
Journal of Machine Learning Research 25 (2024) 1-45 Submitted 3/23; Revised 7/24; Published 8/24

Depth Degeneracy in Neural Networks: Vanishing Angles in
Fully Connected ReLU Networks on Initialization

Cameron Jakub cjakub@uoguelph.ca
Department of Mathematics & Statistics
University of Guelph

Mihai Nica nicam@uoguelph.ca

Department of Mathematics & Statistics

University of Guelph

Editor: Miguel Carreira-Perpinan

Abstract

Despite remarkable performance on a variety of tasks, many properties of deep neural
networks are not yet theoretically understood. One such mystery is the depth degeneracy
phenomenon: the deeper you make your network, the closer your network is to a constant
function on initialization. In this paper, we examine the evolution of the angle between
two inputs to a ReLU neural network as a function of the number of layers. By using
combinatorial expansions, we find precise formulas for how fast this angle goes to zero as
depth increases. These formulas capture microscopic fluctuations that are not visible in the
popular framework of infinite width limits, and leads to qualitatively different predictions.
We validate our theoretical results with Monte Carlo experiments and show that our results
accurately approximate finite network behaviour. We also empirically investigate how
the depth degeneracy phenomenon can negatively impact training of real networks. The
formulas are given in terms of the mixed moments of correlated Gaussians passed through
the ReLU function. We also find a surprising combinatorial connection between these mixed
moments and the Bessel numbers that allows us to explicitly evaluate these moments.

Keywords: deep learning theory, infinite limits of neural networks, network initialization,
Markov chains, combinatorics

1. Introduction

The idea of stacking many layers to make truly deep neural networks (DNNs) is what
arguably led to the neural net revolution in the 2010s. Indeed, from a function-space point
of view, it is known that depth exponentially improves expressibility (Poole et al., 2016;
Eldan and Shamir, 2015). However, an important but less well known fact is that under
standard initialization schemes, deep neural networks become more and more degenerate
as depth gets larger and larger. One sense in which this happens is the phenomenon of
vanishing and exploding gradients (Hanin, 2018). Another sense in which networks become
degenerate is that a neural network gets closer and closer to a (random) constant function,
i.e. the network sends all inputs to the same output and cannot distinguish input points.
This phenomenon seems to have been discovered and analyzed from different points of view
by several authors (Avelin and Karlsson, 2022; Dherin et al., 2022; Li et al., 2022; Hayou
et al., 2019; Schoenholz et al., 2017; Nachum et al., 2022; Buchanan et al., 2021). Nachum

c©2024 Cameron Jakub and Mihai Nica.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v25/23-0350.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v25/23-0350.html

Jakub and Nica

et al. (2022) found for convolutional neural networks, the level of degeneracy was dependent
on the type of input fed into the network.

One method already proposed to deal with the degeneracy phenomenon is the idea of
activation function shaping (Martens et al., 2021). In particular, Li et al. (2022), showed
that rescaling the non-linear activation function (i.e. using Leaky ReLUs with leakiness
depending on network depth) can lead to a non-trivial angle between inputs. However, a
detailed analysis of the evolution of the angle θ without any scaling (e.g. using an ordinary
ReLU in all layers) remained an outstanding problem. This is the gap we fill in this article.

1.1 Main Results for the Angle Process θ`

In this paper, we examine the evolution of the angle θ` between two arbitrary inputs xα, xβ ∈
Rnin after passing through ` layers of a fully connected ReLU network (a.k.a. a multi-layer
perceptron) on initialization. The angle is defined in the usual way by the inner product
between two vectors in Rn`

cos (θ`) :=
〈F `(xα), F `(xβ)〉
‖F `(xα)‖‖F `(xβ)‖

,

where n` is the width (i.e. number of neurons) of the `-th layer and F ` : Rnin → Rn` is
the (random) neural network function mapping input to the post-activation logits in layer
` on initialization. We assume here that the initialization is done with appropriately scaled
independent Gaussian weights so that the network is on the “edge of chaos” (Hayou et al.,
2019; Schoenholz et al., 2017), where the variance of each layer is order one as layer width
increases. See Table 2 for our precise definition of the fully connected ReLU neural network.

With this setup, since the effect of each layer is independent of everything previous, θ`
can be thought of as a Markov chain evolving as layer number ` increases. As expected
by the aforementioned “large depth degeneracy” phenomenon, we observe that the angle
concentrates θ` → 0 as ` → ∞ (see Figure 1 for an illustration). This indicates that the
hidden layer representation of any two inputs becomes closer to co-linear as depth increases.

We obtain a simple, yet remarkably accurate, approximation for the evolution of θ`
as a function of ` that captures precisely how quickly this degeneracy happens for small
angles θ` and large layer widths n`. In Section 1.2, we also empirically investigate how
these predictions relate to network performance after training and show they may have
applications in neural architecture search.

Approximation 1 For small angles θ` � 1 and large layer width n` � 1, the angle θ`+1

at layer `+ 1 is well approximated by

ln sin2(θ`+1) ≈ ln sin2(θ`)−
2

3π
θ` − ρ(n`), (1)

where ρ(n`) is a constant which depends on the width n` of layer `, namely:

ρ(n) := ln

(
n+ 5

n− 1

)
− 10n

(n+ 5)2
+

6n

(n− 1)2
=

2

n
+O

(
n−2

)
. (2)

Figure 1 illustrates how well this prediction matches Monte Carlo simulations of θ`
sampled from real networks. Also illustrated is the infinite width prediction for θ` (discussed

2

Depth Degeneracy in Neural Networks

Figure 1: We feed 2 inputs with initial angle θ0 = 0.1 into 5000 Monte Carlo samples
of independently initialized networks with network width n` = 256 for all layers. Left:
Using the Monte Carlo samples, we plot the empirical mean and standard deviation of
ln(sin2(θ`)) at each layer. We compare this to both the infinite width update rule and our
prediction using Approximation 1 for the mean of ln(sin2(θ`)) (Shown as the blue square).
Our prediction for the standard deviation in each layer using Approximation 2 is also plotted
as the shaded area. To compute this, we iterate Approximation 2 to estimate the PDF in
each layer, and then compute the variance using the PDF. In contrast to our prediction,
the infinite width rule predicts 0 variance in all layers. Right: We plot histograms of our
simulations as well as our predicted probability density function using Approximation 2 from
(10) at Layer 1 (top) and Layer 30 (bottom). The predicted PDF is computed numerically
by iterating Approximation 2 over the 30 layers, using the PDF in layer ` to get the PDF
in layer ` + 1. The predicted and empirical distribution are statistically indistinguishable
according to a Kolmogorov-Smirnov test, with p values 0.987 > 0.05 (top) and 0.186 > 0.05
(bottom). The code which produced this figure can be found at the following GitHub link.

in Appendix A.9) which is less accurate at predicting finite width network behaviour than
our formula, due to the n−1` effects that our formula captures in the term ρ(n`) but are
not present in the infinite width formula. Approximation 1 is a simple corollary to the
mathematically rigorous statement, Theorem 1, for the mean and variance of the random
variable ln sin2(θ`). Approximation 1 is obtained by doing a Taylor series expansion around
θ = 0 and ignoring terms of size O(n−2) from the more precise Theorem 1 concerning the
random variable ln sin2(θ`), which is why Approximation 1 only holds for θ � 1 and n� 1.
See also Corollary 2 for related expansions.

1.1.1 Theoretical Consequences and Comparison to Previous Work

Approximation 1 predicts that θ` → 0 exponentially fast in ` due to ρ(n); it predicts:

θ` ≤ exp

(
−1

2

∑̀
i=1

ρ(ni)

)
= exp

(
−
∑̀
i=1

1

ni
+O(n−2i)

)
.

3

https://github.com/camjakub/Depth-Degeneracy-in-Neural-Networks

Jakub and Nica

(Note that the exponential behaviour vanishes when n` → ∞ with ` fixed). In contrast to
this prediction, an analysis using only expected values or equivalently working in the infinite-
width n→∞ limit predicts that θ` → 0 like `−1, which is qualitatively very different! This
difference in the rate of degeneracy demonstrates significant difference between “real world”
and infinite width networks. See also Figure 4 for comparisons of the infinite vs finite width
predictions for some real architectures.

The prediction of the infinite width degeneracy was first demonstrated under the name
“edge of chaos” (Hayou et al., 2019; Schoenholz et al., 2017) and again in Roberts et al.
(2022); Hanin (2023). These earlier works studied the correlation cos(θ`) as a function of
layer number, and showed showed that 1 − cos(θ`) → 0 like `−2, which is equivalent to
θ` → 0 like `−1 by Taylor series expansion cos(x) ≈ 1

2x
2 as x → 0. To unify the notation,

we also present a derivation of the update rule for cos(θ`) in the infinite width limit in our
notation in Appendix A.9.

We can also recover the infinite width prediction from our result by replacing ρ(n)
with 0 in Approximation 1 in the update rule (1). Exponentiating both sides and using
sin(θ) ≈ θ, eθ ≈ 1 + θ for θ � 1, Approximation 1 becomes (θ`+1)

2 ≈
(
θ`)2(1− 2

3πθ`
)
,

which is equivalent to the result of Proposition C.1 of Hanin (2023) and is also a corollary
of Lemma 1 of Hayou et al. (2019). In those papers, the rule was derived directly from the
infinite width update rule for cos(θ), is equivalent since θ` ≈ 1

` as `→∞.

One of the main limitations of the infinite width predictions is that they predict zero
variance in the random variable θ`. In contrast to this, our methods allow us to also
understand the variance of this random variable, as discussed below.

1.1.2 More detailed results for the mean and variance

Approximation 1 comes from a simplification of more precise formulas for the mean and
variance of the random variable ln(sin2(θ`)), which are stated in Theorem 1 below.

Theorem 1 (Formula for mean and variance in terms of J functions) Conditionally
on the angle θ` in layer ` (see Table 2 for a precise definition of all the notations), the mean
and variance of ln sin2(θ`+1) obey the following limit as the layer width n` →∞

E[ln sin2(θ`+1)|θ`] =µ(θ`, n`) +O(n−2`), Var[ln sin2(θ`+1)|θ`] = σ2(θ`, n`) +O(n−2`), (3)

µ(θ, n) := ln

(
(n− 1)(1− 4J2

1,1)

4J2,2 − 1 + n

)
+

4(J2,2 + 1)

n
(
4J2,2−1

n + 1
)2 (4)

−
4
(
8J2

1,1J2,2 − 8J4
1,1 + 4J2

1,1 − 8J1,1J3,1 + J2,2 + 1
)

n
(
1− 1

n

)2 (
1− 4J2

1,1

)2 ,

σ2(θ, n) :=
8n(J2,2 + 1)

(4J2,2 − 1 + n)2
+

8n(8J2
1,1J2,2 − 8J4

1,1 + 4J2
1,1 − 8J1,1J3,1 + J2,2 + 1)

(n− 1)2(1− 4J2
1,1)

2

(5)

−
16n(2J2

1,1 − 4J1,1J3,1 + J2,2 + 1)

(4J2,2 − 1 + n)(n− 1)(1− 4J2
1,1)

,

4

Depth Degeneracy in Neural Networks

where Ja,b := Ja,b(θ`) are the joint moments of correlated Gaussians passed through the
ReLU function ϕ(x) = max{x, 0}, namely

Ja,b(θ) := EG,Ĝ[ϕa(G)ϕb(Ĝ)], (6)

where G, Ĝ are marginally N (0, 1) random variables with correlation E[GĜ] = cos(θ).

The joint moments Ja,b(θ) are discussed in detail in Section 3. A new combinatorial method
of computing these moments is presented, which is used to give an explicit formula is given
for these joint-moments, which is presented in Theorem 5. Using the explicit formula for
Ja,b, the result of Theorem 1 can be used to obtain useful asymptotic formulas for µ and σ,
as in the following corollary.

Corollary 2 (Small θ asymptotics for mean and variance) Conditionally on the an-
gle θ` in layer `, the mean and variance of ln sin2(θ`+1) obey the following limit as the layer
width n` →∞

E[ln sin2(θ`+1)] =µ(θ`, n`) +O(n−2`), Var[ln sin2(θ`+1)] = σ2(θ`, n`) +O(n−2`), (7)

µ(θ, n) = ln sin2 θ − 2

3π
θ − ρ(n)− 8θ

15πn
−
(

2

9π2
− 68

45π2n

)
θ2 +O(θ3), (8)

σ2(θ, n) =
8

n
− 64

15π

θ

n
−
(

8 +
296

45π

)
θ2

n
+O

(
θ3
)
, (9)

where ρ(n) is as defined in (2).

To derive Approximation 1 from Theorem 1, we simply keep only the first few terms of
the series expansion (8), and then also completely drop the variability, essentially approxi-
mating σ2(θ`, n) ≈ 0 (Note that in reality σ2(θ, n) ≈ 8/n from (9)). Therefore Approxima-
tion 1 is a greatly simplified consequence of Theorem 1.

Moreover, our derivation shows that ln sin2(θ`) can be expressed in terms of sums over
n pairs of independent Gaussian variables (see (14-16)). Thus, by central-limit-theorem
type arguments, one would expect the following approximation by Gaussian laws which
also accounts for the variability of ln sin2(θ) using our calculated value for the variance.

Approximation 2 Conditional on the value of θ`, the angle at layer `+ 1 is well approx-
imated by a Gaussian random variable

ln sin2(θ`+1)
d
≈ N (µ(θ`, n`), σ

2(θ`, n`)), (10)

where µ, σ2 are as in Corollary 2. This approximation is understood in the sense that in
the limit n` →∞, we have

ln sin2(θ`+1)− µ(θ`, n`)√
σ2(θ`, n`)

d⇒ N (0, 1),

5

Jakub and Nica

(a) Mean as a function of θ (b) Variance as a function of θ

Figure 2: Plots comparing the functions µ(θ, n) and σ2(θ, n) to simulated neural networks.
The linear approximation of µ, used to create Approximation 1 is also displayed. Confidence
bands are constructed by randomly initializing 10,000 neural networks with layer width
n` = 1024, and a range of 100 initial angles 0.005 ≤ θ` ≤ 0.8. We study θ`+1 and use
the simulations to construct 99% confidence intervals for a) E

[
ln(sin2(θ`))− ln(sin2(θ`+1))

]
and b) Var

[
ln(sin2(θ`+1))

]
.

We find that the normal approximation (10) matches simulated finite neural networks
remarkably well; see Monte Carlo simulations from real networks in Figure 1. The big ad-
vantage of this approximation is that it very accurately captures the variance of ln(sin2(θ`)),
not just its mean. This variance grows as ` increases, so it is crucial for understanding be-
haviour of very deep networks.

The methods we use to obtain these approximations are quite flexible. For example,
more accurate approximations can be obtained by incorporating higher moments Ja,b(θ)
(see Section 2 for a discussion). We also believe that it should be possible to extend
these methods to other non-linearities beyond ReLU and more complicated neural network
architectures through the same basic principles we introduce here.

1.2 Practical Consequences: Depth Degeneracy Negatively Impacts Training

In this section, we empirically investigate how the theoretical prediction of large depth
degeneracy phenomenon can lead to poor results after training. In other words, we show
evidence that the depth degeneracy phenomenon (identified and studied only at initializa-
tion) can be used as a screening tool for neural architecture search to identify problematic
neural architectures before they are trained. This could potentially add to the arsenal of
existing tools used for neural architecture search (see e.g. Elsken et al. (2019))

We use the formula µ(θ, n) developed in Theorem 1 to create a simple algorithm which
accurately predicts the angle between inputs after travelling through the layers of an ini-
tialized network up to an error of size O(n−2`) in layer `.

Algorithm 1 predicts the angle at the final layer on initialization based solely on the
network architecture n1, n2, . . . nL. Figure 3 demonstrates how networks which exhibit this
type of degeneracy empirically tend to perform worse after training. When Algorithm 1

6

Depth Degeneracy in Neural Networks

Algorithm 1 Angle prediction between inputs for a feed-forward ReLU network with depth
L and layer widths n`, 1 ≤ ` ≤ L. The function µ(θ, n) is given in Theorem 2.

1: θ0 = angle between inputs
2: for ` = 0, . . . , L− 1 do
3: x = µ(θ`, n`) . x represents E[ln(sin2(θ`+1))]
4: θ`+1 = arcsin(e

x
2)

5: end for
6: Final angle = θL

Figure 3: We compare 45 different network architectures trained on the MNIST Deng
(2012), Fashion-MNIST Xiao et al. (2017), and CIFAR-10 Krizhevsky (2009) datasets 10
times each. Using the architecture of the network and Algorithm 1, we predict the angle
between 2 orthogonal inputs at the final output layer of the network on initialization. We
express the angle as ln(sin2(θL)), to follow the form used when developing the finite width
approximations. The angle is plotted against the accuracy of each network on the test data
after training, with error bars representing a 95% confidence interval across the 10 runs.
We observe that small angle θL is related to lower test accuracy. All networks are trained
using 1 epoch, batch size = 100, categorical cross-entropy loss, the ADAM optimizer, and
default learning rate in the Keras module of TensorFlow Abadi et al. (2015). See Appendix
D for details on all of the network architectures used. The code which produced this figure
can be found at GitHub link.

predicts that θ is small at initialization, this serves a warning that the network may train
poorly i.e. the test accuracy seems to be lower. Before going through the computationally
expensive process of training many networks to assess their performance, this prediction

7

https://github.com/camjakub/Depth-Degeneracy-in-Neural-Networks

Jakub and Nica

could be used to quickly filter out network architectures that are unlikely to perform well
due to excessive degeneracy.

1.2.1 Comparison to Infinite Width Update Rule

We compare the performance of Algorithm 1 (which takes into account the layer size n) to
the infinite width update rule (given in Approximation 3). Since the infinite width prediction
cannot account for the differences in layer widths, all networks with the same depth have
the same prediction. In contrast, our method considers both the depth and width of each
layer to predict how the angle propagates layer-by-layer through the network. Figure 4-Left
illustrates how our method yields different angle predictions for different architectures with
the same depth, while the infinite width method does not. Figure 4-Right shows the how
the infinite width predictions differ from our “finite width” method which takes into account
fluctuations of size O(n−1) in each layer.

Figure 4: Left: Comparison of the finite and infinite width predictions for 5 network archi-
tectures with a depth of L = 3 trained 10 times each on the CIFAR-10 dataset Krizhevsky
(2009). The infinite width predicts the same final angle for all networks, since it only de-
pends on network depth. Right: Using the same 45 network architectures as in Figure 3,
we plot a comparison of the predicted angle θL using Algorithm 1 (finite width) versus the
infinite width prediction. We see that the infinite width prediction tends to underestimate
the rate at which θ` tends towards 0.

1.3 J Functions and Infinite Width Limits

In 2009, Cho and Saul (2009) introduced the p-th moment for correlated ReLU-Gaussians,
which they denoted with the letter J ,

Jp(θ) := 2πE
[
ϕp(G)ϕp(Ĝ)

]
, (11)

where p ∈ N, ϕ(x) = max{x, 0} is the ReLU function, and G, Ĝ ∈ R are marginally
two standard N (0, 1) Gaussian random variables with correlation Cov(G, Ĝ) = cos(θ).
This quantity has found numerous applications for infinite width networks. One simple
application of J1 appears in the infinite width approximation for cos(θ`), where ` is fixed
and we take the limit n1, n2, . . . n` →∞ (see Appendix A.9 for a detailed derivation):

8

Depth Degeneracy in Neural Networks

Approximation 3 The infinite-width approximation for the angle θ`+1 given θ` is

cos (θ`+1) =
J1(θ`)

π
=

sin(θ`) + (π − θ`) cos(θ`)

π
. (12)

The formula for J1 is the p = 1 case of a remarkable explicit formula for Jp derived by Cho
and Saul (2009) namely,

Jp(θ) = (−1)p(sin θ)2p+1

(
1

sin θ

∂

∂θ

)p(π − θ
sin θ

)
.

This allows one to derive asymptotics of θ` in the infinite width limit, as in Section 1.1.1.
However, there are several limitations to this approach. Most important is that the infinite
width limit is not a good approximation when the network depth ` is comparable to the
network width n (Li et al. (2022)). The infinite width limit uses the law of large numbers to
obtain (12), thereby discarding random fluctuations. For very deep networks, microscopic
fluctuations (on the order of O(1/n`)) from layer to layer can accumulate over ` layers to
give macroscopic effects. This is why the infinite width predictions for θ` are not a good
match to the simulations in Figure 1; very deep networks are far from the infinite width
limit in this case. See Figure 1 where the infinite width predictions are compared to finite
networks.

Instead, to analyze the evolution of the angle θ` more accurately, we need to do some-
thing more precise than the law of large numbers to capture the effect of these microscopic
fluctuations. This is the approach we carry out in this paper. While the mean only de-
pends on the p-th moment functions Jp from (11), these fluctuations depend on the mixed
moments, which we denote by Ja,b for a, b ∈ N as follows1

Ja,b(θ) := E
[
ϕa(G)ϕb(Ĝ)

]
, (13)

with G, Ĝ again as in (11) are marginally N (0, 1) with correlation cos(θ). In Section 2.1 we
carry out a detailed asymptotic analysis to write the evolution of θ` in terms of the mixed
moments Ja,b. In order to make useful predictions, one must also calculate a formula for
Ja,b(θ). Unfortunately, the method that Cho-Saul originally proposed for this does not seem
to work when a 6= b. This is because that method used contour integrals, and relied on using
certain trig identities which do not hold when a 6= b. Instead, in Section 3, we introduce
a new method, based on Gaussian integration by parts, to compute Ja,b for general a, b
via a recurrence relation. By serendipity2, we find a remarkable combinatorial connection
between Ja,b and the Bessel numbers (Cheon et al. (2013)), which allows one to find an
explicit (albeit complicated) formula for Ja,b in terms of binomial coefficients. The formula
for the first few functions are shown in Table 1, and the general explicit formula is presented
in Theorem 5.

1. Note that compared to Cho and Saul’s definition for Jp, we omit the factor of 2π in our definition of Ja,b.
The factor of 2π seems natural when a+b is even (like the case a = b = p that Cho-Saul considered), but
when a+ b is odd a different factor of 2

√
2π appears! Therefore the factor of 2π would confuse things in

the general case (see Table 1). The correct translation between Cho-Saul Jp and our Ja,b is Jp = 2πJp,p.
2. This connection was first noticed by calculating the first few J functions, and then using the On-Line

Encyclopedia of Integer Sequence to discover the connection to Bessel number (https://oeis.org/
A001498).

9

https://oeis.org/A001498
https://oeis.org/A001498

Jakub and Nica

a
b 0 1 2 3

0 π−θ
2π

cos θ+1
2
√
2π

(π−θ)+sin θ cos θ
2π

2(cos θ+1)+sin2 θ cos θ

2
√
2π

1 sin θ+(π−θ) cos θ
2π

(cos θ+1)2

2
√
2π

3(π−θ) cos θ+sin θ cos2 θ+2 sin θ
2π

2 (π−θ)(2 cos2 θ+1)+3 sin θ cos θ
2π

3 cos θ(cos θ+1)2+2(cos θ+1)+sin2 θ cos θ

2
√
2π

3

(π−θ)(6 cos2 θ+9) cos θ
2π

+5 sin θ cos2 θ+(6 cos2 θ+4) sin θ
2π

Table 1: Table of formulas for the first few J functions. Note that all entries have a
denominator either c0 = 2π or c1 = 2

√
2π depending on the parity of a+b. These generalize

Jp(θ) of (11) which appear on the diagonal of this table. Note that Ja,b = Jb,a so only upper
triangular entries are shown. An explicit formula for all Ja,b is derived in Section 3.4.

1.4 Outline

The two main contributions of this paper are to prove Theorem 1 for the evolution of θ` in
terms of the mixed moments Ja,b, and then separately derive an explicit formula, Theorem
5, for any of the mixed moments Ja,b. Combined, these allow for the explicit formula
Corollary 2 and the useful simpler Approximations 1 and 2. See Figure 1 and Figure 2 for
comparisons of these predictions to Monte-Carlo simulations. We also believe the methods
proposed here are flexible enough to be modified to apply to non-linearities other than
ReLU and to different neural network architectures beyond fully-connected networks in
future work.

Section 2 contains the analysis of the angle process and predicted distribution of ln(sin2(θ`))
in deep ReLU networks. Section 2.1 covers our approximation of E[ln(sin2(θ`+1))] which
leads to the rule for θ` as in equation (1), while Section 2.2 outlines our approximation for
Var[ln(sin2(θ`+1))].

In Section 3, we cover the derivation of the explicit formula for the J functions. We state
the main results of this section in Section 3.1, and cover the mathematical tools needed to
solve the expectations using Gaussian integration by parts in Section 3.2. We develop the
formula for Ja,b by first finding a recursive formula in Section 3.3, which reveals a connection
between the J functions and the Bessel numbers. This recursion is studied to develop an
explicit formula for Ja,b in Section 3.4.

2. ReLU Neural Networks on Initialization

In this section, we analyze ReLU neural networks and show how the the mixed moments Ja,b
appear in evolution of the angle θ` on initialization. We define the notation we use for a fully
connected ReLU neural network, along with other notations we will use in Table 2. Note
that the factor of

√
2/n` in our definition is implementing the so called He initialization

(He et al., 2015), which ensures that E[‖z`‖2] = ‖x‖2 for all layers `. This initialization

10

Depth Degeneracy in Neural Networks

Symbol Definition

x ∈ Rnin Input (e.g. training example) in the input dimension nin ∈ N

` ∈ N Layer number. ` = 0 is the input

n` ∈ N Width of hidden layer ` (i.e. number of neurons in layer `)

W ` ∈ Rn`+1×n` Weight matrix for layer `. Initialized with iid standard Gaussian entries

W `
a,b ∼ N (0, 1)

ϕ : Rn → Rn Entrywise ReLU activation function ϕ(x)i = ϕ(xi) = max{xi, 0}

z`(x) ∈ Rn` Pre-activation vector in the `th layer for input x (a.k.a logits of layer `)

z1(x) := W 1x, z`+1(x) :=
√

2
n`
W `+1ϕ(z`(x)).

ϕ`α, ϕ
`
β ∈ Rn` Post-activation vector on inputs xα, xβ respectively

ϕ`α := ϕ(z`(xα)), ϕ`β := ϕ(z`(xβ))

θ` ∈ [0, π] Angle between ϕ`α and ϕ`β defined by cos(θ`) :=
〈ϕ`α,ϕ`β〉
‖ϕ`α‖‖ϕ`β‖

R`+1 ∈ R Shorthand for the ratio R`+1 :=
‖ϕ`+1
α ‖2‖ϕ`+1

β ‖2

‖ϕ`α‖2‖ϕ`β‖2

Table 2: Definition and notation used for fully connected ReLU neural networks.

is known to be the “critical” initialization for taking large limits of the network (Roberts
et al., 2022; Hayou et al., 2019). Given this neural network, we wish to study the evolution
of 2 inputs xα and xβ as they traverse through the layers of the network. Specifically, we
wish to study how the angle θ between the inputs changes as the inputs move from layer to
layer.

The starting point for our calculation is to notice that because the weights are Gaussian,
the values of ϕ`+1

α , ϕ`+1
β are jointly Gaussian given the vectors of ϕ`α, ϕ

`
β. In fact, it turns

out that by properties of Gaussian random variables, one only needs to know the values
of the scalars ‖ϕ`α‖, ‖ϕ`β‖ and θ` to understand the full distribution of ϕ`+1

α , ϕ`+1
β . (see

Appendix A.5 for details) By using the positive homogeneity of the ReLU function ϕ(λx) =
λϕ(x) for λ > 0, we can factor out the effect of the norm of each vector in layer `. After
some manipulations, these ideas lead us to the following identities that are the heart of our

11

Jakub and Nica

calculations; a full derivation of these quantities are provided in Appendix A.5 and A.6.

‖ϕ`+1
α ‖2=

‖ϕ`α‖2

n`

n∑̀
i=1

2ϕ2(Gi), ‖ϕ`+1
β ‖

2=
‖ϕ`β‖2

n`

n∑̀
i=1

2ϕ2(Ĝi), (14)

〈ϕ`+1
α , ϕ`+1

β 〉 =
‖ϕ`α‖‖ϕ`β‖

n`

n∑̀
i=1

2ϕ(Gi)ϕ(Ĝi), (15)

‖ϕ`+1
α ‖2‖ϕ`+1

β ‖
2

‖ϕ`α‖2‖ϕ`β‖2
sin2(θ`+1) =

2

n2`

n∑̀
i,j=1

(
ϕ(Gi)ϕ(Ĝj)− ϕ(Gj)ϕ(Ĝi)

)2
, (16)

where Gi, Ĝi are all marginally N (0, 1), with correlation Cov(Gi, Ĝi) = cos(θ`) and inde-
pendent for different indices i. The identity in (16) is derived using the determinant of the
Gram matrix for vectors ϕ`+1

α , ϕ`+1
β (full derivation given in Appendix A.6). Combining

the equations in (14) gives us a useful identity for the ratio R`+1, namely:

R`+1 =
4

n2`

n∑̀
i,j=1

ϕ2(Gi)ϕ
2(Ĝj). (17)

Given some θ`, we wish to predict the behaviour of θ`+1. Rather than studying θ`+1 directly,
we instead study the quantity ln(sin2(θ`+1)). This allows us to use convenient approxima-
tions and identities for quantities we are interested in. And indeed, a post-hoc analysis
shows that as θ → 0, the random variable ln sin2(θ`+1) has a non-zero constant variance
which depends only on n`. This is in contrast to θ` itself which has variance tending to zero.
This is one reason why the Gaussian approximation for ln sin2(θ`) ∈ (−∞, 0] ⊂ (−∞,∞)
works well, whereas Gaussian approximations for θ` or cos(θ`) ∈ [−1, 1] are less accurate.
This observation can equivalently be understood as the observation that the random fluc-
tuations seem to be multiplicative, rather than additive, which is why taking the log makes
them more amenable to calculation. We first derive a formula for E

[
ln(sin2(θ`+1))

]
.

2.1 Expected Value

In this section, we show how to compute the expected value of ln(sin2(θ`)) in terms of the
J functions as in Theorem 1. Firstly, we rewrite this expectation as the difference

E
[
ln(sin2(θ`+1))

]
= E

[
ln
(
R`+1 sin2(θ`+1)

)]
−E [ln (R`+1)] . (18)

The two random variables R`+1 and R`+1 sin2(θ`+1) in (18) both have interpretations in
terms of sums of Gaussians as in (16) and (17) which makes it possible to calculate their
moments in terms of the J functions. To enable our use of the moments here, we use the
following approximation of ln(X) for a random variable X, which is based on the Taylor
expansion for ln(1 + x) = x− 1

2x
2 + . . . (a full derivation is given in Appendix A.1):

ln(X) = ln(E[X]) +
X −E[X]

E[X]
− (X −E[X])2

2E[X]2
+ ε2

(
X −E[X]

E[X]

)
, (19)

12

Depth Degeneracy in Neural Networks

where ε2(x) is the Taylor remainder term in ln(1 +x) = x− x2

2 + ε2(x) and satisfies ε2(x) =
O(x3). Applying this approximation to the terms appearing on the right hand side of (18),
and taking expected value of both sides, we obtain the estimates

E
[
ln
(
R`+1 sin2(θ`+1)

)]
= ln

(
E
[
R`+1 sin2(θ`+1)

])
−

Var
[
R`+1 sin2(θ`+1)

]
2E
[
R`+1 sin2(θ`+1)

]2 +O(n−2`),

E [ln (R`+1)] = ln (E [R`+1])−
Var [R`+1]

2E [R`+1]
2 +O(n−2`).

To control the error here, we have used here the fact that R`+1 and R`+1 sin2(θ`+1) can be
written as averages over random variables as in (14 - 16). This allows us to show the 3rd
central moments for R`+1 and R`+1 sin2(θ`+1) are O(n−2`); see Appendix A.1 for details.
This approximation is convenient because we are able to calculate the values on the right
hand side of the equations in terms of the moments Ja,b by expanding/taking expectations
of the representations (14 - 16). The key quantities we calculate are

E [R`+1] =
4J2,2 − 1

n`
+ 1, (20)

Var [R`+1] =
4

n`
(J2,2 + 1) +

16

n2`

(
2J4,2 −

5

2
J2,2 + J2

2,2 +
5

8

)
+O

(
n−3`

)
, (21)

E
[
R`+1 sin2(θ`+1)

]
=

(n` − 1)(1− 4J2
1,1)

n`
, (22)

Var
[
R`+1 sin2(θ`+1)

]
=

8
(
−8J4

1,1 + 8J2
1,1J2,2 + 4J2

1,1 − 8J1,1J3,1 + J2,2 + 1
)

n`
+O

(
n−2`

)
,

(23)

where Ja,b = Ja,b(θ`). These formulas are calculated in Appendix A.7 and Appendix A.8 by
a combinatorial expansion using the representations from (14-16). Combining these gives
the result for µ(θ, n) in Theorem 1. Note that to obtain a more accurate approximation,
we would simply include more terms in the variance expressions in (21, 23).

2.2 Variance of ln(sin2(θ`+1))

In this section, we show how to compute the variance of ln(sin2(θ`)) in terms of the J
functions as in Theorem 1. We can rewrite Var[ln(sin2(θ`+1))] in the following way:

Var[ln(sin2(θ`+1))] = Var
[
ln
(
R`+1 sin2(θ`+1)

)
− ln (R`+1)

]
(24)

= Var
[
ln
(
R`+1 sin2(θ`+1)

)]
+ Var [ln (R`+1)]− 2Cov

(
ln
(
R`+1 sin2(θ`+1)

)
, ln (R`+1)

)
.

We have now expressed this in terms of R`+1 and R`+1 sin2(θ`+1) which will allow us to
use identities as in (14 - 16) in our calculations. Appendix A.2 and Appendix A.3 cover
the method used to approximate the unknown variance and covariance terms above. Once
again, we control the error term arising from moments in the error term of the Taylor series
by using representation as sums (14 - 16). We have already calculated most of the quantities
on the right hand side already in our calculation for µ(θ, n). The only new term is

Cov
(
R`+1 sin2(θ`+1), R`+1

)
=

1

n`

(
16J2

1,1 − 32J1,1J3,1 + 8J2,2 + 8
)

+O
(
n−2`

)
.

13

Jakub and Nica

This is again computed by a combinatorial expansion of the sums (14-16). (Full calcula-
tion given in Appendix A.8). We now have solved for all of the functions needed to perform
our approximation of Var[ln(sin2(θ`+1))]. Putting it together, we end up with the expres-
sion for σ2(θ, n) as in (5). We compare the predicted probability distribution of ln(sin2(θ))
using our formulas µ(θ, n) and σ2(θ, n) to empirical probability distributions in Figure 1.

3. Explicit Formula for the Mixed-Moment J Functions

In this section we develop a combinatorial method that allows us to compute exact formulas
for the J functions. The method is to use Gaussian integration by parts to find a recurrence
relationship between the moments Ja,b, and then solve it explicitly. We begin by generalizing
the definition of Ja,b from (13) to include a = 0 and/or b = 0 as follows. Let G, W be
independent N (0, 1) variables. Then, we define the functions Ja,b(θ) as

Ja,b(θ) = E[Ga(G cos θ +W sin θ)b 1{G > 0} 1{G cos θ +W sin θ > 0}], (25)

where a, b ∈ N ∪ {0}. Note that G cos θ + W sin θ = Ĝ is marginally N (0, 1) and has
correlation cos(θ) with G, matching the original definition. The ReLU function satisfies the
identity ϕ(x)a = xa1{x > 0} for a ≥ 1, so (25) generalizes (13) to the case a = 0. We also
note that Ja,b(θ) = Jb,a(θ) for all a, b ∈ N ∪ {0}.

Remark 3 Note that (25) can equivalently be written in terms of the correlation ρ = cos θ
and

√
1− ρ2 = sin θ as follows.

Ga(ρG+
√

1− ρ2W)b1{G > 0}1{ρG+
√

1− ρ2W}

Some authors prefer to work with the correlation ρ rather than the angle θ. In this work
we choose to work with the angle θ since our technique works well to directly see how quickly
θ → 0.

3.1 Statement of Main Results and Outline of Method

By using the method of Gaussian integration by parts, we are able to derive recurrence re-
lations for the Ja,b functions. Since the definition of Ja,b involves the indicator function
1{G > 0}, we must make sense of what the derivative of this function means for the pur-
poses of integration by parts; see Section 3.2 where this is carried out. Then, by use of
the generalized Gaussian integration by parts formula, we obtain the following recurrence
relations for Ja,b.

Proposition 1 (Recurrence relations for Ja,b) For a ≥ 2, the sequence Ja,0 satisfies
the recurrence relation:

Ja,0(θ) = (a− 1)Ja−2,0(θ) +
sina−1 θ cos θ

ca mod 2
(a− 2)! ! , (26)

where c0 = 2π, c1 = 2
√

2π. For a ≥ 2, and b ≥ 1, the collection Ja,b satisfies the following
two-index recurrence relation:

Ja,b(θ) = (a− 1)Ja−2,b(θ) + b cos θJa−1,b−1(θ). (27)

14

Depth Degeneracy in Neural Networks

The same integration by parts technique that yields the recurrence relation also makes
it easy to evaluate the first few J functions. They are as follows:

Proposition 2 (Explicit Formula for J0,0, J1,0, J1,1) J0,0, J1,0, and J1,1 are given by

J0,0(θ) =
π − θ

2π
, J1,0(θ) =

1 + cos θ

2
√

2π
, J1,1(θ) =

sin θ + (π − θ) cos θ

2π
. (28)

See Appendix B.1 for a derivation of these quantities. Note that Cho and Saul (2009)
have previously discovered the formulas for J0,0 and J1,1 by use of a completely different
contour-integral based method.

The combination of Propositions 1 and 2 make it possible to practically calculate any
value of Ja,b when a, b are not too large. However, by serendipity, we are able to find
remarkable explicit formulas for Ja,b, which we report below.

Proposition 3 (Explicit Formulas for Ja,0(θ), Ja,1(θ)) Let a ≥ 2. Then, Ja,0 and Ja,1
are explicitly given by the following:

Ja,0(θ) = (a− 1)! !

Ja mod 2,0 +
cos θ

ca mod 2

∑
i 6≡a(mod 2)

0<i<a

(i− 1)! !

i! !
sini θ

 ,

where c0 = 2π, c1 = 2
√

2π. We can then use the explicit formula for Ja,0 in the formula
for Ja,1:

Ja,1(θ) = (a− 1)! !

Ja mod 2,1 + cos θ
∑

i 6≡a(mod 2)
0<i<a

Ji,0(θ)

i! !

 ,

where an explicit formula for the first term (either J1,0 or J1,1 depending on the parity of
a) is given in Proposition 2.

We can finally express Ja,b as a linear combination of J0,n and J1,n, as follows. (In light
of the previous explicit formulas, this is an explicit formula for Ja,b.) It turns out that the
coefficients are given in terms of two special numbers P (a, b) and Q(a, b) which are known
as the Bessel numbers.

Definition 4 (Bessel numbers) The numbers P (a, b) and Q(a, b) are defined as follows,

P (a, b) =


a!

b!(a−b2)!2
a−b
2

, a ≥ b, a ≡ b (mod 2)

0, otherwise
, (29)

Q(a, b) =

{
(a+b2)!
b! 2

b−a
2
∑a−b

2
i=0

(
a+1
i

)
, a ≥ b, a ≡ b (mod 2)

0, otherwise
. (30)

15

Jakub and Nica

P (a, b) represents a family of numbers known as the Bessel numbers of the second kind
(Cheon et al. (2013)), and Q(a, b) comes from a closely related family of numbers (Kreinin
(2016)). Using these, we can express Ja,b as follows.

Theorem 5 (Explicit Formula for Ja,b(θ)) Let b ≥ 2, a ≥ 1, b ≥ a. Then, we have the
following formula for Ja,b(θ) in terms of J0,n and J1,n

Ja,b =
∑

i≡0(mod 2)
0<i≤a

(b)a−i(cos θ)a−i (P (a, a− i)−Q(a− 1, a− 1− i)) J0,b−a+i

+
∑

i≡1(mod 2)
0<i≤a

(b)a−i(cos θ)a−iQ(a− 1, a− i)J1,b−a+i.

Remark 6 Since J1,n is also given in terms of J0,n, one may further simplify the formula
for Ja,b to be in terms of only J0,n, J0,0 and J0,1. This substitution yields the following
formula. For notational convenience, we will let δ := b− a,

Ja,b =
∑

i≡0(mod 2)
0<i≤a

(b)a−i(cos θ)a−i(P (a, a− i)−Q(a− 1, a− 1− i))J0,δ+i

+
∑

i≡1(mod 2)
0<i≤a

(b)a−i(cos θ)a−iQ(a− 1, a− i)(δ + i− 1)! !J(δ+1) mod 2,1

+ cos θ
∑

i≡1(mod 2)
0<i≤a

∑
j≡δ(mod 2)
0<j<δ+i

(b)a−i(cos θ)a−iQ(a− 1, a− i)(δ + i− 1)! !

j! !
J0,j .

3.2 Gaussian Integration-by-Parts Formulas

In this section, we state two important formulas that together give us the tools for computing
the expectations that appear in Ja,b, based on the well known Gaussian integration-by-parts
trick; see for example Chapter 7.2 of the textbook (Vershynin, 2018).

Fact 1 (Gaussian Integration by Parts) Let G ∼ N (0, 1) be a Gaussian variable and
f : R→ R be a differentiable function. Then,

E[Gf(G)] = E[f ′(G)]. (31)

Using this type of Gaussian integration by parts formula, we can generalize the expected
value of Gaussians to derivatives of functions which are not necessarily differentiable. For
example the indicator function 1{x > a} is not differentiable, but for the purposes of com-
puting Gaussian expectation, we can use the following integration formula.

Remark 7 An alternative way to view this kind of Gaussian expected value calculation is
Wick’s formula / Isserlis theorem. The Gaussian integration by parts trick can be thought
of as the extension of those formulas from polynomials to arbitrary functions.

16

Depth Degeneracy in Neural Networks

Fact 2 (Gaussian expectations involving 1′{x > a}) Let G be a Gaussian variable and

a ∈ R. Let f : R → R such that limg→∞ f(g)e
−g2
2 = 0. Then, using the Gaussian integra-

tion by parts formula to assign a meaning to expectations involving the “derivative of the
indicator function”, 1′{x > a}, we have

E[1′{G > a}f(G)] = f(a)
e
−a2
2

√
2π
. (32)

Remark 8 The purpose of assigning a value to the expectation (32) is to allow one to
compute “honest” expectations of the form (31) when f(x) involves 1{x > 0}; see Lemma 9
for an illustrative example. The final result does not require interpreting “1′{x > a}”; this
is only a useful intermediate step in the sequence of calculations leading to the final result.

The formula can also be understood or proven in a number of different alternative ways.
One is simply to say that 1′{x > a} = δ{x = a} is a “Dirac delta function” at x = a. A
more rigorous way would be to take any differentiable family of functions 1ε{x > a} which
suitably converge to 1{x > a} as ε → 0 and then interpret the result as the limit of the
expectation limε→0 E[1′ε{G > a}f(G)]. Here is the argument that is used to obtain Fact 2:
Applying integration by parts, we formally have

E[1′{G > a}f(G)] =

∞∫
−∞

1′{g > a}f(g)
e
−g2
2

√
2π
dg

=

1{g > a}f(g)
e
−g2
2

√
2π

∞
−∞

−
∞∫
−∞

1{g > a} d
dg

f(g)
e
−g2
2

√
2π

 dg.

Note that the first term is 0 by the hypothesis lim
g→∞

f(g)e
−g2
2 = 0, and we have then

E[1′{G > a}f(G)] = −
∞∫
a

d

dg

f(g)
e
−g2
2

√
2π

 dg = −

f(g)
e
−g2
2

√
2π

∞
a

= 0 + f(a)
e
−a2
2

√
2π
,

where we have used the hypothesis on f once again.

The two facts about Gaussian integration by parts can be combined to create recurrence
relations for expectations involving 1{G > a}. A simple example is the following lemma,
which we will also use later in our derivation. The proof strategy of this lemma is a mi-
crocosm of the proof strategy we use to compute Ja,b in general, namely to use Gaussian
integration by parts to derive a recurrence relation and initial condition, and then solve.

Lemma 9 (Moments of ϕ(G)) For k ≥ 0, we have

E[ϕ(G)k] = E[Gk1{G > 0}] =

{
(k−1)!!

2 k is even
(k−1)!!√

2π
k is odd

=
√

2π
(k − 1)! !

ck−1 mod 2
,

where c0 = 2π and c1 = 2
√

2π.

17

Jakub and Nica

Proof We prove this for even and odd k separately by induction on k. The base case for
k = 0 is trivial since (0− 1)! ! = 1 is the empty product. The base case k = 1 follows by first
applying (31) with f(x) = 1{x > 0} and then applying (32) with f(x) ≡ 1,

E[ϕ(G)] = E[G1{G > 0}] = E[1′{G > 0}] =
√

2π
−1
.

Now, to see the induction, we apply (31) with f(x) = xk−11{x > 0}, k ≥ 2. Due to the
product rule, there are two terms in the derivative,

E[ϕ(G)k] = E[G ·Gk−11{G > 0}] (33)

= (k − 1)E[Gk−21{G > 0}] + E[Gk−11′{G > 0}]
= (k − 1)E[ϕ(G)k−2] + 0,

where we have recognized that the second term is 0 by application of (32) with f(x) = xk−1

which has f(0) = 0. The recurrence E[ϕ(G)k] = (k − 2)E[ϕ(G)k−2] along with initial con-
dition leads to the stated result by induction.

3.3 Recursive Formulas for Ja,b(θ) - Proof of Proposition 1

Proof [Of Proposition 1] To find a recursive formula for Ja,0, a ≥ 2, we apply the Gaussian
integration by parts formula (31) to f(x) = xa−11{x > 0}1{cos θx+W sin θ > 0} to evaluate
the expected value over G first. When applying product rule there are three terms

Ja,0 =E[G ·Ga−11{G > 0}1{G cos θ +W sin θ > 0}] (34)

=(a− 1)E[Ga−21{G > 0}1{G cos θ +W sin θ > 0}]
+ E[Ga−11{G > 0}1′{G cos θ +W sin θ > 0}] cos θ

+ E[Ga−11′{G > 0}1{G cos θ +W sin θ > 0}].

The first term is simply (a−1)Ja−2,0. The last two terms can now be evaluated with the help
of (32). The last term of (34) is (32) with the function f(x) = xa−11{x cos θ+W sin θ > 0}
which has f(0) = 0 for a ≥ 2. Therefore, this term simply vanishes.

To evaluate the middle term of (34), we introduce a change of variables to express
G cos θ +W sin θ in terms of two other independent Gaussian variables Z,W ∼ N (0, 1)

Z = G cos θ +W sin θ, G = Z cos θ + Y sin θ, (35)

Y = G sin θ −W cos θ, W = Z sin θ − Y cos θ,

where Y, Z iid N (0, 1). Under this change of variables, Ja,0, a ≥ 2 is setup to apply (32)
with f(x) = 1{x cos θ + Y sin θ}a−11{x cos θ + Y sin θ > 0}

Ja,0 = (a− 1)Ja−2,0 + E[Ga−11{G > 0}1′{G cos θ +W sin θ > 0}] cos θ

= (a− 1)Ja−2,0 + E[(Z cos θ + Y sin θ)a−11{Z cos θ + Y sin θ > 0}1′{Z > 0}] cos θ

= (a− 1)Ja−2,0 + E[(0 + Y sin θ)a−11{0 + Y sin θ > 0}] 1√
2π

cos θ

= (a− 1)Ja−2,0 +
sina−1 θ cos θ

ca mod 2
(a− 2)! ! ,

18

Depth Degeneracy in Neural Networks

where we have applied Lemma 9 to evaluate the last expectation.

A similar argument is used to find the recursive formula for Ja,b, a ≥ 2, b ≥ 1, by using
(31) with the function f(x) = xa−1(x cos θ + W sin θ)b1{x > 0}1{x cos θ + W sin θ > 0}.
There are 4 terms in the product rule derivative. Fortunately in this case, the last two
terms are simply zero by application of (32) since the expressions vanish when G = 0, so
we get

Ja,b = E[G ·Ga−1(G cos θ +W sin θ)b1{G > 0}1{G cos θ +W sin θ > 0}]
= E[(a− 1)Ga−2(G cos θ +W sin θ)b1{G > 0}1{G cos θ +W sin θ > 0}]

+ E[Ga−1b cos θ(G cos θ +W sin θ)b−11{G > 0}1{G cos θ +W sin θ > 0}]
+ E[Ga−1(G cos θ +W sin θ)b1′{G > 0}1{G cos θ +W sin θ > 0}]
+ E[Ga−1(G cos θ +W sin θ)b1{G > 0}1′{G cos θ +W sin θ > 0} cos θ]

= (a− 1)Ja−2,b + b cos θJa−1,b−1 + 0 + 0,

as desired.

3.4 Solving the Recurrence to get an Explicit Formula for Ja,b(θ) - Proof of
Theorem 5

Solving the recurrence for the sequences Ja,0 and Ja,1 to get the claimed explicit formula
for Ja,0 is a simple induction proof. We defer these to Appendix B.2. More difficult and
interesting is the 2D array Ja,b. To solve the recurrence

Ja,b = (a− 1)Ja−2,b + b cos θJa−1,b−1, a ≥ 2, b ≥ 1, (36)

we will apply the recursion repeatedly until Ja,b can be expressed as a linear combination of
J0,n and J1,n terms for which we already have an explicit formula developed. To determine
the coefficients in front of J0,n and J1,n, we take a combinatorial approach by thinking of
the recurrence relation as a weighted directed graph as defined below.

Definition 10 (Viewing a recursion as a directed weighted graph) We can view the
recurrence relation for Ja,b as a weighted directed graph on the vertex set (a, b) ∈ Z2 where
vertices represent the values of Ja,b and directed edges capture how values of Ja,b are con-
nected through the recurrence relation. To be precise, the graph edges and edge weights we
are defined so that the recursion (36) for Ja,b can be expressed in the graph as a sum over
incoming edges,

Ja,b =
∑

e:(a′,b′)→(a,b)

wJe Ja′,b′ , (37)

where the sum is over the edges e with weight wJe incoming to the vertex (a, b). An example
of the graph to calculate J6,8 is illustrated in Figure 5.

By repeatedly applying the recursion, Ja,b can be expressed as a linear combination of
the values at the source vertices of the graph (i.e. those with no incoming edges). For the

19

Jakub and Nica

recurrence Ja,b, the source vertices are J0,n and J1,n. The coefficients in front of each source
is simply the weighed sum over all paths from the source to the node, namely

Ja,b =
∑

source vertices v

W J
v→(a,b)Jv =

∑
n≥0

W J
(0,n)→(a,b)J0,n +

∑
n≥0

W J
(1,n)→(a,b)J1,n, (38)

W J
(a′,b′)→(a,b) :=

∑
π:(a′,b′)→(a,b)

∏
e∈π

wJe , (39)

where the sum is over all paths π from the vertex (a′, b′) to the vertex (a, b) in the J graph.

In light of (38), to prove Theorem 5, we have only to calculate the weighted sum of path
W J

(0,n)→(a,b) and W J
(1,n)→(a,b). These weighted sums turn out to be given in terms of the P

and Q numbers which were defined in Definition 4.

6

5

4

3

2

1

0

8 7 6 5 4 3 2

J0,8 J0,6 J0,4 J0,2

J2,8 J2,6 J2,4

J4,8 J4,6

J6,8

J1,7 J1,5 J1,3

J3,7 J3,5

J5,7

1 1 1

3 3

5

2 2

4

7 cos θ 5 cos θ

7 cos θ

8 cos θ 6 cos θ 4 cos θ

8 cos θ 6 cos θ

8 cos θ

(a) Directed graph associated with J

0

1

2

3

4

5

6

8 7 6 5 4 3 2

J∗0,8 J∗0,6 J∗0,4 J∗0,2

J∗2,8 J∗2,6 J∗2,4

J∗4,8 J∗4,6

J∗6,8

J∗1,7 J∗1,5 J∗1,3

J∗3,7 J∗3,5

J∗5,7

1 1 1

3 3

5

2 2

4

1 1 1

1 1

1

1 1 1

1 1

1

(b) Directed graph associated with J∗

Figure 5: The graph associated with the recursions for J in (36) (left) and J∗ in (43) (right).
The graph is defined so that the recursion is given by a sum of incoming edges as in (37).
The edges are color coded red and blue to match the coefficients in the recursion.

Proposition 4 (Weighted sums of paths for J) In the graph for J , we have the fol-
lowing formulas for the sum over weighted paths W J defined in (39),

W J
(0,n)→(a,b) = (b)b−n(cos θ)b−n(P (a, b− n)−Q(a− 1, b− n− 1)), (40)

W J
(1,n)→(a,b) = (b)b−n(cos θ)b−nQ(a− 1, b− n). (41)

To prove this Proposition 4, we first create a simpler recursion, J∗, which we solve first and
then slightly modify the solution to get the solution for J .

Lemma 11 (Weighted sums of paths for J∗) Let J∗a,b be defined to be the recursion:

J∗a,b := (a− 1)J∗a−2,b + 1J∗a−1,b−1 for 2 ≤ a ≤ b, (42)

J∗1,b := 0 + 1J∗0,b−1 for 1 ≤ b. (43)

20

Depth Degeneracy in Neural Networks

Thinking of this recursion as a graph as in Definition 10 (see Figure 5 for an illustration),
we have that the sum of weighted paths W J∗ defined analogously to those in (39), are given
by P and Q numbers, namely

W J∗

(0,n)→(a,b) = P (a, b− n), W J∗

(1,n)→(a,b) = Q(a− 1, b− n). (44)

The connection between the J∗ and the P , Q numbers is through the following recursion
for the P , Q numbers.

Lemma 12 (Recursion for P and Q numbers) The P numbers, defined in Definition 4,
satisfy P (0, 0) = 1, P (n, n) = P (n− 1, n− 1) for n ≥ 1, and the recursion

P (a, b) = (a− 1) · P (a− 2, b) + 1 · P (a− 1, b− 1), for a ≥ 2, 0 ≤ b ≤ a− 2,

under the convention that P (a,−1) = 0. The Q numbers satisfy the same recursion as the
P numbers, with a coefficient of a rather than (a− 1).

The proof of Lemma 12 is an easy consequence of known results from Kreinin (2016)
and is deferred to Appendix C.
Proof [Of Lemma 11] Using the same idea of recursions expressed as graphs as in Definition
10, the recursion from Lemma 12 means that P and Q can be expressed as weighted directed
graphs. These are displayed in Figure 6. Since the P and Q graphs have only one single unit
valued source vertex at (0, 0), (38) shows that the P and Q numbers are actually themselves
equal to sums over weighted paths in their respective graphs

P (a, b) = WP
(0,0)→(a,b), Q(a, b) = WQ

(0,0)→(a,b).

Therefore the statement of the lemma is that sum over weighted paths in the J∗ graph are
the same as other sums over weighted paths in the P graph/Q graphs,

W J∗

(0,n)→(a,b) = WP
(0,0)→(a,b−n), W J∗

(1,n)→(a,b) = WQ
(0,0)→(a−1,b−n). (45)

The fact that these are equal is demonstrated by establishing a simple bijection between
weighted paths in the P graph/Q graph, and weighted paths in the J∗ graph. For example,
in Figure 6, there is a bijection between the weighted paths in the P graph which connect
P (0, 0) to P (6, 2), to the paths which connect J∗6,8 to J∗0,6 in the J∗ graph. The bijection
is simply to flip any path in the P -graph by rotating it by 180◦ to get a valid path in the
J∗-graph. Moreover, the edge weights for J∗ and P are precisely set up so that under this
bijection, the paths will have the same set of weighted edges in the same order. A full, more
detailed, explanation of this bijection is given in Appendix B.3. This argument shows that
W J∗

(0,n)→(a,b) = P (a, b− n) as desired.
The P numbers do not apply for paths between J∗1,n and J∗a,b because we are starting one

row higher so the first vertical upward edge is weight 2. In this case, there is a bijection to
the Q-graph after flipping the path. For any path which runs from a node in row 1 to the
top left corner of the J∗-graph, we can find the same “flipped” path in the graph of the Q,
running from the top left entry to the corresponding node in row a − 1. (The bijection is
explained in detail in Appendix B.3.) Hence W J∗

(1,n)→(a,b) = Q(a− 1, b− n) as desired.

21

Jakub and Nica

0

1

2

3

4

5

6

0 1 2 3 4 5 6

0 0 0

0 0

0

0 0 0

0 0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

05 5 5

3 3

1

6 6 6

4 4

2

1 1 1

1 1

1

1 1 1

1 1

1
1

1

3

15

1

3

15

1

6

45

1

10

1

15

1

1

(a) P

0

1

2

3

4

5

6

0 1 2 3 4 5 6

0 0 0

0 0

0

0 0 0

0 0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

06 6 6

4 4

2

7 7 7

5 5

3

1 1 1

1 1

1

1 1 1

1 1

1
1

2

8

...

1

5

33

1

9

...

1

14

1

...

1

...

(b) Q

0

1

2

3

4

5

6

8 7 6 5 4 3 2

J∗0,8 J∗0,6 J∗0,4 J∗0,2

J∗2,8 J∗2,6 J∗2,4

J∗4,8 J∗4,6

J∗6,8

J∗1,7 J∗1,5 J∗1,3

J∗3,7 J∗3,5

J∗5,7

1 1 1

3 3

5

2 2

4

1 1 1

1 1

1

1 1 1

1 1

1

(c) J∗
6,8

Figure 6: Graphs associated with the recursions for the P numbers (left), Q numbers
(middle), and J∗ (right). The weighted edges indicate the coefficients in the recursions for
P,Q, J∗ respectively. The diagrams are lined up so that the sum of weighted paths in from
J∗6,8 can be directly read from the P and Q entries in the same location. By reading from

the bottom displayed row of P we see that the weighted sum over paths W J∗

(0,n)→(6,8) are

15, 45, 15 and 1 for n = 8, 6, 4 and 2 respectively. (Since these are the source vertices, this
shows that J∗6,8 = 15J∗0,8 + 45J∗0,6 + 15J∗0,4 + 1J∗0,2.) From the bottom displayed row of Q we

see that the values for sums of weighted paths from vertices W J∗

(1,n)→(6,8) are 33, 14 and 1
for n = 7, 5 and 3 respectively.

Having solved for J∗ in terms of P and Q, it remains to translate these into the weights
for J to obtain Proposition 4.

Proof [Of Proposition 4]

The proof follows by relating the weighted sum of paths for J in terms of J∗ and then
applying the result of Lemma 11. There are two differences between the formula for Ja,b
compared to J∗a,b, which can both be seen in Figure 5. We handle both differences as follows:

Difference #1: J has a weight of b cos θ on the blue diagonal edges (a, b)→ (a+ 1, b+ 1)
vs J∗ has a weight of 1.

This difference is handled by the following observation: any path from (a, b) → (a′, b′)
in the graph goes through each column between b and b′ exactly once. This means that the
contribution of the edge weights from these edges do not depend on the details of which path
was taken, only the starting and ending points. They always contribute the same factor,
(b)b′−b(cos θ)b

′−b. (here (b)k = b(b− 1) · · · (b− k + 1) is the falling factorial with k terms).
This argument shows that the weighted sum of paths in J and J∗ are related by

W J
(a,b)→(a′,b′) = (b)b′−b(cos θ)b

′−bW J∗

(a,b)→(a′,b′). (46)

By the result of Lemma 11, this shows that W J
(1,n)→(a,b) = (b)b−n(cos θ)b−nQ(a − 1, b − n)

as desired. Equation (46) holds for all paths with starting point a ≥ 1. When a = 0, there
is one additional difference between J and J∗ which is accounted for below.

Difference #2: J0,n has no diagonal edge vs J∗0,n has a diagonal blue edge of weight 1.

22

Depth Degeneracy in Neural Networks

Because of this “missing edge”, the only choice in J for paths starting from (0, n) is to
first go vertically up by 2 units to (2, n). Hence W J

(0,n)→(a,b) = W J
(2,n)→(a,b). To evaluate

this, we use the decomposition of paths in J∗ by what their first step is, either a diagonal
blue step or a red vertical up step, to see that

W J∗

(0,n)→(a,b) = W J∗

(1,n+1)→(a,b) +W J∗

(2,n)→(a,b), (47)

=⇒ W J∗

(2,n)→(a,b) = W J∗

(0,n)→(a,b) −W
J∗

(1,n+1)→(a,b) (48)

= P (a, b− n)−Q(a− 1, b− n− 1), (49)

by the result of Lemma 11. By applying now (46) to relate J and J∗, we obtain W J
(0,n)→(a,b) =

W J
(2,n)→(a,b) = (b)b−n(cos θ)b−n(P (a, b− n)−Q(a− 1, b− n− 1)) as desired.

Proof [Of Theorem 5] The formula is immediate from (38), which writes Ja,b as a linear
combination of J0,n and J1,n, and Proposition 4 which gives the the coefficients.

Appendix A.

A.1 Expected Value Approximation

Lemma 13 Both the random variables X = R`+1 and X = R`+1 sin2(θ`) satisfy

E[ln(X)] = ln(E[X])− Var[X]

2E[X]2
+O(n−2`). (50)

Proof First note that by the properties of the logarithm, we have

ln(X) = ln

(
E[X]

(
E[X] + (X −E[X])

E[X]

))
= ln(E[X]) + ln

(
1 +

X −E[X]

E[X]

)
. (51)

We can now apply the Taylor series ln(1 + x) = x − x2

2 + ε2(x), where ε2(x) is the Taylor
series remainder and satisfies ε2(x) = O(x3). Hence

ln(X) = ln(E[X]) +
X −E[X]

E[X]
− (X −E[X])2

2E[X]2
+ ε2

(
X −E[X]

E[X]

)
.

Note that E[X − E[X]] = 0, and E[(X − E[X])2] = Var[X]. Thus, if we take the expected
value of our above approximation, we get the following:

E[ln(X)] = ln(E[X])− Var[X]

2E[X]2
+ E

[
ε2

(
X −E[X]

E[X]

)]
.

By using bounds on the Taylor series error term ε2(x) = O(x3), one can obtain bounds for
this last error term. By (16, 17), both X = R`+1 and X = R`+1 sin2(θ`+1) can be expressed
as averages of the form

X =
1

n2`

n∑̀
i,j

f(Gi, Ĝj). (52)

23

Jakub and Nica

From the bound on the 3rd moment in Lemma 16, it follows that E[ε2(X−E[X])] = O(n−2`),
thus giving the desired result.

A.2 Variance Approximation

Lemma 14 Both the random variables X = R`+1 and X = R`+1 sin2(θ`) satisfy

Var[ln(X)] =
Var[X]

E[X]2
+O(n−2`).

Proof Starting with (51), and using the first term of the Taylor series approximation for
ln(1 + x) = x+ ε1(x) now, we have that

ln(X) = ln(E[X]) +
X −E[X]

E[X]
+ ε1

(
X −E[X]

E[X]

)
. (53)

where ε1(x) is the Taylor error term and satisfies ε1(x) = O(x2). Taking the variance of
this, we arrive at an approximation of Var[ln(X)].

Var[ln(X)] = Var

[
ln(E[X]) +

X −E[X]

E[X]
+ ε1

(
X −E[X]

E[X]

)]
= Var

[
X −E[X]

E[X]

]
+ Var

[
ε1

(
X −E[X]

E[X]

)]
+ Cov

(
X −E[X]

E[X]
, ε1

(
X −E[X]

E[X]

))
.

As with the expected value approximation, this approximation for variance is used twice,
once for X = R`+1, and once for X = R`+1 sin2(θ`+1) (see Section 2.2), both of which can
can be expressed as a sum as in (52). Since ε1(x) = O(x2), we have that the terms with

ε1(x) are both O(n−2`) from Lemma 16. Simplifying the first term, Var
[
X−E[X]
E[X]

]
= Var[X]

E[X]2

gives the result of the Lemma.

A.3 Covariance Approximation

Lemma 15 Both the random variables X = R`+1 and X = R`+1 sin2(θ`) satisfy

Cov(ln(X), ln(Y)) =
Cov(X,Y)

E[X]E[Y]
+O(n−2`).

24

Depth Degeneracy in Neural Networks

Proof Using the approximation in (53) for ln(X) and ln(Y), we get the following expression
for the covariance:

Cov(ln(X), ln(Y))

= Cov

(
ln(E[X]) +

X −E[X]

E[X]
+ ε1

(
X −E[X]

E[X]

)
, ln(E[Y]) +

Y −E[Y]

E[Y]
+ ε1

(
Y −E[Y]

E[Y]

))
= Cov

(
X

E[X]
+ ε1

(
X −E[X]

E[X]

)
,
Y

E[Y]
+ ε1

(
Y −E[Y]

E[Y]

))
= Cov

(
X

E[X]
,
Y

E[Y]

)
+ Cov

(
X

E[X]
, ε1

(
Y −E[Y]

E[Y]

))
+ Cov

(
ε1

(
X −E[X]

E[X]

)
,
Y

E[Y]

)
+ Cov

(
ε1

(
X −E[X]

E[X]

)
, ε1

(
Y −E[Y]

E[Y]

))
.

We get the desired result from the fact that that the error term ε1(x) satisfies ε1(x) = O(x2)
and from our result in Lemma 18.

A.4 Third and Fourth Moment Bound Lemma

Lemma 16 Let Gi, Ĝi, 1 ≤ i ≤ n be marginally N (0, 1) random variables with correlation
cos(θ) and independent for different indices i. Let A = 1

n2

∑n
i,j f(Gi, Ĝj) be the average over

all n2 pairs of some function f : R2 → R which has finite fourth moment, E[f(Gi, Ĝi)
4] <

∞. Then, the third and fourth central moment of A satisfy

E[(A−E[A])3] = O(n−2), E[(A−E[A])4] = O(n−2). (54)

Proof We begin by showing the third moment bound. First, we can express E[(A−E[A])3]
as a sum in the following way:

A−E[A] =
1

n2

n∑
i,j

(
f(Gi, Ĝj)−E[f(Gi, Ĝj)]

)

=⇒ E
[
(A−E[A])3

]
=

1

n6

n∑
i1,i2,i3
j1,j2,j3

E

[
3∏

k=1

(
f(Gik , Ĝjk)−E[f(Gik , Ĝjk)]

)]
. (55)

Note that many of these terms are mean zero. For example, for any configuration of the
indices where there is no overlap between the indices (i1, j1) and the other two index pairs
({i1, j1} ∩ {i2, j2, i3, j3} = ∅), we may use independence to observe that

E

[
3∏

k=1

(
f(Gik , Ĝjk)−E[f(Gik , Ĝjk)]

)]

=E
[
f(Gi1 , Ĝj1)−E[f(Gi1 , Ĝj1)]

]
E

[
3∏

k=2

(
f(Gik , Ĝjk)−E[f(Gik , Ĝjk)]

)]
= 0.

25

Jakub and Nica

When this happens we say that (i1, j1) is a “reducible point”. Similarly, (i2, j2) or (i3, j3) can
be reducible if they have no overlap with the other two index pairs. To control E

[
(A−E[A])3

]
,

it will suffice to enumerate the number of indices {i1, j1, i2, j2, i3, j3} so that all three points
(i1, j1), (i2, j2), (i3, j3) are not reducible. We call these “irreducible configurations”.

We now observe that at least one of the points (i1, j1),(i2, j2) or (i3, j3) is reducible

whenever the number of unique numbers is
∣∣∣⋃3

k=1{ik, jk}
∣∣∣ ≥ 5. This is because, by the

pigeonhole principle, if there are no repeated or only one repeated number between 6 indices,
then at least one of the 3 pairs (i1, j1),(i2, j2) or (i3, j3) must consist of two unique numbers
and therefore is a reducible point.

Since the irreducible configurations can only have at most 4 unique numbers, the number
of irreducible configurations is O(n4) as n → ∞. In fact, a detailed enumeration of the
number of configurations reveals that the number of irreducible configurations is precisely

32(n)4 + 68(n)3 + 28(n)2 + 1(n)1. (56)

Here, (n)k = n · (n − 1) · (n − 2) · · · (n − k + 1) denotes the falling factorial with k terms.
The leading term is 32 because there are 32 possible “patterns” for how the indices can be

arranged to be both irreducible and contain exactly 4 unique numbers
∣∣∣⋃3

k=1{ik, jk}
∣∣∣ = 4;

these patterns are listed in Table 3. Each pattern contributes (n)4 = n(n− 1)(n− 2)(n− 3)
possible index configurations by filling in the 4 unique numbers in all the possible ways.
Similarly, there are respectively 68, 28, and 1 pattern(s) for irreducible configurations with
3,2 and 1 unique number(s) in them which each contribute (n)3, (n)2 and (n)1 configurations
per pattern

Since the number of irreducible configurations is O(n4), the normalization by n6 in (55)
shows that E[(A−E[A])3] is O(n−2) as desired for the third moment.

The argument for the 4th moment is similar. We write E[(A − E[A])4] as a sum
over i1, j1, i2, j2, i3, j3, i4, j4 and again enumerate irreducible configurations. In this case,
once again by the pigeonhole principle any configuration with 7 or more unique points∣∣∣⋃3

k=1{ik, jk}
∣∣∣ ≥ 7 will be reducible. Since there are at most 6 unique numbers, there will

be O(n6) irreducible configurations. A detailed enumeration of all the possible irreducible
patterns and the number of unique elements in each yields that the number of irreducible
configurations is precisely

48(n)6 + 544(n)5 + 1268(n)4 + 844(n)3 + 123(n)2 + 1(n)1.

The normalization factor of n−8 then shows that E[(A−E[A])4] = O(n−2).

Remark 17 A more detailed enumeration of the 4th moment actually shows that the dom-
inant terms in the 4th moment correspond to the terms in the 2nd moment written twice,
and asymptotically

E[(A−E[A])4] = 3E[(A−E[A])2]2 +O(n−3).

Here, 3 arises as the number of pair partitions of 4 items, and is related to the fact that
3 = E[G4].

26

Depth Degeneracy in Neural Networks

Lemma 18 Let Gi, Ĝi, 1 ≤ i ≤ n be marginally N (0, 1) random variables with correla-
tion cos(θ) and independent for different indices i. Let A1 = 1

n2

∑n
i,j f1(Gi, Ĝj), and let

A2 = 1
n2

∑n
i,j f2(Gi, Ĝj), where f1, f2 : R2 → R have finite fourth moments, E[f1(Gi, Ĝi)

4],

E[f2(Gi, Ĝi)
4] <∞. Then,

E[(A1 −E[A1])
2(A2 −E[A2])] = O

(
n−2

)
.

Proof We can express E[(A1 −E[A2])
2(A2 −E[A2])] using sums as follows:

E[(A1 −E[A1])
2(A2 −E[A2])]

=
1

n6

n∑
i1,i2,i3
j1,j2,j3

E

[
2∏

k=1

(
f1(Gik , Ĝjk)−E[f1(Gik , Ĝjk)]

)(
f2(Gi3 , Ĝj3)−E[f2(Gi3 , Ĝj3)]

)]
.

By the same argument as in Lemma 16, we can show that the number of nonzero terms in the
above summation is O(n4) as n→∞. Thus, we have that E[(A1−E[A1])

2(A2−E[A2])] =
O(n−2). We can also show that E[(A1 − E[A1])

2(A2 − E[A2])
2] = O(n−2) by the same

argument.

(i1, j1) (i2, j2) (i3, j3)

{(a, b), (b, a)} × {(a, c), (c, a)} × {(a, d), (d, a)} 8 patterns

{(a, b), (b, a)} × {(a, c), (c, a)} × {(c, d), (d, c)} 8 patterns

{(a, b), (b, a)} × {(c, d), (d, c)} × {(a, c), (c, a)} 8 patterns

{(a, c), (c, a)} × {(a, b), (b, a)} × {(c, d), (c, b)} 8 patterns

Table 3: All 32 irreducible patterns using exactly 4 unique index values a, b, c, d. For example
the pattern (i1, j1), (i2, j2), (i3, j3) = (a, b), (a, c), (a, d) represents all configurations where
i1 = i2 = i3 and the j’s are all unique and different from i. For each pattern, there are
(n)4 = n(n − 1)(n − 2)(n − 3) configurations by filling in a, b, c, d with unique numbers in
[n]. These are the dominant terms in (55).

A.5 Derivation of Useful Identities - Equations (14, 15)

Let G ∈ Rn be a Gaussian vector with iid entries Gi ∼ N (0, 1). Then, by standard properties
of Gaussians, the function f : Rn → R given by f(x) = 〈G, x〉 is a Gaussian random
variable. Further, f(x) ∼ N (0, ‖x‖2) for all x ∈ Rn, and for any two vectors xα, xβ ∈ Rn,
the joint distribution of f(xα), f(xβ) is jointly Gaussian withf(xα)

f(xβ)

 ∼ N (0,Σ(xα, xβ)) , Σ(xα, xβ) :=

 ‖xα‖2 〈xα, xβ〉

〈xα, xβ〉 ‖xβ‖2

 ,
27

Jakub and Nica

where Σ(xα, xβ) is sometimes called the 2 × 2 Gram matrix of the vectors xα, xβ. In the
setting of our fully connected neural network, any index i ∈ [n`+1] in the vector of z`+1 is
actually the inner product with the i-th row

z`+1
i (x) =

√
2

n`
〈W `+1

i,· , ϕ(z`(x))〉.

Note that each row W `+1
i,· is a Gaussian vector, so the previous fact about Gaussians applies

and we see that the entries of z`+1 are conditionally Gaussian given the value of the previous
layer. By the previous Gaussian fact, we have that z`+1

i (xα), z`+1
i (xβ) are jointly Gaussian

with z`+1
i (xα)

z`+1
i (xβ)

 ∼ N
0,

2

n`

 ‖ϕ`α‖2 〈ϕ`α, ϕ`β〉

〈ϕ`α, ϕ`β〉 ‖ϕ`β‖2

 =: N
(

0,K`
)
,

where we use K` to denote the 2×2 covariance matrix. K` is precisely the 2×2 Gram matrix
of the previous layer ϕ`α, ϕ`β scaled by 2/n` and its entries K`

γδ, for γ ∈ {α, β}, δ ∈ {α, β}
are actually averages of entries in the previous layer

K`
γ,δ :=

2

n`
〈ϕ`γ , ϕ`δ〉 =

1

n`

n∑̀
k=1

2ϕ(z`k(xi))ϕ(z`k(xj)).

Moreover, in the weight matrix W `+1, the ith and jth rows (W `+1
i,· and W `+1

j,· , respec-

tively) are independent. Therefore, all entries of z`+1 are identically distributed and con-
ditionally independent given ϕ(z`). From this fact, we can equivalently write the entries
explicitly as

z`+1
i (xα) =

√
2

n`
‖ϕ`α‖Gi, z`+1

i (xβ) =

√
2

n`
‖ϕ`β‖Ĝi, (57)

where Gi, Ĝi are marginally N (0, 1) variables with covariance Cov(Gi, Ĝi) = cos(θ`) and
independent for different indices. This formulation precisely ensures that the covariance
structure for the entries is exactly what is specified by the covariance kernel K`.

With this representation of z`+1
i (xα) and z`+1

i (xβ), we can apply ϕ(·) to each entry. By
using the property of ReLU ϕ(λx) = λϕ(x) for λ > 0 to factor out the norms, we obtain

ϕ(z`+1
i (xα)) =

√
2

n`
‖ϕ`α‖ϕ(Gi), ϕ(z`+1

i (xβ)) =

√
2

n`
‖ϕ`β‖ϕ(Ĝi). (58)

Taking the norm/inner product of the vector now yields (14-16) as desired.

A.6 Cauchy-Binet and Determinant of the Gram Matrix - Equation (16)

To prove this identity, we begin with the fact that

‖ϕ`+1
α ‖2‖ϕ`+1

β ‖
2sin2(θ`+1) = det

 ‖ϕ`+1
α ‖2 〈ϕ`+1

α , ϕ`+1
β 〉

〈ϕ`+1
α , ϕ`+1

β 〉 ‖ϕ`+1
β ‖

2

 .
28

Depth Degeneracy in Neural Networks

By the Cauchy-Binet identity, we can express the determinant as

det

 ‖ϕ`+1
α ‖2 〈ϕ`+1

α , ϕ`+1
β 〉

〈ϕ`+1
α , ϕ`+1

β 〉 ‖ϕ`+1
β ‖

2

 =
∑

1≤i<j≤n`

(
ϕ`+1
i;α ϕ

`+1
j;β − ϕ

`+1
j;α ϕ

`+1
i;β

)2
. (59)

Due to the fact that the summand is equal to 0 when i = j, we can equivalently take the
sum over all indices i, j ∈ [n`] and halve the result. We can also express layer ` + 1 using
the following conditioning on the previous layer

ϕ`+1
i;α =

√
2

n`
‖ϕ`α‖·ϕ(Gi), ϕ`+1

i;β =

√
2

n`
‖ϕ`β‖·ϕ(Ĝi).

Applying these facts to our expression in (59), and dividing both sides by ‖ϕ`α‖2‖ϕ`β‖2, we
get our desired result.

A.7 Expected Value Calculations

In this section, we derive the formulas for E [R`+1], E
[
R`+1 sin2(θ`+1)

]
. We use Ja,b to

represent Ja,b(θ`). Note that E[ϕ2(G)] = 1
2 , E[ϕ4(G)] = 3

2 .

Calculation of E [R`+1] :

First, we apply the identity as in (17):

E [R`+1] =

(
2

n`

)2

E

 n∑̀
i,j=1

ϕ2(Gi)ϕ
2(Ĝj)

 .
Whenever i = j, taking the expected value will give us a J2,2 term. When i 6= j, the expected
value of this term will be E[ϕ2(G)]2 = 1

4 . Since i = j happens n` times, and therefore i 6= j
happens n2` − n` times, we arrive at the following expression:

E [R`+1] =

(
2

n`

)2(
n`J2,2 + (n2` − n`)

(
1

4

))
=

4J2,2 − 1

n`
+ 1.

Calculation of E
[
R`+1 sin2(θ`+1)

]
:

Applying the identity (16), we get

E
[
R`+1 sin2(θ`+1)

]
=

2

n2`
E

 n∑̀
i,j

(
ϕ(Gi)ϕ(Ĝj)− ϕ(Gj)ϕ(Ĝi)

)2
=

2

n2`
E

 n∑̀
i,j

(
ϕ2(Gi)ϕ

2(Ĝj)− 2ϕ(Gi)ϕ(Ĝi)ϕ(Gj)ϕ(Ĝj) + ϕ2(Gj)ϕ
2(Ĝi)

) .
In the case where i = j, the expected value is equal to 0. Thus, we only need to consider
the case where i 6= j, which happens n2` − n` times. When i 6= j, the expectation of

29

Jakub and Nica

ϕ(Gi)ϕ(Ĝi)ϕ(Gj)ϕ(Ĝj) is J2
1,1, and the expectation of ϕ2(Gi)ϕ

2(Ĝj) is 1
4 . All together, we

have

E
[
R`+1 sin2(θ`+1)

]
=

(
2

n2`

)
(n2` − n`)

(
1

4
− 2J2

1,1 +
1

4

)
=

(n` − 1)(1− 4J2
1,1)

n`
.

A.8 Variance and Covariance Calculations

In this section, Var [R`+1], Var
[
R`+1 sin2(θ`+1)

]
, and Cov

(
R`+1 sin2(θ`+1), R`+1

)
are eval-

uated. We use Ja,b to represent Ja,b(θ`). Note that E[ϕ2(G)] = 1
2 , E[ϕ4(G)] = 3

2 . We will
see that there are simple functions f1, f2 : R2 → R so that all of the variance and covariance
calculations can be expressed as sums over i1, j1, i2, j2 of the form

1

n4`

∑
i1,j1
i2,j2

(
E
[
f1(Gi1 , Ĝj1)f2(Gi2 , Ĝj2)

]
−E

[
f1(Gi1 , Ĝj1)

]
E
[
f2(Gi2 , Ĝj2)

])
, (60)

where the sum goes over index configurations (i1, j1), (i2, j2) ∈ [n`]
4. We will use this form

to organize our calculations of the variance and covariance formulas. The strategy is to
evaluate each term in the sum (60) individually.

Since the random variables {Gi, Ĝi}ni=1 are exchangeable, the only thing that matters is
the “pattern” of which of the indices i1, j1, i2, j2 are repeated versus which are distinct. For
example, there will be n index configurations where i1 = j1 = i2 = j2 are all equal. All n
of these give same contribution. There are (n)4 = n(n − 1)(n − 2)(n − 3) configurations
where i1, j1, i2, j2 are all distinct. Knowing which indices are repeated/distinct allows us to
evaluate the corresponding term in (60). We use the following formal notion of a pattern
to organize this idea of repeated versus distinct indices.

Definition 19 A pattern for (i1, j1), (i2, j2) is a subset of all possible index configurations
(i1, j1), (i2, j2) ∈ [n]4 represented by an assignment of each index to the letters a, b, c, d.
Each letter a, b, c, d represents a choice of unique indices from [n].

For example, the pattern (i1, j1), (i2, j2) = (a, a), (a, a) represents the set of all index
configurations where all indices are equal and the pattern (i1, j1), (i2, j2) = (a, b), (c, d) rep-
resents the set with all indices unique. The pattern (i1, j1), (i2, j2) = (a, b), (a, c) represents
all configurations where i1 = i2 and j1, j2 are unique and different from i1 = i2. For this
pattern, there are (n)3 = n(n−1)(n−2) configurations by filling in a, b, c with unique num-
bers in [n]. More generally, for a pattern with k letters, there are (n)k configurations that
fall into that pattern.

Fortunately, when enumerating (60), many patterns have no contribution and can be
ignored. We formalize this in the following definition.

Definition 20 We say that the configuration of indices (i1, j1), (i2, j2) is reducible if
{i1, j1} ∩ {i2, j2} = ∅. Otherwise, the index configuration is called irreducible. A pat-
tern is called reducible if all index configuration in that pattern are reducible.

By the independence of the random variables f1(Gi1 , Gj1) and f2(Gi2 , Gj2), whenever
(i1, j1), (i2, j2) is reducible, we see that the corresponding term in (60) completely vanishes!

30

Depth Degeneracy in Neural Networks

Therefore, to evaluate (60), we have only to understand the contribution of irreducible
configurations. The irreducible configurations can be organized into irreducible patterns.
For example, the pattern (a, b), (c, c) is reducible (since formally {a, b} ∩ {c} = ∅) and so
any configuration from this pattern has no contribution in the expectation.

There are 11 irreducible patterns. (All these patterns are listed as part of Table 4.)
The expected value of the terms for each pattern will give a contribution that is expressed
in terms of the Ja,b depending on the details of exactly which indices are repeated. Then
by enumerating the number of configurations in each pattern, we can evaluate (60). This
strategy is precisely how we evaluate each variance/covariance in this section.

Calculation of Var [R`+1] :

First, applying the identity in (17), we get

Var [R`+1] =

(
2

n`

)4

Var

 n∑̀
i,j=1

ϕ2(Gi)ϕ
2(Ĝj)



=
16

n4`

E

∑
i1,j1
i2,j2

ϕ2(Gi1)ϕ2(Ĝj1)ϕ2(Gi2)ϕ2(Ĝj2)

−E

 n∑̀
i,j=1

ϕ2(Gi)ϕ
2(Ĝj)

2
 .

Var[R`+1] follows the form of (60), with f1(Gi, Ĝi) = f2(Gi, Ĝi) = ϕ2(Gi)ϕ
2(Ĝj). We then

evaluate the contribution from each irreducible pattern in Table 4. Combining all these cases
and simplifying based on powers of 1

n`
, we arrive at the following expression for Var [R`+1]:

4

n`
(J2,2 + 1) +

16

n2`

(
2J4,2 −

5

2
J2,2 + J2

2,2 +
5

8

)
+

16

n3`

(
J4,4 − 2J4,2 − 2J2

2,2 + 2J2,2 −
9

8

)
.

Calculation of Var
[
R`+1 sin2(θ`+1)

]
:

Applying identity (16), we can express Var[R`+1 sin2(θ`+1)] as

Var
[
R`+1 sin2(θ`+1)

]
=

1

4

(
2

n`

)4

Var

 n∑̀
i,j=1

(
ϕ(Gi)ϕ(Ĝj)− ϕ(Gj)ϕ(Ĝi)

)2 .
Note that we can express Var[R`+1 sin2(θ`+1)] as in (60) by letting f1(Gi, Ĝj) = f2(Gi, Ĝj) =
(ϕ(Gi)ϕ(Ĝj) − ϕ(Gj)ϕ(Ĝi))

2.We then evaluate the contribution from each irreducible pat-
tern in Table 5. Combining all these cases and simplifying based on powers of 1

n`
, we arrive

at the following expression:

Var
[
R`+1 sin2(θ`+1)

]
=

8

n`

(
−8J4

1,1 + 8J2
1,1J2,2 + 4J2

1,1 − 8J1,1J3,1 + J2,2 + 1
)

+
2

n2`

(
80J4

1,1 − 96J2
1,1J2,2 − 40J2

1,1 + 96J1,1J3,1 + 24J2
2,2 − 12J2,2 − 32J2

3,1 + 5
)

+
2

n3`

(
−48J4

1,1 + 64J2
1,1J2,2 + 24J2

1,1 − 64J1,1J3,1 − 24J2
2,2 + 8J2,2 + 32J2

3,1 − 9
)
.

31

Jakub and Nica

Var[R`+1] Calculation

(i1, j1) (i2, j2) E[f1(Gi1 , Ĝj1)] E[f2(Gi2 , Ĝj2)] E[f1(Gi1 , Ĝj1)f2(Gi2 , Ĝj2)]

(n)1 (a, a) (a, a) J2,2 J2,2 J4,4

(n)2

(a, b) (a, b) (
1
2

)2 (
1
2

)2 (
3
2

)2
(a, b) (b, a) J2

2,2

(a, a) (a, b)
J2,2

(
1
2

)2
1
2J4,2

(a, a) (b, a)

(a, b) (a, a) (
1
2

)2 J2,2
(b, a) (a, a)

(n)3

(a, b) (a, c)

(
1
2

)2 (
1
2

)2 3
2

(
1
2

)2
(a, b) (c, b)

(a, b) (c, a) (
1
2

)2
J2,2

(a, b) (b, c)

Table 4: Var[R`+1] calculated in the form of (60) with f1(Gi, Ĝj) = f2(Gi, Ĝj) =
ϕ2(Gi)ϕ

2(Ĝj). The contribution from all 11 possible irreducible patterns of the indices
are shown.

Calculation of Cov
(
R`+1 sin2(θ`+1), R`+1

)
:

Cov
(
R`+1 sin2(θ`+1), R`+1

)
= E

[
(R`+1)

2 sin2(θ`+1)
]
−E

[
R`+1 sin2(θ`+1)

]
E [R`+1] .

Applying known identities (16, 17) derived in Appendix A.5 and Appendix A.6, we can
express this in the form of (60), where f1(Gi, Ĝj) = (ϕ(Gi)ϕ(Ĝj) − ϕ(Gj)ϕ(Ĝi))

2, and
f2(Gi, Ĝj) = ϕ2(Gi)ϕ

2(Ĝj). Table 6 shows the calculation of all the irreducible patterns.
Collecting all cases and simplifying based on powers of 1

n`
gives:

Cov
(
R`+1 sin2(θ`+1), R`+1

)
=

1

n`

(
16J2

1,1 − 32J1,1J3,1 + 8J2,2 + 8
)

+
1

n2`

(
32J2

1,1J2,2 − 40J2
1,1 + 96J1,1J3,1 − 32J1,1J3,3 + 16J2

2,2 − 32J2,2 − 32J2
3,1 + 16J4,2 + 10

)
+

1

n3`

(
24J2

1,1 − 32J2
1,1J2,2 − 64J1,1J3,1 + 32J1,1J3,3 − 16J2

2,2 + 24J2,2 + 32J2
3,1 − 16J4,2 − 18

)
.

A.9 Infinite Width Update Rule

Lemma 21 Let f(x) be a feed forward neural network as defined in 2. Conditional on
the value of θ` in layer `, the angle θ` between inputs at layer ` of f follows the following

32

Depth Degeneracy in Neural Networks

Var[R`+1 sin
2(θ`+1)] Calculation

(i1, j1) (i2, j2) E[f(Gi1 , Ĝj1)] E[f(Gi2 , Ĝj2)] E[f(Gi1 , Ĝj1)f(Gi2 , Ĝj2)]

(n)2
(a, b) (a, b)

1
2 − 2J2

1,1
1
2 − 2J2

1,1

6J2
2,2 − 8J2

3,1 + 9
2

(a, b) (b, a)

(n)3

(a, b) (a, c)

4J2,2J
2
1,1 − 4J3,1J1,1 + 1

2J2,2 + 3
4

(a, b) (c, a)

(a, b) (c, b)

(a, b) (b, c)

Table 5: Var[R`+1 sin2(θ`+1)] calculated in the form of (60) with f1(Gi, Ĝj) = f2(Gi, Ĝj)
= (ϕ(Gi)ϕ(Ĝj) − ϕ(Gj)ϕ(Ĝi))

2. The non-zero contribution irreducible patterns of the
indices are shown. Note that because f1(Gi1 , Gj1) = 0 when i1 = j1 and f2(Gi2 , Gj2) = 0
when i2 = j2, there are 5 irreducible patterns (of the possible 11) that have zero contribution
and are not displayed in this table.

Cov(R`+1, R`+1 sin
2(θ`+1)) Calculation

(i1, j1) (i2, j2) E[f1(Gi1 , Ĝj1)] E[f2(Gi2 , Ĝj2)] E[f1(Gi1 , Ĝj1)f2(Gi2 , Ĝj2)]

(n)2

(a, b) (b, b)

1
2 − 2J2

1,1

J2,2 J4,2 − 2J1,1J3,3
(a, b) (a, a)

(a, b) (a, b)

(
1
2

)2
J2
2,2 − 2J2

3,1 +
(
3
2

)2
(a, b) (b, a)

(n)3

(a, b) (a, c)

(a, b) (c, a)

(a, b) (b, c)

(a, b) (c, b)

Table 6: Cov
(
R`+1 sin2(θ`+1), R`+1

)
calculated in the form of (60) with f1(Gi, Ĝj) =

(ϕ(Gi)ϕ(Ĝj) − ϕ(Gj)ϕ(Ĝi))
2, and f2(Gi, Ĝj) = ϕ2(Gi)ϕ

2(Ĝj). The non-zero contribution
from irreducible patterns of the indices are shown. Note that because f1(Gi1 , Gj1) = 0 when
i1 = j1, there are 3 irreducible patterns (of the possible 11) that have zero contribution
which are not displayed in this table.

deterministic update rule in the limit n` →∞.

cos(θ`+1) = 2J1,1(θ`).

33

Jakub and Nica

Remark 22 Note that a more general proof of this result appears in prior work Hanin
(2023) which allows one to take the layer sizes n1, n2, . . . , n` → ∞ in any order, rather
than one layer at a time as we prove here.

Proof We begin with the identity (15), and use the inner product to introduce cos(θ`+1),

‖ϕ`α‖‖ϕ`β‖
n`

n∑̀
i=1

2ϕ(Gi)ϕ(Ĝi) = 〈ϕ`+1
α , ϕ`+1

β 〉 = ‖ϕ`+1
α ‖‖ϕ`+1

β ‖cos(θ`+1).

Applying the identities in (14) to ‖ϕ`+1
α ‖ and ‖ϕ`+1

β ‖, we get

‖ϕ`α‖‖ϕ`β‖
n`

n∑̀
i=1

2ϕ(Gi)ϕ(Ĝi) =

√√√√‖ϕ`α‖2
n`

n∑̀
i=1

2ϕ2(Gi)

√√√√‖ϕ`β‖2
n`

n∑̀
i=1

2ϕ2(Ĝi) cos(θ`+1),

=⇒ 1

n`

n∑̀
i=1

ϕ(Gi)ϕ(Ĝi) =

√√√√ 1

n`

n∑̀
i=1

ϕ2(Gi)

√√√√ 1

n`

n∑̀
i=1

ϕ2(Ĝi) cos(θ`+1).

Now, in the limit n` →∞ we have by application of the Law of Large Numbers,

lim
n`→∞

(
1

n`

n∑̀
i=1

ϕ(Gi)ϕ(Ĝi)

)
= lim

n`→∞

√√√√ 1

n`

n∑̀
i=1

ϕ2(Gi)

√√√√ 1

n`

n∑̀
i=1

ϕ2(Ĝi) cos(θ`+1)


=⇒ E

[
ϕ(Gi)ϕ(Ĝi)

]
=
√

E [ϕ2(Gi)]

√
E[ϕ2(Ĝi)] cos(θ`+1)

=⇒ J1,1(θ`) =
1

2
cos(θ`+1),

where we have used the definition of J1,1(θ) and the fact that E[ϕ2(G)] = 1
2 .

Appendix B.

B.1 Derivation of Lower-Order J Functions - Proof of Proposition 2

Proof [Of formula for J0,0] We find a differential equation that J0,0 satisfies and solve it
to obtain the formula. First note the initial condition J0,0(0) = E[1{G > 0}] = 1

2 . To find
J ′0,0(θ), we take the derivative inside the expectation and have by the chain rule that

J ′0,0(θ) = E[1{G > 0}1′{G cos θ +W sin θ > 0}G](− sin θ)

+ E[1{G > 0}1′{G cos θ +W sin θ > 0}W] cos θ.

Applying the change of variables as in (35), we have

J ′0,0(θ) = E[(Z cos θ + Y sin θ)1{Z cos θ + Y sin θ > 0}1′{Z > 0}](− sin θ)

+ E[(Z sin θ − Y cos θ)1{Z cos θ + Y sin θ > 0}1′{Z > 0}] cos θ

= E[(Y sin θ)1{Y sin θ > 0}]− sin θ√
2π

+ E[(−Y cos θ)1{Y sin θ > 0}] cos θ√
2π

= (− sin2 θ − cos2 θ)E[Y 1{Y > 0}] 1√
2π

= − 1

2π
,

34

Depth Degeneracy in Neural Networks

where we have used (32) to evaluate the integrals involving 1′{Z > 0} and E[Y 1{Y >
0}] = (

√
2π)−1 from Lemma 9. We now have J ′0,0(θ) = − 1

2π with initial condition given by
J0,0(0) = 0. Solving this differential equation gives the desired result.

Proof [J1,0 and J1,1] Here we use the Gaussian integration-by-parts strategy (31 -32).

Formula for J1,0:

J1,0(θ) = E[G1{G > 0} 1{G cos θ +W sin θ > 0}]

= E

[
d

dg
(1{G > 0} 1{G cos θ +W sin θ > 0})

]
= E

[
1′{G > 0} 1{G cos θ +W sin θ > 0}

]
+ E

[
1{G > 0} 1′{G cos θ +W sin θ > 0}

]
cos θ.

By using the change of variables as in (35) on the second term, we arrive at

J1,0(θ) = E[1{W sin θ > 0}] 1√
2π

+ cos θE[1{Z cos θ + Y sin θ > 0}1′{Z > 0}]

=
1

2

1√
2π

+ cos θE[1{Y sin θ > 0}] 1√
2π

=
1

2

1√
2π

+
cos θ

2

1√
2π

=
1 + cos θ

2
√

2π
.

Formula for J1,1:

J1,1(θ) = E[G(G cos θ +W sin θ)1{G > 0}1{G cos θ +W sin θ > 0}]
= E[cos θ 1{G > 0}1{G cos θ +W sin θ}]
+ E[(G cos θ +W sin θ)1′{G > 0}1{G cos θ +W sin θ > 0}]
+ E[(G cos θ +W sin θ)1{G > 0}1′{G cos θ +W sin θ > 0}] cos θ

= cos θJ0,0 + E[W sin θ 1{W sin θ > 0}] 1√
2π

+ E[Z1{Z cos θ + Y sin θ}1′{z > 0}]

= cos θJ0,0 + sin θE[ϕ(W)]
1√
2π

+ 0 =
sin θ + (π − θ) cos θ

2π
.

B.2 Proof of Explicit Formulas for Jn,0 and Jn,1

Once the recursion is established, the formula for both Jn,0 and Jn,1 is a simple proof by
induction. We provide a detailed proof for Jn,0 here; Jn,1 is similar.

Lemma 23 Let Jrecn,0 be the recursively defined formula, and let Jexpn,0 be the explicitly defined
formula for Jn,0, namely

Jrecn,0 := (n− 1)Jrecn−2,0 +
sinn−1 θ cos θ

cn mod 2
(n− 2)! ! , Jrec1,0 := J1,0, Jrec0,0 := J0,0,

Jexpn,0 := (n− 1)! !

Jn mod 2,0 +
cos θ

cn mod 2

∑
i 6≡n(mod 2)

0<i<n

(i− 1)! !

i! !
sini θ

 .

35

Jakub and Nica

Then Jrecn,0 = Jexpn,0 for all n ≥ 0.

Proof Let Sn, n ∈ N, n ≥ 2 be the statement Jrecn,0 = Jexpn,0 and Jrecn−1,0 = Jexpn−1,0. We prove
Sn is true by induction. The base case S2 is true because,

Jrec2,0 = (2− 1)J0,0 +
sin θ cos θ

c2 mod 2
(2− 2)! ! = J0,0 +

cos θ sin θ

2π
,

Jexp2,0 = (2− 1)! !J0,0 + cos θ

1∑
i=1

(2− 1)! !

(2i− 1)! !
(2i− 2)! !

sin2i−1 θ

2π
= J0,0 +

cos θ sin θ

2π
,

and the fact that Jrec1,0 = Jexp1,0 is trivial. Induction step: Assume Sn is true. To prove Sn+1,
we have only to show that Jexpn+1,0 = Jrecn+1,0. To do this, we separate the last term of the sum
to get

Jexpn+1,0 = n! !

J(n+1) mod 2,0 +
cos θ

c(n+1) mod 2

∑
i 6≡(n+1)(mod 2)

0<i<n−1

(i− 1)! !

i! !
sini θ


+ n! !

cos θ

c(n+1) mod 2

(n− 1)! !

n! !
sinn θ.

Because the parity of n+ 1 and n− 1 are the same, and using n! ! = n(n− 2)! ! we recognize
the first term as nJexpn−1,0. So after simplifying the last term, we remain with

Jexpn+1,0 = nJexpn−1,0 +
sinn θ cos θ

c(n+1) mod 2
(n− 1)! ! = Jrecn+1,0,

by the induction hypothesis. This completes the induction.

B.3 Bijection between Paths in Graphs of J Functions and the Bessel Number
graphs P ,Q

Let GJ∗ = (VJ∗, EJ∗) be the graph of J∗a,b as in Figure 6c. Similarly, let GP = (VP , EP) and
GQ = (VQ, EQ) be the graph of the P and Q matrices up to row a, respectively, as in Figures
6a, 6b. We define a map λ : Z2 × Z2 → Z2 as follows: Let ((i, j), (m,n)) ∈ Z2 × Z2, 0 ≤
i ≤ a, b− a+m ≤ j ≤ b. Then define λ by

λ((i, j), (m,n)) := (i−m, j − n), λ−1((i, j), (m,n)) = (i+m, j + n).

The function λ can be used as a map between vertices of graph GJ∗ to vertices of graph
GP or GQ. Let π = (v1, v2, ..., vk−1, vk) be a path in GJ∗ from vertex v1 = (m,n) to vertex
vk = (a, b), where vi ∈ Z2, 1 ≤ i ≤ k is a vertex on the graph. λ extends to a map on paths,
Λ, defined by

Λ((v1, v2, ..., vk−1, vk)) :=(λ(v1, v1), λ(v2, v1), ..., λ(vk−1, v1), λ(vk, v1)),

Λ−1((v1, v2, ..., vk−1, vk)) =(λ−1(v1, v1), λ
−1(v2, v1), ..., λ

−1(vk−1, v1), λ
−1(vk, v1)).

36

Depth Degeneracy in Neural Networks

Now, let ΓJ∗(a, b,m, n) be the set of all paths in the graph of J∗ from J∗m,n to J∗a,b, and let
ΓP (a, b,m, n) be the set of all paths in the graph of P from P (0, 0) to P (a −m, b − n) =
P (λ((a, b), (m,n))). For example, ΓJ∗(6, 8, 0, 4) is the set of all paths which run from J∗6,8
to J∗0,4, and ΓP (6, 8, 0, 4) is the set of all paths which run from P (0, 0) to P (6, 4).

With these definitions, Λ : ΓJ∗(a, b, 0, n)→ ΓP (a, b, 0, n) is a bijection. An illustration of
all paths π ∈ Π(6, 8, 0, 6) and the corresponding paths Λ(π) ∈ ΓP (6, 8, 0, 6) is given in Figure
7. Similarly, if we let ΓQ(a, b,m, n) be the set of all paths from Q(0, 0) to Q(a−m, b−n) =
Q(λ((a, b), (m,n))) then Λ : ΓJ∗(a, b, 1, n) → ΓQ(a, b, 1, n) is a bijection. This bijection
establishes the equality of the weighted paths claim in (45).

0

1

2

3

4

5

6

8 7 6

J0,8

J2,8

J4,8

J6,8

J1,7

J3,7

J5,7

J0,6

J2,6

J4,6

5

3

1

1

8 7 6

J0,8

J2,8

J4,8

J6,8

J1,7

J3,7

J5,7

J0,6

J2,6

J4,6

5

2

1

1

8 7 6

J0,8

J2,8

J4,8

J6,8

J1,7

J3,7

J5,7

J0,6

J2,6

J4,6

5

1

1

1

8 7 6

J0,8

J2,8

J4,8

J6,8

J1,7

J3,7

J5,7

J0,6

J2,6

J4,64

2

1

1

8 7 6

J0,8

J2,8

J4,8

J6,8

J1,7

J3,7

J5,7

J0,6

J2,6

J4,64

1

1

1

8 7 6

J0,8

J2,8

J4,8

J6,8

J1,7

J3,7

J5,7

J0,6

J2,6

J4,6

3

1

1

1

6

5

4

3

2

1

0

0 1 2

P (6, 0)

P (4, 0)

P (2, 0)

P (0, 0)

P (5, 1)

P (3, 1)

P (1, 1)

P (6, 2)

P (4, 2)

P (2, 2)

3

5

1

1

0 1 2

P (6, 0)

P (4, 0)

P (2, 0)

P (0, 0)

P (5, 1)

P (3, 1)

P (1, 1)

P (6, 2)

P (4, 2)

P (2, 2)2

5

1

1

0 1 2

P (6, 0)

P (4, 0)

P (2, 0)

P (0, 0)

P (5, 1)

P (3, 1)

P (1, 1)

P (6, 2)

P (4, 2)

P (2, 2)

1

5

1

1

0 1 2

P (6, 0)

P (4, 0)

P (2, 0)

P (0, 0)

P (5, 1)

P (3, 1)

P (1, 1)

P (6, 2)

P (4, 2)

P (2, 2)2

4

1

1

0 1 2

P (6, 0)

P (4, 0)

P (2, 0)

P (0, 0)

P (5, 1)

P (3, 1)

P (1, 1)

P (6, 2)

P (4, 2)

P (2, 2)

1

4

1

1

0 1 2

P (6, 0)

P (4, 0)

P (2, 0)

P (0, 0)

P (5, 1)

P (3, 1)

P (1, 1)

P (6, 2)

P (4, 2)

P (2, 2)

1

3

1

1

Figure 7: Top: All paths π ∈ ΓJ∗(6, 8, 0, 6). Bottom: All paths Λ(π) ∈ ΓP (6, 8, 0, 6). The
paths are lined up so that for each path π in the top row, Λ(π) appears in the bottom row.

Appendix C. Recursions for the P and Q numbers - Proof of Lemma 12

Earlier work established the following properties of the P and Q numbers.

37

Jakub and Nica

Theorem 24 (Kreinin (2016)) The elements of the matrices P and Q satisfy

b · P (a, b) = a · P (a− 1, b− 1), a ≥ 1, 1 ≤ b ≤ a, (61)

P (a+ 1, b) = P (a, b− 1) + (b+ 1) · P (a, b+ 1), a ≥ 0, 1 ≤ b ≤ a, (62)

Q(a, b) = P (a, b) + (b+ 1) ·Q(a− 1, b+ 1), a ≥ 1, 1 ≤ b ≤ a, (63)

Q(a, b) = a ·Q(a− 2, b) +Q(a− 1, b− 1), a ≥ 2, 1 ≤ b ≤ a. (64)

Proof [Of Lemma 12] Equation (62) tells us that P (a, b) = P (a−1, b−1)+(b+1)·P (a−1, b+

1) for a ≥ 1, 1 ≤ b ≤ a−1, while equation (61) tells us that P (a−1, b+1) = (a−1)
(b+1) ·P (a−2, b)

for a ≥ 2, 0 ≤ b ≤ a − 2. Putting these together, we get the following recurrence equation
for P (a, b):

P (a, b) = P (a− 1, b− 1) + (b+ 1)

(
(a− 1)

(b+ 1)
· P (a− 2, b)

)
= (a− 1) · P (a− 2, b) + P (a− 1, b− 1),

which holds for a ≥ 3, 1 ≤ b ≤ a − 2. Further, looking at equation (64), we see that the
recursion for the Q numbers is very similar to that of the P numbers, but with a coefficient
of a rather than (a− 1). This establishes Lemma 12.

Appendix D. Details of Network Architectures

This section details the architectures of the 45 different network architectures used to produce
Figure 3.

38

Depth Degeneracy in Neural Networks

Depth
Avg. # Parameters Avg. Test Accuracy ± Standard Deviation

Width (F)MNIST CIFAR MNIST FMNIST CIFAR

1 2 50 58880 165790 0.924 ± 0.007 0.79 ± 0.02 0.211 ± 0.029

2 2 85 57350 135510 0.837 ± 0.051 0.709 ± 0.028 0.276 ± 0.011

3 2 200 19930 54250 0.878 ± 0.009 0.721 ± 0.098 0.163 ± 0.048

4 2 25 138300 201600 0.94 ± 0.004 0.812 ± 0.009 0.229 ± 0.025

5 2 125 31725 88925 0.89 ± 0.005 0.768 ± 0.013 0.199 ± 0.027

6 3 25 43990 114550 0.928 ± 0.008 0.812 ± 0.013 0.167 ± 0.022

7 3 50 62830 173280 0.916 ± 0.002 0.79 ± 0.012 0.224 ± 0.019

8 3 100 59700 96756 0.952 ± 0.004 0.839 ± 0.003 0.27 ± 0.016

9 3 67.67 87200 309900 0.924 ± 0.006 0.799 ± 0.011 0.281 ± 0.011

10 3 50 17310 189100 0.553 ± 0.181 0.599 ± 0.119 0.263 ± 0.022

11 4 30 369400 366150 0.877 ± 0.052 0.757 ± 0.026 0.192 ± 0.029

12 4 75 99400 105060 0.957 ± 0.003 0.842 ± 0.006 0.23 ± 0.025

13 5 21 74700 51630 0.931 ± 0.005 0.811 ± 0.009 0.146 ± 0.029

14 6 55 8840 976400 0.715 ± 0.088 0.569 ± 0.146 0.337 ± 0.008

15 6 87.5 169400 398200 0.949 ± 0.008 0.833 ± 0.007 0.332 ± 0.018

16 10 10 79020 180010 0.951 ± 0.003 0.832 ± 0.01 0.278 ± 0.018

17 10 100 64850 122050 0.939 ± 0.004 0.824 ± 0.008 0.262 ± 0.059

18 10 200 54170 262060 0.933 ± 0.005 0.81 ± 0.014 0.335 ± 0.016

19 10 17.5 49920 1002300 0.794 ± 0.052 0.648 ± 0.106 0.184 ± 0.026

20 11 34.55 518800 31720 0.955 ± 0.006 0.835 ± 0.011 0.14 ± 0.037

Table 7: Summary of the architectures of the first 20 neural networks used in Figure 3, as
well as their performance on the test datasets. Note that the number of parameters differs
between the (F)MNIST and CIFAR-10 datasets due to the fact that CIFAR-10 images are in
colour requiring 3 colour channels, while the MNIST and FMNIST images are in grayscale.
This table is continued in Table 8.

39

Jakub and Nica

Depth
Avg. # Parameters Average Score ± Standard Deviation

Width (F)MNIST CIFAR MNIST FMNIST CIFAR

21 11 35 21100 269195 0.93 ± 0.005 0.823 ± 0.007 0.363 ± 0.016

22 13 42 36420 328200 0.91 ± 0.008 0.789 ± 0.01 0.364 ± 0.016

23 15 30 41844 174100 0.92 ± 0.004 0.805 ± 0.011 0.349 ± 0.015

24 15 50 13860 235650 0.909 ± 0.005 0.8 ± 0.012 0.328 ± 0.02

25 15 75 16580 206848 0.927 ± 0.003 0.823 ± 0.007 0.359 ± 0.009

26 16 35 42200 159100 0.943 ± 0.004 0.838 ± 0.004 0.343 ± 0.021

27 16 22.5 198800 656400 0.963 ± 0.003 0.845 ± 0.01 0.37 ± 0.016

28 20 25 94900 323700 0.955 ± 0.002 0.843 ± 0.006 0.367 ± 0.006

29 20 50 60416 62340 0.951 ± 0.003 0.837 ± 0.005 0.163 ± 0.058

30 20 37.5 44700 156600 0.948 ± 0.003 0.834 ± 0.008 0.346 ± 0.028

31 23 31.30 194550 598200 0.927 ± 0.005 0.788 ± 0.008 0.17 ± 0.004

32 25 15 64050 48180 0.951 ± 0.002 0.84 ± 0.004 0.186 ± 0.071

33 25 75 55160 125880 0.899 ± 0.014 0.748 ± 0.033 0.274 ± 0.048

34 25 150 53760 64390 0.782 ± 0.077 0.676 ± 0.064 0.206 ± 0.041

35 28 35.71 74715 78300 0.953 ± 0.001 0.844 ± 0.001 0.244 ± 0.075

36 30 15 60860 152380 0.819 ± 0.08 0.719 ± 0.033 0.17 ± 0.02

37 30 30 18630 145280 0.862 ± 0.08 0.772 ± 0.017 0.168 ± 0.02

38 30 100 34360 146680 0.941 ± 0.003 0.826 ± 0.009 0.165 ± 0.022

39 30 26.67 659100 118560 0.932 ± 0.014 0.785 ± 0.011 0.175 ± 0.007

40 30 31.67 18435 52755 0.313 ± 0.131 0.349 ± 0.109 0.158 ± 0.026

41 35 40 86160 276600 0.753 ± 0.074 0.586 ± 0.11 0.148 ± 0.029

42 35 75 250800 450525 0.725 ± 0.163 0.608 ± 0.077 0.165 ± 0.007

43 40 50 137200 251600 0.522 ± 0.141 0.513 ± 0.089 0.167 ± 0.007

44 40 75 278925 422400 0.467 ± 0.123 0.466 ± 0.09 0.161 ± 0.022

45 50 50 162200 177680 0.242 ± 0.064 0.22 ± 0.042 0.161 ± 0.019

Table 8: Continuation of Table 7 for networks 21 through 45.

40

Depth Degeneracy in Neural Networks

Hidden Layer Widths

1 50, 50

2 85, 85

3 200, 200

4 20, 30

5 100, 150

6 25, 25, 25

7 50, 50, 50

8 100, 100, 100

9 64, 75, 64

10 75, 50, 25

11 40, 40, 20, 20

12 50, 100, 100, 50

13 15, 15, 15, 30, 30

14 80, 70, 60, 50, 40, 30

15 25, 50, 75, 100, 125, 150

16 10, 10, 10, 10, 10, 10, 10, 10, 10, 10

17 100, 100, 100, 100, 100, 100, 100, 100, 100, 100

18 200, 200, 200, 200, 200, 200, 200, 200, 200, 200

19 20, 20, 20, 20, 20, 15, 15, 15, 15, 15

20 55, 30, 30, 30, 30, 30, 30, 30, 30, 30, 55

21 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30

22 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60

23 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30

24 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50

25 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75

Table 9: Ordered list of hidden layer widths for the first 25 networks used in Figure 3. This
table is continued in Table 10.

41

Jakub and Nica

Hidden Layer Widths

26 50, 48, 46, 44, 42, 40, 38, 36, 34, 32, 30, 28, 26, 24, 22, 20

27 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30

28 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25

29 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50

30 45, 45, 45, 45, 45, 40, 40, 40, 40, 40, 35, 35, 35, 35, 35, 30, 30, 30, 30, 30

31 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20

32 15, 15

33 75, 75

34 150, 150, 150, 150, 150, 150, 150, 150, 150, 150, 150, 150, 150, 150, 150, 150, 150, 150,
150, 150, 150, 150, 150, 150, 150

35 25, 25, 25, 25, 50, 50, 50, 50, 25, 25, 25, 25, 50, 50, 50, 50, 25, 25, 25, 25, 50, 50, 50, 50,
25, 25, 25, 25

36 15,
15, 15, 15, 15, 15, 15

37 30,
30, 30, 30, 30, 30, 30

38 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100

39 40, 40, 40, 40, 40, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
20, 40, 40, 40, 40, 40

40 40, 40, 40, 40, 40, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30,
30, 30, 30, 30, 30, 30

41 40,
40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40

42 75,
75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75

43 50,
50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50

44 75,
75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75

45 50,
50, 50,
50, 50

Table 10: Continuation of Table 9 for networks 26 through 45.

42

Depth Degeneracy in Neural Networks

References

Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian
Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefow-
icz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga,
Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit
Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasude-
van, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on heteroge-
neous systems, 2015. URL https: // www. tensorflow. org/ . Software available from
tensorflow.org.

Benny Avelin and Anders Karlsson. Deep limits and a cut-off phenomenon for neural
networks. Journal of Machine Learning Research, 23(191):1–29, 2022. URL http:

// jmlr. org/ papers/ v23/ 21-0431. html .

Sam Buchanan, Dar Gilboa, and John Wright. Deep networks and the multiple manifold
problem. In International Conference on Learning Representations, 2021. URL https:

// openreview. net/ forum? id= O-6Pm_ d_ Q-.

Gi-Sang Cheon, Ji-Hwan Jung, and Louis W. Shapiro. Generalized Bessel numbers and
some combinatorial settings. Discrete Mathematics, 313(20):2127–2138, 2013. ISSN
0012-365X.

Youngmin Cho and Lawrence Saul. Kernel methods for deep learning. In
Y. Bengio, D. Schuurmans, J. Lafferty, C. Williams, and A. Culotta, editors,
Advances in Neural Information Processing Systems, volume 22. Curran Asso-
ciates, Inc., 2009. URL https: // proceedings. neurips. cc/ paper/ 2009/ file/

5751ec3e9a4feab575962e78e006250d-Paper. pdf .

Li Deng. The MNIST database of handwritten digit images for machine learning research.
IEEE Signal Processing Magazine, 29(6):141–142, 2012.

Benoit Dherin, Michael Munn, Mihaela Rosca, and David GT Barrett. Why neural networks
find simple solutions: The many regularizers of geometric complexity. In Alice H. Oh,
Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural
Information Processing Systems, 2022. URL https: // openreview. net/ forum? id=

-ZPeUAJlkEu .

Ronen Eldan and Ohad Shamir. The power of depth for feedforward neural networks. In
Annual Conference Computational Learning Theory, 2015.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: a
survey. J. Mach. Learn. Res., 20(1):1997–2017, jan 2019. ISSN 1532-4435.

Boris Hanin. Which neural net architectures give rise to exploding and vanishing gradients?
In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems, volume 31. Curran

43

https://www.tensorflow.org/
http://jmlr.org/papers/v23/21-0431.html
http://jmlr.org/papers/v23/21-0431.html
https://openreview.net/forum?id=O-6Pm_d_Q-
https://openreview.net/forum?id=O-6Pm_d_Q-
https://proceedings.neurips.cc/paper/2009/file/5751ec3e9a4feab575962e78e006250d-Paper.pdf
https://proceedings.neurips.cc/paper/2009/file/5751ec3e9a4feab575962e78e006250d-Paper.pdf
https://openreview.net/forum?id=-ZPeUAJlkEu
https://openreview.net/forum?id=-ZPeUAJlkEu

Jakub and Nica

Associates, Inc., 2018. URL https: // proceedings. neurips. cc/ paper/ 2018/ file/

13f9896df61279c928f19721878fac41-Paper. pdf .

Boris Hanin. Random fully connected neural networks as perturbatively solvable hierarchies,
2023. URL https: // arxiv. org/ abs/ 2204. 01058 .

Soufiane Hayou, Arnaud Doucet, and Judith Rousseau. On the impact of the activation func-
tion on deep neural networks training. In International Conference on Machine Learning,
2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into recti-
fiers: Surpassing human-level performance on imagenet classification. In 2015 IEEE
International Conference on Computer Vision (ICCV), pages 1026–1034, 2015. doi:
10.1109/ ICCV.2015.123 .

Alexander Kreinin. Integer sequences connected to the Laplace continued fraction and Ra-
manujan’s identity. Journal of Integer Sequences, 19:1–12, 06 2016.

Alex Krizhevsky. Learning multiple layers of features from tiny images. pages 32–33, 2009.
URL https: // www. cs. toronto. edu/ ~ kriz/ learning-features-2009-TR. pdf .

Mufan Bill Li, Mihai Nica, and Daniel M. Roy. The neural covariance SDE: Shaped infinite
depth-and-width networks at initialization. In Alice H. Oh, Alekh Agarwal, Danielle Bel-
grave, and Kyunghyun Cho, editors, Advances in Neural Information Processing Systems,
2022. URL https: // openreview. net/ forum? id= WG3vmsteqR_ .

James Martens, Andy Ballard, Guillaume Desjardins, Grzegorz Swirszcz, Valentin Dalibard,
Jascha Sohl-Dickstein, and Samuel S. Schoenholz. Rapid training of deep neural networks
without skip connections or normalization layers using deep kernel shaping. CoRR, 2021.
URL https: // arxiv. org/ abs/ 2110. 01765 .

Ido Nachum, Jan Hazla, Michael Gastpar, and Anatoly Khina. A Johnson-Lindenstrauss
framework for randomly initialized CNNs. In International Conference on Learning Rep-
resentations, 2022. URL https: // openreview. net/ forum? id= YX0lrvdPQc .

Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya Gan-
guli. Exponential expressivity in deep neural networks through transient chaos.
In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 29. Curran Asso-
ciates, Inc., 2016. URL https: // proceedings. neurips. cc/ paper/ 2016/ file/

148510031349642de5ca0c544f31b2ef-Paper. pdf .

Daniel A. Roberts, Sho Yaida, and Boris Hanin. The Principles of Deep Learning Theory:
An Effective Theory Approach to Understanding Neural Networks. Cambridge University
Press, 2022. doi: 10.1017/ 9781009023405 .

Samuel S. Schoenholz, Justin Gilmer, Surya Ganguli, and Jascha Sohl-Dickstein. Deep
information propagation. In International Conference on Learning Representations, 2017.
URL https: // openreview. net/ forum? id= H1W1UN9gg .

44

https://proceedings.neurips.cc/paper/2018/file/13f9896df61279c928f19721878fac41-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/13f9896df61279c928f19721878fac41-Paper.pdf
https://arxiv.org/abs/2204.01058
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://openreview.net/forum?id=WG3vmsteqR_
https://arxiv.org/abs/2110.01765
https://openreview.net/forum?id=YX0lrvdPQc
https://proceedings.neurips.cc/paper/2016/file/148510031349642de5ca0c544f31b2ef-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/148510031349642de5ca0c544f31b2ef-Paper.pdf
https://openreview.net/forum?id=H1W1UN9gg

Depth Degeneracy in Neural Networks

Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in
Data Science. Number 47 in Cambridge Series in Statistical and Probabilistic Mathemat-
ics. Cambridge University Press, 2018. ISBN 978-1-108-41519-4.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a novel image dataset
for benchmarking machine learning algorithms, 2017. URL http: // arxiv. org/ abs/

1708. 07747 .

45

http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747

	Introduction
	Main Results for the Angle Process _
	Theoretical Consequences and Comparison to Previous Work
	More detailed results for the mean and variance

	Practical Consequences: Depth Degeneracy Negatively Impacts Training
	Comparison to Infinite Width Update Rule

	J Functions and Infinite Width Limits
	Outline

	ReLU Neural Networks on Initialization
	Expected Value
	Variance of ln(sin^2(_+1))

	Explicit Formula for the Mixed-Moment J Functions
	Statement of Main Results and Outline of Method
	Gaussian Integration-by-Parts Formulas
	Recursive Formulas for J_a,b() - Proof of Proposition 1
	Solving the Recurrence to get an Explicit Formula for J_a,b() - Proof of Theorem 5

	fakesection
	Expected Value Approximation
	Variance Approximation
	Covariance Approximation
	Third and Fourth Moment Bound Lemma
	Derivation of Useful Identities - Equations (14, 15)
	Cauchy-Binet and Determinant of the Gram Matrix - Equation (16)
	Expected Value Calculations
	Variance and Covariance Calculations
	Infinite Width Update Rule

	fakesection2
	Derivation of Lower-Order J Functions - Proof of Proposition 2
	Proof of Explicit Formulas for J_n,0 and J_n,1
	Bijection between Paths in Graphs of J Functions and the Bessel Number graphs P,Q

	Recursions for the P and Q numbers - Proof of Lemma 12
	Details of Network Architectures

