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Abstract

Algorithmic Fairness is an established area of machine learning, willing to reduce the
influence of hidden bias in the data. Yet, despite its wide range of applications, very few
works consider the multi-class classification setting from the fairness perspective. We focus
on this question and extend the definition of approximate fairness in the case of Demographic
Parity to multi-class classification. We specify the corresponding expressions of the optimal
fair classifiers in the attribute-aware case and both for binary and multi-categorical sensitive
attributes. This suggests a plug-in data-driven procedure, for which we establish theoretical
guarantees. The enhanced estimator is proved to mimic the behavior of the optimal rule
both in terms of fairness and risk. Notably, fairness guarantees are distribution-free. The
approach is evaluated on both synthetic and real datasets and reveals very effective in
decision making with a preset level of unfairness. In addition, our method is competitive (if
not better) with the state-of-the-art in binary and multi-class tasks.

Keywords: algorithmic fairness, demographic parity, multi-class classifiction

1. Introduction

Algorithmic fairness has become very popular during the last decade Zemel et al. (2013);
Lum and Johndrow (2016); Calders et al. (2009); Zafar et al. (2017); Agarwal et al. (2019,
2018); Donini et al. (2018); Chzhen et al. (2019); Chiappa et al. (2020); Barocas et al.
(2018) as it addresses an important social concern: mitigating historical bias contained in
the data. This is a crucial issue in many applications such as loan assessment or criminal
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sentencing among others. The main objective in algorithmic fairness consists in reducing
the influence of a sensitive attribute on a prediction. Several notions of fairness have been
considered in the literature for binary classification Zafar et al. (2019); Barocas et al. (2018).
All of them impose some independence condition between the sensitive feature and the
prediction. This independence can be desired on some or all values of the label space,
see Equality of odds or Equal opportunity (Hardt et al., 2016). In this paper, we focus
on the well established Demographic Parity (DP) (Calders et al., 2009) that requires the
independence between the sensitive feature and the prediction function, while not relying on
labels. DP has a recognized interest in many applications, such as loan agreement without
gender attributes or crime prediction without ethnicity discrimination (Hajian et al., 2011;
Kamiran et al., 2013; Barocas and Selbst, 2014; Feldman et al., 2015). Previously mentioned
references consider either the regression or the binary classification frameworks, although
most (modern) applications fall within the scope of multi-class classification (e.g. image
recognition or text categorization). As an example, one might cite hiring tools based on
Machine Learning (ML) models to give candidates one- to five-star ratings and favors men
for software developers and other technical positions (Dastin, 2018).

The main two contributions of the present work are the following: i) it extends algorithmic
fairness to the multi-class setting; ii) it properly studies the approximate fairness (also called
as ε-fairness) from the theoretical point of view. Indeed, approximate fairness is known
to be very efficient from a practical perspective Barocas et al. (2018); Zafar et al. (2019).
Nevertheless, main existing theoretical results only focus on exact fairness constraints, that
is, they do not allow for deviating from a perfectly fair algorithm. During the reviewing
process, one of the reviewers pointed out the recent concurrent work by Xian et al. (2023).
In this reference, the authors provided a very natural characterization of the fair classifier
under DP constraint in multi-class setting based on optimal transport arguments Chzhen
et al. (2020b); Le Gouic et al. (2020). Their contribution complements ours since they use a
completely different characterization of the optimal rule. As we will develop further below,
there is no clear evidence in favor of one approach or the other, making them both highly
relevant for the multi-class fair prediction problem.

1.1 Main contributions

Overall, we emphasize that the present paper considers both the theoretical and the practical
aspects of approximate fairness under the popular demographic parity constraint. Up to our
knowledge, this is, with the co-occurent work Xian et al. (2023), the first contributions that
combine both aspects in the multi-class setting.

We establish a closed formula of the optimal predictor for both exact and approximate
fairness constraints in the attribute-aware case and both for binary and multi-categorical
sensitive attributes. Our proposed procedure is a post-processing algorithm which relies on
solving a constrained minimization problem. Specifically, in a first step we estimate the
conditional probabilities of the output label given the sensitive attribute and the feature
vectors, while a second step of the algorithm is dedicated to enforce fairness of the overall
classification rule by the means of shifting the estimated conditional probabilities in an
optimal manner. We derive fairness and risk guarantees for our estimation procedure
with explicit finite sample bounds. We also highlight the numerical performance of our
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algorithm and show that it performs as good as state-of-the-art multi-class methods for
fair (or approximate fair) prediction. One of the main striking features of our procedure is
that it can be applied to any off-the-shelf estimator of the conditional probabilities and it
succeeds to enforce fairness at any pre-specified level.

We want to underline that the extensions, with respect to the existing literature, to
multi-class and to approximate fairness are two theoretical aspects of the contribution.
Both considerations involve additional technical arguments. In particular, dealing with
approximate fairness is a new technical challenge. It is worth noticing that even in the
binary classification setting, the control of the unfairness of the algorithms has not been
analyzed theoretically.

Let us now summarize our main contributions:

• We provide an optimal solution for the multi-class problem under exact or approximate
DP constraints. In particular, we derive a closed formula for the optimal (approximate)
fair classifier in the case of attribute-aware prediction.

• Based on this formula, we build a data-driven procedure that mimics the performance
of the optimal rule both in terms of risk and fairness. Notably, our fairness guarantees
are distribution-free and are established both in expectation and with high probability.

• We also established rates of convergence for the resulting classifier w.r.t. a suitable
risk that combines both the error rate and the unfairness measure. A salient point of
our theoretical findings is that our procedure achieves fast rates of convergence under
a Margin type assumption.

• We also characterize our optimal fair classifier for multi-categorical sensitive attributes.

• The approach is illustrated on several real and synthetic datasets with various bias
levels. It provides robust and effective decision making rules with a preset level of
unfairness.

1.2 Related works

There are mainly three ways to build fair prediction: i) pre-processing methods mitigate bias
in the data before applying classical ML algorithms, see for instance Adebayo and Kagal
(2016); Calmon et al. (2017); Zemel et al. (2013) See also Madras et al. (2018); Wadsworth
et al. (2018); Sattigeri et al. (2019); Feng et al. (2019); Xu et al. (2019); Kairouz et al. (2022)
for learning adversarial representations using methods such as generative adversarial networks
(GAN); ii) in-processing methods reduce bias during training, see for instance (Agarwal et al.,
2018; Donini et al., 2018; Agarwal et al., 2019) who explore various fairness constraints and
learning problems. Notably Agarwal et al. (2019) consider the approximate fairness with
DP constraint for binary classification; iii) post-processing methods enforce fairness after
fitting, see for instance Hardt et al. (2016); Chiappa et al. (2020); Chzhen et al. (2020a);
Le Gouic et al. (2020). The present work falls within the last category. In a related study,
(Chzhen et al., 2019) exhibits fair binary classifiers under Equal Opportunity constraints. In
contrast, we focus on the multi-class setting, while imposing DP constraints and we also
treat the case of approximate fairness.
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Up to our knowledge, only few works consider fairness in the multi-class setting. In Ye
and Xie (2020), the authors enforce fairness by sub-sample selection and is in-processing.
In contrast, we keep the whole sample and enforce fairness in a post-processing manner.
Besides, from a high-level perspective, the procedure described in (Ye and Xie, 2020) imposes
fairness on each component of the score function. It is clear that such methodology can
be generalized to any convex empirical risk minimization (ERM) problem such as SVM or
quadratic risk. But, since the decision rule in the multi-class setting relies on the maximizer
over scores, we rather directly impose fairness on the maximizer itself.

The multi-class framework is also considered in (Zhang et al., 2018; Tavker et al., 2020;
Alghamdi et al., 2022). However, the authors in (Zhang et al., 2018; Tavker et al., 2020)
do not provide an explicit formulation of the optimal fair rule and their theoretical fairness
guarantee is not distribution free. In addition, they only consider numerical experiments for
binary classification. Finally, the recent work in (Alghamdi et al., 2022) consider projecting
an unfair classifier into a set of fair classifiers. However, as illustrated in Section 4.3, their
method seems to fail in exact fairness. Our method provides valuable benefits on all these
aspects.

One of the probably closest contribution to this work (at least in terms of results) is
the recent article by Xian et al. (2023) that we came across during the reviewing stage.
Similarly, the authors consider the problem of learning a fair classifier under DP constraint,
in the attribute-aware case, for both binary and discrete sensitive attributes. They also
consider approximate and exact fairness and provide a statistical analysis of their method.
The main and notable differences are: i) they characterize the optimal rule based on optimal
transport arguments inspired from Chzhen et al. (2020b); Le Gouic et al. (2020) while we
enforce fairness directly on the classifier through proper re-calibration of label scores; ii) we
provide a thinner statistical analysis. In particular, we derive additional large probability
guarantees on unfairness, a minimax analysis under a Lipschitz property of the conditional
class probabilities, and additional specific results for binary classification. Overall, we believe
that both approaches are complementary and contribute to a better understanding of the
description of fair classification under DP constraint in multi-class settings. In our numerical
analysis, we provide additional comparisons to this approach based on optimal transport.

1.3 Outline of the paper

In Section 2, we define the Demographic Parity constraint and the notion of exact/approximate
fair classifier in the multi-class classification setup. An explicit expression of the optimal fair
classifier is also provided in Section 2. The corresponding data-driven procedure together
with its statistical guarantees on risk and fairness are presented in Section 3. The numerical
performance of the procedure is illustrated on both synthetic and real datasets in Section 4.
The paper concludes with a discussion and perspective Section 6. For ease of readability,
proofs and technical arguments are postponed to the Appendix of the paper.

2. Multi-class classification with demographic parity

Let (X,S, Y ) be a random tuple with distribution P, where X ∈ X ⊂ Rd, S ∈ S := {−1, 1}
and Y ∈ [K] := {1, . . . ,K} with K a fixed number of classes. The distribution of the
sensitive feature S is denoted by (πs)s∈S , and we assume that mins∈S πs > 0, meaning that
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we have access to both sensitive groups with non zero probability. A classification rule g
is a function mapping X × {−1, 1} onto [K], and its performance is evaluated through the
misclassification risk

R(g) := P (g(X,S) 6= Y ) .

For k ∈ [K], we denote pk(X,S) := P (Y = k|X,S) the conditional probabilities. Recall that
a Bayes classifier minimizing the misclassification risk R(·) over the set G of all classifiers
and is then given by

g∗(x, s) ∈ arg max
k

pk(x, s) , for all (x, s) ∈ X × S .

We introduce in Section 2.1 the Demographic parity constraint as well as the definition of an
approximate fair classifier. The characterization of the optimal fair classifier and its main
properties are provided in Section 2.2.

2.1 Demographic parity

We consider DP constraint (Calders et al., 2009) that asks for independence of the prediction
function from the sensitive feature S. This definition naturally extends the DP constraint
considered in binary classification (Agarwal et al., 2019; Chiappa et al., 2020; Gordaliza
et al., 2019; Jiang et al., 2019; Oneto et al., 2019).

Approximate fairness, also referred to as ε-fairness, is highly popular from a practical
perspective, in particular when a strict fairness constraint strongly deflates the accuracy of
the method. In this context, the user is allowed to adjust the fairness constraint if relevant
or needed. Of course, such modularity has a cost: the solution is less fair than the exact fair
one. Moreover, the chosen unfairness level has no convincing interpretation. Without clear
justification, some empirical rules exist such as the forth-firth that tolerates an unfairness
of 0.2 (Holzer and Holzer, 2000; Collins, 2007; Feldman et al., 2015). In this section, we
consider approximate fairness setting without discussing the issue of properly selecting of
the unfairness level ε.

We define the notion of ε-fairness in the particular case of Demographic Parity.

Definition 1 (ε-fairness w.r.t. DP) The unfairness of a classifier g ∈ G is quantified by

U(g) := max
k∈[K]

|P (g(X,S) = k|S = 1)− P (g(X,S) = k|S = −1)| .

A classifier g is ε-fair if and only if U(g) ≤ ε. In particular, ε = 0 means that g is exactly
fair.

Alternative measures of unfairness could be considered. The maximum can for instance be
replaced by a summation over k ∈ [K]. While both measures have their advantages, picking
the maximum simplifies fairness evaluation in empirical studies.

2.2 Optimal fair classifier

Our goal is to derive an explicit formulation of the optimal ε-fair classifiers w.r.t. the
misclassification risk, denoted by g∗ε−fair, which solves ming∈Gε−fair

R(g) where Gε−fair is
the set of all ε-fair prediction functions. Its computation requires to properly balance
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misclassification risk together with fairness criterion. The first step is to write the Lagrangian

of the above problem: for λ(1) = (λ
(1)
1 , . . . , λ

(1)
K ) ∈ RK+ and λ(2) = (λ

(2)
1 , . . . , λ

(2)
K ) ∈ RK+ , we

define the ε-fair-risk as

Rλ(1),λ(2)(g) := R(g) +

K∑
k=1

λ
(1)
k [P (g(X,S) = k|S = 1)− P (g(X,S) = k|S = −1)− ε]

+

K∑
k=1

λ
(2)
k [P (g(X,S) = k|S = −1)− P (g(X,S) = k|S = 1)− ε] .

In order to characterize the optimal fair classifier, we also require the following technical
condition.

Assumption 2.1 (Continuity assumption) The mapping

t 7→ P (pk(X,S)− pj(X,S) ≤ t|S = s) ,

is assumed continuous, for any k, j ∈ [K] and s ∈ S.

Assumption 2.1 implies that the distribution of the differences pk(X,S) − pj(X,S) has
no atoms. It is required to derive a closed expression for g∗ε−fair and insures an accurate
calibration of the fairness at the prescribed level. Notice that in the binary case (K = 2),
it boils down to the continuity of t 7→ P (pk(X,S) ≤ t|S = s) considered in (Chzhen et al.,
2019). However when K ≥ 3, these two conditions differ and we stress that Assumption 2.1
is a well tailored condition for the multi-class problem.
We are now in position to provide a characterization of optimal ε-fair classifier.

Theorem 2.2 Let H : R2K
+ → R be the function

H(λ(1), λ(2)) =
∑
s∈S

EX|S=s

[
max
k

(
πspk(X, s)− s(λ(1)k − λ

(2)
k )
)]

+ ε

K∑
k=1

(λ
(1)
k + λ

(2)
k ) .

Let Assumption 2.1 be satisfied and define (λ∗(1), λ∗(2)) ∈ arg min(λ(1),λ(2))∈R2K
+
H(λ(1), λ(2)).

Then, g∗ε−fair ∈ arg ming∈Gε−fair
R(g) if and only if g∗ε−fair ∈ arg ming∈G Rλ∗(1),λ∗(2)(g).

In addition, for all (x, s) ∈ X × S, we can rewrite the optimal classifier as

g∗ε−fair(x, s) = arg max
k∈[K]

(
πspk(x, s)− s(λ

∗(1)
k − λ∗(2)

k )
)
.

Theorem 2.2 entails a closed form expression of optimal fair classifiers, which is the bedrock
of our procedure: any optimal fair classifier is simply maximizing scores, that are obtained
by shifting the original conditional probabilities in a proper manner. The above result also
points out that the optimum of the risk R over the class of fair classifiers also minimizes
the fair-risk Rλ∗(1),λ∗(2) . Hence, by construction, Rλ∗(1),λ∗(2) is a risk measure that efficiently
balances both classification accuracy and unfairness. An important consequence of the proof
of Theorem 2.2 is the following proposition that more precisely characterizes the Lagrange
multipliers (λ∗(1), λ∗(2)), and the level of unfairness of the ε-fair predictor.

Proposition 2.3 Let ε ≥ 0. For each k ∈ [K], we have that λ
∗(1)
k λ

∗(2)
k = 0 and λ

∗(1)
k +

λ
∗(2)
k ≥ 0. Besides, if for some k
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i) λ
∗(1)
k > 0, then PX|S=1

(
g∗
λ∗(1),λ∗(2)

(X,S) = k
)
− PX|S=−1

(
g∗
λ∗(1),λ∗(2)

(X,S) = k
)

= ε,

ii) λ
∗(2)
k > 0, then PX|S=1

(
g∗
λ∗(1),λ∗(2)

(X,S) = k
)
− PX|S=−1

(
g∗
λ∗(1),λ∗(2)

(X,S) = k
)

=
−ε.

From the above result, we easily deduce the following corollary.

Corollary 2.4 Let ε ≥ 0. It holds that

i) either the Bayes classifiers satisfies U(g∗) ≤ ε and then g∗ = g∗ε−fair. In this case

λ∗(1) = λ∗(2) = 0;

ii) or the ε-fair classifier satisfies U(g∗ε−fair) = ε.

A straightforward consequence of the above Proposition 2.3 and Corollary 2.4 is that

0 ≤ R(g∗ε−fair) = Rλ∗(1),λ∗(2)(g
∗
ε−fair) ≤ Rλ∗(1),λ∗(2)(g) ≤ R(g) + C (U(g)− ε) ,

for all g ∈ G and for some constant C > 0 that depends on K. In the case of exact fairness
(e.g. ε = 0) the following remark gives a specific characterization of the exact fair classifier.

Remark 2.5 (Exact fairness) All previous results simplify in the exact fairness case

setting where ε = 0. Considering the reparametrization β∗k := λ
∗(1)
k − λ∗(2)

k ∈ R, we deduce
the optimal fair classifier in this case

g∗fair(x, s) ∈ arg max
k

(πspk(x, s)− sβ∗k) , (x, s) ∈ X × S ,

where

β∗ ∈ arg min
β∈RK

∑
s∈S

EX|S=s

[
max
k

(πspk(X, s)− sβk)
]
.

In view of Corollary 2.4, we have U(g∗fair) = 0.

Remark 2.6 We highlight that the objective H can be expressed as follows (see Lemma B.1)

H(λ(1), λ(2)) = 1−Rλ(1),λ(2)(g
∗
λ(1),λ(2)

) ,

with g∗
λ(1),λ(2)

∈ arg mingRλ(1),λ(2)(g). Therefore, the evaluation of the objective function

H at some value
(
λ(1), λ(2)

)
can be seen as the optimal performance w .r .t . the penalized

risk Rλ(1),λ(2) . Moreover, the value
(
λ∗(1), λ∗(2)

)
allows to achieve the smallest risk Rλ(1),λ(2)

over
(
λ(1), λ(2)

)
.

Binary classification Finally, we conclude this section with a particular focus on the
binary classification setting where specific characterization of the optimal fair predictor can
be obtained.

Corollary 2.7 Let ε ≥ 0. In the binary setting (K = 2 with label space Y = {0, 1}), the
fairness constraint reduces to a single condition and the optimal fair classifier simplifies as

g∗fair(x, s) = 1{p1(x,s)≥ 1
2

+ sβ∗
2πs
}, (x, s) ∈ X × S ,

where, with the notation Fs(t) = P (p1(X,S) ≤ t | S = s) we have
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i) β∗ = 0 if
∣∣F1

(
1
2

)
− F−1

(
1
2

)∣∣ ≤ ε;
ii) β∗ is solution in β of

∣∣∣F1

(
β+π1
2π1

)
− F−1

(
−β+π−1

2π−1

)∣∣∣ = ε otherwise.

The proof of this result follows directly from Theorem 2.2 by considering classifiers g
that satisfy the fairness constraint |P (g(X,S) = 1 | S = −1)− P (g(X,S) = 1 | S = 1)| ≤ ε.
This constraint ensures that the condition is also satisfied for g(X,S) = 0 since g is a binary
function.

The above result highlights several important facts about the characterization of the
optimal fair classifier in the binary setting. First, the optimal rule is deduced just by
thresholding the conditional probability p1. The thresholding is not at the classical level 1/2
(e.g. without fairness constraint) but at a shifting of this value by sβ∗

2πs
to enforce fairness.

Second, observe that the rule only depends on p1 (and not p0) for the same reason as in
classical binary classification, that is p0 = 1− p1. This yields to a reduction of the number
of Lagrange parameters into a single one β∗. Notice that the case β∗ = 0 means that the
Bayes rule is already fair and then coincides with the ε-fair optimal predictor. In contrast,
if β∗ 6= 0, the optimal ε-fair rule differs from the Bayes rule and the modification of the rule
is deduced by shifting the conditional probability.

3. Data-driven procedure

This section is devoted to the definition and the theoretical study of our empirical procedure
that relies on the plug-in principle. The construction of our estimator is formally presented
in Section 3.1 while its statistical properties are provided in Section 3.2.

3.1 Plug-in estimator

The enhanced estimation procedure is in two steps. According to the definition of the optimal
ε-fair predictor given in Theorem 2.2, we first build estimators of the conditional probabilities
(pk)k and then proceed with the estimation of the parameters λ∗ and (πs)s∈S . Notably,
our data-driven procedure is semi-supervised as it relies on two independent datasets, one
labeled and another unlabeled.

The first labeled dataset Dn = (Xi, Si, Yi)i=1,...,n contains i.i.d. samples from the distribu-
tion P. It allows, for all k ∈ [K], to train estimators p̂k of the conditional probabilities pk by
the means of any machine learning supervised algorithm, e.g., Random Forest, SVM. At this
level, it is important to stress a key feature of the algorithm. Ones the empirical conditional
probabilities p̂k are trained, the theoretical analysis of the risk and the unfairness of the
plug-in rule requires continuity conditions on the random variables p̂k(X,S) (conditional on
the learning sample, see Assumption 2.1). Notably, this is automatically satisfied whenever
perturbing each p̂k with a continuous random noise (with a small magnitude to avoid
deflating the statistical properties of the estimate). We insure such a property simply by
randomization. Indeed, let u be a non negative real number. For each k ∈ [K], we introduce

p̄k(X,S, ζk) := p̂k(X,S) + ζk,

with (ζk)k∈[K] being i.i.d. according to a uniform distribution on [0, u]. This perturbation
improves the fairness calibration in both theory and practice due to the fact that atoms for
the random variables p̂k(X,S)− p̂j(X,S) are avoided in this case.
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The second unlabeled dataset D′N contains N i.i.d. copies of (X,S). It is used to calibrate
fairness. For s ∈ S, the number of observations corresponding to S = s is denoted by Ns, so
that N−1 +N1 = N . On the one hand, the feature vectors in D′N are denoted by Xs

1 , . . . , X
s
Ns

and are i.i.d. data from the distribution PXs of X|S = s. On the other hand, the sensitive
features from D′N are denotes by (S1, . . . , SN ). The latter are i.i.d. and are used to compute
empirical frequencies (π̂s)s∈S as estimates of (πs)s∈S (recall that πs = P(S = s)). Now notice
that the estimation of parameters (λ∗(1), λ∗(2)) only involves marginal distributions of PX|S=s

and PS . Therefore, this estimation part relies on the estimators π̂s, on the feature vectors
(Xs

1 , . . . , X
s
Ns

), and on independent copies (ζsk,i)k∈[K],i∈[Ns] of a Uniform distribution on [0, u]

(for s ∈ S). In particular, we define (λ̂(1), λ̂(2)) as a minimizer over R2K
+ of Ĥ(λ(1), λ(2)) that

is defined by (see the population counterpart given in Theorem 2.2)

Ĥ(λ(1), λ(2)) :=
∑
s∈S

1

Ns

Ns∑
i=1

[
max
k

(
π̂sp̄k(X

s
i , s, ζ

s
k,i)− s(λ

(1)
k − λ

(2)
k )
)]

+ε
K∑
k=1

(λ
(1)
k +λ

(2)
k ) .

(1)

Finally, our randomized fair algorithm ĝ is defined as

ĝε(x, s) = arg max
k∈[K]

(
π̂sp̄k(x, s, ζk)− s(λ̂

(1)
k − λ̂

(2)
k )
)
, (x, s) ∈ X × S , (2)

Note that the construction of the plug-in rule ĝ relies on (x, s) but also on the perturbations
ζk and ζsk,i for k ∈ [K], i ∈ [Ns], and s ∈ S, that are easily collected as i.i.d. uniform random
variables.

Remark 3.1 Classical datasets often contain only labeled samples. Then, our approach
requires to split the data into two independent samples Dn and D′N , by removing labels in
the latter. As illustrated in Section 4.2, this splitting step is important to get the right level
of fairness.

3.2 Statistical guarantees

We are now in position to derive fairness and risk guarantees of our plug-in procedure. We
need the following additional notation: πmin := mins∈S πs and Nmin = min(N1;N−1).

3.2.1 Universal fairness guarantee

We first focus on fairness assessment and prove that the plug-in estimator ĝ is asymptotically
ε-fair, that is, it satisfies the requirement of Definition 1. This control on the fairness will
be established both in expectation and with high probability. In addition, we prove that the
convergence rate of the unfairness to zero is parametric with the number of unlabeled data
N . Notably, the fairness guarantee is distribution-free and holds for any estimators of the
conditional probabilities.

Theorem 3.2 Let ε ≥ 0. There exists a constant C > 0 depending only on K and πmin

such that, for any estimators p̂k of the conditional probabilities, we have

E [U(ĝε)] ≤ ε+
C√
N

.
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This first finite-sample bound on the fairness illustrates a key feature of our post-processing
approach. It makes (asymptotically) ε-fair any off-the-shelf (unconstrained/unfair) estimators
of the conditional probabilities. This post-processing step is especially appealing when the
cost of re-training an existing learning algorithm is high. While the former result provides
a control of the unfairness on our algorithm in expectation, it is also appealing to have a
thinner analysis of the unfairness through a high probability control.

Theorem 3.3 Let 0 < δ < 1 and define Cδ = 4K
√

2 log(4K
δ ). Assume that ε >

√
2Cδ√
πminN

and

that N ≥ 2
log(1/δ)

π2
min

. Then there exists an event A(δ) that holds with probability 1−(3K+2)δ

on which we have
Cδ√
Nmin

< ε, and ∀k ∈ [K], λ̂
(1)
k λ̂

(2)
k = 0.

Besides on A(δ), the following holds

1) either |U(ĝε)− ε| ≤ Cδ√
Nmin

;

2) or U(ĝε) < ε− Cδ√
Nmin

, and then we have ĝ = ĝε (for each k ∈ [K], λ̂
(1)
k = λ̂

(2)
k = 0).

This result has several levels of understanding. It highlights that the bound on the unfairness
established in Theorem 3.2 is also valid with high probability, that is, there exists some
constant C > 0 such that U(ĝε) ≤ ε + C√

Nmin
with high probability. However, this result

covers two significantly different situations for ĝε: the first case is when the unfairness of
ĝε is small w.r.t. to ε. This means that the unconstrained classifier ĝ is already ε-fair and
the action of the fairness constraint on our prediction function is null. In this case, we
have ĝε = ĝ. The second case, which is also the most expected one, is when at least one

coordinate of the Lagrangian is non zero (e.g. either λ̂
(1)
k or λ̂

(2)
k is non zero for some k).

Here, imposing the fairness constraint is relevant and the unfairness of ĝε falls within a small
interval around ε.

From another perspective, all these conclusions are valid under some conditions on the
desired level of unfairness ε and the sample size N . It is assumed that N is large enough to
make the fairness constraint meaningful. However, it could be interesting to consider the
case where ε is smaller than the rate 1√

πminN
. (Observe that πminN is the expectation of

Nmin.) In this case, our statements shows that all values of ε ∈ [0, 1√
πminN

] lead, from the

theoretical perspective, to the same bound on the unfairness of the resulting classifier.

3.2.2 Consistency result

In this part, we provide a control on the misclassification risk of ĝε. Let us define the
`1-norm in RK between the estimator p̂ := (p̂1, . . . , p̂K) and the vector of the conditional
probabilities p := (p1, . . . , pK) by ‖p̂(X,S)−p(X,S)‖1 =

∑
k∈[K] |p̂k(X,S)− pk(X,S)|. We

then derive the following bound.

10
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Theorem 3.4 Let Assumption 2.1 be satisfied. Assume that
N

log(N)
≥ 2π−2

min, then it holds

that

E[Rλ∗(1),λ∗(2)(ĝε)]−Rλ∗(1),λ∗(2)(g
∗
ε−fair) ≤

C

(
E [‖p̂(X,S)− p(X,S)‖1] +

∑
s∈S

E [|π̂s − πs|] +
log(N)√

N
+ u

)
,

where C > 0 depends on K and πmin.

This result highlights that the excess fair-risk of ĝ depends on i) the L1-risk of p̂ for estimating
the conditional probabilities; ii) the efficiency of the estimators (π̂s)s∈S ; iii) a bound on the
unfairness of the classifier; and iv) the upper-bound u on the regularizing perturbations. In
view of Theorem 3.3, ĝε is consistent w.r.t. the misclassification risk as soon as the estimator
p̂ is consistent in L1-norm. In particular, we can establish the following result.

Corollary 3.5 Let ε ≥ 0, if E [‖p̂(X,S)− p(X,S)‖1]→ 0 and u = un → 0 when n→∞,
we have

|E [R(ĝε)]−R(g∗ε−fair)| → 0, as n,N →∞ .

Theorem 3.2 and Corrolary 3.5 directly imply that ĝε performs asymptotically as well as
g∗ε−fair both in terms of fairness and accuracy provided that the estimators of pk are consistent
w.r.t. the L1 risk.

3.2.3 Rates of convergence

This section is dedicated to the study of rates of convergence w.r.t the excess fair-risk. To
this end, we require additional assumptions on the regression functions pk.

Assumption 3.6 (Smoothness assumption) For all k ∈ [K], the regression function pk is
Lipschitz.

The bound on the excess-risk provided in Theorem 3.4 depends on E [‖p̂(X,S)− p(X,S)‖1].
Imposing additional regularity constraint on p, this term can further be controlled. For
instance, if we assume that for each k ∈ [K], the regression functions pk are Lipschitz then
well established nonparametric estimators of pk, such as local polynomials or kernel based
methods, lead to

E [‖p̂(X,S)− p(X,S)‖1] ≤ Cn−1/(2+d) .

In this case a straightforward consequence of Theorem 3.4 is that for u ≤ n−1/(2+d)

E[Rλ∗(1),λ∗(2)(ĝε)]−Rλ∗(1),λ∗(2)(g
∗
ε−fair) ≤ C

(
n−1/(2+d)

∨
N−1/2

)
.

In particular, if N is sufficiently large, that is N−1/2 = O
(
n−1/(2+d)

)
, the obtained rates

is of the same order as the minimax rates in classification setting without fairness con-
straint Audibert and Tsybakov (2007). Interestingly, it is possible to obtain faster rates
under a stronger assumption than Assumption 2.1.

11
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Assumption 3.7 (Density assumption) For any k, j ∈ [K] and s ∈ S, we assume that
conditional on S = s, the random variable pk(X,S)− pj(X,S) admits a bounded density.

Note that under Assumption 3.7, the Tsybakov’s margin condition is satisfied with parameter
α = 1. Taking advantage of the margin condition, we can establish the following result.

Theorem 3.8 For ε > 0 and for a sample size N such that
N

log(N)
≥ 2π−2

min, the following

holds

E[Rλ∗(1),λ∗(2)(ĝε)]−Rλ∗(1),λ∗(2)(g
∗
ε−fair) ≤ C

(
E
[
‖p̂(X,S)− p(X,S)‖2∞

]
+

log2(N)

N
+ u2

)
,

where C > 0 depends on K and πmin.

The major consequence of the above result is that fast rates of convergence (faster than
n−1/2) can be obtained for the excess fair-risk. Specifically, if under Assumption 3.6, the
estimator satisfies

E [‖p̂(X,S)− p(X,S)‖∞] ≤ C log(n)n−1/(2+d) , (3)

(which is again the case for popular methods) under Assumption 3.7, it holds that

E[Rλ∗(1),λ∗(2)(ĝε)]−Rλ∗(1),λ∗(2)(g
∗
ε−fair) ≤ C log2(n)

(
n−2/(2+d)

∨
N−1

)
.

Interestingly, if the size of the unlabeled sample N is sufficiently large (N ≥ log(n)−2n2/(2+d)),
then up to a logarithmic factor the established rates of convergence is of the same order as
the minimax fast rates of convergence for plug-in classifiers (see Audibert and Tsybakov
(2007)) in supervised classification without fairness constraint. Hence, we manage to show
that fast rates can be also achieved in the algorithmic fairness framework under Margin type
assumption. Note that the condition required in Equation (3) is, for instance fulfilled by
local polynomial estimator or kNN classifiers under Assumption 3.6. Finally, we also want
to point out that we restrict our analysis to the case where the regression functions pk are
Lipschitz to ease the presentation. However, we can extend our results to the case where
the regression functions are in a Hölder class.

4. Numerical Evaluation

We now evaluate our method numerically1. Section 4.2 illustrates the efficiency of the
ε-fairness algorithm on synthetic data, while experiments on real datasets are provided in
Section 4.3. Up to our knowledge, imposing the fairness constraint in multi-class classification
in a model-agnostic post-processing approach is only addressed in (Alghamdi et al., 2022).
Therefore we will mainly compare our method to (Alghamdi et al., 2022) for multi-class tasks
and to the state-of-the-art in-processing approach (Agarwal et al., 2019) that is designed for
binary tasks.

1. The source of our method can be found at https://github.com/curiousML/epsilon-fairness.
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4.1 Implementation of the algorithm

Let us focus on the implementation of the algorithm producing an ε-fairness classifier.
Although the exact fairness setting allows for improvements using accelerated gradient
descent, we do not focus on this point and simply identify the exact fair algorithm to the
approximate fair one with ε = 0.

The proposed approximate fair algorithm is defined in Eq. (2) and requires to solve
an optimization problem in Eq. (1). The implementation–pseudo-code is provided in
Algorithm 1.

Algorithm 1 ε-fairness calibration

Input: Approximate fairness parameter ε, new data point (x, s), base estimators (p̄k)k,
unlabeled sample D′N , (ζk)k and i.i.d uniform perturbations (ζsk,i)k,i,s in [0, 10−5].

Step 0. Split D′N and construct the samples (S1, . . . , SN ) and {Xs
1 , . . . , X

s
Ns
}, for

s ∈ S;
Step 1. Compute the empirical frequencies (π̂s)s based on (S1, . . . , SN );

Step 2. Compute λ̂(1) = (λ̂
(1)
1 , . . . , λ̂

(1)
K ) and λ̂(2) = (λ̂

(2)
1 , . . . , λ̂

(2)
K ) as a solution of

Eq. (1);
Sequential quadratic programming of Section 4.1 can be used for this step.

Step 3. Compute ĝ thanks to Eq. (2);
Output: ε-fair classification ĝ(x, s) at point (x, s).

First of all, base estimators (p̄k)k are needed as inputs of the algorithm. We emphasize
that we can fit any off-the-shelf estimators on the labeled dataset Dn. In particular, one can
use efficient ML algorithms that are already pre-trained and that are eventually expensive to
re-train. This is one of the main advantages of post-training approaches over in-processing
ones. In addition, randomization in the definition of p̄k provides good theoretical properties
for fairness calibration (c.f. Section 3.2).

Once (p̄k)k are computed, the fair classifier ĝ relies on the estimators λ̂(1) and λ̂(2)

computed in Step 2. of the algorithm. This requires solving the minimization problem
in Equation (1). The corresponding objective function is convex but non-smooth due to
the evaluation of the max function. We regularize the objective function by replacing the
hard-max by a soft-max. Namely, for β a positive real number designating the temperature
parameter and a = (a1, . . . , aK)> ∈ RK , we set

softmax(a) :=

K∑
k=1

σβ(a)k · ak, where σβ(a)k := exp(ak/β)∑K
k=1 exp(ak/β)

.

Whenever β → 0, the soft-max reduces to the max function. Problem (1) with the soft-max
relaxation is smooth enough to be solved by a constrained optimization method, such as
sequential quadratic programming (Fu et al., 2019; Nie, 2007). Empirical study shows that
β = 10−5 enables a good performance of the algorithm, without deviating too much from
the original solution.

Instead of regularizing the objective function, one can alternatively use sampling methods
such as cross-entropy optimization (Rubinstein, 1999) on the original objective function.

13
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Despite their precision, the downside of this method is the induced computational complexity,
that grows much faster with the dimension than the complexity induced by smoothing
techniques. Hence, the regularization approach has been preferred in the following numerical
study.

4.2 Evaluation on synthetic data

Before illustrating our method on real datasets, we choose to evaluate our methodology on
synthetic data, in order to better understand its performance.

4.2.1 Synthetic data

Let us define the synthetic data (X,S, Y ). For all k ∈ [K] we set P(Y = k) = 1/K.
Conditional on Y = k, features X ∈ Rd follow a Gaussian mixture of m components:

(X|Y = k) ∼ 1

m

m∑
i=1

Nd(ck + µki , Id)

with ck ∼ Ud(−1, 1), and µk1, . . . , µ
k
m ∼ Nd(0, Id); while the sensitive feature S ∈ {−1,+1}

follows a Bernoulli contamination with parameter p or 1− p depending on k:

(S|Y = k) ∼ 2·B(p)−1 if k ≤ bK/2c and (S|Y = k) ∼ 2·B(1−p)−1 if k > bK/2c .

From this model, we can deduce an expression of the Bayes classifier g∗. Indeed for each
k ∈ [K], since conditional on Y = k, the random variables X and S are independent and
P(Y = k) = 1/K, we have from the Bayes formula

pk(x, s) =
fX|Y=k(x)P(S = s|Y = k)∑K
j=1 fX|Y=j(x)P(S = s|Y = j)

,

where fX|Y=k is the density of X conditional on Y = k. In view of the expression of the
conditional probabilities pk, the Bayes classifier g∗ can be expressed as

g∗(x, s) ∈ arg max
k∈[K]

fX|Y=k(x)P(S = s|Y = k) .

We exploit the above formula to evaluate the unfairness of g∗ w.r.t. the parameter p. Figure 1
displays the obtained results. Interestingly, we see that parameter p measures the historical
bias in the dataset. Hence, this synthetic data structure enables to challenge different aspects
of the algorithm. In particular, the data becomes fair when p = 0.5 and completely unfair
when p ∈ {0, 1} (see also Figure 9 in Appendix D for an illustration). As default parameters,
we set K = 6, p = 0.75, m = 10, and d = 20.

4.2.2 Simulation scheme

We compare our method to the unfair approach. We set u = 10−5 and estimate the conditional
probabilities pk by Random Forest (RF) with default parameters in scikit-learn. We
generate n = 5000 synthetic examples and split the data into three sets (60% training, 20%
hold-out and 20% unlabeled).

14
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Figure 1: Unfairness of the Bayes classifier g∗ w.r.t. parameter p. We report the means and
standard deviations over 30 simulations.

The performance of a classifier g is evaluated by its empirical accuracy Acc(g) on the
hold-out set T

Acc(g) =
1

|T |
∑

(X,S,Y )∈T

1{g(X,S)=Y } .

The unfairness of g is measured on the hold-out set by the empirical counterpart Û(g) of
the unfairness given in Definition 1, that is,

Û(g) = max
k∈[K]

∣∣ν̂g|−1(k)− ν̂g|1(k)
∣∣ ,

where ν̂g|s(k) =
1

|T s|
∑

(X,S,Y )∈T s
1{g(X,S)=k} is the empirical distribution of g(X,S)|S = s on

the conditional hold-out test T s = {(X,S, Y ) ∈ T | S = s}.

4.2.3 Fairness versus Accuracy

Figure 2-Left illustrates how fairness and accuracy vary across different levels of unfairness,
quantified by p ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 0.99}, in both the unfair and fair random forests
with ε ∈ {0, 0.05, 0.1}. Figure 2-Right presents the fairness and accuracy of our ε-fairness
method for ε ∈ {0, 0.05, 0.1, 0.15, 0.2}. Note that the performance evolves as expected:
enforcing fairness degrades the accuracy and the trade-off accuracy-fairness is controlled
by the parameter ε. From Figure 2-Right, for exact fairness (ε = 0), the gain in fairness is
particularly salient and effective. By contrast, whenever ε = 0.2, the fair classifier becomes
similar to the unfair method, confirming the result in Section 4.2.1 that the original unfairness
of the problem is around ε = 0.2. From Figure 2-Left, we additionally notice that: 1) the
fairness efficiency of the algorithm is particularly significant for datasets with large historical
bias (p = 0.9 or 0.99); 2) our method succeeds at reaching the required unfairness level up
to small approximation terms (vertical curves as soon as the unfairness bound ε is reached);
3) as claimed in Theorem 3.3, when the unconstrained classifier is already ε-fair, the action
of the fairness constraint on ĝε−fair is null and we have ĝε−fair = ĝ (horizontal parts of the
curves). We also illustrates in Figure 3 that the distribution of ĝfair is independent from S.
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Figure 2: Left: (Accuracy, Unfairness) phase diagrams w.r.t. the considered level of bias
p ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 0.99}; each point corresponds to specific value of p.
Notice that, if ε is too large, the resulting ε-fair predictor is equivalent to the
unfair predictor. Moreover, when ε is small (as compared to the unfairness in
the model), the ε-fair predictor achieves ε fairness at the price of a degradation
in terms of accuracy. Right: (Accuracy, Unfairness) phase diagrams w.r.t. the
parameter ε ∈ {0, 0.05, 0.1, 0.15, 0.2}. Top-left corner gives the best trade-off.

Figure 3: Empirical distribution of ĝ on 30 simulations. Left : unfair classifier; Right :
exactly-fair classifier.
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Figure 4: Empirical impact of data splitting on unfairness (Left – the lower the better) and
accuracy (Right: accuracy – the higher the better). Boxplots are generated over
30 repetitions with p = 0.75. The non-splitting procedure involves two sets (80%
training and 20% hold-out): in this particular case we use the training set (instead
of the unlabeled) to compute empirical frequencies (π̂s)s∈S .

Splitting the sample When an unlabeled dataset is not available, the samples Dn and
D′N follow from splitting the initial dataset, see Remark 3.1. Our theoretical study relies
strongly on the independence between both datasets Dn and D′N . Figure 4 numerically
illustrates the importance of such condition for the fairness but also the accuracy of our
proposed method. Indeed, whenever the splitting is not performed (left parts of plots), the
fairness performance of the fair algorithm may even be worse than the unfair method. This
emphasize that splitting is crucial and enables to avoid over-fitting on the training set.

4.3 Application to real datasets

In this section, we illustrate the performance of our methodology on real data and compare
it with a benchmark of four State of the Art algorithms (Zhang et al., 2018; Agarwal et al.,
2019; Alghamdi et al., 2022) and (Xian et al., 2023).

4.3.1 Datasets

The performance of the method is evaluated on two real datasets : DRUG and CRIME.
Hereafter, we provide a short description of these datasets.

Drug Consumption (DRUG) This dataset Fehrman et al. (2017) contains demographic
information such as age, gender, and education level, as well as measures of personality
traits thought to influence drug use for 1885 respondents. The task is to predict cannabis
use, where the 7 levels of drug use have been simplified into K = 4 categories (never used,
not used in the past year, used in the past year, and used in the past day) for multi-class
outcomes or K = 2 categories (used or not used in the past year) for binary outcomes. The
binary sensitive feature is education level (college degree or not).
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Figure 5: (Accuracy, Unfairness) phase diagrams phase diagrams w.r.t. the parameter
ε ∈ {0, 0.1, 0.2, 0.3}. We report the means and standard deviations over the 30
repetitions. Top-left corner gives the best trade-off.

Communities&Crime (CRIME) This dataset contains socio-economic, law enforce-
ment, and crime data about communities in the US with 1994 examples. The task is to
predict the number of violent crimes per 105 population which, we divide into K = 5
(multi-class outcomes) or K = 2 (binary outcomes) balanced classes based on equidistant
quantiles. Following Calders et al. (2013), the sensitive feature is a binary variable that
corresponds to the ethnicity.

4.3.2 Methodology

We illustrate our ε-fair method2 with linear and nonlinear multi-class classification methods.
For linear models, we consider one-versus-all logistic regression (reglog); for nonlinear models,
Random Forest (RF) and LightGBM (GBM). For reglog, we use the default parameters in
scikit-learn. For RF and GBM, we use a 3-fold cross-validation random search to select the
best hyperparameters with the training set:
• For RF, we set the number of trees in {10, 11, . . . , 200}, the maximum depth of each
tree in {2, 3, . . . , 16}, the minimum number of samples required to split an internal node in
{2, 3, . . . , 10}, and the minimum number of samples required to be at a leaf node in {1, . . . , 8};
• For GBM, we set L1 and L2 regularization terms on weights both in {0, 0.1, 1, 2, 5, 10, 20, 50},
the number of boosted trees in {10, 11, . . . , 200}, the maximum tree leaves in {6, 7, . . . , 50},
the maximum depth of each tree in {2, 3, . . . , 16}, and the minimum number of samples
required in a child node for a split to occur in the tree in {10, 11, . . . , 100}.

Note that the numerical experiments presented in Figure 5 confirm our findings on
synthetic data. Our method have good performance in term of unfairness while the accuracy
slightly increases when the level ε of desired fairness increases. Besides, the performance
of the ε-fair classifier becomes closer to the base (unfair) when the fairness constraint is
released.

2. See https://github.com/curiousML/epsilon-fairness.
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4.3.3 Benchmarks

We aim at highlighting the numerical efficiency of our method in terms of accuracy-fairness
trade-off curves. For this purpose, we compare our ε-fairness method to the following
benchmarks :

Fair-learn For binary classification tasks, the current state-of-the-art is established by
the in-processing approach (Agarwal et al., 2019)3. The authors present a reduction-based
algorithm, which is an extension of the Fair-Lasso. The Fair-Lasso algorithm is a variant of
the traditional Lasso algorithm that incorporates fairness constraints, aiming at finding a
fair solution while maintaining good predictive performance. We use the following trade-off
tolerances {0.0001, 0.5, 1, 2.5, 5, 10}.

Fair-adversarial The paper Zhang et al. (2018)4 presents an in-processing method for
reducing bias using adversarial training: a primary model, which is trained to perform a
specific task, and a bias correction model, which is trained to reduce the bias in the primary
model’s predictions. Note that we cannot universally apply this method on any pre-trained
classifier. We use a Neural Network (NN) as the base classifier and set the following param-
eters: num epochs = 200, batch size = 128, classifier num hidden units = 50 (see
the python package AIF360). We use the following trade-off tolerances {0.01, 0.1, 0.5, 0.9, 1}.

Fair-projection For multi-class classification tasks, we compare our result to the recent
post-processing approach Alghamdi et al. (2022)5. The authors propose a method based
on information projection by reweighting the outputs of a pre-trained classifier to satisfy
specific group-fairness requirements. The trade-off tolerances are {0, 0.1, 0.2, 0.5, 0.75}.

Fair-transport We additionally compare our method with another recent post-processing
approach Xian et al. (2023)6. The authors propose a fair methodology based on Wasserstein
barycenters problem. The trade-off tolerances are {0, 0.1, 0.2, 0.3, 0.4}.

4.3.4 Results

Performance in binary case (K = 2) We analyze the efficiency of the ε-fairness
method compared to fair-learn, fair-projection and fair-adversarial for binary
classification. Numerical experiments on DRUG and CRIME presented in Figure 6 reveal
that our method is very efficient in both accuracy and fairness and at least competitive (if
not better) in several aspects :

1. Competitive fairness. Overall, our ε-fair classifier outperforms fair-projection

classifier in terms of exact fairness (ε = 0) and achieves similar performance as the
state-of-the-art benchmark fair-learn.

2. Competitive accuracy. Although we obtain similar accuracies using reglog and
GBM, our algorithm seems more efficient than fair-learn using RF. Compared to

3. The method in (Agarwal et al., 2019) was developed for Equality of Odds but the code is also implemented
for Demographic Parity see https://github.com/fairlearn/fairlearn.

4. We use IBM AIF360 library https://aif360.readthedocs.io/en/stable/modules/algorithms.html.
5. The code can be found at https://github.com/HsiangHsu/Fair-Projection.
6. The code can be found at https://github.com/rxian/fair-classification.
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Figure 6: (Accuracy, Unfairness) phase diagrams phase diagrams w.r.t. the parameter
ε ∈ [0, 0.5]. We report the means and standard deviations over 30 repetitions.
Top-left corner gives the best trade-off.

Figure 7: (Accuracy, Unfairness) phase diagrams. For ε-fair classifier we vary ε ∈
{0.01, 0.1, 0.3, 0.5, 0.9}. We report the means and standard deviations over 30
repetitions. Top-left corner gives the best trade-off.

20



Multi-class Classification with Demographic Parity

Figure 8: (Accuracy, Unfairness) phase diagrams. We report the means and standard
deviations over 30 repetitions. Top-left corner gives the best trade-off.
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fair-projection our algorithm is competitive in terms of accuracy for ε ≥ 0.1 in
both datasets.

From Figure 7, our ε-fair predictor outperforms fair-adversarial predictor both in terms of
accuracy and fairness. Note that since fair-learn and fair-adversarial are in-processing
methods their running time (using the dedicated package) is much higher than our algorithm.

Performance in multi-class case (K ≥ 3). We analyze the efficiency of the ε-fairness
method compared to the baseline fair-projection and fair-transport for multi-class
classification. The numerical experiments are presented in Figure 8. In multi-class tasks,
empirical results highlight the efficiency of our approach to enforce fairness when ε decreases.
Indeed, our methodology achieves better fairness results under the DP constraint than
fair-projection while maintaining competitive accuracy. Moreover, our fairness calibration
is close to the pre-specified level, regardless of the base algorithm (reglog, RF or GBM). Note
that our methodology seems to achieve approximately the same accuracy-fairness trade-off
as fair-transport. However, empirical studies indicate that our implementation runs
faster than the fair-transport approach proposed in their open source code, as shown in
Figure 11 in the Appendix. Indeed, when handling binary sensitive attributes (|S| = 2),
their approach requires solving |S|+1 linear programs, each dominated with O(nk) variables
and constraints, leading to O(poly(nk)) time complexity using interior point methods (as
highlighted in their paper). In contrast, our method involves solving a simple (smoothed)
optimization problem with only O(k) simple positivity constraints.

Besides, note that our methodology only uses a portion of the dataset to train a classifier,
while reserving the remaining portion as unlabeled. Despite using relatively small datasets,
consisting of around 1000 examples, our approach is either competitive with or outperforms
other benchmark methods trained on fully labeled datasets.

Finally, as shown in Figure 5, enforcing fairness may degrade the accuracy of the
considered classification procedure, especially when the historical bias (controlled by p in the
synthetic data) is more pronounced. In some sense, this is a common limitation of imposing
(exact-)fairness constraint. Even though our method is optimal in terms of accuracy for
a desired fairness level, a strategy that balances accuracy and fairness could be desirable.
Therefore, from a practical point of view, the calibration of a specific value ε > 0 that
achieves a trade-off between accuracy and unfairness would be an interesting question and a
guideline for further research.

5. Extension to multi-categorical sensitive attributes

In this section, we discuss the extension of the proposed procedure to multi-categorical
sensitive attributes. Hence, we assume that S belongs to S with |S| ≥ 2. In this case, a
classifier g satisfies the ε-DP constraint iff

max
k,s,s′

∣∣P (g(X,S) = k|S = s)− P
(
g(X,S)|S = s′

)∣∣ ≤ ε .
Hence for a classifier g, and parameters λ(1), λ(2) ∈ RK|S|(|S|−1)/2, the LagrangianRλ(1),λ(2)(g)
associated to the minimization problem

g∗ε−fair ∈ min
Gε−fair

R(g)
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can be written as

Rλ(1),λ(2)(g) = P (g(X,S) 6= Y ) +

K∑
k=1

∑
s∈S

∑
s′>s

λ
(1)
k,s,s′

(
PX|S=s (g(X,S) = k)− PX|S=s′ (g(X,S) = k)− ε

)
+

K∑
k=1

∑
s∈S

∑
s′>s

λ
(2)
k,s,s′

(
PX|S=s′ (g(X,S) = k)− PX|S=s (g(X,S) = k)− ε

)
.

Let us introduce the parameters β
(l)
k,s =

∑
s′>s λ

(l)
k,s,s′−

∑
s′<s λ

(l)
k,s′,s, for l ∈ {1, 2}. Intuitively,

the quantity β
(l)
k,s plays the role of a unique ”Lagrange” parameter for each sensitive attribute

s. The following theorem establishes the optimal ε-fair predictor.

Theorem 5.1 Let Assumption 2.1 be satisfied. The optimal classifier g∗ε−fair is characterized
pointwise as

g∗ε−fair(x, s) ∈ arg max
k∈[K]

πspk(x, s)−
(
β
∗(1)
k,s − β

∗(2)
k,s

)
,

with (λ∗(1), λ∗(2)) ∈ RK|S|(|S|−1)/2
+ characterized as the minimizer of

∑
s∈S

EX|S=s

[
max
k∈[K]

(
πspk(X, s)−

(
β

(1)
k,s − β

(2)
k,s

))]
+ ε

K∑
k=1

∑
s∈S

∑
s′>s

(
λ

(1)
k,s,s′ + λ

(2)
k,s,s′

)
.

In view of the above result, we easily see that the procedure described in Section D can be
extended to the case of multi-categorical sensitive attributes. Furthermore, up to additional
factors which may depend on |S|, all our theoretical findings established in Section 3 remain
valid in this setting.

6. Conclusion

In the multi-class classification framework, we provide an optimal fair classification rule
under DP constraint and derive misclassification and fairness guarantees of the associated
plug-in fair classifier (see Algorithm 1). We handle both exact and approximate fairness
settings and show that our approach achieves distribution-free fairness and can be applied
on top of any probabilistic base estimator. We also establish rates of convergence for our
procedure. A statistical analysis for approximate fairness in binary classification has already
been developed in Agarwal et al. (2019) considering in-processing approaches with particular
class of functions. Our analysis extends this kind of analysis (with deeper statistical results)
to multi-class problems and with general classes of functions. We also demonstrate the
flexibility of our approach via its extension to settings with multi-categorical sensitive
attributes. We finally illustrate the proficiency of our procedure on various synthetic and
real datasets. Importantly, our algorithm is efficient for enforcing a pre-specified level of
fairness.

A natural way for further research is to extend our methodology to other notions of
fairness such as equalized odds. believe that this kind of development is possible thanks to the
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flexibility of the optimal fair classifier characterization. On the other hand, the calibration
of the level of unfairness ε ≥ 0 is an important empirical issue (see for instance Zhao and
Gordon (2022)). As mentioned in the introduction, there are some heuristics that provide
guidelines for its calibration but one may ask for more advanced and robust approaches.
In particular, a future direction of research is to describe a methodology that statistically
justifies a data-driven calibration of this parameter in order to optimally compromise risk
and unfairness.
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Appendix

In this section, we gather the proofs of our results. Section A is devoted to useful technical
results. In Section B we give the proof of the results related to the optimal fair predictors
while Section C is dedicated to the theoretical properties of our estimation procedure. Finally,
we provide additional numerical results in Section D. In all the sequel, C denotes a generic
constant, whose value may vary from line to line.

Appendix A. Technical results

Lemma A.1 (Hoeffding) Let Z ∼ B(N, p), with p ∈ (0, 1). We then have for all t > 0
and N > t

p

P(Z ≤ t) ≤ exp
(
−2N(p− t/N)2

)
.

Lemma A.2 Let Z ∼ B(N, p). We have that

E
[
1{Z≥1}

Z

]
≤ 2

(N + 1)p

Proposition A.3 Let f : RM → R be a convex continuous function, and H ⊂ RM a closed
convex set. We consider the minimizer x∗ of the function f over the set H

x∗ ∈ arg min
x∈H

f(x).

Then, there exists a subgradient h in the subdifferential ∂f(x∗) of f at the point x∗ such that

hT (y − x∗) ≥ 0, ∀y ∈ H.

From the above proposition, it is easy to show the following result.

Corollary A.4 Let f : RM → R be a convex continuous function. Let H = RM+ . We
consider the minimizer x∗ of the function f over the set H. Let M := {m ∈ [M ], x∗m 6= 0}.
Then there exists a subgradient h ∈ ∂f(x∗), such that for all m ∈ [M ] we have hm ≥ 0 and
in particular,

∀m ∈M, hm = 0.

Appendix B. Proof of Section 2

We begin with an auxiliary lemma, which provides an alternative useful representation of
Rλ(1),λ(2)(g).

Lemma B.1 Let ε ≥ 0, the ε-fair-risk of a classifier g with tuning parameters λ(1) =

(λ
(1)
1 , . . . , λ

(1)
K ) ∈ RK+ , λ(2) = (λ

(2)
1 , . . . , λ

(2)
K ) ∈ RK+ reads as:

Rλ(1),λ(2)(g) =
∑
s∈S

EX|S=s

[
K∑
k=1

(
πspk(X,S)− s(λ(1)

k − λ
(2)
k )
)
1{g(X,S)6=k}

]
−ε

K∑
k=1

(λ
(1)
k +λ

(2)
k ).

(4)
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Proof [Proof of Lemma B.1]

Let (λ(1), λ(2)) ∈ R2K
+ and recall the following definition of the ε-fair risk

Rλ(1),λ(2)(g) = P (g(X,S) 6= Y )

−
K∑
k=1

∑
s∈S

s(λ
(1)
k − λ

(2)
k )EX|S=s

[
1{g(X,s)6=k}

]
− ε

K∑
k=1

(λ
(1)
k + λ

(2)
k ). (5)

The result in (4) directly follows from the following decomposition

P (g(X,S) 6= Y ) =
K∑
k=1

E
[
1{g(X,S)6=k}1{Y=k}

]
=

K∑
k=1

∑
s∈S

E
[
1{g(X,S)6=k}1{S=s}pk(X,S)

]
=

K∑
k=1

∑
s∈S

EX|S=s

[
1{g(X,s) 6=k}πspk(X, s)

]
.

Proof [Proof of Theorem 2.2] The proof is divided into two parts. First, we provide the
proof for ε > 0. Then the second part is dedicated to the proof of the result when ε = 0
which corresponds to the case of exact fairness.

Proof for approximate fairness From Lemma B.1, we deduce that g∗
λ(1),λ(2)

should be

defined for all (x, s) ∈ X × S as

g∗
λ(1),λ(2)

(x, s) = arg max
k∈[K]

(
πspk(X,S)− s(λ(1)

k − λ
(2)
k )
)
, (6)

since it minimizes the risk Rλ(1),λ(2) . Now we should maximize Rλ(1),λ(2)(g∗λ(1),λ(2)) in the

dual variables. Notice that the ε-fair risk can be written as

Rλ(1),λ(2)(g
∗
λ(1),λ(2)

) = 1−
∑
s∈S

EX|S=s

[
max
k∈[K]

(
πspk(X,S)− s(λ(1)

k − λ
(2)
k )
)]
−ε

K∑
k=1

(λ
(1)
k +λ

(2)
k ) .

Hence, a maximizer (λ∗(1), λ∗(2)) in R2K
+ of (λ(1), λ(2)) 7→ Rλ(1),λ(2)(g∗λ(1),λ(2)) is solution of

(λ∗(1), λ∗(2)) ∈

arg min
(λ(1),λ(2))∈R2K

+

∑
s∈S

EX|S=s

[
max
k∈[K]

(
πspk(X, s)− s(λ

(1)
k − λ

(2)
k )
)]

+ ε
K∑
k=1

(λ
(1)
k + λ

(2)
k )︸ ︷︷ ︸

H(λ(1),λ(2))

.
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The rest of the proof consists in showing that such a calibration of the tuning parameters
(λ(1), λ(2)) implies that g∗

λ∗(1),λ∗(2)
is indeed ε-fair. Observe that

H(λ(1), λ(2)) ≥ ε
K∑
k=1

(λ
(1)
k + λ

(2)
k ) ,

and then lim‖(λ(1),λ(2))‖22→∞
H(λ(1), λ(2)) = +∞. Moreover, the mapping H is continuous

and convex in (λ(1), λ(2)). Therefore the minimum (λ∗(1), λ∗(2)) exists, and there exists some

constant Cλ > 0 such that for all k ∈ [K] and j ∈ {1, 2} we have |λ∗(j)k | ≤ Cλ.

Let us derive a subgradient h∗ = (h∗(1), h∗(2)) of H at the optimum (λ∗(1), λ∗(2)) with

h∗(1) =
(
h
∗(1)
1 , . . . , h

∗(1)
K

)
and h∗(2) =

(
h
∗(2)
1 , . . . , h

∗(2)
K

)
being two vectors in RK . In or-

der to express h∗ let us build the subdifferential of the function f
(
x, (λ(1), λ(2))

)
:=

maxk∈[K]

{
hsk
(
x, (λ(1), λ(2))

)}
at the point (λ∗(1), λ∗(2)) with

hsk

(
x, (λ(1), λ(2))

)
= πspk(x, s)− s

(
λ

(1)
k − λ

(2)
k

)
.

We have that

∂f
(
x, (λ∗(1), λ∗(2))

)
= conv

{
∇hsk

(
x, (λ∗(1), λ∗(2))

)
: hsk

(
x, (λ∗(1), λ∗(2))

)
= max

j∈[K]

{
hsj

(
x, (λ∗(1), λ∗(2))

)}}
,

where ∇hsk
(
x, (λ(1), λ(2))

)
∈ R2K is the gradient of the function hsk w.r.t. (λ(1), λ(2)).

Therefore, we deduce that a subgradient h∗ of H at (λ∗(1), λ∗(2)) can be expressed for each
k ∈ [K], and l ∈ {1, 2} as

h
∗(l)
k =

(2l−3)
∑
s∈S

{
sPX|S=s

(
∀j 6= k (πspk(X, s)− s(λ

∗(1)
k − λ∗(2)

k )) > (πspj(X, s)− s(λ∗(1)
j − λ∗(2)

j ))
)

+ s usk PX|S=s

(
∀j 6= k (πspk(X, s)− s(λ

∗(1)
k − λ∗(2)

k )) ≥ (πspj(X, s)− s(λ∗(1)
j − λ∗(2)

j )),

∃j 6= k (πspk(X, s)− s(λ
∗(1)
k − λ∗(2)

k )) = (πspj(X, s)− s(λ∗(1)
j − λ∗(2)

j ))
)}

+ ε ,

with usk ∈ [0, 1] for all k ∈ [K] and all s ∈ S. Thanks to Assumption 2.1, pk(X, s)− pj(X, s)
has no atom for all s ∈ S and then the second part of the r.h.s. of the above equation
vanishes and we have

h
∗(l)
k =

(2l−3)
∑
s∈S

sPX|S=s

(
∀j 6= k (πspk(X, s)− s(λ

∗(1)
k − λ∗(2)

k )) > (πspj(X, s)− s(λ∗(1)
j − λ∗(2)

j ))
)

+ε,
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which can be written as

h
∗(l)
k = (2l − 3)

∑
s∈S

sPX|S=s

(
g∗
λ∗(1),λ∗(2)(X,S) = k

)
+ ε.

Now, we apply Corollary A.4 and deduce, from the above equation, that if

• λ∗(1)
k 6= 0 and λ

∗(2)
k 6= 0, we then necessary have h

∗(l)
k = 0 for l ∈ {1, 2} and then

PX|S=1

(
g∗
λ∗(1),λ∗(2)(X,S) = k

)
− PX|S=−1

(
g∗
λ∗(1),λ∗(2)(X,S) = k

)
= ε

PX|S=1

(
g∗
λ∗(1),λ∗(2)(X,S) = k

)
− PX|S=−1

(
g∗
λ∗(1),λ∗(2)(X,S) = k

)
= − ε ,

which leads to a contradiction.

• λ∗(1)
k = 0 and λ

∗(2)
k = 0, we get

PX|S=1

(
g∗
λ∗(1),λ∗(2)(X,S) = k

)
− PX|S=−1

(
g∗
λ∗(1),λ∗(2)(X,S) = k

)
≤ ε

PX|S=1

(
g∗
λ∗(1),λ∗(2)(X,S) = k

)
− PX|S=−1

(
g∗
λ∗(1),λ∗(2)(X,S) = k

)
≥ − ε ,

which gives∣∣∣PX|S=1

(
g∗
λ∗(1),λ∗(2)(X,S) = k

)
− PX|S=−1

(
g∗
λ∗(1),λ∗(2)(X,S) = k

)∣∣∣ ≤ ε.
• Finally, if λ

∗(1)
k λ

∗(2)
k = 0 and λ

∗(1)
k + λ

∗(2)
k > 0, we get∣∣∣PX|S=1

(
g∗
λ∗(1),λ∗(2)(X,S) = k

)
− PX|S=−1

(
g∗
λ∗(1),λ∗(2)(X,S) = k

)∣∣∣ = ε.

Hence, we have shown that for each k ∈ [K],∣∣∣PX|S=1

(
g∗
λ∗(1),λ∗(2)(X,S) = k

)
− PX|S=−1

(
g∗
λ∗(1),λ∗(2)(X,S) = k

)∣∣∣ ≤ ε,
which means that g∗

λ∗(1),λ∗(2)
is ε-fair: U(g∗

λ∗(1),λ∗(2)
) ≤ ε.

Furthermore, we also have that for each k ∈ [K], the vector (λ∗(1), λ∗(2)) meets the

following constraint λ
∗(1)
k λ

∗(2)
k = 0 and λ

∗(1)
k + λ

∗(2)
k ≥ 0. Since parameters (λ∗(1), λ∗(2)) are

bounded, we then deduce that for any classifier g (see for instance (5))

Rλ∗(1),λ∗(2)(g) ≤ R(g) + C (U(g)− ε) ,

therefore, for any g ∈ Gε−fair

Rλ∗(1),λ∗(2)(g) ≤ R(g). (7)

Besides, considering the three above cases, we notice that∣∣∣PX|S=1

(
g∗
λ∗(1),λ∗(2)(X,S) = k

)
− PX|S=−1

(
g∗
λ∗(1),λ∗(2)(X,S) = k

)∣∣∣ < ε⇒ λ
∗(1)
k = λ

∗(2)
k = 0.

Since g∗
λ∗(1),λ∗(2)

∈ Gε−fair, the above equation and Equation (7) imply that for any g ∈ Gε−fair

R(g∗
λ∗(1),λ∗(2)) = Rλ∗(1),λ∗(2)(g

∗
λ∗(1),λ∗(2)) ≤ Rλ∗(1),λ∗(2)(g) ≤ R(g),

which concludes the proof.
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Proof for exact fairness First, we apply Lemma B.1 with ε = 0 and then have

Rλ(1),λ(2)(g
∗
λ(1),λ(2)

) = 1−
∑
s∈S

EX|S=s

[
max
k∈[K]

(
πspk(X,S)− s(λ(1)

k − λ
(2)
k )
)]
,

with
g∗
λ(1),λ(2)

(x, s) = arg max
k∈[K]

(
πspk(X,S)− s(λ(1)

k − λ
(2)
k )
)
.

Therefore, it is not difficult to see that using the reparametrization

βk = λ
(1)
k − λ

(2)
k , k = 1, . . . ,K, (8)

we can write

Rλ(1),λ(2)(g
∗
λ(1),λ(2)

) = Rβ(g∗β) = 1−
∑
s∈S

EX|S=s

[
max
k∈[K]

(πspk(X, s)− sβk)
]
. (9)

Hence, a maximizer β∗ in RK of β 7→ Rβ(g∗β) takes the form

β∗ ∈ arg min
β∈RK

∑
s∈S

EX|S=s

[
max
k∈[K]

(πspk(X, s)− sβk)
]
.

The above criterion is convex in β. Therefore, first order optimality conditions for the
minimization over β of the above criterion imply that, for each k ∈ [K],

0 =
∑
s∈S

sPX|S=s

(
∀j 6= k (πspk(X, s)− sβ∗k) > (πspj(X, s)− sβ∗j )

)
+ suskPX|S=s(∀j 6= k (πspk(X, s)− sβ∗k) ≥ (πspj(X, s)− sβ∗j ),

∃j 6= k (πspk(X, s)− sβ∗k) = (πspj(X, s)− sβ∗j )) ,

with usk ∈ [0, 1] for all k ∈ [K] and s ∈ S. As in the case where ε > 0, we use Assumption 2.1
on the distribution of pk(X, s)− pj(X, s) to show that the second part of the r.h.s. vanishes.
Therefore for all k ∈ [K]

PX|S=1

(
g∗β∗(X,S) 6= k

)
= PX|S=−1

(
g∗β∗(X,S) 6= k

)
,

meaning that the classifier g∗β∗ is fair. Furthermore, for any fair classifier g ∈ Gfair, we observe
that

R(g∗β∗) = Rβ∗(g∗β∗) ≤ Rβ∗(g) = R(g),

so that g∗β∗ is also an optimal fair classifier.
Conversely, consider any optimal fair classifier g∗fair ∈ Gfair. Combining the fairness of

g∗fair with the optimality of β∗ over the family (Rβ(g∗β))β∈RK , we deduce

Rβ∗(g∗fair) = R(g∗fair) ≤ Rβ∗(g∗β∗) ≤ Rβ∗(g), for any g ∈ G .

Hence any optimal fair classifier is a minimizer of Rβ∗ over G.

29



Denis, Elie, Hebiri and Hu

Appendix C. Proof of Section 3

We first introduce some notation. We recall that Nmin = min(N1, N−1) and denote by P̂X|S=s

the empirical measure with respect to (Xs
1 , . . . , X

s
Ns

) for s ∈ S. Furthermore, throughout

this section, we consider the following convention 0
0 = 0. Hence, if Ns = 0, we then have

P̂X|S=s(A) = 0 for any event A.
We start this section with two results. Lemma-C.1 directly follows from similar arguments

as in the proof of Lemma B.8 in Chzhen et al. (2020a). Its proof is hence omitted.

Lemma C.1 Conditional on the data, we have that, for each s ∈ S and k ∈ [K],

P̂X|S=s

(
∃j 6= k, ĥsk(X, λ̂

(1)
k , λ̂

(2)
k ) = ĥsj(X, λ̂

(1)
j , λ̂

(2)
j )
)

=
1

Ns

Ns∑
i=1

1{
∃j 6=k,ĥsk(Xs

i ,λ̂
(1)
k ,λ̂

(2)
k )=ĥsj(X

s
i ,λ̂

(1)
j ,λ̂

(2)
j )

} ≤ K − 1

Ns
a.s. ,

where ĥsk : (x, λ(1), λ(2)) 7→ π̂sp̄k(x, s)− s
(
λ(1) − λ(2)

)
.

Lemma C.2 Let us introduce for all k ∈ [K] the random variable

Âk =

∣∣∣∣∣∑
s∈S

s
(
PX|S=s − P̂X|S=s

)(
∀j 6= k ĥsk(X, λ̂

(1)
k , λ̂

(2)
k ) > ĥsj(X, λ̂

(1)
j , λ̂

(2)
j )
)∣∣∣∣∣ .

Then all k ∈ [K]

1. there exists C1 > 0, that depends on K such that

E
[
Âk1{Nmin≥1} | Dn, S1, . . . , SN

]
≤
C11{Nmin≥1}√

Nmin
;

2. Assume that N ≥ log(1/δ)

log(1/(1− πmin))
, for all δ > 0,

Ak(δ) =

Âk ≤ K
√

21{Nmin≥1} log(4K
δ )

Nmin

 ,

holds with probability greater than 1− 3δ.

Proof

1. For this part, we work on the event {Nmin ≥ 1} conditionally on Dn and on S1, . . . , SN .
For s ∈ {−1, 1}, and k ∈ [K], we have∣∣∣(PX|S=s − P̂X|S=s

)(
∀j 6= k, ĥsk(X, λ̂

(1)
k , λ̂

(2)
k ) > ĥsj(X, λ̂

(1)
j , λ̂

(2)
j

)∣∣∣ =∣∣∣∣∣∣
(
PX|S=s − P̂X|S=s

)∀j 6= k, p̄k(X, s)− p̄j(X, s) >
s
(

(λ̂
(1)
k − λ̂

(2)
k )− (λ̂

(1)
j − (λ̂

(2)
j )
)

π̂s

∣∣∣∣∣∣
≤

K∑
j=1

sup
t∈R

∣∣∣(PX|S=s − P̂X|S=s

)
(p̄k(X, s)− p̄j(X, s) > t)

∣∣∣ .
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Therefore, from the Dvoretzky-Kiefer-Wolfowitz Inequality, we deduce that, for each
s ∈ S and k ∈ [K]

E
[
Âk1{Nmin≥1} | Dn, S1, . . . , SN

]
≤
C11{Nmin≥1}√

Nmin
.

2. From the Dvoretzky-Kiefer-Wolfowitz Inequality, conditional onDn and on (S1, . . . , SN ),
we have on the event {Nmin ≥ 1}, for each u > 0 and for all j, k ∈ [K], s ∈ S, and
t > 0

P
(

sup
t∈R

∣∣∣(PX|S=s − P̂X|S=s

)
(p̄k(X, s)− p̄j(X, s) > t)

∣∣∣ ≥ u) ≤
2 exp(−2Nsu

2) ≤ 2 exp(−2Nminu
2).

Since

Âk ≤
∑
s∈S

K∑
j=1

sup
t∈R

∣∣∣(PX|S=s − P̂X|S=s

)
(p̄k(X, s)− p̄j(X, s) > t)

∣∣∣ ,
we deduce for each u > 0 and k ∈ [K]

P
(
Âk ≥ u

)
≤

∑
s∈S

K∑
j=1

P
(

sup
t∈R

∣∣∣(PX|S=s − P̂X|S=s

)
(p̄k(X, s)− p̄j(X, s) > t)

∣∣∣ ≥ u

2K

)

≤ 4K exp

(
−u

2Nmin

2K2

)
.

Hence, from the above inequality, we obtain that

1{Nmin≥1}P

Âk ≥ K
√

21{Nmin≥1} log(4K
δ )

Nmin

∣∣∣∣∣∣ Dn, (S1, . . . , SN )

 ≤ 1{Nmin≥1}δ ≤ δ.

Since, P (Ak(δ)c) = P (Ak(δ)c, Nmin ≥ 1)+P (Ak(δ)c, Nmin = 0), we get from the above
inequality that

P (Ak(δ)c) ≤ δ + P (Nmin = 0) ≤ δ + 2 exp(N log(1− πmin)) ≤ 3δ,

provided that N ≥ log(1/δ)

log(1/(1− πmin))
.

Let us now consider the proofs of Theorem 3.2 and Theorem 3.4.

Proof [Proof of Theorem 3.2] As in the proof of Theorem 2.2], we consider separately the
cases of approximate (ε > 0) and exact (ε = 0) fairness.
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Unfairness control in the case of approximate fairness We first consider the case
where ε > 0. As in Lemma C.1, we first introduce, for s ∈ S and k ∈ [K],

ĥsk :
(
x, λ(1), λ(2)

)
7→ π̂sp̄k(x, s)− s

(
λ(1) − λ(2)

)
.

By construction, the estimator p̄k(X,S) is randomized and then satisfies an analog version
of Assumption 2.1. Therefore for all s ∈ S and k ∈ [K]

PX|S=s (ĝε(X,S) = k) = PX|S=s

(
∀j 6= k, ĥsk(X, λ̂

(1)
k , λ̂

(2)
k ) > ĥsj(X, λ̂

(1)
j , λ̂

(2)
j )
)
. (10)

Now, we consider similar arguments as in Proof of Theorem 2.2. First we observe that

Ĥ
(
λ(1), λ(2)

)
) ≥ ε

K∑
k=1

(λ
(1)
k + λ

(2)
k ) , (11)

where Ĥ is the empirical version of H and is defined as

Ĥ(λ(1), λ(2)) =
∑
s∈S

ÊX|S=s

[
max
k∈[K]

(
πsp̄k(X, s)− s(λ

(1)
k − λ

(2)
k )
)]

+ ε

K∑
k=1

(λ
(1)
k + λ

(2)
k ) ,

with ÊX|S=s being the empirical expectation over the points Xi from the dataset D′N such
that the sensitive attribute Si = s. From Equation (11), we deduce that the minimizer
(λ̂(1), λ̂(2)) exists and is bounded by some C ′λ > 0 which depends neither on N nor on n.

Furthermore, we have that a subgradient ĥ of Ĥ can be expressed for each k ∈ [K] and
l ∈ {1, 2} as follows

ĥ
(l)
k = (2l − 3)

∑
s∈S

{
sP̂X|S=s

(
∀j 6= k ĥsk(X, λ̂

(1)
k , λ̂

(2)
k ) > ĥsj(X, λ̂

(1)
j , λ̂

(2)
j )
)

+ s usk P̂X|S=s

(
∀j 6= k ĥsk(X, λ̂

(1)
k , λ̂

(2)
k ) ≥ ĥsj(X, λ̂

(1)
j , λ̂

(2)
j ),

∃j 6= k ĥsk(X, λ̂
(1)
k , λ̂

(2)
k ) = ĥsj(X, λ̂

(1)
j , λ̂

(2)
j )
)}

+ ε , (12)

with usk ∈ [0, 1]. Applying Lemma C.1, we observe that the second term in r.h.s is such that

0 ≤ P̂X|S=s

(
∀j 6= k ĥsk(X, λ̂

(1)
k , λ̂

(2)
k ) ≥ ĥsj(X, λ̂

(1)
j , λ̂

(2)
j ),

∃j 6= k ĥsk(X, λ̂
(1)
k , λ̂

(2)
k ) = ĥsj(X, λ̂

(1)
j , λ̂

(2)
j )
)
≤ K − 1

Nmin
. (13)

Hereafter, we follow the same reasoning as in the proof of Theorem 2.2. We use Corallary A.4
and consider the following cases for k ∈ [K].

• if λ̂
(1)
k = 0, and λ̂

(2)
k = 0, we deduce that∣∣∣∣∣∑

s

sP̂X|S=s

(
∀j 6= k ĥsk(X, λ̂

(1)
k , λ̂

(2)
k ) > ĥsj(X, λ̂

(1)
j , λ̂

(2)
j )
)∣∣∣∣∣ ≤ ε+

2(K − 1)

Nmin
. (14)
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• if there exists l ∈ {1, 2} such that λ̂
(l)
k 6= 0, then ĥlk = 0.

Let us now deal with the unfairness of ĝε, recalled in (10). Bounding this quantity is a

direct implication of the above lines. On the one hand, let k ∈ [K] such that λ̂
(1)
k = 0, and

λ̂
(2)
k = 0, then from Equation (14), we have∣∣∣∣∣∑
s∈S

sPX|S=s (ĝε(X,S) = k)

∣∣∣∣∣ =

∣∣∣∣∣∑
s∈S

sPX|S=s

(
∀j 6= k ĥsk(X, λ̂

(1)
k , λ̂

(2)
k ) > ĥsj(X, λ̂

(1)
j , λ̂

(2)
j )
)∣∣∣∣∣

≤

∣∣∣∣∣∑
s∈S

s
(
PX|S=s − P̂X|S=s

)(
∀j 6= k ĥsk(X, λ̂

(1)
k , λ̂

(2)
k ) > ĥsj(X, λ̂

(1)
j , λ̂

(2)
j )
)∣∣∣∣∣+ε+2(K − 1)

Nmin
.

(15)

On the other hand, if for k ∈ [K] there exists l ∈ {1, 2} such that ĥlk = 0 then in view of
Equation (12), we also deduce that∣∣∣∣∣∑

s∈S
sPX|S=s (ĝε(X,S) = k)

∣∣∣∣∣
≤

∣∣∣∣∣∑
s∈S

s
(
PX|S=s − P̂X|S=s

)(
∀j 6= k ĥsk(X, λ̂

(1)
k , λ̂

(2)
k ) > ĥsj(X, λ̂

(1)
j , λ̂

(2)
j )
)∣∣∣∣∣+ε+2(K − 1)

Nmin
.

Therefore, from the above inequalities, taking the maximum over k ∈ [K], we deduce from
Lemma C.2 (point 1.) that conditional on Dn and on (S1, . . . , SN ),

E [U(ĝε)] ≤ ε+

(
KC1√
Nmin

+
2(K − 1)

Nmin

)
1{Nmin≥1} + E

[
U(ĝε)1{Nmin=0}

]
≤ ε+

c11{Nmin≥1}√
Nmin

+ CKP (Nmin = 0) ,

for some non negative constants c1 and CK that depend on K. Now, we observe that

P (Nmin = 0) = P (N1 = 0) + P (N−1 = 0)) ≤ exp(log(1− π1)N) + exp(log(1− π−1)N).

Therefore, applying Lemma A.2, we deduce that

E [U(ĝε)] ≤
C√

N min(π−1, π1)
.

Unfairness control in the case of exact fairness Along this proof, we need to adjust
the notation as in the case of the optimal rule, c.f. (8). As in Lemma C.1, we first introduce,
for s ∈ S and k ∈ [K],

ĥsk : (x, β) 7→ π̂sp̄k(x, s)− sβ .

By construction, the estimator p̄k(X,S) satisfies Assumption 2.1, therefore for all s ∈ S and
k ∈ [K]

PX|S=s (ĝ(X,S) = k) = PX|S=s

(
∀j 6= k, ĥsk(X, β̂k) > ĥsj(X, β̂j)

)
.
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Considering the first order optimality conditions for β̂, we can show that, for all k ∈ [K]
and s ∈ S, there exists αsk ∈ [−1, 1] such that

sP̂X|S=s

(
∀j 6= k, ĥsk(X, β̂k) > ĥsj(X, β̂j)

)
+

αskP̂X|S=s

(
∀j 6= k, ĥsk(X, β̂k) ≥ ĥsj(X, β̂j), ∃j 6= k, ĥsk(X, β̂k) = ĥsj(X, β̂j)

)
= 0 .

From the above equation, we deduce that

U(ĝ) = max
k=1...,K

∣∣PX|S=1 (ĝ(X,S) = k)− PX|S=−1 (ĝ(X,S) = k)
∣∣

≤ max
k=1,...,K

∑
s∈S

∣∣∣(PX|S=s − P̂X|S=s

)(
∀j 6= k, ĥsk(X, β̂k) > ĥsj(X, β̂j)

)∣∣∣
+ max
k=1,...,K

∑
s∈S

P̂X|S=s

(
∃j 6= k, ĥsk(X, β̂k) = ĥsj(X, β̂j)

)
.

Observe that for all k ∈ [K]∣∣∣(PX|S=s − P̂X|S=s

)(
∀j 6= k, ĥsk(X, β̂k) > ĥsj(X, β̂j)

)∣∣∣ =∣∣∣∣∣(PX|S=s − P̂X|S=s

)(
∀j 6= k, p̄k(X, s)− p̄j(X, s) ≥

s(β̂k − β̂j)
π̂s

)∣∣∣∣∣
≤

K∑
j=1

sup
t∈R

∣∣∣(PX|S=s − P̂X|S=s

)
(p̄k(X, s)− p̄j(X, s) ≥ t)

∣∣∣ .
Therefore, from the Dvoretzky-Kiefer-Wolfowitz Inequality conditional on Dn and on
(S1, . . . , SN ), we deduce that, for each s ∈ S and k ∈ [K]

E
[∣∣∣(PX|S=s − P̂X|S=s

)(
∀j 6= k, ĥsk(X, β̂k) > ĥsj(X, β̂j)

)∣∣∣] ≤ C√ 1

Ns
.

Applying Lemma C.1, we then get that, conditional on Dn and on (S1, . . . , SN ), we have
that

E [U(ĝ)] ≤ C
∑
s∈S

√
1

Ns
,

for some positive constant C that depends in K. Since Ns is a binomial random variable
with parameters N and πs, we get

E [U(ĝ)] ≤ C
√

1

N
,

where C depends on K and min(π−1, π1).
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Proof [Proof of Theorem 3.3] Let 0 < δ < 1 and let k ∈ [K]. From Equations (12), and (13)

and using Corallary A.4, we deduce that if λ
(1)
k 6= 0, λ

(2)
k 6= 0, then∑

s∈S
sP̂X|S=s

(
∀j 6= k ĥsk(X, λ̂

(1)
k , λ̂

(2)
k ) > ĥsj(X, λ̂

(1)
j , λ̂

(2)
j )
)
≥ ε− 2(K − 1)

Nmin∑
s∈S

sP̂X|S=s

(
∀j 6= k ĥsk(X, λ̂

(1)
k , λ̂

(2)
k ) > ĥsj(X, λ̂

(1)
j , λ̂

(2)
j )
)
≤ −ε+

2(K − 1)

Nmin
.

Therefore, since
Cδ√
Nmin

≥ 2(K − 1)

Nmin
, we deduce that on Amin =

{
ε >

Cδ√
Nmin

}
0 <

∑
s∈S

sP̂X|S=s

(
∀j 6= k ĥsk(X, λ̂

(1)
k , λ̂

(2)
k ) > ĥsj(X, λ̂

(1)
j , λ̂

(2)
j )
)
< 0 ,

which leads to a contradiction. Therefore, on the event Amin, we necessary have λ̂
(1)
k λ̂

(2)
k =

0 and λ̂
(1)
k + λ̂

(2)
k ≥ 0. Note that on the event Amin, we have Nmin ≥ 1.

The remaining of the proof consists in dealing with the two sub-cases when λ̂
(1)
k λ̂

(2)
k =

0 and λ̂
(1)
k + λ̂

(2)
k ≥ 0. First, let us consider for k ∈ [K], the case where λ̂

(1)
k 6= 0, and

λ̂
(2)
k = 0 (the case λ̂

(1)
k = 0, and λ̂

(2)
k 6= 0 follows in the same way). We observe that since

ĥ1
k = 0, on the event Amin

0 ≤ ε−2(K − 1)

Nmin
≤
∑
s

sP̂X|S=s

(
∀j 6= k ĥsk(X, λ̂

(1)
k , λ̂

(2)
k ) > ĥsj(X, λ̂

(1)
j , λ̂

(2)
j )
)
≤ ε+2(K − 1)

Nmin
.

(16)

Moreover, we have that for each k ∈ [K] such that λ̂
(1)
k 6= 0, and λ̂

(2)
k = 0∣∣∣∣∣

∣∣∣∣∣∑
s

sPX|S=s (ĝε(X,S) = k)

∣∣∣∣∣− ε
∣∣∣∣∣ =∣∣∣∣∣

∣∣∣∣∣∑
s

sPX|S=s

(
∀j 6= k ĥsk(X, λ̂

(1)
k , λ̂

(2)
k ) > ĥsj(X, λ̂

(1)
j , λ̂

(2)
j )
)∣∣∣∣∣ −∣∣∣∣∣∑

s

sP̂X|S=s

(
∀j 6= k ĥsk(X, λ̂

(1)
k , λ̂

(2)
k ) > ĥsj(X, λ̂

(1)
j , λ̂

(2)
j )
)∣∣∣∣∣+∣∣∣∣∣∑

s

sP̂X|S=s

(
∀j 6= k ĥsk(X, λ̂

(1)
k , λ̂

(2)
k ) > ĥsj(X, λ̂

(1)
j , λ̂

(2)
j )
)∣∣∣∣∣− ε

∣∣∣∣∣ .
Using first the triangle inequality and then the reverse triangle inequality, we get from
Equation (16)∣∣∣∣∣
∣∣∣∣∣∑
s

sPX|S=s (ĝε(X,S) = k)

∣∣∣∣∣− ε
∣∣∣∣∣ ≤∣∣∣∣∣∑

s∈S
s
(
PX|S=s − P̂X|S=s

)(
∀j 6= k ĥsk(X, λ̂

(1)
k , λ̂

(2)
k ) > ĥsj(X, λ̂

(1)
j , λ̂

(2)
j )
)∣∣∣∣∣+

2(K − 1)

Nmin
,

(17)
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which yields together with Lemma C.2 (point 2.),∣∣∣∣∣
∣∣∣∣∣∑
s

sPX|S=s (ĝε(X,S) = k)

∣∣∣∣∣− ε
∣∣∣∣∣ ≤

K
√

2 log(4K
δ )

Nmin
+

2(K − 1)

Nmin

 ≤ Cδ√
Nmin

. (18)

Now, observe that for the second sub-case when λ̂
(1)
k = λ̂

(2)
k = 0, we get using Equa-

tion (15), applying again Lemma C.2 (point 2.) the following bound∣∣∣∣∣∑
s

sPX|S=s (ĝε(X,S) = k)

∣∣∣∣∣ ≤ ε+
Cδ√
Nmin

.

Combining these two bounds, we conclude that on the event A(δ) = Amin
⋂(
∩k∈[K]Ak(δ)

)
U(ĝε) < ε+

Cδ√
Nmin

,

which concludes the main part of the proof. Let us now focus on the particular case where
on A(δ) we have

U(ĝε) < ε− Cδ√
Nmin

.

Then for all k ∈ [K] we have∣∣∣∣∣∑
s

sPX|S=s (ĝε(X,S) = k)

∣∣∣∣∣ < ε− Cδ√
Nmin

.

Hence on the set A(δ), we deduce that the case related to (18) is not possible and then for

each k, we necessary have λ̂
(1)
k = λ̂

(2)
k = 0 and then

ĝ = ĝε .

To conclude the proof, we observe that since N ≥ 2 log(1/δ)
π2
min

≥ log(1/δ)
log(1/(1−πmin)) ,

P (A(δ)c) = P (Acmin) +

K∑
k=1

P (Ack(δ)) ≤ P
(
N1 ≤

C2
δ

ε2

)
+ P

(
N−1 ≤

C2
δ

ε2

)
+ 3Kδ.

But, from Lemma A.1, we have for each s ∈ S,

P
(
Ns ≤

C2
δ

ε2

)
≤ exp

(
−2N

(
πs −

C2
δ

ε2N

)2
)
≤ exp

(
−N π2

s

2

)
≤ δ ,

provided that πs >
2C2

δ

Nε2
, and N ≥ 2 log(1/δ)

π2
min

. Since ε >
√

2Cδ√
πminN

, and N ≥ 2 log(1/δ)
π2
min

, the latter

conditions are satisfied. Therefore, we deduce that

P (A(δ)c) ≤ (K + 2)δ .
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Proof [Proof of Theorem 3.4]
We only consider the case ε > 0. The proof in the case of exact fairness relies on similar

arguments and then it is omitted. To ease the notation, we write ĝ instead of ĝε.
The proof goes conditional on the training data. First, let us decompose the excess

fair-risk of the classifier ĝ in a convenient way for our analysis

Rλ∗(1),λ∗(2)(ĝ)−Rλ∗(1),λ∗(2)(g
∗
ε−fair) =

(
Rλ∗(1),λ∗(2) (ĝ)−Rλ̂(1),λ̂(2)(ĝ)

)
+
(
Rλ̂(1),λ̂(2)(ĝ)−Rλ∗(1),λ∗(2)

(
g∗
λ∗(1),λ∗(2)

))
.(19)

According to the first term, we have(
Rλ∗(1),λ∗(2) (ĝ)−Rλ̂(1),λ̂(2)(ĝ)

)
=

K∑
k=1

(
λ
∗(1)
k − λ̂(1)

k

)[∑
s∈S

sPX|S=s (ĝ(X,S) = k)− ε

]

+
K∑
k=1

(
λ
∗(2)
k − λ̂(2)

k

)[
−
∑
s∈S

sPX|S=s (ĝ(X,S) = k)− ε

]
.

Let δ = 1/N . If ε ≤
√

2Cδ√
πminN

, since parameters λ
∗(l)
k and λ̂

(l)
k are bounded, we deduce from

the above equation and Theorem 3.2 that

E
[(
Rλ∗(1),λ∗(2) (ĝ)−Rλ̂(1),λ̂(2)(ĝ)

)]
≤ C min

(
ε,

√
2Cδ√
πminN

)
+

C√
N
≤ C log(N)√

N
, (20)

where C > 0 is a constant which depends on πmin and K. If ε >
√

2Cδ√
πminN

, we apply

Theorem 3.3. We have on the event A(1/N) that

• either λ̂
(1)
k = 0, and then since λ

∗(1)
k > 0 is bounded(

λ
∗(1)
k − λ̂(1)

k

)[∑
s∈S

sPX|S=s (ĝ(X,S) = k)− ε

]
≤ C (U(ĝ)− ε)) ≤ C log(N)√

Nmin
.

• or λ̂
(1)
k > 0, in this case on A(1/N),

∑
s∈S sPX|S=s (ĝ(X,S) = k) > 0. From Equa-

tion (18) in the proof of Theorem 3.3, we deduce(
λ
∗(1)
k − λ̂(1)

k

)[∑
s∈S

sPX|S=s (ĝ(X,S) = k)− ε

]
≤ C log(N)√

Nmin
.

Since on A(1/N), Nmin ≥ 1, we deduce that if ε >
√

2Cδ√
πminN

E

[
K∑
k=1

(
λ
∗(1)
k − λ̂(1)

k

)[∑
s∈S

sPX|S=s (ĝ(X,S) = k)− ε

]]
≤

C

(
E
[

log(N)1{Nmin≥1}√
Nmin

]
+ P (A(1/N)c)

)
.
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According to Lemma C.2 we have P (A(1/N)c) ≤ K + 2

N
. Then we deduce form Lemma A.2

that

E

[
K∑
k=1

(
λ
∗(1)
k − λ̂(1)

k

)[∑
s∈S

sPX|S=s (ĝ(X,S) = k)− ε

]]
≤ C log(N)√

N
.

Similar reasoning leads to

E

[
K∑
k=1

(
λ
∗(2)
k − λ̂(2)

k

)[
−
∑
s∈S

sPX|S=s (ĝ(X,S) = k)− ε

]]
≤ C log(N)√

N
.

Combining the two above inequalities and Equation (20), we obtain for ε > 0 and N large
enough

E
[(
Rλ∗(1),λ∗(2) (ĝ)−Rλ̂(1),λ̂(2)(ĝ)

)]
≤ C log(N)√

N
. (21)

Then we have shown that the first term in the r.h.s. of Eq. (19) relies on the unfairness
of the classifier ĝ. Now, let us consider the second term in r.h.s. of Equation (19). Our
goal will be to show that this term mainly depends on the quality of the base estimators p̂k.
Since

(
λ∗(1), λ∗(2)

)
is a maximizer of R(λ(1),λ(2))(g

∗
(λ(1),λ(2))

) over (λ(1), λ(2)), it is clear that,

conditional on the data, Rλ∗(1),λ∗(2)(g∗λ∗(1),λ∗(2)) ≥ Rλ̂(1),λ̂(2)(g
∗
λ̂(1),λ̂(2)

). (The parameter λ̂ is

seen as fixed conditional on the data.) Therefore, we have

Rλ̂(1),λ̂(2)(ĝ)−Rλ∗(1),λ∗(2)
(
g∗
λ∗(1),λ∗(2)

)
≤ Rλ̂(1),λ̂(2)(ĝ)−Rλ̂(1),λ̂(2)(g

∗
λ̂(1),λ̂(2)

) .

By introducing ĝ∗
λ̂(1),λ̂(2)

, we remove the estimation of λ∗(1), λ∗(2) from the study ofRλ̂(1),λ̂(2)(ĝ)−

Rλ∗(1),λ∗(2)
(
g∗
λ∗(1),λ∗(2)

)
. At this point, it becomes clear that bounding this term does not

relies on the unlabeled sample sizes Ns. Let us recall the definition of g∗
λ̂(1),λ̂(2)

: conditional

on the data

g∗
λ̂(1),λ̂(2)

∈ arg min
g∈G
Rλ̂(1),λ̂(2)(g) .

Then using similar arguments as those leading to Eq. (6) implies that

g∗
λ̂(1),λ̂(2)

(x, s) ∈ arg max
k∈[K]

(
πspk(x, s)− s(λ̂

(1)
k − λ̂

(2)
k

)
.

As a consequence, using the writing of the fair-risk provided by Lemma B.1

Rλ̂(1),λ̂(2)(ĝ)−Rλ̂(1),λ̂(2)(g
∗
λ̂(1),λ̂(2)

) =∑
s∈S

EX|S=s

[
max
k∈[K]

(
πspk(X, s)− s(λ̂

(1)
k − λ̂

(2)
k )
)
−

K∑
k=1

(
πspk(X, s)− s(λ̂

(1)
k − λ̂

(2)
k )
)
1{ĝ(X,s)=k}

]
.

(22)
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Because of the indicator function, there is only one non-zero element in the inner sum. Then
we observe that for each s ∈ S∣∣∣∣∣max

k∈[K]

(
πspk(X, s)− s(λ̂

(1)
k − λ̂

(2)
k )
)
−

K∑
k=1

(
πspk(X,S)− s(λ̂(1)

k − λ̂
(2)
k )
)
1{ĝ(X,s)=k}

∣∣∣∣∣
≤ 2 max

k∈[K]

∣∣∣(πspk(X, s)− s(λ̂(1)
k − λ̂

(2)
k ))− (π̂sp̄k(X, s)− s(λ̂

(1)
k − λ̂

(2)
k ))

∣∣∣
≤ 2

(
max
k∈[K]

|pk(X, s)− p̄k(X, s)|+ |πs − π̂s|
)

,

where the last inequality is due to the fact that πs, π̂s, pk, and p̄k are all in [0, 1]. Therefore,
recalling that p̄k is a randomized version of p̂k we can write

Rλ̂(1),λ̂(2)(ĝ)−Rλ̂(1),λ̂(2)(g
∗
λ̂(1),λ̂(2)

) ≤ C

(
‖p̂− p‖1 +

∑
s∈S
|π̂s − πs|+ u

)
,

and obtain the bound

Rλ̂(1),λ̂(2)(ĝ)−Rλ∗(1),λ∗(2)
(
g∗
λ∗(1),λ∗(2)

)
≤ C

(
‖p̂− p‖1 +

∑
s∈S
|π̂s − πs|+ u

)
.

In view of Equation (20), the above inequality together with Equation (21) yield the desired
result.

Proof [Proof of Theorem 3.8]
Let us remind the reader that for each k ∈ [K], and s ∈ S

hsk(X, λ̂
(1)
k , λ̂

(2)
k ) :=

(
πspk(X, s)− s(λ̂

(1)
k − λ̂

(2)
k )
)
.

We start the proof with Equation (22),

Rλ̂(1),λ̂(2)(ĝ)−Rλ̂(1),λ̂(2)(g
∗
λ̂(1),λ̂(2)

) =∑
s∈S

EX|S=s

[
max
k∈[K]

hsk(X, λ̂
(1)
k , λ̂

(2)
k ))−

K∑
k=1

hsk(X, λ̂
(1)
k , λ̂

(2)
k )1{ĝ(X,S)=k}

]
.

Furthermore, we have that

g∗
λ̂(1),λ̂(2)

(X, s) ∈ arg max
k∈[K]

hsk

(
X, λ̂

(1)
k , λ̂

(2)
k

)
.

Therefore, we observe that

max
k∈[K]

hsk(X, λ̂
(1)
k , λ̂

(2)
k ))−

K∑
k=1

hsk(X, λ̂
(1)
k , λ̂

(2)
k )1{ĝ(X,S)=k} =

K∑
i=1,k 6=i

∣∣∣hsi (X, λ̂(1)
i , λ̂

(2)
i )− hsk(X, λ̂

(1)
k , λ̂

(2)
k )
∣∣∣1{g∗

λ̂(1),λ̂(2)
(X,s)=i}1{ĝ(X,s)=k}. (23)
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Moreover, for k 6= i on the event
{
g∗
λ̂(1),λ̂(2)

(X, s) = i, ĝ(X, s) = k
}

, we have from Equa-

tion (22)

∣∣∣hsi (X, λ̂(1)
i , λ̂

(2)
i )− hsk(X, λ̂

(1)
k , λ̂

(2)
k )
∣∣∣ ≤ 2 max

s∈S

(
max
k∈[K]

sup
x
|pk(x, s)− p̄k(x, s)|+ |πs − π̂s|

)
.

(24)
Now, we observe that from Assumption 3.7, conditional on the data for each s ∈ S

PX|S=s

(∣∣∣hsi (X, λ̂(1)
i , λ̂

(2)
i )− hsk(X, λ̂

(1)
k , λ̂

(2)
k )
∣∣∣ ≤ 2

(
max
k∈[K]

sup
x
|pk(x, s)− p̄k(x, s)|+ |πs − π̂s|

))
≤ C

(
max
k∈[K]

sup
x
|pk(x, s)− p̄k(x, s)|+ |πs − π̂s|

)
.

Combining the above inequality with Equation (22), Equation (23), and Equation (24), we
obtain that

Rλ̂(1),λ̂(2)(ĝ)−Rλ̂(1),λ̂(2)(g
∗
λ̂(1),λ̂(2)

) ≤ C
∑
s∈S

(
max
k∈[K]

sup
x
|pk(x, s)− p̄k(x, s)|+ |πs − π̂s|

)2

≤ C

(
‖p̂− p‖2∞ + u2 +

∑
s∈S
|π̂s − πs|2

)
.

Finally, we deduce again the desired result from the above inequality, Equation (20), and
Equation (21).

Appendix D. Additional numerical experiments

This section presents supplementary numerical illustrations for both synthetic data, depicted
in Figure 9 and Figure 10, and real data, showcased in Figure 11, providing empirical
evidence to support our theoretical framework.

Synthetic data In Figure 9, the evolution of data fairness is clearly represented through
the rate of symbols “+” (associated to S = −1) and “4” (S = 1). In particular, the figure
shows that data becomes DP-fair when p = 0.5 and increasingly unfair as p approaches
either 0 or 1. In Figure 10, considering a fixed value of ε ≥ 0, the graph demonstrates the
diminishing trend in both excess-risk R̂(ĝε) − R̂(g∗ε−fair) w.r.t. the training sample size

n, and the disparity in unfairness Û(ĝε)− Û(g∗ε−fair) w.r.t. the calibration sample size N .
Both measures approach (almost) zero, albeit at different rates. It is important to observe
that these values do not precisely reach zero due to the limited sample size and the inherent
variability within the chosen machine learning model (here LightGBM), which deviates from
the idealized Bayes rule.
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Figure 9: Example of synthetic data in binary case where d = 2 and m = 1. The level
of unfairness is set as follows: (1) p = 0.5 (no unfairness); (2) p = 0.75 (unfair
dataset); (3) p = 1 (highly unfair dataset).

Figure 10: Approximate fairness using LightGBM as a base model. Left part displays the
reduction in excess-risk R̂(ĝε)− R̂(g∗ε−fair) w.r.t. the training size n, calibrated
with N = 4000 sample for fairness. The right part illustrates the decrease in the
unfairness difference Û(ĝε)− Û(g∗ε−fair) between the optimal ε-fair classifier and
its plug-in estimator w.r.t. N , where ĝε is trained on n = 2000 data points.

Real data In Figure 11, we present the running time (in seconds) of post-processing
algorithms. Our methodology is depicted in blue, and the fair-transport baseline is
represented in orange. Each point is an average derived from 30 simulations, and the
bandwidth around each point signifies the corresponding standard deviations. Significantly,
this figure illustrates the enhanced time efficiency of our implementation. Indeed, our
approach demonstrates faster execution when compared to the fair-transport method
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proposed in their publicly available source code. This finding aligns seamlessly with the
time complexity analysis detailed in Section 4.3.4.

Figure 11: running time (in seconds) of post-processing algorithms was averaged over 30
repetitions. All algorithms were executed on an Apple M1 Pro processor to
maintain consistency in the experimental setup. Note that, for presentation
purposes, the fair-projection methodology, with an average running time of
over 5 seconds, was omitted.

Appendix E. Proof of Section 5

Proof [Proof of Theorem 5.1] First of all, we recall that the Lagrangian writes as

P (g(X,S) 6= Y ) +

K∑
k=1

∑
s∈S

∑
s<s′

λ
(1)
k,s,s′

(
PX|S=s (g(X,S) = k)− PX|S=s′ (g(X,S) = k)− ε

)
+

K∑
k=1

∑
s∈S

∑
s<s′

λ
(2)
k,s,s′

(
PX|S=s′ (g(X,S) = k)− PX|S=s (g(X,S) = k)− ε

)
,
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which can be rewritten as

P (g(X,S) 6= Y )−
K∑
k=1

∑
s∈S

∑
s′>s

λ
(1)
k,s,s′

(
PX|S=s (g(X,S) 6= k)− PX|S=s′ (g(X,S) 6= k)

)
+

K∑
k=1

∑
s∈S

∑
s′>s

λ
(2)
k,s,s′

(
PX|S=s (g(X,S) 6= k)− PX|S=s′ (g(X,S) 6= k)

)
− ε

K∑
k=1

∑
s∈S

∑
s′>s

(
λ

(1)
k,s,s′ + λ

(2)
k,s,s′

)
.

Now, we observe that for each l ∈ {1, 2}, and k ∈ [K],∑
s∈S

∑
s′>s

λ
(l)
k,s,s′

(
PX|S=s (g(X,S) 6= k)− PX|S=s′ (g(X,S) 6= k)

)
=
∑
s∈S

(∑
s′>s

λ
(l)
k,s,s′ −

∑
s′<s

λ
(l)
k,s′,s

)
PX|S=s (g(X,S) 6= k) .

From the above equation, as in Lemma B.1, we deduce that the Lagrangian can be expressed
as

K∑
k=1

∑
s∈S

EX|S=s

[
1{g(X,s)6=k}πspk(X, s)−

(
β

(1)
k,s − β

(2)
k,s

)
1{g(X,s)6=k}

]
ε
K∑
k=1

∑
s∈S

∑
s′>s

(
λ

(1)
k,s,s′ + λ

(2)
k,s,s′

)
,

with β
(l)
k,s =

(∑
s′>s λ

(l)
k,s,s′ −

∑
s′<s λ

(l)
k,s′,s

)
. In view of the above expression, we deduce that

the minimizer of the Lagrangian is defined point-wise as

g∗
λ(1),λ(2)

(x, s) ∈ arg max
k

πspk(x, s)−
(
β

(1)
k,s − β

(2)
k,s

)
.

Finally, following the same arguments as in the proof of Theorem 2.2, we can show that

the optimal ε-fair classifier is then g∗
λ(1)∗,λ(2)∗

with parameters (λ∗(1), λ∗(2)) ∈ RK|S|(|S|−1)/2
+

characterized as the minimizer of

∑
s∈S

EX|S=s

[
max
k∈[K]

(
πspk(X, s)−

(
β

(1)
k,s − β

(2)
k,s

))]
+ ε

K∑
k=1

∑
s∈S

∑
s′>s

(
λ

(1)
k,s,s′ + λ

(2)
k,s,s′

)
.
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