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Abstract

Representing a manifold of very high-dimensional data with generative models has been
shown to be computationally efficient in practice. However, this requires that the data
manifold admits a global parameterization. In order to represent manifolds of arbitrary
topology, we propose to learn a mixture model of variational autoencoders. Here, every
encoder-decoder pair represents one chart of a manifold. We propose a loss function for
maximum likelihood estimation of the model weights and choose an architecture that pro-
vides us the analytical expression of the charts and of their inverses. Once the manifold
is learned, we use it for solving inverse problems by minimizing a data fidelity term re-
stricted to the learned manifold. To solve the arising minimization problem we propose
a Riemannian gradient descent algorithm on the learned manifold. We demonstrate the
performance of our method for low-dimensional toy examples as well as for deblurring and
electrical impedance tomography on certain image manifolds.

Keywords: manifold learning, mixture models, variational autoencoders, Riemannian
optimization, inverse problems

1. Introduction

Manifold learning. The treatment of high-dimensional data is often computationally costly
and numerically unstable. Therefore, in many applications, it is important to find a low-
dimensional representation of high-dimensional data sets. Classical methods, like the prin-
cipal component analysis (PCA, Pearson, 1901), assume that the data is contained in a
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low-dimensional subspace. However, for complex data sets this assumption appears to be
too restrictive, particularly when working with image data sets. Therefore, recent methods
rely on the so-called manifold hypothesis (Bengio et al., 2013), stating that even complex
and high-dimensional data sets are contained in a low-dimensional manifold. Based on this
hypothesis, in recent years, many successful approaches have been based on generative mod-
els, able to represent high dimensional data in Rn by a generator D : Rd → Rn with d� n:
these include generative adversarial networks (GANs, Goodfellow et al., 2014), variational
autoencoders (VAEs, Kingma and Welling, 2014), injective flows (Kothari et al., 2021) and
score-based diffusion models (Song and Ermon, 2019; Ho et al., 2020). For a survey on
older approaches to manifold learning, the reader is referred to Ma and Fu (2011); Izenman
(2012) and to the references therein.

Learning manifolds with multiple charts. Under the assumption that D is injective, the
set of generated points {D(z) : z ∈ Rd} forms a manifold that approximates the training
set. However, this requires that the data manifold admits a global parameterization. In
particular, it must not be disconnected or contain holes. In order to model disconnected
manifolds, Falck et al. (2021); Jiang et al. (2017); Kivva et al. (2022); Pineau and Lelarge
(2018) propose to model the latent space of a VAE by a Gaussian mixture model. This
enables the authors to capture multimodal probability distributions. However, this approach
struggles with modelling manifolds with holes since either the injectivity of the generator is
violated or it is impossible to model overlapping charts. Similarly, Davidson et al. (2018);
Mathieu et al. (2019); Rey et al. (2020) propose latent distributions defined on Riemannian
manifolds for representing general topologies. Massa et al. (2022) embed the manifold into
a higher-dimensional space, in the spirit of Whitney embedding theorem. However, these
approaches have the drawback that the topology of the manifold has to be known a priori,
which is usually not the case in practice.

Here, we focus on the representation of the data manifold by several charts. A chart
provides a parameterization of an open subset from the manifold by defining a mapping from
the manifold into a Euclidean space. Then, the manifold is represented by the collection
of all of these charts, which is called atlas. For finding these charts, Cohn et al. (2021);
Floryan and Graham (2022); Pitelis et al. (2013); Sidheekh et al. (2022) propose the use of
clustering algorithms. By default, these methods do not provide an explicit formulation of
the resulting charts. As a remedy, Brand (2002); Pitelis et al. (2013) use linear or kernelized
embeddings. Sidheekh et al. (2022) propose to learn for each chart again a generative
model. However, these approaches often require a large number of charts and are limited
to relatively low data dimensions. The idea of representing the charts by generative models
is further elaborated by Korman (2018, 2021); Schonsheck et al. (2019). Here, the authors
proposes to train at the same time several (non-variational) autoencoders and a classification
network that decides for each point to which chart it belongs. In contrast to the clustering-
based algorithms, the computational effort scales well for large data dimensions. On the
other hand, the numerical examples in the corresponding papers show that the approach
already has difficulties to approximate small toy examples like a torus.

In this paper, we propose to approximate the data manifold by a mixture model of
VAEs. Using Bayes theorem and the ELBO approximation of the likelihood term we derive
a loss function for maximum likelihood estimation of the model weights. Mixture models of
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generative models for modelling disconnected data sets were already considered by Banija-
mali et al. (2017); Hoang et al. (2018); Locatello et al. (2018); Stolberg-Larsen and Sommer
(2022); Ye and Bors (2022). However, they are trained in a different way and to the best
of our knowledge none of those is used for manifold learning.

Inverse Problems on Manifolds. Many problems in applied mathematics and image pro-
cessing can be formulated as inverse problems. Here, we consider an observation y which is
generated by

y = G(x) + η,

where G : Rn → Rm is an ill-posed or ill-conditioned, possibly nonlinear forward operator
and η represents additive noise. Reconstructing the input x directly from the observation y
is usually not possible due to the ill-posed operator and the high dimension of the problem.
As a remedy, the incorporation of prior knowledge is required. This is usually achieved by
using regularization theory, namely, by minimizing the sum of a data fidelity term F (x)
and a regularizer R(x), where F describes the fit of x to y and R incorporates the prior
knowledge. With the success of deep learning, data-driven regularizers became popular
(Altekrüger et al., 2023; Arridge et al., 2019; Goujon et al., 2023; Hertrich et al., 2022; Lunz
et al., 2018).

In this paper, we consider a regularizer which constraints the reconstruction x to a
learned data manifold M. More precisely, we consider the optimization problem

x̂ = arg min
x

F (x) subject to x ∈M,

where F (x) = 1
2‖G(x) − y‖2 is a data-fidelity term. This corresponds to the regularizer

R(x) which is zero for x ∈ M and infinity otherwise. When the manifold admits a global
parameterization given by one single generator D, Alberti et al. (to appear); Chen et al.
(2020); Duff et al. (2021); González et al. (2022) propose to reformulate the problem as
x̂ = ẑ, where ẑ = arg minz F (D(x)). Since this is an unconstrained problem, it can be
solved by gradient based methods. However, since we consider manifolds represented by
several charts, this reformulation cannot be applied. As a remedy, we propose to use a
Riemannian gradient descent scheme. In particular, we derive the Riemannian gradient
using the decoders and encoders of our manifold and propose two suitable retractions for
applying a descent step into the gradient direction.

To emphasize the advantage of using multiple generators, we demonstrate the perfor-
mance of our method on numerical examples. We first consider some two- and three-
dimensional toy examples. Finally, we apply our method to deblurring and to electrical
impedance tomography (EIT), a nonlinear inverse problem consisting in the reconstruction
of the leading coefficient of a second order elliptic PDE from the knowledge of the boundary
values of its solutions (Cheney et al., 1999). The code of the numerical examples is available
online.1

Outline. The paper is organized as follows. In Section 2.1, we revisit VAEs and fix the
corresponding notations. Afterwards, in Section 3, we introduce mixture models of VAEs

1. The code is available at https://github.com/johertrich/Manifold_Mixture_VAEs
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for learning embedded manifolds of arbitrary dimensions and topologies. Here, we focus
particularly on the derivation of the loss function and of the architecture, which allows us
to access the charts and their inverses. For minimizing functions defined on the learned
manifold, we propose a Riemannian gradient descent scheme in Section 4. We provide
numerical toy examples for one and two dimensional manifolds in Section 5. In Section 6, we
discuss the applications to deblurring and to electrical impedance tomography. Conclusions
are drawn in Section 7.

2. Background on Variational Autoencoders and Manifolds

In this section, we revisit the technical background of the paper. First, we recall the
concept of VAEs, their training procedure and of a learned latent space with normalizing
flows. Afterwards, we give a short literature review on manifold learning with VAEs, and
some basic notions from differential geometry.

2.1 Variational Autoencoders for Manifold Learning

In this paper, we assume that we are given data points x1, . . . , xN ∈ Rn for a large dimension
n. In order to reduce the computational effort and to regularize inverse problems, we assume
that these data-points are located in a lower-dimensional manifold. We aim to learn the
underlying manifold from the data points x1, . . . , xN with a VAE (Kingma and Welling,
2014, 2019).

A VAE aims to approximate the underlying high-dimensional probability distribution
PX of the random variable X with a lower-dimensional latent random variable Z ∼ PZ on Rd
with d < n, by using the data points x1, . . . , xN . To this end, we define a decoder D : Rd →
Rn and an encoder E : Rn → Rd. The decoder approximates PX by the distribution PX̃
of a random variable X̃ := D(Z) + η, where η ∼ N (0, σ2

xIn). Vice versa, the encoder
approximates PZ from PX by the distribution PZ̃ of the random variable Z̃ := E(X) + ξ
with ξ ∼ N (0, σ2

zId). Now, decoder and encoder are trained such that we have PX ≈
PX̃ and PZ ≈ PZ̃ . To this end, we aim to maximize the log-likelihood function `(θ) =∑N

i=1 log(pX̃(xi)), where θ denotes the parameters D and E depend upon.

The log-density log(pX̃(x)) induced by the model is called the evidence. However, for
VAEs the computation of the evidence is intractable. Therefore, Kingma and Welling (2014)
suggest to approximate it by the evidence lower bound given by

ELBO(x|θ) := Eξ∼N (0,Id)[log(pZ(E(x) + σzξ))− 1
2σ2

x
‖D(E(x) + σzξ)− x‖2].

For the sake of completeness, we include its derivation in Appendix A. Finally, a VAE is
trained by minimizing the loss function which sums up the negative ELBO values of all
data points, i.e.,

LVAE(θ) = −
N∑
i=1

ELBO(xi|θ).

Learned Latent Space. It is a known issue of VAEs that the inferred probability distribution
is often more blurry than the ground truth distribution of the data. A detailed discussion of
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this issue can be found in Section 2.8.2 of the survey paper by Kingma and Welling (2019).
As a remedy, the authors suggest to choose a more flexible model. One possibility is to
combine VAEs with normalizing flows, as proposed by Rezende and Mohamed (2015) or
Dai and Wipf (2019). Following these approaches, we increase the flexibility of the model
by using a latent space learned by a normalizing flow. The idea is based on the observation
that transforming probability distributions in low-dimensional spaces is much cheaper than
in high-dimensional spaces. Consequently, modelling the low-dimensional latent space can
be more effective than learning probability transformations in the high-dimensional data
space. Here, we employ the specific loss function proposed by Hagemann et al. (2022, 2023)
for training the arising model. More precisely, we choose the latent distribution

PZ = T#PΞ,

where T : Rd → Rd is an invertible neural network, called normalizing flow. In this way, PZ
is the push-forward of a fixed (known) distribution PΞ. Then, the density pZ is given by

pZ(z) = pΞ(T −1(z))|det(∇T −1(z))|.

The parameters of T are considered as trainable parameters. Then, the ELBO reads as

ELBO(x|θ) := Eξ∼N (0,Id)[log(pΞ(T −1(E(x) + σzξ)))

+ log(|det(∇T −1(E(x) + σzξ))|)− 1
2σ2

x
‖D(E(x) + σzξ)− x‖2],

(1)

where θ are the parameters of the decoder, the encoder and of the normalizing flow T .

In the literature, there exist several invertible neural network architectures based on cou-
pling blocks (Dinh et al., 2016; Kingma and Dhariwal, 2018), residual networks (Behrmann
et al., 2019; Chen et al., 2019; Hertrich, 2023), ODE representations (Chen et al., 2018;
Grathwohl et al., 2018; Onken et al., 2021) and autoregressive flows (Huang et al., 2018).
In our numerics, we use the coupling-based architecture proposed by Ardizzone et al. (2019).

Manifold Learning with VAEs. In order to obtain a lower-dimensional representation of the
data points, some papers propose to approximate the data-manifold by M := {D(z) : z ∈
Rd} (see, e.g., Alberti et al., to appear; Chen et al., 2020; Duff et al., 2021; González et al.,
2022). However, this is only possible if the data-manifold admits a global parameterization,
i.e., it can be approximated by one generating function. This assumption is often violated
in practice. As a toy example, consider the one-dimensional manifold embedded in R2

that consists of two circles, see Figure 1a. This manifold is disconnected and contains
“holes”. Consequently, the topologies of the manifold and of the latent space R do not
coincide, so that the manifold cannot be approximated by a VAE. Indeed, this can be
verified numerically. When we learn a VAE for approximating samples from this manifold,
we observe that the two (generated) circles are not closed and that both components are
connected, see Figure 1b. As a remedy, in the next section, we propose the use of multiple
generators to resolve this problem, see Figure 1c. For this purpose, we need the notion of
charts and atlases.
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(a) Noisy samples from the
manifold.
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charts.

Figure 1: Example of a one-dimensional manifold that admits no global parameterization.

2.2 Embedded Manifolds

A subsetM⊆ Rn is called a d-dimensional embedded differentiable manifold if there exists
a family (Uk, ϕk)k∈I of relatively open sets Uk ⊆ M with

⋃
k∈I Uk = M and mappings

ϕk : Uk → Rd such that for every k, l ∈ I

- ϕk is a homeomorphism between Uk and ϕk(Uk);

- the inverse ϕ−1
k : ϕk(Uk)→ Uk is continuously differentiable;

- the transition map ϕk ◦ϕ−1
l : ϕl(Uk ∩Ul)→ ϕk(Uk ∩Ul) is continuously differentiable;

- and the Jacobian ∇ϕ−1
k (x) of ϕ−1

k at x has full column-rank for any x ∈ ϕk(Uk).

We call the mappings ϕk charts and the family (Uk, ϕk)k∈I an atlas. With an abuse of
notation, we sometimes also call the set Uk or the pair (Uk, ϕk) a chart. Every compact
manifold admits an atlas with finitely many charts (Uk, ϕk)

K
k=1, by definition of compactness.

3. Chart Learning by Mixtures of VAEs

In order to approximate (embedded) manifolds with arbitrary (unknown) topology, we
propose to learn several local parameterizations of the manifold instead of a global one. To
this end, we propose to use mixture models of VAEs.

An Atlas as Mixture of VAEs. In this paper, we propose to learn the atlas of an embedded
manifoldM by representing it as a mixture model of variational autoencoders with decoders
Dk : Rd → Rn, encoders Ek : Rn → Rd and normalizing flows Tk in the latent space, for
k = 1, . . . ,K. Then, the inverse of each chart ϕk will be represented by ϕ−1

k = Dk := Dk◦Tk.
Similarly, the chart ϕk itself is represented by the mapping Ek := T −1

k ◦Ek restricted to the
manifold. Throughout this paper, we denote the parameters of (Dk, Ek, Tk) by θk. Now, let
X̃k, k = 1, . . . ,K, be the random variable generated by the decoder Dk as in the previous
section. Then, we approximate the distribution PX of the noisy samples from the manifold
by the random variable X̃ := X̃J , where J is a discrete random variable on {1, . . . ,K} with
P (J = k) = αk with mixing weights αk > 0 fulfilling

∑K
k=1 αk = 1.
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3.1 Training of Mixtures of VAEs

Loss function. Let x1, . . . , xN be the noisy training samples. We initialize the weights α by
αk = 1

K for all k. They will be estimated later in the training algorithm (see Algorithm 1).
In order to train mixtures of VAEs, we again minimize an approximation of an upper bound
to the negative log likelihood function −

∑N
i=1 log(pX̃(xi)). To this end, we employ the law

of total probability and Jensen’s inequality to obtain

log(pX̃(xi)) = log
( K∑
k=1

βikpX̃(xi)
)
≥ log

( K∑
k=1

βikαkpX̃k
(xi)

)
≥

K∑
k=1

βik
(

log(pX̃k
(xi)) + log(αk)

)
=

K∑
k=1

βik log(pX̃k
(xi))− log(K)

where βik := P (J = k|X̃ = xi) is the probability that the sample xi was generated by the
k-th random variable X̃k and we used that αk = 1

K . Using the definition of conditional
probabilities, we observe that

βik = P (J = k|X̃ = xi) =
P (J = k)pX̃k

(xi)

pX̃(xi)
=

αkpX̃k
(xi)∑K

j=1 αjpX̃j
(xi)

. (2)

As the computation of pX̃k
is intractable, we replace it by the ELBO (1), i.e., we approximate

βik by
β̃ik = αk exp(ELBO(xi|θk))∑K

j=1 αj exp(ELBO(xi|θj))
. (3)

For the architecture used in our numerical examples in Section 5, we can bound the error
introduced by this approximation as in Corollary 14 of Appendix B. More precisely, we show
that there exists some L such that 1

Lβik ≤ β̃ik ≤ Lβik. Then, we arrive at the approximation

log(pX̃(xi)) ≈ `(xi|Θ) =

K∑
k=1

αk exp(ELBO(xi|θk))∑K
j=1 αj exp(ELBO(xi|θj))

ELBO(xi|θk)− log(K).

By summing up over all i, we approximate the negative log likelihood function by the loss
function

L(Θ) = −
N∑
i=1

`(xi|Θ),

in order to train the parameters Θ = (θk)
K
k=1 of the mixture of VAEs. Finally, this loss

function is then optimized with a stochastic gradient based optimizer like Adam (Kingma
and Ba, 2015).

Remark 1 (Lipschitz regularization) In order to represent the local structure of the
manifold and to stabilize the training, we would like to avoid that two points that are close
in the latent distribution have too large a distance in the data space. This corresponds to
regularizing the Lipschitz constant of the decoders Dk and of the normalizing flows Tk. More
precisely, for some small σ > 0, we add the regularization term

R(Θ) :=
1

σ2

K∑
k=1

Ez∼PΞ,η∼N (0,σ2)

[
Dk(Tk(z))−Dk(Tk(z + η))

]
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Figure 2: Plot of the unnormalized latent density q.

for the first few epochs of the training. Once the charts roughly capture the local structures
of the manifold, we avoid the Lipschitz regularization in order to have the interpretation of
the loss function as an approximation of the negative log likelihood of the training points.

Latent Distribution. In order to identify the sets Uk defining the domain of the k-th learned
chart, we choose a latent distribution that is mostly concentrated in the rectangle (−1, 1)d.
Then, we can define the domain Uk of the k-th learned chart as the set Uk := Dk((−1, 1)d).
Since the charts are supposed to overlap, the density should become small close to the bound-
ary. To this end, we choose the distribution PΞ by using the density pΞ(z) :=

∏d
i=1 q(zi),

where the density q is up to a multiplicative constant given by

q(z) ∝


1, |z| < 0.8,

4.8− 4.75|z|, |z| ∈ [0.8, 1],

0.05 exp(−100(|z| − 1)), |z| > 1,

see Figure 2 for a plot.

Due to approximation errors and noise, we will have to deal with points x ∈ Rn that are
not exactly located in one of the sets Uk. In this case, we cannot be certain to which charts
the point x actually belongs. Therefore, we interpret the conditional probability (2) as the
probability that xi belongs to the k-th chart. Since we cannot compute the βik explicitly,
we use the approximations β̃ik from (3) instead.

Overlapping Charts. Since the sets Uk of an atlas (Uk, ϕk)k∈I are an open covering of the
manifold, they have to overlap near their boundaries. To this end, we propose the following
post-processing heuristic.

By the definition of the loss function L, we have that the k-th generator Dk is trained
such that Uk contains all points xi from the training set where β̃ik is non-zero. The following
procedure modifies the β̃ik in such a way that the samples x that are close to the boundary
of the k-th chart will also be assigned to a second chart.

Since the measure PΞ is mostly concentrated in (−1, 1)d, the region close to the boundary
of the k-th chart can be identified by Dk(Tk(z)) for all z close to the boundary of (−1, 1)d.
For c > 1, we define the modified ELBO function

ELBOc(x|θk) := Eξ∼N (0,Id)[log(pΞ(cT −1
k (Ek(x) + σzξ)))

+ log(|det(∇T −1
k (Ek(x) + σzξ))|)− 1

2σ2
x
‖Dk(Ek(x) + σzξ)− x‖2]
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which differs from (1) by the additional scaling factor c within the first summand. By
construction and by the definiton of pΞ, it holds that ELBOc(x, θk) ≈ ELBO(x|θk) whenever
c‖T −1

k (Ek(x))‖∞ < 0.8 and 0 < σz � 0.1 is small. Otherwise, we have ELBOc(x|θk) <
ELBO(x|θk) In particular, ELBOc(x|θk) is close to ELBO(x|θk) if x belongs to the interior
of the k-th chart and is significantly smaller if it is close to the boundary of the k-th chart.

As a variation of β̃ik, now we define

γ̂
(l)
il =

αl exp(ELBOc(xi|θl))
αl exp(ELBOc(xi|θl)) +

∑
j∈{1,...,K}\{l} αj exp(ELBO(xi|θj))

and

γ̂
(l)
ik =

αk exp(ELBO(xi|θk))
αl exp(ELBOc(xi|θl)) +

∑
j∈{1,...,K}\{l} αj exp(ELBO(xi|θj))

for k, l ∈ {1, . . . ,K}. Similarly as the β̃ik, γ̂
(l)
ik can be viewed as a classification parameter,

which assigns each xi either to a chart k 6= l or to the interior part of the l-th chart.
Consequently, points located near the boundary of the l-th chart will also be assigned to

another chart. Finally, we combine and normalize the γ̂
(l)
ik by

γik =
γ̂ik∑K
k=1 γ̂ik

, where γ̂ik = max
l=1,...,K

γ̂
(l)
ik . (4)

Once, the γik are computed, we update the mixing weights α by αk =
∑N

i=1 γik and
minimize the loss function

Loverlap(Θ) = −
N∑
i=1

K∑
k=1

γikELBO(xi|θk) (5)

using a certain number of epochs of the Adam optimizer (Kingma and Ba, 2015).

The whole training procedure for a mixture of VAEs representing the charts of an
embedded manifold is summarized in Algorithm 1. The hyperparameters M1, M2 and M3

are chosen large enough such that we have approximately approached a local minimum
of the corresponding objective function. In our numerical examples, we choose M1 = 50,
M2 = 150 and M3 = 50.

Remark 2 (Number of charts K) The choice of the number of charts K is a trade-off
between the computational efficiency and the flexibility of the model. While each manifold
has a minimal number of required charts, it could be easily represented by more charts.
Therefore, from a topological viewpoint, there is no upper limit on K. However, since each
chart comes with its own pair of decoder and encoder, the number of parameters within the
mixture of VAEs, and consequently the training effort, grow with K.
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Algorithm 1 Training procedure for mixtures of VAEs.

1. Run the Adam optimizer on L(Θ) + λR(Θ) for M1 epochs.
2. Run the Adam optimizer on L(Θ) for M2 epochs.
3. Compute the values γik, i = 1, . . . , N , k = 1, . . . ,K from (4).
4. Compute the mixing weights αk =

∑N
i=1 γik.

5. Run the Adam optimizer on Loverlap(Θ) from (5) for M3 epochs.

3.2 Architectures

In this subsection, we focus on the architecture of the VAEs used in the mixture model
representing the manifold M. Since Dk = Dk ◦ Tk represent the inverse of our charts ϕk,
the decoders have to be injective. Moreover, since Ek = T −1

k ◦Ek represents the chart itself,
the condition Ek ◦ Dk = Id must be verified. Therefore, we choose the encoder Ek as a
left-inverse of the corresponding decoder Dk. More precisely, we use the decoders of the
form

Dk = TL ◦AL ◦ · · · ◦ T1 ◦A1,

where the Tl : Rdl → Rdl are invertible neural networks and Al : Rdl−1 → Rdl are fixed injec-
tive linear operators for l = 1, . . . , L, d = d0 < d1 < · · · < dL = n. As it is a concatenation
of injective mappings, we obtain that Dk is injective. Finally, the corresponding encoder is
given by

Ek = A†1 ◦ T
−1
1 ◦ · · · ◦A†L ◦ T

−1
L , A† = (ATA)−1AT. (6)

Then, it holds by construction that Ek ◦ Dk = Id.
In this paper, we build the invertible neural networks Tl and the normalizing flows

Tk out of coupling blocks as proposed by Ardizzone et al. (2019) based on the real NVP
architecture (Dinh et al., 2016). To this end, we split the input z ∈ Rdl into two parts
z = (z1, z2) ∈ Rd1

l × Rd2
l with dl = d1

l + d2
l and define Tl(z) = (x1, x2) with

x1 = z1 es2(z2) + t2(z2) and x2 = z2 es1(x1) + t1(x1),

where s1, t1 : Rd1
l → Rd2

l and s2, t2 : Rd2
l → Rd1

l are arbitrary subnetworks (depending on l).
Then, the inverse T−1

l (x1, x2) can analytically be derived as z = (z1, z2) with

z2 =
(
x2 − t1(x1)

)
e−s1(x1) and z1 =

(
x1 − t2(z2)

)
e−s2(z2).

Remark 3 (Projection onto learned charts) Consider a decoder Dk and an encoder
Ek as defined above. By construction, the mapping πk = Dk ◦Ek is a (nonlinear) projection
onto range(Dk) = range(πk), in the sense that πk ◦ πk = πk and that πk|range(Dk) is the
identity on range(Dk). Consequently, the mapping πk is a projection on the range of Dk

which represents the k-th chart of M. In particular, there is an open neighborhood V :=
π−1
k (Uk) ⊆ Rn such that πk|V is a projection onto Uk.

4. Optimization on Learned Manifolds

As motivated in the introduction, we are interested in optimization problems of the form

min
x∈Rn

F (x) subject to x ∈M, (7)

10
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where F : Rn → R is a differentiable function and M is available only through some data
points. In the previous section, we proposed a way to represent the manifold M by a
mixture model (Dk, Ek, Tk) of VAEs. This section outlines a gradient descent algorithm for
the solution of (7) once the manifold is learned.

As outlined in the previous section, the inverse charts ϕ−1
k of the manifold M are

modeled by Dk := Dk ◦ Tk. The chart ϕk itself is given by the mapping Ek := T −1
k ◦ Ek

restricted to the manifold. For the special case of a VAE with a single generator D, Alberti
et al. (to appear); Chen et al. (2020); Duff et al. (2021) propose to solve (7) in the latent
space. More precisely, starting with a latent initialization z0 ∈ Rd they propose to solve

min
z∈Rd

F (D(z))

using a gradient descent scheme. However, when using multiple charts, such a gradient
descent scheme heavily depends on the current chart. Indeed, the following example shows
that the gradient direction can change significantly, if we use a different chart.

Example 1 Consider the two-dimensional manifold R2 and the two learned charts given
by the generators

D1(z1, z2) = (10z1, z2), and D2(z1, z2) = (z1, 10z2).

Moreover let F : R2 → R be given by (x, y) 7→ x+y. Now, the point x(0) = (0, 0) corresponds
for both charts to z(0) = (0, 0). A gradient descent step with respect to F ◦ Dk, k = 1, 2,
using step size τ yields the latent values

(z
(1)
1 , z

(1)
2 ) = z(0) − τ∇(F ◦ D1)(z(0)) = −(10τ, τ),

(z̃
(1)
1 , z̃

(1)
2 ) = z(0) − τ∇(F ◦ D2)(z(0)) = −(τ, 10τ).

Thus, one gradient steps with respect to F ◦ Dk yields the values

x(1) = D1(z(1)) = −(100τ, τ), x̃(1) = D2(z̃(1)) = −(τ, 100τ).

Consequently, the gradient descent steps with respect to two different charts can point into
completely different directions, independently of the step size τ .

Therefore, we aim to use a gradient formulation which is independent of the parameteri-
zation of the manifold. Here, we use the concept of the Riemannian gradient with respect to
the Riemannian metric, which is inherited from the Euclidean space in which the manifold
M is embedded. To this end, we first revisit some basic facts about Riemannian gradients
on embedded manifolds which can be found, e.g., in the book of Absil et al. (2009). After-
wards, we consider suitable retractions in order to perform a descent step in the direction
of the negative Riemannian gradient. Finally, we use these notions in order to derive a
gradient descent procedure on a manifold given by mixtures of VAEs.

11
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4.1 Background on Riemannian Optimization

Riemannian Gradients on Embedded Manifolds. Let x ∈ M ⊆ Rn be a point on the
manifold, let ϕ : U → Rd be a chart with x ∈ U and ϕ−1 : ϕ(U) → U be its inverse.
Then, the tangent space is given by the set of all directions γ̇(0) of differentiable curves
γ : (−ε, ε) → M with γ(0) = x. More precisely, it is given by the linear subspace of Rn
defined as

TxM = {Jy : y ∈ Rd}, where J := ∇ϕ−1(ϕ(x)) ∈ Rn×d. (8)

The tangent space inherits the Riemannian metric from Rn, i.e., we equip the tangent space
with the inner product

〈u, v〉x = uTv, u, v ∈ TxM.

A function f : M→ Rm is called differentiable if for any differentiable curve γ : (−ε, ε)→
M we have that f ◦ γ : (−ε, ε) → Rm is differentiable. In this case the differential of f is
defined by

Df(x) : TxM→ Rm, Df(x)[h] =
d

dt
f(γh(t))

∣∣∣
t=0

,

where γh : (−ε, ε) →M is a curve with γh(0) = x and γ̇h(0) = h. Finally, the Riemannian
gradient of a differentiable function f : M→ R is given by the unique element ∇Mf ∈ TxM
which fulfills

Df(x)[h] = 〈∇Mf, h〉x for all h ∈ TxM.

Remark 4 In the case that f can be extended to a differentiable function on a neighborhood
ofM, these formulas can be simplified. More precisely, we have that the differential is given
by Df(x)[h] = hT∇f(x), where ∇f is the Euclidean gradient of f . In other words, Df(x)
is the Fréchet derivative of f at x restricted to TxM. Moreover, the Riemannian gradient
coincides with the orthogonal projection of ∇f on the tangent space, i.e.,

∇Mf(x) = PTxM(∇f(x)), PTxM(y) = arg min
z∈TxM

‖y − z‖2.

Here the orthogonal projection can be rewritten as PTxM = J(JTJ)−1JT, J = ∇ϕ−1(ϕ(x))
such that the Riemannian gradient is given by ∇Mf(x) = J(JTJ)−1JT∇f(x).

Retractions. Once the Riemannian gradient is computed, we aim to perform a descent
step in the direction of −∇Mf(x) on M. To this end, we need the concept of retraction.
Roughly speaking, a retraction in x maps a tangent vector ξ to the point that is reached
by moving from x in the direction ξ. Formally, it is defined as follows.

Definition 5 A differentiable mapping Rx : Vx →M for some neighborhood Vx ⊆ TxM of
0 is called a retraction in x, if Rx(0) = x and

DRx(0)[h] = h for all h ∈ T0(Vx) = TxM,

where we identified T0(Vx) with TxM. Moreover, a differentiable mapping R = (Rx)x∈M : V →
M on a subset of the tangent bundle V = (Vx)x∈M ⊆ TM = (TxM)x∈M is a retraction on
M, if for all x ∈M we have that Rx is a retraction in x.

12
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Now, let R : V → M be a retraction on M. Then, the Riemannian gradient descent
scheme starting at x0 ∈M with step size τ > 0 is defined by

xt+1 = Rxt(−τ∇Mf(xt)).

4.2 Retractions for Learned Charts

In order to apply this gradient scheme for a learned manifold given by the learned mappings
(Dk, Ek)Kk=1, we consider two types of retractions. We introduce them and show that they
are indeed retractions in the following lemmas. The first one generalizes the idea from
Lemma 4 and Proposition 5 in Absil and Malick (2012) of moving along the tangent vector
in Rn and reprojecting onto the manifold. However, the results by Absil and Malick (2012)
are based on the orthogonal projection, which is hard or even impossible to compute. Thus,
we replace it by some more general projection π. In our applications, π will be chosen as
in Remark 3, i.e., we set π(x) = Dk(Ek(x)).

Lemma 6 Let x ∈ M, Ux ⊆ Rn be a neighborhood of x in Rn, π : Ux → M ∩ Ux be a
differentiable map such that π ◦ π = π. Set Vx = {h ∈ TxM⊆ Rn : x+ h ∈ Ux}. Then

Rx(h) = π(x+ h), h ∈ Vx,

defines a retraction in x.

Proof The property Rx(0) = x is directly clear from the definition of Rx. Now let
h ∈ TxM ⊆ Rn and γh : (−ε, ε) → M be a differentiable curve with γh(0) = x and
γ̇h(0) = h. As π|U is the identity on M, we have by the chain rule that

h = γ̇h(t) =
d

dt
π(γh(t))

∣∣∣
t=0

= ∇π(x)γ̇h(0) = ∇π(x)h,

where ∇π(x) is the Euclidean Jacobian matrix of π at x. Similarly,

DRx(0)[h] =
d

dt
Rx(th)

∣∣∣
t=0

=
d

dt
π(x+ th)

∣∣∣
t=0

= ∇π(x)h = h.

The second retraction uses the idea of changing to local coordinates, moving into the
gradient direction by using the local coordinates and then going back to the manifold
representation. Note that similar constructions are considered in Section 4.1.3 in the book
of Absil et al. (2009). However, as we did not find an explicit proof for the lemma, we give
it below for the sake of completeness.

Lemma 7 Let x ∈M and denote by ϕ : U → Rd a chart with x ∈ U ⊆M. Then,

Rx(h) = ϕ−1(ϕ(x) + (JTJ)−1JTh), J = ∇ϕ−1(ϕ(x))

defines a retraction in x.

13
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Algorithm 2 One gradient descent step on a learned manifold.

Inputs: Function F : M→ R, point xn, step size τn > 0.
for k = 1, . . . ,K do

- Approximate the probability that xn belongs to chart k by computing the βk
from (10).

- Project to the k-th chart by x̃n,k = Dk(Ek(xn)).
- Compute the Riemannian gradient gn,k = ∇MF (x̃n,k), e.g., by Remark 4.
- Perform a gradient descent with the retraction Rk,x̃n,k

, i.e., define
xn+1,k = Rk,x̃n,k

(−τngn,k).
end for
- Average results by computing xn+1 =

∑K
k=1 βkxn+1,k.

Proof The property Rx(0) = x is directly clear from the definition of Rx. Now let
h ∈ T0(TxM) = TxM ⊆ Rn. By (8), we have that there exists some y ∈ Rd such that
h = Jy. Then, we have by the chain rule that

DRx(0)[h] =
d

dt
Rx(th)

∣∣∣
t=0

= (∇ϕ−1(ϕ(x)))(JTJ)−1JTh = J(JTJ)−1JTJy = Jy = h.

4.3 Gradient Descent on Learned Manifolds

By Lemma 6 and 7, we obtain that the mappings

Rk,x(h) = Dk(Ek(x+ h)) and R̃k,x(h) = Dk(Ek(x) + (JTJ)−1JTh) (9)

with J = ∇Dk(Ek(x)) are retractions in all x ∈ Uk. If we define R such that Rx is given by
Rk for some k such that x ∈ Uk, then the differentiability of R = (Rx)x∈M in x might be
violated. Moreover, the charts learned by a mixture of VAEs only overlap approximately
and not exactly. Therefore, these retractions cannot be extended to a retraction on the
whole manifoldM in general. As a remedy, we propose the following gradient descent step
on a learned manifold.

Starting from a point xn, we first compute for k = 1, . . . ,K the probability, that xn
belongs to the k-th chart. By (2), this probability can be approximated by

βk := αk exp(ELBO(xn|θk))∑K
j=1 αj exp(ELBO(xn|θj))

. (10)

Afterwards, we project xn onto the k-th chart by applying x̃n,k = Dk(Ek(xn)) (see Remark 3)
and compute the Riemannian gradient gn,k = ∇MF (x̃nk

). Then, we apply the retraction
Rk,x̃n,k

(or R̃k,x̃n,k
) to perform a gradient descent step xn+1,k = Rk,x̃n,k

(−τngn,k). Finally,

we average the results by xn+1 =
∑K

k=1 βkxn+1,k.

The whole gradient descent step is summarized in Algorithm 2. Finally, we compute
the sequence (xn)n by applying Algorithm 2 iteratively.
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Algorithm 3 Adaptive step size scheme for gradient descent on learned manifolds

Input: Function F , initial point x0, initial step size τ0.
for n=0,1,. . . do

Compute xn+1 by Algorithm 2 with step size τn.
while F (xn+1) > F (xn) do

Update step size by τn ← τn
2 .

Update xn+1 by Algorithm 2 with the new step size τn.
end while
Set step size for the next step τn+1 = 3τn

2 .
end for

Two circles Ring Sphere Swiss roll Torus

Figure 3: Data sets used for the different manifolds.

For some applications the evaluation of the derivative of F is computationally costly.
Therefore, we aim to take as large step sizes τn as possible in Algorithm 2. On the other
hand, large step sizes can lead to numerical instabilities and divergence. To this end, we
use an adaptive step size selection as outlined in Algorithm 3.

Remark 8 (Descent algorithm) By construction, Algorithm 3 is a descent algorithm.
That is, for a sequence (xn)n generated by the algorithm it holds that F (xn+1) ≤ F (xn).
With the additional assumption that F is bounded from below, we have that (F (xn))n is
a bounded descending and hence convergent sequence. However, this does neither imply
convergence of the iterates (xn)n themselves nor optimality of the limit of (F (xn))n. For
more details on the convergence of line-search algorithms on manifolds we refer to Section
4 of the book by Absil et al. (2009).

5. Numerical Examples

Next, we test the numerical performance of the proposed method. In this section, we start
with some one- and two-dimensional manifolds embedded in the two- or three-dimensional
Euclidean space. We use the architecture from Section 3.2 with L = 1. That is, for all the
manifolds, the decoder is given by T ◦A where A : Rd → Rn is given by x 7→ (x, 0) if d = n−1
and by A = Id if d = n and T is an invertible neural network with 5 invertible coupling
blocks where the subnetworks have two hidden layers and 64 neurons in each layer. The
normalizing flow modelling the latent space consists of 3 invertible coupling blocks with the
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same architecture. We train the mixture of VAEs for 200 epochs with the Adam optimizer.
Afterwards we apply the overlapping procedure for 50 epochs, as in Algorithm 1.

We consider the manifolds “two circles”, “ring”, “sphere”, “swiss roll” and “torus”. The
(noisy) training data are visualized in Figure 3. The number of charts K is given in the
following table.

Two circles Ring Sphere Swiss roll Torus

Number of charts 4 2 2 4 6

We visualize the learned charts in Figure 4. Moreover, additional samples generated by
the learned mixture of VAEs are shown in Figure 5. We observe that our model covers all
considered manifolds and provides a reasonable approximation of different charts. Finally,
we test the gradient descent method from Algorithm 2 with some linear and quadratic
functions, which often appear as data fidelity terms in inverse problems:

• F (x) = x2 on the manifold “two circles” with initial points x0
‖x0‖ ± (1.5, 0) for x0 =

(±0.2, 1);

• F (x) = ‖x− (−1, 0)‖2 on the manifold “ring” with initial points (1,±0.4);

• F (x) = ‖x − (0, 0,−2)‖2 on the manifold “sphere” with inital points x0/‖x0‖ for
x0 ∈ {(0.3 cos(πk5 ), 0.3 sin(πk5 ), 1) : k = 0, . . . , 9)};

• F (x) = ‖x − (−5, 0, 0)‖2 on the manifold “torus”, where the inital points are drawn
randomly from the training set.

We use the retraction from Lemma 6 with a step size of 0.01. The resulting trajectories are
visualized in Figure 6. We observe that all the trajectories behave as expected and approach
the closest minimum of the objective function, even if this is not in the same chart of the
initial point.

Remark 9 (Dimension of the Manifold) For all our numerical experiments, we as-
sume that the dimension d of the data manifold is known. This assumption might be violated
for practical applications. However, there exist several methods in the literature to estimate
the dimension of a manifold from data (see, e.g., Stanczuk et al., 2024; Camastra and
Staiano, 2016; Fan et al., 2010; Levina and Bickel, 2004). We are aware that dimension
estimation of high dimensional data sets is a hard problem which cannot be considered as
completely solved so far. In particular, most of these algorithms make assumptions on the
distribution of the given data points. Even though it is an active area of research, it is not
the scope of this paper to test, benchmark or develop such algorithms. Similarly, combining
them with our mixture of VAEs is left for future research.

6. Mixture of VAEs for Inverse Problems

In this section we describe how to use mixture of VAEs to solve inverse problems. We
consider an inverse problem of the form

y = G(x) + η, (11)
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Figure 4: Learned charts for the different manifolds. For the manifolds “two circles” and
“ring”, each color represents one chart. For the manifolds “sphere”, “swiss roll” and “torus”
we plot each chart in a separate figure.

Two circles Ring Sphere Swiss roll Torus

Figure 5: Generated samples by the learned mixture of VAEs. The color of a point indicates
from which generator the point was sampled.
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Figure 6: Trajectories of the gradient descent on the learned manifolds.

where G is a possibly nonlinear map between Rn and Rm, modelling a measurement (for-
ward) operator, x ∈ Rn is a quantity to be recovered, y ∈ Rm is the noisy data and η
represents some noise. In particular, we analyze a linear and a nonlinear inverse problem:
a deblurring problem and a parameter identification problem for an elliptic PDE arising in
electrical impedance tomography (EIT), respectively.

In many inverse problems, the unknown x can be modeled as an element of a low-
dimensional manifold M in Rn (Alberti et al., to appear; Asim et al., 2020; Bora et al.,
2017; Hyun et al., 2021; Ongie et al., 2020; Seo et al., 2019; Massa et al., 2022; Alberti
et al., 2023), and this manifold can be represented by the mixture of VAEs as explained in
Section 3. Thus, the solution of (11) can be found by optimizing the function

F (x) =
1

2
‖G(x)− y‖2Rm subject to x ∈M, (12)

by using the iterative scheme proposed in Section 4.
We would like to emphasize that the main goal of our experiments is not to obtain

state-of-the-art results. Instead, we want to highlight the advantages of using multiple
generators via a mixture of VAEs. All our experiments are designed in such a way that the
manifold property of the data is directly clear. The application to real-world data and the
combination with other methods in order to achieve competitive results are not within the
scope of this paper and are left to future research.

Architecture and Training. Throughout these experiments we consider images of size 128×
128 and use the architecture from Section 3.2 with L = 3. Starting with the latent dimension
d, the mapping A1 : Rd → R322

fills up the input vector x with zeros up to the size 322,
i.e., we set A1(x) = (x, 0). The invertible neural network T1 : R322 → R322

consists of 3
invertible blocks, where the subnetworks si and ti, i = 1, 2 are dense feed-forward networks
with two hidden layers and 64 neurons. Afterwards, we reorder the dimensions to obtain an
image of size 32× 32. The mappings A2 : R32×32 → R32×32×4 and A3 : R64×64 → R64×64×4

copy each channel 4 times. Then, the generalized inverses A†2 : R32×32×4 → R32×32 and

A†3 : R64×64×4 → R64×64 from (6) are given by taking the mean of the four channels of the
input. The invertible neural networks T2 : R32×32×4 → R64×64 and T3 : R64×64×4 → R128×128

consist of 3 invertible blocks, where the subnetworks si and ti, i = 1, 2 are convolutional
neural networks with one hidden layer and 64 channels. After these three coupling blocks we
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(a) Samples from the considered data set for the deblurring example.

(b) Learned chart with one generator. The figure shows the images D(x) for 20 values of x equispaced
in [−1, 1].

(c) Learned charts with two generators. The figure shows the images Dk(x) for 20 values of x
equispaced in [−1, 1] for k = 1 (top) and k = 2 (bottom).

(d) Reconstructions for the deblurring example. From top to bottom: ground truth image, observa-
tion, reconstruction with one generator and reconstruction with two generators.

Figure 7: Data set, learned charts and reconstructions for the deblurring example.

use an invertible upsampling (Etmann et al., 2020) to obtain the correct output dimension.
For the normalizing flow in the latent space, we use an invertible neural network with three
blocks, where the subnetworks si and ti, i = 1, 2 are dense feed-forward networks with two
hidden layers and 64 neurons.

We train all the models for 200 epochs with the Adam optimizer. Afterwards we apply
the overlapping procedure for 50 epochs. See Algorithm 1 for the details of the training
algorithm.

6.1 Deblurring

First, we consider the inverse problem of noisy image deblurring. Here, the forward operator
G in (11) is linear and given by the convolution with a 30 × 30 Gaussian blur kernel with
standard deviation 15. In order to obtain outputs y of the same size as the input x, we
use constant padding with intensity 1/2 within the convolution. Moreover, the image is
corrupted by white Gaussian noise η with standard deviation 0.1. Given an observation y
generated by this degradation process, we aim to reconstruct the unknown ground truth
image x.

Data set and Manifold Approximation. Here, we consider the data set of 128×128 images
showing a bright bar with a gray background that is centered and rotated. The intensity
of fore- and background as well as the size of the bar are fixed. Some example images

19



Alberti, Hertrich, Santacesaria and Sciutto

(a) Ground truth (left) and observation (right).

(b) Visualization of the trajectories (xn)n for different initializations x0 with one generator. Left
column: initialization, right column: reconstruction x250, columns in between: images xn for n
approximately equispaced between 0 and 250.

(c) Visualization of the trajectories (xn)n for different initializations x0 with two generators. Left
column: initialization, right column: reconstruction x250, columns in between: images xn for n
approximately equispaced between 0 and 250.

Figure 8: Gradient descent for the deblurring example.
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from the data set are given in Figure 7a. The data set forms a one-dimensional manifold
parameterized by the rotation of the bar. Therefore, it is homeomorphic to S1 and does
not admit a global parameterization since it contains a hole.

We approximate the data manifold by a mixture model of two VAEs and compare the
result with the approximation with a single VAE, where the latent dimension is set to
d = 1. The learned charts are visualized in Figure 7b and 7c. We observe that the charts
learned with a mixture of two VAEs can generate all possible rotations and overlap at their
boundaries. On the other hand, the chart learned with a single VAE does not cover all
rotations but has a gap due to the injectivity of the decoder. This gap is also represented in
the final test loss of the model, which approximates the negative log likelihood of the test
data. It is given by 52.04 for one generator and by 39.84 for two generators. Consequently,
the model with two generators fits the data manifold much better.

Reconstruction. In order to reconstruct the ground truth image, we use our gradient de-
scent scheme for the function (12) as outlined in Algorithm 2 for 500 iterations. Since
the function F is defined on the whole R128×128, we compute the Riemannian gradient
∇MF (x) accordingly to Remark 4. More precisely, for x ∈ Uk, we have ∇MF (x) =
J(JTJ)−1JT∇F (x), where ∇F (x) is the Euclidean gradient of F and J = ∇Dk(Ek(x))
is the Jacobian of the k-th decoder evaluated at Ek(x). Here, the Euclidean gradient ∇F (x)
and the Jacobian matrix J are computed by algorithmic differentiation. Moreover, we use
the retractions R̃k,x from (9). As initialization x0 of our gradient descent scheme, we use a
random sample from the mixture of VAEs. The results are visualized in Figure 7d. We ob-
serve that the reconstructions with two generators always recover the ground truth images
very well. On the other hand, the reconstructions with one generator often are unrealistic
and do not match with the ground truth. These unrealistic images appear at exactly those
points where the chart of the VAE with one generator does not cover the data manifold.

In order to better understand why the reconstructions with one generator often fail, we
consider the trajectories (xn)n generated by Algorithm 2 more in detail. We consider a fixed
ground truth image showing a horizontal bar and a corresponding observation as given in
Figure 8a. Then, we run Algorithm 2 for different initializations. The results are given in
Figure 8b for one generator and in Figure 8c for two generators. The left column shows
the initialization x0, and in the right column, there are the values x250 after 250 gradient
descent steps. The columns in between show the values xn for (approximately) equispaced
n between 0 and 250. With two generators, the trajectory (xn)n are a smooth transition
from the initialization to the ground truth. Only when the initialization is a vertical bar
(middle row), the images xn remain similar to the initialization x0 for all n, since this is a
critical point of the F |M and hence the Riemannian gradient is zero. With one generator,
we observe that some of the trajectories get stuck exactly at the gap, where the manifold
is not covered by the chart. At this point the latent representation of the corresponding
image would have to jump, which is not possible. Therefore, a second generator is required
here.
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(a) Samples from the considered data set for the EIT example.

(b) Samples from the VAE with one generator.

(c) Samples from the mixture of two VAEs. Top: first chart, bottom: second chart.

(d) Reconstructions. From top to bottom: ground truth image, reconstruction with one generator,
reconstruction with two generators.

Figure 9: Data set, synthesized samples and reconstructions for the EIT example.

6.2 Electrical Impedance Tomography

Finally, we consider the highly non-linear and ill-posed inverse problem of electrical impedance
tomography (EIT, Cheney et al., 1999), which is also known in the mathematical literature
as the Calderón problem (Astala and Päivärinta, 2006; Feldman et al., 2019; Mueller and
Siltanen, 2012). EIT is a non-invasive, radiation-free method to measure the conductivity
of a tissue through electrodes placed on the surface of the body. More precisely, electrical
currents patterns are imposed on some of these electrodes and the resulting voltage differ-
ences are measured on the remaining ones. Although harmless, the use of this modality in
practice is very limited because the standard reconstruction methods provide images with
very low spatial resolution. This is an immediate consequence of the severe ill-posedness of
the inverse problem (Alessandrini, 1988; Mandache, 2001).

Classical methods for solving this inverse problem include variational-type methods
(Cheney et al., 1990), the Lagrangian method (Chen and Zou, 1999), the factorization
method (Brühl and Hanke, 2000; Kirsch and Grinberg, 2008), the D-bar method (Siltanen
et al., 2000), the enclosure method (Ikehata and Siltanen, 2000), and the monotonicity
method (Tamburrino and Rubinacci, 2002). Similarly as many other inverse problems, deep
learning methods have had a big impact on EIT. For example, Fan and Ying (2020) propose
an end-to-end neural network that learns the forward map G and its inverse. Moreover,
deep learning approaches can be combined with classical methods, e.g, by post processing
methods (Hamilton and Hauptmann, 2018; Hamilton et al., 2019) or by variational learning
algorithms (Seo et al., 2019).
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Data set and Manifold Approximation. We consider the manifold consisting of 128 × 128
images showing two bright non-overlapping balls with a gray background, representing
conductivities with special inclusions. The radius and the position of the balls vary, while
the fore- and background intensities are fixed. Some exemplary samples of the data set are
given in Figure 9a.

Remark 10 (Dimension and topology of the data manifold) Since the balls are in-
distinguishable and not allowed to overlap, an image can be uniquely described by the angle
between the two balls, the midpoint between both balls, their distance and the two radii.
Hence, the data manifold is homeomorphic to S1 × (0, 1)2 × (0, 1) × (0, 1)2 = S1 × (0, 1)5.
In particular, it contains a hole and does not admit a global parameterization.

A slightly more general version of this manifold was considered by Alberti et al. (2023),
where Lipschitz stability is proven for a related inverse boundary value problem restricted
to the manifold. Other types of inclusions (with unknown locations), notably polygonal and
polyhedral inclusions, have been considered in the literature (Beretta et al., 2021; Beretta
and Francini, 2022; Aspri et al., 2022). The case of small inclusions is discussed by Ammari
and Kang (2004).

We approximate the data manifold by a mixture of two VAEs and compare the results
with the approximation with a single VAE. The latent dimension is set to the manifold
dimension, i.e., d = 6. Some samples of the learned charts are given in Figure 9b and
9c. As in the previous example, both models produce mostly realistic samples. The test
loss is given by 365.21 for one generator and by 229.99 for two generators. Since the test
loss approximates the negative log likelihood value of the test data, this indicates that two
generators are needed in order to cover the whole data manifold.

The Forward Operator and its Derivative. From a mathematical viewpoint, EIT considers
the following PDE with Neumann boundary conditions{

−∇ · (γ ∇ug) = 0 in Ω,
γ ∂νug = g on ∂Ω,

(13)

where Ω ⊆ R2 is a bounded domain, γ ∈ L∞(Ω) is such that γ(x) ≥ λ > 0 and ug ∈ H1(Ω)
is the unique weak solution with zero boundary mean of (13) with Neumann boundary
data g ∈ H−

1
2� (∂Ω), with Hs

�(∂Ω) = {f ∈ Hs(∂Ω) :
∫
∂Ω fds = 0}. From the physical point

of view, g represents the electric current applied on ∂Ω (through electrodes placed on the
boundary of the body), ug is the electric potential and γ is the conductivity of the body
in the whole domain Ω. The inverse problem consists in the reconstruction of γ from the
knowledge of all pairs of boundary measurements (g, ug|∂Ω), namely, of all injected currents
together with the corresponding electric voltages generated at the boundary. In a compact
form, the measurements may be modelled by the Neumann-to-Dirichlet map

G(γ) : H
− 1

2� (∂Ω)→ H
1
2� (∂Ω)

g 7→ ug
∣∣
∂Ω
.

Since the PDE (13) is linear, the map G(γ) is linear. However, the forward map γ 7→ G(γ)
is nonlinear in γ, and so is the corresponding inverse problem. The map G is continuously
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differentiable, and its Fréchet derivative (see Harrach, 2019) is given by [∇G(γ)](σ)(g) =
wg
∣∣
∂Ω

, where wg ∈ H1(Ω) is the unique weak solution with zero boundary mean of{
−∇ · (γ ∇wg) = ∇ · (σ ∇ug) in Ω,

−γ ∂νwg = σ ∂νug on ∂Ω,

where ug ∈ H1(Ω) is the unique weak solution with zero boundary mean that solves (13).
We included the expression of this derivative in the continuous setting for completeness,
but, as a matter of fact, we will need only its semi-discrete counterpart given below.

Discretization and Objective Function. In our implementations, we discretize the linear
mappings G(γ) by restricting them to a finite dimensional subspace spanned by a-priori

fixed boundary functions g1, . . . , gN ∈ H
− 1

2� (∂Ω). Then, following (Beretta et al., 2018,
eqt. (2.2)), we reconstruct the conductivity by minimizing the semi-discrete functional

F (γ) =
1

2

N∑
n=1

∫
∂Ω
|ugn(s)− (utrue)gn(s)|2ds, (14)

where (utrue)gn is the observed data. In our discrete setting, we represent the conductivitiy γ

by a piecewise constant function γ =
∑M

m=1 γm1Tm on a triangulation (Tm)m=1,...,M . Then,
following Equation (2.20) from Beretta et al. (2018), the derivative of (14) with respect to
γ is given by

dF

dγm
(γ) =

N∑
n=1

∫
Tm

∇ugn(x) · ∇zgn(x)dx, (15)

where zgn solves {
−∇ · (γ ∇zgn) = 0 in Ω,

γ ∂νzgn = (utrue)gn − ugn on ∂Ω,
(16)

with the normalization
∫
∂Ω zgn(s)ds =

∫
∂Ω(utrue)gn(s)ds.

Implementation Details. In our experiments the domain Ω is given by the unit square
[0, 1]2. For solving the PDEs (13) and (16), we use a finite element solver from the DOLFIN
library (Logg and Wells, 2010). We employ meshes that are coarser in the middle of Ω and
finer close to the boundary. To simulate the approximation error of the meshes, and to avoid
inverse crimes, we use a fine mesh to generate the observation and a coarser one for the
reconstructions. We use N = 15 boundary functions, which are chosen as follows. We divide
each of the four edges of the unit square [0, 1]2 into 4 segments and denote by b1, . . . , b16

the functions that are equal to 1 on one of these segments and 0 otherwise. Then, we define
the boundary functions as gn =

∑16
i=1 an,ibi, where the matrix A = (an,i)n=1,...,15,i=1,...,16 is

the 16× 16 Haar matrix without the first row. More precisely, the rows of A are given by
the rows of the matrices 2−k/2(Id24−k ⊗ (1,−1) ⊗ eT

2k−1) for k = 1, . . . , 4, where ⊗ is the
Kronecker product and ej ∈ Rj is the vector where all entries are 1.
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Results. We reconstruct the ground truth images from the observations by minimizing the
functional F from (14) subject to γ ∈ M. To this end, we apply the gradient descent
scheme from Algorithm 2 for 100 steps. Since the evaluation of the forward operator and
its derivative include the numerical solution of a PDE, it is computationally very costly.
Hence, we aim to use as few iterations of Algorithm 2 as possible. To this end, we apply
the adaptive step size scheme from Algorithm 3. As retractions we use R̃k,x from (9).
The initialization γ0 of the gradient descent scheme is given by a random sample from the
mixture of VAEs.

Since F is defined on the whole R128×128
+ , we use again Remark 4 for the evalua-

tion of the Riemannian gradient. More precisely, for γ ∈ Uk, we have that ∇MF (γ) =
J(JTJ)−1JT∇F (γ), where ∇F (γ) is the Euclidean gradient of F and J = ∇Dk(Ek(γ)).
Here, we compute ∇F (γ) by (15) and J by algorithmic differentiation.

The reconstructions for 20 different ground truths are visualized in Figure 9d. We
observe that both models capture the ground truth structure in most cases, but also fail
sometimes. Nevertheless, the reconstructions with the mixture of two VAEs recover the
correct structure more often and more accurately than the single VAE, which can be ex-
plained by the better coverage of the data manifold. To quantify the difference more in
detail, we rerun the experiment with 200 different ground truth images and compare the
results with one and two generators using the PSNR and SSIM. As an additional evaluation
metric, we run the segmentation algorithm proposed by Otsu (1979) on the ground truth
and reconstruction image and compare the resulting segmentation masks using the SSIM.
The resulting values are given in the following table.

One generator Two generators

PSNR 23.64± 3.91 24.76± 3.79
SSIM 0.8951± 0.0377 0.9111± 0.0368

segment+SSIM 0.8498± 0.0626 0.8667± 0.0614

Consequently, the reconstructions with two generators are significantly better than those
with one generator for all evaluation metrics.

7. Conclusions

In this paper we introduced mixture models of VAEs for learning manifolds of arbitrary
topology. The corresponding decoders and encoders of the VAEs provide analytic access
to the resulting charts and are learned by a loss function that approximates the negative
log-likelihood function. For minimizing functions F defined on the learned manifold we
proposed a Riemannian gradient descent scheme. In the case of inverse problems, F is
chosen as a data-fidelity term. Finally, we demonstrated the advantages of using several
generators on numerical examples.

This work can be extended in several directions. First, gradient descent methods con-
verge only locally and are not necessarily fast. Therefore, it would be interesting to extend
the minimization of the functional F in Section 7 to higher-order methods or incorporate
momentum parameters. Moreover, a careful choice of the initialization could improve the
convergence behavior. Further, our reconstruction method could be extended to Bayesian
inverse problems. Since the mixture model of VAEs provides us with a probability dis-
tribution and an (approximate) density, stochastic sampling methods like the Langevin
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dynamics could be used for quantifying uncertainties within our reconstructions. Indeed,
Langevin dynamics on Riemannian manifolds are still an active area of research. Further,
for large numbers K of charts the mixture of VAEs might have a considerable number of
parameters. As a remedy, we could incorporate the selection of the chart as conditioning
parameter in one conditional decoder-encoder pair (see Sohn et al., 2015 as a reference for
conditional VAEs). Finally, recent papers show that diffusion models provide an implicit
representation of the data manifold (Stanczuk et al., 2024; Ross et al., 2024). It would be
interesting to investigate optimization models on such manifolds in order to apply them to
inverse problems.
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Appendix A. Derivation of the ELBO

By Jensen’s inequality the evidence can be lower-bounded by

log(pX̃(x)) = log
(∫

Rd

pZ,X̃(z, x) dz
)

= log
(∫

Rd

pZ,X̃(z, x)

pZ̃|X=x(z)
pZ̃|X=x(z) dz

)
≥
∫
Rd

log
(pZ,X̃(z, x)

pZ̃|X=x(z)

)
pZ̃|X=x(z) dz

)
= Ez∼PZ̃|X=x

[
log
(pZ(z)pX̃|Z=z(x)

pZ̃|X=x(z)

)]
= Ez∼PZ̃|X=x

[log(pZ(z)) + log(pX̃|Z=z(x))− log(pZ̃|X=x(z))].

Accordingly to the definition of Z̃ and X̃, we have that pX̃|Z=z(x) = N (x;D(z), σ2
xIn) and

pZ̃|X=x(z) = N (z;E(x), σ2
zId). Thus, the above formula is, up to a constant, equal to

Ez∼PZ̃|X=x
[log(pZ(z))− 1

2σ2
x
‖x−D(z)‖2 − log(N (z;E(x), σ2

zId))].
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Considering the substitution ξ = (z − E(x))/σz, we obtain

Eξ∼N (0,Id)[log(pZ(E(x) + σzξ))− 1
2σ2

x
‖D(E(x) + σzξ)− x‖2 − log(N (ξ; 0, Id))].

Note that also the last summand does not depend on D and E. Thus, we obtain, up to a
constant, the evidence lower bound (ELBO) given by

ELBO(x|θ) := Eξ∼N (0,Id)[log(pZ(E(x) + σzξ))− 1
2σ2

x
‖D(E(x) + σzξ)− x‖2].

Appendix B. Error Bound for the Approximation of βik by β̃ik

It is well-known that the difference between evidence and ELBO can be expressed in terms
of the Kullback-Leibler divergence (see Kingma and Welling, 2019, Sec 2.2). In the special
case that E ◦D = Id, which is relevant in this paper, this estimate can be simplified by the
following lemma. To this end, denote by

F(x|θ) := Ez∼PZ̃|X=x
[log(pZ(z)) + log(pX̃|Z=z(x))− log(pZ̃|X=x(z))] = ELBO(x|θ) + const

the ELBO before leaving out the constants.

Lemma 11 Assume that E ◦D = Id. Then, it holds

log(pX̃(x))−F(x|θ) = KL(N (E(x), σ2
zId), E#N (x, σ2

xIn)).

Proof By Equation (2.8) in Kingma and Welling (2019), it holds that

log(pX̃(x))−F(x|θ) = KL(PZ̃|X=x, PZ|X̃=x).

Inserting the definitions Z̃ = X+ ξ and Z = E(D(Z)) = E(D(Z) + η− η) = E(X̃− η), this
is equal to

KL(PE(X)+ξ|X=x, PE(X̃−η)|X̃=x) = KL(PE(x)+ξ, PE(x−η)) = KL(PE(x)+ξ, E#Px−η).

Using ξ ∼ N (0, σ2
zId) and η = N (0, σ2

xIn), we arrive at the assertion.

The next two lemmas exploit this estimate for bounding the approximation error be-
tween β̃ik and βik.

Lemma 12 Assume that exp(KL(N (Ek(xi), σ
2
zId), Ek#N (xi, σ

2
xIn))) ≤ L for all xi, k.

Then
1

L
βik ≤ β̃ik ≤ Lβik,

where βik and β̃ik are defined in (2) and (3).

Proof Due to Lemma 11, we have that

1 ≤
pX̃k

(xi)

exp(F(xi|θk))
≤ exp(KL(N (Ek(xi), σ

2
zId), Ek#N (xi, σ

2
xIn))) ≤ L,
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i.e.,
1

L
pX̃k

(xi) ≤ exp(F(xi|θk)) ≤ pX̃k
(xi).

Since by ELBO(xi|θk) = F(xi|θk) + const, it holds that β̃ik = αk exp(F(xi|θk))∑K
j=1 αj exp(F(xi|θj))

, this

implies that

1

L
βik =

1
L
αkpX̃k

(xi)∑K
j=1 αjpX̃k

(xi)
≤ αk exp(F(xi|θk))∑K

j=1 αj exp(F(xi|θj))︸ ︷︷ ︸
=β̃ik

≤
αkpX̃k

(xi)

1
L

∑K
j=1 αjpX̃k

(xi)
= Lβik,

which concludes the proof.

Lemma 13 Let E = A ◦ T where A : Rn → Rd is given by the matrix A = (Id|0) and T is
invertible and bi-Lipschitz with Lipschitz constants L1 and L2 for T and T−1. Then

KL(N (E(x), σ2
zId), E#N (x, σ2

xIn)) ≤ log(Ln1L
n
2 ) +

d

2
(
L2

2σ
2
z

σ2
x
− 1− log(

L2
2σ

2
z

σ2
x

)).

Proof We estimate the density pE#N (x,σ2
xIn))(z) from below. By (Altekrüger et al., 2023,

Lemma 4), we have that

pT#N (x,σ2
xIn) ≥

1

Ln1L
n
2

N (T (x),
σx
L2

2

In).

Using the projection property of Gaussian distributions, this implies that E#N (x, σ2
xIn)) =

A#(T#N (x, σ2
xIn)) fulfills

pE#N (x,σ2
xIn)) ≥

1

Ln1L
n
2

N (E(x),
σx
L2

2

Id).

Hence, by the definition of the Kullback-Leibler divergence, it holds

KL(N (E(x), σ2
zId), E#N (x, σ2

xIn))

= Ez∼N (E(x),σ2
zId)

[
log
(N (z|E(x), σ2

zId)

pE#N (x,σ2
xIn))(z)

)]
≤ log(Ln1L

n
2 ) + Ez∼N (E(x),σ2

zId)

[
log
(N (z|E(x), σ2

zId)

N (z|E(x), σ
2
x

L2
2
Id)

)]
= log(Ln1L

n
2 ) + KL(N (E(x), σ2

zId),N (z|E(x),
σ2
x

L2
2

Id)).

Inserting the formula for the KL divergence between two normal distributions, we obtain

KL(N (E(x), σ2
zId),N (z|E(x),

σ2
x

L2
2

Id)) =
1

2

(
trace(

L2
2σ

2
z

σ2
x
Id)− d+ d log( σ2

x

L2
2σ

2
z
)
)

=
d

2
(
L2

2σ
2
z

σ2
x
− 1− log(

L2
2σ

2
z

σ2
x

)),
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which proves the claim.

Combining the previous two lemmas, we obtain the following corollary.

Corollary 14 Assume that E1, ..., EK are of the form Ek = A ◦ Tk, where A : Rn → Rd is
given by the matrix A = (Id|0) and Tk is invertible and bi-Lipschitz with Lipschitz constants
L1 and L2 for T and T−1 and assume that Ek ◦Dk = Id. Then

1

L
βik ≤ β̃ik ≤ Lβik,

where βik and β̃ik are given in (2) and (3) and L = Ln1L
n
2 exp(d2(

L2
2σ

2
z

σ2
x
− 1− log(

L2
2σ

2
z

σ2
x

))).

Note in particular that β̃ik → 0 whenever βik → 0 and, by

β̃ik = 1−
K∑
l=1
l 6=k

β̃ik ≥ 1− L
K∑
l=1
l 6=k

βik = 1− L(1− βik) = 1− L+ Lβik

that β̃ik → 1 whenever βik → 1. However, the constant L from the corollary depends
exponentially on the dimension n, which might limit its applicability when n is very large.
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S. Arridge, P. Maass, O. Öktem, and C.-B. Schönlieb. Solving inverse problems using
data-driven models. Acta Numerica, 28:1–174, 2019.

M. Asim, F. Shamshad, and A. Ahmed. Blind image deconvolution using deep generative
priors. IEEE Transactions on Computational Imaging, 6:1493–1506, 2020.

A. Aspri, E. Beretta, E. Francini, and S. Vessella. Lipschitz stable determination of poly-
hedral conductivity inclusions from local boundary measurements. SIAM Journal on
Mathematical Analysis, 54(5):5182–5222, 2022.
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