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Abstract

The expense of acquiring labels in large-scale statistical machine learning makes partially
and weakly-labeled data attractive, though it is not always apparent how to leverage such
data for model fitting or validation. We present a methodology to bridge the gap between
partial supervision and validation, developing a conformal prediction framework to provide
valid predictive confidence sets—sets that cover a true label with a prescribed probability,
independent of the underlying distribution—using weakly labeled data. To do so, we in-
troduce a (necessary) new notion of coverage and predictive validity, then develop several
application scenarios, providing efficient algorithms for classification and several large-scale
structured prediction problems. We corroborate the hypothesis that the new coverage def-
inition allows for tighter and more informative (but valid) confidence sets through several
experiments.

Keywords: Conformal inference, Confidence sets, Coverage validity, Weak supervision,
Partial labels

1 Introduction

Consider the typical supervised learning pipeline that we teach students in statistical ma-
chine learning: we collect data in (X,Y ) pairs, where Y is a label or target to be predicted;
we pick a model and loss measuring the fidelity of the model to observed data; we choose
the model minimizing the loss and validate it on held-out data. This picture obscures what
is becoming one of the major challenges in this endeavor: that of actually collecting high-
quality labeled data (Sculley et al., 2015; Donoho, 2017; Ratner et al., 2017; Gadre et al.,
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2023). Hand labeling large-scale training sets is often impractically expensive. Consider,
as simple motivation, a ranking problem: a prediction is an ordered list of a set of items,
yet available feedback is likely to be incomplete and partial, such as a top element (for
example, in web search a user clicks on a single preferred link, or in a grocery, an individual
buys one kind of milk but provides no feedback on the other brands present). Developing
methods to leverage such partial and weak feedback is therefore becoming a major focus,
and researchers have developed methods to transform weak and noisy labels into a dataset
with strong, “gold-standard” labels (Ratner et al., 2017; Zhang et al., 2017).

In this paper, we adopt this weakly labeled setting, but instead of considering model
fitting and the construction of strong labels, we focus on validation, model confidence,
and predictive inference, moving beyond point predictions and single labels. Our goal is
to develop methods to rigorously quantify the confidence a practitioner should have in a
model given only weak labels. First consider the standard supervised learning scenario for
data (X,Y ) ∈ X × Y: here, given a desired confidence level α, the goal, rather than to
provide point estimates Ŷ of Y given X, is to give a confidence set mapping Ĉn based on
(Xi, Yi)

n
i=1 that guarantees the distribution-free coverage

P
[
Yn+1 ∈ Ĉn(Xn+1)

]
≥ 1− α, (1)

where (Xn+1, Yn+1) is a new observation following the same distribution as the first n points.
Conformal inference provides precisely these guarantees (Vovk et al., 2005; Lei, 2014; Lei
and Wasserman, 2014; Lei et al., 2018; Barber et al., 2021).

There are many scenarios, however, where it is natural to transition away from this
strongly supervised setting with fully labeled examples. Above we note ranking: individuals
are very unlikely to provide full feedback (Ailon et al., 2008; Duchi et al., 2013; Negahban
et al., 2016). In multi-label image classification (Boutell et al., 2004; Elisseeff and Weston,
2001), a labeler may identify a few items in a given scene but not all, leading to partial
labeled feedback. A major challenge in industrial machine learning deployment is to monitor
models once they are in production, where it may be challenging to collect high-quality
labels, but weak supervision—in the form of clicks on a recommended website, or agreeing
to a suggested text message completion—is relatively easy and cheap to collect. In all
of these, developing valid confidence sets and measures for our predictions is of growing
importance, as we wish for models to be trustable, usable, and verifiable.

With this as motivation, we consider supervised learning problems where, instead of
directly observing the ground truth labels {Yi}ni=1, we observe only noisy partial labeling.
We make this formal in two equivalent ways. In the first, for each instance i ∈ [n], there
exists a (random) function ϕi : Y → Yweak belonging to a set Φ ⊂ {Y → Yweak} of
partially supervising (or measurement) functions, such that we only observe Y weak

i = ϕi(Yi).
Equivalently, the pair (Y weak

i , ϕi) specifies a weak set Wi ⊂ Y that contains Yi:

Wi :=
{
y ∈ Y | ϕi(y) = Y weak

i

}
⊂ Y, (2)

so that we observe a set Wi consistent with Yi. Instead of strong labels (Xi, Yi)
iid∼ P , we

thus observe only (Xi, ϕi, Y
weak
i )ni=1. Two running examples with ranking and multi-label

problems will help to illustrate our setting.
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Example 1 (Ranking): In a ranking problem, the goal is to rank elements of a set of K
items, indentified via [K] = {1, . . . ,K}, where strong labels y ∈ SK , the set of permutations
of K elements. The strong label y then specifies item at each rank j, so that y(1) ∈ [K] is
ranked first. Two natural forms of weak labeling include

• Top-1 feedback, where a response consists of the item ranked first; when item j has
the first rank, this corresponds to the set W = {y ∈ SK | y(1) = j} of permutations
with j in the first position, so that Y weak = ϕ(Y ) = Y (1), and card(W ) = (K − 1)!

• Pairwise comparison feedback, so that for a pair of items j1, j2 ∈ [K] specified in ϕ,
ϕ(y) = 1

{
y−1(j1) < y−1(j2)

}
, indicating whether the order y ranks j1 ahead of j2;

the set of weak labels W = {y | y−1(j1) < y−1(j2)} thus satisfies and card(W ) =(
k−1

2

)
(k − 2)! = (k−1)(k−1)!

2 .

Note the duality between the pairs (Y weak, ϕ) and W ; working with one or the other is
frequently more convenient. 3

Example 2 (Multilabel object recognition): In a multilabel object recognition problem,
there are K objects of interest, and on an input image x, the strong label y ∈ {0, 1}K
indicates which objects appear in the image. A labeler may choose (or recognize) only a
subset I ⊂ [K] of the objects, so that the (random) measurement ϕ(y) ∈ {0, 1}K satisfies
ϕ(y)j = yj if j ∈ I and ϕj(y) = 0 otherwise, that is, Y weak

j = Yj if j ∈ I and Y weak
j = 0

otherwise. In this case, we may represent W as the set of elementwise larger vectors W =
{y ∈ {0, 1}K | yj ≥ Yj for j ∈ I}, which has cardinality card(W ) = 2K−|I|. 3

Throughout, ϕi is a random preference function describing the parts of the ground truth
label we observe in the partially labeled dataset. It also captures the information about the
ground truth label that “matter” at test time. In the context of ranking (Ex. 1), this means
that an individual cares only that their top-ranked item is first, or that the ranking orders
a particular subset of items correctly. Our key assumption is that the partial feedback
acquisition distribution and distribution of future measurement functions ϕ coincide, so
that providing a label y ∈ Y that maps to the weak label, i.e., ϕn+1(y) = Y weak

n+1 , is correct.
The ranking example 1 makes clear that this assumption is plausible, as an individual
presumably is more likely to both provide feedback and care about the elements at the top
of their rankings; other domains are similar. Finally, without loss of generality, one can
always assume that Yweak = 2Y , as any preference function implicitly maps each element
y ∈ Y to a subset of Y containing y; see equation (2).

We consider two fundamental questions in this weakly-labeled setting:

(Q.i) When is it possible to provide (distribution-free) coverage, for example, using true
labels Y , weak Y weak or sets W , or other measurements?

(Q.ii) What methods can guarantee coverage?

While a first goal would be to produce a confidence mapping using (Xi, Y
weak
i , ϕi)

n
i=1 guar-

anteeing the coverage (1), as we prove in Section 2.1, this would in general produce large and
therefore uninformative confidence sets. We therefore relax our coverage desiderata, instead
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seeking a confidence set Ĉn : X ⇒ Y that covers the weak counterpart Y weak
n+1 = ϕn+1(Yn+1)

of the true label in the sense that

P
[
Ĉn(Xn+1) ∩Wn+1 6= ∅

]
= P

[
∃y ∈ Ĉn(Xn+1) s.t. ϕn+1(y) = Y weak

n+1

]
≥ 1− α. (3)

The direct application of conventional conformal inference methods (Vovk et al., 2005; Lei,
2014; Barber et al., 2021) to obtain this weak coverage is practically impossible, as the
space of weak labels is a priori unknown, is typically quite large. Additionally, feedback in
the form of collections of weak label sets is typically unusable; as in Example 1, we wish to
provide labels and configurations in the target space Y directly. The condition (3) is weaker
than the standard coverage (1), and any confidence set satisfying (1) the former will also
satisfy (3), though it allows smaller confidence set sizes.

A major challenge is that the function ϕn+1 representing an individual’s weak supervi-
sion is a priori unknown (e.g., in Example 2 the items in an image a labeler will identify
ahead of time). Indeed, if we observe ϕn+1 prior to our prediction, a trivial extension of
classical conformal methodology (Vovk et al., 2005; Lei, 2014; Barber et al., 2021) achieves
coverage (3): first, construct a valid confidence set mapping Ĉn,weak : X ⇒ Yweak for Y weak

n+1 ,

which as in (1) would guarantee P(Y weak
n+1 ∈ Ĉn,weak(Xn+1)) ≥ 1−α. Then define Ĉn(x) ⊂ Y

to include a single y ∈ Y for each yweak ∈ Ĉn,weak(x) such that ϕn+1(y) = yweak. Example 1
shows the impossibility of such an approach: we do not know ahead of time if an individual
cares only about the top-ranked item or requires a ranking accurate to the 10th item.

Given the subtleties of coverage (3), we dedicate Section 2 to question (Q.i) above: what
types of coverage are even possible? We devote Sections 3 and 4 to question (Q.ii): the
development of methodologies that can guarantee the coverage (3). We first (Sec. 3) provide
a general recipe, while in Section 4 we provide more tailored methods for large output spaces,
such as those in structured prediction. To provide some initial insights into the methods and
potential applications, we provide experiments on several real-world domains; in the main
body (Section 5) we investigate ranking, while the appendices (see Appendix C) provide
additional examples with structured prediction, matching for pedestrian tracking in videos,
and prediction intervals for county-level voting in the United States.

1.1 Related Work

An extensive line of work addresses prediction with partially labeled data. The major focus
is on strong label recovery under weak supervision, including in multiclass (Cour et al.,
2011; Nguyen and Caruana, 2008) and multilabel (Yu et al., 2014) tasks as well as struc-
tured prediction problems, such as ranking (Hüllermeier et al., 2008; Korba et al., 2018),
segmentation (Triggs and Verbeek, 2008; Papandreou et al., 2015), and natural language
processing (Fernandes and Brefeld, 2011; Mayhew et al., 2019). More recent work tack-
les constructing strongly labeled datasets from disparate weak supervision tasks (Ratner
et al., 2017; Zhang et al., 2017), while Cid-Sueiro et al. (2014), van Rooyen and Williamson
(2018), and Cabannes et al. (2020) provide generic theoretical conditions allowing strong
label recovery. Yet this literature focuses primarily on point prediction problems, where a
model only returns a single label with the (putative) highest likelihood, in contrast to our
confidence-based approach, which provides calibrated uncertainty estimates and guarantees
valid confidence sets with virtually no distributional assumptions.
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Our work also connects to the substantial literature on conformal inference, where the
goal is to provide valid predictive confidence sets (1). Vovk et al. (2005) introduce the main
techniques—that examples are exchangeable, and so essentially can provide p-values for
significance of one-another—and suggest the simple and generic split-conformal algorithm
for building valid confidence sets. Essentially all conformalized confidence sets offer the
coverage guarantee (1), so it is of interest to improve various aspects of the mappings
Ĉn. For example, works focus on improving the precision of these methods and optimizing
average confidence set size (Lei et al., 2018; Sadinle et al., 2019; Hechtlinger et al., 2019;
Romano et al., 2019a; Angelopoulos et al., 2020), or on bridging the gap with other forms of
coverage, like classwise (Sadinle et al., 2019) or conditional (Romano et al., 2019b; Barber
et al., 2021; Cauchois et al., 2021; Romano et al., 2020; Cauchois et al., 2020) coverage.

Along these lines, Bates et al. (2021) generalize conformal inference to offer error control
with respect to loss functions beyond the 0-1 loss (coverage or non-coverage) central to the
guarantee (1), taking, as we do, structured prediction problems as motivation. Bates et al.
focus on settings where the loss function naturally reflects the structure of the label space
Y, such as hierarchical classification problems where one wishes to label an example X at a
resolution (level of the tree) appropriate to the confidence with which it can be labeled. We
view our approaches as complementary to theirs: their approaches make sense for scenarios
with fully labeled data in which a particular loss function is natural, for example in tree-
structured hierarchical classification, where a prediction can be made at a given level in the
tree. Conversely, our approaches are sensible when one receives weakly supervised data and
wishes to make a single good prediction; think of a grocery store deciding which of a large
collection of shaving creams to stock, a ranking problem where one wishes to make sure that
each individual’s desired shaving cream is stocked; in the context of Example 1, Y weak is then
the preferred shaving cream (top-1), and the guarantee (3) corresponds to top-1 coverage.
In that respect, our approach relates to the expanded admission problem (Fisch et al., 2021),
which allows for multiple labels to be “admissible”, except that we do not observe strongly
supervised labels. Consequently, we motivate our distinct coverage guarantees from a set of
impossibility results we present in the next section. Additionally, we pay special attention
(see Sec. 4) to developing practical algorithms that scale to large label spaces, an important
consideration with real-world weak supervision.

Notation Throughout this paper, [n] stands for the set {1, 2, . . . , n}. We use C : X ⇒ Y
to denote a set valued mapping C : X → 2Y := {W | W ⊂ Y}. P is either the probability
distribution generating the data (X,Y, ϕ) ∈ X ×Y×Φ, or equivalently (X,Y,W ) ∈ X ×Y×
2Y , as both notations are equivalent for our purpose, and U ∼ Uni[0, 1] defines a uniform
random variable on [0, 1]. S(U, V ) is the set of bijections between two sets U and V , and
we use the shorthand SK := S([K], [K]) for permutations; (i, j) is the transposition of
elements i and j ∈ [K], and for k ∈ N, ∆k := {p ∈ Rk+ | pT1 = 1} is the space of probability
distributions on [k].

2 Conformal inference with weakly supervised data

The starting point of this paper is to delineate realistic goals in weak-conformal inference
by determining what is actually possible—as we show, a form of weak coverage—and what
is unachievable. To that end, we demonstrate that strong coverage (1), while desirable,
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may yield large and difficult to interpret prediction sets. For example, as a consequence
of Corollary 4 to come, in the ranking example 1, if feedback always consists of a paired
comparison (e.g., item j1 preferred to item j2), then strong coverage necessitates a prediction
set of size at least order k! � (ke )k. We thus relax our goals, presenting a general weak
conformal scheme (Section 2.2) that relies on weakly supervised data.

2.1 The strong coverage dilemma with partially supervised data

Consider a fully supervised classification setting with feature space X and output space Y,
and let Pstrong be a joint distribution on X × Y representing strong, as opposed to weak,

supervision. In this fully supervised setting, we observe (Xi, Yi)
iid∼ Pstrong, in contrast to

observing a weak label set W ⊂ Y satisfying only Y ∈ W . We first require definitions of
consistency and validity.

Definition 1 A probability distribution P on (X,Y,W ) ∈ X × Y × 2Y is consistent if
P (Y ∈ W ) = 1. For any consistent distribution P , Pweak and Pstrong denote the marginal
distributions of (X,W ) and (X,Y ), respectively, when (X,Y,W ) ∼ P .

Definition 2 Let Ĉn : X ⇒ Y be a (potentially randomized) procedure depending only on
the weakly supervised sample (Xi,Wi)

n
i=1 ∈ X ×2Y . Then Ĉn provides (1−α)-strong distri-

bution free coverage if for all consistent distributions P on X×Y×2Y and (Xi, Yi,Wi)
n+1
i=1

iid∼
P , we have coverage (1), i.e.,

P
[
Yn+1 ∈ Ĉn(Xn+1)

]
≥ 1− α,

and Ĉn provides (1− α)-weak distribution free coverage (3) if

P
[
Wn+1 ∩ Ĉn(Xn+1) 6= ∅

]
≥ 1− α.

With these definitions, we can provide the (negative) result that, on average over the
data set, any procedure satisfying strong distribution free coverage (1) must include every
individual label y ∈Wn+1 with probability at least 1−α. To formalize this, for a confidence
set mapping Ĉn : X ⇒ Y constructed with (Xi,Wi)

n
i=1, define the function

pn(x, y) := P
(
y ∈ Ĉn(x)

)
,

which is the probability, taken over the weakly supervised sample (Xi,Wi)
n
i=1, that Ĉn(x)

contains the potential label y. We prove the following theorem in Appendix B.1.1.

Theorem 3 Suppose that Ĉn : X ⇒ Y provides (1 − α)-strong distribution free coverage.
Then for all consistent distributions P on X × Y × 2Y ,

E
{(Xi,Wi)}n+1

i=1
iid∼Pweak

[
inf

y∈Wn+1

pn(Xn+1, y)

]
≥ 1− α.
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Theorem 3 essentially states that Ĉn simultaneously includes each element y ∈ Wn+1

with probability at least 1−α. The theorem is generally not improvable, as Wn+1 need not
be a subset of Ĉn(Xn+1). Indeed, think of the trivial procedure Ĉn that includes every label
y ∈ Y independently with probability 1 − α: it obviously satisfies strong distribution-free
coverage but has no connection with Wn+1. As an additional immediate corollary, if the
sets W contain at least a fixed number of labels, then so does Ĉn(Xn+1).

Corollary 4 Suppose that Ĉn : X ⇒ Y provides (1 − α)-strong distribution free coverage,
and that P (|W | ≥ L) = 1 for some L ≥ 1. Then

E
{(Xi,Wi)}n+1

i=1
iid∼Pweak

[∣∣Ĉn(Xn+1)
∣∣] ≥ L(1− α).

Proof By Theorem 3,

E
[∣∣Ĉn(Xn+1)

∣∣] = E

∑
y∈Y

pn(Xn+1, y)

 ≥ E
[
|Wn+1| inf

y∈Wn+1

pn(Xn+1, y)

]
≥ L(1− α)

as claimed.

Recalling Example 1, top-item feedback necessitates (k − 1)! sets for ranking; multi-label
recognition (Ex. 2) similarly necessitates an exponentially large set Ĉn.

An alternative perspective is to consider large-sample limits; often, the procedure Ĉn
converges to some population confidence set mapping C : X ⇒ Y as n→∞, in that

E
[∣∣Ĉn(X)4C(X)

∣∣]→ 0 (4)

as n → ∞, where the expectation is over both the construction of Ĉn and X independent

of (Xi,Wi)
iid∼ Pweak. Typically, the limiting C is a (nearly) deterministic function1 of x; for

example, the standard construction (e.g. Vovk et al., 2005; Lei, 2014; Barber et al., 2021)
takes C(x) = {y ∈ Y | s(x, y) ≤ τ} for some scoring function s : X × Y → R and threshold
τ , which is deterministic. In this case, we can show that we nearly have W ⊂ C(X), so
C(X) must be large whenever W is. To formalize, let

DetC(x) := {y ∈ Y | P(y ∈ C(x)) ∈ {0, 1}}

be the labels that are deterministically in or out of C(x) (where the probability is over any
randomization in the mapping C) so that DetC(x) = Y whenever C is deterministic. Then
can show that W ⊂ C(X) with probability at least 1− α:

Corollary 5 Suppose that Ĉn : X ⇒ Y provides (1 − α)-strong distribution free coverage
and satisfies the limit (4). Then

P(W ∩DetC(X) ⊂ C(X)) ≥ 1− α.

1. In some cases, we use randomization over a single label to guarantee that P(Y ∈ C(X)) = 1− α
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Appendix B.1.2 proves a slightly stronger result (which we state as Corollary 8).
Theorem 3 and its corollaries suggest that any procedure achieving strong (distribution-

free) coverage necessarily produces inefficient (large) confidence sets when one uses only
weakly supervised data. Even in cases where there is implicitly a single correct label, such
as the structured prediction problems Cabannes et al. (2020) consider, where the weak
labels w that a single x supports (those for which P(W = w | X = x) > 0) have a single
label y in their intersection ∩w:P(w|x)>0{w} = {y}, large weak sets W remain possible. We
thus must take a different tack, targeting new coverage desiderata.

An aside: regression. Our development applies to regression or other problems with
continuous or infinite response sets, e.g., Y = R, as nothing in Theorem 3 or Theorem 9 to
come requires Y to be any particular space. We leverage this in our experiments (Sec. 5 and
Appendix C) to give numerical examples, touching on the R-valued case here to demonstrate
the analogues of our theoretical results.

As an example, weak sets W in the continuous case may be intervals, arising, for ex-
ample, from measurements with limited resolution. We adapt Corollary 4 to regression by
replacing counting measure with the Lebesgue measure Leb, where the response set Y = R
and the weak sets W ⊂ R. Assuming that the weak sets all have a minimal volume, any
valid confidence set mapping necessarily is large (on average) as well:

Corollary 6 Suppose that Ĉn : X ⇒ Y = R provides (1 − α)-strong distribution free
coverage, and let L > 0. If P (Leb(Wi) ≥ L) = 1, for i = 1, . . . , n+ 1, then

E
[
Leb

(
Ĉn(Xn+1)

)]
≥ L(1− α).

This follows because any measure on Y gives an analogous result:

Corollary 7 Suppose that Ĉn : X ⇒ Y provides (1 − α)-strong distribution free coverage,
let L > 0, and µ a measure on Y. If P(µ(Wi) ≥ L) = 1 for i = 1, . . . , n+ 1, then

E
[
µ
(
Ĉn(Xn+1)

)]
≥ L(1− α).

Proof By Fubini’s theorem and Theorem 3,

E
[
µ
(
Ĉn(Xn+1)

)]
= E

[∫
Y

1
{
y ∈ Ĉn(Xn+1)

}
dµ(y)

]
= E

[∫
Y
p(Xn+1, y)dµ(y)

]
≥ E

[
inf

y∈Wn+1

p(Xn+1, y)µ(Wn+1)

]
≥ L(1− α),

as claimed.

The extension of Corollary 5 follows from Corollaries 6 and 7, implying Corollary 5 as a
special case. (See Appendix B.1.2 for the proof.)

Corollary 8 Let µ be any measure on Y such that µ(W ) > 0 with probability 1. Suppose
that Ĉn : X ⇒ Y provides (1 − α)-strong distribution free coverage and C : X ⇒ Y is its
limiting mapping, i.e., limn→∞ E[µ(Ĉn(X)4C(X))] = 0. Then

P(W ∩DetC(X) ⊂ C(X)) ≥ 1− α,

and in particular, if C is deterministic, then P(W ⊂ C(X)) ≥ 1− α.
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2.2 A general weak-conformal scheme via scoring functions

The theoretical limitations we identify motivate the weak coverage (3) we target instead of
the strong converage (1). Following our discussion above, the new coverage definition stems
from two desiderata: if the problem is actually low-noise and there already exists a highly
predictive model we can leverage to build our confidence sets—roughly, that conditional
on x, a single label y belongs to the weak sets W with high probability and a model
exists that can predict this y—then while we should return this singleton even if we cannot
guarantee strong coverage. In the alternative perspective that we care only about the value
ϕ(Y )—recall the weak set (2)—providing any y satisfying ϕ(y) = Y weak should suffice for
prediction. We turn now to provide our general weak conformalization scheme.

Our starting point is via the typical output of a machine-learned model, a scoring
function s : X × Y → R that ranks potential labels (or responses) y for an input example
x ∈ X . We treat s(x, y) is a non-conformity score, meaning the model predicts that
values of y for which s(x, y) is small are more likely. Standard examples of such scoring
functions include s(x, y) := |y − µ̂(x)| in regression, where µ̂ : X → R predicts y | x;
or s(x, y) := − log py(x) in multiclass classification, where py(x) models the conditional
probability of y | x. Throughout this section, we adopt a split-conformal perspective (Vovk
et al., 2005; Barber et al., 2021), assuming the practitioner provides a scoring function
independent of the sample (Xi, ϕi, Y

weak
i )ni=1 (the sample would typically be a validation

set), and we show how to transform any such scoring function into a valid weakly-covering
confidence mapping.

Algorithm 1 Partially supervised conformalization

Input: sample {(Xi, Y
weak
i , ϕi)}ni=1; score function s : X × Y → R independent of the

sample; desired coverage 1− α ∈ (0, 1)
For each i ∈ [n], compute

Si := min
y: ϕi(y)=Y weak

i

s(Xi, y). (5)

Set t̂n := (1 + n−1)(1− α)-quantile of {Si}ni=1.

Return: predictive set mapping Ĉn : X ⇒ Y defined by

Ĉn(x) :=
{
y ∈ Y | s(x, y) ≤ t̂n

}
.

Algorithm 1 starts from a simple observation, assuming that the scoring function s is
accurate, so that “likely” y achieve small scores s(x, y). Given a query function ϕ and
weak label Y weak—equivalently, the weak set W = {y | ϕ(y) = Y weak}—the most likely
label should typically be the y minimizing s(x, y) over all y satisfying ϕ(y) = Y weak. An
equivalent scheme to the scores (5) with label mappings ϕ and weak labels Y weak

i uses weak
sets Wi, where we replace the scores (5) with

Si := min
y∈Wi

s(Xi, y).
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As a concrete example, for R-valued predictions with s(x, y) = |y− µ̂(x)| and interval weak
sets Wi = [li, ui], we have Si = [li − µ̂(Xi)]+ + [µ̂(Xi)− ui]+. In either case, Algorithm 1
achieves valid weak coverage (3):

Theorem 9 Let (Xi, Yi, ϕi)
n+1
i=1

iid∼ P and Y weak
i = ϕi(Yi) for i ∈ [n+ 1]. Then Algorithm 1

returns a confidence set mapping satisfying

P
[
There exists y ∈ Ĉn(Xn+1) s.t ϕn+1(y) = ϕn+1(Yn+1) = Y weak

n+1

]
≥ 1− α.

Proof Let Si := minϕi(y)=Y weak
i

s(Xi, y) for each i ∈ [n+ 1]. By definition of Ĉn, we have

{
y ∈ Ĉn(Xn+1) | ϕn+1(y) = Y weak

n+1

}
=
{
y ∈ Y | ϕn+1(y) = Y weak

n+1 and s(Xn+1, y) ≤ t̂n
}
,

which is nonempty if and only if

Sn+1 := min
ϕn+1(y)=Y weak

n+1

s(Xn+1, y) ≤ t̂n.

As {Si}n+1
i=1 are i.i.d., this occurs with probability at least 1−α (e.g. Tibshirani et al., 2019,

Lemma 1).

3 Constructing effective conformal prediction sets

Algorithm 1 provides a generic method for conformalization in the presence of partially
supervised data, and it makes no assumptions on the input score function s. Though the
coverage guarantee (3) holds regardless, we can delineate a few additional desiderata that
the predictive sets and score functions s should satisfy to make them more practically useful,
which is our focus in this section:

• The score function s must allow the practitioner to efficiently carry out the computa-
tion of the partial infimum scores (5).

• The lower level sets Ĉn(x) = {y ∈ Y | s(x, y) ≤ t̂n} should be efficiently representable.

• The confidence sets Ĉn(x) should be small, as smaller confidence sets (for a fixed
confidence level α) carry more information.

Deferring our discussion of computational efficiency to Section 4, in this section we only focus
on the last desideratum, implicitly assuming computation is tractable (for example, that
Y is small). We first (Sec. 3.1) develop conditions sufficient for optimally-sized confidence
sets to even exist—a few subtleties arise—before giving greedy algorithms for confidence
set-size minimization, describing their properties, providing a few optimality guarantees in
Section 3.2, and connecting to submodular minimization in Appendix A.
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3.1 Size-optimal scoring mechanism

As in standard approaches to conformal inference (Lei, 2014; Lei and Wasserman, 2014;
Barber et al., 2021), we aim to construct a confidence set mapping Ĉn with minimal average
size over X ∼ PX . Our starting point is simply to define size-optimality, where to achieve
exact coverage and size guarantees, we allow randomization of our confidence sets via an
independent variable U ∼ Uni[0, 1].

Definition 10 A randomized confidence set mapping C1−α : X × [0, 1] ⇒ Y is marginally
size-optimal at level α if it solves

minimize
C:X×[0,1]⇒Y

EX,U∼Uni[0,1] [|C(X,U)|]

subject to P(W ∩ C(X,U) 6= ∅) ≥ 1− α.
(Marg)

It is conditionally size-optimal at level α if for almost every x ∈ X , C(x, ·) solves

minimize
C:[0,1]⇒Y

{
EU∼Uni[0,1] [|C(U)|] s.t. P(W ∩ C(U) 6= ∅ | X = x) ≥ 1− α

}
. (Cond)

Even with full knowledge of the distribution P , techniques for finding marginally size-
optimal confidence sets (Marg) are not immediately apparent; as a consequence, we focus
on the conditional case first. Even in this case, it is in general non-trivial to obtain smallest
confidence sets. Yet as we follow the standard practice in conformal prediction of defining
confidence sets via the scores s (recall Alg. 1) as Ct(x) = {y | s(x, y) ≤ t}, our confidence
sets have the natural nesting property that Ct(x) ⊂ Ct′(x) whenever t < t′. Abstracting
away the particular form of C to enable a purely set-based focus, we thus consider nested
confidence sets, where we show that optimality guarantees are possible.

Definition 11 A collection of mappings {Cη : X × [0, 1] ⇒ Y}η∈(0,1) is nested if

P (Cη1(X,U) ⊂ Cη2(X,U)) = 1 for all 0 < η1 < η2 < 1.

There is an immediate equivalence between score-based conformalization schemes and
nested collections of confidence mappings (Gupta et al., 2022): we simply define

snest(x, y, u) := inf {η ∈ (0, 1) | y ∈ Cη(x, u)} . (6)

The next lemma formalizes this equivalence (see Appendix B.2.1 for a proof).

Lemma 12 Assume the confidence set mappings {Cη}η∈(0,1) are nested and snest(x, y, U)
has continuous distribution for U ∼ Uni[0, 1]. Then

Cη(x, U) =
{
y ∈ Y | snest(x, y, U) ≤ η

}
with U -probability 1.

That is, obtaining weak coverage for nested confidence mappings is equivalent to obtaining
weak coverage using the scoring function snest, which Alg. 1 provides; that is, it is equivalent
to choosing the smallest η ∈ (0, 1) such that P(W ∩Cη(X,U) 6= ∅) ≥ 1−α. A second useful
distributional property of the nested scores (6) is that, assuming the confidence sets Cη
are conditionally valid, we can provide strong distributional results on snest. To make this

11



Cauchois, Gupta, Ali, and Duchi

precise, we say that Cη is conditionally valid for the weak labels W if for each η ∈ (0, 1) and
with P-probability 1 over X,

P (Cη(x, U) ∩W 6= ∅ | X = x) = η. (7)

We then have the following uniformity property as an immediate consequence of Lemma 12:

Lemma 13 In addition to the conditions of Lemma 12, assume that Cη is conditionally
valid (7) for the weak label W . Then the minimum score (5) is independent of X and
satisfies

inf
y∈W

snest(x, y, U) ∼ Uni[0, 1].

Proof With U -probability 1, infy∈W snest(x, y, U) ≤ η if and only if Cη(x, U)∩W 6= ∅, and
so P(infy∈W snest(x, y, U) ≤ η | X = x) = P(W ∩ Cη(x, U) 6= ∅ | X = x) = η.

Einbinder et al. (2022, Prop. 1) gives a similar result to Lemma 13, where the conformity
scores they introduce also induce prediction sets satisfying the nested property.

To illustrate this lemma, suppose that there exist nested conditionally size-optimal map-
pings {Ccond

η }η∈(0,1) solving problem (Cond): in that case, they satisfy the conditions for
application of Lemma 13 so that the induced scores Si are uniform; Alg. 1 will thus compute

t̂n = (1−α) +OP (n−1/2) as t̂n is the (1−α) quantile of Si
iid∼ Uni[0, 1]. So—in the case that

we have (near) conditional coverage—Alg. 1 maintains it. Notably, given a score function
s, not necessarily the nested score (6), but strong in the sense that it models (X,Y ) well
enough that for each α, we can choose t so that P(s(x, Y ) ≤ t | X = x) = α, then the con-
fidence sets Algorithm 1 returns are indeed nested, and Lemma 13 applies to the induced
nested score snest. Optimal nested sets need not always exist (see Example 3 below), but
we can provide natural conditions on the distribution of W | X = x sufficient to allow such
nested coverage, which we do in the next subsection.

3.1.1 From conditionally to marginally valid confidence sets

Our initial criterion (Marg) is purely marginal: we wish to compute a marginally size-
optimal confidence set. Conveniently, conditionally size-optimal mappings can yield marginally
size-optimal problems. In particular, assume that the mappings {Ccond

η }η∈(0,1) are condi-

tionally size-optimal (Cond) and satisfy P(W ∩ Ccond(x, U) 6= ∅ | X = x) ≥ η. The
following proposition shows how to transform these into marginally size-optimal confidence
sets.

Proposition 14 Let the mappings {Ccond
η } be conditionally size-optimal (Cond) as above,

and define the average size(x, η) := EU [|Ccond
η (x, U)|]. Let smarg be any minimizer of

E [size(X, s(X))] s.t. E[s(X)] ≥ 1− α

over s : X → [0, 1]. Then a solution to the initial marginal problem (Marg) is

Cmarg
1−α (x, u) := Ccond

smarg(x)(x, u).

12
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More directly, any conditionally size-optimal sets—which are at least easier to characterize
as they need only randomize over U ∼ Uni[0, 1]—yield marginally size-optimal confidence
sets in a relatively straightforward way: one chooses the probability of miscoverage, s(x),
minimizing the expected confidence set size.

Proof That CMarg
1−α provides valid 1− α coverage is nearly immediate: by conditional size

optimality, we have P(W ∩ Cmarg
1−α (X,U) 6= ∅) = E[tmarg(X)] ≥ 1− α.

Let C be any confidence set mapping such that P(W ∩ C(X,U) 6= ∅) ≥ 1 − α, and
define sC(x) := P(W ∩ C(x, U) 6= ∅ | X = x) ∈ [0, 1], which satisfies E[sC(X)] ≥ 1− α. By
assumption on Ccond, for each fixed x ∈ X , the set Ccond

sC(x)(x, U) is size-optimal (Cond) at

level sC(x), so that for PX -almost every x ∈ X , we have

size(x, sC(x)) = EU∼Uni[0,1]

[
|Ccond
sC(x)(x, U))|

]
≤ EU∼Uni[0,1] [|C(x, U)|] .

Integrating both sides of the inequality over X ∼ PX , and using the assumed optimality
condition on smarg, we obtain

E [size(X, smarg(X))] ≤ E [size(X, sC(X))] ≤ EX,U [|C(X,U))|] .

The left-hand size is the average size of Cmargin
1−α .

3.2 Greedy algorithms for confidence set-size minimization

Given the distribution—or a model of the distribution—of the weak set W conditional on
x, we propose a natural greedy algorithm to construct a confidence set satisfying the weak
coverage constraint: at each step, Algorithm 2 adds the label that increases coverage the
most until the confidence set achieves a desired level. Algorithm 2 draws inspiration from
Romano et al.’s Algorithm 1 2020, where the authors formulated conformal inference meth-
ods tailored for categorical and unordered response labels. These methods not only ensure
valid marginal coverage but also afford approximate conditional coverage. As we show
presently, there are natural families of distributions where this greedy algorithm is optimal;
however, there are failure modes, of which we also provide an example. In Appendix A, we
relate this greedy construction to submodular optimization to provide general guarantees
of confidence set size and coverage.

Alg. 2 returns a nested sequence {Cgr
η (x, U)}η∈(0,1), where U ∼ Uni[0, 1] randomizes to

achieve an appropriate level. While the sequence need not necessarily solve problem (Cond)
(see Example 3 to come), there are natural sufficient conditions for Algorithm 2 to return
a size-optimal set, of which we present two. As the first particular case, consider that
conditional on x, labels y ∈ Y belong to W independently:

Definition 15 A probability distribution P on W ∈ 2Y has label-independent structure if
{1{y ∈W}}y∈Y are independent random variables when W ∼ P .

We might expect W to exhibit label independence when all labels y ∈ Y satisfy π(y | x)� 1,
with the exception of a single label y?(x), for which π(y?(x) | x) ≈ 1, as will often be the
case in low-noise classification settings.
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Algorithm 2 Greedy weakly supervised scoring mechanism

Input: model for the distribution of W given X = x; coverage rate η ∈ (0, 1)
for each j ∈ [K] define recursively

yj(x) := argmax
y∈Y

P

(
y ∈W,

j−1⋂
i=1

{yi(x) 6∈W} | X = x

)
.

for each j ∈ [K] define Cgr,j(x) := {yi(x) | i ≤ j} and set

j(x, η) := min
{
j ∈ [K] | P

(
W ∩ Cgr,j(x) 6= ∅ | X = x

)
≥ η

}
.

set

tη(x) :=
η − P (Cgr,j(η,x)−1(x, U) ∩W 6= ∅ | X = x)

P (Cgr,j(x,η)(x, U) ∩W 6= ∅ | X = x)− P (Cgr,j(x,η)−1(x, U) ∩W 6= ∅ | X = x)
.

return function Cgr
η : X × [0, 1] ⇒ Y defined by

Cgr
η (x, u) :=

{
Cgr,j(x,η)(x) if u < tη(x),

Cgr,j(x,η)−1(x) otherwise.

Y?

W0

W1

y1 y3

W2

y2 y5

y4

Figure 1. A tree-structured (8) distri-
bution for W given X = x, with Y? =
{1, 2, 3, 4}. The possible configurations for W
are the singletons {y1}, {y2}, {y3}, {y4}, the two
pairs W1 = {y1, y3} and W2 = {y2, y5}, W0 =
{y1, y2, y3, y5}, and Y? itself.

Another scenario occurs when the label space exhibits a hierarchical tree structure, as
one may expect in image classification (Deng et al., 2009) or structured prediction tasks (Ca-
bannes et al., 2020). When the weak sets W obey the same structure as the distribution—
they are subtrees of the global tree—we say the labels have a tree structure (see Figure 1):

Definition 16 A probability distribution P on W ∈ 2Y has a tree structure if for all
w1, w2 ⊂ Y,

P (W = w1) > 0 and P (W = w2) > 0 imply w1 ∩ w2 ∈ {w1, w2, ∅}. (8)

Both definitions (independent labels and hierarchically-structured weak labels) are suf-
ficient to guarantee size-optimality for the greedy confidence sets Algorithm 2 constructs.
The next Proposition, whose proof we provide in Appendix B.2.2, makes this formal.
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Proposition 17 Suppose the probability law L(W | X = x) has either label-independent
structure (Def. 15) or a tree structure (Def. 16). Then for all η ∈ (0, 1), Cgr

η is conditionally
size-optimal, and therefore is a minimizer in equation (Cond).

In general, even with perfect knowledge of the distribution of W | X = x, the nested
greedy confidence sets Cgr

η need not be size-optimal, as there may be weak sets appearing
with high probability while their constituents do not, so that the conditionally size-optimal
sets {Ccond

η }η∈[0,1] are not nested. The next example illustrates one such failure mode:
Example 3: Let the distribution of W be

W =



{1, 2} w.p. 0.3

{1, 3} w.p. 0.25

{2} w.p. 0.2

{3} w.p. 0.15

{1} w.p. 0.1.

Then for η = 0.9, it is immediate that Ccond
η (x, u) = {2, 3}, but Cgr

η (x, u) = {1, 2, 3} or {1, 2}
depending on whether u < 1/3. In addition, Ccond

eta′ (x, u) = {1, 3} when η′ = 0.85, showing
that in this case, the confidence set mappings Ccond

η need not be nested. 3

In Appendix A, we include a few ancillary results showing that even in general cases like
Example 3, the sizes of the confidence sets Cgr and Ccond cannot be too far apart.

4 Efficient conformalization for large output spaces

While Section 3 provides a generic treatment on for producing scoring functions and asso-
ciated confidence sets of minimal size, in typical practice, a (pre-trained) model provides a
predictive scoring function, which may not be directly associated to a probability metric,
and we wish to leverage such models. This is of particular interest when the label space Y
is large, as in structured prediction problems (Taskar, 2005; Cabannes et al., 2020), where
computational efficiency becomes a main challenge. In this section, we thus first intro-
duce a general method for computing and representing confidence set mappings of the form
{y | s(x, y) ≤ t̂n}, and then describe how to efficiently carry out Alg. 1 in ranking prob-
lems (Section 4.2); for interested readers, we include constructions for matching problems
in Appendix C.1 problems.

4.1 Conformal confidence sets with sequential partitioning

We seek to efficiently compute and represent the confidence set Ĉn(x) for any instance
x ∈ X , typically for a task where the label space contains more configurations than are
efficiently enumerable (K! for matching and ranking problems over K items). At the same
time, recalling that t̂n denotes the threshold Algorithm 1, if our confidence sets are to be
informative they should include relatively few configurations y ∈ Y satisfying s(x, y) ≤ t̂n.
To the end of computing the set Ĉn(x) = {y | s(x, y) ≤ t̂n} in Alg. 1, we focus on methods
for computing a given number M of configurations with the smallest score s(x, y). This is
essentially without loss of generality: while we may not know the appropriate M = Mx =
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Partition Update

Y3
1

Y3
2

Y3
3

Y4
2

Y4
1

Y4
4

Y4
3

y1

y2

y32,2
y31,2 y33,2

y3

y1

y31,2 y33,2
y3

y2

y32,2 = y4

y1

y41,2 y43,2

y3

y2

y4

y44,2

y42,2

Figure 2. Alg. 3 scheme for sequential partitioning: first, partition the subset containing the
m+ 1-th best configuration, y32,2 in this case, then compute both second-best configurations

in the newly formed subsets of the partition—here Y4
2 and Y4

4 .

|Ĉn(x)| to guarantee coverage, if for each M ∈ N we can find the M best configurations
in time polynomial in M , then by sequentially doubling M until we obtain an element
y ∈ Y such that s(x, y) > t̂n, we achieve time polynomial in Mx. Algorithm 3 builds on
this intuition to return a valid confidence set. The Algorithm we suggest is essentially an
extension of the algorithm proposed by Chegireddy and Hamacher (1987) to find the K-
best matchings in a bipartite graph. We reuse the general idea (i.e. compute a sequence of
partitions of the space and maintain a list of the two best configurations for each item of
the partition) and extend it to a more general structured prediction. The key is to observe
that we only need to be able to compute the two best configurations of a given subset of
configurations, which they do on matching problems (and our Algorithm essentially reduces
to theirs in the matching case). We then apply that paradigm to the ranking case.

We remark briefly that an alternative approach is to conformalize directly on the size
M of the confidence set: suppose we learn a function M̂ : X → N predictive of the rank
(according to {s(x, y)}y∈Y) of the first “compatible” configuration, i.e predictive of

Mi := rank of the first configuration y ∈ Y such that ϕi(y) = Y weak
i .

In that case, if we let Q̂n :=
(
1 + n−1

)
(1− α) -quantile of {Mi−M̂(Xi)}ni=1, we would only

need to return

Ĉn(x) :=
{
M̂(x) + Q̂n best configurations y ∈ Y ordered by s(x, y)

}
.

This approach makes prediction more efficient (as we know in advance the number of configu-
rations to compute), but the computational effort of the conformalization step (5) increases,
as we must compute the rank of the best constrained configuration for each instance.

4.1.1 Returning M best configurations with sequential partitioning

Let us now fix M ≥ 1, and focus on retrieving the M configurations with the lowest scores.
Algorithm 3 provides a general recipe using dynamic programming, and it is efficient as long
as we can efficiently compute certain partitions of the label space. We require the following
definition.
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Definition 18 A function Partition : 2Y ×Y ×Y → 2Y × 2Y is valid for a score function
s if, for every subset Ỹ ⊂ Y and pair of configurations y1, y2 ∈ Ỹ satisfying

y1 ∈ argmin
y∈Ỹ

s(x, y) and y2 ∈ argmin
y∈Ỹ\{y1}

s(x, y),

Partition(Ỹ, y1, y2) returns a partition (Ỹ1, Ỹ2) of Ỹ such that y1 ∈ Ỹ1 and y2 ∈ Ỹ2.

We thus leverage two conditions: a valid Partition for our score function s and, for each
pair of subsets Y1,Y2 ⊂ Y that it produces, we must be able to (efficiently) compute the
second-best configurations in Y1 and Y2, i.e.,

y1,2 ∈ argmin
y∈Y1\{y1}

s(x, y) and y2,2 ∈ argmin
y∈Y2\{y2}

s(x, y).

Figure 2 encapsulates the main idea Alg. 3: at each step m ∈ [M ], we maintain a
partition {Ymj }mj=1 of Y such that if ymj ∈ argminy∈Ymj s(x, y), then for all j ∈ [m], we have

ymj ∈ argmin
y∈Y\{ym1 ,...,ymj−1}

s(x, y),

i.e., ymj is the j-th best configuration in Y. Now, for each j ∈ [m], let the configuration
ymj,2 ∈ argminy∈Ymj \{ymj } s(x, y) be the second-best configuration in Ymj . The key is then to

observe that if we set

ind(m) := argmin
j∈[m]

s(x, ymj,2),

then ymind(m),2 is the (m+1)st best configuration in Y. The Partition function then divides

Ymind(m) into two sets Ym+1
ind(m) and Ym+1

m+1 such that ymind(m) ∈ Y
m+1
ind(m) and ymind(m),2 ∈ Y

m+1
m+1 .

Under the assumption that Partition is valid (Def. 18) for the score s, the following lemma
guarantees the validity of Algorithm 3.

Lemma 19 Assume the Partition function is valid for the score function s. Then Algo-
rithm 3 returns a set of configurations {yj}Mj=1 such that for each j ∈ [M ],

yj ∈ argmin
y∈Y\{y1,...,yj−1}

s(x, y).

Proof This follows by an induction over m ≥ 1, which guarantees that at every step m ≥ 1,
{Ymj } is a partition of Y such that ymj = argminy∈Ymj and

s(x, ym1 ) ≤ s(x, ym2 ) · · · ≤ s(x, ymm) ≤ min
y∈Y\{ymj }

s(x, y).

The property transitions from m to m+1 as the Partition function is valid, and we choose
ym+1
m+1 as the best second-best configuration, hence it is the (m+ 1)st best configuration.

The existence of an efficient valid Partition function is instance-dependent and typi-
cally requires a specific choice of scoring function; we provide concrete implementations for
two types of structured prediction problems.
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Algorithm 3 Sequential partitioning

Require: score function s : X ×Y → R; valid (Def. 18) Partition: 2Y×Y×Y → 2Y×2Y ;
instance x ∈ X
initialize: Compute y1

1 := argminy∈Y s(x, y) and y1
1,2 := argminy∈Y\{y11} s(x, y).

Set Ym1 := Y {Initialize the partition}
for m = 1, 2, . . . ,M − 1 do

ind(m) := argminj∈[m] s(x, y
m
j,2) {Find the m+ 1-th best configuration}

ym+1
m+1 := ymind(m),2

for j ∈ [m] \ {ind(m)} do
(Ym+1

j , ym+1
j , ym+1

j,2 ) := (Ymj , ymj , ymj,2) {All subsets {Ymj }j 6=ind(m) remain identical}
end for
Ym+1

ind(m),Y
m+1
m+1 := Partition(Ymind(m), y

m
ind(m), y

m+1
m+1) {Partition the set Ymind(m)}

ym+1
ind(m)

:= ymind(m) and ym+1
ind(m),2

:= argminy∈Ym+1
ind(m)

\{ym+1
ind(m)

} s(x, y)

ym+1
m+1,2 := argminy∈Ym+1

m+1\{y
m+1
m+1}

s(x, y) {Compute second-best configurations}
end for
return {yMm }Mm=1

4.2 Structured prediction examples (Ranking problems and partial labeling
mechanisms)

While Algorithm 3 is generic, we now show that efficient partitioning and minimization
functions exist in structured prediction instances, so that we may efficiently carry out above
algorithms in the instance. Here we focus on ranking problems and defer the discussion on
matching tasks in Appendix C.1.

The goal here is to predict a preference ranking y ∈ Y = SK of K different items,
documents, for a certain user or query x ∈ X , where y(i) denotes the item of rank i.
Typically, one achieves this by learning relevance functions rk : X → R, which evaluate each
item 1 ≤ k ≤ K individually before aggregating into a single ranking prediction (Freund
et al., 2003; Duchi et al., 2013; Qin and Liu, 2013; Cao et al., 2007). We assume here that
we have access to such relevance functions.

In ranking tasks, there are two reasonable ways in which practitioners may acquire
partial supervision or user feedback. The first mechanism (Cabannes et al., 2020) assumes
they only receive a subset of all

(
K
2

)
pairwise comparisons

(
1
{
y−1(i) < y−1(j)

})
1≤i<j≤K as

a partial label, which is especially relevant in cases where the practitioner solicits feedback
from users by asking them to compare a small number of items. Unfortunately, carrying
out the computation (5) in Alg. 1 reduces to the NP-hard minimum cost feedback arc set
problem (Ailon et al., 2008; van Zuylen et al., 2007), for which only an approximate solution
is available (by solving an integer linear program).

Another form of feedback, on which we focus in the rest of the section and that allows
running both Algs. 1 and 3 efficiently, instead assumes that users only provide a fraction of

their preferred ranking and reveal (y(i))K
partial

i=1 for some Kpartial ≤ K (top-Kpartial feedback
in Example 1). To construct score functions amenable to the application of Alg. 3, we first
introduce ranking-consistent score functions.
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Definition 20 A scoring function srank is ranking-consistent with a set of relevance func-
tions {rk : X → R}k∈[K] if a for all 1 ≤ i < j ≤ K and y ∈ SK ,

srank(x, (i, j) ◦ y)) ≤ srank(x, y) if ry(i)(x) ≤ ry(j)(x), (9)

where (i, j) ◦ y denotes transposition of i and j in the permutation y.

Such a scoring mechanism should always favor a ranking that gives a higher rank to y(j)
than y(i) if ry(i)(x) ≤ ry(j)(x), i.e., if y(j) has a greater relevance than y(i). It ensures in
particular that the (m + 1)st best ranking is always a “neighbor” of one of m best; this
is an immediate property of the score function, as it can always increase by swapping two
elements i and j that are mis-ordered.

An example of ranking-consistent scoring function is the disagreement-based scoring
function (Kendall, 1938; Kemeny, 1959; Duchi et al., 2013)

srank(x, y) :=
∑
i<j

ψ
(
ry(i)(x), ry(j)(x)

)
, (10)

where ψ : R2 → R ≥ 0 is a function satisfying ψ(a, b) = 0 when a ≥ b and ψ(a, b) > 0 when
a < b, non-increasing in the first argument and non-decreasing in the second. Unless we
specify otherwise we use ψ(a, b) = [b− a]+ in our experiments.

Finding the configuration y that minimizes the partial score (5) of a ranking-consistent

score function is straightforward: it suffices to rank all the elements in [K] \ {y(i)}K
partial

i=1

according to their relevance scores (rj(x))Kj=1, and then append them to the first Kpartial

elements. This property allows efficiently retrieving the M ≥ 1 best configurations with
Alg. 3. Throughout the loop, we make sure that any set of permutations Ymj is a subset
of permutations consistent with a finite number of partial rankings (pairwise comparisons),
and that its best and second-best configurations ymj and ymj,2 only differ by a neighboring
transposition of the form (i+ 1, i), satisfying

ymj,2 := argmin
y∈Ymj

{s(x, y) | ∃i ∈ [K], y = (i+ 1, i) ◦ ymj }. (11)

If we can guarantee this loop invariant, then there always exists ij,m ∈ [K] such that
ymj,2 = (ij,m + 1, ij,m) ◦ ymj , and we only need to define the partition function on a smaller

subset of 2Y × Y × Y: for any subset of permutations Ỹ ⊂ Y, ỹ ∈ Ỹ and i ∈ [K] such that
(i+ 1, i) ◦ ỹ ∈ Ỹ, we let

PartitionRanking(Ỹ, ỹ, (i+ 1, i) ◦ ỹ) :=

Ỹ ∩
{
y ∈ Y | y−1(ỹ(i)) < y−1(ỹ(i+ 1))

}
, Ỹ ∩

{
y ∈ Y | y−1(ỹ(i)) < y−1(ỹ(i+ 1))

}
,

(12)

splitting Ỹ according to whether ỹ(i) has a higher rank than ỹ(i+ 1).
The next lemma, whose proof is in Appendix B.3.1, states that this partition rule indeed

guarantees that, at every step m of the loop in Algorithm 3, the second-best configuration
in Ymj satisfies the invariant (11).

Lemma 21 Assume the score function is ranking-consistent (9) for a set of relevance func-
tions {rk}Kk=1. Then Algorithm 3 with the PartitionRanking function (12) produces a se-
quence of partitions with second-best configurations satisfying equation (11).

That is, Algorithm 3 is correct.
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5 Experiments

In this section, we test our weakly supervised methods experimentally, in different classifi-
cation and regression problems, on both synthetic and real datasets, with an emphasis on
their computational efficiency and informativeness. Here we focus on ranking problems and
present further experiments on matching and regression problems in Appendix C. The pri-
mary goal of this paper is not to provide end-to-end models with only partially supervised
data, but rather to introduce a new form of coverage validity and show how to achieve it
with partially labeled data. In contrast to the split-conformal method (Vovk et al., 2005),
which requires fully supervised instances for both training and validating, we only need
these to train a model and form a scoring function suitable for the application of Alg. 1. In
some cases, standard models already exist, such as in image classification (He et al., 2016).

To provide a meaningful comparison with existing conformal methods and test for pre-
dictive set size efficiency, we use fully labeled real datasets, and introduce different plausible
forms of weak supervision on our calibration and test sets before applying Algorithm 1 to
construct confidence sets. Our method displays similar behavior across all datasets and
forms of partial information. To provide a baseline, we also run a standard fully supervised
conformal scheme (FSC) using the strong labels Yi and true scores s(Xi, Yi), which runs
similarly as Alg. 1, but with threshold

t̂full
n := (1 + n−1)(1− α)-quantile of {s(Xi, Yi)}ni=1. (13)

We can then estimate the gain in efficiency—in the form of decreased confidence set sizes—
that stems from the weakening of strong coverage (1) to weak coverage (3).

5.1 A toy classification example

We first perform an experiment with a toy multiclass data set containing K = 10 different
classes and d = 2 dimensional features. We consider a partially supervised problem on
X × Y = Rd × [K] for which we wish to output valid confidence sets. We use the following
model: each potential response y ∈ [K] has a noisy score depending on the feature vector
X ∈ Rd though a vector θ?y ∈ Rd,

{Soracle
y }y∈[K] | X = x ∼ N({xT θ?y}y∈[K], σ

2IK) (14)

Ideally, we would recover the strong label Y := argminy∈Y S
oracle
y , but our weakly supervised

methods do not observe Y directly: instead, for a random instance-dependent threshold T ,
we only have access to the weak set

W := {y ∈ Y | Soracle
y ≤ T}.

As motivation, consider a supervised learning task in which, out of all potential responses,
there is always only one ground truth, but there are other labels that are “good enough”
(i.e. have a low enough score) to answer a certain query. In this setting, a confidence set is
weakly valid (3) as long as it contains at least one label y such that Soracle

y ≤ T , whereas it
is strongly valid (1) if it contains Y .

We vary the signal-to-noise ratio σ−1 ∈ {10−2, . . . , 102}: when it is too small, no model
(even an oracle one) can be highly predictive, and a standard conformal method should
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Figure 3. Results for the simulated multiclass data (14), over Ntrials = 20 trials. The left
plot shows respectively the strong (1) and weak (3) coverage for the greedy weakly supervised
(GWS), the weakly supervised conformal (WSC) and the fully supervised conformal (FSC)
confidence sets. The right plot displays the average confidence set size for these methods.

provide large uninformative confidence sets, whereas we expect our new definition of cov-
erage to yield smaller sets, as any label in W (i.e. with a low enough score) provides valid
coverage.

In this experiment, we compare three different methods. The “Greedy weakly super-
vised” (GWS) method only uses partially labeled data both when training and confor-
malizating. It first trains K separate logistic regressions with {Xi} as features and each
{1{y ∈Wi}} for all y ∈ Y as potential response, providing a model for P (y ∈ W | X = x),
and models the distribution of W given X = x as label-independent (see Definition 15). It
then computes a nested sequence of confidence sets thanks to Alg. 2, which we then feed to
the conformalization Algorithm 1 using the nested scoring mechanism (6).

The second and third methods, the “Weakly supervised conformal” (WSC) and the “Full
supervised conformal” (FSC) methods respectively, use fully supervised data for training:
we first train a standard logistic regression model pθ(y | x) ∝ exp(θTy x) on {(Xi, Yi)}, and
then construct a scoring function using the Generalized Inverse Quantile (GIQ) procedure
that Romano et al. (2020) introduce. In the conformalization step, the WSC method runs
Algorithm 2 with partially labeled calibration data, while the FSC method uses strongly
labeled data to compute the threshold t̂full

n in (13). The threshold t̂n in Alg. 2 is always
smaller than t̂full

n , so the FSC method returns larger confidence sets than the WSC method.
We expect that as the signal to noise ratio decreases, the gap between the GWS and WSC
confidence sets and the FSC confidence sets increases.
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The precise experimental set-up is as follows: we simulate n = 104 data points, splitting
them into training (30%), calibration (20%) and test (50%) sets. We draw each θy uniform

on Sd−1, {Xi}ni=1
iid∼ N(0, Id), choosing weak threshold T ∼ Uni[miny∈Y{SOracle

y },maxy∈Y{SOracle
y }].

We repeat the entire process Ntrials = 20 times to account for uncertainty, presenting our
results in Figure 3.

As we expect, using an alternative weaker version of coverage (3) allows us to signifi-
cantly decrease the size of the confidence set (by up to a factor of 3), especially when the
signal-to-noise ratio is small, as one must include more classes in the confidence set to main-
tain strong coverage. Indeed, we can see that the strong coverage (1) for the GWS and WSC
procedures fall well below 1−α = 95% in this case, since they only strive for weak 1−α cov-
erage, which they consistently achieve. Since the GWS method aims to construct minimal
confidence sets, we expect that it produces smaller confidence sets than the WSC method,
which simply leverages an existing strongly supervised model; we consistently observe this
across different values of σ.

5.2 Document ordering for query answering

We now present the results of two experiments using Alg. 1 in a ranking problem. The
first simulates a standard ranking task, while the second focuses on ranking documents’
relevance to specific queries in the Microsoft LETOR dataset (Qin and Liu, 2013).

5.2.1 Ranking simulation study

In a first simulation study, we aim to predict a ranking of labels y ∈ [K] based on a feature
vector X ∈ Rd. Think here of a supervised problem where we want to rank users’ preferences
for a set of items. Each user has an unknown relevance score SOracle

y ∈ R for each item
y ∈ [K], which induces a ground truth ranking over the labels:

Y := argsort{SOracle
y }y∈[K] ∈ SK .

The problem is to recover this noisy ranking and produce valid confidence sets in SK , but
our weakly supervised methods do not observe the full ranking when conformalizing: they
can only observe the ranking up to the Kpartial ≤ K-th element, leading to the weak set

W = {y ∈ SK | ∀j ∈ [Kpartial], y(j) = Y (j)}. (15)

In our experiment, we simulate n = 104 i.i.d. different users, using the same (30,20,50)
train/validation/test split as in Section 5.1. With K = 7 and d = 2, we draw the user

feature vector Xi
iid∼ N(0, Id), and then conditionally on Xi, we produce normal item-

wise relevance scores {SOracle
iy }i∈[n],y∈[K] following the distribution (14). We finally simulate

partial supervision by drawing the number of observed elements in the ranking Kpartial
i as

min(K, 1 + Ai), where Ai
iid∼ Poi(.5). The lower left panel of Figure 4 shows the overall

distribution of this quantity: most users only reveal the first 1 to 3 items in their optimal
ranking.

We then produce strongly and weakly valid confidence sets at the 1 − α := 90% level.
We use the same scoring model for both the fully supervised conformal (FSC) and weakly
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supervised conformal (WSC) procedures: we learn linear individual relevance score functions
{ry}y∈[K] (with fully supervised training data) via the ListNet procedure (Cao et al., 2007),

which we briefly describe here. Given a set of relevance scores {ry}y∈Y ∈ RK , ListNet
models the probability of a ranking π ∈ SK as

Pr(π) :=

K∏
y=1

exp(rπ(y))∑k
l=y exp(rπ(l))

, (16)

which gives each item y ∈ Y a top-1 probability (of ranking first) equal to

P 1
r (y) := Pr(π(1) = y) =

exp(ry)∑k
l=1 exp(rl)

.

Given a training data set containing pairs (X,R) ∈ X × RK of features/relevance scores,
we learn score mappings by minimizing the log-loss of the top-1 distribution over a set F
of functions

{r̂y}y∈[K] := argmin
r̃∈FY

 ∑
(X,R)∈ training data

K∑
k=1

−P 1
R(k) log

(
P 1
r̃(X)(k)

) .

In our experiment, we only observe the ranking (or even a fraction of), not the true per-
item relevance scores, hence, following common practice (Cao et al., 2007), we use Ry =
K − the rank of the item = K − Y −1(y) as a proxy for our observed item-wise relevance
scores when training our model.

In our experimental set up, each relevance score function ry : X → R ideally estimates
the true conditional mean of the oracle scores, x 7→ xT θ?y. Given these individual scores,
we use the scoring mechanism (10) with ψ(x, y) := (y − x)+ and conformalize using the
strategy we describe in Section 4.2. The difference between the WSC and FSC methods is
the conformalization step on calibration data: WSC runs Alg. 1 with partially supervised
data to compute the score threshold t̂n while FSC uses strongly supervised data to return
the more conservative threshold t̂full

n in (13).
Our results fit our initial expectations, in line with our first experiments: the size of

the confidence set, as Figure 4C shows, benefits from the weaker definition of coverage: for
any value of the signal to noise ratio σ−1 > 0, the WSC method produces much smaller
and more informative confidence sets than the FSC method, as it only needs to include a
ranking with the correct first Kpartial elements to provide valid coverage. ,At the cost of the
strong coverage falling below 1−α (see Fig. 4A), and with little information (only the first
Kpartial < K labels), the WSC method constructs predictive sets that are much smaller and
yet still valid (in a weak sense).

5.2.2 Ranking experiment with Microsoft LETOR dataset

We now tackle a slightly different type of ranking problem: we wish to rank a set of potential
documents by order of relevance to a specific user query: documents more relevant to the
query should occupy a higher position in the final ranking. A search engine is a good
example of such problem: a user makes a search query, and the task is to sort Web pages
that best answer that query among a (potentially large) set of potential pages.
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Figure 5. Results for LETOR ranking dataset (Qin and Liu, 2013) over Ntrials = 20 trials.
Each plot represents a different value of K ∈ {2, 4, 8, 10, 15}, the number of documents to
rank, and we compare different scoring functions by varying the value of c ∈ {0, 2, 5, 8} in
equation (18). A: Strong (1) and Weak (3) coverage for the weakly supervised conformal
(WSC) and the fully supervised conformal (FSC) confidence sets. B: Distribution of the

confidence set size |Ĉ(X)| for different numbers K of suggested documents. We display here

the distribution of min(|Ĉ(X)|,M) for M = 100.
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Learning to rank with Microsoft LETOR dataset (Qin and Liu, 2013) To study
that problem, we design an experiment with Microsoft LETOR data set. For each potential
query/document pair (x, d), the dataset aggregates several quantities of interest to deter-
mine whether d is relevant to x into a d = 46-dimensional feature vector φ(x, d) ∈ Rd. For

a query x with a set of potentially relevant documents D(x) := {dj}|D(x)|
j=1 , our data set

additionally contains a ranking Π(x) ∈ S|D(x)| that orders these documents according to

their relevance. Our goal is to retrieve that ranking using the feature vectors {φ(x, dj)}D(x)
j=1 .

A semi-synthetic weakly supervision set-up We construct weakly supervised cal-
ibration and test data sets as follows. For each split (calibration/test), we first sample
n = 2000 queries from the entire set of queries in LETOR validation and test datasets.
For every query Xi, we select K ∈ {2, 4, 6, 8, 10, 20} documents by first sorting D(Xi) into
K equally sized subsets by relevance, so subset ` ∈ [K] contains the documents with rank

Π(x)y for every y ∈ { (`−1)|D(Xi)|
K + 1, . . . , `|D(Xi)|

K }, and then drawing one document from
each box uniformly at random.

This procedure ensures that there exists a significant relevance gap between any two
potential documents in the query, and that the number of documents to rank is sufficient
to allow reasonably-sized confidence sets. Π(Xi) additionally induces a sub-ranking Yi ∈
SK on these documents, which we treat as a strong label. Similarly to our approach in
Section 5.2.1, we introduce partial labels by assuming that our weakly supervised method

can only access the first Kpartial
i elements of Yi, where Kpartial

i
iid∼ 1 + Poi(.5): this simulates

the plausible setting where a user has given feedback on the most relevant documents to
the query, but certainly not to all of them. We repeat the entire simulation procedure
Ntrials = 20 times.

Building a ranking scoring function (10) We next describe how we use fully supervised
training data to construct the scoring function that we feed Alg. 1 with. We first learn a
linear query/document relevance function

rθ(x, d) := θTφ(x, d) (17)

using the ListNet procedure (16) on LETOR (fully supervised) train data(
xi, (di,j)

D(xi)
j=1 , yi ∈ SD(xi)

)ntrain

i=1
,

containing 55700 different query/document pairs.
We then use a specific implementation of the score function sRanking as in Eqn (10): if

we rank K documents {dk}k∈[K] for a query x, we rescale our relevance scores to the interval
[0, 1],

{rk(x)}k∈[K] :=

{
rθ(x, dk)−minj∈[K] rθ(x, dj)

maxj∈[K] rθ(x, dj)−minj∈[K] rθ(x, dj)

}
k∈[K]

,

and then, for a choice of c ∈ {0, 2, 5, 8}, apply the scoring mechanism (10) with these
relevance scores and pairwise comparison function

ψc(r1, r2) := exp(−cr1) (r2 − r1)+ . (18)
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In this example, we guarantee weak coverage if the true ranking Yi on the first Kpartial
i

elements coincides with either one of the predictive rankings. To keep the predictive set
size small, we thus wish to ensure that it doesn’t contain two rankings with the same first
Kpartial
i elements (as they would be redundant): this is why we introduce the exponential

term exp(−cr1), which makes sure that when ranking all configurations by their score, highly
ranked configurations have different first elements (rather than different last elements). To
estimate the distribution of |Ĉ(X)|, we then compute the M = 100 best rankings for each
query using Alg 3, and then replace the size of the confidence set by min(M, |Ĉ(X)|)),
effectively truncating it to M .

Experimental results We present our results in Figure 5. The confidence sets display
the behavior we expect: when the number K of items to classify is small, the fully supervised
conformal (FSC) and weakly supervised conformal (WSC) methods are similar, since partial
labels are often equal to strong labels. Since the overall number of configurations is small,
both methods are also able to maintain fairly small confidence sets. On the other hand, when
K grows, the weak supervision method quickly departs from the full supervision one, and
is able to produce confidence sets that are much smaller: when K ≥ 8, the FSC method
is unable to produce confidence sets with fewer than 100 configurations, as the number
of configurations is large, and the problem is inherently noisy, especially for comparing
documents with a fairly small relevance. The WSC (partially) overcomes that difficulty
with its restrained notion of coverage, and is able to maintain a majority of confidence
sets with size smaller than M , at least until K = 15. Of course, this method pays a price
in terms of strong coverage, as for large K, the confidence set almost never contains the
actual ground true ranking. That said, it may not a real issue as we are more interested
in detecting which documents are actually relevant, and hence should have a higher rank,
rather than correctly ordering documents with very little relevance to the query at the
bottom of the list.

In addition, as we predicted, higher values of c in the pairwise comparison function (18)
produce much smaller confidence sets by favoring more diverse rankings at the top of the
list.

6 Discussion

The new measures of coverage we develop here—tailored to partially supervised data that
may be easier to collect in many engineering and measurement-centric scientific scenarios—
help to bridge a gap between typical conformal predictive inference methods, which require
expensive supervised data, and problems with partial supervision, whose typical focus is on
prediction but not uncertainty quantification. Our hope is for this paper to open several
avenues for future work. First, Algorithm 1 does not currently quantify the amount of
coverage it provides conditionally on the query function, which essentially means in an
item ranking framework that we do not know ahead of time whether we guarantee the top
2 or top 10 elements of the ranking to be correct. This occurs first because the query
function is unknown ahead of time, and second because coverage (3) is marginal over the
full randomness of the sample. Similarly to conformal inference extension works bridging
the gap between marginal and conditional coverage, or between marginal and label-wise
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coverage, one potential goal is to adapt these methods and even out coverage conditionally
on (plausible) query functions.

Our approach acts as a wrapper around any black box machine learning model, providing
valid coverage guarantees independent of model quality. However, poorly trained models
impact the efficiency of prediction sets, which can be large when training data is scarce.
Thus, efforts to mitigate overfitting and train high-quality models are paramount to ensuring
the efficiency of our method’s prediction sets. Scalability, while generally manageable with
our methods for large datasets, presents challenges primarily during the conformalization
step. Recognizing the absence of a one-size-fits-all solution, we have tailored a few scalable
and, we hope, exemplar methods that capture diverse applications.

The new definition (3) is intrinsically a 0-1 loss-based approach, in the sense that the
confidence set Ĉn either covers the weakly supervised set or fails. A natural initial exten-
sion is thus similarly to what Bates et al. (2021) propose in the strongly supervised case,
recognizing that many structured prediction problems (e.g., segmentation tasks or multil-
abel problems) benefit from more subtle and granular loss functions. In the same vein, we
present a few efficient choices of scoring mechanisms for structured prediction, which high-
light the practicality and potential application of our general methodology; it seems quite
plausible that more sophisticated scoring models could yield substantial improvements.

In our view, one of the more exciting potential applications of this work reposes on
the (growing) centrality of partial and weakly labeled data in statistical learning (Ratner
et al., 2017). Whether this be from partial reporting in surveys, or because collecting
labeled data is quite expensive, a major challenge in modern machine learning deployments
and the release of statistical models is monitoring their performance. The weaker notions of
predictive inference and coverage here, we might hope to build more effective and applicable
guardrails and uncertainty measures for modern statistical systems, even as they are released
to the world.

Appendix A. A general upper bound for the greedy approach

As we saw in section 3, reasonable conditions on label distributions guarantee that the
greedy mappings {Cgr

η }η∈(0,1) solve problem (Cond), while pathologies (as in Example 3)
exist. In this section, we show that even in general cases, the sizes of the confidence sets
Cgr and Ccond cannot be too far apart. We motivate our approach by noting the similarity
between problem (Cond) and the minimum set cover problem familiar in submodular op-
timization Vazirani (2001); Golovin et al. (2014), which we recall. Let f : 2Y → [0, 1] be a
monotone submodular coverage function, meaning that for each A ⊂ B ⊂ Y and y ∈ Y \B,
f satisfies f(A) ≤ f(B), f(A ∪ {y})− f(A) ≥ f(B ∪ {y})− f(B), f(Y) = 1, and f(∅) = 0.
A solution to the minimum set cover problem is

C?η ∈ argmin
C⊂Y

{|C| s.t. f(C) ≥ η} . (19)

A classical result combinatorial optimization of Wolsey (1982) bounds the size of the set
that a natural greedy algorithm for problem (19) returns. To state the result, we introduce
a bit of notation. For any set C ⊂ Y and y ∈ Y, we define

∆(C, y) := f(C ∪ {y})− f(C),
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increase in coverage from adding y to C. At each step j ∈ [K], the greedy algorithm chooses

yj := argmax
y∈Y

∆({y1 . . . , yj−1}, y),

and stops at the first step j(η) ≤ K such that f({y1, . . . , yj(η)}) ≥ η. For the greedy set
Cgr,j := {y1, . . . , yj}, define the constant

Kf,η := min

{
η

η − f(Cgr,j(η)−1)
,

max
y∈Y, j≤j(η)

∆(Cgr,j ,y)>0

(
∆(∅, y)

∆(Cgr,j , y)

)
,

maxy∈Y ∆(∅, y)

maxy∈Y\Cgr,j(η)−1 ∆(Cgr,j(η)−1, y)

}
.

We then have the following result.

Lemma 22 (Wolsey (1982), Theorem 1) Let f : 2Y → [0, 1] be a monotone submodu-
lar coverage function. Then

|Cgr,j(η)| ≤
(

1 + logKf,η

)
· |C?η |

Given the apparent similarity between the problems (19) and (Cond), we would like to
leverage Lemma 22 to establish a similar guarantee for Alg. 2. To apply Lemma 22 to Alg. 2,
we provide the natural analogous quantities, leveraging the notation in the algorithm and
working conditional on X = x. Define fx(C) := P (W ∩ C 6= ∅ | X = x), which is
immediately a submodular coverage function, and for each x we have increment function
∆x(C, y) = P (W ∩ C = ∅, y ∈ W | X = x). Because the greedy sets Cgr

η (x, u) may be
randomized but always satisfy Cgr

η (x, 1) ⊂ Cgr
η (x, 0), we provide a slight alternative to the

constant Kf,η, defining

KP,η,x := min

{
η

η − P (W ∩ Cgr
η (x, 1) 6= ∅ | X = x)

,

max
y∈Y, j≤j(x,η)

∆x(Cgr,j(x),y)>0

(
∆x(∅, y)

∆x(Cgr,j(x), y)

)
,

maxy∈Y ∆(∅, y)

maxy∈Y ∆(Cgr
η (x, 1), y)

}
.

(20)

Invoking Lemma 22 and simplifying gives the following result, which bounds the size of the
greedy set by a logarithmic quantity times the size of the best (deterministic) covering set.

Corollary 23 Let Cgr
η : X × [0, 1] ⇒ Y be the confidence set mapping Algorithm 2 outputs.

Then for all x ∈ X and u ∈ [0, 1],

|Cgr
η (x, u)| ≤ |Cgr

η (x, 0)| ≤
(

1 + logKP,η,x

)
· min
C⊂Y
{|C| s.t. P (W ∩ C 6= ∅ | x) ≥ η} .

We can roughly interpret the three terms inside the minimum in (20) as follows. The first
term is large when the greedy algorithm nearly attains the required coverage on the iteration
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just before terminating, and therefore measures (in a sense) how “wasteful” the algorithm
is. The second term is large when choosing a label earlier would have improved the coverage
more, and so expresses a kind of regret. The third term measures how often the labels y ∈ Y
co-occur in W . Though the bound is a functional of the discrete derivative ∆x(C, y) and
small when the “local” information in ∆x(C, y) gives good indicators of globally optimal
sets C, it can be hard to compute explicitly; we therefore evaluate the size of the sets that
Alg. 2 generates for a few experimental examples in Section 5.

Appendix B. Proofs of mathematical results

B.1 Proofs of lower bounds on confidence set sizes

B.1.1 Proof of Theorem 3

Suppose that P is a consistent distribution on X ×Y×2Y , with marginal Pweak over X ×2Y ,
and consider a procedure Ĉn offering 1− α strong distribution-free coverage. Let P̃ be the
distribution on X × Y × 2Y with P̃weak = Pweak, and where we define P̃ by the triple
(X̃, Ỹ , W̃ ) ∼ P̃ according to

Ỹ = argmin
y∈W̃

{
pn(X̃, y) := P

(Xi,W )ni=1
iid∼Pweak

[
y ∈ Ĉn(X̃)

]}
.

Then, P̃ is a consistent distribution on X × Y × 2Y , which ensures that

P
(Xi,Yi,Wi)

n+1
i=1

iid∼ P̃

[
Yn+1 ∈ Ĉn(Xn+1)

]
≥ 1− α.

By definition of P̃ , we have

P
(Xi,Yi,Wi)

n+1
i=1

iid∼ P̃

[
Yn+1 ∈ Ĉn(Xn+1)

]
= E(Xn+1,Yn+1,Wn+1)∼W̃ [pn(Xn+1, Yn+1)] ,

the law of Ĉn is identical under P or P̃ , as it only depends on (Xi,Wi)
n
i=1

iid∼ Pweak.

On the other hand, we observe that when (Xn+1, Yn+1,Wn+1) ∼ P̃ ,

pn(Xn+1, Yn+1) = inf
y∈Wn+1

pn(Xn+1, y),

which guarantees that

1− α ≤ E(Xn+1,Yn+1,Wn+1)∼P̃ [pn(Xn+1, Yn+1)]

= E(Xn+1,Yn+1,Wn+1)∼P̃

[
inf

y∈Wn+1

pn(Xn+1, y)

]
= E(Xn+1,Wn+1)∼P̃weak

[
inf

y∈Wn+1

pn(Xn+1, y)

]
= E(Xn+1,Wn+1)∼Pweak

[
inf

y∈Wn+1

pn(Xn+1, y)

]
.
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B.1.2 Proof of Corollary 8

Consider (X,W ) ∼ Pweak independent of (Xi,Wi)i≥1, and define p(x, y) = P(y ∈ C(x)),

recalling the definition pn(x, y) = P(y ∈ Ĉn(x)). Then because for any set W ⊂ Y and any
functions f and g we have∣∣∣ inf

y∈W
f(y)− inf

y∈W
g(y)

∣∣∣µ(W ) ≤ inf
y∈W
|f(y)− g(y)|µ(W ) ≤

∫
W
|f(y)− g(y)|dµ(y),

we obtain by Jensen’s inequality and Fubini’s theorem that

E
[∣∣∣ inf

y∈W
p(X, y)− inf

y∈W
pn(X, y)

∣∣∣µ(W )

]
≤ E

[∫
Y
|p(X, y)− pn(X, y)| dµ(y)

]
≤ E

[∫
Y

∣∣∣1{y ∈ Ĉn(X)} − 1{y ∈ C(X)}
∣∣∣ dµ(y)

]
= E

[
µ
(
Ĉn(X)4C(X)

)]
.

Taking the limit as E[µ(Ĉn(X)4C(X))]→ 0 as n→∞ we thus have

lim
n→∞

E
[∣∣∣ inf

y∈W
p(X, y)− inf

y∈W
pn(X, y)

∣∣∣µ(W )

]
= 0.

By monotonicity and the assumption that µ(W ) > 0 with probability 1, for any ε > 0 we
may choose c > 0 such that P(µ(W ) < c) ≤ ε, and thus

lim
n→∞

P
(∣∣∣ inf

y∈W
p(X, y)− inf

y∈W
pn(X, y)

∣∣∣ ≥ ε)
≤ lim

n→∞
P
(∣∣∣ inf

y∈W
p(X, y)− inf

y∈W
pn(X, y)

∣∣∣ ≥ ε, µ(W ) ≥ c
)

+ P(µ(W ) < c) ≤ 0 + ε.

In particular, | infy∈W p(X, y)− infy∈W pn(X, y)| p→ 0, and as pn and p both take values in
[0, 1], Theorem 3’s conclusion that E[infy∈W pn(X, y)] ≥ 1− α implies

E
[

inf
y∈W

p(X, y)

]
≥ 1− α.

As infy∈W p(X, y) ∈ [0, 1], this in turn implies P(infy∈W p(X, y) > 0) ≥ 1 − α. Finally, we
note the following equivalence: a target y ∈W ∩DetC(x)\C(x) if and only if y ∈W ∩{y ∈
Y : p(x, y) = 0} if and only if infy∈W p(x, y) = 0. That is, we have the event equalities

{W ∩DetC(x) ⊂ C(x)} =

{
inf
y∈W

p(x, y) > 0

}
,

so that P(W ∩DetC(X) ⊂ C(X)) = P(infy∈W p(X, y) > 0) ≥ 1− α.

B.2 Proofs on size set optimality in weak supervision

B.2.1 Proof of Lemma 12

Fix η0 ∈ (0, 1). Then y ∈ Cη0(x, u) implies that snest(x, y, u) = inf{η | y ∈ Cη(x, u)} ≤ η0

and so snest(x, y, u) ≤ η0. Conversely, assume that snest(x, y, u) ≤ η0. Then by definition of
snest, y 6∈ Cη0(x, u) if and only if for all η > η0, we have y ∈ Cη(x, u) but y 6∈ Cη0(x, u), and
therefore snest(x, y, u) = η0. But of course, by continuity, P(snest(x, y, U) = η0) = 0, and so

P(snest(x, y, U) ≤ η0 and y 6∈ Cη0(x, U)) = 0.
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B.2.2 Proof of Proposition 17

The case where W | X = x has a label-independent structure is immediate, hence we focus
on proving the result when W | X = x has a label tree-structure (8).

We prove the result by induction on the size of Y?, observing that the result is immediate
if |Y?| = 1. If |Y?| = K > 1, we assume that the result holds on sets with at most K − 1
elements.

We denote Px the law of W | X = x, by Pu the law of U and P = Px ⊗ Pu their joint
distribution, and similarly for their expectations.

Fix η ∈ (0, 1), and let C : [0, 1] ⇒ Y? be a confidence set mapping satisfying

P(C(U) ∩W 6= ∅) ≥ η.

We will prove that

Eu|CGreedy
η (x, U)| ≤ Eu|C(U)|.

We use the label ranking y1(x), . . . , yK(x) that Alg. 2 defines, omitting x for simplicity, and
consider two cases:

• Case 1: Pu(yK ∈ C(U)) = 0.

Then C provides coverage at level η using only the K − 1 first labels, which also
guarantees that CGreedy

η (x, u) only contains labels in {y1, . . . , yK−1} (since, in that
case, Jη ≤ K − 1 in Alg. 2). The induction hypothesis applied to the distribution of

W \ {yK} thus ensures that Eu|CGreedy
η (x, U)| ≤ Eu|C(U)|.

• Case 2: Pu(yK ∈ C(U)) > 0.

In that case, we will prove that either Pu(yj ∈ C(U)) = 1 for all j ∈ [K − 1], or that
we can build a new confidence set Cfinal(U) such that

P(Cfinal(U) ∩W 6= ∅ | X = x) ≥ P(C(U) ∩W 6= ∅ | X = x), Eu|Cfinal(x, U)| = Eu|C(U)|,

and verifies either Pu(yj ∈ Cfinal(U)) = 1 for all j ∈ [K−1], or Pu(yK ∈ Cfinal(U)) = 0.

The distribution Px induces a tree whose leaves are the labels y1, . . . , yK , and each
inner node N (apart from the root, which is Y? itself) is a subset of Y? such that
Px(W = N) > 0, and two nodes N1 and N2 share the same parent if any subset C
containing strictly either N1 or N2 such that Px(W = C) > 0 contains N1 ∩N2. This
parent is then the smallest subset Np such that N1 ∩N2 ⊂ Np and Px(W = Np) > 0.
Each parent is then the union of all its children. Figure 1 provides an example of such
a tree.

Defining D(C) := {y ∈ Y? \ {yK} | Pu(yj ∈ C(U)) < 1} 6= ∅, we consider the element
ỹ ∈ D(C) sharing the lowest common ancestor with yK in the tree. For instance, in
Figure 1, if D(C) = {y3, y4}, then yD = y3, as their common ancestor W0 is lower
than the common ancestor of y5 and y4 (Y? itself).

We then proceed to define C̃(U) from C(U) so that

C̃(U) \ {yK , yD} = C(U) \ {yK , yD} (21)
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and

Eu|C̃(U) ∩ {yK , yD}| = Eu|C(U) ∩ {yK , yD}|, (22)

but now either

Pu(yD ∈ C̃(U)) = 1 or Pu(yK ∈ C̃(U)) = 0.

In practice, we do so by replacing yK by yD when C(U) ∩ {yK , yD} = {yK(x)},
or/and decreasing the probabilities that C̃(U) ∩ {yK , yD} = {yD, yK} and C(U) ∩
{yK , yD} = ∅, in such a way that the average size does not vary, but the probability
that C(U) ∩ {yK , yD} = {yD} increases.

We then proceed to check that such a change cannot hurt our coverage, while it
evidently leaves the average confidence set size unchanged (because of equations (21)
and (22)).

The only way we can have C(U) ∩W 6= ∅ and C̃(U) ∩W = ∅ is if W = {yK}. On
the other hand, when W = {yD}, we can have C(U) ∩W = ∅ but C̃(U) ∩W 6= ∅.
Because of the definition of yD with respect to yK , any other value of W such that
C(U)∩W 6= ∅ will be such that C̃(U)∩W 6= ∅. In particular, by independence of W
and U , we have

P(C̃(U) ∩W 6= ∅)− P(C(U) ∩W 6= ∅)

≥ Px(W = {yK(x)})
[
Pu(yK ∈ C̃(U))− Pu(yK ∈ C(U))

]
+ Px(W = {yD})

[
Pu(yD ∈ C̃(U))− Pu(yD ∈ C(U))

]
=
(
Pu(yD ∈ C̃(U))− Pu(yD ∈ C(U))

)
(Px(W = {yD})− Px(W = {yK})) ,

since Pu(yK ∈ C̃(U)) + P (yD ∈ C̃(U)) = Pu(yK ∈ C(U)) + P (yD ∈ C(U)), as the
total average size does not vary.

In addition, since yK gets selected last in Alg. 2, we know that for all y ∈ Y?,

Px (W = {yD}) ≥ Px (W = {yK})) ,

which achieves to prove that

P(C̃(U) ∩W 6= ∅) ≥ P(C(U) ∩W 6= ∅) ≥ η.

If Pu(yD ∈ C̃(U)) = 1, then |D(C̃)| ≤ |D(C)| − 1, and we can repeat the process
until we obtain a final mapping Cfinal such that either D(Cfinal) = ∅ or P(yK(x) ∈
Cfinal(U)) = 0.

In the first scenario where eventually D(Cfinal) = ∅, it means that Cfinal(U) is either
Y? or Y? \ {yK}, and this is immediate to check that since P(Cfinal(U)∩W 6= ∅ | X =
x) ≥ η, we must have Pu(yK ∈ Cfinal(U)) ≥ Pu(yK ∈ CCond-Prox

η (x, U)), which in turn
ensures that

Eu|CCond-Prox
η (x, U)| ≤ Eu|Cfinal(U)| = E|C(U)|.
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In the second case, since PU (yK ∈ Cfinal(U)) = 0, Cfinal is effectively a confidence set
over strictly less than K labels, in which case we can apply the induction hypothesis
to conclude that

Eu|CCond-Prox
η (x, U)| ≤ Eu|Cfinal(U)| = Eu|C(U)|.

B.3 Proofs of algorithmic validity

B.3.1 Proof of Lemma 21

We prove the result by proving that if we run Algorithm 3 with M = K!, defining at each
step ymj,2 as in equation (11), then at each step m ≤ K! of the algorithm, {Ymj }j∈[m] is a
valid partition of Y that satisfies the following conditions:

1. For each j ∈ [m], we have Ymj = {ymj } if and only if there exists no i ∈ [K − 1] such
that (i+ 1 i) ◦ ymj ∈ Ymj .

2. If Ymj 6= {ymj } then s(x, ymj ) ≤ s(x, ymj,2).

If the partition satisfies these two conditions at every step, then we can run the algorithm
until step m = K!, at which point it returns a partition {YK!

j }K!
k=1 such that s(x, yK!

1 ) ≤
· · · ≤ s(x, yK!

K!). Now, since we have smj = sK!
j for every 1 ≤ j ≤ m, we conclude that, at

each step m ∈ [K!], we have

s(x, ym1 ) ≤ s(x, ym2 ) ≤ · · · ≤ s(x, ymm) ≤ min
y∈Y\{ym1 ,...,ymm}

s(x, y),

which proves the validity of the algorithm.

This is of course true for m = 1, since the best configuration simply ranks rk(x) in
decreasing order.

1. By definition of ymind(m),2 and yind(m), {Ym+1
j }m+1

j=1 is a valid partition of Y such that

each ym+1
j ∈ Ym+1

j , if {Ymj } is itself a valid partition (and m < K!), so long as
we can prove that if Ymj 6= {ymj }, then there must exist α ∈ [K − 1] such that
(α+ 1 α) ◦ ymj ∈ Ymj (i.e the algorithm does not get stuck and terminates). But this
is immediate as, if for all α ∈ [K − 1], we have (α+ 1 α) ◦ ymj /∈ Ymj , then it must be
by construction that

Ymj ⊂
⋂

α∈[K−1]

{y ∈ Y | y−1(ymj (α)) < y−1(ymj (α+ 1))} = {ymj }.

Therefore, at each step m ≤ K! of the algorithm, {Ymj }j∈[m] is a valid partition of Y,
and the algorithm terminates.

2. On the other hand, it requires more care to justify why, if we set, for all j ≤ m,

ymj,2 := argmin
y∈Ymj

{s(x, y) | ∃α ∈ [K − 1], y = (α+ 1 α) ◦ ymj }
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then we should always have

s(x, ymj ) ≤ s(x, ymj,2) (23)

for all j ∈ [m], i.e. why any permutation of the form (α α + 1) ◦ ymj that belongs to
Ymj cannot strictly decrease the score s(x, y).

Equation (23) actually results from a crucial property of the score function (10), which
ensures that if s(x, y) < s(x, (α α+ 1) ◦ y), then it must hold that

ry(α)(x) < ry(α+1)(x),

i.e. the elements y(α) and y(α+ 1) were originally in the wrong order in y.

But, since we start the partition process with y1
1 such that ry11(1)(x) ≥ · · · ≥ ry11(k)(x),

i.e with all elements in the correct order, it is straightforward to check that at any
time m, there cannot exist a permutation of the form (α α+ 1) ◦ ymj that also belongs
to Ymj such that

rymj (α)(x) < rymj (α+1)(x) :

if that were the case, then there would exist l ≤ j such that ymj (α) and ymj (α + 1)

were the elements exchanged at time l when creating the partition {Y l+1
i }

l+1
i=1. In turn,

since ymj ∈ Ymj , this would guarantee that

Ymj ⊂ {y ∈ Y | y−1(ymj (α)) < y−1(ymj (α+ 1))},

and thus that (α α + 1) ◦ ymj /∈ Ymj . This guarantees that any configuration (α α +
1) ◦ ymj ∈ Ymj satisfies

s(x, (α α+ 1) ◦ ymj ) ≥ s(x, ymj ),

and thus that either Ymj = {ymj }, or

s(x, ymj,2) ≥ s(x, yj),

which concludes the proof.

Appendix C. Further experiments

C.1 Structured prediction example (Perfect matching scores and weak
supervision)

A matching task consists of optimally pairing elements of a bipartite graph given a fea-
ture vector x ∈ X . For example, one may wish to identify paired amino acids in protein
folding (Taskar et al., 2003). We assume there exists a bipartite graph G with disjoint
sets U and V of K ≥ 1 nodes; each label Y is then a perfect matching between U and
V , i.e., a bijection Y ∈ Y = S(U, V ). General supervised approaches for perfect matching
problems, such as structured Support Vector Machines (Tsochantaridis et al., 2004) or Ad-
versarial Bipartite Matching (Fathony et al., 2018), generally learn pairwise score functions
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ϕu,v : X → R for all (u, v) ∈ U × V , which measure the cost of adding the edge e := (u, v)
for a feature vector x ∈ X , and then output a prediction

y?(x) :=

 argmin
y∈S(U,V )

∑
u∈U

ϕu,y(u)(x) =
∑

u∈U,v∈V
1{v = y(u)}ϕu,v(x)

 ,

an instance of minimum cost perfect matching solvable in time O(K3) with the Hungarian
algorithm. To efficiently adapt this approach in the context of Alg. 1, we assume we have
trained a set of pairwise score functions {ϕu,v : X → R | (u, v) ∈ U × V }, (e.g. using
supervised training data) and wish to conformalize with partially supervised data, using
the score function

sMatching(x, y) :=
∑

u∈U,v∈V
1{v = y(u)}ϕu,v(x, y). (24)

In a matching problem, weak supervision can arise under the form of a partial matching
between subsets Ui ⊂ U and Vi ⊂ V of the nodes, which we write Y weak

i ∈ S(Ui, Vi): each
u ∈ Ui has a matching element Y weak

i (u) = Yi(u) ∈ Vi. Computing the minimum partial
scores (5) in Alg. 1 is then computationally efficient, as it reduces to yet another minimum
cost perfect matching problem:

Si :=
∑
u∈Ui

ϕu,Y weak
i (u)(x) + min

ỹ∈S(U\Ui,V \Vi)

{ ∑
u∈U\Ui
v∈V \Vi

1{v = ỹ(u)}ϕu,v(x)

}
.

In the matching case, Alg. 3 is equivalent to finding the M -best minimal weight perfect
matching in a bipartite graph, which Chegireddy and Hamacher (1987) efficiently solve. In
the context of Alg. 3, their approach iteratively chooses an edge em ∈ ymind(m)\y

m
ind(m),2, then

partitions the set of matchings M ∈ Ymind(m) depending on whether em ∈ M or not. The
computation of each second-best configuration then amounts to solving at most K different
perfect matching problems, resulting in an overall O(MK4) cost of the procedure.

C.2 Pedestrian tracking with partial matching information

We now apply our weakly supervised conformal methods to a bipartite matching problem.
A common objective in computer vision, relevant for instance for self-driving cars, is to
track people’s trajectory throughout different time frames. Since we can leverage powerful
algorithms (Redmon et al., 2016) to individually detect objects in every single frame, the
problem that we study here is actually a matching task where the goal is to match two
sets of people appearing in two separate frames: this is an instance of a maximal matching
problem.

Weak supervision with partial matchings In this context, we expect partial super-
vision to come under the form of a partial matching: some people, e.g. people that are
easier to track between two consecutive frames because they are in the foreground, already
have their match in the second frame, when others, perhaps more difficult to track, are
still waiting for a potential match. Given these partially labeled instances, the goal then
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Figure 6. Results for the video tracking matching dataset MOT2015 Leal-Taixé et al.
(2015), over Ntrials = 20 trials. We use one video sequence for training (ETH-B, ETH-P or
ETH-S) and the two others for calibration and testing. A: Strong (1) and weak (3) coverage.
B: Average confidence set size for fully supervised (FSC) and weakly supervised conformal
(WSC) methods.

becomes to return confidence sets of matchings that guarantee 1 − α coverage: to provide
valid weak coverage (3), we wish to include a configuration that contains at least all the
partial matches.

Predicting trajectories in the MOT2D15 data set (Leal-Taixé et al., 2015) We
experiment using the MOT2D15 pedestrian video tracking dataset (Leal-Taixé et al., 2015).
This public benchmark contains short street videos with pedestrians, and the goal is to
track each of them while they appear in the frame. Each frame has a set of bounding
boxes corresponding to each individual present in the frame, and we seek to match boxes
representing the same person between two consecutive frames. Since an individual can
enter or exit the frame between two consecutive images, we need to account for potentially
unmatched boxes, which we do by including “virtual” nodes in the bipartite graph, similarly
to previous approaches (Kim et al., 2013; Fathony et al., 2018).

We use the same feature representation of Kim et al. (2013) and Fathony et al. (2018):
given a pair x := (x1, x2) of two consecutive images, and two bounding boxes u ⊂ x1,
v ⊂ x2, we compute a d = 46 dimensional vector φ(x1, x2, u, v) that summarizes key features
(e.g. position of the bounding box, color distribution) and allows determining whether u
and v represent the same person. We then train our model using a structured S-SVM
approach (Tsochantaridis et al., 2004), following Kim et al. (2013). The model outputs a
pairwise score function sPW : (x, u, v) 7→ θTφ(x1, x2, u, v) for some vector θ ∈ Rd where
the feature vector x = (x1, x2) ∈ X consists of two consecutive frames, and (u, v) are two
potential bounding boxes (one in each image).

Experimental set-up and partial labels We use MOT2D15 as follows. For each of the
ETH-Bahnhof, ETH-Pedcross2 and ETH-Sunnyday video sequences, which contain respec-
tively 1000, 837, and 354 consecutive images, we select one for training, one for calibration,
and the last for testing, using α = 0.02 for conformalization purposes. We introduce weak
supervision by assuming that for each pair of images, we observe a partial matching: among

the Ki paired individuals, a user provides feedback on Kpartial
i

iid∼ 1 + Poi(0.5) matches.
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For both our FSC and WSC methods, we use a translated version of the sMatching

score (24) with pairwise functions su,v(x) := sPW(x, u, v): for each instance (x, y) ∈ X ×Y,
we use the score

s̃Matching(x, y) := sMatching(x, y)−min
ỹ∈Y

sMatching(x, ỹ)

This operation ensures that miny∈Y s̃
Matching(x, y) = 0 for every x ∈ X and thus does not

change the ordering of configurations or the score difference between two configurations; we
simply use it to place all the instances Xi on the same scale when applying Algorithm 1.
In particular, in the noiseless case where the true label Yi is always the minimizer of y 7→
sMatching(Xi, y), this guarantees that Ĉ(X) eventually contains a single configuration (as
we should, since the score function in this case outputs perfect predictions).

Experimental results This specific problem is actually low-noise, as it is possible to
achieve a very high accuracy with the S-SVM approach, which is not so surprising as we
assume perfect detection of every person thanks the bounding boxes. As a result, we
can expect the FSC and WSC methods to output very similar confidence sets, as the
configuration minimizing the score is often the true label itself. This is precisely what we
observe in Figure 6, where both methods are actually indistinguishable and where, even with
a very high confidence 1 − α. = 0.98, both the FSC and WSC methods return confidence
sets with a single configuration on average. We only notice a slight difference between both
methods when training on the ETH-Sunnyday sequence, which contains fewer images, and
hence produces slightly worse score functions.

C.3 Prediction intervals for weakly supervised regression

Much of our development goes beyond (finite) spaces with combinatorial structure. We
therefore finish with an exemplar regression problem. We consider predicting the fraction
of votes in each United States county for the Democratic Party candidate in the 2016 United
States presidential election, using demographic (census) data as covariates and the results
of past elections. It is common during elections for forecasters to build predictive models
from both census and historical election data, as well as current polling data. We view the
historical data as strong supervision (it tells us exactly how many people voted for each
candidate), and the polling data as weak supervision (as polls always come with a margin
of error). Our goal here is to fit a regression model to the strongly supervised past election
data, and then form prediction intervals for the fraction of people in each county who voted
Democrat by leveraging the weakly supervised polling data. We hope by combining both
we obtain valid intervals narrower than the polling margins of error.

Our data comes from the 2013–2017 American Community Survey 5-Year Estimates, a
longitudinal survey that records demographic information about each of the 3220 United
States counties. We use d = 34 of the available demographic features, and the response is the
fraction of people in each county who voted Democratic. To experiment with this dataset,
we split it into thirds: 33% of the counties (and their associated fractions of Democratic
voters) go into the training set, 33% go into the calibration set, and the rest go into the test
set; as our splits are random, they are exchangeable. We fit a Beta regression model to the
strongly supervised training data. To simulate the availability of weakly supervised polling
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data, we replace each calibration set response Yi ∈ [0, 1] with a weak response Wi ⊂ [0, 1],
i = 1, . . . , n, by forming intervals

Wi = [Yi − Zi, Yi + Zi], Zi ∼ N(µ, 0.0001), i = 1, . . . , n, (25)

for various values of µ ∈ {.01, .05, .1, .15, .2}, so that Wi captures fluctuations of roughly
±µ around Yi.

We conformalize by running Alg. 1 with the absolute error score

s(x, y) = |ŷ(x)− y|,

where ŷ(x) ∈ [0, 1] denotes the Beta regression model’s prediction for the point x ∈ Rd.
Here, conformalization boils down to solving the simple linear program

s(Xi, Yi) = min
γ∈R

{|ŷ(Xi)− γ| | Yi − Zi ≤ γ, γ ≤ Yi + Zi} , i = 1, . . . , n.

Finally, we evaluate both strong (1) and weak (3) coverage on the test set, applying the
same transformation (25) to generate the weak labels for the test set. We compute the two
types of coverage, as well as the lengths of the prediction intervals, by repeating this process
20 times. We set the miscoverage level α = .05.

Similar to our other experiments, Alg. 1 achieves weak coverage at the nominal level
.95 for all values of µ (governing the amount of weak supervision), as in the middle panel
of Figure 7. We expect the strong coverage to be lower. The left panel of Figure 7 uses
compares the strong coverage Alg. 1 achieves in teal, showing the coverage of standard
conformal inference (using the correct responses Yi) in pink. Because it provides weak
coverage, we expect Alg. 1 to generate shorter prediction intervals than standard conformal
inference. The right panel of Figure 7 exhibits this: when µ ≥ .1, the average length of
Alg. 1’s intervals is at least three times smaller than standard conformal’s, and half the
length of the average weakly supervised interval Wi from (25) (≈ .2). We can also see from
these figures, as in our other experiments, that Alg. 1’s strong coverage degrades as µ grows,
whereas its weak coverage improves and the length of its prediction intervals shrinks.

We view these results from a slightly different perspective in Figures 8 and 9. In Figure 8,
we show the true fraction of Democratic votes in each county in the test. In Figure 9, we
show the lower and upper endpoints of Alg. 1’s prediction intervals, for a randomly chosen
repetition with µ = .05. In these two figures, we color the counties with strong (predicted)
Democratic majorities blue, and those with strong (predicted) Republican majorities red.
By comparing the colors, we can see that the prediction intervals only sometimes contain
the true response, which is expected. Finally, we note that the colors of the lower and upper
endpoints in Figure 9 are similar, because the length of the prediction intervals is usually
small.
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Figure 7. Results for the regression problem with the election data over 20 trials. Left
panel: strong coverage (1). Middle panel weak coverage (3). The dashed red line indicates
the nominal coverage level, 1 − α = .95. Right panel: prediction interval lengths. In these
plots, we show Alg. 1, denoted “WSC”, in teal. We show standard conformal inference,
denoted “FSC”, in pink.
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Figure 8. Map of United States counties. We color each county according to the actual
fraction votes for the Democratic candidate in the 2016 United States presidential election.
We color counties with strong Democratic majorities blue, and those with strong Republican
majorities red. We color the counties from the training and calibration sets gray.
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Figure 9. Map of United States counties. We color each county according to the value of
the upper (top panel) and lower (bottom panel) endpoints of the confidence interval that
Alg. 1 returns, when µ = .05. We color counties with values close to 1 blue, and those with
values close to 0 red. We color the counties from the training and calibration sets gray.
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C. Zhang, C. Ré, M. Cafarella, C. De Sa, A. Ratner, J. Shin, F. Wang, and S. Wu. DeepDive:
Declarative knowledge base construction. Communications of the ACM, 60(5):93–102,
2017.

46


	Introduction
	Related Work

	Conformal inference with weakly supervised data
	The strong coverage dilemma with partially supervised data
	A general weak-conformal scheme via scoring functions

	Constructing effective conformal prediction sets
	Size-optimal scoring mechanism
	From conditionally to marginally valid confidence sets

	Greedy algorithms for confidence set-size minimization

	Efficient conformalization for large output spaces
	Conformal confidence sets with sequential partitioning
	Returning M best configurations with sequential partitioning

	Structured prediction examples (Ranking problems and partial labeling mechanisms)

	Experiments
	A toy classification example
	Document ordering for query answering
	Ranking simulation study
	Ranking experiment with Microsoft LETOR dataset


	Discussion
	A general upper bound for the greedy approach
	Proofs of mathematical results
	Proofs of lower bounds on confidence set sizes
	Proof of Theorem 3
	Proof of Corollary 8

	Proofs on size set optimality in weak supervision
	Proof of Lemma 12
	Proof of Proposition 17

	Proofs of algorithmic validity
	Proof of Lemma 21


	Further experiments
	Structured prediction example (Perfect matching scores and weak supervision)
	Pedestrian tracking with partial matching information
	Prediction intervals for weakly supervised regression


