)

for some wα = αw+(1−α)w′. Our second idea comes into bounding the term maxα∈[0,1] F (wα)
which in our bound replaces the Lipschitz constant Gf of (58). To control maxα∈[0,1] F (wα),
we identify and use the Generalized Local Quasi-convexity of Proposition 5.1. This replaces
maxα∈[0,1] F (wα) in (59) with τ ·max{F̂ (w), F̂ (w′)} for τ ≈ 1+LR2‖w−w′‖2/

√
m and note

that we can guarantee τ = O(1) provided
√
m & max{‖w−w0‖2, ‖w′−w0‖2}. Now, in order

to bound the model stability term, we apply non-expansiveness for GD iterate w = wt and its
leave-one-out counterpart w = w¬it : Provided m & max{‖wt−w0‖4, ‖w¬it −w0‖4} ≈ log4(t),∥∥∥(wt − η∇F̂ (wt)

)
−
(
w¬it − η∇F̂ (w¬it )

)∥∥∥ .

(
1 +

ηLR2

√
m

max{F̂ (w), F̂ (w′)}
)∥∥w − w′∥∥

.

(
1 +

ηLR2

t
√
m

)∥∥w − w′∥∥ (60)
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Compared to (58) note in (60) that the extra term is already of order 1/t. Hence, the only
parameterization requirement is m & max{‖wt − w0‖4, ‖w¬it − w0‖4} ≈ log4(t). While the
above describes our main technical novelty compared to Richards and Rabbat (2021), our
results surpass theirs in other aspects. Specifically, we also obtain tighter bounds on the
optimization error, again thanks to leveraging self-bounded properties of the logistic loss.
Overall, for the separable setting, we show a Õ(1/n) test-loss bound compared to O(T/n)
in their paper.

In closing, we remark that our logarithmic width requirements and expansiveness bounds
are also significantly tighter than those that appear in Richards and Kuzborskij (2021);
Lei et al. (2022). While their results are not directly comparable to ours as they only
apply to square-loss functions, we reference them here for completeness: Richards and
Kuzborskij (2021) upper-bounds the expansiveness term on the left-hand side of (60) by
. (1 + η

√
ηt/
√
m) which requires m & t3 so that is of order 1 + 1/t. More recently, Lei et al.

(2022) slightly modifies their bound to .
(
1 + η(ηt)3/2/(n

√
m)
)

which requires m & (ηt)5/n2.
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