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Abstract

As a predictor’s quality is often assessed by means of its risk, it is natural to regard risk
consistency as a desirable property of learning methods, and many such methods have
indeed been shown to be risk consistent. The first aim of this paper is to establish the close
connection between risk consistency and Lp-consistency for a considerably wider class of
loss functions than has been done before. The attempt to transfer this connection to shifted
loss functions surprisingly reveals that this shift does not reduce the assumptions needed
on the underlying probability measure to the same extent as it does for many other results.
The results are applied to regularized kernel methods such as support vector machines.

Keywords: machine learning, consistency, regression, kernel methods, support vector
machines

1. Introduction

The goal of non-parametric statistical machine learning is to predict an output random
variable Y based on an input random variable X with (almost) no prior knowledge about the
distribution P of (X,Y ) on some space X ×Y, all information about P typically stemming
from a data set Dn := ((x1, y1), . . . , (xn, yn)) ∈ (X × Y)n consisting of independent and
identically distributed (i.i.d.) observations sampled from P. More specifically, one aims
at finding a measurable function f : X → Y which captures certain characteristics of the
conditional distribution P(· |X), like its conditional mean function or conditional quantile
function.

Such learning tasks can often be formalized by aiming at finding a measurable function
that minimizes the L-risk (or just risk)

RL,P(f) := EP [L(X,Y, f(X))]

for a suitable loss function, which is a measurable function L : X × Y × R→ [0,∞). Here,
L(x, y, f(x)) quantifies the cost of the prediction f(x) if the observed true output belonging
to x is y. Hence, the choice of L controls how different deviations between y and f(x) are
penalized and specifies the exact goal of the prediction, and the risk assesses the quality
of the whole predictor f with respect to the whole distribution P. For example, the two
aforementioned goals of finding the conditional means (least squares regression) and condi-
tional quantiles (quantile regression) can be approached by using the least squares loss and
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the pinball loss respectively, as it is known that the according risks are minimized by the
respective target functions one aims to estimate.

To this end, we define the Bayes risk R∗L,P as usual as the smallest possible risk, that
is,

R∗L,P := inf{RL,P(f) | f : X → R measurable} ,

and call a measurable function f∗L,P achieving RL,P(f∗L,P) = R∗L,P a Bayes function. Further
assume that a learning method yields the predictor fn based on the data set Dn, n ∈ N.

Because of the risk assessing a predictor’s quality, a desirable property for the learning
method is risk consistency, i.e. that

RL,P(fn)→ R∗L,P , n→∞ ,

in a suitable sense (which is in probability or almost surely in most results). As this is a very
natural type of consistency to consider and the classic one aimed at in statistical learning
theory (cf. Vapnik, 1995), results on risk consistency exist for many such learning methods,
see for example Steinwart (2005) (regularized kernel methods for classification), Zhang and
Yu (2005) (boosting), Christmann and Steinwart (2007) (regularized kernel methods for
regression; see also Section 4), Biau et al. (2008) (averaging classifiers such as random
forests), Lin et al. (2022) (deep convolutional neural networks).

We are however also interested in taking a look at a different type of consistency, namely
Lp-consistency, i.e. that ∣∣∣∣fn − f∗L,P∣∣∣∣Lp(PX)

→ 0 , n→∞ ,

in a suitable sense for some p ∈ [1,∞). This type of consistency is of interest for us because
it compares the estimator fn and the Bayes function f∗L,P directly, weighted only based on
the marginal distribution PX , instead of additionally depending on the loss function and
the conditional distribution of Y . Additionally, it is a quite powerful type of consistency
that for example also directly implies weak consistency.

We show in Section 3 that Lp- and risk consistency are actually equivalent under rather
mild assumptions. Note that the results from that section are non-probabilistic and there-
fore yield a very strong connection between the two examined types of convergence, stating
that RL,P(fn) → R∗L,P holds true if and only if ||fn − f∗L,P||Lp(PX) → 0 (under the as-
sumptions required by the results) even in an analytical sense. In this equivalence, the
more surprising direction certainly is risk consistency implying Lp-consistency as the latter
tackles the generally more demanding task of system identification instead of only system
imitation, as it is described by Cherkassky and Mulier (2007, Section 2.1.1), see also Györfi
et al. (2002, Section 1.4) for the classification case. Whereas this implication had already
been established for certain special loss functions (which we briefly recap in Section 3.1),
we considerably generalize it to a large class of loss functions including those as special
cases. Additionally, we examine whether it is possible to transfer these results to risks
that are based on shifted loss functions—which are useful for working with heavy-tailed
distributions—and stumble upon some difficulties when trying to do this in all general-
ity, which is somewhat surprising considering that many other results can be transferred
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to shifted loss functions quite seamlessly. Before successfully transferring our results by
imposing some assumptions on the underlying distribution, we therefore also derive some
interesting negative results. Lastly, in Section 4, the derived connection is applied to reg-
ularized kernel methods, in which the predictors are defined as minimizers of regularized
risks. Because of this definition, it is natural to examine their risk consistency and this
has already been well investigated in the past, but there did not exist any general results
on their Lp-consistency so far. Here, these two types of consistency are for the most part
examined in the sense of convergence in probability as this is the one that we are able to
derive under the mild assumptions imposed in that section. It should however be noted that
the results from Section 3 on the connection between Lp- and risk consistency can also be
applied to other learning methods for which one of the two types of consistency is known,
and that their non-probabilistic nature means that they can also be used to even obtain
either of the two types of consistency in the almost sure sense if the other one is known to
hold true in that sense as well, see also Remark 16 and Corollary 19.

We wish to emphasize that our goal is not to derive learning rates for any learning
method (like for example for the regularized kernel methods from Section 4). Instead,
we aim at deriving results on consistency under minimal assumptions on the underlying
probability distribution—much weaker assumptions than those needed for deriving learning
rates—and such that the results are applicable to general learning methods in a general
setting.

2. Prerequisites

Before presenting our results, we first need to state some additional prerequisites: As men-
tioned in the introduction, we aim at estimating certain properties of the unknown con-
ditional distribution P(· |X) such as the conditional mean or conditional quantiles. This
conditional distribution P(· |X) uniquely exists, and P can therefore be split into a marginal
distribution PX on X and this conditional distribution, whenever Y is a Polish space (cf.
Dudley, 2004, Theorems 10.2.1 and 10.2.2), for example if Y ⊆ R closed (cf. Bauer, 2001, p.
157). Hence, by choosing Y in such a way, we are guaranteed to always be able to perform
this factorization of P, which leads us to one part of the following standard and rather
general assumption which we assume to hold true throughout this paper.

Assumption 1 Let X be a complete separable metric space and let Y ⊆ R be closed. Let X
and Y be equipped with their respective Borel σ-algebras BX and BY . Let P ∈M1(X × Y),
where M1(X ×Y) denotes the set of all Borel probability measures on the measurable space
(X × Y,BX×Y).

We are mainly interested in continuous and in convex loss functions, by which we mean
continuity respectively convexity of L in its third argument. Furthermore, the loss functions
will be assumed to additionally be distance-based. Distance-based losses are a special type
of loss functions which are typically used in regression tasks, and which are defined in the
following way:

Definition 2 A loss function L : X ×Y×R→ [0,∞) is called distance-based if there exists
a representing function ψ : R→ [0,∞) satisfying ψ(0) = 0 and L(x, y, t) = ψ(y − t) for all
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(x, y, t) ∈ X × Y × R. If ψ(r) = ψ(−r) for all r ∈ R, then L is called symmetric.
Let p ∈ (0,∞). A distance-based loss L : X × Y × R→ [0,∞) with representing function ψ
is of

(i) upper growth type p if there is a constant c > 0 such that ψ(r) ≤ c (|r|p + 1) for all
r ∈ R.

(ii) lower growth type p if there is a constant c > 0 such that ψ(r) ≥ c |r|p − 1 for all
r ∈ R.

(iii) growth type p if L is of both upper and lower growth type p.

Since the first argument does not matter in distance-based loss functions, we often ignore
it and write L : Y × R→ [0,∞) and L(y, t) instead.

Distance-based losses are typically used in regression tasks, but some of them, like the
least squares loss, are also popular choices for classification tasks, see for example Györfi
et al. (2002, Section 1.4). As an example of a distance-based loss, the mentioned least
squares loss is of growth type 2 whereas many other common loss functions for regression
tasks, like the pinball loss, Huber loss or ε-insensitive loss, are of growth type 1. We will
later see that this sometimes leads to slightly more restrictive conditions regarding P when
using the least squares loss.

More specifically, if p denotes the growth type of the loss function that is applied, some
results from the subsequent sections require that the averaged p-th moment of P is finite.
This averaged p-th moment is defined as

|P|p :=

(∫
X×Y

|y|p dP(x, y)

)1/p

=

(∫
X

∫
Y
|y|p dP(y |x) dPX(x)

)1/p

.

3. Connection between Lp- and Risk Consistency

In Section 3.1, we show that Lp- and risk consistency are equivalent under certain conditions.
Section 3.2 contains the rather surprising result that some of these results can not be
transferred to risks that are based on shifted loss functions in the generality we would have
hoped for, but we also introduce some additional conditions under which it is possible to
transfer the results after all.

Remark 3 We will often write “the Bayes function”, implying there exists exactly one such
measurable function minimizing RL,P. This does not always hold true and is not necessary
for risk consistency (neither existence nor uniqueness). We however assume that the Bayes
function indeed exists and is PX-almost-surely (a.s.) unique whenever we investigate the
difference between some predictor and the Bayes function directly (e.g. in the results on
Lp-consistency) instead of the difference between the according risks.

3.1 Connection between Lp- and risk consistency for regular loss functions

So far, there are no general results on Lp-consistency following from risk consistency, but
only results regarding special loss functions: For the least squares loss, it has been known
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for many years that a function’s excess risk, i.e. the difference between its risk and the Bayes
risk, corresponds to the squared L2(PX)-norm of its deviation from the Bayes function, and
risk consistency therefore implies L2-consistency, cf. Cucker and Smale (2001, Proposition 1)
or Cherkassky and Mulier (2007, pp. 26–28). Recently, this L2-difference between a function
and the Bayes function has also been bounded by the excess risk—by means of so-called
comparison or self-calibration inequalities—in case of the asymmetric least squares loss by
Farooq and Steinwart (2019) and in case of more general strongly convex loss functions under
additional assumptions by Sheng et al. (2020). Additionally, Hable and Christmann (2014)
showed that L1-consistency follows from risk consistency in case of the pinball loss, and
Steinwart and Christmann (2011); Xiang et al. (2012) derived self-calibration inequalities
for this loss under additional assumptions. Tong and Ng (2019) did so for the ε-insensitive
loss.

The following theorem generalizes the aforementioned special cases to general convex,
distance-based loss functions:

Theorem 4 Let L : Y × R → [0,∞) be a convex, distance-based loss function of lower
growth type p ∈ [1,∞). Assume that f∗L,P is PX-a.s. unique, f∗L,P ∈ Lp(PX) and R∗L,P <∞.
Then, for every sequence (fn)n∈N ⊆ Lp(PX), we have

lim
n→∞

RL,P(fn) = R∗L,P ⇒ lim
n→∞

||fn − f∗L,P||Lp(PX) = 0 .

Remark 5 If L is of growth type p instead of only being of lower growth type p, the condi-
tions f∗L,P ∈ Lp(PX) and R∗L,P <∞ in Theorem 4 can also be replaced by the perhaps more
intuitive and in this case equivalent moment condition |P|p <∞. This equivalence can eas-
ily be obtained from parts (i) and (iii) of Steinwart and Christmann (2008, Lemma 2.38)
by noting that R∗L,P ≤ RL,P(0), with 0 denoting the zero function, always holds true by
definition of the Bayes risk.

Notably, Theorem 4 strengthens Steinwart and Christmann (2008, Corollary 3.62),
which stated that risk consistency implies weak consistency.

As mentioned in the introduction, the opposite direction—risk consistency following
from Lp-consistency—is generally the easier one. We formally state this implication in the
subsequent Theorem 6. Hence, this theorem can be seen as the counterpart of Theorem 4,
even though the conditions of the two theorems differ in some details. Notably, the function
f∗, which the sequence is converging to, does not necessarily need to be the Bayes function
f∗L,P here:

Theorem 6 Let L : Y ×R→ [0,∞) be a continuous, distance-based loss function of upper
growth type p ∈ [1,∞). Assume that |P|p <∞. Then, for every sequence (fn)n∈N ⊆ Lp(PX)
and every function f∗ ∈ Lp(PX), we have

lim
n→∞

||fn − f∗||Lp(PX) = 0 ⇒ lim
n→∞

RL,P(fn) = RL,P(f∗) .

3.2 Connection between Lp- and risk consistency for shifted loss functions

When looking at Theorem 4, it is obvious that the assumptions f∗L,P ∈ Lp(PX) and R∗L,P <
∞ are indeed necessary for the theorem’s conclusion and that one cannot hope to derive Lp-
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from risk consistency without them. Because these assumptions are equivalent to |P|p <∞
if L is of growth type p (cf. Remark 5), this however excludes heavy-tailed distributions
such as the Cauchy distribution—even for p = 1. Analogously, Theorem 6 also requires
|P|p <∞ and can therefore not be applied to such heavy-tailed distributions.

To circumvent this problem, we now try to transfer the results from Section 3.1 to shifted
loss functions, which have been applied in robust statistics for a long time, see for example
Huber (1967) or Huber and Ronchetti (2009, Chapter 3), and which can be defined in a
very easy way: Given a loss function L : X × Y × R → [0,∞), the associated shifted loss
function is

L? : X × Y × R→ R ,
(x, y, t) 7→ L(x, y, t)− L(x, y, 0) ,

which can be used to estimate the same quantities as the original loss function since the
shift is fixed independently of t. Risks can be defined in the same way as for regular loss
functions.

Remark 7 By Steinwart and Christmann (2008, Lemma 2.34), a convex and distance-
based loss function of upper growth type 1 is always Lipschitz continuous. We call a loss
function L Lipschitz continuous if it is Lipschitz continuous with respect to its last argument,
that is, if

|L(x, y, t)− L(x, y, t′)| ≤ |L|1 · |t− t′| ∀ (x, y) ∈ X × Y , t, t′ ∈ R ,

for some constant |L|1 ≥ 0 which is called the Lipschitz constant of L.

With Remark 7 in mind, the risk with respect to the shifted version of a convex and
distance-based loss function of upper growth type 1 can be bounded by

|RL?,P(f)| ≤
∫
X×Y

|L(y, f(x))− L(y, 0)|dP(x, y) ≤ |L|1
∫
X
|f(x)| dPX(x) . (1)

Hence, even if |P|1 = ∞, this risk is finite for all f ∈ L1(PX). Using the shifted loss
therefore seems like a promising approach for extending the applicability of the results from
Section 3.1 to heavy-tailed distributions and getting rid of the moment condition |P|1 <∞
in the case of having a convex loss function of growth type 1. Indeed, Christmann et al.
(2009) showed that the moment condition can in this case be eliminated from many results
regarding regular loss functions by transferring them to shifted loss functions.

When looking at the proof of Theorem 4, it is however easy to see that (9) does not hold
true for shifted loss functions and the proof can thus not be transferred to the situation
of this section. The following negative result shows that this is indeed not a failing of the
specific proof we used, but that L1-consistency does, somewhat surprisingly, actually not
follow from L?-risk consistency in the generality one would have hoped for:

Proposition 8 Let Y = R. Let L : Y × R → [0,∞) be a convex, distance-based and sym-
metric loss function of growth type 1, and let L? be its shifted version. Then, even if f∗L?,P is
PX-a.s. unique with f∗L?,P ∈ L1(PX), a sequence (fn)n∈N ⊆ L1(PX) of functions satisfying

lim
n→∞

RL?,P(fn) = R∗L?,P
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does in general not imply

lim
n→∞

∣∣∣∣fn − f∗L?,P∣∣∣∣L1(PX)
= 0

without any additional assumptions besides Assumption 1 being imposed.

Note that in the situation of Proposition 8, risk consistency does also not imply Lp-
consistency for any p > 1 since Lp-consistency for p > 1 would imply L1-consistency.

We now take a special look at the τ -pinball loss (or just pinball loss)

Lτ -pin : Y × R→ [0,∞) ,

(y, t) 7→

{
(1− τ) · (t− y) , if y < t ,

τ · (y − t) , if y ≥ t ,
(2)

τ ∈ (0, 1), which is convex and distance-based with growth type 1, but not symmetric
for τ 6= 0.5. As mentioned in the introduction, the pinball loss can be used for quantile
regression, i.e. for estimating the conditional quantiles

F ∗τ,P : X → 2R ,

x 7→ {t∗ |P((−∞, t∗]|x) ≥ τ and P([t∗,∞)|x) ≥ 1− τ } ,

see also Koenker and Bassett (1978); Koenker and Hallock (2001); Takeuchi et al. (2006);
Steinwart and Christmann (2011).

If one assumes these conditional quantiles F ∗τ,P(x) to PX -a.s. be singletons, it is possible
to denote them by the PX -a.s. unique quantile function f∗τ,P : X → R defined by {f∗τ,P(x)} =
F ∗τ,P(x) for all x ∈ X . Recall that this f∗τ,P is the up to PX -zero sets only measurable function
satisfying

RLτ-pin,P(f∗τ,P) = R∗Lτ-pin,P (3)

if R∗Lτ-pin,P is finite, and similarly, that f∗τ,P satisfies

RL?τ-pin,P(f∗τ,P) = R∗L?τ-pin,P (4)

and is the up to PX -zero sets only measurable function doing so if R∗L?τ-pin,P is finite. This

ties our assumption of the conditional quantiles PX -a.s. being singletons to Remark 3 about
the required PX -a.s. uniqueness of the Bayes function and yields f∗L?τ-pin,P

≡ f∗τ,P PX -a.s.

As non-symmetric loss functions are not covered by Proposition 8 and as the pinball loss
is the probably most popular among these, we specifically investigate this loss function’s
behavior and obtain the following analogous result to Proposition 8:

Proposition 9 Let Y = R. Let τ ∈ (0, 1) and let L?τ -pin be the shifted version of the τ -

pinball loss.1 Then, even if f∗τ,P is PX-a.s. unique with f∗τ,P ∈ L1(PX), a sequence (fn)n∈N ⊆

1. It can easily be seen that this shifted pinball loss function is, for τ ∈ (0, 1),

L?τ-pin : Y × R→ R

(y, t) 7→ Lτ-pin(y, t)− Lτ-pin(y, 0) =


(1− τ) · t , if y < min{0, t} ,
(1− τ) · t− y , if 0 ≤ y < t ,

y − τ · t , if t ≤ y < 0 ,

−τ · t , if y ≥ max{0, t} .
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L1(PX) of functions satisfying

lim
n→∞

RL?τ-pin,P(fn) = R∗L?τ-pin,P

does in general not imply

lim
n→∞

∣∣∣∣fn − f∗τ,P∣∣∣∣L1(PX)
= 0

without any additional assumptions besides Assumption 1 being imposed.

As the preceding results allow for arbitrary sequences of functions in L1(PX), we might
still hope to deduce L1-consistency following from L?-risk consistency by restricting our-
selves to smaller function spaces with more structure like Sobolev spaces. However, the
subsequent corollary shows that Proposition 8 and Proposition 9 can even be strengthened
to sequences of functions from Sobolev spaces. Here, we assume that X ⊆ Rd open for some
d ∈ N, and we denote by Wm,q(X ) the Sobolev space consisting of all functions from Lq(X )
whose weak derivatives up to order m are also in Lq(X ), cf. Adams and Fournier (2003,
Definition 3.2). Here, as usual, Lq(X ) denotes the Lq-space with respect to the Lebesgue
measure on X .

Corollary 10 Let d ∈ N, X ⊆ Rd open, and Y = R. Let L : Y × R → [0,∞) be a convex,
distance-based and symmetric loss function of growth type 1, or the τ -pinball loss for some
τ ∈ (0, 1). Let L? be its shifted version. Let m ∈ N and 1 ≤ q ≤ ∞. Then, even if f∗L?,P is
PX-a.s. unique with f∗L?,P ∈ L1(PX), a sequence (fn)n∈N ⊆Wm,q(X )∩L1(PX) of functions
satisfying

lim
n→∞

RL?,P(fn) = R∗L?,P

does in general not imply

lim
n→∞

∣∣∣∣fn − f∗L?,P∣∣∣∣L1(PX)
= 0

without any additional assumptions besides Assumption 1 being imposed.

The preceding results show that it is not possible to get rid of the moment condition
from Theorem 4 (cf. Remark 5) just by transferring it to shifted loss functions. It might,
however, still be possible to circumvent this moment condition by instead imposing some
different and less restrictive conditions. For the pinball loss from (2), i.e. for doing quantile
regression, we are indeed able to derive such an alternative and in many cases less restrictive
condition regarding P. To be more specific, the conditional distribution P(· |X) is, in some
sense, not allowed to be too heteroscedastic and it has to be continuous in the conditional
quantiles f∗τ,P(x), x ∈ X :

Theorem 11 Let τ ∈ (0, 1) and L?τ -pin be the shifted version of the τ -pinball loss. Assume
that f∗τ,P is PX-a.s. unique, f∗τ,P ∈ L1(PX), and P additionally satisfies at least one of the
following conditions:
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(i) |P|1 <∞.

(ii) There exist c1, c2 > 0 such that

P
(

(f∗τ,P(X)− c1, f∗τ,P(X))
∣∣X) ≥ c2 and P

(
(f∗τ,P(X), f∗τ,P(X) + c1)

∣∣X) ≥ c2 (5)

PX-a.s., as well as

P(f∗τ,P(X) |X) = 0 (6)

PX-a.s.

Then, for every sequence (fn)n∈N ⊆ L1(PX), we have

lim
n→∞

RL?τ-pin,P(fn) = R∗L?τ-pin,P ⇒ lim
n→∞

||fn − f∗τ,P||L1(PX) = 0 .

Even though it was not possible to get rid of the moment condition (i) without imposing
the new condition (ii), this still substantially expands the theorem’s applicability since there
are many cases in which (ii) (whose first part is visualized in Figure 1) is satisfied even
though (i) is not:

Example 1 Assume that τ ∈ (0, 1) and that we have an underlying homoscedastic regres-
sion model like

Y = f(X) + ε ,

where f : X → Y is an arbitrary measurable function and ε is a continuous random variable
whose distribution does not depend on the value of X. Whenever ε has a unique τ -quantile
qτ ∈ R, (ii) from Theorem 11 holds true with f∗τ,P = f + qτ . For example, ε can follow a
Cauchy distribution with location and scale parameters which are fixed independently of the
value of X. In this case, the moment condition (i) does not hold true, but Theorem 11 does
still yield L1-consistency following from risk consistency.

Example 2 The independence of ε from X in Example 1 is not even strictly necessary.
Assume the more general heteroscedastic model

Y = f(X) + εX ,

where the distribution of εX is now allowed to depend on the value x of X. If, for example,
there exist C > 0 and c1 > 0 such that εx has a unique τ -quantile qx,τ ∈ R and Lebesgue
density greater than C on (qx,τ − c1, qx,τ + c1) for PX-almost all x ∈ X , condition (ii) from
Theorem 11 is still satisfied.

For example, this situation is on hand if X = Rd for some d ∈ N, Y = R, and εx follows
a Cauchy distribution with location parameter cos(||x||2) and scale parameter 2 + sin(||x||2)
for all x ∈ X . More generally, the same also holds true for different choices of location and
scale parameters, as long as they are bounded from above and from below (in the case of the
scale parameter we mean bounded away from zero by bounded from below).
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Figure 1: Visualization of (5). Each vertical slice between f∗τ,P − c1 and f∗τ,P as well as
between f∗τ,P and f∗τ,P + c1 needs to have a conditional probability (given x) of
at least c2. The solid vertical lines depict some examples of such slices whose
conditional probability needs to be at least c2.

We saw that L1-consistency can not be obtained from risk consistency without imposing
some different, albeit in some sense weaker, condition regarding P in exchange for omitting
the moment condition. It is, however, indeed possible to just omit the moment condition
in the reverse statement (Theorem 6) when transferring this to shifted loss functions in the
case of having a convex loss function of upper growth type 1, which again hints at this
direction being the easier one as it was mentioned in the introduction.

Theorem 12 Let L : Y → R be a convex, distance-based loss function of upper growth type
1, and let L? be its shifted version. Then, for every sequence (fn)n∈N ⊆ L1(PX) and every
function f∗ ∈ L1(PX), we have

lim
n→∞

||fn − f∗||L1(PX) = 0 ⇒ lim
n→∞

RL?,P(fn) = RL?,P(f∗) .

4. Consistency of Regularized Kernel Methods

After having derived general results regarding the connection between Lp- and risk consis-
tency in Section 3, we would like to apply these results to special predictors now. More
specifically, we investigate kernel-based regularized risk minimizers, which we also call sup-
port vector machines (SVMs). We are thus using the term SVM in a broad sense, allowing
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not only for the hinge loss (as the expression SVM is used in some works) but rather for
arbitrary loss functions including the distance-based losses used in Section 3.

We first give a formal definition and some further mathematical prerequisites regarding
SVMs as well as a short recap of some of their known properties in Section 4.1. In Section 4.2,
we then first use our results from Section 3.1 to derive a result on their Lp-consistency, where
no general result existed so far, and then derive a new result on their risk consistency,
which in some part slightly weakens the conditions from existing results on risk consistency.
Finally, we examine SVMs based on shifted loss functions in Section 4.3.

4.1 Prerequisites regarding regularized kernel methods

As the true distribution P is usually unknown in practice, one has to make do with the
information available about P, i.e. the data set Dn := ((x1, y1), . . . , (xn, yn)) ∈ (X × Y)n

mentioned in the introduction and consisting of i.i.d. observations sampled from P, instead
of minimizing RL,P directly. This is approached by using the empirical distribution

Dn :=
1

n

n∑
i=1

δ(xi,yi) ,

corresponding to Dn, with δ(xi,yi) denoting the Dirac measure in (xi, yi), and defining the
empirical risk RL,Dn analogously to RL,P, which results in

RL,Dn(f) := EDn [L(X,Y, f(X))] =
1

n

n∑
i=1

L(xi, yi, f(xi)) .

Because just minimizing RL,Dn constitutes an ill-posed problem and usually results
in some extent of overfitting, a regularization term has to be added. This leads to the
definition of SVMs as minimizers of the regularized risk. More specifically, the empirical
SVM is defined as

fL,Dn,λ := arg inf
f∈H
RL,Dn(f) + λ||f ||2H , (7)

and the theoretical SVM analogously as

fL,P,λ := arg inf
f∈H
RL,P(f) + λ||f ||2H . (8)

In both definitions, λ > 0 is a regularization parameter which controls the amount of
regularization and H is the reproducing kernel Hilbert space (RKHS) of a measurable kernel
on X , i.e. a symmetric and positive definite function k : X × X → R, cf. Aronszajn (1950);
Berlinet and Thomas-Agnan (2004); Saitoh and Sawano (2016) among others for a thorough
introduction to this topic. We are often be interested in bounded kernels for which we define
||k||∞ := supx∈X

√
k(x, x). Additionally, we define the canonical feature map Φ: X → H

by Φ(x) := k(·, x).
SVMs have been widely investigated and have been shown to possess many desirable

properties including existence, uniqueness, risk consistency, statistical robustness, and the
existence of representation theorems under rather mild assumptions. See for example Vap-
nik (1995, 1998); Schölkopf and Smola (2002); Cucker and Zhou (2007); Steinwart and
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Christmann (2008); Van Messem (2020) for a detailed introduction. More recent results
regarding statistical robustness and stability in general have for example been derived by
Hable and Christmann (2011); Sheng et al. (2020); Eckstein et al. (2023); Köhler and Christ-
mann (2022). Results on learning rates (which have to make more restrictive assumptions
regarding P because of the no-free-lunch-theorem, cf. Devroye, 1982) can for example be
found in Caponnetto and De Vito (2007); Steinwart et al. (2009); Eberts and Steinwart
(2013); Hang and Steinwart (2017); Fischer and Steinwart (2020).

4.2 Consistency of regularized kernel methods based on regular loss functions

Whereas SVMs based on distance-based losses are known to be risk consistent under mild
assumptions (cf. Christmann and Steinwart, 2007, Theorem 12), there are no general results
on their Lp-consistency so far, but instead only corollaries for special loss functions based
on the results mentioned at the beginning of Section 3.1.

Since the conditions required by Christmann and Steinwart (2007, Theorem 12) also
imply the validity of Theorem 4, Lp-consistency of such SVMs would now directly follow
under these conditions. However, by some more thorough investigations, we are even able to
slightly relax the conditions on the sequence (λn)n∈N of regularization parameters, namely

only requiring it to satisfy λp
∗
n n→∞ (as n→∞) for p∗ = max{p+ 1, p(p+ 1)/2} instead

of for p∗ = max{2p, p2}, which is required by Christmann and Steinwart (2007, Theorem
12).

Theorem 13 Let L : Y × R → [0,∞) be a convex, distance-based loss function of growth
type p ∈ [1,∞). Let H ⊆ Lp(PX) dense and separable be the RKHS of a bounded and
measurable kernel k. Assume that f∗L,P is PX-a.s. unique and |P|p < ∞. Define p∗ :=
max{p + 1, p(p + 1)/2}. If the sequence (λn)n∈N satisfies λn > 0 for all n ∈ N as well as

λn → 0 and λp
∗
n n→∞ for n→∞, then

lim
n→∞

||fL,Dn,λn − f∗L,P||Lp(PX) = 0 in probability P∞.

The mentioned slight relaxation of the conditions on (λn)n∈N means that Theorem 13 (as
well as Corollary 15) also guarantees consistency for sequences of regularization parameters,
for which Christmann and Steinwart (2007, Theorem 12) did not guarantee this, as can be
seen from the following example:

Example 3 The popular least squares loss is of growth type p = 2. Hence in this case
max{p + 1, p(p + 1)/2} = 3 < 4 = max{2p, p2}. Thus, Theorem 13 yields Lp-consistency
(and Corollary 15 will yield risk consistency) of SVMs using the least squares loss under
the condition that λ3nn → ∞ as n → ∞, which is for example satisfied if λn ∝ n−1/4. On
the other hand, Christmann and Steinwart (2007, Theorem 12) guarantees risk consistency
of such SVMs only if λ4nn→∞ as n→∞, which is not satisfied for λn ∝ n−1/4. Thus, our
new results allow for slightly faster convergence of the regularization parameter to 0 and one
therefore becomes more flexible in choosing the regularization parameters while still being
guaranteed consistency.

It should be noted that such a relaxation takes place whenever p > 1 holds true. p = 1
is the only case, in which max{p+ 1, p(p+ 1)/2} = max{2p, p2}.
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Remark 14 The conditions on H in Theorem 13 can be difficult to check directly. How-
ever, if X is separable, the separability of H immediately follows whenever k is continuous
(cf. Berlinet and Thomas-Agnan, 2004, Corollary 4) and it suffices to verify this continu-
ity instead. For example, the commonly used Gaussian RBF kernel (among many other
kernels) satisfies this continuity, and since additionally its RKHS is dense in Lp(PX) (cf.
Steinwart and Christmann, 2008, Theorem 4.63), the RKHS satisfies both conditions from
Theorem 13.

As we successfully slightly reduced the conditions regarding (λn)n∈N compared to the
referenced result on risk consistency, we can now transfer this slight relaxation back from
Lp-consistency to risk consistency by using Theorem 6:

Corollary 15 Let L : Y × R → [0,∞) be a convex, distance-based loss function of growth
type p ∈ [1,∞). Let H ⊆ Lp(PX) dense and separable be the RKHS of a bounded and
measurable kernel k. Assume that f∗L,P is PX-a.s. unique and |P|p < ∞. Define p∗ :=
max{p + 1, p(p + 1)/2}. If the sequence (λn)n∈N satisfies λn > 0 for all n ∈ N as well as

λn → 0 and λp
∗
n n→∞ for n→∞, then

lim
n→∞

RL,P(fL,Dn,λn) = R∗L,P in probability P∞.

Alas, the slight relaxation of the mentioned condition regarding the regularization pa-
rameters also comes along with an additional condition compared to Christmann and Stein-
wart (2007, Theorem 12): Corollary 15 requires f∗L,P to be PX -a.s. unique. Thus, Corollary
15 pays for the slight relaxation in one condition by introducing this new additional con-
dition and should therefore not be seen as a replacement of Theorem 12 from Christmann
and Steinwart (2007) but as an addition instead.

Remark 16 In the special case of using the pinball loss, Christmann and Steinwart (2008,
Theorem 5) derived risk consistency of SVMs even in the almost sure sense under slightly
stricter conditions regarding (λn)n∈N. Because of the non-probabilistic nature of the results
from Section 3, Theorem 4 could in this special case be used to immediately obtain L1-
consistency of such SVMs in the almost sure sense as well.

4.3 Consistency of regularized kernel methods based on shifted loss functions

SVMs based on shifted loss functions can be defined analogously as in the non-shifted case in
(7) and (8). Christmann et al. (2009) proved that SVMs using Lipschitz continuous shifted
loss functions inherit many of the desirable properties from their non-shifted counterparts,
even without requiring the moment condition. These results include existence, uniqueness,
representation and statistical robustness as well as risk consistency. Furthermore, they
showed that fL?,P,λ = fL,P,λ whenever fL,P,λ uniquely exists.

The natural hope that Theorem 13 can be transferred to the shifted case similarly,
thus also ridding it of the moment condition, might have already decreased because of the
negative results from Section 3.2. As SVMs are always contained in some RKHS H, one
might however still hope that counterexamples like the ones from these results’ proofs can
not occur in such RKHSs because of the additional structure they possess compared to
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L1(PX).2 Alas, Sobolev spaces like the ones considered in Corollary 10 are also RKHSs
if one chooses a suiting kernel like for example the ones found in Wu (1995); Wendland
(2005), which are classical examples of kernels with compact support. Hence, we obtain the
following:

Corollary 17 Let d ∈ N, X ⊆ Rd, and Y = R. Let L : Y × R → [0,∞) be a convex,
distance-based and symmetric loss function of growth type 1, or the τ -pinball loss for some
τ ∈ (0, 1). Let L? be its shifted version. Then, even if H is the RKHS of a bounded
and measurable kernel k and f∗L?,P is PX-a.s. unique with f∗L?,P ∈ L1(PX), a sequence
(fn)n∈N ⊆ H of functions satisfying

lim
n→∞

RL?,P(fn) = R∗L?,P

does in general not imply

lim
n→∞

∣∣∣∣fn − f∗L?,P∣∣∣∣L1(PX)
= 0

without any additional assumptions besides Assumption 1 being imposed.

As the (probably) most commonly used RKHSs for computing SVMs are those of the
Gaussian RBF kernels kγ , γ ∈ (0,∞), defined by

kγ(x, x′) := exp

(
−
||x− x′||22

γ2

)
∀x, x′ ∈ X ,

we also want to take a special look at these. After proving in Corollary 17 that RKHSs, in
which L1-consistency does not follow from risk consistency, do in fact exist, we see in the
subsequent Corollary 18 that this phenomenon can not only occur for kernels whose RKHS
is a Sobolev space but also for that of the Gaussian RBF kernel.

Corollary 18 Let d ∈ N, X ⊆ Rd, and Y = R. Let L : Y × R → [0,∞) be a convex,
distance-based and symmetric loss function of growth type 1, or the τ -pinball loss for some
τ ∈ (0, 1). Let L? be its shifted version. Let γ ∈ (0,∞) and Hγ be the RKHS of the
Gaussian RBF kernel kγ. Then, even if f∗L?,P is PX-a.s. unique with f∗L?,P ∈ L1(PX), a
sequence (fn)n∈N ⊆ Hγ of functions satisfying

lim
n→∞

RL?,P(fn) = R∗L?,P

does in general not imply

lim
n→∞

∣∣∣∣fn − f∗L?,P∣∣∣∣L1(PX)
= 0

without any additional assumptions besides Assumption 1 being imposed.

2. The associated kernel k being bounded and measurable implies that all f ∈ H are bounded and measur-
able as well, and hence that H ⊆ L1(PX), cf. Steinwart and Christmann (2008, Lemma 4.23 and 4.24).
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The previous results show that L1-consistency of SVMs using shifted loss functions
does in general not follow from their risk consistency, with the latter being known from
Christmann et al. (2009, Theorem 8). Note that it might still be possible for such SVMs to
be L1-consistent for different reasons though.

At least in the special case of the shifted pinball loss, we found some alternative condi-
tions to replace—and in many situations weaken—the moment condition from Theorem 13.
With this, we can now at least deduce L1-consistency of SVMs using this shifted pinball
loss without needing to impose the moment condition:

Corollary 19 Let τ ∈ (0, 1) and L?τ -pin be the shifted τ -pinball loss. Let H ⊆ L1(PX)
dense and separable be the RKHS of a bounded and measurable kernel k. Assume that f∗τ,P
is PX-a.s. unique, f∗τ,P ∈ L1(PX) and P additionally satisfies at least one of the additional
conditions (i) and (ii) from Theorem 11. If the sequence (λn)n∈N satisfies λn > 0 for all
n ∈ N as well as λn → 0 and λ2nn→∞ for n→∞, then

lim
n→∞

||fL?τ-pin,Dn,λn − f
∗
τ,P||L1(PX) = 0 in probability P∞.

If λ2+δn n→∞ for n→∞ for some δ > 0, then the convergence even holds true P∞-almost
surely.

Remark 20 It would be possible to use Corollary 19 to derive a result on risk consistency of
SVMs which are based on the shifted pinball loss, similarly to what we did in the non-shifted
case in Section 4.2, where we used Theorem 13 to derive Corollary 15. In the latter result,
we however only achieved an actual improvement (over already existing results) regarding
the conditions on the regularization parameters if the loss function is of growth type p > 1,
cf. Example 3. Similarly, a result on risk consistency which is based on Corollary 19 would
offer no benefit over Theorem 8 from Christmann et al. (2009) because of the pinball loss
being of growth type 1.

5. Discussion

This paper considerably generalized existing results regarding the close relationship be-
tween Lp- and risk consistency by deriving results which are applicable to a wide range of
loss functions. We additionally tried to eliminate the moment condition from the results
connecting Lp- and risk consistency by switching to shifted loss functions. Somewhat sur-
prisingly, this only worked for one of the two directions (risk consistency following from
Lp-consistency), but in general not for the reverse. We proved that it is indeed not possible
to infer Lp-consistency from risk consistency if neither some standard moment condition
nor some suitable alternative condition holds true.

In case of using the shifted pinball loss, which can be used for quantile regression, we
derived such an alternative condition, which is in many cases considerably weaker than the
moment condition, thus still gaining some benefit from switching to shifted loss functions.
It remains to be seen whether similar alternative conditions can also be derived for different
loss functions or whether it might even be possible to derive a general alternative condition
applicable to a wider array of loss functions.
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Lastly, we applied our results to regularized kernel methods. By doing so, we proved
their Lp-consistency in considerably greater generality than it had been known so far, and
we slightly reduced a condition from results on their risk consistency from the literature.
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Appendix A. Proofs

In this appendix, we prove our results, split based on which section they were stated in.

A.1 Proofs for Section 3.1

Proof of Theorem 4 Let gn : X × Y → [0,∞), (x, y) 7→ L(y, fn(x)) for n ∈ N, and
g∗ : X ×Y → [0,∞), (x, y) 7→ L(y, f∗L,P(x)). According to Steinwart and Christmann (2008,
Corollary 3.62)—where it is easy to see that we do not need the assumption of the sets
ML,P(· |x),x being singletons since we already know that f∗L,P PX -a.s. uniquely exists—, we

have fn
PX−−→ f∗L,P. Thus, because of the continuous mapping theorem and the continuity of

L, we also have gn
P−−→ g∗. Since

lim
n→∞

∫
|gn| dP = lim

n→∞

∫
gn dP = lim

n→∞
RL,P(fn)

= RL,P(f∗L,P) =

∫
g∗ dP =

∫
|g∗| dP , (9)

the sequence (|gn|)n∈N is thus equi-integrable according to Bauer (2001, Theorem 21.7).
That theorem can be applied because RL,P(f∗L,P) < ∞, and hence RL,P(fn) < ∞ for
n sufficiently large because of (9), and therefore g∗ ∈ L1(PX) and gn ∈ L1(PX) for n
sufficiently large.

Because of L being of lower growth type p, there now exists a constant c > 0 such that

|fn(x)− f∗L,P(x)|p ≤ max
{

(2|y − fn(x)|)p , (2|y − f∗L,P(x)|)p
}

≤ 2p ·max
{
c−1
(
L(y, fn(x)) + 1

)
, c−1

(
L(y, f∗L,P(x)) + 1

)}
=

2p

c
·
(

max {gn(x, y), g∗(x, y)}+ 1
)

≤ 2p

c
·
(
gn(x, y) + g∗(x, y) + 1

)
∀ (x, y, n) ∈ X × Y × N , (10)

since gn, n ∈ N, and g∗ are non-negative.

As (|gn|)n∈N is equi-integrable, and g∗ ∈ L1(PX) and hence also equi-integrable (cf.
Bauer, 2001, part 2 of the example on p. 122), every summand occurring on the right
hand side of (10) is equi-integrable (as a sequence in n). By employing the example on
p. 121 of Bauer (2001) as well as Corollary 21.3 from the same book, we hence obtain
equi-integrability of the whole right hand side (as a sequence in n).
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Thus, the sequence (|fn− f∗L,P|p)n∈N is equi-integrable as well and Lp-convergence of fn
to f∗L,P, follows from Bauer (2001, Theorem 21.7).

Proof of Theorem 6 Since ||fn − f∗||Lp(PX) → 0, we also have fn
PX−−→ f∗, and Bauer

(2001, Theorem 21.7) yields equi-integrability of the sequence (|fn|p)n∈N. Let gn : X ×Y →
[0,∞), (x, y) 7→ L(y, fn(x)) for n ∈ N, and g∗ : X × Y → [0,∞), (x, y) 7→ L(y, f∗(x)).
Because of L being of upper growth type p, there then exists a c > 0 such that

|gn(x, y)| = gn(x, y) = L(y, fn(x)) ≤ c · (|y − fn(x)|p + 1)

≤ c · (2p · (|y|p + |fn(x)|p) + 1) (11)

for all (x, y, n) ∈ X × Y × N.

Since every summand on the right hand side of (11) is equi-integrable (because |P|p <
∞), the whole right hand side is equi-integrable as well (as a sequence in n) by the example
on p. 121 of Bauer (2001) and Corollary 21.3 from the same book. Hence, the sequence
(|gn|)n∈N is equi-integrable as well.

Additionally, gn
P−−→ g∗ because of fn

PX−−→ f∗ and the continuous mapping theorem in
combination with the continuity of L, and thus, Bauer (2001, Theorem 21.7) yields

lim
n→∞

RL,P(fn) = lim
n→∞

∫
gn dP = lim

n→∞

∫
|gn|dP =

∫
|g∗| dP =

∫
g∗ dP = RL,P(f∗) .

A.2 Proofs for Section 3.2

Before proving Proposition 8, we first need the following auxiliary lemma:

Lemma 21 Let L : X ×Y×R→ [0,∞) be a convex and Lipschitz continuous loss function,
and let L? be its shifted version. If there exists a measurable function f : X → R satisfying
RL?,P(f) = −∞, there also exists a measurable function g : X → R satisfying PX(g 6= 0) > 0
and RL?,P(g) ∈ (−∞, 0].

Proof If we denote the inner risk by

CL?,P(· |x) : R→ R ∪ {−∞,+∞} , t 7→
∫
Y
L?(x, y, t) dP(y |x) ,

we have

RL?,P(f) =

∫
L?(x, y, f(x)) dP(x, y) =

∫
CL?,P(· |x)(f(x)) dPX(x)

=

∫
C+L?,P(· |x)(f(x)) dPX(x)−

∫
C−L?,P(· |x)(f(x)) dPX(x) = −∞ ,
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with C+L?,P(· |x) := max{CL?,P(· |x) , 0} and C−L?,P(· |x) := max{−CL?,P(· |x) , 0} denoting the
positive and the negative part of CL?,P(· |x) respectively. From the definition of the integral,
we hence obtain ∫

C−L?,P(· |x)(f(x)) dPX(x) =∞ (12)

and therefore the existence of c ∈ (0,∞) and A ⊆ X measurable such that PX(A) > 0 and
C−L?,P(· |x)(f(x)) ≥ c for all x ∈ A.

We further know that |L|1 > 0 because it is clear from the definition of Lipschitz contin-
uous loss functions (cf. Remark 7) that |L|1 = 0 would imply L(x, y, f(x)) = L(x, y, 0) for
all (x, y) ∈ X × Y and hence RL?,P(f) = 0, which contradicts our assumptions. Therefore,
(12) directly implies that |f(x)| ≥ c

|L|1 > 0 for all x ∈ A because otherwise

C−L?,P(· |x)(f(x)) =

(∫
L?(x, y, f(x)) dPX(x)

)−
≤
∫ ∣∣L?(x, y, f(x))

∣∣ dPX(x)

=

∫ ∣∣L(x, y, f(x))− L(x, y, 0)
∣∣dPX(x) ≤ |L|1 · |f(x)| < c ,

which would form a contradiction to x coming from A.

Define

g(x) :=

{
0 , if x /∈ A ,
c
|L|1 · sign(f(x)) , if x ∈ A .

Then, PX(g 6= 0) > 0 and

RL?,P(g) =

∫
A
CL?,P(· |x)(g(x)) dPX(x) +

∫
X\A
CL?,P(· |x)(g(x)) dPX(x)︸ ︷︷ ︸

=0

. (13)

All that remains to investigate is the first integral on the right hand side. For all x ∈ A, we
know that∣∣CL?,P(· |x)(g(x))

∣∣ ≤ ∫ |L(x, y, g(x))− L(x, y, 0)| dP(y |x) ≤ |L|1 · |g(x)| = c

and

CL?,P(· |x)(g(x)) ≤ max
{
CL?,P(· |x)(0), CL?,P(· |x)(f(x))

}
= CL?,P(· |x)(0) = 0

because g(x) lies between 0 and f(x), CL?,P(· |x)(f(x)) < 0 by definition of A, and CL?,P(· |x)
is convex (which follows from L being convex).

Plugging this into the right hand side of (13) yields RL?,P(g) ∈ [−c, 0] and hence the
assertion.

Proof of Proposition 8 We prove the statement by providing a counterexample.
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Because of L being of lower growth type 1,

c0 := sup{r ∈ [0,∞) |ψ(r) = 0}

is finite, where ψ denotes the representing function belonging to L, as introduced in Defi-
nition 2. Because of L being convex, distance-based, and symmetric, we have

L(y, t) = ψ(y − t) = 0 ⇔ y − t ∈ [−c0, c0] . (14)

Assume without loss of generality that c0 ≤ 1
2 (else just scale the subsequent example

accordingly).
Choose X := (0, 1), PX := U(0, 1) and

P(· |X = x) := x · U(−1, 1) +
1− x

2
·
(
δ−ax + δax

)
∀x ∈ X , (15)

where U(a, b) denotes the uniform distribution on (a, b), δz denotes the Dirac distribution
in z ∈ R and ax > 1 is a constant depending on x (and on L) that we will specify later on.3

Further define

fn : X → R , x 7→

{
n , if x ∈

(
0, 1n

)
,

0 , else ,
(16)

for n ∈ N. As fn is bounded for all n ∈ N, we obviously have (fn)n∈N ⊆ L1(PX). We now
show that this example also possesses the remaining properties mentioned in the proposition,
which consists of three main steps:

First, we show that f∗L?,P is PX -a.s. unique, more specifically f∗L?,P ≡ 0 PX -a.s., and
f∗L?,P ∈ L1(PX):
Choose f∗ ≡ 0. We show thatRL?,P(f∗) < RL?,P(f) for all measurable f : X → R satisfying
PX(f 6= 0) > 0. As RL?,P(f∗) = 0, the case RL?,P(f) =∞ is trivial. Furthermore, if there
was an f satisfying RL?,P(f) = −∞ and thus contradicting our claim, there would by
Lemma 21 (which is applicable by Remark 7) also exist a measurable g with PX(g 6= 0) > 0
and −∞ < RL?,P(g) ≤ 0 = RL?,P(f∗), which would also contradict our claim. Hence, we
can without loss of generality assume that RL?,P(f) ∈ R.
Since f∗ ≡ 0, we have, for each x ∈ X and y ≥ 0,

L? (−y, f∗(x)) + L? (y, f∗(x)) = 2 · L?(y, 0)

= 2 · L?
(
y,

1

2
· (−f(x)) +

1

2
· f(x)

)
≤ L? (y,−f(x)) + L? (y, f(x))

= L? (−y, f(x)) + L? (y, f(x)) (17)

because of L being distance-based, symmetric and convex.
Furthermore, by the definition of f , there exists ε := (ε1, ε2) with ε1, ε2 > 0 such that

3. For the sake of strictly adhering to the completeness assumption from Assumption 1, we can also choose
X as [0, 1] or R, and P(· |X = x) as an arbitrary probability measure for x /∈ (0, 1) without changing
anything else.
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PX(Xε) > 0, where Xε := {x ∈ X : |f(x)| ≥ ε1 and x ≥ ε2}. Now, specifically look at

x ∈ Xε and y ∈ [c0, c0 + min{12 ,
|f(x)|

4 }] ⊆ [0, 1]. First, only consider such x that satisfy
f(x) > 0. We then obtain that

|−y − f(x)| = y + f(x) ≥ c0 + f(x) and |±y − f∗(x)| = y ≤ c0 +
f(x)

4
, (18)

and hence

L(−y, f(x)) ≥ 4 · L(−y, f∗(x)) = 2 ·
(
L (y, f∗(x)) + L (−y, f∗(x))

)
because of (14) and the convexity, symmetry and distance-basedness of L. Thus,(

L? (−y, f(x)) + L? (y, f(x))
)
−
(
L? (−y, f∗(x)) + L? (y, f∗(x))

)
=
(
L (−y, f(x)) + L (y, f(x))

)
−
(
L (−y, f∗(x)) + L (y, f∗(x))

)
≥ 1

2
· L (−y, f(x)) =

1

2
· ψ(| − y − f(x)|) ≥ 1

2
· ψ(c0 + f(x)) ,

where, in the last step, we again applied the convexity and symmetry of L, as well as (18).
By interchanging the roles of y and −y in the preceding paragraph, we obtain an analogous
inequality for the case that f(x) < 0. Combining these two cases yields that(

L? (−y, f(x)) + L? (y, f(x))
)
−
(
L? (−y, f∗(x)) + L? (y, f∗(x))

)
≥ 1

2
· ψ(c0 + |f(x)|) (19)

for all x ∈ Xε and y ∈ [c0, c0 + min{12 ,
|f(x)|

4 }] ⊆ [0, 1].
Because RL?,P(f∗) = 0 ∈ R by the definition of f∗ and RL?,P(f) ∈ R by assumption, our
considerations yield

RL?,P(f)−RL?,P(f∗)

=

∫
X

∫
Y
L? (y, f(x))− L? (y, f∗(x)) dP(y |x) dPX(x)

=

∫
X

∫
[0,∞)

(
L? (−y, f(x)) + L? (y, f(x))

)
−
(
L? (−y, f∗(x)) + L? (y, f∗(x))

)
dP(y |x) dPX(x)

(17),(19)

≥
∫
Xε

∫
[c0,c0+min{ 1

2
,
|f(x)|

4
}]

1

2
· ψ(c0 + |f(x)|) dP(y |x) dPX(x)

=

∫
Xε

x

2
·min

{
1

2
,
|f(x)|

4

}
· 1

2
· ψ(c0 + |f(x)|) dPX(x)

≥ PX(Xε) ·
ε2
2
·min

{
1

2
,
ε1
4

}
· 1

2
· ψ(c0 + ε1)

(14)
> 0 .
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In the second step, we multiplied the integrand by 2 for y = 0, which does not change the
value of the integral since P(Y = 0 |X = x) = 0 for all x ∈ X . In the final steps, we

additionally applied that P(· |X = x) has Lebesgue density x
2 on [c0, c0 + min{12 ,

|f(x)|
4 }] ⊆

[0, 1], respectively the definition of Xε.
Hence, f∗L?,P ≡ 0 PX -a.s. and thus also f∗L?,P ∈ L1(PX).

Next, we show that limn→∞RL?,P(fn) = R∗L?,P:
Recall the definition of fn, n ∈ N, from (16). For all n ∈ N, we have f∗L?,P, fn ∈ L1(PX)
and therefore R∗L?,P = RL?,P(f∗L?,P) ∈ R and RL?,P(fn) ∈ R by (1). Hence, we can write

RL?,P(fn)−R∗L?,P

=

∫
X

∫
Y
L? (y, fn(x))− L?

(
y, f∗L?,P(x)

)
dP(y |x) dPX(x)

=

∫
X

∫
Y
L (y, fn(x))− L

(
y, f∗L?,P(x)

)
dP(y |x) dPX(x)

=

∫ 1/n

0

∫ 1

−1

x

2
·
(
L (y, n)− L (y, 0)

)
dy dx

+

∫ 1/n

0

1− x
2
·
((
L (−ax, n) + L (ax, n)

)
−
(
L (−ax, 0) + L (ax, 0)

))
dx , (20)

where we applied the definition of fn, f∗L?,P, and P in the last step. We will now analyze
the two integrals on the right hand side separately and show that they both converge to 0
as n→∞, starting with the first one:∣∣∣∣∣

∫ 1/n

0

∫ 1

−1

x

2
·
(
L (y, n)− L (y, 0)

)
dy dx

∣∣∣∣∣
≤
∫ 1/n

0

∫ 1

−1

x

2
· |L|1 · |n− 0|dy dx =

|L|1
2n

n→∞−−−−→ 0

with L being Lipschitz continuous by Remark 7.
As for the second integral on the right hand side of (20):
We take a look at the subdifferential ∂ψ (cf. Phelps, 1993, Definition 1.9) of the representing
function ψ of L. Because of the symmetry of L, we will without loss of generality only
investigate ∂ψ(r) for r ∈ [0,∞). Define

z(r) := sup ∂ψ(r) ∈ [0,∞) ∀ r ∈ [0,∞) ,

where z(r) < ∞ will follow from (21) and z(r) ≥ 0 follows from L being monotonically
increasing on [0,∞) because of it being distance-based and convex. Furthermore, let cL be
the constant from the definition of the upper growth type 1 of L, that is

ψ(r) ≤ cL · (|r|+ 1) ∀ r ∈ R .

Assume there was an r0 ∈ [0,∞) such that z(r0) > cL. Then, by the definition of the
subdifferential, we would obtain

cL · (r + 1) ≥ ψ(r) ≥ ψ(r0) + z(r0) · (r − r0) ∀ r ∈ [0,∞)
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and hence

r ≤ ψ(r0)− z(r0)r0 − cL
cL − z(r0)

∀ r ∈ [0,∞) ,

which is a contradiction because the right hand side is a constant in R that is independent
of r. Hence, z is bounded by cL. Because of L additionally being monotonically increasing
on [0,∞), we obtain that

c̃L := lim
r→∞

z(r) = sup
r∈[0,∞)

z(r) ≤ cL (21)

exists.
We can therefore, for each x ∈ (0, 1), choose rx ∈ [0,∞) such that

0 ≤ c̃L − z(rx) ≤ x (22)

and

ψ(rx) + z(rx) · (r − rx) ≤ ψ(r) ≤ ψ(rx) + c̃L · (r − rx) ∀ r ∈ [rx,∞) . (23)

Now choose ax in the definition of P(· |X = x) in (15) as ax := rx + 1
x for all x ∈ (0, 1).

Please note that ax > 1 for all x ∈ (0, 1). We obtain

L(−ax, n) + L(ax, n)

= ψ (| − ax − n|) + ψ (|ax − n|)

= ψ

(
rx +

1

x
+ n

)
+ ψ

(
rx +

1

x
− n

)
∈
[
2 · ψ(rx) + z(rx) ·

(
1

x
+ n+

1

x
− n

)
, 2 · ψ(rx) + c̃L ·

(
1

x
+ n+

1

x
− n

)]
=

[
2 ·
(
ψ(rx) +

z(rx)

x

)
, 2 ·

(
ψ(rx) +

c̃L
x

)]
∀n ∈ N , x ∈

(
0,

1

n

)
,

where we applied the symmetry of L as well as (23) combined with the fact that 1
x + n ≥ 0

and 1
x − n ≥ 0. Analogously, we obtain

L(−ax, 0) + L(ax, 0)

= 2 · ψ
(
rx +

1

x

)
∈
[
2 ·
(
ψ(rx) +

z(rx)

x

)
, 2 ·

(
ψ(rx) +

c̃L
x

)]
∀x ∈

(
0,

1

n

)
.
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Plugging these results into the second integral on the right hand side of (20) finally yields∣∣∣∣∣
∫ 1/n

0

1− x
2
·
((
L (−ax, n) + L (ax, n)

)
−
(
L (−ax, 0) + L (ax, 0)

))
dx

∣∣∣∣∣
≤
∫ 1/n

0

1− x
2
·
(

2 ·
(
ψ(rx) +

c̃L
x

)
− 2 ·

(
ψ(rx) +

z(rx)

x

))
dx

=

∫ 1/n

0

1− x
2
· 2

x
· (c̃L − z(rx)) dx

(22)

≤
∫ 1/n

0
(1− x) dx =

1

n
− 1

2n2
n→∞−−−−→ 0 ,

and thus limn→∞RL?,P(fn) = R∗L?,P.

Finally and as a last step, we have to show that limn→∞

∣∣∣∣∣∣fn − f∗L?,P∣∣∣∣∣∣
L1(PX)

6= 0:

lim
n→∞

∣∣∣∣fn − f∗L?,P∣∣∣∣L1(PX)
= lim

n→∞

∫ 1/n

0
|n− 0| dx = lim

n→∞
1 6= 0 .

Proof of Proposition 9 Similarly to Proposition 8, we prove the statement by providing
a counterexample:

Choose X := (0, 1), Y := R, PX := U(0, 1), and

P(· |X = x) = x ·
(
τ · U((−1, 0)) + (1− τ) · U((0, 1))

)
+ (1− x) ·

(
τ · δ−1/x + (1− τ) · δ1/x

)
∀x ∈ X ,

where U((a, b)) denotes the uniform distribution on (a, b) and δz denotes the Dirac distri-
bution in z ∈ R.4 From this definition, we immediately obtain that f∗τ,P ≡ 0 ∈ L1(PX).

Further define

fn : X → R , x 7→

{
n , if x ∈

(
0, 1n

)
,

0 , else ,

for all n ∈ N. As fn is bounded for all n ∈ N, we obviously have (fn)n∈N ⊆ L1(PX).
Because of the occurring risks both being finite, cf. (1), and R∗L?τ-pin,P = RL?τ-pin,P(f∗τ,P),

cf. (3), we can for all n ∈ N write

RL?τ-pin,P(fn)−R∗L?τ-pin,P

=

∫
(0,1)

∫
R
L?τ -pin(y, fn(x))− L?τ -pin(y, f∗τ,P(x)) dP(y |x) dPX(x) . (24)

4. For the sake of strictly adhering to the completeness assumption from Assumption 1, we can also choose
X as [0, 1] or R, and P(· |X = x) as an arbitrary probability measure for x /∈ (0, 1) without changing
anything else.
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For PX -almost all x ∈ X , we can now further analyze the inner integral, applying that
fn(x) ≥ f∗τ,P(x), by∫

R
L?τ -pin(y, fn(x))− L?τ -pin(y, f∗τ,P(x)) dP(y |x)

=

∫
R
Lτ -pin(y, fn(x))− Lτ -pin(y, f∗τ,P(x)) dP(y |x)

=

∫
(−∞,f∗τ,P(x))

(1− τ) ·
(
fn(x)− f∗τ,P(x)

)
dP(y |x)

+

∫
[f∗τ,P(x),fn(x))

(−τ) ·
(
fn(x)− f∗τ,P(x)

)
+ (fn(x)− y) dP(y |x)

+

∫
[fn(x),∞)

(−τ) ·
(
fn(x)− f∗τ,P(x)

)
dP(y |x)

=

∫
[f∗τ,P(x),fn(x))

(fn(x)− y) dP(y |x) . (25)

In the last step, we employed that, for PX -almost all x ∈ X , we know from the definition of
P that P({f∗τ,P(x)} |x) = 0 and therefore P((−∞, f∗τ,P(x)) |x) = τ and P([f∗τ,P(x),∞) |x) =
1− τ by the definition of f∗τ,P.

Plugging (25) and the definition of fn and f∗τ,P into (24), we obtain

RL?τ-pin,P(fn)−R∗L?τ-pin,P =

∫
(0, 1n)

∫
[0,n)

(n− y) dP(y |x) dPX(x)

=

∫ 1
n

0

∫ 1

0
(n− y) · x · (1− τ) dy dx

= (1− τ) · 2n− 1

4n2
→ 0 , n→∞ .

On the other hand,

∣∣∣∣fn − f∗τ,P∣∣∣∣L1(PX)
=

∫ 1
n

0
|n− 0| dx = 1 6→ 0 , n→∞ ,

which completes the proof.

Proof of Corollary 10 The assertion follows directly from the proof of Proposition 8
respectively Proposition 9 by changing the functions fn, n ∈ N, to

fn : X → R , x 7→

{
n · (1− nx)m , if x ∈

(
0, 1n

)
,

0 , else .

Since, for all n ∈ N, fn is bounded and m times weakly differentiable, we obtain (fn)n∈N ⊆
Wm,∞(X ) ∩ L1(PX) ⊆Wm,q(X ) ∩ L1(PX).5

5. If X is not chosen as (0, 1) but instead as [0, 1] or R in the proofs of Proposition 8 and Proposition
9, it is obviously possible to extend the functions fn, n ∈ N, in such a way that they are still in
Wm,∞(X ) ∩ L1(PX).
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If we denote the functions from the mentioned proofs by gn, n ∈ N, we have f∗L?,P(x) ≤
fn(x) ≤ gn(x) for PX -almost all x ∈ X because f∗L?,P = 0 PX -a.s. (with f∗L?,P = f∗τ,P PX -a.s.
in the situation of L? = L?τ -pin by the considerations prior to Proposition 9). It is easy to see
that the convexity of L and the definition of f∗L?,P as a minimizer of RL?,P therefore implies
RL?,P(fn)−R∗L?,P ≤ RL?,P(gn)−R∗L?,P, which then yields limn→∞RL?,P(fn) = R∗L?,P.

At the same time, we obtain

∣∣∣∣fn − f∗L?,P∣∣∣∣L1(PX)
=

∫ 1/n

0
|n · (1− nx)m − 0|dx =

1

m+ 1
6→ 0 , n→∞ ,

which completes the proof.

Proof of Theorem 11 By (1), both RL?τ-pin,P(fn), n ∈ N, and RL?τ-pin,P(f∗τ,P) are finite.

If condition (i) is satisfied, we further obtain as in Remark 5 that RLτ-pin,P(0) and
RLτ-pin,P(fn), for n ∈ N, are finite, and therefore alsoR∗Lτ-pin,P. AsR∗Lτ-pin,P = RLτ-pin,P(f∗τ,P)

and R∗L?τ-pin,P = RL?τ-pin,P(f∗τ,P) by (3) and (4), we hence obtain

RLτ-pin,P(fn) = RL?τ-pin,P(fn) +RLτ-pin,P(0) ∀n ∈ N

and

R∗Lτ-pin,P = RLτ-pin,P(f∗τ,P) = RL?τ-pin,P(f∗τ,P) +RLτ-pin,P(0) = R∗L?τ-pin,P +RLτ-pin,P(0) .

Theorem 4 and Remark 5 then yield the assertion because of Lτ -pin being of growth type
1. Thus, it is only left to show that condition (ii) yields the assertion as well:

Because of the finiteness of RL?τ-pin,P(fn), n ∈ N, and RL?τ-pin,P(f∗τ,P), the assumed risk

consistency implies that the P-integral of L?τ -pin(y, fn(x))−L?τ -pin(y, f∗τ,P(x)) converges to 0
as n→∞. We will now begin by fixing an x ∈ X and further analyzing the inner integral
with respect to P(· |x):

First, we look at the case that fn(x) ≥ f∗τ,P(x). In this case, repeating the considerations
from (25), where we can apply (6) in the last step, yields for PX -almost all such x that∫

Y
L?τ -pin(y, fn(x))− L?τ -pin(y, f∗τ,P(x)) dP(y|x)

(25)
=

∫
[f∗τ,P(x),fn(x))

(fn(x)− y) dP(y|x)

≥
∫[
f∗τ,P(x),

fn(x)+f∗
τ,P

(x)

2

)(fn(x)− y) dP(y|x)

≥
(
fn(x)−

fn(x) + f∗τ,P(x)

2

)
· P
((

f∗τ,P(x),
fn(x) + f∗τ,P(x)

2

)∣∣∣∣x)
=
fn(x)− f∗τ,P(x)

2
· P
((

f∗τ,P(x),
fn(x) + f∗τ,P(x)

2

)∣∣∣∣x) .
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If on the other hand fn(x) < f∗τ,P(x), we analogously obtain for PX -almost all such x:∫
Y
L?τ -pin(y, fn(x))− L?τ -pin(y, f∗τ,P(x)) dP(y|x)

≥
f∗τ,P(x)− fn(x)

2
· P
((

fn(x) + f∗τ,P(x)

2
, f∗τ,P(x)

)∣∣∣∣x) .

In summary,∫
Y
L?τ -pin(y, fn(x))− L?τ -pin(y, f∗τ,P(x)) dP(y|X) ≥

|fn(X)− f∗τ,P(X)|
2

· P (JX,n|X) (26)

PX -a.s., where Jx,n :=
(

min
{
f∗τ,P(x),

fn(x)+f∗τ,P(x)

2

}
,max

{
f∗τ,P(x),

fn(x)+f∗τ,P(x)

2

})
for all

x ∈ X .
Additionally, Christmann et al. (2009, Corollary 31) yields fn

PX−−→ f∗τ,P, i.e.

lim
n→∞

PX(|fn(X)− f∗τ,P(X)| > ε) = 0 ∀ε > 0 . (27)

Now, let ε > 0 be an arbitrary positive number (without loss of generality ε < 2c1). X can
be partitioned as X =

⋃
· 3i=1Xi,ε, where

X1,ε :=
{
x ∈ X : |fn(x)− f∗τ,P(x)| ≤ ε

}
,

X2,ε :=
{
x ∈ X : ε < |fn(x)− f∗τ,P(x)| ≤ 2 · c1

}
,

X3,ε := X3 :=
{
x ∈ X : |fn(x)− f∗τ,P(x)| > 2 · c1

}
,

such that

||fn − f∗τ,P||L1(PX) =
3∑
i=1

∫
Xi,ε
|fn(x)− f∗τ,P(x)| dPX(x) . (28)

The three summands can now be analyzed separately:∫
X1,ε

|fn(x)− f∗τ,P(x)|dPX(x) ≤ ε,∫
X2,ε

|fn(x)− f∗τ,P(x)|dPX(x) ≤ 2 · c1 · PX(X2,ε)
(27)−−→ 0 , n→∞ ,

and ∫
X3,ε

|fn(x)− f∗τ,P(x)|dPX(x)

=

∫
X3

( |fn(x)− f∗τ,P(x)|
2

· P(Jx,n|x)

)
· 2

P(Jx,n|x)
dPX(x)

(5),(26)

≤ 2

c2
·
∫
X3

∫
Y
L?τ -pin(y, fn(x))− L?τ -pin(y, f∗τ,P(x)) dP(y|x) dPX(x)

→ 0 , n→∞ ,
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with the last convergence holding true because∫
X

∫
Y
L?τ -pin(y, fn(x))− L?τ -pin(y, f∗τ,P(x)) dP(y|x) dPX(x)→ 0 , n→∞ ,

by assumption and ∫
Y
L?τ -pin(y, fn(x))− L?τ -pin(y, f∗τ,P(x)) dP(y|X) ≥ 0

PX -a.s. by (26).
Plugging these results into (28) yields the assertion.

Proof of Theorem 12 We know from (1) that all risks appearing in this result are finite.
L additionally being Lipschitz continuous (cf. Remark 7) yields

|RL?,P(fn)−RL?,P(f∗)| ≤
∫
|L?(y, fn(x))− L?(y, f∗(x))| dP(x, y)

=

∫
|L(y, fn(x))− L(y, f∗(x))| dP(x, y)

≤ |L|1 ·
∫
|fn(x)− f∗(x)| dP(x, y)

= |L|1 · ||fn − f∗||L1(PX) → 0 n→∞ .

A.3 Proofs for Section 4.2

Proof of Theorem 13 We can split up the difference, which we have to investigate, as∣∣∣∣fL,Dn,λn − f∗L,P∣∣∣∣Lp(PX)
≤ ||fL,Dn,λn − fL,P,λn ||Lp(PX) +

∣∣∣∣fL,P,λn − f∗L,P∣∣∣∣Lp(PX)

≤ ||k||∞ ||fL,Dn,λn − fL,P,λn ||H +
∣∣∣∣fL,P,λn − f∗L,P∣∣∣∣Lp(PX)

(29)

by Steinwart and Christmann (2008, Lemma 4.23). We will now examine the two summands
on the right hand side separately, starting with the first one:

First, note that applying Steinwart and Christmann (2008, Lemma 4.23, equation (5.4)
and Lemma 2.38(i)) yields

||fL,P,λn ||∞ ≤ ||k||∞ · ||fL,P,λn ||H ≤ ||k||∞ · RL,P(0)1/2 · λ−1/2n ≤ cp,L,P,k · λ−1/2n (30)

for all n ∈ N, with cp,L,P,k ∈ (0,∞) denoting a constant depending only on p, L, P and k,
but not on λn.

We know from Steinwart and Christmann (2008, Corollary 5.11) that there exist func-
tions hn : X × Y → R, n ∈ N, such that

||fL,Dn,λn − fL,P,λn ||H ≤
1

λn
· ||EDn [hnΦ]− EP [hnΦ]||H ∀n ∈ N , (31)
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Köhler

and, for s := p/(p− 1),

||hn||Ls(P) ≤ 8p · cL ·
(

1 + |P|p−1p + ||fL,P,λn ||
p−1
∞

)
≤ 8p · cL ·

(
1 + |P|p−1p + cp−1p,L,P,k · λ

−(p−1)/2
n

)
≤ c̃p,L,P,k · λ−(p−1)/2n ∀n ∈ N , (32)

where we employed (30) in the second and the boundedness of (λn)n∈N in the third step, and
where cL ∈ (0,∞) and c̃p,L,P,k ∈ (0,∞) denote constants depending only on L respectively
p, L, P and k.

Now, we can apply Steinwart and Christmann (2008, Lemma 9.2) with q := p/(p − 1)
if p > 1 and q := 2 if p = 1, which leads to q∗ := min{1/2, 1 − 1/q} = min{1/2, 1/p} =
(p+ 1)/(2p∗), to the functions hnΦ, n ∈ N: First of all, with the help of (32) we obtain

||hnΦ||q :=
(
EP

[
||hnΦ||qH

])1/q ≤ ||k||∞ · ||hn||Lq(P) ≤ ||k||∞ · c̃p,L,P,k · λ−(p−1)/2n <∞

for all n ∈ N. We employed that, for all (x, y) ∈ X × Y,

||hn(x, y)Φ(x)||qH = |hn(x, y)|q · ||Φ(x)||qH = |hn(x, y)|q · k(x, x)q/2 ≤ |hn(x, y)|q · ||k||q∞

by the reproducing property (cf. for example Schölkopf and Smola, 2002, Definition 2.9).
Hence, we obtain for all ε > 0, by combining this Lemma 9.2 with (31),

Pn
(
Dn ∈ (X × Y)n : ||fL,Dn,λn − fL,P,λn ||H ≥ ε

)
≤ Pn (Dn ∈ (X × Y)n : ||EDn [hnΦ]− EP [hnΦ]||H ≥ λn · ε)

≤ cq ·
( ||hnΦ||q
λnεnq

∗

)q
≤ ĉp,L,P,k ·

(
1

λ
(p+1)/2
n εnq∗

)q
→ 0 , n→∞ ,

with cq ∈ (0,∞) and ĉp,L,P,k ∈ (0,∞) denoting constants depending only on q (that is, only
on p) respectively p, L, P and k, and with the convergence in the last step holding true
because

λ(p+1)/2
n nq

∗
=
(
λ(p+1)/(2q∗)
n n

)q∗
=
(
λp
∗
n n
)q∗
→∞ , n→∞ ,

by the assumptions on (λn)n∈N. Thus, the first summand on the right hand side of (29)
converges to 0 in probability as n→∞.

Now, we can turn our attention to the second summand: First of all, Steinwart and
Christmann (2008, Lemma 2.38(i)) yields that L is a P-integrable Nemitski loss of order p.
Hence, we know from Steinwart and Christmann (2008, Theorem 5.31) that

R∗L,P,H := inf
f∈H
RL,P(f) = R∗L,P ,

and Steinwart and Christmann (2008, Lemma 5.15) (with R∗L,P,H = R∗L,P <∞ by Remark
5) then yields

lim
n→∞

λn ||fL,P,λn ||
2
H +RL,P(fL,P,λn)−R∗L,P = 0
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because λn → 0 as n→∞. Since λn ||fL,P,λn ||
2
H is non-negative and RL,P(fL,P,λn) ≥ R∗L,P

by the definition of R∗L,P, we obtain

lim
n→∞

RL,P(fL,P,λn) = R∗L,P .

Hence, Theorem 4, whose conditions are satisfied because of the considerations from Re-
mark 5, yields convergence to 0 (as n→∞) of the second summand on the right hand side
of (29), which completes the proof.

Proof of Corollary 15 The assertion follows directly from Theorem 13 and Theorem 6.

A.4 Proofs for Section 4.3

Proof of Corollary 17 There exist different kernels whose RKHS is W 2,2(X ). Examples
of such kernels can be found in Wu (1995), Berlinet and Thomas-Agnan (2004, Chapter 7),
Saitoh and Sawano (2016, Theorem 1.11) among others. For this proof, we will however
use the kernel k1,1 defined by k1,1(x, x

′) := φ1,1(||x− x′||2) with φ1,1 as in Wendland (2005,
Definition 9.11), that is φ1,1(r) ∝ (1 − r)3+(3r + 1) (cf. Wendland, 2005, Table 9.1). By
Wendland (2005, Theorem 10.35), the RKHS of k1,1 is indeed W 2,2(X ). Additionally, k1,1
is bounded by φ1,1(0) <∞ and because of its continuity also measurable. Applying Corol-
lary 10 yields the assertion.

Proof of Corollary 18 Denote, for some m ∈ N, the functions from the proof of Corollary
10 by gn, n ∈ N. Because (gn)n∈N ⊆ L1(PX), there exists by Steinwart and Christmann
(2008, Theorem 4.63) a sequence (fn)n∈N ⊆ Hγ such that

||fn − gn||∞ ≤
1

n

for all n ∈ N.
Since both fn and gn are bounded, we obtain from (1) that, for all n ∈ N, RL?,P(fn) ∈ R

and RL?,P(gn) ∈ R. Hence,

|RL?,P(fn)−RL?,P(gn)| ≤
∫
X×Y

|L?(y, fn(x))− L?(y, gn(x))| dP(x, y)

=

∫
X×Y

|L(y, fn(x))− L(y, gn(x))| dP(x, y) ≤ |L|1 ·
∫
X×Y

|fn(x)− gn(x)| dP(x, y)

≤ |L|1 ·
1

n
→ 0 , n→∞ .

with L being Lipschitz continuous by Remark 7. The risk consistency of (gn)n∈N shown in
the proof of Corollary 10 then yields risk consistency of (fn)n∈N.

On the other hand,

lim
n→∞

||fn − gn||L1(PX) = lim
n→∞

∫
X
|fn(x)− gn(x)| dPX(x) ≤ lim

n→∞

1

n
= 0
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combined with

lim
n→∞

∣∣∣∣gn − f∗L?,P∣∣∣∣L1(PX)
=

1

m+ 1
,

which is known from the proof of Corollary 10, yields

lim
n→∞

∣∣∣∣fn − f∗L?,P∣∣∣∣L1(PX)
≥ lim

n→∞

(∣∣∣∣gn − f∗L?,P∣∣∣∣L1(PX)
− ||fn − gn||L1(PX)

)
=

1

m+ 1

and thus (fn)n∈N not being L1-consistent.

Proof of Corollary 19 Christmann et al. (2009, Theorem 8) yields

lim
n→∞

RL?,P(fL?τ-pin,Dn,λn) = RL?,P(f∗τ,P)

in probability P∞ respectively even P∞-almost surely. The assertion follows directly from
Theorem 11.
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